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Unsupervised learning techniques can take advan-
tage of large amounts of unannotated text, but the
largest text corpus (the Web) is not easy to use in
its full form. Instead, we have statistics about this
corpus in the form of n-gram counts (Brants and
Franz, 2006). While n-gram counts do not directly
provide sentences, a distribution over sentences can
be estimated from them in the same way that n-
gram language models are estimated. We treat this
distribution over sentences as an approximate cor-
pus and show how unsupervised learning can be
performed on such a corpus using variational infer-
ence. We compare hidden Markov model (HMM)
training on exact and approximate corpora of vari-
ous sizes, measuring speed and accuracy on unsu-
pervised part-of-speech tagging.

1 Introduction
We consider the problem of training generative mod-
els on very large datasets in sublinear time. It is well
known how to train an HMM to maximize the like-
lihood of a corpus of sentences. Here we show how
to train faster on a distribution over sentences that
compactly approximates the corpus. The distribu-
tion is given by an 5-gram backoff language model
that has been estimated from statistics of the corpus.

In this paper, we demonstrate our approach on
a traditional testbed for new structured-prediction
learning algorithms, namely HMMs. We focus on
unsupervised learning. This serves to elucidate the
structure of our variational training approach, which
stitches overlapping n-grams together rather than
treating them in isolation. It also confirms that at
least in this case, accuracy is not harmed by the
key approximations made by our method. In future,
we hope to scale up to the Google n-gram corpus
(Brants and Franz, 2006) and learn a more detailed,
explanatory joint model of tags, syntactic dependen-
cies, and topics. Our intuition here is that web-scale
data may be needed to learn the large number of lex-
ically and contextually specific parameters.

∗Work was supported in part by NSF grant No. 0347822.

1.1 Formulation

Let w (“words”) denote an observation sequence,
and let t (“tags”) denote a hidden HMM state se-
quence that may explain w. This terminology is
taken from the literature on inducing part-of-speech
(POS) taggers using a first-order HMM (Merialdo,
1994), which we use as our experimental setting.

Maximum a posteriori (MAP) training of an
HMM pθ seeks parameters θ to maximize

N ·
∑
w

c(w) log
∑
t

pθ(w, t) + log Pr prior(θ) (1)

where c is an empirical distribution that assigns
probability 1/N to each of the N sentences in a
training corpus. Our technical challenge is to gen-
eralize this MAP criterion to other, structured dis-
tributions c that compactly approximate the corpus.

Specifically, we address the case where c is given
by any probabilistic FSA, such as a backoff lan-
guage model—that is, a variable-order Markov
model estimated from corpus statistics. Similar sen-
tences w share subpaths in the FSA and cannot eas-
ily be disentangled. The support of c is typically infi-
nite (for a cyclic FSA) or at least exponential. Hence
it is no longer practical to compute the tagging distri-
bution p(t | w) for each sentence w separately, as in
traditional MAP-EM or gradient ascent approaches.
We will maximize our exact objective, or a cheaper
variational approximation to it, in a way that cru-
cially allows us to retain the structure-sharing.

1.2 Motivations

Why train from a distribution rather than a corpus?
First, the foundation of statistical NLP is distribu-
tions over strings that are specified by weighted au-
tomata and grammars. We regard parameter estima-
tion from such a distribution c (rather than from a
sample) as a natural question. Previous work on
modeling c with a distribution from another fam-
ily was motivated by approximating a grammar or
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model rather than generalizing from a dataset, and
hence removed latent variables while adding param-
eters (Nederhof, 2000; Mohri and Nederhof, 2001;
Liang et al., 2008), whereas we do the reverse.

Second, in practice, one may want to incorporate
massive amounts of (possibly out-of-domain) data
in order to get better coverage of phenomena. Mas-
sive datasets usually require a simple model (given a
time budget). We propose that it may be possible to
use a lot of data and a good model by reducing the
accuracy of the data representation instead. While
training will become more complicated, it can still
result in an overall speedup, because a frequent 5-
gram collapses into a single parameter of the esti-
mated distribution that only needs to be processed
once per training iteration. By pruning low-count
n-grams or reducing the maximum n below 5, one
can further increase data volume for the fixed time
budget at the expense of approximation quality.

Third, one may not have access to the original
corpus. If one lacks the resources to harvest the
web, the Google n-gram corpus was derived from
over a trillion words of English web text. Privacy
or copyright issues may prevent access, but one may
still be able to work with n-gram statistics: Michel
et al. (2010) used such statistics from 5 million
scanned books. Several systems use n-gram counts
(Bergsma et al., 2009; Lin et al., 2009) or other
web statistics (Lapata and Keller, 2005) as features
within a classifier. A large language model from n-
gram counts yields an effective prior over hypothe-
ses in tasks like machine translation (Brants et al.,
2007). We similarly construct an n-gram model, but
treat it as the primary training data whose structure
is to be explained by the generative HMM. Thus our
criterion does not explain the n-grams in isolation,
but rather tries to explain the likely full sentences
w that the model reconstructed from overlapping n-
grams. This is something like shotgun sequencing,
in which likely DNA strings are reconstructed from
overlapping short reads (Staden, 1979); however, we
train an HMM on the resulting distribution rather
than merely trying to find its mode.

Finally, unsupervised HMM training discovers la-
tent structure by approximating an empirical distri-
bution c (the corpus) with a latent-variable distribu-
tion p (the trained HMM) that has fewer parameters.
We show how to do the same where the distribution

c is not a corpus but a finite-state distribution. In
general, this finite-state c could represent some so-
phisticated estimate of the population distribution,
using shrinkage, word classes, neural-net predictors,
etc. to generalize in some way beyond the training
sample before fitting p. For the sake of speed and
clear comparison, however, our present experiments
take c to be a compact approximation to the sample
distribution, requiring only n-grams.

Spectral learning of HMMs (Hsu et al., 2009)
also learns from a collection of n-grams. It has the
striking advantage of converging globally to the true
HMM parameters (under a certain reparameteriza-
tion), with enough data and under certain assump-
tions. However, it does not exploit context beyond
a trigram (it will not maximize, even locally, the
likelihood of a finite sample of sentences), and can-
not exploit priors or structure—e.g., that the emis-
sions are consistent with a tag dictionary or that the
transitions encode a higher-order or factorial HMM.
Our more general technique extends to other latent-
variable models, although it suffers from variational
EM’s usual local optima and approximation errors.

2 A variational lower bound

Our starting point is the variational EM algorithm
(Jordan et al., 1999). Recall that this maximizes a
lower bound on the MAP criterion of equation 1, by
bounding the log-likelihood subterm as follows:

log
∑

t pθ(w, t) (2)

= log
∑

t q(t)(pθ(w, t)/q(t))

≥
∑

t q(t) log(pθ(w, t)/q(t))

= Eq(t)[log pθ(w, t)− log q(t)] (3)

This use of Jensen’s inequality is valid for any distri-
bution q. As Neal and Hinton (1998) show, the EM
algorithm (Dempster et al., 1977) can be regarded
as locally maximizing the resulting lower bound by
alternating optimization, where q is a free parame-
ter. The E-step optimizes q for fixed θ, and the M-
step optimizes θ for fixed q. These computations are
tractable for HMMs, since the distribution q(t) =
pθ(t | w) that is optimal at the E-step (which makes
the inequality tight) can be represented as a lattice
(a certain kind of weighted DFA), and this makes
the M-step tractable via the forward-backward algo-
rithm. However, there are many extensions such as
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factorial HMMs and Bayesian HMMs in which an
expectation under pθ(t | w) involves an intractable
sum. In this setting, one may use variational EM, in
which q is restricted to some parametric family qφ
that will permit a tractable M-step. In this case the
E-step chooses the optimal values of the variational
parameters φ; the inequality is no longer tight.

There are two equivalent views of how this pro-
cedure is applied to a training corpus. One view is
that the corpus log-likelihood is just as in (2), where
w is taken to be the concatenation of all training
sentences. The other view is that the corpus log-
likelihood is a sum over many terms of the form (2),
one for each training sentence w, and we bound each
summand individually using a different qφ.

However, neither view leads to a practical imple-
mentation in our setting. We can neither concatenate
all the relevant w nor loop over them, since we want
the expectation of (2) under some distribution c(w)
such that {w : c(w) > 0} is very large or infinite.
Our move is to make q be a conditional distribution
q(t | w) that applies to all w at once. The follow-
ing holds by applying Jensen’s inequality separately
to each w in the expectation (this is valid since for
each w, q(t | w) is a distribution):

Ec(w) log
∑

t pθ(w, t) (4)

= Ec(w) log
∑

t q(t | w)(pθ(w, t)/q(t | w))

≥ Ec(w)

∑
t q(t | w) log(pθ(w, t)/q(t | w))

= Ecq(w,t)[log pθ(w, t)− log q(t | w)] (5)

where we use cq(w, t) to denote the joint distribu-
tion c(w) · q(t | w). Thus, just as c is our approx-
imate corpus, cq is our approximate tagged corpus.
Our variational parameters φ will be used to param-
eterize cq directly. To ensure that cqφ can indeed
be expressed as c(w) · q(t | w), making the above
bound valid, it suffices to guarantee that our varia-
tional family preserves the marginals:

(∀w)
∑

t cqφ(w, t) = c(w)

3 Finite-state encodings and algorithms

In the following, we will show how to maximize
(5) for particular families of p, c, and cq that can
be expressed using finite-state machines (FSMs)—
that is, finite-state acceptors (FSAs) and transducers
(FSTs). This general presentation of our method en-
ables variations using other FSMs.

A path in an FSA accepts a string. In an FST,
each arc is labeled with a “word : tag” pair, so that a
path accepts a string pair (w, t) obtained by respec-
tively concatenating the words and the tags encoun-
tered along the path. Our FSMs are weighted in the
(+,×) semiring: the weight of any path is the prod-
uct (×) of its arc weights, while the weight assigned
to a string or string pair is the total weight (+) of all
its accepting paths. An FSM is unambiguous if each
string or string pair has at most one accepting path.

Figure 1 reviews how to represent an HMM POS
tagger as an FST (b), and how composing this with
an FSA that accepts a single sentence gives us the
familiar HMM tagging lattice as an FST (c). The
forward-backward algorithm sums over paths in the
lattice via dynamic programming (Rabiner, 1989).

In section 3.1, we replace the straight-line FSA
of Figure 1a with an FSA that defines a more gen-
eral distribution c(w) over many sentences. Note
that we cannot simply use this as a drop-in replace-
ment in the construction of Figure 1. That would
correspond to running EM on a single but uncer-
tain sentence (distributed as c(w)) rather than a col-
lection of observed sentences. For example, in the
case of an ordinary training corpus of N sentences,
the new FSA would be a parallel union (sum) of
N straight-line paths—rather than a serial concate-
nation (product) of those paths as in ordinary EM
(see above). Running the forward algorithm on the
resulting lattice would compute Ec(w)

∑
t p(w, t),

whose log is log Ec(w)

∑
t p(w, t) rather than our

desired Ec(w) log
∑

t p(w, t). Instead, we use c in
section 3.2 to construct a variational family cqφ. We
then show in sections 3.3–3.5 how to compute and
locally maximize the variational lower bound (5).

3.1 Modeling a corpus with n-gram counts

n-gram backoff language models have been used for
decades in automatic speech recognition and statis-
tical machine translation. We follow the usual FSA
construction (Allauzen et al., 2003). The state of a 5-
gram FSA model c(w) must remember the previous
4-gram. For example, it would include an arc from
state defg (the previous 4-gram) to state efgh with
label h and weight c(h | defg). Then, with appro-
priate handling of boundary conditions, a sentence
w = . . . defghi . . . is accepted along a single path of
weight c(w) = · · · c(h | defg) · c(i | efgh) · · · . Arcs
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(a) w 
Time flies like an arrow

(b) p(w,t) Start V
w:V

Stop

Nw:N
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w:V
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(c) w o p(w,t) Start
VTime : V
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Time : N

V

flies : V

N

flies : N

flies : V

flies : N

Prep

like : Prep

V

like : V

like : Prep

like : V

DT

an : DT

an : DT N
arrow : N

Figure 1: Ordinary HMM tagging with finite-state machines. An arc’s label may have up to three components:
“word:tag / weight.” (Weights are suppressed for space. State labels are not part of the machine but suggest the history
recorded by each state.) (a) w is an FSA that generates the sentence “Time flies like an arrow”; all arcs have probability
1. (b) p(w, t) is an FST representing an HMM (many arcs are not shown and words are abbreviated as “w”). Each arc
w : t is weighted by the product of transition and emission probabilities, p(t | previous t) · p(w | t). Composing (a)
with (b) yields (c), an FST that encodes the joint probabilities p(w, t) of all possible taggings of the sentence w.

of weight 0 can be omitted from the FSA.1

To estimate a conditional probability like c(h |
defg) above, we simply take an unsmoothed ratio of
two n-gram counts. This ML estimation means that
c will approximate as closely as possible the train-
ing sample from which the counts were drawn. That
gives a fair comparison with ordinary EM, which
trains directly on that sample. (See discussion at the
end of section 1.2 for alternatives.)

Yet we decline to construct a full 5-gram model,
which would not be as compact as desired. A col-
lection of all web 5-grams would be nearly as large
as the web itself (by Zipf’s Law). We may not have
such a collection. For example, the Google n-gram
corpus version 2 contains counts only for 1-grams
that appear at least 40 times and 2-, 3-, 4-, and 5-
grams that appear at least 10 times (Lin et al., 2009).

1The FSA’s initial state is the unigram history #, and its final
states (which have no outgoing arcs) are the other states whose
n-gram labels end in #. Here # is a boundary symbol that falls
between sentences. To compute the weighted transitions, sen-
tence boundaries must be manually or automatically annotated,
either on the training corpus as in our present experiments, or
directly on the training n-grams if we have only those.

To automatically find boundaries in an n-gram collection,
one could apply a local classifier to each n-gram. But in princi-
ple, one could exploit more context and get a globally consistent
annotation by stitching the n-grams together and applying the
methods of this paper—replacing pθ with an existing CRF sen-
tence boundary detector, replacing c with a document-level (not
sentence-level) language model, and optimizing cqφ to be a ver-
sion of c that is probabilistically annotated with sentence bound-
aries, which yields our desired distribution over sentences.

Instead, we construct a backoff language model.
This FSA has one arc for each n-gram in the col-
lection. Our algorithm’s runtime (per iteration) will
be linear in the number of arcs. If the 5-gram defgh
is not in our collection, then there can be no h arc
leaving defg. When encountering h in state defg, the
automaton will instead take a failure arc (Allauzen
et al., 2003) to the “backoff state” efg. It may be
able to consume the h from that state, on an arc with
weight c(h | efg); or it may have to back off further
to fg. Each state’s failure arc is weighted such that
the state’s outgoing arcs sum to 1. It is labeled with
the special symbol Φ, which does not contribute to
the word string accepted along a path.

We take care never to allow backoff to the empty
state ε,2 since we find that c(w) is otherwise too
coarse an approximation to English: sampled sen-
tences tend to be disjointed, with some words gener-
ated in complete ignorance of their left context.

3.2 The variational distribution cq(w, t)
The “variational gap” between (4) and (5) is
Ec(w)KL(q(t | w) || pθ(t | w)). That is, the bound
is good if q does a good job of approximating pθ’s
tagging distribution on a randomly drawn sentence.

Note that n−1 is the order of our n-gram Markov
2To prevent such backoff, it suffices to include all 2-grams

with count > 0. But where the full collection of 2-grams is
unavailable or too large, one can remove the empty state (and
recursively remove all states that transition only to removed
states), and then renormalize the model locally or globally.
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model c(w) (i.e., each word is chosen given the pre-
vious n − 1 words). Let np − 1 be the order of the
HMM pθ(w, t) that we are training: i.e., each tag is
chosen given the previous np − 1 tags. Our experi-
ments take np = 2 (a bigram HMM) as in Figure 1.

We will take qφ(t | w) to be a conditional Markov
model of order nq − 1.3 It will predict the tag at po-
sition i using a multinomial conditioned on the pre-
ceding nq−1 tags and on the word n-gram ending at
position i (where n is as large as possible such that
this n-gram is in our training collection). φ is the
collection of all multinomial parameters.

If nq = np, then our variational gap can be made 0
as in ordinary non-variational EM (see section 3.5).
In our experiments, however, we save memory by
choosing nq = 1. Thus, our variational gap is tight
to the extent that a word’s POS tag under the model
pθ is conditionally independent of previous tags and
the rest of the sentence, given an n-word window.4

This is the assumption made by local classification
models (Punyakanok et al., 2005; Toutanova and
Johnson, 2007). Note that it is milder than the “one
tagging per n-gram” hypothesis (Dawborn and Cur-
ran, 2009; Lin et al., 2009), which claims that each
5-gram (and therefore each sentence!) is unambigu-
ous as to its full tagging. In contrast, we allow that
a tag may be ambiguous even given an n-word win-
dow; we merely suppose that there is no further dis-
ambiguating information accessible to pθ.5

We can encode the resulting cq(w, t) as an FST.
With nq = 1, the states of cq are isomorphic to the
states of c. However, an arc in c from defg with
label h and weight 0.2 is replaced in cq by several
arcs—one per tag t—with label h : t and weight
0.2 · qφ(t | defgh).6 We remark that an encoding of

3A conditional Markov model is a simple case of a
maximum-entropy Markov model (McCallum et al., 2000).

4At present, the word being tagged is the last word in the
window. We do have an efficient modification in which the win-
dow is centered on the word, by using an FST cq that delays the
emission of a tag until up to 2 subsequent words have been seen.

5With difficulty, one can construct English examples that
violate our assumption. (1) “Some monitor lizards from
Africa . . . ” versus “Some monitor lizards from a distance . . . ”:
there are words far away from “monitor” that help disambiguate
whether “monitor” is a noun or a verb. (“Monitor lizards” are
a species, but some people like to monitor lizards.) (2) “Time
flies”: “flies” is more likely to be a noun if “time” is a verb.

6In the case nq > 1, the states of c would need to be split
in order to remember nq − 1 tags of history. For example, if

q(t | w) as an FST would be identical except for
dropping the c factor (e.g., 0.2) from each weight.
Composing c ◦ q would then recover cq.

This construction associates one variational pa-
rameter in φ with each arc in cq—that is, with each
pair (arc in c, tag t), if nq = 1. There would be lit-
tle point in sharing these parameters across arcs of
cq, as that would reduce the expressiveness of the
variational distribution without reducing runtime.7

Notice that maximizing equation (5) jointly learns
not only a compact slow HMM tagger pθ, but also a
large fast tagger qφ that simply memorizes the likely
tags in each n-gram context. This is reminiscent of
structure compilation (Liang et al., 2008).

3.3 Computing the variational objective

The expectation in equation (5) can now be com-
puted efficiently and elegantly by dynamic program-
ming over the FSMs, for a given θ and φ.

We exploit our representation of cqφ as an FSM
over the (+,×) semiring. The path weights repre-
sent a probability distribution over the paths. In gen-
eral, it is efficient to compute the expected value of
a random FSM path, for any definition of value that
decomposes additively over the path’s arcs. The ap-
proach is to apply the forward algorithm to a version
of cqφ where we now regard each arc as weighted
by an ordered pair of real numbers. The (+,×) op-
erations for combining weights (section 3) are re-
placed with the operations of an “expectation semir-
ing” whose elements are such pairs (Eisner, 2002).

Suppose we want to find Ecqφ(w,t) log qφ(t | w).
To reduce this to an expected value problem, we
must assign a value to each arc of cqφ such that the

c is Figure 1a, splitting its states with nq = 2 would yield a
cq with a topology like Figure 1c, but with each arc having an
independent variational parameter.

7One could increase the number of arcs and hence varia-
tional parameters by splitting the states of cq to remember more
history. In particular, one could increase the width nq of the tag
window, or one could increase the width of the word window by
splitting states of c (without changing the distribution c(w)).

Conversely, one could reduce the number of variational pa-
rameters by further restricting the variational family. For exam-
ple, requiring q(t | w) to have entropy 0 (analogous to “hard
EM” or “Viterbi EM”) would associate a single deterministic
tag with each arc of c. This is fast, makes cq as compact as c,
and is still milder than “one tagging per n-gram.” More gener-
ously, one could allow up to 2 tags per arc of c, or use a low-
dimensional representation of the arc’s distribution over tags.
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total value of a path accepting (w, t) is log qφ(t |
w). Thus, let the value of each arc in cqφ be the log
of its weight in the isomorphic FST qφ(t | w).8

We introduce some notation to make this precise.
A state of cqφ is a pair of the form [hc, hq], where hc
is a state of c (e.g., an (n− 1)-word history) and hq
is an (nq − 1)-tag history. We saw in the previous
section that an arc a leaving this state, and labeled
with w : t where w is a word and t is a tag, will
have a weight of the form ka

def
= c(w | hc)φa where

φa
def
= qφ(t | hcw, hq). We now let the value va

def
=

log φa.9 Then, just as the weight of a path accepting
(w, t) is

∏
a ka = cqφ(w, t), the value of that path

is
∑

a va = log qφ(t | w), as desired.
To compute the expected value r̄ over all paths,

we follow a generalized forward-backward recipe
(Li and Eisner, 2009, section 4.2). First, run the for-
ward and backward algorithms over cqφ.10 Now the
expected value is a sum over all arcs of cqφ, namely
r̄ =

∑
a αakavaβa, where αa denotes the forward

probability of arc a’s source state and βa denotes
the backward probability of arc a’s target state.

Now, in fact, the expectation we need to compute
is not Ecqφ(w,t) log qφ(t | w) but rather equation (5).
So the value va of arc a should not actually be
log φa but rather log θa − log φa where θa

def
= pθ(t |

8The total value is then the sum of the logs, i.e., the log
of the product. This works because qφ is unambiguous, i.e., it
computes qφ(t | w) as a product along a single accepting path,
rather than summing over multiple paths.

9The special case of a failure arc a goes from [hc, hq] to
[h′c, hq], where h′c is a backed-off version of hc. It is labeled
with Φ : ε, which does not contribute to the word string or
tag string accepted along a path. Its weight ka is the weight
c(Φ | hc) of the corresponding failure arc in c from hc to h′c.
We define va

def
= 0, so it does not contribute to the total value.

10Recall that the forward probability of each state is defined
recursively from the forward probabilities of the states that have
arcs leading to it. As our FST is cyclic, it is not possible to visit
the states in topologically sorted order. We instead solve these
simultaneous equations by a relaxation algorithm (Eisner, 2002,
section 5): repeatedly sweep through all states, updating their
forward probability, until the total forward probability of all fi-
nal states is close to the correct total of 1 =

∑
w,t cqφ(w, t)

(showing that we have covered all high-prob paths). A corre-
sponding backward relaxation is actually not needed yet (we do
need it for β̂ in section 3.4): backward probabilities are just 1,
since cqφ is constructed with locally normalized probabilities.

When we rerun the forward-backward algorithm after a pa-
rameter update, we use the previous solution as a starting point
for the relaxation algorithm. This greatly speeds convergence.

hp) · pθ(w | t). This is a minor change—except that
va now depends on hp, which is the history of np−1
previous tags. If np > nq, then a’s start state does
not store such a long history. Thus, the value of a
actually depends on how one reaches a! It is prop-
erly written as vza, where za is a path ending with
a and z is sufficiently long to determine hp.11

Formally, let Za be a “partitioning” set of paths to
a, such that any path in cqφ from an initial state to
the start state of a must have exactly one z ∈ Za as
a suffix, and each z ∈ Za is sufficiently long so that
vza is well-defined. We can now find the expected
value as r̄ =

∑
a

∑
z∈Za αz

(∏
z∈z kz

)
kavzaβa.

The above method permits pθ to score the tag se-
quences of length np that are hypothesized by cqφ.
One can regard it as implicitly running the general-
ized forward-backward algorithm over a larger FST
that marries the structure of cqφ with the np-gram
HMM structure,12 so that each value is again local to
a single arc za. However, it saves space by working
directly on cqφ (which has manageable size because
we deliberately kept nq small), rather than material-
izing the larger FST (as bad as increasing nq to np).

TheZa trick usesO(CTnq) rather thanO(CTnp)
space to store the FST, where C is the number of
arcs in c (= number of training n-grams) and T is
the number of tag types. With or without the trick,
runtime isO(CTnp+BCTnq), whereB is the num-

11By concatenating z’s start state’s hq with the tags along z.
Typically z has length np − nq (and Za consists of the paths
of that length to a’s start state). However, z may be longer if it
contains Φ arcs, or shorter if it begins with an initial state.

12Constructed by lazy finite-state intersection of cqφ and pθ
(Mohri et al., 2000). These do not have to be n-gram taggers,
but must be same-length FSTs (these are closed under inter-
section) and unambiguous. Define arc values in both FSTs such
that for any (w, t), cqφ and pθ accept (w, t) along unique paths
of total values v = − log qφ(t | w) and v′ = log pθ(w, t), re-
spectively. We now lift the weights into the expectation semir-
ing (Eisner, 2002) as follows. In cqφ, replace arc a’s weight
ka with the semiring weight 〈ka, kava〉. In pθ , replace arc a′’s
weight with 〈1, v′a′〉. Then if k = cqφ(w, t), the intersected
FST accepts (w, t) with weight 〈k, k(v + v′)〉. The expecta-
tion of v+v′ over all paths is then a sum

∑
za αzarzaβza over

arcs za of the intersected FST—we are using za to denote the
arc in the intersected FST that corresponds to “a in cqφ when
reached via path z,” and rza to denote the second component
of its semiring weight. Here αza and βza denote the forward
and backward probabilities in the intersected FST, defined from
the first components of the semiring weights. We can get them
more efficiently from the results of running forward-backward
on the smaller cqφ: αza = αz

∏
z∈z kz and βza = βa = 1.
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ber of forward-backward sweeps (footnote 10). The
ordinary forward algorithm requires nq = np and
takesO(CTnp) time and space on a length-C string.

3.4 Computing the gradient as well
To maximize our objective (5), we compute its gra-
dient with respect to θ and φ. We follow an efficient
recipe from Li and Eisner (2009, section 5, case 3).
The runtime and space match those of section 3.3,
except that the runtime rises to O(BCTnp).13

First suppose that each va is local to a single arc.
We replace each weight ka with k̂a = 〈ka, kava〉
in the so-called expectation semiring, whose sum
and product operations can be found in Li and Eis-
ner (2009, Table 1). Using these in the forward-
backward algorithm yields quantities α̂a and β̂a
that also fall in the expectation semiring.14 (Their
first components are the old αa and βa.) The
desired gradient15 〈∇k̄,∇r̄〉 is

∑
a α̂a(∇k̂a)β̂a,16

where∇k̂a = (∇ka,∇(kava)) = (∇ka, (∇ka)va+
ka(∇va)). Here∇ gives the vector of partial deriva-
tives with respect to all φ and θ parameters. Yet each
∇k̂a is sparse, with only 3 nonzero components, be-
cause k̂a depends on only one φ parameter (φa) and
two θ parameters (via θa as defined in section 3.3).

When np > nq, we sum not over arcs a of cqφ but
over arcs za of the larger FST (footnote 12). Again
we can do this implicitly, by using the short path za
in cqφ in place of the arc za. Each state of cqφ must
then store α̂ and β̂ values for each of the Tnp−nq

states of the larger FST that it corresponds to. (In the
case np − nq = 1, as in our experiments, this fortu-
nately does not increase the total asymptotic space,

13An alternative would be to apply back-propagation
(reverse-mode automatic differentiation) to section 3.3’s com-
putation of the objective. This would achieve the same runtime
as in section 3.3, but would need as much space as time.

14This also computes our objective r̄: summing the α̂’s of the
final states of cqφ gives 〈k̄, r̄〉 where k̄ = 1 is the total probabil-
ity of all paths. This alternative computation of the expectation
r̄, using the forward algorithm (instead of forward-backward)
but over the expectation semiring, was given by Eisner (2002).

15We are interested in ∇r̄. ∇k̄ is just a byproduct. We re-
mark that ∇k̄ 6= 0, even though k̄ = 1 for any valid parameter
vector φ (footnote 14), as increasing φ invalidly can increase k̄.

16By a product of pairs we always mean 〈k, r〉〈s, t〉 def
=

〈ks, kt+ rs〉, just as in the expectation semiring, even though
the pair∇k̂a is not in that semiring (its components are vectors
rather than scalars). See (Li and Eisner, 2009, section 4.3). We
also define scalar-by-pair products as k〈s, t〉 def

= 〈ks, kt〉.

since each state of cqφ already has to store T arcs.)
With more cleverness, one can eliminate this

extra storage while preserving asymptotic runtime
(still using sparse vectors). Find 〈∇k̄, (∇r̄)(1)〉 =∑

a α̂a〈∇ka, 0〉β̂a. Also find 〈r̄, (∇r̄)(2)〉 =∑
a

∑
z∈Zaαz

(∏
z∈z〈kz,∇kz〉

)
〈kavza,∇(kavza)〉

βa. Now our desired gradient ∇r̄ emerges as
(∇r̄)(1) + (∇r̄)(2). The computation of (∇r̄)(1)

uses modified definitions of α̂a and β̂a that depend
only on (respectively) the source and target states of
a—not za.17 To compute them, initialize α̂ (respec-
tively β̂) at each state to 〈1, 0〉 or 〈0, 0〉 according to
whether the state is initial (respectively final). Now
iterate repeatedly (footnote 10) over all arcs a: Add
α̂a〈ka, 0〉 +

∑
z∈Za αz

(∏
z∈z kz

)
〈0, kavza〉 to the

α̂ at a’s target state. Conversely, add 〈ka, 0〉β̂a to
the β̂ at a’s source state, and for each z ∈ Za, add(∏

z∈z kz
)

〈0, kavza〉βa to the β̂ at z’s source state.

3.5 Locally optimizing the objective

Recall that cqφ associates with each [hc, hq, w] a
block of φ parameters that must be ≥ 0 and sum to
1. Our optimization method must enforce these con-
straints. A standard approach is to use a projected
gradient method, where after each gradient step on
φ, the parameters are projected back onto the prob-
ability simplex. We implemented another standard
approach: reexpress each block of parameters {φa :

a ∈ A} as φa
def
= exp ηa/

∑
b∈A exp ηb, as is possi-

ble iff the φa parameters satisfy the constraints. We
then follow the gradient of r̄ with respect to the new
η parameters, given by ∂r̄/∂ηa = φa(∂r̄/∂φa−EA)
where EA =

∑
b φb(∂r̄/∂φb).

Another common approach is block coordinate
ascent on θ and φ—this is “variational EM.” M-
step: Given φ, we can easily find optimal esti-
mates of the emission and transition probabilities θ.
They are respectively proportional to the posterior
expected counts of arcs a and paths za under cqφ,
namely N · αakaβa and N · αz

(∏
z∈z kz

)
kaβa.

E-step: Given θ, we cannot easily find the opti-
mal φ (even if nq = np).18 This was the rea-

17First components αa and βa remain as in cqφ. α̂a sums
paths to a. 〈∇ka, 0〉β̂a can’t quite sum over paths starting with
a (their early weights depend on z), but (∇r̄)(2) corrects this.

18Recall that cqφ must have locally normalized probabilities
(to ensure that its marginal is c). If nq = np, the optimal φ
is as follows: we can reduce the variational gap to 0 by setting
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son for gradient ascent. However, for any single
sum-to-1 block of parameters {φa : a ∈ A}, it
is easy to find the optimal values if the others are
held fixed. We maximize LA

def
= r̄ + λA

∑
a∈A φa,

where λA is a Lagrange multiplier chosen so that
the sum is 1. The partial derivative ∂r̄/∂φa can be
found using methods of section 3.4, restricting the
sums to za for the given a. For example, follow-
ing paragraphs 2–3 of section 3.4, let 〈αa, ra〉

def
=∑

z∈Za 〈αza, rza〉 where 〈αza, rza〉
def
= α̂zaβ̂za.19

Setting ∂LA/∂φa = 0 implies that φa is propor-
tional to exp((ra +

∑
z∈Za αza log θza)/αa).20

Rather than doing block coordinate ascent by up-
dating one φ block at a time (and then recomputing
ra values for all blocks, which is slow), one can take
an approximate step by updating all blocks in paral-
lel. We find that replacing the E-step with a single
parallel step still tends to improve the objective, and
that this approximate variational EM is faster than
gradient ascent with comparable results.21

4 Experiments

4.1 Constrained unsupervised HMM learning

We follow the unsupervised POS tagging setup of
Merialdo (1994) and many others (Smith and Eis-
ner, 2005; Haghighi and Klein, 2006; Toutanova and
Johnson, 2007; Goldwater and Griffiths, 2007; John-
son, 2007). Given a corpus of sentences, one seeks
the maximum-likelihood or MAP parameters of a bi-
gram HMM (np = 2). The observed sentences, for

qφ(t | hcw, hq) to the probability that t begins with t if we
randomly draw a suffix w ∼ c(· | hcw) and randomly tag ww
with t ∼ pθ(· | ww, hq). This is equivalent to using pθ with the
backward algorithm to conditionally tag each possible suffix.

19The first component of α̂zaβ̂za is αzaβza = αza · 1.
20If a is an arc of cqφ then ∂r̄/∂φa is the second component

of
∑

z∈Za
α̂za(∂k̂za/∂φa)β̂za. Then ∂LA/∂φa works out to∑

z∈Za
ca(rza+αza(log θza−log φa−1))+λA. Set to 0 and

solve for φa, noting that ca, αa, λA are constant over a ∈ A.
21In retrospect, an even faster strategy might be to do a series

of block φ and β̂ updates, updating β̂ at a state (footnote 10) im-
mediately after updating φ on the arcs leading from that state,
which allows a better block update at predecessor states. On an
acyclic machine, a single backward pass of this sort will reduce
the variational gap to 0 if nq = np (footnote 18). This is be-
cause, thanks to the up-to-date β̂, each block of arcs gets new φ
weights in proportion to relative suffix path probabilities under
the new θ. After this backward pass, a single forward pass can
update the α values and collect expected counts for the M-step
that will update θ. Standard EM is a special case of this strategy.

us, are replaced by the faux sentences extrapolated
from observed n-grams via the language model c.

The states of the HMM correspond to POS tags as
in Figure 1. All transitions are allowed, but not all
emissions. If a word is listed in a provided “dictio-
nary” with its possible tags, then other tags are given
0 probability of emitting that word. The EM algo-
rithm uses the corpus to learn transition and emis-
sion probabilities that explain the data under this
constraint. The constraint ensures that the learned
states have something to do with true POS tags.

Merialdo (1994) spawned a long line of work
on this task. Ideas have included Bayesian learn-
ing methods (MacKay, 1997; Goldwater and Grif-
fiths, 2007; Johnson, 2007), better initial parame-
ters (Goldberg et al., 2008), and learning how to
constrain the possible parts of speech for a word
(Ravi and Knight, 2008), as well as non-HMM se-
quence models (Smith and Eisner, 2005; Haghighi
and Klein, 2006; Toutanova and Johnson, 2007).

Most of this work has used the Penn Treebank
(Marcus et al., 1993) as a dataset. While this
million-word Wall Street Journal (WSJ) corpus is
one of the largest that is manually annotated with
parts of speech, unsupervised learning methods
could take advantage of vast amounts of unannotated
text. In practice, runtime concerns have sometimes
led researchers to use small subsets of the Penn Tree-
bank (Goldwater and Griffiths, 2007; Smith and Eis-
ner, 2005; Haghighi and Klein, 2006). Our goal is
to point the way to using even larger datasets.

The reason for all this past research is that (Meri-
aldo, 1994) was a negative result: while EM is
guaranteed to improve the model’s likelihood, it de-
grades the match between the latent states and true
parts of speech (if the starting point is a good one
obtained with some supervision). Thus, for the task
of POS induction, there must be something wrong
with the HMM model, the likelihood objective, or
the search procedure. It is clear that the model is far
too weak: there are many latent variables in natural
language, so the HMM may be picking up on some-
thing other than POS tags. Ultimately, fixing this
will require richer models with many more param-
eters. But learning these (lexically specific) param-
eters will require large training datasets—hence our
present methodological exploration on whether it is
possible to scale up the original setting.
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4.2 Setup
We investigate how much performance degrades
when we approximate the corpus and train approx-
imately with nq = 1. We examine two measures:
likelihood on a held-out corpus and accuracy in POS
tagging. We train on corpora of three different sizes:
•WSJ-big (910k words→ 441k n-grams @ cutoff 3),
• Giga-20 (20M words→ 2.9M n-grams @ cutoff 10),
• Giga-200 (200M wds→ 14.4M n-grams @ cutoff 20).
These were drawn from the Penn Treebank (sections
2–23) and the English Gigaword corpus (Parker et
al., 2009). For held-out evaluation, we use WSJ-
small (Penn Treebank section 0) or WSJ-big.

We estimate backoff language models for these
corpora based on collections of n-grams with n ≤ 5.
In this work, we select the n-grams by simple count
cutoffs as shown above,22 taking care to keep all 2-
grams as mentioned in footnote 2.

Similar to Merialdo (1994), we use a tag dictio-
nary which limits the possible tags of a word to those
it was observed with in the WSJ, provided that the
word was observed at least 5 times in the WSJ. We
used the reduced tagset of Smith and Eisner (2005),
which collapses the original 45 fine-grained part-of-
speech tags into just 17 coarser tags.

4.3 Results
In all experiments, our method achieves similar ac-
curacy though slightly worse likelihood. Although
this method is meant to be a fast approximation of
EM, standard EM is faster on the smallest dataset
(WSJ-big). This is because this corpus is not much
bigger than the 5-gram language model built from it
(at our current pruning level), and so the overhead
of the more complex n-gram EM method is a net
disadvantage. However, when moving to larger cor-
pora, the iterations of n-gram EM become as fast as
standard EM and then faster. We expect this trend
to continue as one moves to much larger datasets, as
the compression ratio of the pruned language model
relative to the original corpus will only improve.
The Google n-gram corpus is based on 50× more
data than our largest but could be handled in RAM.

22Entropy-based pruning (Stolcke, 2000) may be a better se-
lection method when one is in a position to choose. However,
count cutoffs were already used in the creation of the Google
n-gram corpus, and more complex methods of pruning may not
be practical for very large datasets.
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Figure 2: POS-tagging accuracy and log-likelihood af-
ter each iteration, measured on WSJ-big when training
on the Gigaword datasets, else on WSJ-small. Runtime
and log-likelihood are scaled differently for each dataset.
Replacing EM with our method changes runtime per it-
eration from 1.4s→ 3.5s, 48s→ 47s, and 506s→ 321s.

5 Conclusions

We presented a general approach to training genera-
tive models on a distribution rather than on a training
sample. We gave several motivations for this novel
problem. We formulated an objective function simi-
lar to MAP, and presented a variational lower bound.

Algorithmically, we gave nontrivial general meth-
ods for computing and optimizing our variational
lower bound for arbitrary finite-state data distribu-
tions c, generative models p, and variational fami-
lies q, provided that p and q are unambiguous same-
length FSTs. We also gave details for specific useful
families for c, p, and q.

As proof of principle, we used a traditional HMM
POS tagging task to demonstrate that we can train
a model from n-grams almost as accurately as from
full sentences, and do so faster to the extent that the
n-gram dataset is smaller. More generally, we offer
our approach as an intriguing new tool to help semi-
supervised learning benefit from very large datasets.
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