
Proceedings of the NAACL HLT 2010 Student Research Workshop, pages 19–22,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Extrinsic Parse Selection

David Goss-Grubbs
University of Washington

Department of Linguistics

Box 354340

Seattle, WA 98195-4340, USA
davidgg@u.washington.edu

Abstract

This paper reports on one aspect of Locutus, a

natural language interface to databases

(NLIDB) which uses the output of a high-

precision broad-coverage grammar to build

semantic representations and ultimately SQL

queries. Rather than selecting just a subset of

the parses provided by the grammar to use in

further processing, Locutus uses all of them. If

the meaning of a parse does not conform to

the semantic domain of the database, no query

is built for it. Thus, intended parses are chosen

extrinsically. The parser gives an average of

3.01 parses to the sentences in the

GEOQUERY250 corpus. Locutus generates an

average of 1.02 queries per sentence for this

corpus, all of them correct.

1 Introduction

Natural language sentences are typically more am-

biguous than the people who utter them or perceive

them are aware of. People are very good at using

context and world knowledge to unconsciously

disambiguate them. High-precision, broad-

coverage grammars, however, often assign every

legitimate analysis to a given sentence, even when

only one of them reflects the sentence’s intended

meaning. It is thus important for natural language

processing applications that use these analyses to

be able to reliably select the intended parse. It is

typical for such applications to choose the best

parse up front and pass just that one on to further

processing. For some applications, however, it is

possible, and indeed preferable, to pass all the

parses on and let downstream processing decide

which parses to use.

This paper describes such an application. Locu-

tus (Goss-Grubbs to appear), a natural language

interface to relational databases (NLIDB), creates

semantic representations for the parses assigned by

a high-precision broad-coverage grammar, and

from those creates SQL queries. It does not include

a step where one or more “best” parses are selected

for further processing. Queries are built for all

parses for which it is possible to do so. For a stan-

dard corpus of NLIDB training sentences, it is able

to generate the correct query whenever a suitable

analysis is given by the parser. In the rare case

where it generates two queries, both queries are

equally correct.

2 Parse Selection

Parse selection for probabilistic grammars involves

simply finding the most probable parse, or top-N

most probable parses, and can be done using effi-

cient algorithms, (e.g. Klein and Manning, 2003).

Things are different for high-precision, hand-

coded grammars, such as the LinGO English Re-

source Grammar, ERG (Flickinger, 2000), a Head-

Driven Phrase Structure Grammar implementation

of English; and Xerox’s English grammar (Butt, et

al., 2002), a Lexical Functional Grammar

implementation. These grammars do not define a

probability distribution over parses. Rather, they

assign to each string all of its grammatically valid

19

parses. Techniques for deciding between parses

produced by these kinds of grammars include us-

ing sortal constraints on arguments of semantic

relations (Müller and Kasper, 2000); and

annotating individual grammatical rules with

weights (Kiefer, et al., 1999). More recently, the

development of rich treebanks such as the LinGO

Redwoods (Oepen, et al., 2004) which stores all

analyses of a sentence, along with an indication of

which is the preferred one, makes it possible to

train maximum entropy models for parse selection,

(e.g. Toutanova, et al., 2002).

For at least the NLIDB task, however, selection

of the best parse is not an end in itself. Rather,

what is necessary is to generate the intended data-

base query. Indeed, two or more distinct syntactic

parses may all lead to the same (intended) query. If

the NLIDB identifies this query correctly, it has

achieved its goal without, strictly speaking, having

selected the best parse.

Furthermore, eliminating any grammatically va-

lid parse without subjecting it to further processing

risks missing the intended query. For these rea-

sons, Locutus does no intrinsic parse selection.

Rather, it tries to build a query for all valid parses.

The semantic constraints of the database domain

limit well-formed semantic representations to those

that make sense in that domain, so that a grammat-

ically valid parse may not receive a legitimate se-

mantic representation, and thus not receive a

database query.

3 Locutus

Locutus is an NLIDB which is designed to be port-

able with respect to source language and grammat-

ical formalism. It can take as input the syntactic

analyses produced by any sufficiently sophisticated

grammar/parser. The implementation reported on

in this paper consumes the f-structures produced

by the Xerox English grammar.

Locutus is also portable with respect to database

domain. The projection of semantic structures from

the syntactic analyses provided by the parser is

guided by a semantic description of the database

domain together with a set of constraints called

sign templates linking syntactic patterns with se-

mantic patterns.

High precision (building only correct queries) is

maintained in a number of ways:

 High-precision syntactic grammars are used.

 The projection of semantic structures from

syntactic structures is resource-sensitive. Every

element of the syntactic structure must be refe-

renced just once by the sign template that li-

censes the corresponding semantic structure.

 The semantic description of the database do-

main defines a network of semantic relation-

ships and their arguments, along with

constraints regarding which arguments are

compatible with one another. In this way, se-

mantic structures which would otherwise be

generated can be ruled out.

3.1 Processing Pipeline

The processing of a sentence by Locutus proceeds

in the following way. The string of words is passed

to the XLE parser, which returns a contextualized

feature structure from which individual parses are

extracted. An example parse appears in Figure 1.

[PRED border

 SUBJ [PRED state

 NTYPE [NSYN common]

 SPEC [DET [PRED which

 NTYPE [NSYN …]

 PRON-TYPE int]]

 CASE nom

 NUM pl

 PERS 3]

 OBJ [PRED delaware

 NTYPE [NSYN proper]

 CASE obl

 NUM sg

 PERS 3]

 PRON-INT [...]

 FOCUS-INT [...]

 TNS-ASP [...]

 CLAUSE-TYPE int

 PASSIVE -

 VTYPE main]

Figure 1: parse for “Which states border delaware?”

Locutus interprets this syntactic analysis into a set

of semantic representations called Semantic Mo-

bile Structures, an example of which appears in an

abbreviated form in Figure 2.
x0 DefQuant: [> [1]]

 r0 Border:STATE1

 STATE2: x1 DefQuant: [1]

 r1 StateName:STATE

 NAME: [delaware]

 r2 State:STATE

Figure 2: SMS for "Which states border delaware?"

20

Finally, this representation is translated into an

SQL query, as shown in Figure 3, which is sent to

the database, and the answer is shown.

select t1.Name

from border, state t1, state t2

where border.State1 = t1.Name and

 border.State2 = t2.Name and

 t2.Name = 'delaware'

Figure 3: query for “Which states border Delaware?”

3.2 Efficiency

There is a bit of time savings in not having an

intrinsic parse-selection step. These savings are

counterbalanced by the extra time it takes to interp-

ret parses that would have otherwise been excluded

by such a step. However, a certain amount of syn-

tactic structure is shared among the various parses

of a syntactically ambiguous sentence. Locutus

recognizes when a piece of syntactic structure has

already been interpreted, and reuses that interpreta-

tion in every parse in which it appears. In this way

Locutus minimizes the extra time taken to process

multiple parses. At any rate, processing speed does

not appear to be a problem at this point in the de-

velopment of Locutus.

3.3 Further Work

Although Locutus has a wide range of functionali-

ty, it is still a work in progress. The format for au-

thoring sign templates is rather complex, and

customizing Locutus for a given database can be

time-consuming. I anticipate an authoring tool

which makes much of the customization process

automatic, and hides much of the complexity of the

rest of the process from the author, but such a tool

has yet to be implemented.

4 Experiment

To test the coverage and precision of Locutus, I

have customized it to answer questions from the

GEOQUERY 250 corpus (Mooney, 1996), which

consists of a database of geographical information

paired with 250 English sentences requesting in-

formation from that database. 25 of these sentences

are held out for the purposes of another study, and

I have not examined the behavior of Locutus with

respect to these sentences. I ran the other 225 sen-

tences through Locutus, keeping track of which

sentences Locutus built at least one query for. For

each of those sentences, I also tracked the follow-

ing:

 How many syntactic parses were generated by

the grammar

 How many queries were produced

 How many of those queries were correct

The XLE Engine includes a facility to do stochas-

tic disambiguation (Kaplan, et al. 2004), and the

English grammar I used comes with a property

weights file of the kind required by the disambigu-

ation process. I ran the sentences through Locutus

using just the single best parse returned by that

process, keeping track of how many queries were

produced.

5 Results

223 of the 225 sentences (99.1%) are assigned at

least one query. For the other two sentences, no

analysis returned by the parser reflect the intended

meaning of the sentence. The average number of

parses for these sentences is 3.01, with 158 sen-

tences given at least two parses, and 84 sentences

given at least three. Some sentences were given as

many as 20 parses.

Figure 4 contains the graph of the number of

parses by the average number of queries assigned

to sentences with that many parses. Note that the

number of queries per sentence is not correlated

with the number of parses assigned by the gram-

mar. The sentences that were assigned more than

one query were each assigned either one or two

parses. All the sentences with more syntactic

parses were assigned a single query each.

Figure 4: Average queries by ambiguity level

Of the 223 sentences that were assigned a query,

219 of them were assigned exactly one query.

Every query was correct in the sense that it accu-

0.98
0.99

1
1.01
1.02
1.03
1.04

1 3 5 7 9 11 13 15 17 19

A
vg

 Q
u

e
ri

e
s

of Parses

21

rately reflected a reasonable interpretation of the

sentence. Four sentences were each assigned two

queries. They are given in (1)-(4).

(1) How many people live in Washington?

(2) How many people live in New York?

(3) What is the length of the Colorado river?

(4) What is the length of the Mississippi river?

It is appropriate that each of these sentences gets

two queries. For (1)-(2), the GEOQUERY 250 data-

base contains cities, their populations, states and

their populations; “Washington” and “New York”

are both names of cities and states that appear in

the database. For (3)-(4), one interpretation is to

return the length of the river mentioned in the sen-

tence. The other possibility is to return all the riv-

ers that are the same lengths as the ones

mentioned. For instance, in the GEOQUERY data-

base, the Colorado and Arkansas rivers are both

2333 km long. One valid answer to (3) is the num-

ber “2333”. The other valid answer is the list of

rivers “Arkansas” and “Colorado”. To give any of

these sentences only a single query would be to

miss a reasonable interpretation.

Table 1 summarizes the results when only a sin-

gle parse for each sentence, chosen stochastically

using the property weights file provided with the

XLE English grammar, is sent to Locutus. The

parse is considered correct if it leads to a correct

query.

 # of sents avg. parses % correct

≥ 1 parse 223 3.01 54%

≥ 2 parses 158 3.84 35%

Table 1

Although performance is better than chance, it is

clearly less successful than when Locutus is al-

lowed to use every parse, in which case a correct

query is always constructed.

6 Conclusion

For natural language processing applications that

take the results of a high-precision syntactic parser

and pass them along to further processing, select-

ing the correct parse is not an end in itself. It is

only useful insofar as it improves the final result.

For applications such as NLIDBs, which are

provided with a precise semantic framework within

which sentences may be interpreted, it is better to

pass along the full set of grammatically valid

parses than to select beforehand a limited subset of

those parses. Using this technique, Locutus

achieves 100% correctness on the sentences for

which it builds a query.

References

Butt, Miriam, Helge Dyvik, Tracy Holloway King,

Hiroshi Masuichi, and Christian Rohrer. "The

Parallel Grammar Project." Proceedings of

COLING2002 Workshop on Grammar Engineering

and Evaluation. 2002.

Flickinger, Dan. "On building a more efficient

grammar by exploiting types." Natural Language

Engineering 6, no. 1 (2000): 15-28.

Goss-Grubbs, David. "Deep Processing for a Portable

Natural Language Interface to Databases."

dissertation, University of Washington. to appear.

Kaplan, Ron, Stefan Riezler, Trace King, John

Maxwell, Alexander Vasserman, and Richard

Crouch. "Speed and Accuracy in Shallow and Deep

Stochastic Parsing." Proceedings of the Human

Language Technology Conference and the 4th

Annual Meeting of the North American Chapter of

the Association for Computational Linguistics

(HLT-NAACL'04). Boston, MA, 2004.

Kiefer, Bernd, Hans-Ulrich Krieger, John Carroll, and

Rob Malouf. "A Bag of Useful Techniques for

Efficient and Robust Parsing." Proceedings of the

37th Meeting of the Association for Computational

Linguistics. College Park, MD, 1999. 473-480.

Klein, Dan, and Christopher D. Manning. "A*

Parsing: Fast Exact Viterbi Parse Selection."

Proceedings of HLT-NAACL 2003. 2003. 40-47.

Mooney, Raymond. Geoquery Data. 1996.

http://www.cs.utexas.edu/users/ml/nldata/geoquery.

html (accessed February 13, 2010).

Müller, Stefan, and Walter Kasper. "HPSG Analysis

of German." In Verbmobil. Foundations of Speech-

to-Speech Translation, edited by Wolfgang

Wahlster, 238-253. Berlin: Springer, 2000.

Oepen, Stephan, Dan Flickinger, Kristina Toutanova,

and Christopher D. Manning. "LinGO Redwoods:

A Rich and Dynamic Treebank for HPSG."

Research on Language and Computation (Springer)

2 (2004): 575-596.

Toutanova, Kristina, Christopher D. Manning, Stuart

Shieber, Dan Flickinger, and Stephan Oepen.

"Parse disambiguation for a rich HPSG grammar."

Proceedings of the First Workshop on Treebanks

and Linguistic Theories. 2002. 253-263.

22

