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Abstract

Determining the correct structure of coordi-
nating conjunctions and the syntactic con-
stituents that they coordinate is a difficult task.
This subtask of syntactic parsing is explored
here for biomedical scientific literature. In
particular, the intuition that sentences contain-
ing coordinating conjunctions can often be
rephrased as two or more smaller sentences
derived from the coordination structure is ex-
ploited. Generating candidate sentences cor-
responding to different possible coordination
structures and comparing them with a lan-
guage model is employed to help determine
which coordination structure is best. This
strategy is used to augment a simple baseline
system for coordination resolution which out-
performs both the baseline system and a con-
stituent parser on the same task.

1 Introduction

For this work, coordination resolution (CR) refers to
the task of automatically identifying the correct co-
ordination structure of coordinating conjunctions. In
this study the conjunctions and and or and the con-
juncts they coordinate are examined. CR is an im-
portant subtask of syntactic parsing in the biomed-
ical domain because many information extraction
tasks require correct syntactic structures to perform
well, in particular coordination structures. For ex-
ample, (Cohen et al., 2009) showed that using a con-
stituent parser trained on biomedical data to provide
coordination structures to a high-precision protein-
protein interaction recognition system resulted in

a significant performance boost from an overall F-
measure of 24.7 to 27.6. Coordination structures are
the source of a disproportionate number of parsing
errors for both constituent parsers (Clegg and Shep-
herd, 2007) and dependency parsers (Nivre and Mc-
Donald, 2008).

CR is difficult for a variety of reasons related to
the linguistic complexity of the phenomenon. There
are a number of measurable characteristics of coor-
dination structures that support this claim including
the following: constituent types of conjuncts, num-
ber of words per conjunct, number of conjuncts per
conjunction, and the number of conjunctions that are
nested inside the conjunct of another conjunction,
among others. Each of these metrics reveal wide
variability of coordination structures. For example,
roughly half of all conjuncts consist of one or two
words while the other half consist of three or more
words including 15% of all conjuncts that have ten
or more words. There is also an increased preva-
lence of coordinating conjunctions in biomedical lit-
erature when compared with newswire text. Table 1
lists three corpora in the biomedical domain that are
annotated with deep syntactic structures; CRAFT
(described below), GENIA (Tateisi et al., 2005), and
Penn BIOIE (Bies et al., 2005). The number of co-
ordinating conjunctions they contain as a percentage
of the number of total tokens in each corpus are com-
pared with the Penn Treebank corpus (Marcus et al.,
1994). The salient result from this table is that there
are 50% more conjunctions in biomedical scientific
text than in newswire text. It is also interesting to
note that 15.4% of conjunctions in the biomedical
corpora are nested inside a conjunct of another con-
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junction as compared with 10.9% for newswire.

Table 1: Biomedical corpora that provide coordination
structures compared with the Penn Treebank corpus.

Corpus Tokens Conjunctions
CRAFT 246,008 7,115 2.89%
GENIA 490,970 14,854 3.03%
BIOIE 188,341 5,036 2.67%
subtotal 925,319 27,005 2.92%
PTB 1,173,766 22,888 1.95%

The Colorado Richly Annotated Full-Text
(CRAFT) Corpus being developed at the Univer-
sity of Colorado Denver was used for this work.
Currently, the corpus consists of 97 full-text open-
access scientific articles that have been annotated by
the Mouse Genome Institute1 with concepts from
the Gene Ontology2 and Mammalian Phenotype
Ontology3. Thirty-six of the articles have been
annotated with deep syntactic structures similar
to that of the Penn Treebank corpus described in
(Marcus et al., 1994). As this is a work in progress,
eight of the articles have been set aside for a final
holdout evaluation and results for these articles
are not reported here. In addition to the standard
treebank annotation, the NML tag discussed in
(Bies et al., 2005) and (Vadas and Curran, 2007)
which marks nominal subconstituents which do
not observe the right-branching structure common
to many (but not all) noun phrases is annotated.
This is of particular importance for coordinated
noun phrases because it provides an unambiguous
representation of the correct coordination structure.
The coordination instances in the CRAFT data
were converted to simplified coordination structures
consisting of conjunctions and their conjuncts using
a script that cleanly translates the vast majority of
coordination structures.

2 Related Work

There are two main approaches to CR. The first ap-
proach considers CR as a task in its own right where

1http://www.informatics.jax.org/
2http://geneontology.org/
3http://www.informatics.jax.org/

searches/MP_form.shtml

the solutions are built specifically to perform CR.
Often the task is narrowly defined, e.g. only coor-
dinations of the pattern noun-1 conjunction noun-2
noun-3 are considered, and relies on small training
and testing data sets. Generally, such research ef-
forts do not attempt to compare their results with
previous results other than in the broadest and most-
qualified way. Studies by (Chantree et al., 2005),
(Nakov and Hearst, 2005), and (Resnik, 1999) are
representative examples of such work. A study by
(Shimbo and Hara, 2007) performed CR on sen-
tences from the GENIA corpus containing one in-
stance of the word “and” coordinating noun phrases.
They used a sequence alignment algorithm modified
for CR drawing on the intuition that conjuncts have
similar syntactic constructs. In each of these studies,
promising results were achieved by careful applica-
tion of their respective approaches. However, each
study is limited in important respects because they
narrowly constrain the problem, use limited train-
ing data, and make certain unrealistic assumptions
in their experimental setup that make general appli-
cation of their solutions problematic. For example,
in the study by (Shimbo and Hara, 2007) they chose
only sentences that have one instance of “and” be-
cause their algorithm does not handle nested con-
junctions. Additionally, they assume an oracle that
provides the system with only sentences that contain
coordinated noun phrases.

The work most similar to this study was done by
(Hara et al., 2009) in that they define the CR task
essentially the same as is done here. Their approach
involves a grammar tailored for coordination struc-
tures that is coupled with a sequence alignment al-
gorithm that uses perceptrons for learning feature
weights of an edit graph. The evaluation metric they
use is slightly less strict than the metric used for
this study in that they require identification of the
left boundary of the left-most conjunct and the right
boundary of the right-most conjunct to be counted
correct. Two other important differences are that
the evaluation data comes from the GENIA corpus
and they use gold-standard part-of-speech tags for
the input data. Regardless of these relatively minor
differences, their performance of 61.5 F-measure far
outperforms what is reported below and experiments
that are directly comparable to their work will be
performed.
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The second main approach considers CR within
the broader task of syntactic parsing. Any syntac-
tic parser that generates constituents or dependen-
cies must necessarily perform CR to perform well.
Typically, a syntactic parser will have a single, cen-
tral algorithm that is used to determine all con-
stituents or dependencies. However, this does not
preclude parsers from giving special attention to CR
by adding CR-specific rules and features. For exam-
ple, (Nilsson et al., 2006) show that for dependency
parsing it is useful to transform dependency struc-
tures that make conjunctions the head of their con-
juncts into structures in which coordination depen-
dencies are chained. (Charniak and Johnson, 2005)
discusses a constituent-based parser that adds two
features to the learning model that directly address
coordination. The first measures parallelism in the
labels of the conjunct constituents and their children
and the second measures the lengths of the conjunct
constituents. The work done by (Hogan, 2007) fo-
cuses directly on coordination of noun phrases in
the context of the Collins parser (Collins, 2003) by
building a right conjunct using features from the al-
ready built left conjunct.

3 Using a Language Model

Consider the following sentence:

Tyr mutation results in increased IOP and
altered diurnal changes.

By exploiting the coordination structure we can
rephrase this sentence as two separate sentences:

• Tyr mutation results in increased IOP.

• Tyr mutation results in altered diurnal changes.

Using this simple rewrite strategy a candidate sen-
tence for each possible conjunct can be composed.
For this sentence there are six possible left conjuncts
corresponding to each word to the left of the con-
junction. For example, the candidate conjunct cor-
responding to the third word is results in increased
IOP and the corresponding sentence rewrite is Tyr
mutation altered diurnal changes. The resulting
candidate sentences can be compared by calculat-
ing a sentence probability using a language model.
Ideally, the candidate sentence corresponding to the

correct conjunct boundary will have a higher proba-
bility than the other candidate sentences. One prob-
lem with this approach is that the candidate sen-
tences are different lengths. This has a large and
undesirable (for this task) impact on the probability
calculation. A simple and effective way to normal-
ize for sentence length is by adding4 the probability
of the candidate conjunct (also computed by using
the language model) to the probability of the candi-
date sentence. The probability of each candidate is
calculated using this simple metric and then rank or-
dered. Because the number of candidate conjuncts
varies from one sentence to the next (as determined
by the token index of the conjunction) it is useful to
translate the rank into a percentile. The rank per-
centile of the candidate conjuncts will be applied to
the task of CR as described below. However, it is
informative to directly evaluate how good the rank
percentile scores of the correct conjuncts are.

To build a language model a corpus of more than
80,000 full-text open-access scientific articles were
obtained from PubMed Central5. The articles are
provided in a simple XML format which was parsed
to produce plain text documents using only sections
of the articles containing contentful prose (i.e. by
excluding sections such as e.g. acknowledgments
and references.) The plain text documents were
automatically sentence segmented, tokenized, and
part-of-speech tagged resulting in nearly 13 million
sentences and over 250 million tagged words. A lan-
guage model was then built using this data with the
SRILM toolkit described in (Stolcke, 2002). De-
fault options were used for creating the language
model except that the order of the model was set to
four and the “-tagged” option was used. Thus, a 4-
gram model with Good-Turing discounting and Katz
backoff for smoothing was built.

For each token to the left of a conjunction a candi-
date conjunct/sentence pair is derived, its probabil-
ity calculated, and a rank percentile score is assigned
to it relative to the other candidates. Because mul-
tiple conjuncts can appear on the left-hand-side of
the conjunction, the left border of the leftmost con-
junct is considered here. The same is done for tokens

4logprobs are used here
5http://www.ncbi.nlm.nih.gov/pmc/about/

ftp.html. The corpus was downloaded in September of
2008.
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Figure 1: The first column can be read as “The correct
conjunct candidate had the highest rank percentile 32.1%
of the time.” The second column can be read as “The
correct conjunct candidate had a rank percentile of 90%
or greater 17.6% of the time.” The columns add to one.

on the right-hand-side of the conjunction. Figure 1
shows a histogram of the rank percentile scores for
the correct left conjunct. The height of the bars cor-
respond to the percentage of the total number of con-
junctions in which the correct candidate was ranked
within the percentile range. Thus, the columns add
to one and generalizations can be made by adding
the columns together. For example, 66.7% of the
conjunctions (by adding the first three columns) fall
above the eightieth percentile. The overall average
rank percentage for all of the left-hand-side con-
juncts was 81.1%. The median number of candi-
dates on the left-hand-side is 17 (i.e. the median to-
ken index of the conjunction is 17). Similar results
were obtained for the right-hand-side data but were
withheld for space considerations. The overall av-
erage rank percentage for right-hand-side conjuncts
was 82.2%. This slightly better result is likely due
to the smaller median number of candidates on the
right-hand-side of 12 (i.e. the median token index
of the conjunction is 12 from the end of the sen-
tence.) These data suggest that the rank percentile of
the candidate conjuncts calculated in this way could
be an effective feature to use for CR.

4 Coordination Resolution

Table 2 reports the performance of two CR systems
that are described below. Results are reported as F-
Measure at both the conjunct and conjunction lev-
els where a true positive requires all boundaries to

be exact. That is, for conjunct level evaluation a
conjunct generated by the system must have exactly
the same extent (i.e. character offsets) as the con-
junct in the gold-standard data in addition to be-
ing attached to the same conjunction. Similarly, at
the conjunction level a true positive requires that a
coordination structure generated by the system has
the same number of conjuncts each with extents ex-
actly the same as the corresponding conjunct in the
gold-standard coordination structure. Where 10-fold
cross-validation is performed, training is performed
on roughly 90% of the data and testing on the re-
maining 10% with the results micro-averaged. Here,
the folds are split at the document level to avoid the
unfair advantage of training and testing on different
sections of the same document.

Table 2: Coordination resolution results at the conjunct
and conjunction levels as F-Measure.

Conjunct Conjunction
OpenNLP + PTB 55.46 36.56
OpenNLP + CRAFT 58.87 39.50
baseline 59.75 40.99
baseline + LM 64.64 46.40

The first system performs CR within the broader
task of syntactic parsing. Here the constituent parser
from the OpenNLP project6 is applied. This parser
was chosen because of its availability and ease of
use for both training and execution. It has also
been shown by (Buyko et al., 2006) to perform well
on biomedical data. The output of the parser is
processed by the same conversion script described
above. The parser was trained and evaluated on
both the Penn Treebank and CRAFT corpora. For
the latter, 10-fold cross-validation was performed.
Preliminary experiments that attempted to add ad-
ditional training data from the GENIA and Penn
BIOIE corpora proved to be slightly detrimental to
performance in both cases. Table 2 shows that CR
improves at the conjunction level by nearly three
points (from 36.56 to 39.50) by simply training on
biomedical data rather than using a model trained
on newswire.

The second system that performs CR as a separate

6http://opennlp.sf.net
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task by using token-level classification to determine
conjunct boundaries is introduced and evaluated. In
brief, each token to the left of a conjunction is clas-
sified as being either a left-hand border of a conjunct
for that conjunction or not. Similarly, tokens to the
right of a conjunction are classified as either a right-
hand border of a conjunct or not. From these token-
level classifications and some simple assumptions
about the right-hand and left-hand borders of left
and right conjuncts, respectively,7 a complete coor-
dination structure can be constructed. The classifier
used was SVMlight described in (Joachims, 1999)
using a linear kernel. The baseline system uses a
number of shallow lexical features (many common
to named entity recognition systems) including part-
of-speech tags, word and character n-grams, the dis-
tance between the focus token and the conjunction,
and word-level features such as whether the token
is a number or contains a hyphen. A more detailed
description of the baseline system is avoided here as
this remains a major focus of current and future re-
search efforts and the final system will likely change
considerably. Table 2 shows the results of 10-fold
cross-validation for the baseline system. This sim-
ple baseline system performs at 40.99 F-measure at
the conjunction level which is modestly better than
the syntactic parser trained on CRAFT.

The baseline system as described above was aug-
mented using the language modeling approach de-
scribed in Section 3 by adding a simple feature to
each token being classified whose value is the rank
percentile of the probability of the corresponding
conjunct candidate. Again, 10-fold cross-validation
was performed. Table 2 shows that this augmented
baseline system performs at 46.40 F-measure at the
conjunction level which out-performs the baseline
system and the CRAFT-trained parser by 5.4 and 6.9
points, respectively. This increase in performance
demonstrates that a language model can be effec-
tively purposed for CR.

While the use of a language model to improve CR
results is promising, the results in Table 2 also speak
to how difficult this task is for machines to perform.
In contrast, the task is comparatively easy for hu-
mans to perform consistently. To calculate inter-

7For example, the left-hand border of the conjunct to the
right of a conjunction will always be the first word following
the conjunction.

annotator agreement on the CR task, 500 sentences
containing either the word “and” or “or” were ran-
domly chosen from the 13 million sentence corpus
described in Section 3 and annotated with coordi-
nation structures by two individuals, the author and
another computer scientist with background in biol-
ogy. Our positive specific agreement8 was 91.93 and
83.88 at the conjunct and conjunction level, respec-
tively, for 732 conjunctions. This represents a dra-
matic gulf between system and human performance
on this task but also suggests that large improve-
ments for automated CR should be expected.

5 Future Work

There is much that can be done to move this work
forward. Creating comparable results to the study
discussed in Section 2 by (Hara et al., 2009) is a top
priority. As alluded to earlier, there is much that can
be done to improve the baseline system. For exam-
ple, constraining coordination structures to not over-
lap except where one is completely nested within
the conjunct of another should be enforced as par-
tially overlapping coordination structures never oc-
cur in the training data. Similarly, a conjunction that
appears inside parentheses should have a coordina-
tion structure that is completely contained inside the
parentheses. Thorough error analysis should also
be performed. For example, it would be interesting
to characterize the conjuncts that have a low rank
percentile for their calculated probability. Also, it
would be useful to measure performance across a
number of metrics such as phrase type of the con-
juncts, length of conjuncts, whether a coordination
structure is nested inside another, etc. Demonstrat-
ing that CR can improve syntactic parsing perfor-
mance and improve the performance of an informa-
tion extraction system would give this work greater
significance.

Conclusion

This work has demonstrated that a language model
can be used to improve performance of a simple CR
system. This is due to the high rank percentile of the
probability of the correct conjunct compared with
other possible conjuncts.

8This measure is directly comparable with F-measure.
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