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Abstract

This paper presents efficient algorithms for
expected similarity maximization, which co-
incides with minimum Bayes decoding for a
similarity-based loss function. Our algorithms
are designed for similarity functions that are
sequence kernels in a general class of posi-
tive definite symmetric kernels. We discuss
both a general algorithm and a more efficient
algorithm applicable in a common unambigu-
ous scenario. We also describe the applica-
tion of our algorithms to machine translation
and report the results of experiments with sev-
eral translation data sets which demonstrate a
substantial speed-up. In particular, our results
show a speed-up by two orders of magnitude
with respect to the original method of Tromble
et al. (2008) and by a factor of 3 or more
even with respect to an approximate algorithm
specifically designed for that task. These re-
sults open the path for the exploration of more
appropriate or optimal kernels for the specific
tasks considered.

1 Introduction

The output of many complex natural language pro-
cessing systems such as information extraction,
speech recognition, or machine translation systems
is a probabilistic automaton. Exploiting the full in-
formation provided by this probabilistic automaton
can lead to more accurate results than just using the
one-best sequence.

Different techniques have been explored in the
past to take advantage of the full lattice, some based
on the use of a more complex model applied to
the automaton as in rescoring, others using addi-
tional data or information for reranking the hypothe-
ses represented by the automaton. One method for
using these probabilistic automata that has been suc-
cessful in large-vocabulary speech recognition (Goel
and Byrne, 2000) and machine translation (Kumar
and Byrne, 2004; Tromble et al., 2008) applications

and that requires no additional data or other com-
plex models is the minimum Bayes risk (MBR) de-
coding technique. This returns that sequence of the
automaton having the minimum expected loss with
respect to all sequences accepted by the automaton
(Bickel and Doksum, 2001). Often, minimizing the
loss functionL can be equivalently viewed as max-
imizing a similarity functionK between sequences,
which corresponds to a kernel function when it is
positive definite symmetric (Berg et al., 1984). The
technique can then be thought of as anexpected se-
quence similarity maximization.

This paper considers this expected similarity max-
imization view. Since different similarity functions
can be used within this framework, one may wish to
select the one that is the most appropriate or relevant
to the task considered. However, a crucial require-
ment for this choice to be realistic is to ensure that
for the family of similarity functions considered the
expected similarity maximization is efficiently com-
putable. Thus, we primarily focus on this algorith-
mic problem in this paper, leaving it to future work
to study the question of determining how to select
the similarity function and report on the benefits of
this choice.

A general family of sequence kernels including
the sequence kernels used in computational biology,
text categorization, spoken-dialog classification, and
many other tasks is that ofrational kernels(Cortes
et al., 2004). We show how the expected similarity
maximization can be efficiently computed for these
kernels. In section 3, we describe more specifically
the framework of expected similarity maximization
in the case of rational kernels and the correspond-
ing algorithmic problem. In Section 4, we describe
both a general method for the computation of the ex-
pected similarity maximization, and a more efficient
method that can be used with a broad sub-family
of rational kernels that verify a condition of non-
ambiguity. This latter family includes the class of
n-gram kernels which have been previously used to
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apply MBR to machine translation (Tromble et al.,
2008). We examine in more detail the use and ap-
plication of our algorithms to machine translation
in Section 5. Section 6 reports the results of ex-
periments applying our algorithms in several large
data sets in machine translation. These experiments
demonstrate the efficiency of our algorithm which
is shown empirically to be two orders of magnitude
faster than Tromble et al. (2008) and more than 3
times faster than even an approximation algorithm
specifically designed for this problem (Kumar et al.,
2009). We start with some preliminary definitions
and algorithms related to weighted automata and
transducers, following the definitions and terminol-
ogy of Cortes et al. (2004).

2 Preliminaries

Weighted transducersare finite-state transducers in
which each transition carries some weight in addi-
tion to the input and output labels. The weight set
has the structure of a semiring.

A semiring(K,⊕,⊗, 0, 1) verifies all the axioms
of a ring except from the existence of a negative el-
ement−x for eachx ∈ K, which it may verify or
not. Thus, roughly speaking, a semiring is a ring
that may lack negation. It is specified by a set of
valuesK, two binary operations⊕ and⊗, and two
designated values0 and1. When⊗ is commutative,
the semiring is said to becommutative.

The real semiring(R+, +,×, 0, 1) is used when
the weights represent probabilities. Thelog
semiring (R ∪ {−∞, +∞},⊕log, +,∞, 0) is iso-
morphic to the real semiring via the negative-
log mapping and is often used in practice
for numerical stability. Thetropical semiring
(R∪, {−∞, +∞}, min, +,∞, 0) is derived from
the log semiring via theViterbi approximationand
is often used in shortest-path applications.

Figure 1(a) shows an example of a weighted
finite-state transducer over the real semiring
(R+, +,×, 0, 1). In this figure, the input and out-
put labels of a transition are separated by a colon
delimiter and the weight is indicated after the slash
separator. A weighted transducer has a set of initial
states represented in the figure by a bold circle and
a set of final states, represented by double circles. A
path from an initial state to a final state is an accept-
ing path.

The weight of an accepting path is obtained by
first ⊗-multiplying the weights of its constituent
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Figure 1: (a) Example of weighted transducerT over the
real semiring(R+,+,×, 0, 1). (b) Example of weighted
automatonA. A can be obtained fromT by projection on
the output andT (aab, bba) = A(bba) = 1× 2× 6× 8 +
2× 4× 5× 8.

transitions and⊗-multiplying this product on the left
by the weight of the initial state of the path (which
equals1 in our work) and on the right by the weight
of the final state of the path (displayed after the slash
in the figure). The weight associated by a weighted
transducerT to a pair of strings(x, y) ∈ Σ∗ ×Σ∗ is
denoted byT (x, y) and is obtained by⊕-summing
the weights of all accepting paths with input labelx
and output labely.

For any transducerT , T−1 denotes itsinverse,
that is the transducer obtained fromT by swapping
the input and output labels of each transition. For all
x, y ∈ Σ∗, we haveT−1(x, y) = T (y, x).

Thecompositionof two weighted transducersT1

andT2 with matching input and output alphabetsΣ,
is a weighted transducer denoted byT1 ◦ T2 when
the semiring is commutative and the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z)⊗ T2(z, y) (1)

is well-defined and inK for all x, y (Salomaa and
Soittola, 1978).

Weighted automatacan be defined as weighted
transducersA with identical input and output labels,
for any transition. Since only pairs of the form(x, x)
can have a non-zero weight associated to them by
A, we denote the weight associated byA to (x, x)
by A(x) and call it theweight associated byA to
x. Similarly, in the graph representation of weighted
automata, the output (or input) label is omitted. Fig-
ure 1(b) shows an example of a weighted automa-
ton. WhenA andB are weighted automata,A ◦ B
is called theintersectionof A andB. Omitting the
input labels of a weighted transducerT results in a
weighted automaton which is said to be theoutput
projection ofT .
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3 General Framework

Let X be a probabilistic automaton representing the
output of a complex model for a specific query input.
The model may be for example a speech recognition
system, an information extraction system, or a ma-
chine translation system (which originally motivated
our study). For machine translation, the sequences
accepted byX are the potential translations of the
input sentence, each with some probability given by
X.

Let Σ be the alphabet for the task considered, e.g.,
words of the target language in machine translation,
and letL : Σ∗ × Σ∗ → R denote a loss function
defined over the sequences on that alphabet. Given
a reference or hypothesis setH ⊆ Σ∗, minimum
Bayes risk (MBR) decoding consists of selecting a
hypothesisx ∈ H with minimum expected loss with
respect to the probability distributionX (Bickel and
Doksum, 2001; Tromble et al., 2008):

x̂ = argmin
x∈H

E
x′∼X

[L(x, x′)]. (2)

Here, we shall consider the case, frequent in prac-
tice, where minimizing the lossL is equivalent to
maximizing a similarity measureK : Σ∗×Σ∗ → R.
When K is a sequence kernel that can be repre-
sented by weighted transducers, it is arational ker-
nel (Cortes et al., 2004). The problem is then equiv-
alent to the followingexpected similarity maximiza-
tion:

x̂ = argmax
x∈H

E
x′∼X

[K(x, x′)]. (3)

When K is a positive definite symmetric rational
kernel, it can often be rewritten asK(x, y) = (T ◦
T−1)(x, y), whereT is a weighted transducer over
the semiring(R+∪{+∞}, +,×, 0, 1). Equation (3)
can then be rewritten as

x̂ = argmax
x∈H

E
x′∼X

[(T ◦ T−1)(x, x′)] (4)

= argmax
x∈H

‖A(x) ◦ T ◦ T−1 ◦X‖, (5)

where we denote byA(x) an automaton accepting
(only) the stringx and by‖·‖ the sum of the weights
of all accepted paths of a transducer.

4 Algorithms

4.1 General method

Equation (5) could suggest computingA(x) ◦ T ◦
T−1 ◦ X for each possiblex ∈ H. Instead, we

can compute a composition based on an automa-
ton accepting all sequences inH, A(H). This leads
to a straightforward method for determining the se-
quence maximizing the expected similarity having
the following steps:

1. compute the compositionX ◦ T , project on
the output and optimize (epsilon-remove, de-
terminize, minimize (Mohri, 2009)) and letY2

be the result;1

2. compute the compositionY1 = A(H) ◦ T ;

3. computeY1 ◦ Y2 and project on the input, letZ
be the result;2

4. determinizeZ;

5. find the maximum weight path with the label of
that path givinĝx.

While this method can be efficient in various scenar-
ios, in some instances the weighted determinization
yielding Z can be both space- and time-consuming,
even though the input is acyclic. The next two sec-
tions describe more efficient algorithms.

Note that in practice, for numerical stability, all
of these computations are done in the log semiring
which is isomorphic to(R+∪{+∞}, +,×, 0, 1). In
particular, the maximum weight path in the last step
is then obtained by using a standard single-source
shortest-path algorithm.

4.2 Efficient method for n-gram kernels

A common family of rational kernels is the family
of n-gram kernels. These kernels are widely use as
a similarity measure in natural language processing
and computational biology applications, see (Leslie
et al., 2002; Lodhi et al., 2002) for instance.

Then-gram kernelKn of ordern is defined as

Kn(x, y) =
∑

|z|=n

cx(z)cy(z), (6)

wherecx(z) is the number of occurrences ofz in
x. Kn is a positive definite symmetric rational ker-
nel since it corresponds to the weighted transducer
Tn ◦ T−1

n where the transducerTn is defined such
thatTn(x, z) = cx(z) for all x, z ∈ Σ∗ with |z| = n.

1Equivalent to computingT−1 ◦ X and projecting on the
input.

2Z is then the projection on the input ofA(H)◦T ◦T−1◦X.
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Figure 2: Efficient method for bigram kernel: (a) Counting transducerT2 for Σ = {a, b} (over the real semiring). (b)
Probabilistic automatonX (over the real semiring). (c) The hypothesis automatonA(H) (unweighted). (d) Automaton
Y2 representing the expected bigram counts inX (over the real semiring). (e) AutomatonY1: the context dependency
model derived fromY2 (over the tropical semiring). (f) The compositionA(H) ◦ Y1 (over the tropical semiring).

The transducerT2 for Σ = {a, b} is shown in Fig-
ure 2(a).

Taking advantage of the special structure ofn-
gram kernels and of the fact thatA(H) is an un-
weighted automaton, we can devise a new and sig-
nificantly more efficient method for computinĝx
based on the following steps.

1. Compute the expectedn-gram counts inX: We
compute the compositionX ◦T , project on out-
put and optimize (epsilon-remove, determinize,
minimize) and letY2 be the result. Observe that
the weighted automatonY2 is a compact repre-
sentation of the expectedn-gram counts inX,
i.e. for ann-gramw (i.e. |w| = n):

Y2(w) =
∑

x∈Σ∗

X(x)cx(w)

= E
x∼X

[cx(w)] = cX(w).
(7)

2. Construct a context-dependency model:We
compute the weighted automatonY1 over the
tropical semiring as follow: the set of states is
Q = {w ∈ Σ∗| |w| ≤ n andw occurs inX},
the initial state beingǫ and every state being fi-

nal; the set of transitionsE contains all 4-tuple
(origin, label, weight, destination) of the form:

• (w, a, 0, wa) with wa ∈ Q and|w| ≤ n−
2 and

• (aw, b, Y2(awb), wb) with Y2(awb) 6= 0
and|w| = n− 2

wherea, b ∈ Σ and w ∈ Σ∗. Observe that
w ∈ Q whenwa ∈ Q and thataw, wb ∈ Q
whenY2(awb) 6= 0. Given a stringx, we have

Y1(x) =
∑

|w|=n

cX(w)cx(w). (8)

Observe thatY1 is a deterministic automaton,
henceY1(x) can be computed inO(|x|) time.

3. Compute x̂: We compute the composition
A(H) ◦ Y1. x̂ is then the label of the accepting
path with the largest weight in this transducer
and can be obtained by applying a shortest-path
algorithm to−A(H) ◦ Y1 in the tropical semir-
ing.

The main computational advantage of this method
is that it avoids the determinization ofZ in the
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Figure 3: Illustration of the construction ofY1 in the unambiguous case. (a) Weighted automatonY2 (over the real
semiring). (b) Deterministic tree automatonY ′

2 accepting{aa, ab} (over the tropical semiring). (c) Result of deter-
minization ofΣ∗Y ′

2 (over the tropical semiring). (d) Weighted automatonY1 (over the tropical semiring).

(+,×) semiring, which can sometimes be costly.
The method has also been shown empirically to be
significantly faster than the one described in the pre-
vious section.

The algorithm is illustrated in Figure 2. The al-
phabet isΣ = {a, b} and the counting transducer
corresponding to the bigram kernel is given in Fig-
ure 2(a). The evidence probabilistic automatonX
is given in Figure 2(b) and we use as hypothesis
set the set of strings that were assigned a non-zero
probability byX; this set is represented by the deter-
ministic finite automatonA(H) given in Figure 2(c).
The result of step 1 of the algorithm is the weighted
automatonY2 over the real semiring given in Fig-
ure 2(d). The result of step 2 is the weighted au-
tomatonY1 over the tropical semiring is given in
Figure 2(e). Finally, the result of the composition
A(H) ◦ Y1 (step 3) is the weighted automaton over
the tropical semiring given in Figure 2(f). The re-
sult of the expected similarity maximization is the
string x̂ = ababa, which is obtained by applying
a shortest-path algorithm to−A(H) ◦ Y1. Observe
that the stringx with the largest probability inX is
x = bbaba and is hence different from̂x = ababa in
this example.

4.3 Efficient method for the unambiguous case

The algorithm presented in the previous section for
n-gram kernels can be generalized to handle a wide
variety of rational kernels.

Let K be an arbitrary rational kernel defined by a
weighted transducerT . Let XT denote the regular
language of the strings output byT . We shall as-
sume thatXT is a finite language, though the results
of this section generalize to the infinite case. Let
Σ denote a new alphabet defined byΣ = {#x : x ∈
XT } and consider the simple grammarG of context-

dependent batch rules:

ǫ → #x/x ǫ. (9)

Each such rule inserts the symbol#x immediately
after an occurrencex in the input string. For batch
context-dependent rules, the context of the applica-
tion for all rules is determined at once before their
application (Kaplan and Kay, 1994). Assume that
this grammar isunambiguousfor a parallel applica-
tion of the rules. This condition means that there is
a unique way of parsing an input string using the
strings ofXT . The assumption holds forn-gram
sequences, for example, since the rules applicable
are uniquely determined by then-grams (making the
previous section a special case).

Given an acyclic weighted automatonY2 over the
tropical semiring accepting a subset ofXT , we can
construct a deterministic weighted automatonY1 for
Σ∗L(Y2) when this grammar is unambiguous. The
weight assigned byY1 to an input string is then the
sum of the weights of the substrings accepted byY2.
This can be achieved using weighted determiniza-
tion.

This suggests a new method for generalizing Step
2 of the algorithm described in the previous section
as follows (see illustration in Figure 3):

(i) use Y2 to construct a deterministic weighted
tree Y ′

2 defined on the tropical semiring ac-
cepting the same strings asY2 with the same
weights, with the final weights equal to the to-
tal weight given byY2 to the string ending at
that leaf;

(ii) let Y1 be the weighted automaton obtained by
first adding self-loops labeled with all elements
of Σ at the initial state ofY ′

2 and then deter-
minizing it, and then inserting new transitions
leaving final states as described in (Mohri and
Sproat, 1996).
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Step (ii) consists of computing a deterministic
weighted automaton forΣ∗Y ′

2 . This step corre-
sponds to the Aho-Corasick construction (Aho and
Corasick, 1975) and can be done in time linear in
the size ofY ′

2 .
This approach assumes that the grammarG of

batch context-dependent rules inferred byXT is un-
ambiguous. This can be tested by constructing the
finite automaton corresponding to all rules inG. The
grammarG is unambiguous iff the resulting automa-
ton is unambiguous (which can be tested using a
classical algorithm). An alternative and more ef-
ficient test consists of checking the presence of a
failure or default transition to a final state during
the Aho-Corasick construction, which occurs if and
only if there is ambiguity.

5 Application to Machine Translation

In machine translation, the BLEU score (Papineni et
al., 2001) is typically used as an evaluation metric.
In (Tromble et al., 2008), a Minimum Bayes-Risk
decoding approach for MT lattices was introduced.3

The loss function used in that approach was an ap-
proximation of the log-BLEU score by a linear func-
tion of n-gram matches and candidate length. This
loss function corresponds to the following similarity
measure:

KLB(x, x′) = θ0|x
′|+

∑

|w|≤n

θ|w|cx(w)1x′(w).

(10)
where1x(w) is 1 if w occurs inx and 0 otherwise.

(Tromble et al., 2008) implements the MBR de-
coder using weighted automata operations. First,
the set of n-grams is extracted from the lat-
tice. Next, the posterior probabilityp(w|X) of
eachn-gram is computed. Starting with the un-
weighted latticeA(H), the contribution of eachn-
gram w to (10) is applied by iteratively compos-
ing with the weighted automaton corresponding to
w(w/(θ|w|p(w|X))w)∗ wherew = Σ∗ \ (Σ∗wΣ∗).
Finally, the MBR hypothesis is extracted as the best
path in the automaton. The above steps are carried
out onen-gram at a time. For a moderately large lat-
tice, there can be several thousands ofn-grams and
the procedure becomes expensive. This leads us to
investigate methods that do not require processing
then-grams one at a time in order to achieve greater
efficiency.

3Related approaches were presented in (DeNero et al., 2009;
Kumar et al., 2009; Li et al., 2009).
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Figure 4: TransducerT 1 over the real semiring for the
alphabet{a, b}.

The first idea is to approximate theKLB similar-
ity measure using a weighted sum ofn-gram ker-
nels. This corresponds to approximating1x′(w) by
cx′(w) in (10). This leads us to the following simi-
larity measure:

KNG(x, x′) = θ0|x
′|+

∑

|w|≤n

θ|w|cx(w)cx′(w)

= θ0|x
′|+

∑

1≤i≤n

θiKi(x, x′)

(11)
Intuitively, the larger the length ofw the less likely
it is that cx(w) 6= 1x(w), which suggests comput-
ing the contribution toKLB(x, x′) of lower-order
n-grams (|w| ≤ k) exactly, but using the approxima-
tion byn-gram kernels for the higher-ordern-grams
(|w| > k). This gives the following similarity mea-
sure:

Kk
NG(x, x′) = θ0|x

′|+
∑

1≤|w|≤k

θ|w|cx(w)1x′(w)

+
∑

k<|w|≤n

θ|w|cx(w)cx′(w)

(12)
Observe thatK0

NG = KNG andKn
NG = KLB.

All these similarity measures can still be com-
puted using the framework described in Section 4.
Indeed, there exists a transducerTn over the real
semiring such thatTn(x, z) = 1x(z) for all x ∈ Σ∗

andz ∈ Σn. The transducerT 1 for Σ = {a, b} is
given by Figure 4. Let us define the similarity mea-
sureKn as:

Kn(x, x′) = (Tn◦T
−1

n )(x, x′) =
∑

|w|=n

cx(w)1x′(w).

(13)
Observe that the framework described in Section 4
can still be applied even thoughKn is not symmet-
ric. The similarity measuresKLB, KNG andKk

NG
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zhen aren

nist02 nist04 nist05 nist06 nist08 nist02 nist04 nist05 nist06 nist08

no mbr 38.7 39.2 38.3 33.5 26.5 64.0 51.8 57.3 45.5 43.8
exact 37.0 39.2 38.6 34.3 27.5 65.2 51.4 58.1 45.2 45.0
approx 39.0 39.9 38.6 34.4 27.4 65.2 52.5 58.1 46.2 45.0
ngram 36.6 39.1 38.1 34.4 27.7 64.3 50.1 56.7 44.1 42.8
ngram1 37.1 39.2 38.5 34.4 27.5 65.2 51.4 58.0 45.2 44.8

Table 1: BLEU score (%)

zhen aren

nist02 nist04 nist05 nist06 nist08 nist02 nist04 nist05 nist06 nist08

exact 3560 7863 5553 6313 5738 12341 23266 11152 11417 11405
approx 168 422 279 335 328 504 1296 528 619 808
ngram 28 72 34 70 43 85 368 105 63 66
ngram1 58 175 96 99 89 368 943 308 167 191

Table 2: MBR Time (in seconds)

can then be expressed as the relevant linear combi-
nation ofKi andKi.

6 Experimental Results

Lattices were generated using a phrase-based MT
system similar to the alignment template system de-
scribed in (Och and Ney, 2004). Given a source sen-
tence, the system produces a word latticeA that is a
compact representation of a very largeN -best list of
translation hypotheses for that source sentence and
their likelihoods. The latticeA is converted into a
lattice X that represents a probability distribution
(i.e. the posterior probability distribution given the
source sentence) following:

X(x) =
exp(αA(x))∑

y∈Σ∗ exp(αA(y))
(14)

where the scaling factorα ∈ [0,∞) flattens the dis-
tribution whenα < 1 and sharpens it whenα > 1.
We then applied the methods described in Section 5
to the latticeX using as hypothesis setH the un-
weighted lattice obtained fromX.

The following parameters for then-gram factors
were used:

θ0 =
−1

T
andθn =

1

4Tprn−1
for n ≥ 1. (15)

Experiments were conducted on two language
pairs Arabic-English (aren) and Chinese-English
(zhen) and for a variety of datasets from the NIST
Open Machine Translation (OpenMT) Evaluation.4

The values ofα, p andr used for each pair are given
4http://www.nist.gov/speech/tests/mt

α p r

aren 0.2 0.85 0.72
zhen 0.1 0.80 0.62

Table 3: Parameters used for performing MBR.

in Table 3. We used the IBM implementation of the
BLEU score (Papineni et al., 2001).

We implemented the following methods using the
OpenFst library (Allauzen et al., 2007):

• exact: uses the similarity measureKLB based
on the linearized log-BLEU, implemented as
described in (Tromble et al., 2008);

• approx: uses the approximation toKLB from
(Kumar et al., 2009) and described in the ap-
pendix;

• ngram: uses the similarity measureKNG im-
plemented using the algorithm of Section 4.2;

• ngram1: uses the similarity measureK1
NG

also implemented using the algorithm of Sec-
tion 4.2.

The results from Tables 1-2 show thatngram1
performs as well asexacton all datasets5 while be-
ing two orders of magnitude faster thanexactand
overall more than 3 times faster thanapprox.

7 Conclusion

We showed that for broad families of transducers
T and thus rational kernels, the expected similar-

5We consider BLEU score differences of less than 0.4% not
significant (Koehn, 2004).
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ity maximization problem can be solved efficiently.
This opens up the option of seeking the most appro-
priate rational kernel or transducerT for the spe-
cific task considered. In particular, the kernelK
used in our machine translation applications might
not be optimal. One may well imagine for exam-
ple that somen-grams should be further emphasized
and others de-emphasized in the definition of the
similarity. This can be easily accommodated in the
framework of rational kernels by modifying the tran-
sition weights ofT . But, ideally, one would wish
to select those weights in an optimal fashion. As
mentioned earlier, we leave this question to future
work. However, we can offer a brief look at how
one could tackle this question. One method for de-
termining an optimal kernel for the expected sim-
ilarity maximization problem consists of solving a
problem similar to that of learning kernels in classi-
fication or regression. LetX1, . . . , Xm bem lattices
with Ref(X1), . . . ,Ref(Xm) the associated refer-
ences and let̂x(K, Xi) be the solution of the ex-
pected similarity maximization for latticeXi when
using kernelK. Then, the kernel learning optimiza-
tion problem can be formulated as follows:

min
K∈K

1

m

m∑

i=1

L(x̂(K, Xi), Ref(Xi))

s. t.K = T ◦ T−1 ∧ Tr[K] ≤ C,

whereK is a convex family of rational kernels and
Tr[K] denotes the trace of the kernel matrix. In
particular, we could chooseK as a family of linear
combinations of base rational kernels. Techniques
and ideas similar to those discussed by Cortes et al.
(2008) for learning sequence kernels could be di-
rectly relevant to this problem.

A Appendix

We describe here the approximation of theKLB

similarity measure from Kumar et al. (2009). We
assume in this section that the latticeX is determin-
istic in order to simplify the notations. The posterior
probability ofn-gramw in the latticeX can be for-
mulated as:

p(w|X) =
∑

x∈Σ∗

1x(w)P (x|s) =
∑

x∈Σ∗

1x(w)X(x)

(16)
wheres denotes the source sentence. When using
the similarity measureKLB defined Equation (10),

Equation (3) can then be reformulated as:

x̂ = argmax
x′∈H

θ0|x
′|+

∑

w

θ|w|cx′(w)p(w|X). (17)

The key idea behind this new approximation algo-
rithm is to rewrite then-gram posterior probability
(Equation 16) as follows:

p(w|X) =
∑

x∈Σ∗

∑

e∈EX

f(e, w, πx)X(x) (18)

where EX is the set of transitions ofX, πx is
the unique accepting path labeled byx in X and
f(e, w, π) is a score assigned to transitione on path
π containingn-gramw:

f(e, w, π) =






1 if w ∈ e, p(e|X) > p(e′|X),
ande′ precedese onπ

0 otherwise.
(19)

In other words, for each pathπ, we count the tran-
sition that contributesn-gramw and has the highest
transition posterior probability relative to its prede-
cessors on the pathπ; there is exactly one such tran-
sition on each lattice pathπ.

We note thatf(e, w, π) relies on the full pathπ
which means that it cannot be computed based on
local statistics. We therefore approximate the quan-
tity f(e, w, π) with f∗(e, w, X) that counts the tran-
sitione with n-gramw that has the highest arc poste-
rior probability relative to predecessors in the entire
latticeX. f∗(e, w, X) can be computed locally, and
then-gram posterior probability based onf∗ can be
determined as follows:

p(w|G) =
∑

x∈Σ∗

∑

e∈EX

f∗(e, w, X)X(x)

=
∑

e∈Ex

1w∈ef
∗(e, w, X)

∑

x∈Σ∗

1πx
(e)X(x)

=
∑

e∈EX

1w∈ef
∗(e, w, X)P (e|X),

(20)
whereP (e|X) is the posterior probability of a lat-
tice transitione ∈ EX . The algorithm to perform
Lattice MBR is given in Algorithm 1. For each state
t in the lattice, we maintain a quantity Score(w, t)
for eachn-gramw that lies on a path from the initial
state tot. Score(w, t) is the highest posterior prob-
ability among all transitions on the paths that termi-
nate ont and containn-gramw. The forward pass
requires computing then-grams introduced by each
transition; to do this, we propagaten-grams (up to
maximum order−1) terminating on each state.
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Algorithm 1 MBR Decoding on Lattices
1: Sort the lattice states topologically.
2: Compute backward probabilities of each state.
3: Compute posterior prob. of eachn-gram:
4: for each transitione do
5: Compute transition posterior probabilityP (e|X).
6: Computen-gram posterior probs.P (w|X):
7: for eachn-gramw introduced bye do
8: Propagaten − 1 gram suffix tohe.
9: if p(e|X) > Score(w, T (e)) then

10: Update posterior probs. and scores:
p(w|X) +=p(e|X) − Score(w, T (e)).
Score(w, he) = p(e|X).

11: else
12: Score(w, he) = Score(w, T (e)).
13: end if
14: end for
15: end for
16: Assign scores to transitions (given by Equation 17).

17: Find best path in the lattice (Equation 17).
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