
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 713–716,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An MDL-based approach to extracting subword units for
grapheme-to-phoneme conversion

Sravana Reddy
Department of Computer Science

The University of Chicago
Chicago, IL 60637

sravana@cs.uchicago.edu

John Goldsmith
Departments of Linguistics

and Computer Science
The University of Chicago

Chicago, IL 60637
goldsmith@uchicago.edu

Abstract

We address a key problem in grapheme-to-
phoneme conversion: the ambiguity in map-
ping grapheme units to phonemes. Rather than
using single letters and phonemes as units, we
propose learning chunks, or subwords, to re-
duce ambiguity. This can be interpreted as
learning a lexicon of subwords that has min-
imum description length. We implement an
algorithm to build such a lexicon, as well as a
simple decoder that uses these subwords.

1 Introduction

A system for converting written words to their pro-
nunciations is an important component of speech-
related applications, especially in large vocabulary
tasks. This problem, commonly termed “grapheme-
to-phoneme conversion”, or g2p, is non-trivial for
several written languages, including English, since a
given letter (grapheme) may represent one of several
possible phonemes, depending on the context. Be-
cause the length of the context varies throughout the
dictionary, fixed-length contexts may overfit some
words, or inaccurately model others.

We approach this problem by treating g2p as a
function from contiguous sequences of graphemes,
which we call ‘grapheme subwords’, to sequences
of phonemes (‘phoneme subwords’), so that there is
minimal ambiguity in finding the phoneme subword
that corresponds to a given grapheme subword. That
is, we seek to minimize both these quantities:

1. The conditional entropy of the phoneme sub-
words given a grapheme subword. This di-

rectly tackles the problem of ambiguity – a per-
fectly unambiguous phoneme subword condi-
tional distribution would have entropy = 0.

2. The entropy of the grapheme subwords. This
prevents the model from getting arbitrarily
complex.

As a toy example, consider the following word-
pronunciation1 pairs:

time T AY M
sting S T IH NG

negation N AH G EY SH AH N

There are at least 5 graphemes whose correspond-
ing phoneme distribution is ambiguous (‘i’, ‘e’, ‘t’,
‘n’, ‘g’). In the segmentation below, every grapheme
subword corresponds to only one phoneme subword:

t + ime T + AY M
s + t + ing S + T + IH NG

neg + a + tion N AH G + EY + SH AH N

2 Related Work

Many grapheme-to-phoneme algorithms rely on
something resembling subwords; these are mainly
used to account for sequences of letters representing
a single phoneme (‘ph’ for F), or vice versa (‘x’ for
K S). Some of the early works that create one-to-
one alignments between a word and its pronuncia-
tion address these cases by allowing a letter to map
to one phoneme, a null phoneme, or 2-3 phonemes.

Jiampojamarn and Kondrak (2009) use
expectation-maximization (EM) to learn many-
to-many alignments between words and pro-
nunciations, effectively obtaining subwords.

1All phonemes are denoted by their Arpabet representations.

713

Joint-sequence models divide a word-pronunciation
pair into a sequence of disjoint graphones or
graphonemes – tuples containing grapheme and
phoneme subwords. Such segmentations may
include only trivial graphones containing subwords
of length at most 1 (Chen, 2003). Other such
models use EM to learn the maximum likelihood
segmentation into graphones (Deligne and Bimbot,
1995; Bisani and Ney, 2008; Vozilla et al., 2003).

Subwords – or phrases – are used widely in ma-
chine translation. There is a large body of work on
phrase extraction starting from word alignments; see
Koehn et al. (2003) for a review. Marcu and Wong
(2002) learn phrases directly from sentence pairs us-
ing a joint probability model.

3 Subword Extraction

3.1 Motivation for using MDL

Consider a lexicon of grapheme subwords G and
phoneme subwords P that is extracted from a dic-
tionary of word-pronunciation pairs, along with a
joint probability distribution over G and P . As
stated earlier, our objective is to minimize the en-
tropy of phoneme subwords conditioned on a given
grapheme subword, as well as the entropy of the
grapheme subwords. That is, we would like to min-
imize H(P|G) +H(G), which is

H(G,P) = −
∑
g∈G

∑
p∈P

pr(g, p) log pr(g, p) (1)

This objective can be restated as minimizing the
expected description length of the lexicon, which is
given by its entropy. This is reflected in the MDL
principle (Rissanen, 1978), which seeks to find a
lexicon such that the description length of the lex-
icon (and the compression of the data under the lex-
icon) is minimized.

3.2 Lexicon Induction

We begin with an initial alignment between a word’s
graphemes and the phonemes in its pronunciation
for all word-pronunciation pairs in the training dic-
tionary. These alignments are derived using the stan-
dard string edit distance dynamic programming al-
gorithm (Wagner and Fischer, 1974), giving a list

of tuples t = [(w1, r1), (w2, r2), . . .] for each word-
pronunciation pair.2 The set of all tuple lists t com-
poses the training dictionary T .

The initial lexicon is composed of all singleton
graphemes and phonemes (including null). The
probability pr(g, p) is taken to be the number of
times the tuple (g, p) occurs in T divided by the total
number of tuples over all alignments in T .

Following a procedure similar the word-discovery
algorithm of de Marcken (1996), the lexicon is iter-
atively updated as sketched in Table 1. At no point
do we delete singleton graphemes or phonemes.

The subwords in the final updated lexicon are then
used to decode the pronunciations of unseen words.

4 G2P Decoding

4.1 Joint segmentation and decoding

Finding the pronunciation of a word based on the
induced subword lexicon involves segmenting the
word into a sequence of grapheme subwords, and
mapping it to a sequence of phoneme subwords.

One possibility is carry these steps out sequen-
tially: first parse the word into grapheme subwords,
and then use a sequence labeling algorithm to find
the best corresponding sequence of phoneme sub-
words. However, it is likely that the true pronuncia-
tion of a word is not derived from its best parse into
grapheme units. For example, the best parse of the
word ‘gnat’ is ‘g nat’, which yields the pronuncia-
tion G N AE T, while the parse ‘gn at’ would give
the correct pronunciation N AE T.

Therefore, we search for the best pronunciation
over all segmentations of the word, adapting the
monotone search algorithm proposed by Zens and
Ney (2004) for phrase-based machine translation.3

4.2 Smoothing

A bigram model is used over both the grapheme
and phoneme subwords. These bigrams need to be
smoothed before the decoding step. Adding an equal
probability mass to unseen bigrams would fail to re-
flect simple phonotactics (patterns that govern sound

2Phoneme insertions and deletions are represented by the
null grapheme and null phoneme respectively.

3The key adaptation is in using a bigram model over both
graphemes and phonemes, rather than only phonemes as in the
original algorithm.

714

Table 1: Concatenative algorithm for building a subword lexicon that minimizes description length. The input is T ,
the set of alignments, and a threshold integer k, which is tuned using a held-out development set.

1 Update pr(g, p) by computing the posterior probabilities of the tuple (g, p) in T ,
using the forward-backward algorithm. Repeat once more to get an intermediate lexicon.

2 Compute the Viterbi parse of each t ∈ T under the lexicon derived in step 1.
3 Let A, the set of candidate tuples for addition to the lexicon, contain all tuples (wiwi+1, riri+1) such that

(wi, ri) and (wi+1, ri+1) are adjacent more than k times in the computed Viterbi parses. For each (g, p) ∈ A,
estimate the change in description length of the lexicon if (g, p) is added. If description length decreases,
remove any null symbols within g and p, and add (g, p) to the lexicon.

4 Repeat steps 1 and 2.
5 Delete all tuples that do not occur in any of the Viterbi parses.
6 Compare the description length of the new lexicon with the lexicon at the start of the iteration. If the

difference is sufficiently small, return the new lexicon; else, repeat from step 1.

sequences) in several cases. For example, the bi-
gram L UW K + S is much more likely than L UW
K + Z, since S is more likely than Z to follow K.

To introduce a bias towards phonotacticaly likely
bigrams, we define the smoothed bigram probability
of the subword a following a subword b. Given that
b is made up of a sequence of l phonemes b1b2 . . . bl,
the probability is defined as the interpolation4:

prnew(a|b) = λ1pr(a|b1b2 . . . bl) +
λ2pr(a|b1b2 . . . bl−1) + λ3pr(a|b1b2 . . . bl−2)

Both the grapheme and phoneme subword bi-
grams are smoothed as described.

5 Results

We test our algorithm on the CMU Pronouncing
Dictionary5. The dictionary is divided randomly
into a training (90% of the data) and a test set. Per-
formance is evaluated by measuring the phoneme er-
ror rate (PER) and the word error rate (WER).

The subword extraction algorithm converges in 3
iterations.We run the g2p decoder using the lexicon
after 3 iterations, as well as after 0, 1 and 2 itera-
tions. The results are shown in Table 2.

Figure 1 compares the results of our method (de-
noted by ‘MDL-Sub’) to two baselines, at different
values of maximum subword length. To evaluate the
quality of our subwords, we substitute another ex-
traction algorithm to create the lexicon – the grow-
diag-final phrase extraction method (Koehn et al.,

4In our experiments, we set λ1 = 0.5, λ2 = 0.3, λ3 = 0.2.
5The CMU Pronouncing Dictionary. Available online at

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Table 2: Results after each iteration of subword extrac-
tion. While the maximum subword length after iteration
3 is 8, the vast majority of subwords have length 6 or less.

subwords Max subword WER PER
length

0 |G| : 27, |P| : 40 1 73.16 24.20
1 |G| : 819, |P| : 1254 2 48.39 12.43
2 |G| : 5430, |P| : 4954 4 28.32 7.16
3 |G| : 6417, |P| : 5358 6 26.31 6.29

2005), denoted by ‘GD’ in the figure. We also run
the implementation of Bisani and Ney (2008) – de-
noted by ‘BN’ – on the same data. BN is an example
of a joint-sequence n-gram model, which uses a joint
distribution pr(G,P) of graphemes and phonemes
(‘graphones’), conditioned on the preceding n-1 gra-
phones for context information. Since this algorithm
outperforms most of the existing g2p algorithms, it
serves as a good point of comparison to the state of
the art in g2p. The results of BN using an n-gram
model are compared to MDL-Sub with an n-1 max-
imum subword length6.

The MDL-Sub lexicon does significantly better
than the phrases extracted by GD. While BN starts
off doing better than MDL-Sub, the latter outper-
forms BN at longer subword lengths. Most of the ad-
ditional errors in BN at that stage involve grapheme-
to-phoneme ambiguity – phonemes like AE, AA, and
AH being confused for one another when mapping

6The contextual information of (n-1)-length subwords with
bigrams is assumed to be roughly comparable to that of very
short subwords over n-grams.

715

the grapheme ‘a’, and so on. Far fewer of these er-
rors are produced by our algorithm. However, some
of the longer subwords in MDL-Sub do introduce
additional errors, mainly because the extraction al-
gorithm merges smaller subwords from previous it-
erations. For example, one of the items in the ex-
tracted lexicon is ‘icati’ – a product of merging ‘ic’
and ‘ati’ – corresponding to IH K EY SH, thus
generating incorrect pronunciations for words con-
taining the string ‘icating’.

Figure 1: Comparison of error rates.

6 Conclusion

This paper deals with translational ambiguity, which
is a major issue in grapheme-to-phoneme conver-
sion. The core of our system consists of extract-
ing subwords of graphemes and phonemes from the
training data, so that the ambiguity of deriving a
phoneme subword from a grapheme subword is min-
imized. This is achieved by formalizing ambiguity
in terms of the minimum description length princi-
ple, and using an algorithm that reduces the descrip-
tion length of the subword lexicon at each iteration.

In addition, we also introduce a smoothing mech-
anism which retains some of the phonotactic depen-
dencies that may be lost when using subwords rather
than singleton letters and phonemes.

While retaining the basic approach to minimizing
ambiguity, there are some avenues for improvement.

The algorithm that builds the lexicon creates a more
or less hierarchical structure – subwords tend to be
composed from those extracted at the previous iter-
ation. This appears to be the cause of many of the
errors produced by our method. A subword extrac-
tion algorithm that does not use a strictly bottom-up
process may create a more robust lexicon.

Our method of subword extraction could also be
applied to phrase extraction for machine transla-
tion, or in finding subwords for related problems like
transliteration. It may also be useful in deriving sub-
word units for speech recognition.

References
Maximilian Bisani and Hermann Ney. 2008. Joint-

sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50:434–451.

Stanley F Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Proceedings of
Eurospeech.

Carl G de Marcken. 1996. Unsupervised Language Ac-
quisistion. Ph.D. thesis, MIT.

Sabine Deligne and Frederic Bimbot. 1995. Language
modeling by variable length sequences: theoretical
formulation and evaluation of multigrams. In Pro-
ceedings of ICASSP.

Sittichai Jiampojamarn and Grzegorz Kondrak. 2009.
Online discriminative training for grapheme-to-
phoneme conversion. In Proceedings of Interspeech.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT-NAACL.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne, and
David Talbot. 2005. Edinburgh System Description
for the 2005 IWSLT Speech Translation Evaluation.
In Proceedings of IWSLT.

Daniel Marcu and William Wong. 2002. A phrase-based,
joint probability model for statistical machine transla-
tion. In Proceedings of EMNLP.

Jorma Rissanen. 1978. Modeling by the shortest data
description. Automatica.

Paul Vozilla, Jeff Adams, Yuliya Lobacheva, and Ryan
Thomas. 2003. Grapheme to phoneme conversion and
dictionary verification using graphonemes. In Pro-
ceedings of Eurospeech.

Robert Wagner and Michael Fischer. 1974. The string-
to-string correction problem. Journal of the ACM.

Richard Zens and Hermann Ney. 2004. Improvements in
phrase-based statistical machine translation. In Pro-
ceedings of HLT-NAACL.

716

