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Abstract

Many implementations of Latent Dirichlet Al-
location (LDA), including those described in
Blei et al. (2003), rely at some point on the
removal of stopwords, words which are as-
sumed to contribute little to the meaning of
the text. This step is considered necessary be-
cause otherwise high-frequency words tend to
end up scattered across many of the latent top-
ics without much rhyme or reason. We show,
however, that the ‘problem’ of high-frequency
words can be dealt with more elegantly, and
in a way that to our knowledge has not been
considered in LDA, through the use of appro-
priate weighting schemes comparable to those
sometimes used in Latent Semantic Indexing
(LSI). Our proposed weighting methods not
only make theoretical sense, but can also be
shown to improve precision significantly on a
non-trivial cross-language retrieval task.

1 Introduction

Latent Dirichlet Allocation (LDA) (Blei et al., 2003),
like its more established competitors Latent Seman-
tic Indexing (LSI) (Deerwester et al., 1990) and
Probabilistic Latent Semantic Indexing (PLSI) (Hof-
mann, 1999), is a model which is applicable to the
analysis of text corpora. It is claimed to differ from
LSI in that LDA is a generative Bayesianmodel (Blei
et al., 2003), although this may depend upon the
manner in which one approaches LSI (see for exam-
ple Chew et al. (2010)). In LDA as applied to text
analysis, each document in the corpus is modeled as
a mixture over an underlying set of topics, and each

topic is modeled as a probability distribution over the
terms in the vocabulary.
As the newest among the above-mentioned tech-

niques, LDA is still in a relatively early stage of de-
velopment. It is also sufficiently different from LSI,
probably themost popular andwell-known compres-
sion technique for information retrieval (IR), that
many practitioners of LSI may perceive a ‘barrier to
entry’ to LDA. This in turn perhaps explains why no-
tions such as term weighting, which have been com-
monplace in LSI for some time (Dumais, 1991), have
not yet found a place in LDA. In fact, it is often as-
sumed that weighting is unnecessary in LDA. For
example, Blei et al. (2003) contrast the use of tf-
idf weighting in both non-reduced space (Salton and
McGill, 1983) and LSI on the one hand with PLSI
and LDA on the other, where no mention is made of
weighting. Ramage et al. (2008) propose a simple
term-frequency weighting scheme for tagged docu-
ments within the framework of LDA, although term
weighting is not their focus and their scheme is in-
tended to incorporate document tags into the same
model that represents the documents themselves.
In this paper, we produce evidence that term

weighting should be given consideration within
LDA. First and foremost, this is shown empiri-
cally through a non-trivial multilingual retrieval task
which has previously been used as the basis for
tests of variants of LSI. We also show that term
weighting allows one to avoid maintenance of stop-
lists, which can be awkward especially for multilin-
gual data. With appropriate term weighting, high-
frequency words (which might otherwise be elimi-
nated as stopwords) are assigned naturally to topics
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by LDA, rather than dominating and being scattered
across many topics as happens with the standard uni-
form weighting. Our approach belies the usually
unstated, but widespread, assumption in papers on
LDA that the removal of stopwords is a necessary
pre-processing step (see e.g. Blei et al. (2003); Grif-
fiths and Steyvers (2004)).
It might seem that to demonstrate this it would be

necessary to perform a test that directly compares the
results when stoplists are used to those when weight-
ing are used. However, we believe that stopwords
are highly ad-hoc to begin with. Assuming a vocab-
ulary of n words and a stoplist of x items, there are
(at least in theory)

(n
x

)
possible stoplists. To be sure

that no stoplist improves on a particular termweight-
ing scheme we would have to test every one of these.
In addition, our tests are with a multilingual dataset,
which raises the issue that a domain-appropriate sto-
plist for a particular corpus and language may not be
available. This is even more true if we pre-process
the dataset morphologically (for example, with stem-
ming). Therefore, rather than attempting a direct
comparison of this type, we take the position that it
is possible to sidestep the need for stoplists and to do
so in a non-ad-hoc way.
The paper is organized as follows. Section 2 de-

scribes the general framework of LDA, which has
only very recently been applied to cross-language
IR. In Section 3, we look at alternatives to the
‘standard’ uniform weighting scheme (i.e., lack of
weighting scheme) commonly used in LDA. Sec-
tion 4 discusses the framework we use for empiri-
cal testing of our hypothesis that a weighting scheme
would be beneficial. We present the results of this
comparison in Section 5 along with an impressionis-
tic comparison of the output of the different alterna-
tives. We conclude in Section 6.

2 Latent Dirichlet Allocation

Our IR framework is multilingual Latent Dirich-
let Allocation (LDA), first proposed by Blei et al.
(2003) as a general Bayesian framework with initial
application to topicmodeling. It is only very recently
that variants of LDA have been applied to cross-
language IR: examples are Cimiano et al. (2009) and
Ni et al. (2009).
As an approach to topic modeling, LDA relies on

the idea that the tokens in a document are drawn in-
dependently from a set of topics where each topic is
a distribution over types (words) in the vocabulary.
The mixing coefficients for topics within each docu-
ment and weights for types in each topic can be spec-
ified a priori or learned from a training corpus. Blei
et al. initially proposed a variational model (2003)
for learning topics from data. Griffiths and Steyvers
(2004) later developed a Markov chain Monte Carlo
approach based on collapsed Gibbs sampling.

In this model, the mixing weights for topics within
each document and the multinomial coefficients for
terms within each topic are hidden (latent) and must
be learned from a training corpus. Blei et al. (2003)
proposed LDA as a general Bayesian framework and
gave a variational model for learning topics from
data. Griffiths and Steyvers (2004) subsequently de-
veloped a stochastic learning algorithm based on col-
lapsed Gibbs sampling. In this paper we will focus
on the Gibbs sampling approach.

2.1 Generative Document Model

The LDA algorithm models the D documents in a
corpus as mixtures of K topics where each topic is
in turn a distribution over W terms. Given θ, the
matrix of mixing weights for topics within each doc-
ument, andϕ, the matrix of multinomial coefficients
for each topic, we can use this formulation to de-
scribe a generative model for documents (Alg. 1).

Restating the LDA model in linear-algebraic
terms, we can say that the product of ϕ (the K × W
column-stochastic topic-by-type matrix) and θ (the
D × K column-stochastic topic-by-document ma-
trix) is the originalD×W term-by-documentmatrix.
In this sense, LDA computes a matrix factorization
of the term-by-document matrix in the sameway that
LSI or non-negative matrix factorization (NMF) do.
In fact, LDA is a special case of NMF, but unlike in
NMF, there is a unique factorization in LDA. We see
this as a feature recommending LDA above NMF.

Our objective is to reverse the generative model to
learn the contents of θ and ϕ given a training corpus
D, a number of topics K, and symmetric Dirichlet
prior distributions over both θ and ϕ with hyperpa-
rameters α and β, respectively.
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for k = 1 to K do
Draw ϕk ∼ Dirichlet(β)

end for
for d = 1 to D do
Draw θ ∼ Dirichlet(α)
Draw N ∼ Poisson(ξ)
for i = 1 to N do
Draw z ∼ Multinomial(θ)
Draw w ∼ Multinomial(ϕ(z))

end for
end for

Algorithm 1: Generative algorithm for LDA. This will
generate D documents with N tokens each. Each token
is drawn from one of K topics. The distributions over
topics and terms have Dirichlet hyperparameters α and
β respectively. The Poisson distribution over the token
count may be replaced with any other convenient distri-
bution.

2.2 Learning Topics via Collapsed Gibbs
Sampling

Rather than learn θ and ϕ directly, we use collapsed
Gibbs sampling (Geman et al. (1993), Chatterji and
Pachter (2004)) to learn the latent assignment of to-
kens to topics z given the observed tokens x.
The algorithm operates by repeatedly sampling

each zij from a distribution conditioned on the val-
ues of all other elements of z. This requires main-
taining counts of tokens assigned to topics globally
and within each document. We use the following no-
tation for these sums:

Nijk: Number of tokens of type wi in document dj

assigned to topic k

N−st
ijk : The sum Nijk with the contribution of token

xst excluded

We indicate summation over all values of an index
with (·).
Given the current state of z the conditional proba-

bility of zij is:

p(zij = k|z−ij , x, d, α, β) =

p(xij |ϕk) p(k|dj) ∝
N−ij

i(·)k + β

N−ij
(·)(·)k + Wβ

N−ij
(·)jk + α

N(·)j(·) + Tα

(1)

As Griffiths and Steyvers (2004) point out, this is
an intuitive result. The first term, p(xij |ϕk), indi-
cates the importance of term xij in topic k. The sec-
ond term, p(k|dj), indicates the importance of topic
k in document j. The sum of the terms is normalized
implicitly to 1 when we draw each new zij .
We sample a new value for zij for every token xij

during each iteration of Gibbs sampling. We run the
sampler for a burn-in period of a few hundred itera-
tions to allow it to reach its converged state and then
estimate θ and ϕ from z as follows:

θjk =
N(·)jk + α

N(·)j(·) + Tα
(2)

ϕki =
Ni(·)k + β

N(·)(·)k + Wβ
(3)

2.3 Classifying New Documents

In LSI, new documents not in the original training
set can be ‘projected’ into the semantic space of the
training set. The equivalent process in LDA is one
of classification: given a corpus D′ of one or more
new documents we use the existing topics ϕ to com-
pute a maximum a posteriori estimate of the mixing
coefficients θ′. This follows the same Monte Carlo
process of repeatedly resampling a set of token-to-
topic assignments z′ for the tokens x′ in the new doc-
uments. These new tokens are used to compute the
first term p(k|dj) in Eq. 1. We re-use the topic as-
signments z from the training corpus to compute the
second term p(xij |ϕk). Tokens with new types that
were not present in the vocabulary of the training
corpus do not participate in classification.
The resulting distribution θ′ essentially encodes

how likely each new document is to relate to each of
the K topics. We can use this matrix to compute
pairwise similarities between any two documents
from either corpus (training or newly-classified).
Whereas in LSI it may make sense to compute sim-
ilarity between documents using the cosine met-
ric (since the ‘dimensions’ defining the space are
orthogonal), we compute similarities in LDA us-
ing either the symmetrized Kullback-Leibler (KL)
or Jensen-Shannon (JS) divergences (Kullback and
Leibler (1951), Lin (2002)) since these are methods
of measuring the similarity between probability dis-
tributions.
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3 Term Weighting Schemes and LDA

The standard approach presented above assumes, ef-
fectively, that each token is equally important in cal-
culating the conditional probabilities. From both an
information-theoretic and a linguistic point of view,
however, it is clear that this is not the case. In En-
glish, a term such as ‘the’ which occurs with high
frequency in many documents does not contribute as
much to the meaning of each document as a lower-
frequency term such as ‘corpus’. It is an axiom of
information theory that an event a’s information con-
tent (in bits) is equal to log2

1
p(a) = − log2 p(a).

Treating tokens as events, we can say that the in-
formation content of a particular token of type t is
− log2 p(t). Furthermore, as is well-known, we can
estimate p(t) from observed frequencies in a corpus:
it is simply the number of tokens of type t in the cor-
pus, divided by the total number of tokens in the cor-
pus. For high-probability terms such as ‘the’, there-
fore, − log2 p(t) is low. Our basic hypothesis is that
recalculating p(zij |z, x, α, β) to take the information
content of each token into account will improve the
results of LDA. Specifically, we have incorporated
a weighting term into Eq. 1 by replacing the counts
denoted N with weights denoted M .

p(zij = k|z−ij , x, d, α, β) ∝
M−ij

i(·)k + β

M−ij
(·)(·)k + Wβ

M−ij
(·)jk + α

M(·)j(·) + Tα

(4)

Here Mijk is the total weight of tokens of type i
in document j assigned to topic k instead of the total
number of tokens. All of the machinery for Gibbs
sampling and the estimation of θ and ϕ from z re-
mains unchanged.
We appeal to an urn model to explain the intuition

behind this approach. In the original LDA formula-
tion, each topic ϕ can be modeled as an urn contain-
ing a large number of balls of uniform size. Each
ball assumes one ofW different colors (one color for
each term in the vocabulary). The frequency of oc-
currence of each color in the urn is proportional to the
corresponding term’s weight in topic ϕ. We incor-
porate a term weighting scheme by making the size
of each ball proportional to the weight of its corre-
sponding term. This makes the probability of draw-
ing the ball for a termw proportional to both the term

weight m(w) and its multinomial weight ϕw:

p(w|ϕ, β, m) =
ϕw m(w)∑
w∈W m(w)

(5)

We can now expand Eq. 4 to obtain a new sampling
equation for use with the Gibbs sampler.

p(zij = k|z−ij , x,d, m, α, β) =

m(xi)N
−ij
i(·)k + β∑

w m(w)N−ij
w(·)k + Wβ

∑
w m(w)N−ij

wjk + α∑
w m(w)Nwj(·) + Tα

(6)

If all weights m(w) = 1 this reduces immediately
to the standard LDA formulation in Eq. 1.
The information measure we describe above is

constant for a particular term across the entire cor-
pus, but it is possible to conceive of other, more so-
phisticated weighting schemes as well, for example
those where term weights vary by document. Point-
wise mutual information (PMI) is one such weight-
ing scheme which has a solid basis in information
theory and has been shown to work well in the con-
text of LSI (Chew et al., 2010). According to PMI,
the weight of a given term w in a given document
d is the pointwise mutual information of the term
and document, or − log2

p(w|d)
p(w) . Extending the LDA

model to accommodate PMI is straightforward. We
replace m(xi) and m(w) in Eq. 4 with m(xi, d) as
follows.

m(xi, d) = − log2

p(xi|d)

p(xi)

= − log2

#[tokens of type xi in d]

#[tokens of type xi]

(7)

It is possible for PMI of a term within a document
to be negative. When this happens, we clamp the
weight of the offending term to zero in that docu-
ment. In practice, we observe this only with com-
mon words (e.g. ‘and’, ‘in’, ‘of’, ‘that’, ‘the’ and
‘to’ in English) that are assigned very lowweight ev-
erywhere else in the corpus. This clamping does not
noticeably affect the results.
In the next sections, we describe tests which have

enabled us to evaluate empirically which of these
formulations works best in practice.
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4 Testing Framework

In this paper, we chose to test our hypotheses with
the same cross-language retrieval task used in a num-
ber of previous studies of LSI (e.g. Chew and Abde-
lali (2007)). Briefly, the task is to train an IR model
on one particular multilingual corpus, then deploy
it on a separate multilingual corpus, using a docu-
ment in one language to retrieve related documents
in other languages. This task is difficult because of
the size of the datasets involved. Its usefulness be-
comes apparent when we consider the following two
use cases: a humanwishing (1) to use a search engine
to retrieve relevant documents in many languages re-
gardless of the language in which the query is posed;
or (2) to produce a clustering or visualization of doc-
uments according to their topics even when the doc-
uments are in different languages.
The training corpus consists of the text of the Bible

in 31,226 parallel chunks, corresponding generally
to verses, in Arabic, English, French, Russian and
Spanish. These data were obtained from the Un-
bound Bible project (Biola University (2006)). The
test data, obtained from http://www.kuran.gen.

tr/, is the text of the Quran in the same 5 languages,
in 114 parallel chunks corresponding to suras (chap-
ters). The task, in short, is to use the training data
to inform whatever linguistic, semantic, or statistical
model is being tested, and then to infer characteris-
tics of the test data in such a way that the test docu-
ments can automatically be matched with their trans-
lations in other languages. Though the documents
come from a specific domain (scriptural texts), what
is of interest is comparative results using different
weighting schemes, holding the datasets and other
settings constant. The training and test datasets are
large enough to allow statistically significant obser-
vations to be made, and if a significant difference is
observed between experiments using two settings, it
is to be expected that similar basic differences would
be observed with any other set of training and test
data. In any case, it should be noted that the Bible
and Quran were written centuries apart, and in differ-
ent original languages; we believe this contributes
to a clean separation of training and test data, and
makes for a non-trivial retrieval task.
In our framework, a term-by-document matrix is

formed from the Bible as a parallel verse-aligned

corpus. We employed two different approaches
to tokenization, one (word-based tokenization) in
which text was tokenized at every non-word char-
acter, and the other (unsupervised morpheme-based
tokenization) in which after word-based tokeniza-
tion, a further pre-processing step (based on Gold-
smith (2001)) was performed to add extra breaks at
everymorpheme. It is shown elsewhere (Chew et al.,
2010) that this step leads to improved performance
with LSI. In each verse, all languages are concate-
nated together, allowing terms (either morphemes or
words) from all languages to be represented in every
verse. Cross-language homographs such as ‘mien’
in English and French are treated as distinct terms
in our framework. Thus, if there are L languages,
D documents (each of which is translated into each
of the L languages), and W distinct linguistic terms
across all languages, then the term-by-document ma-
trix is of dimensionsW byD (notW byD×L); with
the Bible as a training corpus, the actual numbers in
our case are 160,345 × 31,226. As described in Sec.
2.2, we use this matrix as the input to a collapsed
Gibbs sampling algorithm to learn the latent assign-
ment of tokens in all five languages to language-
independent topics, as well as the latent assignment
of language-independent topics to the multilingual
(parallel) documents. In general, we specified, arbi-
trarily but consistently across all tests, that the num-
ber of topics to be learned should be 200. Other pa-
rameters for the Gibbs sampler held constant were
the number of iterations for burn-in (200) and the
number of iterations for sampling (1).
To evaluate our different approaches to weighting,

we use classification as described in Sec. 2.3 to ob-
tain, for each document from the Quran test corpus,
a probability distribution across the topics learned
from the Bible. While in training we have D multi-
lingual documents, in testing we have D′ × L docu-
ments, each in a specific language, for which a distri-
bution is computed. For theQuran data, this amounts
to 114 × 5 = 570 documents. This is because our
goal is to match documents with their translations
in other languages using just the probability distri-
butions. For each source-language/target-language
pair L1 and L2, we obtain the similarity of each of
the 114 documents in L1 to each of the 114 doc-
uments in L2. We found that similarity here is
best computed using the Jensen-Shannon divergence
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Tokenization
Weighting Scheme Word Morpheme

Unweighted 0.505 0.544
log p(w|L) 0.616 0.641

PMI 0.612 0.686

Table 1: Summary of comparison results. This table
shows the average precision at one document (P1) for
each of the tokenization and weighting schemes we eval-
uated. Detailed results are presented in Table 2.

(Lin, 2002) and so this measure was used in all
tests. Ultimately, the measure of how well a partic-
ular method performs is average precision at 1 doc-
ument (P1). Among the various measurements for
evaluating the performance of IR systems (Salton
and McGill (1983), van Rijsbergen (1979)), this is
a fairly standard measure. For a particular source-
target pair, this is the percentage (out of 114 cases)
where a document in L1 is most similar to its mate
in L2. With 5 languages, there are 25 source-target
pairs, and we can also calculate average P1 across
all language pairs. Here, we average across 114 ×
25 (or 2,850) cases. This is why even small differ-
ences in P1 can be statistically significant.

5 Results

First, we present a summary of our results in Table 1
which clearly demonstrates that it is better in LDA to
use some kind of weighting scheme rather than the
uniform weights in the standard LDA formulation
from Eq. 1. This is true whether tokenization is by
word or by morpheme. All increases from the base-
line precision at 1 document (0.505 and 0.544 re-
spectively), whether under log or PMIweighting, are
highly significant (p < 10−11). Furthermore, all in-
creases in precision when moving from word-based
to morphology-based tokenization are also highly
significant (p < 5 × 10−5 without weighting, p <
5×10−3 with log-weighting, and p< 2×10−15 with
PMI weighting). The best result overall, where P1 is
0.686, is obtained with morphological tokenization
and PMI weighting (parallel to the results in (Chew
et al., 2010) with LSI), and again the difference be-
tween this result and its nearest competitor of 0.641
is highly significant (p < 3 × 10−6). We return to
comment below on lack of an increase in P1 when
moving from log-weighting to PMI-weighting under

word-based tokenization.
These results can also be broken out by language

pair, as shown in Table 2. Here, it is apparent that
Arabic, and to a lesser extent Russian, are harder lan-
guages in the IR problem at hand. Our intuition is
that this is connected with the fact that these two lan-
guages have a more complex morphological struc-
ture: words are formed by a process of agglutination.
A consequence of this is that single Arabic and Rus-
sian tokens can less frequently be mapped to single
tokens in other languages, which appears to “con-
fuse” LDA (and also, as we have found, LSI). The
complex morphology of Russian and Arabic is also
reflected in the type-token ratios for each language:
in our English Bible, there are 12,335 types (unique
words) and 789,744 tokens, a type-token ratio of
0.0156. The ratios for French, Spanish, Russian and
Arabic are 0.0251, 0.0404, 0.0843 and 0.1256 re-
spectively. Though the differences may not be ex-
plicable in purely statistical terms (there may be lin-
guistic factors at play which cannot be reduced to
statistics), it seems plausible that choosing a subop-
timal term-weighting scheme could exacerbate any
intrinsic problems of statistical imbalance. Consid-
ering this, it is interesting to note that the greatest
gains, when moving from unweighted LDA to ei-
ther form of weighted LDA, are often to be found
where Russian and/or Arabic are involved. This, to
us, shows the value of using a multilingual dataset
as a testbed for our different formulations of LDA:
it allows problems which may not be apparent when
working with a monolingual dataset to come more
easily to light.
We have mentioned that the best results are with

PMI and morphological tokenization, and also that
there is an increase in precision for many language of
the pairs when morphological (as opposed to word-
based) tokenization is employed. To us, the results
leave little doubt that both weighting and morpho-
logical tokenization are independently beneficial. It
appears, though, that morphology and weighting are
also complementary and synergistic strategies for
improving the results of LDA: for example, a subop-
timal approach in tokenization may at best place an
upper bound on the overall precision achievable, and
perhaps at worst undo the benefits of a good weight-
ing scheme. This may explain the one apparently
anomalous result, which is the lack of an increase in
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Original Words Morphological Tokenization
EN ES RU AR FR EN ES RU AR FR

LDA

EN 1.000 0.500 0.447 0.132 0.816 1.000 0.500 0.658 0.211 0.640 EN
ES 0.649 1.000 0.307 0.175 0.781 0.605 1.000 0.482 0.175 0.737 ES
RU 0.430 0.316 1.000 0.149 0.430 0.553 0.421 1.000 0.272 0.553 RU
AR 0.070 0.149 0.114 1.000 0.096 0.123 0.105 0.228 1.000 0.114 AR
FR 0.781 0.693 0.421 0.175 1.000 0.693 0.640 0.667 0.211 1.000 FR

Log-WLDA

EN 1.000 0.518 0.518 0.228 0.658 1.000 0.675 0.561 0.219 0.754 EN
ES 0.558 1.000 0.605 0.254 0.763 0.711 1.000 0.570 0.289 0.860 ES
RU 0.605 0.615 1.000 0.298 0.702 0.684 0.667 1.000 0.289 0.728 RU
AR 0.404 0.430 0.526 1.000 0.439 0.430 0.439 0.535 1.000 0.404 AR
FR 0.667 0.667 0.658 0.281 1.000 0.711 0.667 0.561 0.289 1.000 FR

PMI-WLDA

EN 1.000 0.579 0.658 0.272 0.702 1.000 0.719 0.658 0.342 0.851 EN
ES 0.596 1.000 0.623 0.246 0.693 0.816 1.000 0.675 0.272 0.798 ES
RU 0.649 0.579 1.000 0.307 0.693 0.702 0.693 1.000 0.360 0.772 RU
AR 0.351 0.368 0.421 1.000 0.351 0.456 0.474 0.509 1.000 0.377 AR
FR 0.693 0.667 0.605 0.254 1.000 0.825 0.772 0.719 0.333 1.000 FR

Table 2: Full results for precision at one document for all combinations of LDA, Log-WLDA, PMI-WLDA, word
tokenization and morphological tokenization.

precision moving from log-WLDA to PMI-WLDA
under word-based tokenization: if word-based tok-
enization is suboptimal, PMI weighting cannot com-
pensate for that. Effectively, for best results, the
right strategies have to be pursued with respect both
to morphology and to weighting.
Finally, we can illustrate the differences between

weighted and unweighted LDA in another way. As
discussed earlier, each topic in LDA is a probabil-
ity distribution over terms. For each topic, we can
list the most probable terms in decreasing order of
probability; this gives a sense of what each topic
is ‘about’ and whether the groupings of terms ap-
pear reasonable. Since we use 200 topics, an ex-
haustive listing is impractical here, but in Table 3
we present some representative examples from un-
weighted LDA and PMI-WLDA that we judged to
be of interest. It appears to us that the groupings are
not perfect under either LDA or PMI-WLDA; under
both methods, we find examples of rather heteroge-
neous topics, whereas we would like each topic to be
semantically focused. Still, a comparison of the out-
put with LDA and PMI-WLDA sheds some light on
why PMI-WLDA makes it less necessary to remove
stopwords. Note that all words listed for the top two
topics under LDA would commonly be considered
stopwords. This might also be true of the words in

topic 1 for PMI-WLDA, but in the latter case, the
topic is actually one of themost semantically focused
in that the top words have a clear semantic connec-
tion to one another. This cannot be said of topics 1
and 2 in LDA. For one thing, many of the same terms
that appear in topic 1 reappear in topic 2, making the
two topics hard to distinguish from one another. Sec-
ondly, the terms have only a loose semantic connec-
tion to one another: ‘the’, ‘and’, and ‘of’ are all high-
frequency and likely to co-occur, but they are differ-
ent parts of speech and have very different functions
in English. One might say that topics 1 and 2 in LDA
are a rag-bag of high-frequency words, and it is un-
surprising that these topics do little to help charac-
terize documents in our cross-language IR task. The
same cannot be said of any of the top 5 topics in PMI-
WLDA.We believe this illustrates well, and at a fun-
damental level, why weighted forms of LDA work
better in practice than unweighted LDA.

6 Conclusion

We have conducted a series of experiments to evalu-
ate the effect of different weighting schemes on La-
tent Dirichlet Allocation. Our results demonstrate,
perhaps contrary to the conventional wisdom that
weighting is unnecessary in LDA, that weighting
schemes (and other pre-processing strategies) simi-
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Weighting Scheme
LDA (no weighting) PMI-WLDA

Topic 1 2 3 4 5 1 2 3 4 5

Terms

the the vanité as cárcel under city coeur sat colère
et de vanidad comme prison sous ville heart assis ira
and et vanity como السجن под ciudad corazón vent wrath
los of باطل как prison تحت لمدينة сердце wind anger
и and суета un темницу debajo город сердца viento furor
y y aflicción a prisonniers ombre twelve قلبه sentado гнев
les de poursuite one темницы bases douze قلب ветер fureur
á и الباطل كما bound basas doce قلبي الريح غضب

de la prédicateur une prisión sombra دينة قلبك sitting гнева
of la وقبض واحد prisoners dessous города сердцем сел contre

Table 3: Top 10 terms within top 5 topics for each of LDA and PMI-WLDA. Terms that appear twice within the same
topic (e.g. ‘la’ in LDA topic 2) are words from different languages with the same spelling (here Spanish and French).

lar to those commonly employed in other approaches
to IR (such as LSI) can significantly improve the
performance of a system. Our approach also runs
counter to the standard position in LDA that it is
necessary or desirable to remove stopwords as a pre-
processing step, and we have presented an alterna-
tive approach of applying an appropriate weighting
scheme within LDA. This approach is preferable be-
cause it is considerably less ad-hoc than the construc-
tion of stoplists. We have shown mathematically
how alternative weighting schemes can be incorpo-
rated into the Gibbs sampling model. We have also
demonstrated that, far from being arbitrary, the in-
troduction of weighting into the LDA model has a
solid and rational basis in information and probabil-
ity theory, just as the basic LDA model itself has.

In future work, we would like to explore further
enhancements to weighting in LDA. There are many
variants which can be considered: one example is
the incorporation of word order and context through
an n-gram model based on conditional probabilities.
We also aim to evaluate LDA against LSIwith a view
to establishingwhether one can be said to outperform
the other consistently in terms of precision, with ap-
propriate settings held constant. Finally, we would
like to determine whether other techniques which
have been shown to benefit LSI can also be usefully
brought to bear in LDA, just as we have shown here
in the case of term weighting.
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