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Abstract

Out-of-vocabulary (OOV) words represent an
important source of error in large vocabulary
continuous speech recognition (LVCSR) sys-
tems. These words cause recognition failures,
which propagate through pipeline systems im-
pacting the performance of downstream ap-
plications. The detection of OOV regions in
the output of a LVCSR system is typically ad-
dressed as a binary classification task, where
each region is independently classified using
local information. In this paper, we show that
jointly predicting OOV regions, and includ-
ing contextual information from each region,
leads to substantial improvement in OOV de-
tection. Compared to the state-of-the-art, we
reduce the missed OOV rate from 42.6% to
28.4% at 10% false alarm rate.

1 Introduction

Even with a vocabulary of one hundred thou-
sand words, a large vocabulary continuous speech
recognition (LVCSR) system encounters out-of-
vocabulary (OOV) words, especially in new do-
mains or genres. New words often include named
entities, foreign words, rare and invented words.
Since these words were not seen during training, the
LVCSR system has no way to recognize them.

OOV words are an important source of error in
LVCSR systems for three reasons. First, OOVs can
never be recognized by the LVCSR system, even if
repeated. Second, OOV words contribute to recog-
nition errors in surrounding words, which propagate
into to later processing stages (translation, under-
standing, document retrieval, etc.). Third, OOVs

are often information-rich nouns – mis-recognized
OOVs can have a greater impact on the understand-
ing of the transcript than other words.

One solution is to simply increase the LVCSR
system’s vocabulary, but there are always new
words. Additionally, increasing the vocabulary size
without limit can sometimes produce higher word
error rates (WER), leading to a tradeoff between
recognition accuracy of frequent and rare words.

A more effective solution is to detect the presence
of OOVs directly. Once identified, OOVs can be
flagged for annotation and addition to the system’s
vocabulary, or OOV segments can be transcribed
with a phone recognizer, creating an open vocabu-
lary LVCSR system. Identified OOVs prevent error
propagation in the application pipeline.

In the literature, there are two basic approaches
to OOV detection: 1) filler models, which explicitly
represent OOVs using a filler, sub-word, or generic
word model (Bazzi, 2002; Schaaf, 2001; Bisani and
Ney, 2005; Klakow et al., 1999; Wang, 2009); and
2) confidence estimation models, which use differ-
ent confidence scores to find unreliable regions and
label them as OOV (Lin et al., 2007; Burget et al.,
2008; Sun et al., 2001; Wessel et al., 2001).

Recently, Rastrow et al. (2009a) presented an ap-
proach that combined confidence estimation models
and filler models to improve state-of-the-art results
for OOV detection. This approach and other confi-
dence based systems (Hazen and Bazzi, 2001; Lin
et al., 2007), treat OOV detection as a binary clas-
sification task; each region is independently classi-
fied using local information as IV or OOV. This
work moves beyond this independence assumption
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that considers regions independently for OOV de-
tection. We treat OOV detection as a sequence la-
beling problem and add features based on the local
lexical context of each region as well as global fea-
tures from a language model using the entire utter-
ance. Our results show that such information im-
proves OOV detection and we obtain large reduc-
tions in error compared to the best previously re-
ported results. Furthermore, our approach can be
combined with any confidence based system.

We begin by reviewing the current state-of-the-art
results for OOV detection. After describing our ex-
perimental setup, we generalize the framework to a
sequence labeling problem, which includes features
from the local context, lexical context, and entire ut-
terance. Each stage yields additional improvements
over the baseline system. We conclude with a review
of related work.

2 Maximum Entropy OOV Detection

Our baseline system is the Maximum Entropy model
with features from filler and confidence estimation
models proposed by Rastrow et al. (2009a). Based
on filler models, this approach models OOVs by
constructing a hybrid system which combines words
and sub-word units. Sub-word units, or fragments,
are variable length phone sequences selected using
statistical methods (Siohan and Bacchiani, 2005).
The vocabulary contains a word and a fragment lex-
icon; fragments are used to represent OOVs in the
language model text. Language model training text
is obtained by replacing low frequency words (as-
sumed OOVs) by their fragment representation. Pro-
nunciations for OOVs are obtained using grapheme
to phoneme models (Chen, 2003).

This approach also includes properties from con-
fidence estimation systems. Using a hybrid LVCSR
system, they obtain confusion networks (Mangu et
al., 1999), compact representations of the recog-
nizer’s most likely hypotheses. For an utterance,
the confusion network is composed of a sequence
of confused regions, indicating the set of most likely
word/sub-word hypotheses uttered and their poste-
rior probabilities1 in a specific time interval.

1P (wi|A): posterior probability of word i given the acous-
tics, which includes the language model and acoustic model
scores, as described in (Mangu et al., 1999).

Figure 1 depicts a confusion network decoded by
the hybrid system for a section of an utterance in our
test-set. Below the network we present the reference
transcription. In this example, two OOVs were ut-
tered: “slobodan” and “milosevic” and decoded as
four and three in-vocabulary words, respectively. A
confused region (also called “bin”) corresponds to
a set of competing hypothesis between two nodes.
The goal is to correctly label each of the “bins” as
OOV or IV. Note the presence of both fragments
(e.g. s l ow, l aa s) and words in some of the
hypothesis bins.

For any bin of the confusion network, Rastrow et
al. combine features from that region using a binary
Maximum Entropy classifier (White et al., 2007).
Their most effective features were:

Fragment-Posterior =
∑
f∈tj

p(f |tj)

Word-Entropy = −
∑
w∈tj

p(w|tj) log p(w|tj)

tj is the current bin in the confusion network and f
is a fragment in the hybrid dictionary.

We obtained confusion networks for a standard
word based system and the hybrid system described
above. We re-implemented the above features, ob-
taining nearly identical results to Rastrow et al. us-
ing Mallet’s MaxEnt classifier (McCallum, 2002). 2

All real-valued features were normalized and quan-
tized using the uniform-occupancy partitioning de-
scribed in White et al. (2007).3 The MaxEnt model
is regularized using a Gaussian prior (σ2 = 100),
but we found results generally insensitive to σ.

3 Experimental Setup

Before we introduce and evaluate our context ap-
proach, we establish an experimental setup. We used
the dataset constructed by Can et al. (2009) to eval-
uate Spoken Term Detection (STD) of OOVs; we
refer to this corpus as OOVCORP. The corpus con-
tains 100 hours of transcribed Broadcast News En-
glish speech emphasizing OOVs. There are 1290
unique OOVs in the corpus, which were selected
with a minimum of 5 acoustic instances per word.

2Small differences are due to a change in MaxEnt library.
3All experiments use 50 partitions with a minimum of 100

training values per partition.
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Figure 1: Example confusion network from the hybrid system with OOV regions and BIO encoding. Hypothesis are
ordered by decreasing value of posterior probability. Best hypothesis is the concatenation of the top word/fragments
in each bin. We omit posterior probabilities due to spacing.

Common English words were filtered out to ob-
tain meaningful OOVs: e.g. NATALIE, PUTIN,
QAEDA, HOLLOWAY. Since the corpus was de-
signed for STD, short OOVs (less than 4 phones)
were explicitly excluded. This resulted in roughly
24K (2%) OOV tokens.

For a LVCSR system we used the IBM Speech
Recognition Toolkit (Soltau et al., 2005)4 with
acoustic models trained on 300 hours of HUB4 data
(Fiscus et al., 1998) and excluded utterances con-
taining OOV words as marked in OOVCORP. The lan-
guage model was trained on 400M words from var-
ious text sources with a 83K word vocabulary. The
LVCSR system’s WER on the standard RT04 BN
test set was 19.4%. Excluded utterances were di-
vided into 5 hours of training and 95 hours of test
data for the OOV detector. Both train and test sets
have a 2% OOV rate. We used this split for all exper-
iments. Note that the OOV training set is different
from the LVCSR training set.

In addition to a word-based LVCSR system, we
use a hybrid LVCSR system, combining word and
sub-word (fragments) units. Combined word/sub-
word systems have improved OOV Spoken Term
Detection performance (Mamou et al., 2007; Parada
et al., 2009), better phone error rates, especially in
OOV regions (Rastrow et al., 2009b), and state-of-
the-art performance for OOV detection. Our hybrid
system’s lexicon has 83K words and 20K fragments
derived using Rastrow et al. (2009a). The 1290 ex-
cluded words are OOVs to both the word and hybrid

4We use the IBM system with speaker adaptive training
based on maximum likelihood with no discriminative training.

systems.
Note that our experiments use a different dataset

than Rastrow et. al., but we have a larger vocabu-
lary (83K vs 20K), which is closer to most modern
LVCSR system vocabularies; the resulting OOVs
are more challenging but more realistic.

3.1 Evaluation

Confusion networks are obtained from both the
word and hybrid LVCSR systems. In order to eval-
uate the performance of the OOV detector, we align
the reference transcript to the audio. The LVCSR
transcript is compared to the reference transcript at
the confused region level, so each confused region
is tagged as either OOV or IV. The OOV detector
assigns a score/probability for IV/OOV to each of
these regions.

Previous research reported OOV detection accu-
racy on all test data. However, once an OOV word
has been observed in the training data for the OOV
detector, even if it never appeared in the LVCSR
training data, it is no longer truly OOV. The fea-
tures used in previous approaches did not necessar-
ily provide an advantage on observed versus unob-
served OOVs, but our features do yield an advan-
tage. Therefore, in the sections that follow we re-
port unobserved OOV accuracy: OOV words that
do not appear in either the OOV detector’s or the
LVCSR’s training data. While this penalizes our re-
sults, it is a more informative metric of true system
performance.

We present results using standard detection error
tradeoff (DET) curves (Martin et al., 1997). DET

218



curves measure tradeoffs between misses and false
alarms and can be used to determine the optimal op-
erating point of a system. The x-axis varies the false
alarm rate (false positive) and the y-axis varies the
miss (false negative) rate; lower curves are better.

4 From MaxEnt to CRFs

As a classification algorithm, Maximum Entropy as-
signs a label to each region independently. However,
OOV words tend to be recognized as two or more IV
words, hence OOV regions tend to co-occur. In the
example of Figure 1, the OOV word “slobodan” was
recognized as four IV words: “slow vote i mean”.
This suggests that sequence models, which jointly
assign all labels in a sequence, may be more appro-
priate. Therefore, we begin incorporating context by
moving from classification to sequence models.

MaxEnt classification models the target label as
p(yi|xi), where yi is a discrete variable representing
the ith label (“IV” or “OOV”) and xi is a feature
vector representing information for position i. The
conditional distribution for yi takes the form

p(yi|xi) =
1

Z(xi)
exp(

K∑
k=1

λkfk(yi,xi)) ,

Z(xi) is a normalization term and f(yi,xi) is a vec-
tor ofK features, such as those defined in Section 2.
The model is trained discriminatively: parameters λ
are chosen to maximize conditional data likelihood.

Conditional Random Fields (CRF) (Lafferty et
al., 2001) generalize MaxEnt models to sequence
tasks. While having the same model structure as
Hidden Markov Models (HMMs), CRFs are trained
discriminatively and can use large numbers of corre-
lated features. Their primary advantage over Max-
Ent models is their ability to find an optimal labeling
for the entire sequence rather than greedy local deci-
sions. CRFs have been used successfully used in nu-
merous text processing tasks and while less popular
in speech, still applied successfully, such as sentence
boundary detection (Liu et al., 2005).

A CRF models the entire label sequence y as:

p(y|x) =
1

Z(x)
exp(λF (y,x)) ,

where F (y,x) is a global feature vector for input

sequence x and label sequence y and Z(x) is a nor-
malization term.5

5 Context for OOV Detection

We begin by including a minimal amount of local
context in making OOV decisions: the predicted la-
bels for adjacent confused regions (bins). This infor-
mation helps when OOV bins occur in close proxim-
ity, such as successive OOV bins. This is indeed the
case: in the OOV detector training data only 48% of
OOV sequences contained a single bin; sequences
were of length 2 (40%), 3 (9%) and 4 (2%). We
found similar results in the test data. Therefore, we
expect that even a minimal amount of context based
on the labels of adjacent bins will help.

A natural way of incorporating contextual infor-
mation is through a CRF, which introduces depen-
dencies between each label and its neighbors. If a
neighboring bin is likely an OOV, it increases the
chance that the current bin is OOV.

In sequence models, another technique for cap-
turing contextual dependence is the label encoding
scheme. In information extraction, where sequences
of adjacent tokens are likely to receive the same
tag, the beginning of each sequence receives a dif-
ferent tag from words that continue the sequence.
For example, the first token in a person name is
labeled B-PER and all subsequent tokens are la-
beled I-PER. This is commonly referred to as BIO
encoding (beginning, inside, outside). We applied
this encoding technique to our task, labeling bins
as either IV (in vocabulary), B-OOV (begin OOV)
and I-OOV (inside OOV), as illustrated in Figure 1.
This encoding allows the algorithm to identify fea-
tures which might be more indicative of the begin-
ning of an OOV sequence. We found that this en-
coding achieved a superior performance to a simple
IV/OOV encoding. We therefore utilize the BIO en-
coding in all CRF experiments.

Another means of introducing context is through
the order of the CRF model. A first order model
(n = 1) adds dependencies only between neighbor-
ing labels, whereas an n order model creates depen-
dencies between labels up to a distance of n posi-
tions. Higher order models capture length of label

5CRF experiments used the CRF++ package
http://crfpp.sourceforge.net/
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regions (up to length n). We experiment with both
a first order and a second order CRF. Higher order
models did not provide any improvements.

In order to establish a comparative baseline, we
first present results using the same features from
the system described in Section 2 (Word-Entropy
and Fragment-Posterior). All real-valued features
were normalized and quantized using the uniform-
occupancy partitioning described in White et al.
(2007).6 Quantization of real valued features is stan-
dard for log-linear models as it allows the model to
take advantage of non-linear characteristics of fea-
ture values and is better handled by the regulariza-
tion term. As in White et. al. we found it improved
performance.

Figure 2 depicts DET curves for OOV detection
for the MaxEnt baseline and first and second order
CRFs with BIO encoding on unobserved OOVs in
the test data. We generated predictions at different
false alarm rates by varying a probability threshold.
For MaxEnt we used the predicted label probability
and for CRFs the marginal probability of each bin’s
label. While the first order CRF achieves nearly
identical performance to the MaxEnt baseline, the
second order CRF shows a clear improvement. The
second order model has a 5% absolute improvement
at 10% false alarm rate, despite using the identi-
cal features as the MaxEnt baseline. Even a small
amount of context as expressed through local label-
ing decisions improves OOV detection.

The quantization of the features yields quan-
tized prediction scores, resulting in the non-smooth
curves for the MaxEnt and 1st order CRF results.
However, when using a second order CRF the OOV
score varies more smoothly since more features
(context labels) are considered in the prediction of
the current label.

6 Local Lexical Context

A popular approach in sequence tagging, such as in-
formation extraction or part of speech tagging, is to
include features based on local lexical content and
context. In detecting a name, both the lexical form
“John” and the preceding lexical context “Mr.” pro-
vide clues that “John” is a name. While we do not

6All experiments use 50 partitions with a minimum of 100
training values per partition.
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Figure 2: DET curves for OOV detection using a Max-
imum Entropy (MaxEnt) classifier and contextual infor-
mation using a 1st order and 2nd order CRF. All models
use the same baseline features (Section 2).

know the actual lexical items in the speech sequence,
the speech recognizer output can be used as a best
guess. In the example of Figure 1, the words “for-
mer president” are good indicators that the following
word is either the word “of” or a name, and hence a
potential OOV. Combining this lexical context with
hypothesized words can help label the subsequent
regions as OOVs (note that none of the hypothesized
words in the third bin are “of”, names, or nouns).

Words from the LVCSR decoding of the sentence
are used in the CRF OOV detector. For each bin in
the confusion network, we select the word with the
highest probability (best hypothesis). We then add
the best hypothesis word as a feature of the form:
current word=X. These features capture how the
LVCSR system incorrectly recognizes OOV words.
However, since detection is measured on unobserved
OOVs, these features alone may not help.

Instead, we turn to lexical context, which includes
correctly recognized IV words. We evaluate the fol-
lowing sets of features derived from lexical context:

• Current bin’s best hypothesis. (Current-Word)

• Unigrams and bigrams from the best hypoth-
esis in a window of 5 words around current
bin. This feature ignores the best hypothesis in
the current bin, i.e., word[-2],word[-1]
is included, but word[-1],word[0] is not.
(Context-Bigrams)
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Figure 3: A second order CRF (Section 5) and additional
features including including word identities from current
and neighboring bins (Section 6).

• Unigrams, bigrams, and trigrams in a window
of 5 words around and including current bin.
(Current-Trigrams)

• All of the above features. (All-Words)

• All above features and their stems.7 (All-
Words-Stemmed)

We added these features to the second order CRF
with BIO encoding and baseline features (Figure 3).
As expected, the current words did not improve per-
formance on unobserved OOVs. When the current
words are combined with the lexical context and
their lemmas, they give a significant boost in perfor-
mance: a 4.2% absolute improvement at 10% false
alarm rate over the previous CRF system, and 9.3%
over the MaxEnt baseline. Interestingly, only com-
bining context and current word gives a substantial
gain. This indicates that OOVs tend to occur with
certain distributional characteristics that are inde-
pendent of the OOV word uttered (since we consider
only unobserved OOVs), perhaps because OOVs
tend to be named entities, foreign words, or rare
nouns. The importance of distributional features is
well known for named entity recognition and part
of speech tagging (Pereira et al., 1993). Other fea-
tures such as sub-strings or baseline features (Word-

7To obtain stemmed words, we use the CPAN package:
http://search.cpan.org/~snowhare/Lingua-Stem-0.83.

Entropy, Fragment-Posterior) from neighboring bins
did not provide further improvement.

7 Global Utterance Context

We now include features that incorporate informa-
tion from the entire utterance. The probability of an
utterance as computed by a language model is of-
ten used as a measure of fluency of the utterance.
We also observe that OOV words tend to take very
specific syntactic roles (more than half of them are
proper nouns), which means the surrounding context
will have predictive lexical and syntactic properties.
Therefore, we use a syntactic language model.

7.1 Language Models

We evaluated both a standard trigram language
model and a syntactic language model (Filimonov
and Harper, 2009a). The syntactic model estimates
the joint probability of the word and its syntactic tag
based on the preceding words and tags. The proba-
bility of an utterance wn

1 of length n is computed by
summing over all latent syntactic tag assignments:

p(utt) = p(wn
1 ) =

∑
t1...tn

n∏
i−1

p(wi, ti|wi−1
1 , ti−1

1 )

(1)
where wi and ti are the word and tag at posi-
tion i, and wi−1

1 and ti−1
1 are sequences of words

and tags of length i − 1 starting a position 1.
The model is restricted to a trigram context, i.e.,
p(wi, ti|wi−1

i−2, t
i−1
i−2); experiments that increased the

order yielded no improvement.
We trained the language model on 130 million

words from Hub4 CSR 1996 (Garofolo et al., 1996).
The corpus was parsed using a modified Berkeley
parser (Huang and Harper, 2009) and tags extracted
from parse trees incorporated the word’s POS, the
label of its immediate parent, and the relative posi-
tion of the word among its siblings. 8 The parser
required separated contractions and possessives, but
we recombined those words after parsing to match
the LVCSR tokenization, merging their tags. Since
we are considering OOV detection, the language
model was restricted to LVCSR system’s vocabu-
lary.

8The parent tagset of Filimonov and Harper (2009a).
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Figure 4: Features from a language model added to the
best CRF from Section 6 (All-Words-Stemmed).

We also used the standard trigram LM for refer-
ence. It was trained on the same data and with the
same vocabulary using the SRILM toolkit. We used
interpolated modified KN discounting.

7.2 Language Model Features
We designed features based on the entire utterance
using the language model to measure how the utter-
ance is effected by the current token: whether the
utterance is more likely given the recognized word
or some OOV word.

Likelihood-ratio = log
p(utt)

p(utt|wi = unknown)

Norm-LM-score =
log p(utt)
length(utt)

where p(utt) represents the probability of the ut-
terance using the best path hypothesis word of the
LVCSR system, and p(utt|wi = unknown) is the
probability of the entire utterance with the current
word in the LVCSR output replaced by the token
<unk>, used to represent OOVs. Intuitively, when
an OOV word is recognized as an IV word, the flu-
ency of the utterance is disrupted, especially if the
IV is a function word. The Likelihood-ratio is de-
signed to show whether the utterance is more fluent
(more likely) if the current word is a misrecognized
OOV. 9 The second feature (Norm-LM-score) is the

9Note that in the standard n-gram LM the feature reduces to

log
Qi+n−1

k=i
p(wk|wk−1

k−n+1)Qi+n−1
k=i

p(wk|wk−1
k−n+1,wi=unknown)

, i.e., only n n-grams actu-
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Figure 5: A CRF with all context features compared to
the state-of-the-art MaxEnt baseline. Results for the CRF
are shown for unobserved, observed and both OOVs.

normalized likelihood of the utterance. An unlikely
utterance biases the system to predicting OOVs.

We evaluated a CRF with these features and
all lexical context features (Section 6) using both
the trigram model and the joint syntactic language
model (Figure 4). Each model improved perfor-
mance, but the syntactic model provided the largest
improvement. At 10% false alarm rate it yields a
4% absolute improvement with respect to the pre-
vious best result (All-Words-Stemmed) and 13.3%
over the MaxEnt baseline. Higher order language
models did not improve.

7.3 Additional Syntactic Features

We explored other syntactic features; the most ef-
fective was the 5-tag window of POS tags of the
best hypothesis.10 The additive improvement of this
feature is depicted in Figure 4 labeled “+Syntactic-
LM+Tags.” With this feature, we achieve a small ad-
ditional gain. We tried other syntactic features with-
out added benefit, such as the most likely POS tag
for <unk>in the utterance.

ally contribute. However, in the syntactic LM, the entire utter-
ance is affected by the change of one word through the latent
states (tags) (Eq. 1), thus making it a truly global feature.

10The POS tags were generated by the same syntactic LM
(see Section 7.1) as described in (Filimonov and Harper,
2009b). In this case, POS tags include merged tags, i.e., the vo-
cabulary word fred’s may be tagged as NNP-POS or NNP-VBZ.
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8 Final System

Figure 5 summarizes all of the context features in a
single second order BIO encoded CRF. Results are
shown for state-of-the-art MaxEnt (Rastrow et al.,
2009a) as well as for the CRF on unobserved, ob-
served and combined OOVs. For unobserved OOVs
our final system achieves a 14.2% absolute improve-
ment at 10% FA rate. The absolute improvement
on all OOVs was 23.7%. This result includes ob-
served OOVs: words that are OOV for the LVCSR
but are encountered in the OOV detector’s training
data. MaxEnt achieved similar performance for ob-
served and unobserved OOVs so we only include a
single combined result.

Note that the MaxEnt curve flattens at 26% false
alarms, while the CRF continues to decrease. The
elbow in the MaxEnt curve corresponds to the prob-
ability threshold at which no other labeled OOV re-
gion has a non-zero OOV score (regions with zero
entropy and no fragments). In this case, the CRF
model can still rely on the context to predict a non-
zero OOV score. This helps applications where
misses are more heavily penalized than false alarms.

9 Related Work

Most approaches to OOV detection in speech can
be categorized as filler models or confidence esti-
mation models. Filler models vary in three dimen-
sions: 1) The type of filler units used: variable-
length phoneme units (as the baseline system) vs
joint letter sound sub-words; 2) Method used to de-
rive units: data-driven (Bazzi and Glass, 2001) or
linguistically motivated (Choueiter, 2009); 3) The
method for incorporating the LVCSR system: hi-
erarchical (Bazzi, 2002) or flat models (Bisani and
Ney, 2005). Our approach can be integrated with
any of these systems.

We have shown that combining the presence of
sub-word units with other measures of confidence
can provided significant improvements, and other
proposed local confidence measures could be in-
cluded in our system as well. Lin et al. (2007)
uses joint word/phone lattice alignments and clas-
sifies high local miss-alignment regions as OOVs.
Hazen and Bazzi (2001) combines filler models with
word confidence scores, such as the minimum nor-
malized log-likelihood acoustic model score for a

word and, the fraction of the N-best utterance hy-
potheses in which a hypothesized word appears.

Limited contextual information has been pre-
viously exploited (although maintaining indepen-
dence assumptions on the labels). Burget et al.
(2008) used a neural-network (NN) phone-posterior
estimator as a feature for OOV detection. The
network is fed with posterior probabilities from
weakly-constrained (phonetic-based) and strongly-
constrained (word-based) recognizers. Their sys-
tem estimates frame-based scores, and interestingly,
they report large improvements when using tempo-
ral context in the NN input. This context is quite lim-
ited; it refers to posterior scores from one frame on
each side. Other features are considered and com-
bined using a MaxEnt model. They attribute this
gain to sampling from neighboring phonemes. Sun
et al. (2001) combines a filler-based model with a
confidence approach by using several acoustic fea-
tures along with context based features, such as
whether the next word is a filler, acoustic confidence
features for next word, number of fillers, etc.

None of these approaches consider OOV detec-
tion as a sequence labeling problem. The work of
Liu et al. (2005) is most similar to the approach pre-
sented here, but applies a CRF to sentence boundary
detection.

10 Conclusion and Future Work

We have presented a novel and effective approach to
improve OOV detection in the output confusion net-
works of a LVCSR system. Local and global con-
textual information is integrated with sub-word pos-
terior probabilities obtained from a hybrid LVCSR
system in a CRF to detect OOV regions effectively.
At a 10% FA rate, we reduce the missed OOV rate
from 42.6% to 28.4%, a 33.3% relative error reduc-
tion. Our future work will focus on additional fea-
tures from the recognizer aside from the single best-
hypothesis, as well as other applications of contex-
tual sequence prediction to speech tasks.
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