Improved I nference for Unlexicalized Parsing

Slav Petrov and Dan Klein
Computer Science Division, EECS Department
University of California at Berkeley
Berkeley, CA 94720
{petrov,kleirt @eecs.berkeley.edu

Abstract

We present several improvements to unlexicalized
parsing with hierarchically state-split PCFGs. First,
we present a novel coarse-to-fine method in which
a grammar’s own hierarchical projections are used
for incremental pruning, including a method for ef-
ficiently computing projections of a grammar with-
out a treebank. In our experiments, hierarchical
pruning greatly accelerates parsing with no loss in
empirical accuracy. Second, we compare various
inference procedures for state-split PCFGs from the
standpoint of risk minimization, paying particular
attention to their practical tradeoffs. Finally, we
present multilingual experiments which show that

method considers the splitting history of the final

grammar, projecting it onto its increasingly refined

prior stages. For any projection of a grammar, we
give a new method for efficiently estimating the pro-

jection’s parameters from the source PCFG itself
(rather than a treebank), using techniques for infi-
nite tree distributions (Corazza and Satta, 2006) and
iterated fixpoint equations. We then parse with each
refinement, in sequence, much along the lines of
Charniak et al. (2006), except with much more com-
plex and automatically derived intermediate gram-

mars. Thresholds are automatically tuned on held-
out data, and the final system parses up to 100 times
faster than the baseline PCFG parser, with no loss in
test set accuracy.

parsing with hierarchical state-splitting is fast and
accurate in multiple languages and domains, even
without any language-specific tuning.

1 Introduction _ _
In Sec. 4, we consider the well-known issue of

Treebank parsing comprises two problentsarn-  jnference objectives in split PCFGs. As in many
ing, in which we must select a model given a treemgge| families (Steedman, 2000; Vijay-Shanker and
bank, andinference in which we must select a joghi, 1985), split PCFGs have a derivation / parse
parse for a sentence given the learned model. Prgwtinction. The split PCFG directly describes a gen-
vious work has shown that high-quality unlexical-grative model over derivations, but evaluation is sen-
ized PCFGs can be learned from a treebank, eithgftive only to the coarser treebank symbols. While
by manual annotation (Klein and Manning, 2003}he most probable parse problem is NP-complete
or automatic state splitting (Matsuzaki et al., 2005(Sima'an, 1992), several approximate methods exist,
Petrov et al., 2006). In particular, we demonincjuding n-best reranking by parse likelihood, the
strated in Petrov et al. (2006) that a hierarchicallyzpeled bracket algorithm of Goodman (1996), and
split PCFG could exceed the accuracy of lexicaly yariational approximation introduced in Matsuzaki
ized PCFGs (Collins, 1999; Charniak and JohnsoRy g1, (2005). We present experiments which explic-
2005). However, many questions about inferencgy minimize various evaluation risks over a can-
with such split PCFGs remain open. In this workgigate set using samples from the split PCFG, and
we present relate those conditions to the existing non-sampling
1. an effective method for pruning in split PCFGsalgorithms. We demonstrate that n-best reranking
2. a comparison of objective functions for infer-according to likelihood is superior for exact match,
ence in split PCFGs, and that the non-reranking methods are superior for
3. experiments on automatic splitting for lan-maximizing F. A specific contribution is to discuss
guages other than English. the role of unary productions, which previous work
In Sec. 3, we present a novel coarse-to-fine prdias glossed over, but which is important in under-
cessing scheme for hierarchically split PCFGs. Owtanding why the various methods work as they do.
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Finally, in Sec. 5, we learn state-split PCFGs fo’f'barfcio
German and Chinese and examine out-of-domain ,1’;G1
performance for English. The learned grammars are éQ
compact and parsing is very quick in our multi-stage " v
scheme. These grammars produce the highest te"sﬁx”’ Gj‘
set parsing figures that we are aware of in each lan- Ci4
guage, except for English for which non-local meth- “’?05
e e i o0, 5 gl sl s

Figure 1: Hierarchical refinement proceeds top-down wtrite p

2 Hierarchically Split PCFGs jection recovers coarser grammars. The top word for the first
refinements of the determiner tag (DT) is shown on the right.

We consider PCFG grammars which are derived ] ) ) ) ]
from a raw treebank as in Petrov et al. (2006): Antroduces best-first parsing, in which a figure-of-

simple X-bar grammar is created by binarizing thdnerit prioritizes agenda processing. Most relevant
treebank trees. We refer to this grammar(as to our work is Charniak and Johnson (2005) which

From this starting point, we iteratively refine theUS€S @re-parsephase to rapidly parse with a very
grammar in stages, as illustrated in Fig. 1. In each02rse, unlexicalized treebank grammar. Any item
stage, all symbols are split in two, for exampd X:[4, 7] with sufficiently low posterior probability in

might becomeéT-1andDT-2. The refined grammar the pre-parse triggers the pruning of its lexical vari-
is estimated using a variant of the forward-backwar@nts in & subsequent full parse.
algorithm (Matsuzaki et al., 2005). After a split-5 1 Coar seto-Fine Approaches

ting stage, many splits are rolled back based on (a(r:1h iak L (2008) introd ti-lovel
approximation to) their likelihood gain. This pro- arniak et al. ( ) introducesulti-level coarse-

cedure gives an ontogeny of gramma¥s, where _to—fineparsin'g, which extends the basi_c pre—parsing
G = G, is the final grammar. Empirically, the idea by adding more rounds of pruning. In their

gains on the English Penn treebank level off after %vork, the extra pruning was with grammars even
rounds. In Petrov et al. (2006), some simple smoottfParser than_the rf"‘W treebank gra_lmmar, such as
ing is also shown to be effective. It is interesting tft 9rammarin which all nonterr_nmals are col-
note that these grammars capture many of the “struj@-psed' We propose a novel multi-stage coarse-to-

tural zeros” described by Mohri and Roark (2006 ine method which is particularly natural for our hi-
and pruning rules with probability below 10 re- erarchically split grammar, but which is, in princi-

duces the grammar size drastically without influenc'[—)le’Zez)popé'c"’lbIe to any grammar. As mfc_:harnla.k elt
ing parsing performance. Some of our methods an%|' ( ), we construct a sequence of increasingly

conclusions are relevant to all state-split grammarge‘clnecj grammars, reparsing with each reflnem(_ant.
such as Klein and Manning (2003) or Dreyer an he contributions of our method are that we derive

Eisner (2006), while others apply most directly tooodquences of rgfmements N & new way (Sec. 3.2),

the hierarchical case. we consider refinements which are themselves com-
plex, and, because our full grammar is not impossi-

3 Search ble to parse with, we automatically tune the pruning
thresholds on held-out data.

When working with large grammars, it is standard to o

prune the search space in some way. In the casedf Projection

lexicalized grammars, the unpruned chart often willn our method, which we cahierarchical coarse-

not even fit in memory for long sentences. Severdb-fine parsing, we consider a sequence of PCFGs

proven techniques exist. Collins (1999) combines &y, G4, ... G, = G, where eaclts; is a refinement

punctuation rule which eliminates many spans ersf the preceding grammag,; 1 and G is the full

tirely, and then uses span-synchronous beams goammar of interest. Each gramni@y is related to

prune in a bottom-up fashion. Charniak et al. (1998} = G,, by aprojection,,_,; or «; for brevity. A
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projection is a map from the non-terminal (includingels from other language models. Corazza and Satta
pre-terminal) symbols off onto a reduced domain. (2006) extend these methods to the case of PCFGs
A projection of grammar symbols induces a proand tree distributions.

jection of rules and therefore entire non-weighted The generalization of maximum likelihood esti-
grammars (see Fig. 1). mation is to find the estimates far(G) with min-

In our case, we also require the projections to benum KL divergence from the tree distribution in-
sequentially compatible, so that . ; =mj_.jom; . duced byG. Sincer(G) is a grammar over coarser
That is, each projection is itself a coarsening of theymbols, we fitr(G) to the distributionG induces
previous projections. In particular, we take the proever n-projected trees:P(n(7T)|G). The proofs
jection;_,; to be the map that collapses split sym-of the general case are given in Corazza and Satta
bols in round: to their earlier identities in roungl (2006), but the resulting procedure is quite intuitive.

It is straightforward to take a projectiom and Given a (fully observed) treebank, the maximum-
map a CFQ7 to its induced projectiomr(G). What  likelihood estimate for the probability of a ruke —
is less obvious is how the probabilities associatetd Z would simply be the ratio of the count of to
with the rules ofG should be mapped. In the casethe count of the configuratioX’ — Y Z. If we wish
wherer(G) is more coarse than the treebank origto find the estimate which has minimum divergence
inally used to trainG, and when that treebank isto an infinite distributionP(7"), we use the same for-
available, it is easy to project the treebank and dimula, but the counts become expected counts:
rectly estimate, say, the maximum-likelihood pa-
rameters forr(G). This is the approach taken by PX—-YZ)= EraX — V2]
Charniak et al. (2006), where they estimate what in Ep(r)[X]
our terms are projections of the raw treebank granywith unaries estimated similarly. In our specific
mar from the treebank itself. case,X,Y, and Z are symbols int(G), and the

However, treebank estimation has several limitaexpectations are taken ovér's distribution of 7-
tions. First, the treebank used to trathmay not projected treesP(7(T)|G). We give two practical
be available. Second, if the gramm@ris heavily methods for obtaining these expectations below.
smoothed or otherwise regularized, its own distri- _ _ _
bution over trees may be far from that of the tree-3'2'2 Calculating Projected Expectations
bank. Third, the meanings of the split states can and Concretely, we can now estimate the minimum
do drift between splitting stages. Fourth, and mogivergence parameters af &) for any projection
importantly, we may wish to project grammars form and PCFGG if we can calculate the expecta-
which treebank estimation is problematic, for examtions of the projected symbols and rules according to
ple, grammars which are more refined than the o2 (7(T)|G). The simplest option is to sample trees
served treebank grammars. Our method effectivel{f from G, project the samples, and take average
avoids all of these problems by rebuilding and refitcounts off of these samples. In the limit, the counts
ting the pruning grammars on the fly from the finaMill converge to the desired expectations, provided

grammar. the grammar is proper. However, we can exploit the
structure of our projections to obtain the desired ex-
321 Estimating Projected Grammars pectations much more simply and efficiently.

Fortunately, there is a well worked-out notion of First, consider the problem of calculating the ex-
estimating a grammar from an infinite distributionpected counts of a symbdl in a tree distribution
over trees (Corazza and Satta, 2006). In particula@iven by a grammag, ignoring the issue of projec-
we can estimate parameters for a projected grammi#®n. These expected counts obey the following one-
7(G) from the tree distribution induced lgy (which ~ step equations (assuming a unigaet symbol):
can itself be estimated in any manner). The earli-

est work that we are aware of on estimating models c(root) =1
from models in this way is that of Nederhof (2005), o(X) = Z P(aXB]Y)e(Y)
who considers the case of learning language mod- Y oaxs
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Here,a, 3, or both can be empty, and arule — v  (and in general will not) recover the original param-
appears in the sum once for ea&hit contains. In eters exactly, nor would we want them to. Instead
principle, this linear system can be solved in anyhey take into account any smoothing, substate drift,
way! In our experiments, we solve this system it-and so on which occurred by the final grammar.

eratively, with the following recurrences: Starting from the base grammar, we run the pro-
_ jection process for each stage in the sequence, cal-
co(X) — { 1 if X :_TOOt culating 7; (chained incremental projections would
0 otherwise also be possible). For the remainder of the paper,
except where noted otherwise, all coarser grammars’
(X)) — > PaXBY)e(Y) estimates are these reconstructions, rather than those
Y—aXp originally learned.

Note that, as in other iterative fixpoint methods, such )
as policy evaluation for Markov decision processeg'3 Experiments
(Sutton and Barto, 1998), the quantitieg X' ) have As demonstrated by Charniak et al. (2006) parsing
a useful interpretation as the expected counts igndimes can be greatly reduced by pruning chart items
ing nodes deeper than depth(i.e. the roots are all that have low posterior probability under a simpler
the root symbol, s@y(root) = 1). In our experi- grammar. Charniak et al. (2006) pre-parse with a se-
ments this method converged within around 25 iterquence of grammars which are coarser than (parent-
ations; this is unsurprising, since the treebank corannotated) treebank grammars. However, we also
tains few nodes deeper than 25 and our base gramerk with grammars which are already heavily split,
mar G seems to have captured this property. up to half as split as the final grammar, because we
Once we have the expected counts of symbofound the computational cost for parsing with the
in G, the expected counts of their projectionssimple X-bar grammar to be insignificant compared
X' = w(X) according toP(r(T)|G) are given by to the costs for parsing with more refined grammars.
o(X) = Y xr(x)=x ¢(X). Rules can be esti- For afinal grammatr = G, we compute esti-

mated directly using similar recurrences, or given bynates for the: projectionsG,,—1, ..., Gy =X-Bar,
one-step equations: whereG; = 7;(G) as described in the previous sec-
tion. Additionally we project to a gramma¥_; in
o(X — ) = c(X)P(v|X) which all nonterminals, except for the preterminals,

_ , _ have been collapsed. During parsing, we start of
This process very rapidly computes the estimat§sy; exhaustively computing the inside/outside scores

for a projection of a grammar (i.e. in a few secondgyiish 7, Ateach stage, chart items with low poste-

for our largest grammars), and is done once during, hrobaility are removed from the chart, and we
initialization of the parser. proceed to compute inside/outside scores with the
3.2.3 Hierarchical Projections next, more refined grammar, using the projections

Recall that our final state-split grammagsome, 7i—i-1 to map between symbols &; andG;—. In
by their construction process, with an ontogeny o?aCh pass, we skip chart items whose projection into

grammarsG; where each grammar is a (partial)the previous stage had a probability below a stage-

splitting of the preceding one. This gives us a nat§peCIfIC threshpld, until we reacti z Gy, (after
ural chain of projections;_.; which projects back- SEVEN passes in our cage). Ehrv_ve 0 not prune
wards along this ontogeny of grammars (see Fig. 15;_ut instead return the minimum risk tree, as will be
Of course, training also gives us parameters fO(iIes_crlbed in Sec. 4. _

the grammars, but only the chain of projections is Fig. 2 shows the (unlabeled) bracket posteriors af-
needed. Note that the projected estimates need ﬁSf each pass and demonstrates _that most construc-
tions can be ruled out by the simpler grammars,

'Whether or not the system has solutions depends on thfreatly reducing the amount of computation for the
parameters of the grammar. In particul@rmay be improper,

though the results of Chi (1999) imply thatwill be proper if  following passes. The pruning thresholds were em-
it is the maximum-likelihood estimate of a finite treebank.  pirically determined on a held out set by computing
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Figure 2: Bracket posterior probabilities (black = highi) tiee
first sentence of our development set during coarse-to-fine
pruning. Note that we compute the bracket posteriors at dr§

finer level but are showing the unlabeled posteriors fosthar
tion purposes. No pruning is done at the finest le@&) & G)
but the minimum risk tree is returned instead.

memb%
f
the
House
Ways
and
Means

Go Gy Gy Gs
the most likely tree undef directly (without prun- | Nonterminals| 98 219 498 1140
ing) and then setting the highest pruning thresholgRules 3,700 | 19,600 126,100] 531,200

for each stage that would not prune the optimal treeNo pruning | 52 min| 99 min| 288 min| 1612 min
This setting also caused no search errors on the teatbar pruning| 8 min | 14 min| 30 min | 111 min
set. We found our projected grammar estimates to p&-t0-F(noloss)) 6 min | 12 min| 16 min | 20 min
at least equally well suited for pruning as the origiFLforabove | 648 | 852 | 89.7 | 91.2
inal grammar estimates which were learned duringCt0-F(ossy) | 6 min | 8 min | 9min | 11 min
the hierarchical training. Tab. 1 shows the tremen- 1 forabove | 64.3 | 84.7 | 894 | 911

dous reduction in parsing time (all times are cumulable 1: Grammar sizes, parsing times and accuracies for hie
archically split PCFGs with and without hierarchical ceats-

lative) and gives an overview over grammar Sizefne parsing on our development set (1578 sentences with 40 or

and parsing accuracies. In particular, in our Java imess words from section 22 of the Penn Treebank). For compar-
plementation on a 3GHz processor, it is possible tjéon the parser of Charniak and Johnson (2005) has an agcurac

of F1=90.7 and runs in 19 min on this set.
parse the 1578 development set sentences (of length

40 or less) in less than 1200 seconds with arofF The decision-theoretic approach to parsing would
91.2% (no search errors), or, by pruning more, ipe to select the parse tree which minimizes our ex-
680 seconds at 91.1%. For comparison, the FeBected loss according to our beliefs:
2006 release of the Charniak and Johnson (2005) X .

; )T = P(Tr|w, G)L(Tp, T
parser runs in 1150 seconds on the same machine P ar%}Tm; (Trlw, G)L(Tp, Tr)
with an F, of 90.7%. ’

where T and Tp are “true” and predicted parse
4 Objective Functions for Parsing trees. Here, our loss is described by the function

whose first argument is the predicted parse tree and
A split PCFG is a grammat? over symbols of the the second is the gold parse tree. Reasonable can-
form X-k where X is an evaluation symbol (such didates forL include zero-one loss (exact match),
as NP) and k is some indicator of a subcategory,precision, recall, F(specifically EVALB here), and
such as a parent annotatior; induces aderiva- so on. Of course, the naive version of this process is
tion distribution P(7T'|G) over treesI’ labeled with intractable: we have to loop over all (pairs of) pos-
split symbols. This distribution in turn inducessible parses. Additionally, it requires parse likeli-
a parse distributionP(7"|G) = P(n(T)|G) over hoodsP(7Tp|w,G), which are tractable, but not triv-
(projected) trees with unsplit evaluation symbolsial, to compute for split models. There are two op-
where P(T"|G) = > q.qr—pir) P(T|G). We now tions: limit the predictions to a small candidate set or
have several choices of how to select a tree givathoose methods for which dynamic programs exist.
these posterior distributions over trees. In this sec- For arbitrary loss functions, we can approximate
tion, we present experiments with the various opthe minimum-risk procedure by taking the min over
tions and explicitly relate them to parse risk mini-only a set ofcandidate parse§’». In some cases,
mization (Titov and Henderson, 2006). each parse’s expected risk can be evaluated in closed
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Rule scorer(A — B C,i,k,5) = Y _ > > Pour(As, i, j)P(Ay — By C.)P(By, i, k)P (Cy, k, )
x Yy z

r(A—BC,i,k,j)

VARIATIONAL : q(A—-BC,ik,j) = S Poor (s 7/ P (Ansi]) T = argmaxy [ [ .1 a(e)
MAX-RULE-SUM: ¢(A—BC,ikj)="A ;(E}Oféi’)k’j) Tg = argmaxy Yo q(e)
MAX-RULE-PRODUCT. ¢(A — B C,i, k,j) = r(A F;}(E’w?(; Zn’)k’]) Tg = argmaxy [ .o q(e)

Figure 3: Different objectives for parsing with posterioygelding comparable results4, B, C' are nonterminal symbols;, y, z
are latent annotations anigjj, k are between-word indices. Heng4., 7, j) denotes a constituent labeled with spanning from
i to j. Furthermore, we write = (A — B C, i, j, k) for brevity.

form. Exact match (likelihood) has this property. In  One option is to maximize likelihood in an ap-
general, however, we can approximate the expectproximate distribution. Matsuzaki et al. (2005)
tion with samples fronP(T|w, G). The method for present a XRIATIONAL approach, which approxi-
sampling derivations of a PCFG is given in Finkelmates the true posterior over parses by a cruder, but
et al. (2006) and Johnson et al. (2007). It requires tgactable sentence-specific one. In this approximate
single inside-outside computation per sentence amwtistribution there is no derivation / parse distinction
is then efficient per sample. Note that for split gramand one can therefore optimize exact match by se-
mars, a posterior parse sample can be drawn by salaeting the most likely derivation.

pling a derivation and projecting away the substates. Instead of approximating the tree distribution we

~ Fig. 2 shows the results of the following exper-an yse an objective function that decomposes along
iment. We constructed 10-best lists from the full)arse posteriors. The labeled brackets algorithm of
grammar(s in Sec. 2 using the parser of Petrov eigoodman (1996) has such an objective function. In
al. (2006). We then took the same grammar and ¥y original formulation this algorithm maximizes
tracted 500-sample lists using the method of Finkghe number of expected correct nodes, but instead
etal. (2006). The minimum risk parse candidate Wage can use it to maximize the number of correct
selected for various loss functions. As can be seep,eg (the MAX-RULE-SUM algorithm). A worry-

in most cases, risk minimization reduces test-set Io§§g issue with this method is that it is ill-defined for
of the relevant quantity. Exact match is problematicyrammars which allow infinite unary chains: there
however, because 500 samples is often too few {gij pe no finite minimum risk tree under recall loss
draw a match when a sentence has a very flat posigzy can always reduce the risk by adding one more
rior, and so there are many all-way tresSince ex- cycle). We implement Mx -RULE-SUM in a CNF-

act match permits a non-sqmple_d calculation of.thﬁke grammar family where above each binary split
expected risk, we show this option as well, whichg exactly one unary (possibly a self-loop). With
is substantially superior. This experiment hl_ghllghtqhis limitation, unary chains are not a problem. As
that the correct procedure for exact match is to f'”Pnight be expected, this criterion improves bracket

the most probable parse. measures at the expense of exact match.
An alternative approach to reranking candidate

parses is to work with inference criteria which ad- _ . L

mit dynamic programming solutions. Fig. 3 shows" which rgle posteriors are mu|t|p_I|ed instead O.f

three possible objective functions which use the ea@gded' This corresponqls to choosing the tree with
ily obtained posterior marginals of the parse tree disqreat_e st chance of haw_ng all rules correct, under
tribution. Interestingly, while they have fairly differ- the (incorrect) assumption that the rules correct-

ent decision theoretic motivations, their closed-for Iess_?hre w&dependtent. -I(;h'SAM'_RIUtLE'TRODtUC:, f
solutions are similar. algorithm does not need special treatment of infi-

nite unary chains because it is optimizing a product
25,000 samples do not improve the numbers appreciably. rather than a sum. While these three methods yield

We found it optimal to use a third approach,
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| Objective | P R F1 EX] ENGLISH GERMAN CHINESE
(Marcus etal., 1993) (Skutetal., 1997) | (Xue etal., 2002)
Viterbi Deri .BEST DEF\;Q/QTI(;SLl 895 374 TrainSet Section 2-21 |Sentences 1-18,602rticles 26-270
iterbi Derivation [ 89. : : 1 |DevSet| Section22 | 18,603-19,602 | Articles 1-25
RERANKING TestSet| Section 23 19,603-20,602 | Articles 271-30(
Random 87.6 87.7 87.7 164 Table 3: Experimental setup.
Precision (sampled) 91.1 88.1 89.6 21.4 . . . .
Recall (sampled) 882 913 89.7 215 believe that their performance will generalize bet-
F1 (sampled) 90.2 893 89.8 272 ter across languages than the performance of parsers
Exact (sampled) 895 89.5 89.5 258 thathave been hand tailored to English.
Exact (non-sampled) | 90.8 90.8 90.8 41.7 _
Exact/F1 (oracle) 953 944 950 63.9 51 Experiments
| DYNAMIC PROGRAMMING | We trained models for English, Chinese and Ger-
VARIATIONAL 90.7 90.9 90.8 414 man using the standard corpora and splits as shown
MAX-RULE-SUM 90.5 913 909 40.4\ iy Tab. 3. We applied our model directly to each
MAX-RULE-PRODUCT | 91.2 91.1 91.2 414 of the treebanks, without any language dependent

Table 2: A 10-best list from our be€t can be reordered as to modifications. Specifically, the same model hyper-
maximize a given objective either using samples or, undaeso . .
restricting assumptions, in closed form. parameters (merging percentage and smoothing fac-
tor) were used in all experiments.
very similar results (see Fig. 2), the AM-RULE- Tab. 4 shows that automatically inducing latent
PrRoDUCT algorithm consistently outperformed thestructure is a technique that generalizes well across
other two. language boundaries and results in state of the art
Overall, the closed-form options were superior tgerformance for Chinese and German. On English,
the reranking ones, except on exact match, where thige parser is outperformed only by the reranking
gains from correctly calculating the risk outweighparser of Charniak and Johnson (2005), which has
the losses from the truncation of the candidate set.access to a variety of features which cannot be cap-
. _ tured by a generative model.
5 Multilingual Parsing Space does not permit a thorough exposition of

Most research on parsing has focused on Engligt!l analysis, but as in the case of English (Petrov
and parsing performance on other languages is getlalt_e_ll., 2_006)_, t_he_Iearned sgbcategorles exhibit inter-
erally significantly lowe? Recently, there have esting linguistic interpretations. In Gferman, fpr ex-
been some attempts to adapt parsers developed fpple, the model learns subcategories for different
English to other languages (Levy and ManningC@ses and genders.
2003; Cowan and Collins, 2005). Adapting lexi- .
calized parsers to other languages in not a triviaq'2 Corpus Variation
task as it requires at least the specification of heddelated to cross language generalization is the gen-
rules, and has had limited success. Adapting unlexgralization across domains for the same language.
calized parsers appears to be equally difficult: Levit is well known that a model trained on the Wall
and Manning (2003) adapt the unlexicalized parsestreet Journal loses significantly in performance
of Klein and Manning (2003) to Chinese, but everwhen evaluated on the Brown Corpus (see Gildea
after significant efforts on choosing category splits(2001) for more details and the exact setup of their
only modest performance gains are reported. experiment, which we duplicated here). Recently
In contrast, automatically learned grammars likdcClosky et al. (2006) came to the conclusion that
the one of Matsuzaki et al. (2005) and Petrov et athis performance drop is not due to overfitting the
(2006) require a treebank for training but no addiwSJ data. Fig. 4 shows the performance on the
tional human input. One has therefore reason tdrown corpus during hierarchical training. While

e o _ _ the R score on the WSJ is rising we observe a drop
Of course, cross-linguistic comparison of results is com-

plicated by differences in corpus annotation schemes aeg,si " performance_ e_lfter_ the 5th_ lteration, suggesting
and differences in linguistic characteristics. that some overfitting is occurring.
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< 40 words all E. Charniak, M. Johnson, etal. 2006. Multi-level coarséite
| Parser LP LR LP LR PCFG Parsing. IHILT-NAACL '06

ENGLISH Z. Chi. 1999. Statistical properties of probabilistic axitfree

Charniak et al. (2005)] 90.1 90.1] 89.5 89.6 grammars. IrComputational Linguistics
Petrov et al. (2006) 903 900|898 89.6 M. Collins. 1999.Head-Driven Statistical Models for Natural

Language ParsingPh.D. thesis, U. of Pennsylvania.

This Paper 90.7 905|902 899 A. Corazza and G. Satta. 2006. Cross-entropy and estimation
ENGLISH (reranked) of probabilistic context-free grammars. HLT-NAACL '06
Charniak et al. (2008)[ 924 91.6 [ 91.8 91.0 B. Cowan and M. Collins. 2005. Morphology and reranking
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