
Proceedings of NAACL HLT 2007, pages 404–411,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Improved Inference for Unlexicalized Parsing

Slav Petrov and Dan Klein
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720

{petrov,klein}@eecs.berkeley.edu

Abstract

We present several improvements to unlexicalized
parsing with hierarchically state-split PCFGs. First,
we present a novel coarse-to-fine method in which
a grammar’s own hierarchical projections are used
for incremental pruning, including a method for ef-
ficiently computing projections of a grammar with-
out a treebank. In our experiments, hierarchical
pruning greatly accelerates parsing with no loss in
empirical accuracy. Second, we compare various
inference procedures for state-split PCFGs from the
standpoint of risk minimization, paying particular
attention to their practical tradeoffs. Finally, we
present multilingual experiments which show that
parsing with hierarchical state-splitting is fast and
accurate in multiple languages and domains, even
without any language-specific tuning.

1 Introduction

Treebank parsing comprises two problems:learn-
ing, in which we must select a model given a tree-
bank, andinference, in which we must select a
parse for a sentence given the learned model. Pre-
vious work has shown that high-quality unlexical-
ized PCFGs can be learned from a treebank, either
by manual annotation (Klein and Manning, 2003)
or automatic state splitting (Matsuzaki et al., 2005;
Petrov et al., 2006). In particular, we demon-
strated in Petrov et al. (2006) that a hierarchically
split PCFG could exceed the accuracy of lexical-
ized PCFGs (Collins, 1999; Charniak and Johnson,
2005). However, many questions about inference
with such split PCFGs remain open. In this work,
we present

1. an effective method for pruning in split PCFGs
2. a comparison of objective functions for infer-

ence in split PCFGs,
3. experiments on automatic splitting for lan-

guages other than English.
In Sec. 3, we present a novel coarse-to-fine pro-
cessing scheme for hierarchically split PCFGs. Our

method considers the splitting history of the final
grammar, projecting it onto its increasingly refined
prior stages. For any projection of a grammar, we
give a new method for efficiently estimating the pro-
jection’s parameters from the source PCFG itself
(rather than a treebank), using techniques for infi-
nite tree distributions (Corazza and Satta, 2006) and
iterated fixpoint equations. We then parse with each
refinement, in sequence, much along the lines of
Charniak et al. (2006), except with much more com-
plex and automatically derived intermediate gram-
mars. Thresholds are automatically tuned on held-
out data, and the final system parses up to 100 times
faster than the baseline PCFG parser, with no loss in
test set accuracy.

In Sec. 4, we consider the well-known issue of
inference objectives in split PCFGs. As in many
model families (Steedman, 2000; Vijay-Shanker and
Joshi, 1985), split PCFGs have a derivation / parse
distinction. The split PCFG directly describes a gen-
erative model over derivations, but evaluation is sen-
sitive only to the coarser treebank symbols. While
the most probable parse problem is NP-complete
(Sima’an, 1992), several approximate methods exist,
including n-best reranking by parse likelihood, the
labeled bracket algorithm of Goodman (1996), and
a variational approximation introduced in Matsuzaki
et al. (2005). We present experiments which explic-
itly minimize various evaluation risks over a can-
didate set using samples from the split PCFG, and
relate those conditions to the existing non-sampling
algorithms. We demonstrate that n-best reranking
according to likelihood is superior for exact match,
and that the non-reranking methods are superior for
maximizing F1. A specific contribution is to discuss
the role of unary productions, which previous work
has glossed over, but which is important in under-
standing why the various methods work as they do.

404

Finally, in Sec. 5, we learn state-split PCFGs for
German and Chinese and examine out-of-domain
performance for English. The learned grammars are
compact and parsing is very quick in our multi-stage
scheme. These grammars produce the highest test
set parsing figures that we are aware of in each lan-
guage, except for English for which non-local meth-
ods such as feature-based discriminative reranking
are available (Charniak and Johnson, 2005).

2 Hierarchically Split PCFGs

We consider PCFG grammars which are derived
from a raw treebank as in Petrov et al. (2006): A
simple X-bar grammar is created by binarizing the
treebank trees. We refer to this grammar asG0.
From this starting point, we iteratively refine the
grammar in stages, as illustrated in Fig. 1. In each
stage, all symbols are split in two, for exampleDT
might becomeDT-1andDT-2. The refined grammar
is estimated using a variant of the forward-backward
algorithm (Matsuzaki et al., 2005). After a split-
ting stage, many splits are rolled back based on (an
approximation to) their likelihood gain. This pro-
cedure gives an ontogeny of grammarsGi, where
G = Gn is the final grammar. Empirically, the
gains on the English Penn treebank level off after 6
rounds. In Petrov et al. (2006), some simple smooth-
ing is also shown to be effective. It is interesting to
note that these grammars capture many of the “struc-
tural zeros” described by Mohri and Roark (2006)
and pruning rules with probability belowe−10 re-
duces the grammar size drastically without influenc-
ing parsing performance. Some of our methods and
conclusions are relevant to all state-split grammars,
such as Klein and Manning (2003) or Dreyer and
Eisner (2006), while others apply most directly to
the hierarchical case.

3 Search

When working with large grammars, it is standard to
prune the search space in some way. In the case of
lexicalized grammars, the unpruned chart often will
not even fit in memory for long sentences. Several
proven techniques exist. Collins (1999) combines a
punctuation rule which eliminates many spans en-
tirely, and then uses span-synchronous beams to
prune in a bottom-up fashion. Charniak et al. (1998)

G0

G1

G2

G3

G4

G5

G6

X-bar =

G =

π
i

DT:

DT-1: DT-2:

the

that

this

this

0 1 2 3 4

That

5 6 7

some

some

8 9 10 11

these

12 13

the

the

the

14 15

The

16

a

a

17

Figure 1: Hierarchical refinement proceeds top-down while pro-
jection recovers coarser grammars. The top word for the first
refinements of the determiner tag (DT) is shown on the right.

introduces best-first parsing, in which a figure-of-
merit prioritizes agenda processing. Most relevant
to our work is Charniak and Johnson (2005) which
uses apre-parsephase to rapidly parse with a very
coarse, unlexicalized treebank grammar. Any item
X:[i, j] with sufficiently low posterior probability in
the pre-parse triggers the pruning of its lexical vari-
ants in a subsequent full parse.

3.1 Coarse-to-Fine Approaches

Charniak et al. (2006) introducesmulti-level coarse-
to-fineparsing, which extends the basic pre-parsing
idea by adding more rounds of pruning. In their
work, the extra pruning was with grammars even
coarser than the raw treebank grammar, such as
a grammar in which all nonterminals are col-
lapsed. We propose a novel multi-stage coarse-to-
fine method which is particularly natural for our hi-
erarchically split grammar, but which is, in princi-
ple, applicable to any grammar. As in Charniak et
al. (2006), we construct a sequence of increasingly
refined grammars, reparsing with each refinement.
The contributions of our method are that we derive
sequences of refinements in a new way (Sec. 3.2),
we consider refinements which are themselves com-
plex, and, because our full grammar is not impossi-
ble to parse with, we automatically tune the pruning
thresholds on held-out data.

3.2 Projection

In our method, which we callhierarchical coarse-
to-fine parsing, we consider a sequence of PCFGs
G0, G1, . . . Gn = G, where eachGi is a refinement
of the preceding grammarGi−1 and G is the full
grammar of interest. Each grammarGi is related to
G = Gn by aprojectionπn→i or πi for brevity. A

405

projection is a map from the non-terminal (including
pre-terminal) symbols ofG onto a reduced domain.
A projection of grammar symbols induces a pro-
jection of rules and therefore entire non-weighted
grammars (see Fig. 1).

In our case, we also require the projections to be
sequentially compatible, so thatπi→j =πk→j◦πi→k.
That is, each projection is itself a coarsening of the
previous projections. In particular, we take the pro-
jectionπi→j to be the map that collapses split sym-
bols in roundi to their earlier identities in roundj.

It is straightforward to take a projectionπ and
map a CFGG to its induced projectionπ(G). What
is less obvious is how the probabilities associated
with the rules ofG should be mapped. In the case
whereπ(G) is more coarse than the treebank orig-
inally used to trainG, and when that treebank is
available, it is easy to project the treebank and di-
rectly estimate, say, the maximum-likelihood pa-
rameters forπ(G). This is the approach taken by
Charniak et al. (2006), where they estimate what in
our terms are projections of the raw treebank gram-
mar from the treebank itself.

However, treebank estimation has several limita-
tions. First, the treebank used to trainG may not
be available. Second, if the grammarG is heavily
smoothed or otherwise regularized, its own distri-
bution over trees may be far from that of the tree-
bank. Third, the meanings of the split states can and
do drift between splitting stages. Fourth, and most
importantly, we may wish to project grammars for
which treebank estimation is problematic, for exam-
ple, grammars which are more refined than the ob-
served treebank grammars. Our method effectively
avoids all of these problems by rebuilding and refit-
ting the pruning grammars on the fly from the final
grammar.

3.2.1 Estimating Projected Grammars

Fortunately, there is a well worked-out notion of
estimating a grammar from an infinite distribution
over trees (Corazza and Satta, 2006). In particular,
we can estimate parameters for a projected grammar
π(G) from the tree distribution induced byG (which
can itself be estimated in any manner). The earli-
est work that we are aware of on estimating models
from models in this way is that of Nederhof (2005),
who considers the case of learning language mod-

els from other language models. Corazza and Satta
(2006) extend these methods to the case of PCFGs
and tree distributions.

The generalization of maximum likelihood esti-
mation is to find the estimates forπ(G) with min-
imum KL divergence from the tree distribution in-
duced byG. Sinceπ(G) is a grammar over coarser
symbols, we fitπ(G) to the distributionG induces
over π-projected trees:P (π(T)|G). The proofs
of the general case are given in Corazza and Satta
(2006), but the resulting procedure is quite intuitive.

Given a (fully observed) treebank, the maximum-
likelihood estimate for the probability of a ruleX →
Y Z would simply be the ratio of the count ofX to
the count of the configurationX → Y Z. If we wish
to find the estimate which has minimum divergence
to an infinite distributionP (T), we use the same for-
mula, but the counts become expected counts:

P (X → Y Z) =
EP (T)[X → Y Z]

EP (T)[X]

with unaries estimated similarly. In our specific
case,X,Y, and Z are symbols inπ(G), and the
expectations are taken overG’s distribution of π-
projected trees,P (π(T)|G). We give two practical
methods for obtaining these expectations below.

3.2.2 Calculating Projected Expectations

Concretely, we can now estimate the minimum
divergence parameters ofπ(G) for any projection
π and PCFGG if we can calculate the expecta-
tions of the projected symbols and rules according to
P (π(T)|G). The simplest option is to sample trees
T from G, project the samples, and take average
counts off of these samples. In the limit, the counts
will converge to the desired expectations, provided
the grammar is proper. However, we can exploit the
structure of our projections to obtain the desired ex-
pectations much more simply and efficiently.

First, consider the problem of calculating the ex-
pected counts of a symbolX in a tree distribution
given by a grammarG, ignoring the issue of projec-
tion. These expected counts obey the following one-
step equations (assuming a uniqueroot symbol):

c(root) = 1

c(X) =
∑

Y→αXβ

P (αXβ|Y)c(Y)

406

Here,α, β, or both can be empty, and a ruleX → γ

appears in the sum once for eachX it contains. In
principle, this linear system can be solved in any
way.1 In our experiments, we solve this system it-
eratively, with the following recurrences:

c0(X)←

{

1 if X = root

0 otherwise

ci+1(X)←
∑

Y→αXβ

P (αXβ|Y)ci(Y)

Note that, as in other iterative fixpoint methods, such
as policy evaluation for Markov decision processes
(Sutton and Barto, 1998), the quantitiesck(X) have
a useful interpretation as the expected counts ignor-
ing nodes deeper than depthk (i.e. the roots are all
the root symbol, soc0(root) = 1). In our experi-
ments this method converged within around 25 iter-
ations; this is unsurprising, since the treebank con-
tains few nodes deeper than 25 and our base gram-
marG seems to have captured this property.

Once we have the expected counts of symbols
in G, the expected counts of their projections
X ′ = π(X) according toP (π(T)|G) are given by
c(X ′) =

∑

X:π(X)=X′ c(X). Rules can be esti-
mated directly using similar recurrences, or given by
one-step equations:

c(X → γ) = c(X)P (γ|X)

This process very rapidly computes the estimates
for a projection of a grammar (i.e. in a few seconds
for our largest grammars), and is done once during
initialization of the parser.

3.2.3 Hierarchical Projections

Recall that our final state-split grammarsG come,
by their construction process, with an ontogeny of
grammarsGi where each grammar is a (partial)
splitting of the preceding one. This gives us a nat-
ural chain of projectionsπi→j which projects back-
wards along this ontogeny of grammars (see Fig. 1).
Of course, training also gives us parameters for
the grammars, but only the chain of projections is
needed. Note that the projected estimates need not

1Whether or not the system has solutions depends on the
parameters of the grammar. In particular,G may be improper,
though the results of Chi (1999) imply thatG will be proper if
it is the maximum-likelihood estimate of a finite treebank.

(and in general will not) recover the original param-
eters exactly, nor would we want them to. Instead
they take into account any smoothing, substate drift,
and so on which occurred by the final grammar.

Starting from the base grammar, we run the pro-
jection process for each stage in the sequence, cal-
culatingπi (chained incremental projections would
also be possible). For the remainder of the paper,
except where noted otherwise, all coarser grammars’
estimates are these reconstructions, rather than those
originally learned.

3.3 Experiments

As demonstrated by Charniak et al. (2006) parsing
times can be greatly reduced by pruning chart items
that have low posterior probability under a simpler
grammar. Charniak et al. (2006) pre-parse with a se-
quence of grammars which are coarser than (parent-
annotated) treebank grammars. However, we also
work with grammars which are already heavily split,
up to half as split as the final grammar, because we
found the computational cost for parsing with the
simple X-bar grammar to be insignificant compared
to the costs for parsing with more refined grammars.

For a final grammarG = Gn, we compute esti-
mates for then projectionsGn−1, . . . , G0 =X-Bar,
whereGi = πi(G) as described in the previous sec-
tion. Additionally we project to a grammarG−1 in
which all nonterminals, except for the preterminals,
have been collapsed. During parsing, we start of
by exhaustively computing the inside/outside scores
with G−1. At each stage, chart items with low poste-
rior probability are removed from the chart, and we
proceed to compute inside/outside scores with the
next, more refined grammar, using the projections
πi→i−1 to map between symbols inGi andGi−1. In
each pass, we skip chart items whose projection into
the previous stage had a probability below a stage-
specific threshold, until we reachG = Gn (after
seven passes in our case). ForG, we do not prune
but instead return the minimum risk tree, as will be
described in Sec. 4.

Fig. 2 shows the (unlabeled) bracket posteriors af-
ter each pass and demonstrates that most construc-
tions can be ruled out by the simpler grammars,
greatly reducing the amount of computation for the
following passes. The pruning thresholds were em-
pirically determined on a held out set by computing

407

In
flu

en
tia

l
m

em
be

rs of th
e

H
ou

se
W

ay
s

an
d

M
ea

ns
C

om
m

itt
ee

in
tr

od
uc

ed
le

gi
sl

at
io

n
th

at
w

ou
ld

re
st

ric
t

ho
w

th
e

ne
w

s&
l

ba
ilo

ut
ag

en
cy

ca
n

ra
is

e
ca

pi
ta

l ;
cr

ea
tin

g
an

ot
he

r
po

te
nt

ia
l

ob
st

ac
le to th
e

go
ve

rn
m

en
t ‘s

sa
le of

si
ck

th
rif

ts .

G−1
G0=X-bar G1

G2 G3 G4

G5

(G6=G)
Output

Figure 2: Bracket posterior probabilities (black = high) for the
first sentence of our development set during coarse-to-fine
pruning. Note that we compute the bracket posteriors at a much
finer level but are showing the unlabeled posteriors for illustra-
tion purposes. No pruning is done at the finest level (G6 = G)
but the minimum risk tree is returned instead.

the most likely tree underG directly (without prun-
ing) and then setting the highest pruning threshold
for each stage that would not prune the optimal tree.
This setting also caused no search errors on the test
set. We found our projected grammar estimates to be
at least equally well suited for pruning as the orig-
inal grammar estimates which were learned during
the hierarchical training. Tab. 1 shows the tremen-
dous reduction in parsing time (all times are cumu-
lative) and gives an overview over grammar sizes
and parsing accuracies. In particular, in our Java im-
plementation on a 3GHz processor, it is possible to
parse the 1578 development set sentences (of length
40 or less) in less than 1200 seconds with an F1 of
91.2% (no search errors), or, by pruning more, in
680 seconds at 91.1%. For comparison, the Feb.
2006 release of the Charniak and Johnson (2005)
parser runs in 1150 seconds on the same machine
with an F1 of 90.7%.

4 Objective Functions for Parsing

A split PCFG is a grammarG over symbols of the
form X-k whereX is an evaluation symbol (such
as NP) and k is some indicator of a subcategory,
such as a parent annotation.G induces aderiva-
tion distributionP (T |G) over treesT labeled with
split symbols. This distribution in turn induces
a parse distributionP (T ′|G) = P (π(T)|G) over
(projected) trees with unsplit evaluation symbols,
whereP (T ′|G) =

∑

T :T ′=π(T) P (T |G). We now
have several choices of how to select a tree given
these posterior distributions over trees. In this sec-
tion, we present experiments with the various op-
tions and explicitly relate them to parse risk mini-
mization (Titov and Henderson, 2006).

G0 G2 G4 G6

Nonterminals 98 219 498 1140
Rules 3,700 19,600 126,100 531,200

No pruning 52 min 99 min 288 min 1612 min
X-bar pruning 8 min 14 min 30 min 111 min
C-to-F (no loss) 6 min 12 min 16 min 20 min
F1 for above 64.8 85.2 89.7 91.2

C-to-F (lossy) 6 min 8 min 9 min 11 min
F1 for above 64.3 84.7 89.4 91.1

Table 1: Grammar sizes, parsing times and accuracies for hier-
archically split PCFGs with and without hierarchical coarse-to-
fine parsing on our development set (1578 sentences with 40 or
less words from section 22 of the Penn Treebank). For compar-
ison the parser of Charniak and Johnson (2005) has an accuracy
of F1=90.7 and runs in 19 min on this set.

The decision-theoretic approach to parsing would
be to select the parse tree which minimizes our ex-
pected loss according to our beliefs:

T ∗

P = argmin
TP

∑

TT

P (TT |w,G)L(TP , TT)

where TT and TP are “true” and predicted parse
trees. Here, our loss is described by the functionL

whose first argument is the predicted parse tree and
the second is the gold parse tree. Reasonable can-
didates forL include zero-one loss (exact match),
precision, recall, F1 (specifically EVALB here), and
so on. Of course, the naive version of this process is
intractable: we have to loop over all (pairs of) pos-
sible parses. Additionally, it requires parse likeli-
hoodsP (TP |w,G), which are tractable, but not triv-
ial, to compute for split models. There are two op-
tions: limit the predictions to a small candidate set or
choose methods for which dynamic programs exist.

For arbitrary loss functions, we can approximate
the minimum-risk procedure by taking the min over
only a set ofcandidate parsesTP . In some cases,
each parse’s expected risk can be evaluated in closed

408

Rule score:r(A → B C, i, k, j) =
∑

x

∑

y

∑

z

POUT(Ax, i, j)P(Ax → By Cz)PIN(By, i, k)PIN(Cy, k, j)

VARIATIONAL : q(A → B C, i, k, j) =
r(A → B C, i, k, j)

P

x
POUT(Ax,i,j)PIN (Ax,i,j) TG = argmaxT

∏

e∈T q(e)

MAX -RULE-SUM: q(A → B C, i, k, j) =
r(A → B C, i, k, j)

PIN (root,0,n) TG = argmaxT

∑

e∈T q(e)

MAX -RULE-PRODUCT: q(A → B C, i, k, j) =
r(A → B C, i, k, j)

PIN (root,0,n) TG = argmaxT

∏

e∈T q(e)

Figure 3: Different objectives for parsing with posteriors, yielding comparable results.A, B, C are nonterminal symbols,x, y, z
are latent annotations andi, j, k are between-word indices. Hence(Ax, i, j) denotes a constituent labeled withAx spanning from
i to j. Furthermore, we writee = (A → B C, i, j, k) for brevity.

form. Exact match (likelihood) has this property. In
general, however, we can approximate the expecta-
tion with samples fromP (T |w,G). The method for
sampling derivations of a PCFG is given in Finkel
et al. (2006) and Johnson et al. (2007). It requires a
single inside-outside computation per sentence and
is then efficient per sample. Note that for split gram-
mars, a posterior parse sample can be drawn by sam-
pling a derivation and projecting away the substates.

Fig. 2 shows the results of the following exper-
iment. We constructed 10-best lists from the full
grammarG in Sec. 2 using the parser of Petrov et
al. (2006). We then took the same grammar and ex-
tracted 500-sample lists using the method of Finkel
et al. (2006). The minimum risk parse candidate was
selected for various loss functions. As can be seen,
in most cases, risk minimization reduces test-set loss
of the relevant quantity. Exact match is problematic,
however, because 500 samples is often too few to
draw a match when a sentence has a very flat poste-
rior, and so there are many all-way ties.2 Since ex-
act match permits a non-sampled calculation of the
expected risk, we show this option as well, which
is substantially superior. This experiment highlights
that the correct procedure for exact match is to find
the most probable parse.

An alternative approach to reranking candidate
parses is to work with inference criteria which ad-
mit dynamic programming solutions. Fig. 3 shows
three possible objective functions which use the eas-
ily obtained posterior marginals of the parse tree dis-
tribution. Interestingly, while they have fairly differ-
ent decision theoretic motivations, their closed-form
solutions are similar.

25,000 samples do not improve the numbers appreciably.

One option is to maximize likelihood in an ap-
proximate distribution. Matsuzaki et al. (2005)
present a VARIATIONAL approach, which approxi-
mates the true posterior over parses by a cruder, but
tractable sentence-specific one. In this approximate
distribution there is no derivation / parse distinction
and one can therefore optimize exact match by se-
lecting the most likely derivation.

Instead of approximating the tree distribution we
can use an objective function that decomposes along
parse posteriors. The labeled brackets algorithm of
Goodman (1996) has such an objective function. In
its original formulation this algorithm maximizes
the number of expected correct nodes, but instead
we can use it to maximize the number of correct
rules (the MAX -RULE-SUM algorithm). A worry-
ing issue with this method is that it is ill-defined for
grammars which allow infinite unary chains: there
will be no finite minimum risk tree under recall loss
(you can always reduce the risk by adding one more
cycle). We implement MAX -RULE-SUM in a CNF-
like grammar family where above each binary split
is exactly one unary (possibly a self-loop). With
this limitation, unary chains are not a problem. As
might be expected, this criterion improves bracket
measures at the expense of exact match.

We found it optimal to use a third approach,
in which rule posteriors are multiplied instead of
added. This corresponds to choosing the tree with
greatest chance of having all rules correct, under
the (incorrect) assumption that the rules correct-
ness are independent. This MAX -RULE-PRODUCT

algorithm does not need special treatment of infi-
nite unary chains because it is optimizing a product
rather than a sum. While these three methods yield

409

Objective P R F1 EX

BEST DERIVATION
Viterbi Derivation 89.6 89.4 89.5 37.4

RERANKING
Random 87.6 87.7 87.7 16.4
Precision (sampled) 91.1 88.1 89.6 21.4
Recall (sampled) 88.2 91.3 89.7 21.5
F1 (sampled) 90.2 89.3 89.8 27.2
Exact (sampled) 89.5 89.5 89.5 25.8
Exact (non-sampled) 90.8 90.8 90.8 41.7
Exact/F1 (oracle) 95.3 94.4 95.0 63.9

DYNAMIC PROGRAMMING

VARIATIONAL 90.7 90.9 90.8 41.4
MAX -RULE-SUM 90.5 91.3 90.9 40.4
MAX -RULE-PRODUCT 91.2 91.1 91.2 41.4

Table 2: A 10-best list from our bestG can be reordered as to
maximize a given objective either using samples or, under some
restricting assumptions, in closed form.

very similar results (see Fig. 2), the MAX -RULE-
PRODUCT algorithm consistently outperformed the
other two.

Overall, the closed-form options were superior to
the reranking ones, except on exact match, where the
gains from correctly calculating the risk outweigh
the losses from the truncation of the candidate set.

5 Multilingual Parsing

Most research on parsing has focused on English
and parsing performance on other languages is gen-
erally significantly lower.3 Recently, there have
been some attempts to adapt parsers developed for
English to other languages (Levy and Manning,
2003; Cowan and Collins, 2005). Adapting lexi-
calized parsers to other languages in not a trivial
task as it requires at least the specification of head
rules, and has had limited success. Adapting unlexi-
calized parsers appears to be equally difficult: Levy
and Manning (2003) adapt the unlexicalized parser
of Klein and Manning (2003) to Chinese, but even
after significant efforts on choosing category splits,
only modest performance gains are reported.

In contrast, automatically learned grammars like
the one of Matsuzaki et al. (2005) and Petrov et al.
(2006) require a treebank for training but no addi-
tional human input. One has therefore reason to

3Of course, cross-linguistic comparison of results is com-
plicated by differences in corpus annotation schemes and sizes,
and differences in linguistic characteristics.

ENGLISH GERMAN CHINESE
(Marcus et al., 1993) (Skut et al., 1997) (Xue et al., 2002)

TrainSet Section 2-21 Sentences 1-18,602Articles 26-270
DevSet Section 22 18,603-19,602 Articles 1-25
TestSet Section 23 19,603-20,602 Articles 271-300

Table 3: Experimental setup.

believe that their performance will generalize bet-
ter across languages than the performance of parsers
that have been hand tailored to English.

5.1 Experiments

We trained models for English, Chinese and Ger-
man using the standard corpora and splits as shown
in Tab. 3. We applied our model directly to each
of the treebanks, without any language dependent
modifications. Specifically, the same model hyper-
parameters (merging percentage and smoothing fac-
tor) were used in all experiments.

Tab. 4 shows that automatically inducing latent
structure is a technique that generalizes well across
language boundaries and results in state of the art
performance for Chinese and German. On English,
the parser is outperformed only by the reranking
parser of Charniak and Johnson (2005), which has
access to a variety of features which cannot be cap-
tured by a generative model.

Space does not permit a thorough exposition of
our analysis, but as in the case of English (Petrov
et al., 2006), the learned subcategories exhibit inter-
esting linguistic interpretations. In German, for ex-
ample, the model learns subcategories for different
cases and genders.

5.2 Corpus Variation

Related to cross language generalization is the gen-
eralization across domains for the same language.
It is well known that a model trained on the Wall
Street Journal loses significantly in performance
when evaluated on the Brown Corpus (see Gildea
(2001) for more details and the exact setup of their
experiment, which we duplicated here). Recently
McClosky et al. (2006) came to the conclusion that
this performance drop is not due to overfitting the
WSJ data. Fig. 4 shows the performance on the
Brown corpus during hierarchical training. While
the F1 score on the WSJ is rising we observe a drop
in performance after the 5th iteration, suggesting
that some overfitting is occurring.

410

≤ 40 words all
Parser LP LR LP LR

ENGLISH
Charniak et al. (2005) 90.1 90.1 89.5 89.6
Petrov et al. (2006) 90.3 90.0 89.8 89.6
This Paper 90.7 90.5 90.2 89.9

ENGLISH (reranked)
Charniak et al. (2005)4 92.4 91.6 91.8 91.0

GERMAN
Dubey (2005) F1 76.3 -
This Paper 80.8 80.7 80.1 80.1

CHINESE5

Chiang et al. (2002) 81.1 78.8 78.0 75.2
This Paper 80.8 80.7 78.8 78.5

Table 4: Our final test set parsing performance compared to the
best previous work on English, German and Chinese.

78

80

82

84

86

Grammar Size

F 1

Hierarchically Split PCFGs
Charniak and Johnson (2005) generative parser
Charniak and Johnson (2005) reranking parser

G
3

G
5 G

6G
4

Figure 4: Parsing accuracy starts dropping after 5 trainingiter-
ations on the Brown corpus, while it is improving on the WSJ,
indicating overfitting.

6 Conclusions

The coarse-to-fine scheme presented here, in con-
junction with the risk-appropriate parse selection
methodology, allows fast, accurate parsing, in multi-
ple languages and domains. For training, one needs
only a raw context-free treebank and for decoding
one needs only a final grammar, along with coars-
ening maps. The final parser is publicly available at
http://www.nlp.cs.berkeley.edu.

Acknowledgments We would like to thank Eu-
gene Charniak, Mark Johnson and Noah Smith for
helpful discussions and comments.

References
E. Charniak and M. Johnson. 2005. Coarse-to-Fine N-Best

Parsing and MaxEnt Discriminative Reranking. InACL’05.
E. Charniak, S. Goldwater, and M. Johnson. 1998. Edge-based

best-first chart parsing.6th Wkshop on Very Large Corpora.

4This is the performance of the updated reranking parser
available at http://www.cog.brown.edu/mj/software.htm

5Sun and Jurafsky (2004) report even better performance on
this dataset but since they assume gold POS tags their work is
not directly comparable (p.c.).

E. Charniak, M. Johnson, et al. 2006. Multi-level coarse-to-fine
PCFG Parsing. InHLT-NAACL ’06.

Z. Chi. 1999. Statistical properties of probabilistic context-free
grammars. InComputational Linguistics.

M. Collins. 1999.Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, U. of Pennsylvania.

A. Corazza and G. Satta. 2006. Cross-entropy and estimation
of probabilistic context-free grammars. InHLT-NAACL ’06.

B. Cowan and M. Collins. 2005. Morphology and reranking
for the statistical parsing of Spanish. InHLT-EMNLP ’05.

M. Dreyer and J. Eisner. 2006. Better informed training of
latent syntactic features. InEMNLP ’06, pages 317–326.

A. Dubey. 2005. What to do when lexicalization fails: parsing
German with suffix analysis and smoothing. InACL ’05.

J. Finkel, C. Manning, and A. Ng. 2006. Solving the prob-
lem of cascading errors: approximate Bayesian inference for
lingusitic annotation pipelines. InEMNLP ’06.

D. Gildea. 2001. Corpus variation and parser performance.
EMNLP ’01, pages 167–202.

J. Goodman. 1996. Parsing algorithms and metrics.ACL ’96.
M. Johnson, T. Griffiths, and S. Goldwater. 2007. Bayesian

inference for PCFGs via Markov Chain Monte Carlo. In
HLT-NAACL ’07.

D. Klein and C. Manning. 2003. Accurate unlexicalized pars-
ing. In ACL ’03, pages 423–430.

R. Levy and C. Manning. 2003. Is it harder to parse Chinese,
or the Chinese treebank? InACL ’03, pages 439–446.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank.
In Computational Linguistics.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilistic CFG
with latent annotations. InACL ’05, pages 75–82.

D. McClosky, E. Charniak, and M. Johnson. 2006. Reranking
and self-training for parser adaptation. InCOLING-ACL’06.

M. Mohri and B. Roark. 2006. Probabilistic context-free gram-
mar induction based on structural zeros. InHLT-NAACL ’06.

M.-J. Nederhof. 2005. A general technique to train language
models on language models. InComputational Linguistics.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learn-
ing accurate, compact, and interpretable tree annotation.In
COLING-ACL ’06, pages 443–440.

K. Sima’an. 1992. Computatoinal complexity of probabilistic
disambiguation.Grammars, 5:125–151.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. 1997. An anno-
tation scheme for free word order languages. InConference
on Applied Natural Language Processing.

M. Steedman. 2000.The Syntactic Process.The MIT Press,
Cambridge, Massachusetts.

H. Sun and D. Jurafsky. 2004. Shallow semantic parsing of
Chinese. InHLT-NAACL ’04, pages 249–256.

R. Sutton and A. Barto. 1998.Reinforcement Learning: An
Introduction. MIT Press.

I. Titov and J. Henderson. 2006. Loss minimization in parse
reranking. InEMNLP ’06, pages 560–567.

K. Vijay-Shanker and A. Joshi. 1985. Some computational
properties of Tree Adjoining Grammars. InACL ’85.

N. Xue, F.-D. Chiou, and M. Palmer. 2002. Building a large
scale annotated Chinese corpus. InCOLING ’02.

411

