
Proceedings of NAACL HLT 2007, pages 396–403,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Incremental Non-Projective Dependency Parsing

Joakim Nivre
Växjö University, School of Mathematics and Systems Engineering

Uppsala University, Department of Linguistics and Philology
joakim.nivre@{msi.vxu.se,lingfil.uu.se}

Abstract

An open issue in data-driven dependency
parsing is how to handle non-projective
dependencies, which seem to be required
by linguistically adequate representations,
but which pose problems in parsing with
respect to both accuracy and efficiency.
Using data from five different languages,
we evaluate an incremental deterministic
parser that derives non-projective depen-
dency structures in O(n2) time, supported
by SVM classifiers for predicting the next
parser action. The experiments show that
unrestricted non-projective parsing gives
a significant improvement in accuracy,
compared to a strictly projective baseline,
with up to 35% error reduction, leading
to state-of-the-art results for the given
data sets. Moreover, by restricting the
class of permissible structures to limited
degrees of non-projectivity, the parsing
time can be reduced by up to 50% without
a significant decrease in accuracy.

1 Introduction

Data-driven dependency parsing has been shown to
give accurate and efficient parsing for a wide range
of languages, such as Japanese (Kudo and Mat-
sumoto, 2002), English (Yamada and Matsumoto,
2003), Swedish (Nivre et al., 2004), Chinese (Cheng
et al., 2004), and Czech (McDonald et al., 2005).

Whereas most of the early approaches were limited
to strictly projective dependency structures, where
the projection of a syntactic head must be contin-
uous, attention has recently shifted to the analysis
of non-projective structures, which are required for
linguistically adequate representations, especially in
languages with free or flexible word order.

The most popular strategy for capturing non-
projective structures in data-driven dependency
parsing is to apply some kind of post-processing to
the output of a strictly projective dependency parser,
as in pseudo-projective parsing (Nivre and Nilsson,
2005), corrective modeling (Hall and Novák, 2005),
or approximate non-projective parsing (McDonald
and Pereira, 2006). And it is rare to find parsers
that derive non-projective structures directly, the no-
table exception being the non-projective spanning
tree parser proposed by McDonald et al. (2005).

There are essentially two arguments that have
been advanced against using parsing algorithms
that derive non-projective dependency structures di-
rectly. The first is that the added expressivity com-
promises efficiency, since the parsing problem for a
grammar that allows arbitrary non-projective depen-
dency structures has been shown to beNP complete
(Neuhaus and Bröker, 1997). On the other hand,
most data-driven approaches do not rely on gram-
mars, and with a suitable factorization of depen-
dency structures, it is possible to achieve parsing of
unrestricted non-projective structures in O(n2) time,
as shown by McDonald et al. (2005).

The second argument against non-projective de-
pendency parsing comes from the observation that,
even in languages with free or flexible word order,

396



most dependency structures are either projective or
very nearly projective. This can be seen by con-
sidering data from treebanks, such as the Prague
Dependency Treebank of Czech (Böhmová et al.,
2003), the TIGER Treebank of German (Brants et
al., 2002), or the Slovene Dependency Treebank
(Džeroski et al., 2006), where the overall proportion
of non-projective dependencies is only about 2%
even though the proportion of sentences that con-
tain some non-projective dependency is as high as
25%. This means that an approach that starts by de-
riving the best projective approximation of the cor-
rect dependency structure is likely to achieve high
accuracy, while an approach that instead attempts
to search the complete space of non-projective de-
pendency structures runs the risk of finding struc-
tures that depart too much from the near-projective
norm. Again, however, the results of McDonald et
al. (2005) suggest that the latter risk is minimized if
inductive learning is used to guide the search.

One way of improving efficiency, and potentially
also accuracy, in non-projective dependency parsing
is to restrict the search to a subclass of “mildly non-
projective” structures. Nivre (2006) defines degrees
of non-projectivity in terms of the maximum number
of intervening constituents in the projection of a syn-
tactic head and shows that limited degrees of non-
projectivity give a much better fit with the linguistic
data than strict projectivity, but also enables more ef-
ficient processing than unrestricted non-projectivity.
However, the results presented by Nivre (2006) are
all based on oracle parsing, which means that they
only provide upper bounds on the accuracy that can
be achieved.

In this paper, we investigate to what extent con-
straints on non-projective structures can improve
accuracy and efficiency in practical parsing, using
treebank-induced classifiers to predict the actions of
a deterministic incremental parser. The parsing al-
gorithm used belongs to the family of algorithms de-
scribed by Covington (2001), and the classifiers are
trained using support vector machines (SVM) (Vap-
nik, 1995). The system is evaluated using treebank
data from five languages: Danish, Dutch, German,
Portuguese, and Slovene.

The paper is structured as follows. Section 2
defines syntactic representations as labeled depen-
dency graphs and introduces the notion of degree

used to constrain the search. Section 3 describes the
parsing algorithm, including modifications neces-
sary to handle degrees of non-projectivity, and sec-
tion 4 describes the data-driven prediction of parser
actions, using history-based models and SVM clas-
sifiers. Section 5 presents the experimental setup,
section 6 discusses the experimental results, and sec-
tion 7 contains our conclusions.

2 Dependency Graphs

A dependency graph is a labeled directed graph, the
nodes of which are indices corresponding to the to-
kens of a sentence. Formally:

Definition 1 Given a set R of dependency types
(arc labels), a dependency graph for a sentence
x = (w1, . . . , wn) is a labeled directed graph G =
(V,E, L), where:

1. V = {0, 1, 2, . . . , n}
2. E ⊆ V × V

3. L : E → R

The set V of nodes (or vertices) is the set of non-
negative integers up to and including n. This means
that every token index i of the sentence is a node
(1 ≤ i ≤ n) and that there is a special node 0, which
will always be a root of the dependency graph. The
set E of arcs (or edges) is a set of ordered pairs
(i, j), where i and j are nodes. Since arcs are used
to represent dependency relations, we will say that i
is the head and j is the dependent of the arc (i, j).
The function L assigns a dependency type (label)
r ∈ R to every arc e ∈ E. We use the notation
i → j to mean that there is an arc connecting i and
j (i.e., (i, j) ∈ E); we use the notation i

r→ j if
this arc is labeled r (i.e., ((i, j), r) ∈ L); and we
use the notation i →∗ j and i ↔∗ j for the reflexive
and transitive closure of the arc relation E and the
corresponding undirected relation, respectively.

Definition 2 A dependency graph G is well-formed
if and only if:

1. The node 0 is a root, i.e., there is no node i such
that i → 0 (ROOT).

2. G is weakly connected, i.e., i ↔∗ j for every
pair of nodes i, j (CONNECTEDNESS).

3. Every node has at most one head, i.e., if i→ j
then there is no node k such that k 6= i and
k → j (SINGLE-HEAD).

397



(“Only one of them concerns quality.”)

0 1
R
Z

(Out-of

� �

?

AuxP

2
P

nich
them

� �
?

Atr

3
VB
je
is

� �
?

Pred

4
T

jen
only

� �
?

AuxZ

5
C

jedna
one-FEM-SG

� �
?

Sb

6
R
na
to

� �
?

AuxP

7
N4

kvalitu
quality

?

� �Adv

8
Z:
.
.)

� �

?

AuxZ

Figure 1: Dependency graph for Czech sentence from the Prague Dependency Treebank

The well-formedness conditions are independent in
that none of them is entailed by any (combination)
of the others, but they jointly entail that the graph
is a tree rooted at the node 0. By way of example,
figure 1 shows a Czech sentence from the Prague
Dependency Treebank (Böhmová et al., 2003) with
a well-formed dependency graph according to Defi-
nitions 1 and 2.

The constraints imposed on dependency graphs in
Definition 2 are assumed in almost all versions of
dependency grammar, especially in computational
systems, and are sometimes complemented by a
fourth constraint:

4. The graph G is projective, i.e., if i → j then
i →∗ k, for every node k such that i < k < j
or j < k < i (PROJECTIVITY).

Most theoretical formulations of dependency gram-
mar regard projectivity as the norm but recognize
the need for non-projective representations to cap-
ture non-local dependencies (Mel’čuk, 1988; Hud-
son, 1990). Finding a way of incorporating a suit-
ably restricted notion of non-projectivity into prac-
tical parsing systems is therefore an important step
towards a more adequate syntactic analysis, as dis-
cussed in the introduction of this paper.

In order to distinguish classes of dependency
graphs that fall in between arbitrary non-projective
and projective, Nivre (2006) introduces a notion
of degree of non-projectivity, such that projective
graphs have degree 0 while arbitrary non-projective
graphs have unbounded degree.

Definition 3 Let G = (V,E, L) be a well-formed
dependency graph, let G(i,j) be the subgraph of G

defined by V(i,j) = {i, i+1, . . . , j−1, j}, and let
min(e) be the smallest and max(e) the largest ele-
ment of an arc e in the linear order <:

1. The degree of an arc e ∈ E is the number of
connected components (i.e., weakly connected
subgraphs) in G(min(e)+1,max(e)−1) that are not
dominated by the head of e in G(min(e),max(e)).

2. The degree of G is the maximum degree of any
arc e ∈ E.

To exemplify the notion of degree, we note that the
dependency graph in figure 1 has degree 1. The only
non-projective arc in the graph is (5, 1) and G(2,4)

contains three connected components, each consist-
ing of a single root node (2, 3, 4). Since exactly one
of these, 3, is not dominated by 5 in G(1,5), the arc
(5, 1) has degree 1.

Nivre (2006) presents an empirical study, based
on data from the Prague Dependency Treebank of
Czech (Böhmová et al., 2003) and the Danish De-
pendency Treebank (Kromann, 2003), showing that
more than 99.5% of all sentences occurring in the
two treebanks have a dependency graph with a max-
imum degree of 2; about 98% have a maximum de-
gree of 1; but only 77% in the Czech data and 85% in
the Danish data have degree 0 (which is equivalent to
assuming PROJECTIVITY). This suggests that lim-
ited degrees of non-projectivity may allow a parser
to capture a larger class of naturally occurring syn-
tactic structures, while still constraining the search
to a proper subclass of all possible structures.1

1Alternative notions of mildly non-projective dependency
structures are explored in Kuhlmann and Nivre (2006).

398



3 Parsing Algorithm

Covington (2001) describes a parsing strategy for
dependency representations that has been known
since the 1960s but not presented in the literature.
The left-to-right (or incremental) version of this
strategy can be formulated in the following way:

PARSE(x = (w1, . . . , wn))
1 for j = 1 up to n
2 for i = j − 1 down to 0
3 LINK(i, j)

LINK(i, j) is a nondeterministic operation that adds
the arc i → j (with some label), adds the arc j → i
(with some label), or does nothing at all. In this
way, the algorithm builds a graph by systematically
trying to link every pair of nodes (i, j) (i < j).
We assume that LINK(i,j) respects the ROOT and
SINGLE-HEAD constraints and that it does not in-
troduce cycles into the graph, i.e., it adds an arc
i → j only if j 6= 0, there is no k 6= i such that
k → j, and it is not the case that j →∗ i. Given
these constraints, the graph G given at termination
can always be turned into a well-formed dependency
graph by adding arcs from the root 0 to any root node
in {1, . . . , n}.

Assuming that LINK(i, j) can be performed in
some constant time c, the running time of the al-
gorithm is

∑n
i=1 c(i − 1) = c(n2

2 − n
2 ), which in

terms of asymptotic complexity is O(n2). Checking
ROOT and SINGLE-HEAD in constant time is easy,
but in order to prevent cycles we need to be able
to find, for any node k, the root of the connected
component to which k belongs in the partially built
graph. This problem can be solved efficiently us-
ing standard techniques for disjoint sets, including
path compression and union by rank, which guaran-
tee that the necessary checks can be performed in
average constant time (Cormen et al., 1990).

In the experiments reported in this paper, we mod-
ify the basic algorithm by making the performance
of LINK(i, j) conditional on the arcs (i, j) and (j, i)
being permissible under different degree constraints:

PARSE(x = (w1, . . . , wn), d)
1 for j = 1 up to n
2 for i = j − 1 down to 0
3 if PERMISSIBLE(i, j, d)
4 LINK(i, j)

The function PERMISSIBLE(i, j, d) returns true if
and only if i → j and j → i have a degree less
than or equal to d given the partially built graph G.
Setting d = 0 gives strictly projective parsing, while
d = ∞ corresponds to unrestricted non-projective
parsing. With low values of d, we will reduce the
number of calls to LINK(i, j), which will reduce
the overall parsing time provided that the time re-
quired to compute PERMISSIBLE(i, j, d) is insignif-
icant compared to the time needed for LINK(i, j).
This is typically the case in data-driven systems,
where LINK(i, j) requires a call to a trained classi-
fier, while PERMISSIBLE(i, j, d) only needs access
to the partially built graph G.2

4 History-Based Parsing

History-based parsing uses features of the parsing
history to predict the next parser action (Black et al.,
1992). In the current setup, this involves using fea-
tures of the partially built dependency graph G and
the input x = (w1, . . . , wn) to predict the outcome
of the nondeterministic LINK(i, j) operation. Given
that we use a deterministic parsing strategy, this re-
duces to a pure classification problem.

Let Φ(i, j, G) = (φ1,. . . ,φm) be a feature vec-
tor representation of the parser history at the time
of performing LINK(i, j). The task of the history-
based classifier is then to map Φ(i, j, G) to one of
the following actions:

1. Add the arc i
r→ j (for some r ∈ R).

2. Add the arc j
r→ i (for some r ∈ R).

3. Do nothing.

Training data for the classifier can be generated by
running the parser on a sample of treebank data, us-
ing the gold standard dependency graph as an ora-
cle to predict LINK(i, j) and constructing one train-
ing instance (Φ(i, j, G), a) for each performance of
LINK(i, j) with outcome a.

The features in Φ(i, j, G) = (φ1, . . . , φm) can
be arbitrary features of the input x and the partially
built graph G but will in the experiments below be
restricted to linguistic attributes of input tokens, in-
cluding their dependency types according to G.

2Checking PERMISSIBLE(i, j, d), again requires finding the
roots of connected components and can therefore be done in
average constant time.

399



Language Tok Sen T/S Lem CPoS PoS MSF Dep NPT NPS
Danish 94 5.2 18.2 no 10 24 47 52 1.0 15.6
Dutch 195 13.3 14.6 yes 13 302 81 26 5.4 36.4
German 700 39.2 17.8 no 52 52 0 46 2.3 27.8
Portuguese 207 9.1 22.8 yes 15 21 146 55 1.3 18.9
Slovene 29 1.5 18.7 yes 11 28 51 25 1.9 22.2

Table 1: Data sets; Tok = number of tokens (*1000); Sen = number of sentences (*1000); T/S = tokens
per sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained part-of-speech tags;
PoS = number of (fine-grained) part-of-speech tags; MSF = number of morphosyntactic features (split into
atoms); Dep = number of dependency types; NPT = proportion of non-projective dependencies/tokens (%);
NPS = proportion of non-projective dependency graphs/sentences (%)

The history-based classifier can be trained with
any of the available supervised methods for func-
tion approximation, but in the experiments below we
will rely on SVM, which has previously shown good
performance for this kind of task (Kudo and Mat-
sumoto, 2002; Yamada and Matsumoto, 2003).

5 Experimental Setup

The purpose of the experiments is twofold. First, we
want to investigate whether allowing non-projective
structures to be derived incrementally can improve
parsing accuracy compared to a strictly projective
baseline. Secondly, we want to examine whether
restricting the degree of non-projectivity can im-
prove efficiency compared to an unrestricted non-
projective baseline. In order to investigate both these
issues, we have trained one non-projective parser
for each language, allowing arbitrary non-projective
structures as found in the treebanks during training,
but applying different constraints during parsing:

1. Non-projective (d = ∞)
2. Max degree 2 (d = 2)
3. Max degree 1 (d = 1)

These three versions of the non-projective parser are
compared to a strictly projective parser (d = 0),
which uses the same parsing algorithm but only con-
siders projective arcs in both training and testing.3

The experiments are based on treebank data from
five languages: the Danish Dependency Treebank

3An alternative would have been to train all parsers on non-
projective data, or restrict the training data for each parser
according to its parsing restriction. Preliminary experiments
showed that the setup used here gave the best performance for
all parsers involved.

(Kromann, 2003), the Alpino Treebank of Dutch
(van der Beek et al., 2002), the TIGER Treebank of
German (Brants et al., 2002), the Floresta Sintáctica
of Portuguese (Afonso et al., 2002), and the Slovene
Dependency Treebank (Džeroski et al., 2006).4 The
data sets used are the training sets from the CoNLL-
X Shared Task on multilingual dependency parsing
(Buchholz and Marsi, 2006), with 20% of the data
reserved for testing using a pseudo-random split. Ta-
ble 1 gives an overview of the five data sets, showing
the number of tokens and sentences, the presence
of different kinds of linguistic annotation, and the
amount of non-projectivity.

The features used in the history-based model for
all languages include the following core set of 20
features, where i and j are the tokens about to be
linked and the context stack is a stack of root nodes
k in G(i+1,j−1), added from right to left (i.e., with
the top node being closest to i):

1. Word form: i, j, j+1, h(i).
2. Lemma (if available): i.
3. Part-of-speech: i−1, i, j, j+1, j+2, k, k−1.
4. Coarse part-of-speech (if available): i, j, k.
5. Morphosyntactic features (if available): i, j.
6. Dependency type: i, j, l(i), l(j), r(i).

In the specification of features, we use k and k−1 to
refer to the two topmost tokens on the context stack,
and we use h(α), l(α) and r(α) to refer to the head,

4This set does not include the Prague Dependency Treebank
of Czech (Böhmová et al., 2003), one of the most widely used
treebanks in studies of non-projective parsing. The reason is
that the sheer size of this data set makes extensive experiments
using SVM learning extremely time consuming. The work on
Czech was therefore initially postponed but is now ongoing.

400



Danish Dutch German Portuguese Slovene
Constraint AS ER AS ER AS ER AS ER AS ER
Non-projective 88.13 8.34 86.79 36.18 89.78 21.51 90.59 11.39 76.52 6.83
Max degree 2 88.08 7.95 86.15 33.09 89.74 21.20 90.58 11.30 76.48 6.67
Max degree 1 88.00 7.33 85.12 28.12 89.49 19.28 90.48 10.36 76.40 6.35
Projective 87.05 – 79.30 – 86.98 – 89.38 – 74.80 –

Table 2: Parsing accuracy; AS = attachment score; ER = error reduction w.r.t. projective baseline (%)

the leftmost dependent and the rightmost dependent
of a token α in the partially built dependency graph.5

In addition to the core set of features, the model
for each language has been augmented with a small
number of additional features, which have proven
useful in previous experiments with the same data
set. The maximum number of features used is 28
(Danish); the minimum number is 23 (German).

The history-based classifiers have been trained
using SVM learning, which combines a maximum
margin strategy with the use of kernel functions
to map the original feature space to a higher-
dimensional space. More specifically, we use LIB-
SVM (Chang and Lin, 2001) with a quadratic kernel
K(xi, xj) = (γxT

i xj +r)2. We use the built-in one-
versus-one strategy for multi-class classification and
convert symbolic features to numerical features us-
ing the standard technique of binarization.

Parsing accuracy is measured by the unlabeled at-
tachment score (AS), i.e., the proportion of words
that are assigned the correct head (not counting
punctuation). Although the parsers do derive labeled
dependency graphs, we concentrate on the graph
structure here, since this is what is concerned in the
distinction between projective and non-projective
dependency graphs. Efficiency is evaluated by re-
porting the parsing time (PT), i.e., the time required
to parse the respective test sets. Since both training
sets and test sets vary considerably in size between
languages, we are primarily interested in the rela-
tive differences for parsers applied to the same lan-
guage. Experiments have been performed on a Sun-
Blade 2000 with one 1.2GHz UltraSPARC-III pro-
cessor and 2GB of memory.

5The lack of symmetry in the feature set reflects the asym-
metry in the partially built graph G, where, e.g., only i can have
dependents to the right at decision time. This explains why there
are more features defined in terms of graph structure for i and
more features defined in terms of string context for j.

6 Results and Discussion

Table 2 shows the parsing accuracy of the non-
projective parser with different maximum degrees,
both the raw attachment scores and the amount of
error reduction with respect to the baseline parser.
Our first observation is that the non-projective parser
invariably achieves higher accuracy than the pro-
jective baseline, with differences that are statisti-
cally significant across the board (using McNemar’s
test). The amount of error reduction varies be-
tween languages and seems to depend primarily on
the frequency of non-projective structures, which is
not surprising. Thus, for Dutch and German, the
two languages with the highest proportion of non-
projective structures, the best error reduction is over
35% and over 20%, respectively. However, there
seems to be a sparse data effect in that Slovene,
which has the smallest training data set, has the
smallest error reduction despite having more non-
projective structures than Danish and Portuguese.

Our second observation is that the highest score is
always obtained with an unbounded degree of non-
projectivity during parsing. This seems to corrobo-
rate the results obtained by McDonald et al. (2005)
with a different parsing method, showing that the
use of inductive learning to guide the search dur-
ing parsing eliminates the potentially harmful ef-
fect of increasing the size of the search space. Al-
though the differences between different degrees of
non-projectivity are not statistically significant for
the current data sets,6 the remarkable consistency
across languages suggests that they are nevertheless
genuine. In either case, however, they must be con-
sidered marginal, except possibly for Dutch, which
leads to our third and final observation about accu-

6The only exception is the difference between a maximum
degree of 1 and unrestricted non-projective for Dutch, which is
significant according to McNemar’s test with α= .05.

401



Danish Dutch German Portuguese Slovene
Constraint PT TR PT TR PT TR PT TR PT TR
Non-projective 426 – 3791 – 24454 – 3708 – 204 –
Max degree 2 395 7.29 2068 45.46 17903 26.79 3004 18.99 130 36.39
Max degree 1 346 18.72 1695 55.28 13079 46.52 2446 34.04 108 47.05
Projective 211 50.53 784 79.32 7362 69.90 1389 62.55 429 79.00

Table 3: Parsing time; PT = parsing time (s); TR = time reduction w.r.t. non-projective baseline (%)

System Danish Dutch German Portuguese Slovene
CoNLL-X McDonald et al. 84.79 79.19 87.34 86.82 73.44
CoNLL-X Nivre et al. 84.77 78.59 85.82 87.60 70.30
Incremental non-projective 84.85 77.91 85.90 87.12 70.86

Table 4: Related work (labeled attachment score)

racy, namely that restricting the maximum degree of
non-projectivity to 2 or 1 has a very marginal effect
on accuracy and is always significantly better than
the projective baseline.

Turning next to efficiency, table 3 shows the pars-
ing time for the different parsers across the five lan-
guages. Our first observation here is that the pars-
ing time can be reduced by restricting the degree
of non-projectivity during parsing, thus corroborat-
ing the claim that the running time of the history-
based classifier dominates the overall parsing time.
As expected, the largest reduction is obtained with
the strictly projective parser, but here we must also
take into account that the training data set is smaller
(because of the restriction to projective potential
links), which improves the average running time of
the history-based classifier in itself. Our second ob-
servation is that the amount of reduction in parsing
time seems to be roughly related to the amount of
non-projectivity, with a reduction of about 50% at
a max degree of 1 for the languages where more
than 20% of all sentences are non-projective (Dutch,
German, Slovene) but significantly smaller for Por-
tuguese and especially for Danish. On the whole,
however, the reduction in parsing time with limited
degrees of non-projectivity is substantial, especially
considering the very marginal drop in accuracy.

In order to compare the performance to the state
of the art in dependency parsing, we have retrained
the non-projective parser on the entire training data
set for each language and evaluated it on the final
test set from the CoNLL-X shared task (Buchholz

and Marsi, 2006). Thus, table 4 shows labeled at-
tachment scores, the main evaluation metric used in
the shared task, in comparison to the two highest
scoring systems from the original evaluation (Mc-
Donald et al., 2006; Nivre et al., 2006). The incre-
mental non-projective parser has the best reported
score for Danish and outperforms at least one of the
other two systems for four languages out of five,
although most of the differences are probably too
small to be statistically significant. But whereas the
spanning tree parser of McDonald et al. (2006) and
the pseudo-projective parser of Nivre et al. (2006)
achieve this performance only with special pre- or
post-processing,7 the approach presented here de-
rives a labeled non-projective graph in a single incre-
mental process and hence at least has the advantage
of simplicity. Moreover, it has better time complex-
ity than the approximate second-order spanning tree
parsing of McDonald et al. (2006), which has expo-
nential complexity in the worst case (although this
does not appear to be a problem in practice).

7 Conclusion

In this paper, we have investigated a data-driven ap-
proach to dependency parsing that combines a deter-
ministic incremental parsing algorithm with history-
based SVM classifiers for predicting the next parser
action. We have shown that, for languages with a

7McDonald et al. (2006) use post-processing for non-
projective dependencies and for labeling. Nivre et al. (2006) use
pre-processing of training data and post-processing of parser
output to recover non-projective dependencies.

402



non-negligible proportion of non-projective struc-
tures, parsing accuracy can be improved signifi-
cantly by allowing non-projective structures to be
derived. We have also shown that the parsing time
can be reduced substantially, with only a marginal
loss in accuracy, by limiting the degree of non-
projectivity allowed during parsing. A comparison
with results from the CoNLL-X shared task shows
that the parsing accuracy is comparable to that of the
best available systems, which means that incremen-
tal non-projective dependency parsing is a viable al-
ternative to approaches based on post-processing of
projective approximations.

Acknowledgments

The research presented in this paper was partially
supported by a grant from the Swedish Research
Council. I want to thank Johan Hall and Jens Nils-
son for their contributions to MaltParser, which was
used to perform the experiments. I am also grateful
to three anonymous reviewers for finding important
errors in the preliminary version and for suggesting
several other improvements for the final version.

References
S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Floresta

sintá(c)tica”: a treebank for Portuguese. In Proc. of LREC,
1698–1703.

E. Black, F. Jelinek, J. D. Lafferty, D. M. Magerman, R. L. Mer-
cer, and S. Roukos. 1992. Towards history-based grammars:
Using richer models for probabilistic parsing. In Proc. of the
DARPA Speech and Natural Language Workshop, 31–37.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In A. Abeillé, ed.,
Treebanks: Building and Using Parsed Corpora, chapter 7.
Kluwer, Dordrecht.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. 2002.
The TIGER treebank. In Proc. of TLT.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on
multilingual dependency parsing. In Proc. of CoNLL, 149–
164.

C.-C. Chang and C.-J. Lin, 2001. LIBSVM: A Library
for Support Vector Machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Y. Cheng, M. Asahara, and Y. Matsumoto. 2004. Determinis-
tic dependency structure analyzer for Chinese. In Proc. of
IJCNLP, 500–508.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. 1990. Intro-
duction to Algorithms. MIT Press.

M. A. Covington. 2001. A fundamental algorithm for depen-
dency parsing. In Proc. of the Annual ACM Southeast Con-
ference, 95–102.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Žabokrtsky, and
A. Žele. 2006. Towards a Slovene dependency treebank. In
Proc. of LREC.

Keith Hall and Vaclav Novák. 2005. Corrective modeling for
non-projective dependency parsing. In Proc. of IWPT, 42–
52

R. A. Hudson. 1990. English Word Grammar. Blackwell.

M. T. Kromann. 2003. The Danish dependency treebank and
the underlying linguistic theory. In Proc. of TLT.

T. Kudo and Y. Matsumoto. 2002. Japanese dependency analy-
sis using cascaded chunking. In Proc. of CoNLL, 63–69.

M. Kuhlmann and J. Nivre. 2006. Mildly non-projective de-
pendency structures. In Proc. of COLING-ACL, Posters,
507–514.

R. McDonald and F-. Pereira. 2006. Online learning of approx-
imate dependency parsing algorithms. In Proc. of EACL,
81–88.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning tree al-
gorithms. In Proc. of HLT-EMNLP, 523–530.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multilingual
dependency analysis with a two-stage discriminative parser.
In Proc. of CoNLL, 216–220.

I. Mel’čuk. 1988. Dependency Syntax: Theory and Practice.
State University of New York Press.

P. Neuhaus and N. Bröker. 1997. The complexity of recog-
nition of linguistically adequate dependency grammars. In
Proc. of ACL-EACL, 337–343.

J. Nivre and J. Nilsson. 2005. Pseudo-projective dependency
parsing. In Proc. of ACL, 99–106.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based depen-
dency parsing. In Proc. of CoNLL, 49–56.

J. Nivre, J. Hall, J. Nilsson, G. Eryiğit, and S. Marinov. 2006.
Labeled pseudo-projective dependency parsing with support
vector machines. In Proc. of CoNLL, 221–225.

J. Nivre. 2006. Constraints on non-projective dependency
graphs. In Proc. of EACL, 73–80.

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord.
2002. The Alpino dependency treebank. In Computational
Linguistics in the Netherlands (CLIN).

V. N. Vapnik. 1995. The Nature of Statistical Learning Theory.
Springer.

H. Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. of IWPT,
195–206.

403


