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Abstract

This paper studies methods that automat-
ically detect action-items in e-mail, an
important category for assisting users in
identifying new tasks, tracking ongoing
ones, and searching for completed ones.
Since action-items consist of a short span
of text, classifiers that detect action-items
can be built from a document-level or a
sentence-level view. Rather than com-
mit to either view, we adapt a context-
sensitive metaclassification framework to
this problem to combine therankingspro-
duced by different algorithms as well as
different views. While this framework is
known to work well for standard classi-
fication, its suitability for fusing rankers
has not been studied. In an empirical eval-
uation, the resulting approach yields im-
proved rankings that are less sensitive to
training set variation, and furthermore, the
theoretically-motivated reliability indica-
tors we introduce enable the metaclassi-
fier to now be applicable in any problem
where the base classifiers are used.

1 Introduction

From business people to the everyday person, e-
mail plays an increasingly central role in a modern
lifestyle. With this shift, e-mail users desire im-
proved tools to help process, search, and organize
the information present in their ever-expanding in-
boxes. A system that ranks e-mails according to the

∗This work was performed primarily while the first author
was supported by Carnegie Mellon University.

From: Henry Hutchins<hhutchins@innovative.company.com>

To: Sara Smith; Joe Johnson; William Woolings

Subject: meeting with prospective customers

Hi All,

I’d like to remind all of you that the group from GRTY will

be visiting us next Friday at 4:30 p.m. The schedule is:

+ 9:30 a.m. Informal Breakfast and Discussion in Cafeteria

+ 10:30 a.m. Company Overview

+ 11:00 a.m. Individual Meetings (Continue Over Lunch)

+ 2:00 p.m. Tour of Facilities

+ 3:00 p.m. Sales Pitch

In order to have this go off smoothly, I would like to practice

the presentation well in advance.As a result, I will need each

of your parts by Wednesday.

Keep up the good work!

–Henry

Figure 1:An E-mail with Action-Item (italics added).

likelihood of containing “to-do” oraction-itemscan
alleviate a user’s time burden and is the subject of
ongoing research throughout the literature.

In particular, an e-mail user may not always pro-
cess all e-mails, but even when one does, some
emails are likely to be of greater response urgency
than others. These messages often contain action-
items. Thus, while importance and urgency are not
equal to action-item content, an effective action-item
detection system can form one prominent subcom-
ponent in a larger prioritization system.

Action-item detection differs from standard text
classification in two important ways. First, the user
is interested both in detecting whether an email
contains action-items and in locating exactly where
these action-item requests are contained within the
email body. Second, action-item detection attempts
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to recover the sender’s intent — whether she means
to elicit response or action on the part of the receiver.

In this paper, we focus on the primary problem
of presenting e-mails in aranked orderaccording to
their likelihood of containing an action-item. Since
action-items typically consist of a short text span —
a phrase, sentence, or small passage — supervised
input to a learning system can either come at the
document-levelwhere an e-mail is labeled yes/no
as to whether it contains an action-item or at the
sentence-levelwhere each span that is an action-
item is explicitly identified. Then, a corresponding
document-level classifier or aggregated predictions
from a sentence-level classifier can be used to esti-
mate the overall likelihood for the e-mail.

Rather than commit to either view, we use a com-
bination technique to capture the information each
viewpoint has to offer on the current example. The
STRIVE approach (Bennettet al., 2005) has been
shown to provide robust combinations of heteroge-
neous models for standard topic classification by
capturing areas of high and low reliability via the
use of reliability indicators.

However, usingSTRIVE in order to produce im-
proved rankings has not been previously studied.
Furthermore, while they introduce some reliabil-
ity indicators that are general for text classification
problems as well as ones specifically tied to naı̈ve
Bayes models, they do not address other classifica-
tion models. We introduce a series of reliability in-
dicators connected to areas of high/low reliability in
kNN, SVMs, and decision trees to allow the combi-
nation model to include such factors as the sparse-
ness of training example neighbors around the cur-
rent example being classified. In addition, we pro-
vide a more formal motivation for the role these vari-
ables play in the resulting metaclassification model.

Empirical evidence demonstrates that the result-
ing approach yields a context-sensitive combination
model that improves the quality of rankings gener-
ated as well as reducing the variance of the ranking
quality across training splits.

2 Problem Approach

In contrast to related combination work, we focus on
improving rankingsthrough the use of a metaclass-
ification framework. In addition, rather than sim-
ply focusing on combining models from different
classification algorithms, we also examine combin-
ing models that have differentviews, in that both the

qualitative nature of the labeled data and the applica-
tion of the learned base models differ. Furthermore,
we improve upon work on context-sensitive com-
bination by introducing reliability indicators which
model the sensitivity of a classifier’s output around
the current prediction point. Finally, we focus on the
application of these methods to action-item data —
a growing area of interest which has been demon-
strated to behave differently than more standard text
classification problems (e.g. topic) in the literature
(Bennett and Carbonell, 2005).

2.1 Action-Item Detection

There are three basic problems for action-item de-
tection. (1)Document detection: Classify an e-mail
as to whether or not it contains an action-item. (2)
Document ranking: Rank the e-mails such that all
e-mail containing action-items occur as high as pos-
sible in the ranking. (3)Sentence detection: Classify
each sentence in an e-mail as to whether or not it is
an action-item.

Here we focus on the document ranking problem.
Improving the overall ranking not only helps users
find e-mails with action-items quicker (Bennett and
Carbonell, 2005) but can decrease response times
and help ensure that key e-mails are not overlooked.

Since a typical user will eventually process all
received mail, we assume that producing a quality
ranking will more directly measure the impact on
the user than accuracy or F1. Therefore, we focus on
ROC curves and area under the curve (AUC) since
both reflect the quality of the ranking produced.

2.2 Combining Classifiers with Metaclassifiers

One of the most common approaches to classi-
fier combination is stacking (Wolpert, 1992). In
this approach, a metaclassifier observes a past his-
tory of classifier predictions to learn how to weight
the classifiers according to their demonstrated ac-
curacies and interactions. To build the history,
cross-validation over thetraining set is used to ob-
tain predictions from each base classifier. Next, a
metalevel representation of the training set is con-
structed where each example consists of the class
label and the predictions of the base classifiers. Fi-
nally, a metaclassifier is trained on the metalevel rep-
resentation to learn a model of how to combine the
base classifiers.

However, it might be useful to augment the his-
tory with information other than the predicted prob-
abilities. For example, during peer review, reviewers
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Figure 2:Architecture ofSTRIVE. In STRIVE, an additional layer of learning is added where the metaclassifier can usethe context
established by the reliability indicators and the output of the base classifiers tomake an improved decision.

typically provide both a1-5 acceptance rating and a
1-5 confidence. The first of these is related to an es-
timate of class membership,P (“accept′′ | paper),
but the second is closer to a measure of expertise or
a self-assessment of the reviewer’s reliability on an
example-by-example basis.

Automatically deriving such self-assessments for
classification algorithms is non-trivial. TheStacked
Reliability IndicatorVariableEnsemble framework,
or STRIVE, demonstrates how to extend stacking by
incorporating such self-assessments as a layer of re-
liability indicators and introduces a candidate set of
functions (Bennettet al., 2005).

The STRIVEarchitecture is depicted in Figure 2.
From left to right: (1) a bag-of-words representation
of the document is extracted and used by the base
classifiers to predict class probabilities; (2) reliabil-
ity indicator functions use the predicted probabili-
ties and the features of the document to characterize
whether this document falls within the “expertise”
of the classifiers; (3) a metalevel classifier uses the
base classifier predictions and the reliability indica-
tors to make a more reliable combined prediction.

From the perspective of improving action-item
rankings, we are interested in whether stackingor
striving can improve the quality of rankings. How-
ever, we hypothesize that striving will perform better
since it can learn a model that varies the combination
rule based on the current example and thus, better
capture when a particular classifier at the document-
level or sentence-level, bag-of-words orn-gram rep-
resentation,etc.will produce a reliable prediction.

2.3 Formally Motivating Reliability Indicators

While STRIVE has been shown to provide robust
combination for topic classification, a formal moti-
vation is lacking for the type of reliability indicators
that are the most useful in classifier combination.

Assume we restrict our choice of metaclassifier to
a linear model. One natural choice is to rank the
e-mails according to the estimated posterior proba-
bility, P̂ (class = action item | x), but in a linear
combination framework it is actually more conve-
nient to work with the estimated log-odds or logit
transform which is monotone in the posterior,λ̂ =

log P̂ (class=action item|x)

1−P̂ (class=action item|x)
(Kahn, 2004).

Now, consider applying a metaclassifier to a sin-
gle base classifier. Given only a classifier’s probabil-
ity estimates, a metaclassifier cannot improve on the
estimates if they are well-calibrated (DeGroot and
Fienberg, 1986). Thus a metaclassifier applied to
a single base classifier corresponds to recalibration
(Kahn, 2004).

Assume each of then base models gives an un-
calibrated log-odds estimatêλi. Then the com-
bination model would have the form̂λ∗(x) =

W0(x)+
∑n

i=1 Wi(x)λ̂i(x) where theWi are exam-
ple dependent weight functions that the combination
model learns. The obvious implication is that our
reliability indicators can be informed by the optimal
values for the weighting functions.

We can determine the optimal weights in a sim-
plified case with a single base classifier by assuming
we are given “true” log-odds values,λ, and a family
of distributions ∆x such that∆x = p(z | x)
encodes what is local tox by giving the probability
of drawing a pointz near tox. We use∆ instead of
∆x for notational simplicity. Since∆ encodes the
example dependent nature of the weights, we can
dropx from the weight functions. To find weights
that minimize the squared difference between the
true log-odds and the estimated log-odds in the∆
vicinity of x, we can solve a standard regression

problem, argminw0,w1
E∆

[

(

w1 λ̂ + w0 − λ
)2

]

.

Under the assumptionVAR∆

[

λ̂
]

6= 0, this yields:
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w0 = E∆[λ]− w1E∆

[

λ̂
]

(1)

w1 =
COV∆

[

λ̂, λ
]

VAR∆

[

λ̂
] =

σλ

σλ̂

ρλ,λ̂ (2)

where σ and ρ are the stdev and correlation co-
efficient under∆, respectively. The first parame-
ter is a measure of calibration that addresses the
question, “How far off on average is the estimated
log-odds from the true log-odds in the local con-
text?” The second is a measure of correlation, “How
closely does the estimated log-odds vary with the
true log-odds?” Note that the second parameter de-
pends on the local sensitivity of the base classifier,

VAR
1/2
∆

[

λ̂
]

= σλ̂. Although we do not have true

log-odds, wecan introduce local density models to
estimate the local sensitivity of the model.

In particular, we introduce a series of relia-
bility indicators by first defining a∆ distribu-

tion and either computingVAR∆

[

λ̂
]

, E∆

[

λ̂
]

or

the closely related termsVAR∆

[

λ̂(z)− λ̂(x)
]

,

E∆

[

λ̂(z)− λ̂(x)
]

. We use the resulting values for

an example as features for a linear metaclassifier.
Thus we use a context-dependent bias term but leave
the more general model for future work.

2.4 Model-Based Reliability Indicators

As discussed in Section 2.3, we wish to define local
distributions in order to compute the local sensitivity
and similar terms for the base classification models.
To do so, we define local distributions that have the
same “flavor” as the base classification model.

First, consider thekNN classifier. Since we are
concerned with how the decision function would
change as we move locally around the current pre-
diction point, it is natural to consider a set of shifts
defined by thek neighbors. In particular, letdi de-
note the document that has been shifted by a factor
βi toward theith neighbor,i.e. di = d+βi(ni−d).
We use the largestβi such that the closest neighbor
to the new point is the original document,i.e. the
boundary of the Voronoi cell (see Figure 3). Clearly,
βi will not exceed0.5, and we can find it efficiently
using a simple bisection algorithm. Now, let∆ be
a uniform point-mass distribution over the shifted
points and̂λkNN, the output score of thekNN model.
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Figure 3:Illustration of thekNN shifts produced for a predic-
tion pointx using the numbered points as its neighborhood.

Given this definition of∆, it is now straight-
forward to compute thekNN based reliabil-
ity indicators: E∆[λ̂kNN(z) − λ̂kNN(x)] and

Var
1/2
∆ [λ̂kNN(z)− λ̂kNN(x)].

Similarly, we define variables for the SVM class-
ifier by considering a document’s locality in terms
of nearby support vectors from the set of support
vectors,V. To determineβi, we define it in terms
of the closest support vector inV to d. Let ε be
half the distance to the nearest point inV, i.e. ε =
1
2 minv∈V ‖v − d‖. Thenβi = ε

‖vi−d‖ .1 Thus, the
shift vectors are all rescaled to have the same length.
Now, we must define a probability for the shift. We
use a simple exponential based onε and the rela-
tive distance from the document to the support vec-
tor defining this shift. Letdi ∼ ∆ whereP∆(di) ∝

exp(−‖vi − d‖+ 2ε) and
∑V

i=1 P∆(di) = 1.2

Given this definition of ∆, we compute the
SVM based reliability indicators:E∆[λ̂SVM(z) −

λ̂SVM(x)] andVar
1/2
∆ [λ̂SVM(z)− λ̂SVM(x)].

Space prevents us from presenting all the deriva-
tions here. However, we also define decision-tree
based variables where the locality distribution gives
high probability to documents that would land in
nearby leaves. For a multinomial naı̈ve Bayes model
(NB), we define a distribution of documents iden-
tical to the prediction document except having an
occurrence of a single feature deleted. For the
multivariate Bernoulli näıve Bayes (MBNB) model

1We assume that the minimum distance is not zero. If it is
zero, then we return zero for all of the variables.

2As is standard to handle different document lengths, we
take the distance between documents after they have been nor-
malized to the unit sphere.
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that models feature presence/absence, we use a
distribution over all documents that has one pres-
ence/absence bit flipped from the prediction docu-
ment. It is interesting to note that the variables from
the näıve Bayes models can be shown to be equiva-
lent to variables introduced by Bennettet al. (2005)
— although those were derived in a different fashion
by analyzing the weight a single feature carries with
respect to the overall prediction.

Furthermore, from this starting point, we go on to
define similar variables of possible interest. Includ-
ing the two for each model described here, we define
10 kNN variables,5 SVM variables,2 decision-tree
variables,6 NB model based variables, and6 MBNB
variables. We describe these variables as well as im-
plementation details and computational complexity
results in (Bennett, 2006).

3 Experimental Analysis

3.1 Data

Our corpus consists of e-mails obtained from vol-
unteers at an educational institution and covers
subjects such as: organizing a research work-
shop, arranging for job-candidate interviews, pub-
lishing proceedings, and talk announcements. Af-
ter eliminating duplicate e-mails, the corpus con-
tains 744 messages with a total of 6301 automat-
ically segmented sentences. A human panel la-
beled each phrase or sentence that contained an
explicit request for information or action. 416 e-
mails have no action-items and 328 e-mails con-
tain action-items. Additional information such
as annotator agreement, distribution of message
length, etc. can be found in (Bennett and Car-
bonell, 2005). An anonymized corpus is available
at http://www.cs.cmu.edu/˜pbennett/action-item-dataset.html.

3.2 Feature Representation

We use two types of feature representation: a bag-
of-words representation which uses all unigram to-
kens as the feature pool; and a bag-of-n-grams
wheren includes alln-grams wheren ≤ 4. For
both representations at both the document-level and
sentence-level, we used only the top 300 features by
the chi-squared statistic.

3.3 Document-Level Classifiers

kNN
We used as-cut variant ofkNN common in text
classification (Yang, 1999) and a tfidf-weighting

of the terms with a distance-weighted vote of the
neighbors to compute the output.k was set to be
2(dlog2 Ne + 1) whereN is the number of training
points. 3 The score used as the uncalibrated log-
odds estimate of being an action-item is:

λ̂kNN(x) =
∑

n∈kNN(x)|c(n)=action

item

cos(x,n) −
∑

n∈kNN(x)|c(n) 6=action

item

cos(x,n).

SVM
We used a linear SVM as implemented in the
SVMlight package v6.01 (Joachims, 1999) with a
tfidf feature representation and L2-norm. All de-
fault settings were used. SVM’s margin score,
∑

αiyi K(xi,xj), has been shown to empirically
behave like an uncalibrated log-odds estimate (Platt,
1999).

Decision Trees
For the decision-tree implementation, we used the
WinMine toolkit and refer to this asDnetbelow (Mi-
crosoft Corporation, 2001). Dnet builds decision
trees using a Bayesian machine learning algorithm
(Chickeringet al., 1997; Heckermanet al., 2000).
The estimated log-odds is computed from a Laplace
correction to the empirical probability at a leaf node.

Näıve Bayes
We use a multinomial naı̈ve Bayes (NB) and a mul-
tivariate Bernoulli näıve Bayes classifier (MBNB)
(McCallum and Nigam, 1998). For these classifi-
ers, we smoothed word and class probabilities us-
ing a Bayesian estimate (with the word prior) and
a Laplace m-estimate, respectively. Since these are
probabilistic, they issue log-odds estimates directly.

3.4 Sentence-Level Classifiers

Each e-mail is automatically segmented into sen-
tences using RASP (Carroll, 2002). Since the cor-
pus has fine grained labels, we can train classifiers
to classify a sentence. Each classifier in Section 3.3
is also used to learn a sentence classifier. However,
we then must make a document-level prediction.

In order to produce a ranking score, the con-
fidence that the document contains an action-item is:

λ̂(d) =

{

1
n(d)

∑

s∈d|π(s)=1 λ̂(s), ∃s∈d|π(s) = 1
1

n(d) maxs∈d λ̂(s) o.w.

3This rule is not guaranteed be optimal for a particular value
of N but is motivated by theoretical results which show such a
rule converges to the optimal classifier as the number of training
points increases (Devroyeet al., 1996).
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wheres is a sentence in documentd, π is the class-
ifier’s 1/0 prediction,̂λ is the score the classifier as-
signs as its confidence thatπ(s) = 1, andn(d) is
the greater of 1 and the number of (unigram) to-
kens in the document. In other words, when any
sentence is predicted positive, the document score
is the length normalized sum of the sentence scores
above threshold. When no sentence is predicted pos-
itive, the document score is the maximum sentence
score normalized by length. The length normaliza-
tion compensates for the fact that we are more likely
to emit a false positive the longer a document is.

3.5 Stacking

To examine the hypothesis that the reliability in-
dicators provide utility beyond the information
present in the output of the20 base classifiers
(2 representations∗2 views∗5 classifiers), we con-
struct a linear stacking model which uses only the
base classifier outputs and no reliability indicators as
a baseline. For the implementation, we use SVMlight

with default settings. The inputs to this classifier are
normalized to have zero mean and a scaled variance.

3.6 Striving

Since we are constructing base classifiers for both
the bag-of-words and bag-of-n-grams representa-
tions, this gives58 reliability indicators from com-
puting the variables in Section 2.4 for the document-
level classifiers (58 = 2 ∗ [6 + 6 + 10 + 5 + 2]).

Although the model-based indicators are defined
for each sentence prediction, to use them at the
document-level we must somehow combine the re-
liability indicators over each sentence. The simplest
method is to average each classifier-based indicator
across the sentences in the document. We do so and
thus obtain another58 reliability indicators.

Furthermore, our model might benefit from some
of the structure a sentence-level classifier offers
when combining document predictions. Analogous
to the sensitivity of each base model, we can con-
sider such indicators as the mean and standard de-
viation of the classifier confidences across the sen-
tences within a document. For each sentence-level
base classifier, these become two more indicators
which we can benefit from when combining docu-
ment predictions. This introduces20 more variables
(20 = 2 representations ∗ 2 ∗ 5 classifiers).

Finally, we include the2 basic voting statistic
reliability-indicators (PercentPredictingPositiveand
PercentAgreeWBest) that Bennettet al.(2005) found

useful for topic classification. This yields a total of
138 reliability-indicators (138 = 58 + 20 + 58 + 2).
With the20 classifier outputs, there are a total of158
input features for striving to handle.

As with stacking, we use SVMlight with default
settings and normalize the inputs to this classifier to
have zero mean and a scaled variance.

3.7 Performance Measures

We wish to improve the rankings of the e-mails in
the inbox such that action-item e-mails occur higher
in the inbox. Therefore, we use the area under the
curve (AUC) of an ROC curve as a measure of rank-
ing performance. AUC is a measure of overall model
and ranking quality that has gained wider adoption
recently and is equivalent to the Mann-Whitney-
Wilcoxon sum of ranks test (Hanley and McNeil,
1982). To put improvement in perspective, we can
write our relative reduction in residual area (RRA)
as 1−AUC

1−AUCbaseline
. We present gains relative to the

best AUC performer (bRRA), and relative to perfect
dynamic selection performance, (dRRA), which as-
sumes we could accuratelydynamicallychoose the
best classifier per cross-validation run.

The F1 measure is the harmonic mean of preci-
sion and recall and is common throughout text class-
ification (Yang and Liu, 1999). Although we are not
concerned with F1 performance here, some users of
the system might be interested in improving rank-
ing while having negligible negative effect on F1.
Therefore, we examine F1 to ensure that an improve-
ment in ranking will not come at the cost of a statis-
tically significant decrease in F1.

3.8 Experimental Methodology

To evaluate performance of the combination sys-
tems, we perform10-fold cross-validation and com-
pute the average performance. For significance tests,
we use a two-tailed t-test (Yang and Liu, 1999)
to compare the values obtained during each cross-
validation fold with ap-value of0.05.

We examine two hypotheses: Stacking will out-
perform all of the base classifiers; Striving will out-
perform all the base classifiers and stacking.

3.9 Results & Discussion

Table 1 presents the summary of results. The best
performer in each column is in bold. If a combi-
nation method statistically significantly outperforms
all base classifiers, it is underlined.
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F1 AUC bRRA dRRA

Document-Level, Bag-of-Words Representation

Dnet 0.7398 0.8423 1.41 1.78

NB 0.6905 0.7537 2.27 2.91

MBNB 0.6729 0.7745 2.00 2.49

SVM 0.6918 0.8367 1.48 1.87

kNN 0.6695 0.7669 2.17 2.74

Document-Level, Ngram Representation

Dnet 0.7412 0.8473 1.38 1.77

NB 0.7361 0.8114 1.75 2.23

MBNB 0.7534 0.8537 1.30 1.61

SVM 0.7392 0.8640 1.24 1.59

kNN 0.7021 0.8244 1.62 2.01

Sentence-Level, Bag-of-Words Representation

Dnet 0.7793 0.8885 1.00 1.27

NB 0.7731 0.8645 1.21 1.50

MBNB 0.7888 0.8699 1.14 1.42

SVM 0.6985 0.8548 1.34 1.70

kNN 0.6328 0.6823 2.98 3.88

Sentence-Level, Ngram Representation

Dnet 0.7521 0.8723 1.13 1.42

NB 0.8012 0.8723 1.15 1.46

MBNB 0.8010 0.8777 1.10 1.38

SVM 0.7842 0.8620 1.23 1.58

kNN 0.6811 0.8078 1.76 2.29

Metaclassifiers

Stacking 0.7765 0.8996 0.88 1.12

STRIVE 0.7813 0.9145 0.76 0.94

Table 1: Base classifier and combiner performance

Now, we turn to the issue of whether combination
improves the ranking of the documents. Examining
the results in Table 1, we see thatSTRIVEstatistically
significantly beats every other classifier according to
AUC. Stacking outperforms the base classifiers with
respect to AUC but not statistically significantly.

Examining F1, we see that neither combination
method outperforms the best base classifier,NB
(sent,ngram). If we examine the hypothesis of
whether this base classifier significantly outperforms
either combination method, the hypothesis is re-
jected. Thus,STRIVE improves the overall ranking
with a negligible effect on F1.

Finally, we compare the ROC curves of striving,
stacking, and two of the most competitive base class-
ifiers in Figure 4. We see that striving loses by a
slight amount to stacking early in the curve but still
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Figure 4:ROC curves (rotated).

beats the base classifiers. Later in the curve, it dom-
inates all the classifiers. If we examine the curves
using error bars, we see that the variance ofSTRIVE

drops faster than the other classifiers as we move fur-
ther along thex-axis. Thus,STRIVE’s ranking quality
varies less with changes to the training set.

4 Related Work

Several researchers have considered text classifi-
cation tasks similar to action-item detection. Co-
hen et al. (2004) describe an ontology of “speech
acts”, such as “Propose a Meeting”, and attempt
to predict when an e-mail contains one of these
speech acts. Corston-Oliveret al. (2004) con-
sider detecting items in e-mail to “Put on a To-Do
List” using a sentence-level classifier. In earlier
work (Bennett and Carbonell, 2005), we demon-
strated that sentence-level classifiers typically out-
perform document-level classifiers on this problem
and examined the underlying reasons why this was
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the case. Furthermore, we presented user studies
demonstrating that users identify action-items more
rapidly when using the system.

In terms of classifier combination, a wide variety
of work has been done in the arena. TheSTRIVE

metaclassification approach (Bennettet al., 2005)
extended Wolpert’s stacking framework (Wolpert,
1992) to use reliability indicators. In recent work,
Leeet al. (2006) derive variance estimates for naı̈ve
Bayes and tree-augmented naı̈ve Bayes and use
them in the combination model. Our work comple-
ments theirs by laying groundwork for how to com-
pute variance estimates for models such askNN that
have no obvious probabilistic component.

5 Future Work and Conclusion

While there are many interesting directions for fu-
ture work, the most interesting is to directly integrate
the sensitivity and calibration quantities derived into
the more general model discussed in Section 2.3.

In this paper, we took an existing approach to
context-dependent combination,STRIVE, that used
many ad hoc reliability indicators and derived a
formal motivation for classifier model-based local
sensitivity indicators. These new reliability indi-
cators are efficiently computable, and the resulting
combination outperformed a vast array of alterna-
tive base classifiers for ranking in an action-item de-
tection task. Furthermore, the combination results
yielded a more robust performance relative to varia-
tion in the training sets. Finally, we demonstrated
that theSTRIVE method could be successfully ap-
plied to ranking.
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