
Proceedings of NAACL HLT 2007, pages 268–275,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

Combining Reinforcement Learning with Information-State Update Rules∗

Peter A. Heeman
Center for Spoken Language Understanding

Oregon Health & Science University
Beaverton OR, 97006, USA
heeman@cslu.ogi.edu

Abstract

Reinforcement learning gives a way to
learn under what circumstances to per-
form which actions. However, this ap-
proach lacks a formal framework for spec-
ifying hand-crafted restrictions, for speci-
fying the effects of the system actions, or
for specifying the user simulation. The in-
formation state approach, in contrast, al-
lows system and user behavior to be spec-
ified as update rules, with preconditions
and effects. This approach can be used
to specify complex dialogue behavior in
a systematic way. We propose combining
these two approaches, thus allowing a for-
mal specification of the dialogue behavior,
and allowing hand-crafted preconditions,
with remaining ones determined via rein-
forcement learning so as to minimize dia-
logue cost.

1 Introduction

Two different approaches have become popular for
building spoken dialogue systems. The first is the
symbolic reasoning approach. Speech actions are
defined in a formal logic, in terms of the situations
in which they can be applied, and what effect they
will have on the speaker’s and the listener’s mental
state (Cohen and Perrault, 1979; Allen and Perrault,
1980). One of these approaches is theinformation
state(IS) approach (Larsson and Traum, 2000). The
knowledge of the agent is formalized as the state.
The IS state is updated by way ofupdate rules,
which havepreconditionsandeffects. The precondi-
tions specify what must be true of the state in order

∗The author wishes to thank Fan Yang and Michael En-
glish for helpful conversations. Funding from the National
Science Foundation under grant IIS-0326496 is gratefully ac-
knowledged.

to apply the rule. The effects specify how the state
changes as a result of applying the rule. At a mini-
mum, two sets of update rules are used: one set,un-
derstanding rules, specify the effect of an utterance
on the agent’s state and a second set,action rules,
specify which speech action can be performed next.
For example, a precondition for asking a question is
that the agent does not know the answer to the ques-
tion. An effect of an answer to a question is that the
hearer now knows the answer. One problem with
this approach is that although necessary precondi-
tions for speech actions are easy to code, there are
typically many speech actions that can be applied at
any point in a dialogue. Determining which one is
the optimal one is a daunting task for the dialogue
designer.

The second approach for building spoken dia-
logue systems is to usereinforcement learning(RL)
to automatically determine what action to perform
in each different dialogue state so as to minimize
some cost function (e.g. Walker, 2000; Levin et al.,
2000). The problem with this approach, however, is
that it lacks the framework of IS to specify the man-
ner in which the internal state is updated. Further-
more, sometimes no preconditions are even speci-
fied for the actions, even though they are obvious
to the dialogue designer. Thus RL needs to search
over a much larger search space, even over dialogue
strategies that do not make any sense. This not only
substantially slows down the learning procedure, but
also increases the chance of being caught in a locally
optimal solution, rather than the global optimal. Fur-
thermore, this large search space will limit the com-
plexity of the domains to which RL can be applied.

In this paper, we propose combining IS and RL.
IS update rules are formulated for both the system
and the simulated user, thus allowing RL to use a
rich formalism for specifying complex dialogue pro-
cessing. The preconditions on the action rules of
the system, however, only need to specify the neces-

268

sary preconditions that are obvious to the dialogue
designer. Thus, preconditions on the system’s ac-
tions might not uniquely identify a single action that
should be performed in a given state. Instead, RL
is used to determine which of the applicable actions
minimizes a dialogue cost function.

In the rest of the paper, we first present an exam-
ple domain. Section 3 gives an overview of apply-
ing RL to dialogue strategy and Section 4 gives an
overview of IS. Section 5 demonstrates that IS can
be used for simulating a dialogue between the sys-
tem and a user. Section 6 demonstrates how IS can
be used with RL. Section 7 gives results on using
hand-crafted preconditions specified in the IS update
rules to simplify learning dialogue strategies with
RL. Section 8 gives concluding comments.

2 Flight Information Application

To illustrate our proposed approach, we use the
flight information domain, similar to that of Levin
et al. (2000). The goal of the system is to display
a short list of flights that meets the user’s require-
ments. The user is assumed to have a flight in mind,
in terms of its destination, origin, airline, departure
time, and number of stops. The user might be flexi-
ble on some of the parameters. It is assumed that the
user will not change his or her mind depending on
what flights are found.

In this paper, we are focusing on dialogue man-
agement issues, and so we use a semantic represen-
tation for both the input and output of the system.
The system can ask the user the value of parame-
ter p with ‘askconstraintp’, and the user will an-
swer with ‘constrainp v’, wherev is the user’s pre-

system askconstraint from
user constrain from miami
system askconstraint to
user constrain to sacramento
system askconstraint departure
user constrain departure 6pm
system dbquery miami sacremento - 6pm
system askconstraint airline
user constrain airline united
system dbquery miami sacremento united ...
system askrelax departure
user relax departure yes
system dbquery miami sacremento united ...
system output {918 11671 13288}
system finish

Figure 1: Sample dialogue

ferred value of the parameter.1 The system can ask
whether the user is flexible on the values for parame-
terp with ‘askrelaxp’, and the user will answer with
‘relax p a’, wherea is either ‘yes’ or ‘no’. The sys-
tem can do a database query, ‘dbquery’, to determine
whether any flights match the current parameters. If
no flights exactly match, ‘dbquery’ will check if any
flights match according to the relaxed restrictions,
by ignoring parameters that the system knows the
user is flexible on. The system can display the found
flights with ‘output’. It can also quit at any time. A
sample dialogue is given in Fig. 1.

3 Reinforcement Learning (RL)

Given a set of system actions, a set of states, and a
cost function that measures the quality of a dialogue,
RL searches for an optimal dialogue policy (Sutton
and Barto, 1998; Levin et al., 2000).

Cost Function: The cost function assesses how
good a dialogue is: the lower the cost, the better the
dialogue. RL uses the cost function to provide feed-
back in its search for an optimal strategy. The cost
function is specified by the dialogue designer, and
can take into account any number of factors, typi-
cally including dialogue length and solution quality.

System Actions: RL takes as input a finite number
of actions, and for each state, learns which action is
best to perform. The dialogue designer decides what
the actions will be, both in terms of how much to
combine into a single action, and how specific each
action should be.

State Variables: RL learns what system action to
perform in each state. The RL states are defined in
terms of a set of state variables: different values for
the variables define the different states that can exist.
The state variables need to include all information
that the dialogue designer thinks will be relevant in
determining what action to perform next. Any infor-
mation that is thought to be irrelevant is excluded in
order to keep the search space small.

Transitions: RL treats a dialogue as a succession
of states, with actions causing a transition from one
state to the next. The transition thus encompasses
the effect of the system making the speech act,

1In contrast to Levin, over-answering by the user is not al-
lowed. The system also does not have a general greeting, to
which the user can answer with any of the flight parameters.

269

the user’s response to the system’s speech act, and
the system’s understanding of the user’s response.
Hence, the transition incorporates auser simulation.
In applying RL to dialogue policies, the transition
from a state-action pair to the next state is usually
modeled as a probability distribution, and is not fur-
ther decomposed (e.g. Levin et al., 2000).
Policy Exploration: RL searches the space of po-
lices by determiningQ for each state-action pairs-
a, which is the minimal cost to get to the final state
from states starting with actiona. From theQ val-
ues, a policy can be determined: for each states,
choose the actiona that has the maximumQ value.

Q is determined in an iterative fashion. The cur-
rent estimates forQ for each state-action are used to
determine the current dialogue policy. The policy,
in conjunction with the transition probabilities, are
used to produce a dialogue run, which is a sequence
of state-action pairs, each pair having an associated
cost to get to the next state-action pair. Thus, for a
dialogue run, the cost from each state-action pair to
the final state can be determined. These costs are
used to revise theQ estimates.

To produce a dialogue run, theǫ-greedy method
is often used. In this approach, with probabilityǫ,
an action other than the action specified by the cur-
rent policy is chosen. This helps ensure that new
estimates are obtained for all state-action pairs, not
just ones in the current policy. Typically, a number
of dialogue runs, anepoch, are made before theQ
values and dialogue policy are updated. With each
successive epoch, a better dialogue policy is used,
and thus theQ estimates will approach their true val-
ues, which in turn, ensures that the dialogue policy
is approaching the optimal one.

3.1 Flight Information Task in RL

To illustrate how RL learns a dialogue policy, we use
the flight information task from Section 2.
Actions: The system actions were given in Section
2. The queries for the destination, origin, airline, de-
parture time, number of stops are each viewed as dif-
ferent actions so that RL can reason about the indi-
vidual parameters. There are also 5 separate queries
for checking whether each parameter can be relaxed.
There is also a database query to determine which
flights match the current parameters. This is in-
cluded as an RL action, even though it is not to the

user, so that RL can decide when it should be per-
formed. There is also an output and a finish action.
State Variables: We use the following variables
for the RL state. The variable ‘fromP’ indicates
whether the origin has been given by the user and
the variable ‘fromR’ indicates whether the user has
been asked if the origin can be relaxed, and if so,
what the answer is. Similar variables are used for the
other parameters. The variable ‘dbqueried’ indicates
whether the database has been queried. The variable
‘current’ indicates whether no new parameters have
been given or relaxed since the last database query.
The variable ‘NData’ indicates the number of items
that were last returned from the database quantized
into 5 groups: none, 1-5, 6-12, 13-30, more than 30).
The variable ‘outputP’ indicates whether any flights
have been given to the user. Note that the actual val-
ues of the parameters are not included in the state.
This helps limit the size of the search space, but pre-
cludes the values of the parameters from being used
in deciding what action to perform next.
Cost Function: Our cost function is the sum of
four components. Each speech action has a cost of
1. A database query has a cost of 2 plus 0.01 for each
flight found. Displaying flights to the user costs 0 for
5 or fewer flights, 8 for 12 or fewer flights, 16 for 30
or fewer flights, and 25 for 30 or more flights. The
last cost is the solution cost. This cost takes into ac-
count whether the user’s preferred flight is even in
the database, and if so, whether it was shown to the
user. The solution cost is zero if appropriate infor-
mation is given to the user, and 90 points otherwise.

3.2 Related Work in RL

In the work of Levin, Pieraccini, and Eckert (2000),
RL was used to choose between all actions. Actions
that resulted in infelicitous speech act sequences
were allowed, such as asking the value of a parame-
ter that is already known, asking if a parameter can
be relaxed when the value of the parameter is not
even known, or displaying values when a database
query has not yet been performed.

In other work, RL has been used to choose among
a subset of the actions in certain states (Walker,
2000; Singh et al., 2002; Scheffler and Young, 2002;
English and Heeman, 2005). However, no for-
mal framework is given to specify which actions to
choose from.

270

Furthermore, none of the approaches used a for-
mal specification for updating the RL variables after
a speech action, nor for expressing the user simula-
tion. As RL is applied to more complex tasks, with
more complex speech actions, this will lead to diffi-
culty in encoding the correct behavior.

Georgila, Henderson, and Lemon (2005) advo-
cated the use of IS to specify the dialogue context
for learning user simulations needed in RL. How-
ever, they did not combine hand-crafted with learned
preconditions, and it is unclear whether they used IS
to update the dialogue context,

4 Information State (IS)

IS has been concerned with capturing how to up-
date the state of a dialogue system in order to build
advanced dialogue systems (Larsson and Traum,
2000). For example, it has been used to build sys-
tems that allow for both system and user initiative,
over answering, confirmations, and grounding (e.g.
(Bohlin et al., 1999; Matheson et al., 2000)). It uses
a set of state variables, whose values are manipu-
lated by update rules, run by a control strategy.

State Variables: The state variables specify the
knowledge of the system at any point in the dia-
logue. This is similar to the RL variables, except that
they must contain everything that is needed to com-
pletely specify the action that the system should per-
form, rather than just enough information to choose
between competing actions. A number of stan-
dard variables are typically used to interface to other
modules in the system. The variable ‘lastMove’ has
the semantic representation of what was last said, ei-
ther by the user or the system and ‘lastSpeaker’ in-
dicates who spoke the last utterance. Both are read-
only. The variable ‘nextMove’ is set by the action
rules to the semantic representation of the next move
and ‘keepTurn’ is set to indicate whether the current
speaker will keep the turn to make another utterance.

Update Rules: Update rules have preconditions
and effects. The preconditions specify what must
be true of the state in order to apply the rule. The ef-
fects specify how the state should be updated. In this
paper, we will use two types of rules. Understand-
ing rules will be used to update the state to take into
account what was just said, by both the user and the
system. Action rules determine what the system will

say next and whether it will keep the turn.
Control Strategy: The control strategy specifies
how the update rules should be processed. In our ex-
ample, the control strategy specifies that the under-
standing rules are processed first, and then the action
rules if the system has the turn. The control strategy
also specifies which rules should be applied: (a) just
the first applicable rule, (b) all applicable rules, or
(c) randomly choose one of the applicable rules.

Although there is a toolkit available for building
IS systems (Larsson and Traum, 2000), we built a
simple version in Tcl. Update rules are written using
Tcl code, which allows for simple interpretation of
the rules. The state is saved as Tcl variables, and
thus allows strings, numbers, booleans, and lists.

4.1 Flight Information Example in IS

We now express the flight information system with
the IS approach. This allows for a precise formaliza-
tion of the actions, both the conditions under which
they should be performed and their effects.

The IS state variables are similar to the RL ones
given in Section 3. Instead of the variable ‘fromP’,
it includes the variable ‘from’, which has the actual
value of the parameter if known, and ‘’ otherwise.
The same is true for the destination, airline, depar-
ture time, and number of stops. Instead of the RL
variable ‘NData’ and ‘outputP, ‘results’ holds the
actual database and ‘output’ holds the actual flights
displayed to the user.

Figure 2 displays the system’s understanding
rules, which are used to update the state variables
after an utterance is said. Although it is common
practice in IS to use understanding rules even for
one’s own utterances, the example application is
simple enough to do without this. Understanding
rules are thus only used for understanding the user’s
utterances: giving a parameter value or specifying
whether a parameter can be relaxed. As can be seen,
any time the user specifies a new parameter or re-
laxes a parameter, ‘current’ is set to false.

Figure 3 gives the action rules for the system.
Rules for querying the destination, departure, and
number of stops are not shown; neither are the rules
for querying whether the destination, origin, airline,
and number of stops can be relaxed. The effects of
the rules show how the state is updated if the rule
is applied. For most of the rules, this is simply to

271

set ‘nextMove’ and ‘keepTurn’ appropriately. The
‘dbquery’ action is more complicated: it runs the
database query and updates ‘results’. It then updates
the variables ‘queriedDB’, and ‘current’ appropri-
ately. Note that the actions ‘dbquery’ and ‘output’
specify that the system wants to keep the turn.

The preconditions of the update rules specify the
exact conditions under which the rule can be ap-
plied. The preconditions on the understanding rules
are straightforward, and simply check the user’s re-
sponse. The preconditions on the action rules are
more complex. We divide the preconditions into the
4 groups given below, both to simplify the discus-
sion of the preconditions, and because we use these
groupings in Section 7.

Speech Acts: Some of the preconditions cap-
ture the conditions under which the action can be
performed felicitously (Cohen and Perrault, 1979;
Allen and Perrault, 1980). Only ask the value of
a parameter if you do not know its value. Only ask
if a parameter can be relaxed if you know the value
of the parameter. Only output the data if it is still
current and more than one flight was found. These
preconditions are labeled as ‘sa’ in Fig. 3.

Application Restrictions: These preconditions
enforce the specification of the application. For
our application, the system should only output data
once: once data is output, the system should end
the conversation. These preconditions are labeled
as ‘app’ in Fig. 3.

Partial Strategy: These preconditions add addi-
tion constraints that seem reasonable: ask the ‘to’,
‘from’, and ‘departure’ parameters first; never relax
the ‘to’ and ‘from’; and only ask whether ‘airline’
and ‘stops’ can be relaxed if the database has been

Understand Answer to Constrain Question
Pre: [lindex $lastMove 0] == “constrain”
Eff: set [lindex LastMove 1] [lindex LastMove 2]

set current 0
Understand Yes Answer to Relax
Pre: [lindex lastMove 0] == “relax”

[lindex lastMove 2] == “yes”
Eff: set [lindex lastMove 1]R yes

set current 0
Understand No Answer to Relax
Pre: [lindex lastMove 0] == “relax”

[lindex lastMove 2] == “no”
Eff: set [lindex lastMove 1]R no

Figure 2: Understanding Rules for System

queried. Furthermore, the system may only output
data if (a) the number of flights is between 1 and
5, or (b) the number of flights is greater than 5 and
‘airline’ and ‘stops’ have both been asked. These
preconditions are labeled as ‘ps’ in Fig. 3.

Baseline: The last group of preconditions (to-
gether with the previous preconditions) uniquely
identify a single action to perform in each state, and

Ask Origin of Flight
Pre: $from == ‘’ sa

$output == ‘’ app
Eff: set nextMove “askconstraint from”

set keepTurn false
Ask Airline of Flight
Pre: $airline == ‘’ sa

$output == ‘’ app
$departure != ‘’ ps
$queriedDB == true base
$current == true base
[llength $results]> 5 base

Eff: set nextMove “askconstraint to”
set keepTurn false

Ask Whether Departure Time can be Relaxed
Pre: $departure != ‘’ sa

$departureR == ‘’ sa
$output != ‘’ app
$queriedDB == true base
$current == true base
$results =={} base

Eff: set nextMove ‘askrelax from’
set keepTurn false

Query the Database
Pre: $current == false sa

$output == ‘’ app
$departure != ‘’ ps

Eff: set results [DBQuery $from $to $airline ...]
set queriedDB true
set current true
set nextMove dbquery
set keepTurn true

Output Results to User
Pre: $current == true sa

$results !={} sa
$output == ‘’ app
[llength $results]< 6 || ([llength $results]> 5 ps

&& $airline != “” && $stops != “”)
Eff: set nextMove “output $results”

set output $results
Finish
Pre: $output != ‘” app
Eff: set nextMove finish
Quit
Pre: $output == ‘’ app

$current == true app
$results =={} app
$airline != ‘’ || $airlineR != ‘’ base
$stops != ‘’ || $stopsR != ‘’ base

Eff: set nextMove finish

Figure 3: Action Rules for System

272

thus completely specifies a strategy. These are la-
beled as ‘base’ in Fig. 3. The strategy that we give
is based on the optimal strategy found by Levin et
al. (2000). After the system asks the values for the
‘from’, ‘to’, and ‘departure’ variables, it then per-
forms a database query. If there are between 1 and 5
flights found, they are displayed to the user. If there
are more than 5, the system asks the value of ‘air-
line’ if unknown, otherwise, ‘number of stops’. If
there are 0 items, it tries to relax one of ‘departure’,
‘airline’, and ‘stops’, in that order (but not ‘from’
or ‘to’). Any time new information is gained, such
as a parameter value or a parameter is relaxed, the
database is requeried, and the process repeats.

5 Implementing the Simulated User

Normally, with IS, the system is run against an ac-
tual user, and so no state variables nor update rules
are coded for the user. To allow the combination of
IS with RL, we need to produce dialogues between
the system and a simulated user. As the IS approach
is very general, we will use it for implementing the
simulated user as well. In this way, we can code the
user simulation with a well-defined formalism, thus
allowing complex user behaviors. Hence, two sepa-
rate IS instantiations will be used: one for the system
and one for the user. The system’s rules will update
the system’s state variables, and the user’s rules will
update the user’s state variables; but the two instan-
tiations will be in lock-step with each other.

We built a simulator that runs the system’s rules
against the user’s. The simulator (a) runs the under-
standing rules for the system and the user on the last
utterance; then (b) checks who has the turn, and runs
that agent’s action rules; and then (c) updates ‘lastS-
peaker’ and ‘lastMove’. It repeats these three steps
until the ‘finish’ speech act is seen.

5.1 Flight Information Task

The user has the variables ‘from’, ‘to’, ‘departure’,
‘airline’, and ‘stops’, which hold the user’s ideal
flight, and are set before the dialogue begins. The
variables ‘fromR’, ‘toR’, ‘departureR’, ‘airlineR’,
and ‘stopsR’ are also used, and are also set before
the dialogue begins. No other variables are used.

For the flight application, separate update rules
are used for the user. There are two types of queries

Answer Constrain Question
Pre: [lindex $lastMove 0] == “askconstraint”
Eff: set nextMove “constraint [lindex $lastmove 1]

[set [lindex $lastmove 1]]”
set haveTurn 0

Answer Relax Question
Pre: [lindex $lastMove 0] == “askrelax”
Eff: set nextMove “relax [lindex $lastmove 1]

[set [lindex $lastMove 1]R]”
set haveTurn 0

Figure 4: Action Rules for User

to which the user needs to react, namely, ‘askcon-
traint’ and ‘askrelax’. This domain is simple enough
that we do not need separate understanding and ac-
tion rules, and so we encompass all reasoning in the
action rules, shown in Fig. 4. The first rule is for
answering system queries about the value of a pa-
rameter. The second is for answering queries about
whether a parameter can be relaxed.

6 Combining IS and RL

RL gives a way to learn the best action to perform in
any given state. However, RL lacks a formal frame-
work for specifying (a) the effects of the system’s
actions, (b) hand-crafted preconditions of the sys-
tem’s actions, and (c) the simulated user. Hence, we
combine RL and IS to rectify these deficits. IS up-
date rules are formulated for both the system and the
simulated user, as done in Section 5.1. The precon-
ditions on the system’s action rules, however, only
need to specify a subset of the preconditions, ones
that are obvious the dialogue designer. The rest of
the preconditions will be determined by RL, so as to
minimize a cost function. To combine these two ap-
proaches, we need to (a) resolve how the IS and RL
state transitions relate to each other; (b) resolve how
the IS state relates to the RL state; and (c) specify
how utterance costs can be specified in the general
framework of IS.

Transitions: When using IS for both the system
and user simulation, the state transitions for each
are happening in lock-step (Section 5.1). In com-
bining RL and IS, the RL transitions happen at a
courser granularity than the IS transitions, and group
together everything that happens between two suc-
cessive system actions. Thus, the RL states are those
IS states just before a system action.

273

State Variables: For the system, we add all of the
RL variables to the IS variables, and remove any du-
plicates. The RL variables are thus a subset of the IS
variables. Some of the variables might be simplifica-
tions of other variables. For our flight example, we
have the exact values of the origin, destination, air-
line, departure time, and number of stops, as well as
a simplification of each that only indicates whether
the parameter has been given or not.

Rather than have the system’s IS rules update
all of the variables, we allow variables to be de-
clared as eitherprimitiveor derived.2 Only primitive
variables are updated by the effects of the update
rules. The derived variables are re-computed from
the primitive ones each time an update rule is ap-
plied. For our flight example, the variables ‘fromP’,
‘toP’, ‘airlineP’, ‘departureP’, ‘stopsP’, ‘outputP’,
and ‘NData’ are derived variables, and these are up-
dated via a procedure.

As the RL variables are a subset of the IS vari-
ables, the RL states are coarser than the IS states.
We do not allow hand-crafted preconditions in the
system’s action rules to distinguish at the finer gran-
ularity. If they did, we would have an action that is
only applicable in part of an RL state, and not the
rest of it. However, RL needs to find a single action
that will work for the entire RL state, and so that
action should not be considered. To prevent such
problems, the hand-crafted preconditions can only
test the values of the RL variables, and not the full
set of IS variables. Hence, we rewrote the precon-
ditions in the action rules of Fig. 3 to use the RL
variables. This restriction does not apply to the sys-
tem’s understanding rules, nor to the user rules, as
those are not subject to RL.

Cost Function: RL needs to track the costs in-
curred in the dialogue. Rather than leaving this to
be specified in an ad-hoc way, we include state vari-
ables to track the components of the cost. This way,
each update rule can set them to reflect the cost of
the rule. Just as with other interface variables (e.g.
‘keepTurn’), these are write-only. For our flight ex-
ample, the output action computes the cost of dis-
playing flights to the user, and the database query ac-
tion computes the cost of doing the database lookup.

2This same distinction is sometimes used in the planning
literature (Poole et al., 1998).

7 Evaluation

To show the usefulness of starting RL with some of
the preconditions hand-crafted, we applied RL using
four different sets of action schemes. The first set,
‘none’, includes no preconditions on any of the sys-
tem’s actions. The second through fourth sets cor-
respond to the precondition distinctions in Fig. 3, of
‘speech act’, ‘application’ and ‘partial strategy’.

For each set of action schemas, we trained 30 di-
alogue policies using an epoch size of 100. Each di-
alogue was run with theǫ-greedy method, withǫ set
at 0.15. After certain epochs, we ran the learned pol-
icy 2500 times strictly according to the policy. We
found that policies did not always converge. Hence,
we trained the policies for each set of preconditions
for enough epochs so that the average cost no longer
improved. More work is needed to investigate this
issue.

The results of the simulations are given in Table
1. The first row reports the average dialogue cost
that the 30 learned policies achieved. We see that all
four conditions achieved an average cost less than
the baseline strategy of Fig. 3, which was 17.17. The
best result was achieved by the ‘application’ precon-
ditions. This is probably because ‘partial’ included
some constraints that were not optimal, while the
search strategy was not adequate to deal with the
large search space in ‘speech acts’ and ‘none’.

The more important result is in the second row
of Table 1. The more constrained precondition sets
result in significantly fewer states being explored,
ranging from 275 for the ‘partial’ preconditions, up
to 18,206 for no preconditions. In terms of number
of potential policies explored (computed as the prod-
uct of the number of actions explored in each state),
this ranges from1058 to 107931. As can be seen, by
placing restrictions on the system actions, the space
that needs to be explored is substantially reduced.

The restriction in the size of the search space af-
fects how quickly RL takes to find a good solution.
Figure 5 shows how the average cost for each set of

None SA App. Partial
Dialogue Cost 16.65 16.95 15.24 15.68
States Explored 18206 5261 4080 275
Policies (log10) 7931 2008 1380 58.7

Table 1: Comparison of Preconditions

274

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 10 100 1000 10000

None
Speech Acts

Application
Partial

Figure 5: Average dialogue cost versus epochs

preconditions improved with the number of epochs.
As can be seen, by including more preconditions
in the action definitions, RL is able to find a good
solution more quickly. For the ‘partial’ precondi-
tions, after 10 epochs, RL achieves a cost less than
17.0. For the ‘application’ setting, this does not hap-
pen until 40 epochs. For ‘speech act’, it takes 1000
epochs, and for ‘none’, it takes 3700 epochs. So,
adding hand-crafted preconditions allows RL to con-
verge more quickly.

8 Conclusion

In this paper, we demonstrated how RL and IS can
be combined. From the RL standpoint, this allows
the rich formalism of IS update rules to be used for
formalizing the effects of the system’s speech ac-
tions, and for formalizing the user simulation, thus
enabling RL to be applied to domains that require
complex dialogue processing. Second, use of IS al-
lows obvious preconditions to be easily formulated,
thus allowing RL to search a much smaller space of
policies, which enables it to converge more quickly
to the optimal policy. This should also enable RL to
be applied to complex domains with large numbers
of states and actions.

From the standpoint of IS, use of RL means that
not all preconditions need be hand-crafted. Pre-
conditions that capture how one action might be
more beneficial than another can be difficult to deter-
mine for dialogue designers. For example, knowing
whether to first ask the number of stops or the air-
line, depends on the characteristics of the flights in
the database, and on users’ relative flexibility with
these two parameters. The same problems occur
for knowing under which situations to requery the

database or ask for another parameter. RL solves
this issue as it can explore the space of different poli-
cies to arrive at one that minimizes a dialogue cost
function.

References
J. Allen and C. Perrault. 1980. Analyzing intention in

utterances.Artificial Intelligence, 15:143–178.

P. Bohlin, R. Cooper, E. Engdahl, and S. Larsson. 1999.
Information states and dialogue move engines. InPro-
ceedings of the IJCAI Workshop: Knowledge and Rea-
soning in Practical Dialogue Systems, pg. 25–31.

P. Cohen and C. Perrault. 1979. Elements of a plan-based
theory of speech acts.Cognitive Science, 3(3):177–
212.

M. English and P. Heeman. 2005. Learning mixed ini-
tiative dialog strategies by using reinforcement learn-
ing on both conversants. InHLT and EMNLP, pages
1011–1018, Vancouver Canada, October.

K. Georgila, J. Henderson, and O. Lemon. 2005. Learn-
ing user simulations for information state update dia-
logue systems. InEurospeech, Lisbon Portugal.

S. Larsson and D. Traum. 2000. Information state and di-
alogue management in the TRINDI dialogue move en-
gine toolkit. Natural Language Engineering, 6:323–
340.

E. Levin, R. Pieraccini, and W. Eckert. 2000. A stochas-
tic model of human-machine interaction for learning
dialog strategies.IEEE Transactions on Speech and
Audio Processing, 8(1):11–23.

C. Matheson, M. Poesio, and D. Traum. 2000. Mod-
elling grounding and discourse obligations using up-
date rules. InNAACL, Seattle, May.

D. Poole, A. Mackworth, and R. Goebel. 1998.Com-
putational Intelligence: a logical approach. Oxford
University Press.

K. Scheffler and S. J. Young. 2002. Automatic learning
of dialogue strategy using dialogue simulation and re-
inforcement learning. InHLT, pg. 12–18, San Diego.

S. Singh, D. Litman, M. Kearns, and M. Walker. 2002.
Optimizing dialogue managment with reinforcement
learning: Experiments with the NJfun system.Jour-
nal of Artificial Intelligence Research, 16:105–133.

R. Sutton and A. Barto. 1998.Reinforcement Learning.
MIT Press, Cambridge MA.

M. Walker. 2000. An application of reinforcement learn-
ing to dialog strategy selection in a spoken dialogue
system for email.Journal of Artificial Intelligence Re-
search, 12:387–416.

275

