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Abstract
We propose a new framework for supervised ma-
chine learning. Our goal is to learn from smaller
amounts of supervised training data, by collecting a
richer kind of training data: annotations with “ra-
tionales.” When annotating an example, the hu-
man teacher will also highlight evidence support-
ing this annotation—thereby teaching the machine
learner why the example belongs to the category. We
provide some rationale-annotated data and present a
learning method that exploits the rationales during
training to boost performance significantly on a sam-
ple task, namely sentiment classification of movie
reviews. We hypothesize that in some situations,
providing rationales is a more fruitful use of an an-
notator’s time than annotating more examples.

1 Introduction

Annotation cost is a bottleneck for many natural lan-
guage processing applications. While supervised
machine learning systems are effective, it is labor-
intensive and expensive to construct the many train-
ing examples needed. Previous research has ex-
plored active or semi-supervised learning as possible
ways to lessen this burden.

We propose a new way of breaking this annotation
bottleneck. Annotators currently indicate what the
correct answers are on training data. We propose
that they should also indicate why, at least by coarse
hints. We suggest new machine learning approaches
that can benefit from this “why” information.

For example, an annotator who is categorizing
phrases or documents might also be asked to high-
light a few substrings that significantly influenced
her judgment. We call such clues “rationales.” They
need not correspond to machine learning features.

∗This work was supported by the JHU WSE/APL Partner-
ship Fund; National Science Foundation grant No. 0347822 to
the second author; and an APL Hafstad Fellowship to the third.

In some circumstances, rationales should not be
too expensive or time-consuming to collect. As long
as the annotator is spending the time to study exam-
ple xi and classify it, it may not require much extra
effort for her to mark reasons for her classification.

2 Using Rationales to Aid Learning

We will not rely exclusively on the rationales, but
use them only as an added source of information.
The idea is to help direct the learning algorithm’s
attention—helping it tease apart signal from noise.

Machine learning algorithms face a well-known
“credit assignment” problem. Given a complex da-
tum xi and the desired response yi, many features of
xi could be responsible for the choice of yi. The
learning algorithm must tease out which features
were actually responsible. This requires a lot of
training data, and often a lot of computation as well.

Our rationales offer a shortcut to solving this
“credit assignment” problem, by providing the
learning algorithm with hints as to which features
of xi were relevant. Rationales should help guide
the learning algorithm toward the correct classifica-
tion function, by pushing it toward a function that
correctly pays attention to each example’s relevant
features. This should help the algorithm learn from
less data and avoid getting trapped in local maxima.1

In this paper, we demonstrate the “annotator ra-
tionales” technique on a text categorization problem
previously studied by others.

1To understand the local maximum issue, consider the hard
problem of training a standard 3-layer feed-forward neural net-
work. If the activations of the “hidden” layer’s features (nodes)
were observed at training time, then the network would de-
compose into a pair of independent 2-layer perceptrons. This
turns an NP-hard problem with local maxima (Blum and Rivest,
1992) to a polytime-solvable convex problem. Although ratio-
nales might only provide indirect evidence of the hidden layer,
this would still modify the objective function (see section 8) in
a way that tended to make the correct weights easier to discover.

260



3 Discriminative Approach

One popular approach for text categorization is to
use a discriminative model such as a Support Vec-
tor Machine (SVM) (e.g. (Joachims, 1998; Dumais,
1998)). We propose that SVM training can in gen-
eral incorporate annotator rationales as follows.

From the rationale annotations on a positive ex-
ample −→xi , we will construct one or more “not-quite-
as-positive” contrast examples −→vij . In our text cat-
egorization experiments below, each contrast docu-
ment −→vij was obtained by starting with the original
and “masking out” one or all of the several rationale
substrings that the annotator had highlighted (rij).
The intuition is that the correct model should be less
sure of a positive classification on the contrast exam-
ple −→vij than on the original example ~xi, because −→vij

lacks evidence that the annotator found significant.
We can translate this intuition into additional con-

straints on the correct model, i.e., on the weight vec-
tor ~w. In addition to the usual SVM constraint on
positive examples that ~w · −→xi ≥ 1, we also want (for
each j) that ~w · ~xi − ~w · −→vij ≥ µ, where µ ≥ 0 con-
trols the size of the desired margin between original
and contrast examples.

An ordinary soft-margin SVM chooses ~w and ~ξ to
minimize

1
2
‖~w‖2 + C(

∑
i

ξi) (1)

subject to the constraints

(∀i) ~w · −→xi · yi ≥ 1− ξi (2)

(∀i) ξi ≥ 0 (3)

where −→xi is a training example, yi ∈ {−1,+1} is
its desired classification, and ξi is a slack variable
that allows training example −→xi to miss satisfying
the margin constraint if necessary. The parameter
C > 0 controls the cost of taking such slack, and
should generally be lower for noisier or less linearly
separable datasets. We add the contrast constraints

(∀i, j) ~w · (−→xi −−→vij) · yi ≥ µ(1− ξij), (4)

where −→vij is one of the contrast examples con-
structed from example −→xi , and ξij ≥ 0 is an asso-
ciated slack variable. Just as these extra constraints
have their own margin µ, their slack variables have

their own cost, so the objective function (1) becomes

1
2
‖~w‖2 + C(

∑
i

ξi) + Ccontrast(
∑
i,j

ξij) (5)

The parameter Ccontrast ≥ 0 determines the impor-
tance of satisfying the contrast constraints. It should
generally be less than C if the contrasts are noisier
than the training examples.2

In practice, it is possible to solve this optimization
using a standard soft-margin SVM learner. Dividing
equation (4) through by µ, it becomes

(∀i, j) ~w · −→xij · yi ≥ 1− ξij , (6)

where −→xij
def=

−→xi−−→vij

µ . Since equation (6) takes
the same form as equation (2), we simply add the
pairs (−→xij , yi) to the training set as pseudoexam-
ples, weighted by Ccontrast rather than C so that the
learner will use the objective function (5).

There is one subtlety. To allow a biased hyper-
plane, we use the usual trick of prepending a 1 el-
ement to each training example. Thus we require
~w · (1,−→xi) ≥ 1 − ξi (which makes w0 play the
role of a bias term). This means, however, that we
must prepend a 0 element to each pseudoexample:
~w · (1,~xi)−(1,−→vij)

µ = ~w · (0,−→xij) ≥ 1− ξij .
In our experiments, we optimize µ, C, and

Ccontrast on held-out data (see section 5.2).

4 Rationale Annotation for Movie Reviews

In order to demonstrate that annotator rationales
help machine learning, we needed annotated data
that included rationales for the annotations.

We chose a dataset that would be enjoyable to re-
annotate: the movie review dataset of (Pang et al.,
2002; Pang and Lee, 2004).3 The dataset consists
of 1000 positive and 1000 negative movie reviews
obtained from the Internet Movie Database (IMDb)
review archive, all written before 2002 by a total of
312 authors, with a cap of 20 reviews per author per

2Taking Ccontrast to be constant means that all rationales
are equally valuable. One might instead choose, for example,
to reduce Ccontrast for examples xi that have many rationales,
to prevent xi’s contrast examples vij from together dominating
the optimization. However, in this paper we assume that an xi

with more rationales really does provide more evidence about
the true classifier ~w.

3Polarity dataset version 2.0.
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category. Pang and Lee have divided the 2000 docu-
ments into 10 folds, each consisting of 100 positive
reviews and 100 negative reviews.

The dataset is arguably artificial in that it keeps
only reviews where the reviewer provided a rather
high or rather low numerical rating, allowing Pang
and Lee to designate the review as positive or neg-
ative. Nonetheless, most reviews contain a difficult
mix of praise, criticism, and factual description. In
fact, it is possible for a mostly critical review to give
a positive overall recommendation, or vice versa.

4.1 Annotation procedure

Rationale annotators were given guidelines4 that
read, in part:

Each review was intended to give either a positive or a neg-
ative overall recommendation. You will be asked to justify why
a review is positive or negative. To justify why a review is posi-
tive, highlight the most important words and phrases that would
tell someone to see the movie. To justify why a review is nega-
tive, highlight words and phrases that would tell someone not to
see the movie. These words and phrases are called rationales.

You can highlight the rationales as you notice them, which
should result in several rationales per review. Do your best to
mark enough rationales to provide convincing support for the
class of interest.

You do not need to go out of your way to mark everything.
You are probably doing too much work if you find yourself go-
ing back to a paragraph to look for even more rationales in it.
Furthermore, it is perfectly acceptable to skim through sections
that you feel would not contain many rationales, such as a re-
viewer’s plot summary, even if that might cause you to miss a
rationale here and there.

The last two paragraphs were intended to provide
some guidance on how many rationales to annotate.
Even so, as section 4.2 shows, some annotators were
considerably more thorough (and slower).

Annotators were also shown the following exam-
ples5 of positive rationales:

• you will enjoy the hell out of American Pie.

• fortunately, they managed to do it in an interesting and
funny way.

• he is one of the most exciting martial artists on the big
screen, continuing to perform his own stunts and daz-
zling audiences with his flashy kicks and punches.

• the romance was enchanting.

and the following examples5 of negative rationales:
4Available at http://cs.jhu.edu/∼ozaidan/rationales.
5For our controlled study of annotation time (section 4.2),

different examples were given with full document context.

Figure 1: Histograms of rationale counts per document (A0’s
annotations). The overall mean of 8.55 is close to that of the
four annotators in Table 1. The median and mode are 8 and 7.

• A woman in peril. A confrontation. An explosion. The
end. Yawn. Yawn. Yawn.

• when a film makes watching Eddie Murphy a tedious ex-
perience, you know something is terribly wrong.

• the movie is so badly put together that even the most
casual viewer may notice the miserable pacing and stray
plot threads.

• don’t go see this movie

The annotation involves boldfacing the rationale
phrases using an HTML editor. Note that a fancier
annotation tool would be necessary for a task like
named entity tagging, where an annotator must mark
many named entities in a single document. At any
given moment, such a tool should allow the annota-
tor to highlight, view, and edit only the several ra-
tionales for the “current” annotated entity (the one
most recently annotated or re-selected).

One of the authors (A0) annotated folds 0–8 of
the movie review set (1,800 documents) with ra-
tionales that supported the gold-standard classifica-
tions. This training/development set was used for
all of the learning experiments in sections 5–6. A
histogram of rationale counts is shown in Figure 1.
As mentioned in section 3, the rationale annotations
were just textual substrings. The annotator did not
require knowledge of the classifier features. Thus,
our rationale dataset is a new resource4 that could
also be used to study exploitation of rationales un-
der feature sets or learning methods other than those
considered here (see section 8).

4.2 Inter-annotator agreement
To study the annotation process, we randomly se-
lected 150 documents from the dataset. The doc-

262



Rationales % rationales also % rationales also % rationales also % rationales also % rationales also
per document annotated by A1 annotated by A2 annotated by AX annotated by AY ann. by anyone else

A1 5.02 (100) 69.6 63.0 80.1 91.4
A2 10.14 42.3 (100) 50.2 67.8 80.9
AX 6.52 49.0 68.0 (100) 79.9 90.9
AY 11.36 39.7 56.2 49.3 (100) 75.5

Table 1: Average number of rationales and inter-annotator agreement for Tasks 2 and 3. A rationale by Ai (“I think this is a great
movie!”) is considered to have been annotated also by Aj if at least one of Aj’s rationales overlaps it (“I think this is a great
movie!”). In computing pairwise agreement on rationales, we ignored documents where Ai and Aj disagreed on the class. Notice
that the most thorough annotator AY caught most rationales marked by the others (exhibiting high “recall”), and that most rationales
enjoyed some degree of consensus, especially those marked by the least thorough annotator A1 (exhibiting high “precision”).

uments were split into three groups, each consisting
of 50 documents (25 positive and 25 negative). Each
subset was used for one of three tasks:6

• Task 1: Given the document, annotate only the
class (positive/negative).

• Task 2: Given the document and its class, an-
notate some rationales for that class.

• Task 3: Given the document, annotate both the
class and some rationales for it.

We carried out a pilot study (annotators AX and
AY: two of the authors) and a later, more controlled
study (annotators A1 and A2: paid students). The
latter was conducted in a more controlled environ-
ment where both annotators used the same annota-
tion tool and annotation setup as each other. Their
guidelines were also more detailed (see section 4.1).
In addition, the documents for the different tasks
were interleaved to avoid any practice effect.

The annotators’ classification accuracies in Tasks
1 and 3 (against Pang & Lee’s labels) ranged from
92%–97%, with 4-way agreement on the class for
89% of the documents, and pairwise agreement also
ranging from 92%–97%. Table 1 shows how many
rationales the annotators provided and how well
their rationales agreed.

Interestingly, in Task 3, four of AX’s ratio-
nales for a positive class were also partially
highlighted by AY as support for AY’s (incorrect)
negative classifications, such as:

6Each task also had a “warmup” set of 10 documents to be
annotated before that tasks’s 50 documents. Documents for
Tasks 2 and 3 would automatically open in an HTML editor
while Task 1 documents opened in an HTML viewer with no
editing option. The annotators recorded their classifications for
Tasks 1 and 3 on a spreadsheet.

min./KB A1 time A2 time AX time AY time
Task 1 0.252 0.112 0.150 0.422
Task 2 0.396 0.537 0.242 0.626
Task 3 0.399 0.505 0.288 1.01
min./doc. A1 time A2 time AX time AY time
Task 1 1.04 0.460 0.612 1.73
min./rat. A1 time A2 time AX time AY time
Task 2 0.340 0.239 0.179 0.298
Task 3 0.333 0.198 0.166 0.302

Table 2: Average annotation rates on each task.

• Even with its numerous flaws, the movie all comes to-
gether, if only for those who . . .

• “Beloved” acts like an incredibly difficult chamber
drama paired with a ghost story.

4.3 Annotation time
Average annotation times are in Table 2. As hoped,
rationales did not take too much extra time for most
annotators to provide. For each annotator except
A2, providing rationales only took roughly twice the
time (Task 3 vs. Task 1), even though it meant mark-
ing an average of 5–11 rationales in addition to the
class.

Why this low overhead? Because marking the
class already required the Task 1 annotator to read
the document and find some rationales, even if s/he
did not mark them. The only extra work in Task 3
is in making them explicit. This synergy between
class annotation and rationale annotation is demon-
strated by the fact that doing both at once (Task 3)
was faster than doing them separately (Tasks 1+2).

We remark that this task—binary classification on
full documents—seems to be almost a worst-case
scenario for the annotation of rationales. At a purely
mechanical level, it was rather heroic of A0 to at-
tach 8–9 new rationale phrases rij to every bit yi

of ordinary annotation. Imagine by contrast a more
local task of identifying entities or relations. Each
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lower-level annotation yi will tend to have fewer ra-
tionales rij , while yi itself will be more complex and
hence more difficult to mark. Thus, we expect that
the overhead of collecting rationales will be less in
many scenarios than the factor of 2 we measured.

Annotation overhead could be further reduced.
For a multi-class problem like relation detection, one
could ask the annotator to provide rationales only for
the rarer classes. This small amount of extra time
where the data is sparsest would provide extra guid-
ance where it was most needed. Another possibility
is passive collection of rationales via eye tracking.

5 Experimental Procedures

5.1 Feature extraction

Although this dataset seems to demand discourse-
level features that contextualize bits of praise and
criticism, we exactly follow Pang et al. (2002) and
Pang and Lee (2004) in merely using binary uni-
gram features, corresponding to the 17,744 un-
stemmed word or punctuation types with count ≥ 4
in the full 2000-document corpus. Thus, each docu-
ment is reduced to a 0-1 vector with 17,744 dimen-
sions, which is then normalized to unit length.7

We used the method of section 3 to place addi-
tional constraints on a linear classifier. Given a train-
ing document, we create several contrast documents,
each by deleting exactly one rationale substring
from the training document. Converting documents
to feature vectors, we obtained an original exam-
ple −→xi and several contrast examples −→vi1,

−→vi2, . . ..8

Again, our training method required each original
document to be classified more confidently (by a
margin µ) than its contrast documents.

If we were using more than unigram features, then
simply deleting a rationale substring would not al-
ways be the best way to create a contrast document,
as the resulting ungrammatical sentences might
cause deep feature extraction to behave strangely
(e.g., parse errors during preprocessing). The goal in
creating the contrast document is merely to suppress

7The vectors are normalized before prepending the 1 corre-
sponding to the bias term feature (mentioned in section 3).

8The contrast examples were not normalized to precisely
unit length, but instead were normalized by the same factor used
to normalize −→xi . This conveniently ensured that the pseudoex-
amples −→xij

def
=

~xi−−→vij

µ
were sparse vectors, with 0 coordinates

for all words not in the jth rationale.

features (n-grams, parts of speech, syntactic depen-
dencies . . . ) that depend in part on material in one
or more rationales. This could be done directly by
modifying the feature extractors, or if one prefers to
use existing feature extractors, by “masking” rather
than deleting the rationale substring—e.g., replacing
each of its word tokens with a special MASK token
that is treated as an out-of-vocabulary word.

5.2 Training and testing procedures
We transformed this problem to an SVM problem
(see section 3) and applied SVMlight for training and
testing, using the default linear kernel. We used only
A0’s rationales and the true classifications.

Fold 9 was reserved as a test set. All accuracy
results reported in the paper are the result of testing
on fold 9, after training on subsets of folds 0–8.

Our learning curves show accuracy after training
on T < 9 folds (i.e., 200T documents), for various
T . To reduce the noise in these results, the accuracy
we report for training on T folds is actually the aver-
age of 9 different experiments with different (albeit
overlapping) training sets that cover folds 0–8:

1
9

8∑
i=0

acc(F9 | θ∗, Fi+1 ∪ . . . ∪ Fi+T ) (7)

where Fj denotes the fold numbered j mod 9, and
acc(Z | θ, Y ) means classification accuracy on the
set Z after training on Y with hyperparameters θ.

To evaluate whether two different training meth-
ods A and B gave significantly different average-
accuracy values, we used a paired permutation test
(generalizing a sign test). The test assumes in-
dependence among the 200 test examples but not
among the 9 overlapping training sets. For each
of the 200 test examples in fold 9, we measured
(ai, bi), where ai (respectively bi) is the number
of the 9 training sets under which A (respectively
B) classified the example correctly. The p value
is the probability that the absolute difference be-
tween the average-accuracy values would reach or
exceed the observed absolute difference, namely
| 1
200

∑200
i=1

ai−bi
9 |, if each (ai, bi) had an independent

1/2 chance of being replaced with (bi, ai), as per the
null hypothesis that A and B are indistinguishable.

For any given value of T and any given train-
ing method, we chose hyperparameters θ∗ =
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Figure 2: Classification accuracy under five different experi-
mental setups (S1–S5). At each training size, the 5 accura-
cies are pairwise significantly different (paired permutation test,
p < 0.02; see section 5.2), except for {S3,S4} or {S4,S5} at
some sizes.

(C, µ,Ccontrast) to maximize the following cross-
validation performance:9

θ∗ = argmax
θ

8∑
i=0

acc(Fi | θ, Fi+1 ∪ . . . ∪ Fi+T )

(8)
We used a simple alternating optimization procedure
that begins at θ0 = (1.0, 1.0, 1.0) and cycles repeat-
edly through the three dimensions, optimizing along
each dimension by a local grid search with resolu-
tion 0.1.10 Of course, when training without ratio-
nales, we did not have to optimize µ or Ccontrast.

6 Experimental Results

6.1 The value of rationales
The top curve (S1) in Figure 2 shows that perfor-
mance does increase when we introduce rationales
for the training examples as contrast examples (sec-
tion 3). S1 is significantly higher than the baseline
curve (S2) immediately below it, which trains an or-
dinary SVM classifier without using rationales. At
the largest training set size, rationales raise the accu-
racy from 88.5% to 92.2%, a 32% error reduction.

9One might obtain better performance (across all methods
being compared) by choosing a separate θ∗ for each of the 9
training sets. However, to simulate real limited-data training
conditions, one should then find the θ∗ for each {i, ..., j} us-
ing a separate cross-validation within {i, ..., j} only; this would
slow down the experiments considerably.

10For optimizing along the C dimension, one could use the
efficient method of Beineke et al. (2004), but not in SVMlight.

The lower three curves (S3–S5) show that learn-
ing is separately helped by the rationale and the
non-rationale portions of the documents. S3–S5
are degraded versions of the baseline S2: they are
ordinary SVM classifiers that perform significantly
worse than S2 (p < 0.001).

Removing the rationale phrases from the train-
ing documents (S3) made the test documents much
harder to discriminate (compared to S2). This sug-
gests that annotator A0’s rationales often covered
most of the usable evidence for the true class.

However, the pieces to solving the classification
puzzle cannot be found solely in the short rationale
phrases. Removing all non-rationale text from the
training documents (S5) was even worse than re-
moving the rationales (S3). In other words, we can-
not hope to do well simply by training on just the
rationales (S5), although that approach is improved
somewhat in S4 by treating each rationale (similarly
to S1) as a separate SVM training example.

This presents some insight into why our method
gives the best performance. The classifier in S1
is able to extract subtle patterns from the corpus,
like S2, S3, or any other standard machine learn-
ing method, but it is also able to learn from a human
annotator’s decision-making strategy.

6.2 Using fewer rationales
In practice, one might annotate rationales for only
some training documents—either when annotating a
new corpus or when adding rationales post hoc to
an existing corpus. Thus, a range of options can be
found between curves S2 and S1 of Figure 2.

Figure 3 explores this space, showing how far the
learning curve S2 moves upward if one has time to
annotate rationales for a fixed number of documents
R. The key useful discovery is that much of the ben-
efit can actually be obtained with relatively few ra-
tionales. For example, with 800 training documents,
annotating (0%, 50%, 100%) of them with rationales
gives accuracies of (86.9%, 89.2%, 89.3%). With
the maximum of 1600 training documents, annotat-
ing (0%, 50%, 100%) with rationales gives (88.5%,
91.7%, 92.2%).

To make this point more broadly, we find that the
R = 200 curve is significantly above the R = 0
curve (p < 0.05) at all T ≤ 1200. By contrast, the
R = 800, R = 1000, . . . R = 1600 points at each T
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Figure 3: Classification accuracy for T ∈ {200, 400, ..., 1600}
training documents (x-axis) when only R ∈ {0, 200, ..., T} of
them are annotated with rationales (different curves). The R =
0 curve above corresponds to the baseline S2 from Figure 2.
S1’s points are found above as the leftmost points on the other
curves, where R = T .

value are all-pairs statistically indistinguishable.
The figure also suggests that rationales and docu-

ments may be somewhat orthogonal in their benefit.
When one has many documents and few rationales,
there is no longer much benefit in adding more doc-
uments (the curve is flattening out), but adding more
rationales seems to provide a fresh benefit: ratio-
nales have not yet reached their point of diminishing
returns. (While this fresh benefit was often statisti-
cally significant, and greater than the benefit from
more documents, our experiments did not establish
that it was significantly greater.)

The above experiments keep all of A0’s rationales
on a fraction of training documents. We also exper-
imented with keeping a fraction of A0’s rationales
(chosen randomly with randomized rounding) on all
training documents. This yielded no noteworthy or
statistically significant differences from Figure 3.

These latter experiments simulate a “lazy annota-
tor” who is less assiduous than A0. Such annotators
may be common in the real world. We also suspect
that they will be more desirable. First, they should
be able to add more rationales per hour than the A0-
style annotator from Figure 3: some rationales are
simply more noticeable than others, and a lazy anno-
tator will quickly find the most noticeable ones with-
out wasting time tracking down the rest. Second, the
“most noticeable” rationales that they mark may be
the most effective ones for learning, although our

random simulation of laziness could not test that.

7 Related Work

Our rationales resemble “side information” in ma-
chine learning—supplementary information about
the target function that is available at training time.
Side information is sometimes encoded as “virtual
examples” like our contrast examples or pseudoex-
amples. However, past work generates these by
automatically transforming the training examples
in ways that are expected to preserve or alter the
classification (Abu-Mostafa, 1995). In another for-
mulation, virtual examples are automatically gener-
ated but must be manually annotated (Kuusela and
Ocone, 2004). Our approach differs because a hu-
man helps to generate the virtual examples. Enforc-
ing a margin between ordinary examples and con-
trast examples also appears new.

Other researchers have considered how to reduce
annotation effort. In active learning, the annotator
classifies only documents where the system so far is
less confident (Lewis and Gale, 1994), or in an in-
formation extraction setting, incrementally corrects
details of the system’s less confident entity segmen-
tations and labelings (Culotta and McCallum, 2005).

Raghavan et al. (2005) asked annotators to iden-
tify globally “relevant” features. In contrast, our ap-
proach does not force the annotator to evaluate the
importance of features individually, nor in a global
context outside any specific document, nor even to
know the learner’s feature space. Annotators only
mark text that supports their classification decision.
Our methods then consider the combined effect of
this text on the feature vector, which may include
complex features not known to the annotator.

8 Future Work: Generative models

Our SVM contrast method (section 3) is not the only
possible way to use rationales. We would like to ex-
plicitly model rationale annotation as a noisy pro-
cess that reflects, imperfectly and incompletely, the
annotator’s internal decision procedure.

A natural approach would start with log-linear
models in place of SVMs. We can define a proba-
bilistic classifier

pθ(y | x) def=
1

Z(x)
exp

k∑
h=1

θhfh(x, y) (9)
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where ~f(·) extracts a feature vector from a classified
document.

A standard training method would be to choose θ
to maximize the conditional likelihood of the train-
ing classifications:

argmax
~θ

n∏
i=1

pθ(yi | xi) (10)

When a rationale ri is also available for each
(xi, yi), we propose to maximize a likelihood that
tries to predict these rationale data as well:

argmax
~θ

n∏
i=1

pθ(yi | xi) · pθ′(ri | xi, yi, θ) (11)

Notice that a given guess of θ might make equa-
tion (10) large, yet accord badly with the annotator’s
rationales. In that case, the second term of equa-
tion (11) will exert pressure on θ to change to some-
thing that conforms more closely to the rationales.
If the annotator is correct, such a θ will generalize
better beyond the training data.

In equation (11), pθ′ models the stochastic process
of rationale annotation. What is an annotator actu-
ally doing when she annotates rationales? In par-
ticular, how do her rationales derive from the true
value of θ and thereby tell us about θ? Building a
good model pθ′ of rationale annotation will require
some exploratory data analysis. Roughly, we expect
that if θhfh(xi, y) is much higher for y = yi than
for other values of y, then the annotator’s ri is corre-
spondingly more likely to indicate in some way that
feature fh strongly influenced annotation yi. How-
ever, we must also model the annotator’s limited pa-
tience (she may not annotate all important features),
sloppiness (she may indicate only indirectly that fh

is important), and bias (tendency to annotate some
kinds of features at the expense of others).

One advantage of this generative approach is that
it eliminates the need for contrast examples. Con-
sider a non-textual example in which an annotator
highlights the line crossing in a digital image of the
digit “8” to mark the rationale that distinguishes it
from “0.” In this case it is not clear how to mask out
that highlighted rationale to create a contrast exam-
ple in which relevant features would not fire.11

11One cannot simply flip those highlighted pixels to white

9 Conclusions

We have proposed a quite simple approach to im-
proving machine learning by exploiting the clever-
ness of annotators, asking them to provide enriched
annotations for training. We developed and tested
a particular discriminative method that can use “an-
notator rationales”—even on a fraction of the train-
ing set—to significantly improve sentiment classifi-
cation of movie reviews.

We found fairly good annotator agreement on the
rationales themselves. Most annotators provided
several rationales per classification without taking
too much extra time, even in our text classification
scenario, where the rationales greatly outweigh the
classifications in number and complexity. Greater
speed might be possible through an improved user
interface or passive feedback (e.g., eye tracking).

In principle, many machine learning methods
might be modified to exploit rationale data. While
our experiments in this paper used a discriminative
SVM, we plan to explore generative approaches.
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