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Abstract

The task of identifying synonymous re-
lations and objects, or Synonym Resolu-
tion (SR), is critical for high-quality infor-
mation extraction. The bulk of previous
SR work assumed strong domain knowl-
edge or hand-tagged training examples.
This paper investigates SR in the con-
text of unsupervised information extrac-
tion, where neither is available. The pa-
per presents a scalable, fully-implemented
system for SR that runs in O(KN log N)
time in the number of extractions N and
the maximum number of synonyms per
word, K. The system, called RESOLVER,
introduces a probabilistic relational model
for predicting whether two strings are
co-referential based on the similarity of
the assertions containing them. Given
two million assertions extracted from the
Web, RESOLVER resolves objects with
78% precision and an estimated 68% re-
call and resolves relations with 90% pre-
cision and 35% recall.

1 Introduction

Web Information Extraction (WIE) sys-
tems extract assertions that describe a rela-
tion and its arguments from Web text (e.g.,
(is capital of, D.C.,United States)). WIE systems
can extract hundreds of millions of assertions
containing millions of different strings from the

Web (e.g., the TEXTRUNNER system (Banko et al.,
2007)).1 WIE systems often extract assertions that
describe the same real-world object or relation using
different names. For example, a WIE system might
extract (is capital city of, Washington, U.S.),
which describes the same relationship as above but
contains a different name for the relation and each
argument.

Synonyms are prevalent in text, and the Web cor-
pus is no exception. Our data set of two million as-
sertions extracted from a Web crawl contained over
a half-dozen different names each for the United
States and Washington, D.C., and three for the “is
capital of” relation. The top 80 most commonly
extracted objects had an average of 2.9 extracted
names per entity, and several had as many as 10
names. The top 100 most commonly extracted re-
lations had an average of 4.9 synonyms per relation.

We refer to the problem of identifying synony-
mous object and relation names as Synonym Res-
olution (SR).2 An SR system for WIE takes a set of
assertions as input and returns a set of clusters, with
each cluster containing coreferential object strings
or relation strings. Previous techniques for SR have
focused on one particular aspect of the problem, ei-
ther objects or relations. In addition, the techniques
either depend on a large set of training examples, or
are tailored to a specific domain by assuming knowl-
edge of the domain’s schema. Due to the number
and diversity of the relations extracted, these tech-

1For a demo see www.cs.washington.edu/research/textrunner.
2Ironically, SR has a number of synonyms in the literature,

including Entity Resolution, Record Linkage, and Deduplica-
tion.
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niques are not feasible for WIE systems. Schemata
are not available for the Web, and hand-labeling
training examples for each relation would require a
prohibitive manual effort.

In response, we present RESOLVER, a novel,
domain-independent, unsupervised synonym resolu-
tion system that applies to both objects and relations.
RESOLVER clusters coreferential names together us-
ing a probabilistic model informed by string similar-
ity and the similarity of the assertions containing the
names. Our contributions are:

1. A scalable clustering algorithm that runs in
time O(KN log N) in the number of extrac-
tions N and maximum number of synonyms
per word, K, without discarding any poten-
tially matching pair, under exceptionally weak
assumptions about the data.

2. An unsupervised probabilistic model for pre-
dicting whether two object or relation names
co-refer.

3. An empirical demonstration that RESOLVER

can resolve objects with 78% precision and
68% recall, and relations with 90% precision
and 35% recall.

The next section discusses previous work. Section
3 introduces our probabilistic model for SR. Section
4 describes our clustering algorithm. Section 5 de-
scribes extensions to our basic SR system. Section
6 presents our experiments, and section 7 discusses
our conclusions and areas for future work.

2 Previous Work

The DIRT algorithm (Lin and Pantel, 2001) ad-
dresses a piece of the unsupervised SR problem.
DIRT is a heuristic method for finding synonymous
relations, or “inference rules.” DIRT uses a depen-
dency parser and mutual information statistics over
a corpus to identify relations that have similar sets of
arguments. In contrast, our algorithm provides a for-
mal probabilistic model that applies equally well to
relations and objects, and we provide an evaluation
of the algorithm in terms of precision and recall.

There are many unsupervised approaches for ob-
ject resolution in databases, but unlike our algo-
rithm these approaches depend on a known, fixed
schema. Ravikumar and Cohen (Ravikumar and Co-
hen, 2004) present an unsupervised approach to ob-

ject resolution using Expectation-Maximization on
a hierarchical graphical model. Several other re-
cent approaches leverage domain-specific informa-
tion and heuristics for object resolution. For ex-
ample, many (Dong et al., 2005; Bhattacharya and
Getoor, 2005; Bhattacharya and Getoor, 2006) rely
on evidence from observing which strings appear as
arguments to the same relation simultaneously (e.g.,
co-authors of the same publication). While this is
useful information when resolving authors in the ci-
tation domain, it is extremely rare to find relations
with similar properties in extracted assertions. None
of these approaches applies to the problem of resolv-
ing relations. See (Winkler, 1999) for a survey of
this area.

Several supervised learning techniques make en-
tity resolution decisions (Kehler, 1997; McCallum
and Wellner, 2004; Singla and Domingos, 2006), but
of course these systems depend on the availability
of training data, and often on a significant number
of labeled examples per relation of interest. These
approaches also depend on complex probabilistic
models and learning algorithms, and they have order
O(n3) time complexity, or worse. They currently do
not scale to the amounts of data extracted from the
Web. Previous systems were tested on at most a few
thousand examples, compared with millions or hun-
dreds of millions of extractions from WIE systems
such as TEXTRUNNER.

Coreference resolution systems (e.g., (Lappin and
Leass, 1994; Ng and Cardie, 2002)), like SR sys-
tems, try to merge references to the same object (typ-
ically pronouns, but potentially other types of noun
phrases). This problem differs from the SR problem
in several ways: first, it deals with unstructered text
input, possibly with syntactic annotation, rather than
relational input. Second, it deals only with resolv-
ing objects. Finally, it requires local decisions about
strings; that is, the same word may appear twice in a
text and refer to two different things, so each occur-
rence of a word must be treated separately.

The PASCAL Recognising Textual Entailment
Challenge proposes the task of recognizing when
two sentences entail one another, and many authors
have submitted responses to this challenge (Dagan et
al., 2006). Synonym resolution is a subtask of this
problem. Our task differs significantly from the tex-
tual entailment task in that it has no labeled training
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data, and its input is in the form of relational extrac-
tions rather than raw text.

Two probabilistic models for information extrac-
tion have a connection with ours. Our probabilistic
model is partly inspired by the ball-and-urns abstrac-
tion of information extraction presented by Downey
et al. (2005) Our task and probability model are dif-
ferent from theirs, but we make many of the same
modeling assumptions. Second, we follow Snow et
al.’s work (2006) on taxonomy induction in incorpo-
rating transitive closure constraints in our probabil-
ity calculations, as explained below.

3 Probabilistic Model

Our probabilistic model provides a formal, rigorous
method for resolving synonyms in the absence of
training data. It has two sources of evidence: the
similarity of the strings themselves (i.e., edit dis-
tance) and the similarity of the assertions they ap-
pear in. This second source of evidence is some-
times referred to as “distributional similarity” (Hin-
dle, 1990).

Section 3.2 presents a simple model for predict-
ing whether a pair of strings co-refer based on string
similarity. Section 3.3 then presents a model called
the Extracted Shared Property (ESP) Model for pre-
dicting whether a pair of strings co-refer based on
their distributional similarity. Finally, a method is
presented for combining these models to come up
with an overall prediction for coreference decisions
between two clusters of strings.

3.1 Terminology and Notation

We use the following notation to describe the proba-
bilistic models. The input is a data set D containing
extracted assertions of the form a = (r, o1, . . . , on),
where r is a relation string and each oi is an object
string representing the arguments to the relation. In
our data, all of the extracted assertions are binary, so
n = 2. The subset of all assertions in D containing
a string s is called Ds.

For strings si and sj , let Ri,j be the random vari-
able for the event that si and sj refer to the same
entity. Let Rt

i,j denote the event that Ri,j is true,
and Rf

i,j denote the event that it is false.
A pair of strings (r, s2) is called a property of

a string s1 if there is an assertion (r, s1, s2) ∈ D

or (r, s2, s1) ∈ D. A pair of strings (s1, s2) is
an instance of a string r if there is an assertion
(r, s1, s2) ∈ D. Equivalently, the property p =
(r, s2) applies to s1, and the relation r applies to
the instance i = (s1, s2). Finally, two strings x and
y share a property (or instance) if both x and y are
extracted with the same property (or instance).

3.2 String Similarity Model

Many objects appear with multiple names that are
substrings, acronyms, abbreviations, or other sim-
ple variations of one another. Thus string similarity
can be an important source of evidence for whether
two strings co-refer. Our probabilistic String Sim-
ilarity Model (SSM) assumes a similarity function
sim(s1, s2): STRING× STRING → [0, 1]. The
model sets the probability of s1 co-referring with s2

to a smoothed version of the similarity:

P (Rt
i,j |sim(s1, s2)) =

α ∗ sim(s1, s2) + 1
α + β

The particular choice of α and β make little differ-
ence to our results, so long as they are chosen such
that the resulting probability can never be one or
zero. In our experiments α = 20 and β = 5, and we
use the well-known Monge-Elkan string similarity
function for objects and the Levenshtein string edit-
distance function for relations (Cohen et al., 2003).

3.3 The Extracted Shared Property Model

The Extracted Shared Property (ESP) Model out-
puts the probability that s1 and s2 co-refer
based on how many properties (or instances) they
share. As an example, consider the strings
“Mars” and “Red Planet”, which appear in our
data 659 and 26 times respectively. Out of
these extracted assertions, they share four proper-
ties. For example, (lacks, Mars, ozone layer) and
(lacks, Red P lanet, ozone layer) both appear as
assertions in our data. The ESP model determines
the probability that “Mars” and “Red Planet” refer
to the same entity after observing k, the number of
properties that apply to both, n1, the total number
of extracted properties for “Mars”, and n2, the total
number of extracted properties for “Red Planet.”

ESP models the extraction of assertions as a
generative process, much like the URNS model
(Downey et al., 2005). For each string si, a certain
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number, Pi, of properties of the string are written on
balls and placed in an urn. Extracting ni assertions
that contain si amounts to selecting a subset of size
ni from these labeled balls.3 Properties in the urn are
called potential properties to distinguish them from
extracted properties.

To model coreference decisions, ESP uses a pair
of urns, containing Pi and Pj balls respectively, for
the two strings si and sj . Some subset of the Pi

balls have the exact same labels as an equal-sized
subset of the Pj balls. Let the size of this sub-
set be Si,j . The ESP model assumes that corefer-
ential strings share as many potential properties as
possible, though only a few of the potential proper-
ties will be extracted for both. For non-coreferential
strings, the number of shared potential properties is a
strict subset of the potential properties of each string.
Thus if Ri,j is true then Si,j = min(Pi, Pj), and if
Ri,j is false then Si,j < min(Pi, Pj).

The ESP model makes several simplifying as-
sumptions in order to make probability predictions.
As is suggested by the ball-and-urn abstraction, it
assumes that each ball for a string is equally likely
to be selected from its urn. Because of data sparsity,
almost all properties are very rare, so it would be dif-
ficult to get a better estimate for the prior probability
of selecting a particular potential property. Second,
it assumes that without knowing the value of k, ev-
ery value of Si,j is equally likely, since we have no
better information. Finally, it assumes that all sub-
sets of potential properties are equally likely to be
shared by two non-coreferential objects, regardless
of the particular labels on the balls, given the size of
the shared subset.

Given these assumptions, we can derive an ex-
pression for P (Rt

i,j). First, note that there are(Pi
ni

)(Pj
nj

)
total ways of extracting ni and nj asser-

tions for si and sj . Given a particular value of Si,j ,
the number of ways in which ni and nj assertions
can be extracted such that they share exactly k is
given by

Count(k, ni, nj |Pi, Pj , Si,j) =
(Si,j

k

) ∑
r,s≥0

(Si,j−k
r+s

)(r+s
r

)( Pi−Si,j

ni−(k+r)

)( Pj−Si,j

nj−(k+s)

)

By our assumptions,

3Unlike the URNS model, balls are drawn without replace-
ment because each extracted property is distinct in our data.

P (k|ni, nj , Pi, Pj , Si,j) =

Count(k, ni, nj |Pi, Pj , Si,j)(Pi
ni

)(Pj
nj

) (1)

Let Pmin = min(Pi, Pj). The result below fol-
lows from Bayes’ Rule and our assumptions above:

Proposition 1 If two strings si and sj have Pi and
Pj potential properties (or instances), and they ap-
pear in extracted assertions Di and Dj such that
|Di| = ni and |Dj | = nj , and they share k extracted
properties (or instances), the probability that si and
sj co-refer is:

P (Rt
i,j |Di, Dj , Pi, Pj) =

P (k|ni, nj , Pi, Pj , Si,j = Pmin)∑
k≤Si,j≤Pmin

P (k|ni, nj , Pi, Pj , Si,j)
(2)

Substituting equation 1 into equation 2 gives us a
complete expression for the probability we are look-
ing for.

Note that the probability for Ri,j depends on just
two hidden parameters, Pi and Pj . Since we have
no labeled data to estimate these parameters from,
we tie these parameters to the number of times the
respective strings si and sj are extracted. Thus we
set Pi = N × ni, and we set N = 50 in our experi-
ments.

3.4 Combining the Evidence

For each potential coreference relationship Ri,j ,
there are now two pieces of probabilistic evidence.
Let Ee

i,j be the evidence for ESP, and let Es
i,j be the

evidence for SSM. Our method for combining the
two uses the Naı̈ve Bayes assumption that each piece
of evidence is conditionally independent, given the
coreference relation:

P (Es
i,j , E

e
i,j |Ri,j) = P (Es

i,j |Ri,j)P (Ee
i,j |Ri,j)

Given this simplifying assumption, we can com-
bine the evidence to find the probability of a cofer-
ence relationship by applying Bayes’ Rule to both
sides (we omit the i, j indices for brevity):

P (Rt|Es, Ee) =

P (Rt|Es)P (Rt|Ee)(1− P (Rt))∑
i∈{t,f} P (Ri|Es)P (Ri|Ee)(1− P (Ri))
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3.5 Comparing Clusters of Strings
Our algorithm merges clusters of strings with one
another, using one of the above models. However,
these models give probabilities for coreference deci-
sions between two individual strings, not two clus-
ters of strings.

We follow the work of Snow et al. (2006) in in-
corporating transitive closure constraints in proba-
bilistic modeling, and make the same independence
assumptions. The benefit of this approach is that the
calculation for merging two clusters depends only
on coreference decisions between individual strings,
which can be calculated independently.

Let a clustering be a set of coreference relation-
ships between pairs of strings such that the corefer-
ence relationships obey the transitive closure prop-
erty. We let the probability of a set of assertions D
given a clustering C be:

P (D|C) =
∏

Rt
i,j∈C

P (Di ∪Dj |Rt
i,j)×

∏

Rf
i,j∈C

P (Di ∪Dj |Rf
i,j)

The metric used to determine if two clusters
should be merged is the likelihood ratio, or the prob-
ability for the set of assertions given the merged
clusters over the probability given the original clus-
tering. Let C ′ be a clustering that differs from C
only in that two clusters in C have been merged in
C ′, and let ∆C be the set of coreference relation-
ships in C ′ that are true, but the corresponding ones
in C are false. This metric is given by:

P (D|C ′)/P (D|C) =
∏

Rt
i,j∈∆C P (Rt

i,j |Di ∪Dj)(1− P (Rt
i,j))∏

Rt
i,j∈∆C(1− P (Rt

i,j |Di ∪Dj))P (Rt
i,j)

The probability P (Rt
i,j |Di∪Dj) may be supplied

by the SSM, ESP, or combination model. In our ex-
periments, we let the prior for the SSM model be
0.5. For the ESP and combined models, we set the
prior to P (Rt

i,j) = 1
min(P1,P2) .

4 RESOLVER’s Clustering Algorithm

Our clustering algorithm iteratively merges clusters
of co-referential names, making each iteration in

S := set of all strings
For each property or instance p,

Sp := {s ∈ S|s has property p}
1. Scores := {}
2. Build index mapping properties (and instances)

to strings with those properties (instances)
3. For each property or instance p:

If |Sp| < Max:
For each pair {s1, s2} ⊂ Sp:

Add mergeScore(s1, s2) to Scores
4. Repeat until no merges can be performed:

Sort Scores
UsedClusters := {}
While score of top clusters c1, c2

is above Threshold:
Skip if either is in UsedClusters
Merge c1 and c2

Add c1, c2 to UsedClusters
Merge properties containing c1, c2

Recalculate merge scores as in Steps 1-3

Figure 1: RESOLVER’s Clustering Algorithm

time O(N log N) in the number of extracted as-
sertions. The algorithm requires only basic assump-
tions about which strings to compare. Previous work
on speeding up clustering algorithms for SR has ei-
ther required far stronger assumptions, or else it has
focused on heuristic methods that remain, in the
worst case, O(N2) in the number of distinct objects.

Our algorithm, a greedy agglomerative clustering
method, is outlined in Figure 1. The first novel part
of the algorithm, step 3, compares pairs of strings
that share the same property or instance, so long as
no more than Max strings share that same property
or instance. After the scores for all comparisons are
made, each string is assigned its own cluster. Then
the scores are sorted and the best cluster pairs are
merged until no pair of clusters has a score above
threshold. The second novel aspect of this algorithm
is that as it merges clusters in Step 4, it merges prop-
erties containing those clusters in a process we call
mutual recursion, which is discussed below.

This algorithm compares every pair of clusters
that have the potential to be merged, assuming two
properties of the data. First, it assumes that pairs
of clusters with no shared properties are not worth
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comparing. Since the number of shared properties
is a key source of evidence for our approach, these
clusters almost certainly will not be merged, even if
they are compared, so the assumption is quite rea-
sonable. Second, the approach assumes that clus-
ters sharing only properties that apply to very many
strings (more than Max) need not be compared.
Since properties shared by many strings provide lit-
tle evidence that the strings are coreferential, this as-
sumption is reasonable for SR. We use Max = 50
in our experiments. Less than 0.1% of the properties
are thrown out using this cutoff.

4.1 Algorithm Analysis

Let D be the set of extracted assertions. The follow-
ing analysis shows that one iteration of merges takes
time O(N log N), where N = |D|. Let NC be
the number of comparisons between strings in step
3. To simplify the analysis, we consider only those
properties that contain a relation string and an argu-
ment 1 string. Let A be the set of all such properties.
NC is linear in N :4

NC =
∑

p∈A

|Sp| × (|Sp| − 1)
2

≤ (Max− 1)
2

×
∑

p∈A

|Sp|

=
(Max− 1)

2
×N

Note that this bound is quite loose because most
properties apply to only a few strings. Step 4 re-
quires time O(N log N) to sort the comparison
scores and perform one iteration of merges. If the
largest cluster has size K, in the worst case the al-
gorithm will take K iterations. In our experiments,
the algorithm never took more than 9 iterations.

4.2 Relation to other speed-up techniques

The merge/purge algorithm (Hernandez and Stolfo,
1995) assumes the existence of a particular attribute
such that when the data set is sorted on this attribute,
matching pairs will all appear within a narrow win-
dow of one another. This algorithm is O(M log M)
where M is the number of distinct strings. However,
there is no attribute or set of attributes that comes

4If the Max parameter is allowed to vary with log|D|,
rather than remaining constant, the same analysis leads to a
slightly looser bound that is still better than O(N2).

close to satisfying this assumption in the context of
domain-independent information extraction.

There are several techniques that often provide
speed-ups in practice, but in the worst case they
make O(M2) comparisons at each merge iteration,
where M is the number of distinct strings. This can
cause problems on very large data sets. Notably,
McCallum et al. (2000) use a cheap comparison
metric to place objects into overlapping “canopies,”
and then use a more expensive metric to cluster ob-
jects appearing in the same canopy. The RESOLVER

clustering algorithm is in fact an adaptation of the
canopy method; it adds the restriction that strings are
not compared when they share only high-frequency
properties. The canopy method works well on high-
dimensional data with many clusters, which is the
case with our problem, but its time complexity is
worse than ours.

For information extraction data, a complexity of
O(M2) in the number of distinct strings turns out
to be considerably worse than our algorithm’s com-
plexity of O(N log N) in the number of extracted
assertions. This is because the data obeys a Zipf law
relationship between the frequency of a string and its
rank, so the number of distinct strings grows linearly
or almost linearly with the number of assertions.5

4.3 Mutual Recursion

Mutual recursion refers to the novel property of
our algorithm that as it clusters relation strings to-
gether into sets of synonyms, it collapses proper-
ties together for object strings and potentially finds
more shared properties between coreferential object
strings. Likewise, as it clusters objects together into
sets of coreferential names, it collapses instances of
relations together and potentially finds more shared
instances between coreferential relations. Thus the
clustering decisions for relations and objects mutu-
ally depend on one another.

For example, the strings “Kennedy” and “Pres-
ident Kennedy” appear in 430 and 97 assertions
in our data, respectively, but none of their ex-
tracted properties match exactly. Many properties,

5The exact relationship depends on the shape parameter z
of the Zipf curve. If z < 1, as it is for our data set, the num-
ber of total extractions grows linearly with the number of dis-
tinct strings extracted. If z = 1, then n extractions will contain
Ω( n

ln n
) distinct strings.
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however, almost match. For example, the asser-
tions (challenged,Kennedy, Premier Krushchev)
and (stood up to,President Kennedy,Kruschev)
both appear in our data. Because “challenged” and
“stood up to” are similar, and “Krushchev” and “Pre-
mier Krushchev” are similar, our algorithm is able
to merge these pairs into two clusters, thereby creat-
ing a new shared property between “Kennedy” and
“President Kennedy.” Eventually it can merge these
two strings as well.

5 Extensions to RESOLVER

While the basic RESOLVER system can cluster syn-
onyms accurately and quickly, there is one type of
error that it frequently makes. In some cases, it has
difficulty distinguishing between similar pairs of ob-
jects and identical pairs. For example, “Virginia”
and “West Virginia” share several extractions be-
cause they have the same type, and they have high
string similarity. As a result, RESOLVER clusters
these two together. The next two sections describe
two extensions to RESOLVER that address the prob-
lem of similarity vs. identity.

5.1 Function Filtering

RESOLVER can use functions and one-to-one rela-
tions to help distinguish between similar and identi-
cal pairs. For example, West Virginia and Virginia
have different capitals: Richmond and Charleston,
respectively. If both of these facts are extracted, and
if RESOLVER knows that the “capital of” relation is
functional, it should prevent Virginia and West Vir-
ginia from merging.

The Function Filter prevents merges between
strings that have different values for the same func-
tion. More precisely, it decides that two strings y1

and y2 match if their string similarity is above a high
threshold. It prevents a merge between strings x1

and x2 if there exist a function f and extractions
f(x1, y1) and f(x2, y2), and there are no such ex-
tractions such that y1 and y2 match (and vice versa
for one-to-one relations). Experiments described in
section 6 show that the Function Filter can improve
the precision of RESOLVER without significantly af-
fecting its recall.

While the Function Filter currently uses func-
tions and one-to-one relations as negative evidence,

it is also possible to use them as positive evidence.
For example, the relation “married” is not strictly
one-to-one, but for most people the set of spouses
is very small. If a pair of strings are extracted
with the same spouse—e.g., “FDR” and “President
Roosevelt” share the property (“married”, “Eleanor
Roosevelt”)—this is far stronger evidence that the
two strings are identical than if they shared some
random property.

Unfortunately, various techniques that attempted
to model this insight, including a TF-IDF weighting
of properties, yielded essentially no improvement of
RESOLVER. One major reason is that there are rel-
atively few examples of shared functional or one-
to-one properties because of sparsity. This idea de-
serves more investigation, however, and is an area
for future work.

5.2 Using Web Hitcounts

While names for two similar objects may often ap-
pear together in the same sentence, it is relatively
rare for two different names of the same object to
appear in the same sentence. RESOLVER exploits
this fact by querying the Web to determine how often
a pair of strings appears together in a large corpus.
When the hitcount is high, RESOLVER can prevent
the merge.

Specifically, the Coordination-Phrase Filter
searches for hitcounts of the phrase “s1 and s2”,
where s1 and s2 are a candidate pair for merging.
It then computes a variant of pointwise mutual
information, given by

coordination score(s1, s2) =
hits(s1 and s2)2

hits(s1)× hits(s2)

The filter prevents any merge for which the coor-
dination score is above a threshold, which is de-
termined on a development set. The results of
Coordination-Phrase filtering are discussed in the
next section.

6 Experiments

Our experiments demonstrate that the ESP model
is significantly better at resolving synonyms than a
widely-used distributional similarity metric, the co-
sine similarity metric (CSM) (Salton and McGill,
1983), and that RESOLVER is significantly better at
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resolving synonyms than either of its components,
SSM or ESP.

We test these models on a data set of 2.1 million
assertions extracted from a Web crawl.6 All models
ran over all assertions, but compared only those ob-
jects or relations that appeared at least 25 times in
the data, to give the ESP and CSM models sufficient
data for estimating similarity. However, the mod-
els do use strings that appear less than 25 times as
features. In all, the data contains 9,797 distinct ob-
ject strings and 10,151 distinct relation strings that
appear at least 25 times.

We judged the precision of each model by manu-
ally labeling all of the clusters that each model out-
puts. Judging recall would require inspecting not
just the clusters that the system outputs, but the en-
tire data set, to find all of the true clusters. Be-
cause of the size of the data set, we instead esti-
mated recall over a smaller subset of the data. We
took the top 200 most frequent object strings and top
200 most frequent relation strings in the data. For
each one of these high-frequency strings, we man-
ually searched through all strings with frequency
over 25 that shared at least one property, as well
as all strings that contained one of the keywords in
the high-frequency strings or obvious variations of
them. We manually clustered the resulting matches.
The top 200 object strings formed 51 clusters of size
greater than one, with an average cluster size of 2.9.
For relations, the top 200 strings and their matches
formed 110 clusters with size greater than one, with
an average cluster size of 4.9. We measured the re-
call of our models by comparing the set of all clus-
ters containing at least one of the high-frequency
words against these gold standard clusters.

For our precision and recall measures, we only
compare clusters of size two or more, in order to
focus on the interesting cases. Using the term hy-
pothesis cluster for clusters created by one of the
models, we define the precision of a model to be the
number of elements in all hypothesis clusters which
are correct divided by the total number of elements
in hypothesis clusters. An element s is marked cor-
rect if a plurality of the elements in s’s cluster refer
to the same entity as s; we break ties arbitrarily, as

6The data is made available at
http://www.cs.washington.edu/homes/ayates/.

they do not affect results. We define recall as the
sum over gold standard clusters of the most num-
ber of elements found in a single hypothesis cluster,
divided by the total number of elements in gold stan-
dard clusters.

For the ESP and SSM models in our experiment,
we prevented mutual recursion by clustering rela-
tions and objects separately. Only the full RE-
SOLVER system uses mutual recursion. For the CSM
model, we create for each distinct string a row vec-
tor, with each column representing a property. If that
property applies to the string, we set the value of
that column to the inverse frequency of the property
and zero otherwise. CSM finds the cosine of the an-
gle between the vectors for each pair of strings, and
merges the best pairs that score above threshold.

Each model requires a threshold parameter to de-
termine which scores are suitable for merging. For
these experiments we arbitrarily chose a threshold
of 3 for the ESP model (that is, the data needs to
be 3 times more likely given the merged cluster than
the unmerged clusters in order to perform the merge)
and chose thresholds for the other models by hand so
that the difference between them and ESP would be
roughly even between precision and recall, although
for relations it was harder to improve the recall. It is
an important item for future work to be able to esti-
mate these thresholds and perhaps other parameters
of our models from unlabeled data, but the chosen
parameters worked well enough for the experiments.
Table 1 shows the precision and recall of our models.

6.1 Discussion
ESP significantly outperforms CSM on both object
and relation clustering. CSM had particular trouble
with lower-frequency strings, judging far too many
of them to be co-referential on too little evidence. If
the threshold for clustering using CSM is increased,
however, the recall begins to approach zero.

ESP and CSM make predictions based on a very
noisy signal. “Canada,” for example, shares more
properties with “United States” in our data than
“U.S.” does, even though “Canada” appears less of-
ten than “U.S.” The results show that both models
perform below the SSM model on its own for object
merging, and both perform slightly better than SSM
on relations because of SSM’s poor recall.

We found a significant improvement in both pre-
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Objects Relations
Model Prec. Rec. F1 Prec. Rec. F1
CSM 0.51 0.36 0.42 0.62 0.29 0.40
ESP 0.56 0.41 0.47 0.79 0.33 0.47
SSM 0.62 0.53 0.57 0.85 0.25 0.39
RESOLVER 0.71 0.66 0.68 0.90 0.35 0.50

Table 1: Comparison of the cosine similarity metric (CSM), RESOLVER components (SSM and ESP), and the RESOLVER

system. Bold indicates the score is significantly different from the score in the row above at p < 0.05 using the chi-squared test

with one degree of freedom. Using the same test, RESOLVER is also significantly different from ESP and CSM in recall on objects,

and from CSM and SSM in recall on relations. RESOLVER’s F1 on objects is a 19% increase over SSM’s F1. RESOLVER’s F1 on

relations is a 28% increase over SSM’s F1.

cision and recall when using a combined model over
using SSM alone. RESOLVER’s F1 is 19% higher
than SSM’s on objects, and 28% higher on relations.

In a separate experiment we found that mutual re-
cursion provides mixed results. A combination of
SSM and ESP without mutual recursion had a preci-
sion of 0.76 and recall of 0.59 on objects, and a pre-
cision of 0.91 and recall of 0.35 on relations. Mutual
recursion increased recall and decreased precision
for both objects and relations. None of the differ-
ences were statistically significant, however.

There is clearly room for improvement on the SR
task. Except for the problem of confusing similar
and identical pairs (see section 5), error analysis
shows that most of RESOLVER’s mistakes are be-
cause of two kinds of errors:
1. Extraction errors. For example, “US News”
gets extracted separately from “World Report”, and
then RESOLVER clusters them together because they
share almost all of the same properties.
2. Multiple word senses. For example, there are two
President Bushes; also, there are many terms like
“President” and “Army” that can refer to many dif-
ferent entities.

6.2 Experiments with Extensions

The extensions to RESOLVER attempt to address
the confusion between similar and identical pairs.
Experiments with the extensions, using the same
datasets and metrics as above, demonstrate that the
Function Filter (FF) and the Coordination-Phrase
Filter (CPF) boost RESOLVER’s performance.

FF requires as input the set of functional and one-
to-one relations in the data. Table 2 contains a sam-

is capital of is capital city of
named after was named after
headquartered in is headquartered in

Table 2: A sample of the set of functions used by the Func-
tion Filter.

Model Prec. Rec. F1
RESOLVER 0.71 0.66 0.68
RESOLVER+FF 0.74 0.66 0.70
RESOLVER+CPF 0.78 0.68 0.73
RESOLVER+FF+CPF 0.78 0.68 0.73

Table 3: Comparison of object merging results for the
RESOLVER system, RESOLVER plus Function Filtering (RE-

SOLVER+FF), RESOLVER plus Coordination-Phrase Filter-
ing (RESOLVER+CPF), and RESOLVER plus both types of fil-
tering (RESOLVER+FF+CPF). Bold indicates the score is sig-

nificantly different from RESOLVER’s score at p < 0.05 us-

ing the chi-squared test with one degree of freedom. RE-

SOLVER+CPF’s F1 on objects is a 28% increase over SSM’s

F1, and a 7% increase over RESOLVER’s F1.

pling of the manually-selected functions used in our
experiment. Automatically discovering such func-
tions from extractions has been addressed in Ana-
Maria Popescu’s dissertation (Popescu, 2007), and
we did not attempt to duplicate this effort in RE-
SOLVER.

Table 3 contains the results of our experiments.
With coordination-phrase filtering, RESOLVER’s F1
is 28% higher than SSM’s on objects, and 6% higher
than RESOLVER’s F1 without filtering. While func-
tion filtering is a promising idea, FF provides a
smaller benefit than CPF on this dataset, and the
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merges that it prevents are, with a few exceptions,
a subset of the merges prevented by CPF. This is in
part due to the limited number of functions available
in the data. In addition to outperforming FF on this
dataset, CPF has the added advantage that it does not
require additional input, like a set of functions.

7 Conclusion and Future Work

We have shown that the unsupervised and scalable
RESOLVER system is able to find clusters of co-
referential object names in extracted relations with
a precision of 78% and a recall of 68% with the aid
of coordination-phrase filtering, and can find clus-
ters of co-referential relation names with precision
of 90% and recall of 35%. We have demonstrated
significant improvements over using simple similar-
ity metrics for this task by employing a novel prob-
abilistic model of coreference.

In future work, we plan to use RESOLVER on a
much larger data set of over a hundred million as-
sertions, further testing its scalability and its abil-
ity to improve in accuracy given additional data.
We also plan to add techniques for handling mul-
tiple word senses. Finally, to make the probabilistic
model more accurate and easier to use, we plan to
investigate methods for automatically estimating its
parameters from unlabeled data.
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