
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume, pages 273–275,
New York City, June 2006.c©2006 Association for Computational Linguistics

Knowtator: A Protégé plug-in for annotated corpus construction

Philip V. Ogren

Division of Biomedical Informatics
Mayo Clinic

Rochester, MN, USA
Ogren.Philip@mayo.edu

Abstract

A general-purpose text annotation tool
called Knowtator is introduced. Knowtator
facilitates the manual creation of annotated
corpora that can be used for evaluating or
training a variety of natural language proc-
essing systems. Building on the strengths
of the widely used Protégé knowledge rep-
resentation system, Knowtator has been
developed as a Protégé plug-in that lever-
ages Protégé’s knowledge representation
capabilities to specify annotation schemas.
Knowtator’s unique advantage over other
annotation tools is the ease with which
complex annotation schemas (e.g. schemas
which have constrained relationships be-
tween annotation types) can be defined and
incorporated into use. Knowtator is avail-
able under the Mozilla Public License 1.1
at http://bionlp.sourceforge.net/Knowtator.

1 Introduction

Knowtator is a general-purpose text annotation tool
for creating annotated corpora suitable for evaluat-
ing Natural Language Processing (NLP) systems.
Such corpora consist of texts (e.g. documents, ab-
stracts, or sentences) and annotations that associate
structured information (e.g. POS tags, named enti-
ties, shallow parses) with extents of the texts. An
annotation schema is a specification of the kinds of
annotations that can be created. Knowtator pro-
vides a very flexible mechanism for defining anno-

tation schemas. This allows it to be employed for
a large variety of corpus annotation tasks.

Protégé is a widely used knowledge representa-
tion system that facilitates construction and visu-
alization of knowledge-bases (Noy, 2003)1. A
Protégé knowledge-base typically consists of class,
instance, slot, and facet frames. Class definitions
represent the concepts of a domain and are organ-
ized in a subsumption hierarchy. Instances corre-
spond to individuals of a class. Slots define
properties of a class or instance and relationships
between classes or instances. Facets constrain the
values that slots can have.

Protégé has garnered widespread usage by pro-
viding an architecture that facilitates the creation
of third-party plug-ins such as visualization tools
and inference engines. Knowtator has been im-
plemented as a Protégé plug-in and runs in the Pro-
tégé environment. In Knowtator, an annotation
schema is defined with Protégé class, instance,
slot, and facet definitions using the Protégé knowl-
edge-base editing functionality. The defined anno-
tation schema can then be applied to a text
annotation task without having to write any task
specific software or edit specialized configuration
files. Annotation schemas in Knowtator can model
both syntactic (e.g. shallow parses) and semantic
phenomena (e.g. protein-protein interactions).

2 Related work

There exists a plethora of manual text annotation
tools for creating annotated corpora. While it has
been common for individual research groups to
build customized annotation tools for their specific

1 http://protege.stanford.edu

273

Figure 1 Simple co-reference annotations in Knowtator

annotation tasks, several text annotation tools have
emerged in the last few years that can be employed
to accomplish a wide variety of annotation tasks.
Some of the better general-purpose annotation
tools include Callisto2, WordFreak3 (Morton and
LaCivita, 2003), GATE4, and MMAX25. Each of
these tools is distributed with a limited number of
annotation tasks that can be used ‘out of the box.’
Many of the tasks that are provided can be custom-
ized to a limited extent to suit the requirements of a
user’s annotation task via configuration files. In
Callisto, for example, a simple annotation schema
can be defined with an XML DTD that allows the
creation of an annotation schema that is essentially
a tag set augmented with simple (e.g. string) attrib-
utes for each tag. In addition to configuration files,
WordFreak provides a plug-in architecture for cre-
ating task specific code modules that can be inte-
grated into the user interface.

A complex annotation schema might include hi-
erarchical relationships between annotation types
and constrained relationships between the types.
Creating such an annotation schema can be a for-
midable challenge for the available tools either

2 http://callisto.mitre.org
3 http://wordfreak.sourceforge.net
4 http://gate.ac.uk/. GATE is a software architecture for NLP that has, as one of
its many components, text annotation functionality.
5http://mmax.eml-research.de/.

because configuration options are too limiting or
because implementing a new plug-in is too expen-
sive or time consuming.

3 Implementation

3.1 Annotation schema

Knowtator approaches the definition of an annota-
tion schema as a knowledge engineering task by
leveraging Protégé’s strengths as a knowledge-
base editor. Protégé has user interface components
for defining class, instance, slot, and facet frames.
A Knowtator annotation schema is created by de-
fining frames using these user interface compo-
nents as a knowledge engineer would when
creating a conceptual model of some domain. For
Knowtator the frame definitions model the phe-
nomena that the annotation task seeks to capture.

As a simple example, the co-reference annota-
tion task that comes with Callisto can be modeled
in Protégé with two class definitions called mark-
able and chain. The chain class has two slots ref-
erences and primary_reference which are
constrained by facets to have values of type mark-
able. This simple annotation schema can now be
used to annotate co-reference phenomena occur-

274

ring in text using Knowtator. Annotations in
Knowtator created using this simple annotation
schema are shown in Figure 1.

A key strength of Knowtator is its ability to re-
late annotations to each other via the slot defini-
tions of the corresponding annotated classes. In
the co-reference example, the slot references of the
class chain relates the markable annotations for the
text extents ‘the cat’ and ‘It’ to the chain annota-
tion. The constraints on the slots ensure that the
relationships between annotations are consistent.

Protégé is capable of representing much more
sophisticated and complex conceptual models
which can be used, in turn, by Knowtator for text
annotation. Also, because Protégé is often used to
create conceptual models of domains relating to
biomedical disciplines, Knowtator is especially
well suited for capturing named entities and rela-
tions between named entities for those domains.

3.2 Features

In addition to its flexible annotation schema defini-
tion capabilities, Knowtator has many other fea-
tures that are useful for executing text annotation
projects. A consensus set creation mode allows
one to create a gold standard using annotations
from multiple annotators. First, annotations from
multiple annotators are aggregated into a single
Knowtator annotation project. Annotations that
represent agreement between the annotators are
consolidated such that the focus of further human
review is on disagreements between annotators.

Inter-annotator agreement (IAA) metrics pro-
vide descriptive reports of consistency between
two or more annotators. Several different match
criteria (i.e. what counts as agreement between
multiple annotations) have been implemented.
Each gives a different perspective on how well
annotators agree with each other and can be useful
for uncovering systematic differences. IAA can
also be calculated for selected annotation types
giving very fine grained analysis data.

Knowtator provides a pluggable infrastructure
for handling different kinds of text source types.
By implementing a simple interface, one can anno-
tate any kind of text (e.g. from xml or a relational
database) with a modest amount of coding.

Knowtator provides stand-off annotation such
that the original text that is being annotated is not

modified. Annotation data can be exported to a
simple XML format.

Annotation filters can be used to view a subset
of available annotations. This may be important if,
for example, viewing only named entity annota-
tions is desired in an annotation project that also
contains many part-of-speech annotations. Filters
are also used to focus IAA analysis and the export
of annotations to XML.

Knowtator can be run as a stand-alone system
(e.g. on a laptop) without a network connection.
For increased scalability, Knowtator can be used
with a relational database backend (via JDBC).

Knowtator and Protégé are provided under the
Mozilla Public License 1.1 and are freely available
with source code at http://bionlp.sourceforge.net/
Knowtator and http://protege.stanford.edu, respec-
tively. Both applications are implemented in the
Java programming language and have been suc-
cessfully deployed and used in the Windows, Ma-
cOS, and Linux environments.

4 Conclusion

Knowtator has been developed to leverage the
knowledge representation and editing capabilities
of the Protégé system. By modeling syntactic
and/or semantic phenomena using Protégé frames,
a wide variety of annotation schemas can be de-
fined and used for annotating text. New annotation
tasks can be created without writing new software
or creating specialized configuration files. Know-
tator also provides additional features that make it
useful for real-world multi-person annotation tasks.

References
Thomas Morton and Jeremy LaCivita. 2003. Word-

Freak: An Open Tool for Linguistic Annotation, Pro-
ceedings of NLT-NAACL, pp. 17-18.

Noy, N. F., M. Crubezy, et al. 2003. Protege-2000: an
open-source ontology-development and knowledge-
acquisition environment. AMIA Annual Symposium
Proceedings: 953.

275

