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Abstract

We consider several empirical estimators

for probabilistic context-free grammars,

and show that the estimated grammars

have the so-called consistency property,

under the most general conditions. Our

estimators include the widely applied ex-

pectation maximization method, used to

estimate probabilistic context-free gram-

mars on the basis of unannotated corpora.

This solves a problem left open in the lit-

erature, since for this method the consis-

tency property has been shown only under

restrictive assumptions on the rules of the

source grammar.

1 Introduction

Probabilistic context-free grammars are one of the

most widely used formalisms in current work in sta-

tistical natural language parsing and stochastic lan-

guage modeling. An important property for a proba-

bilistic context-free grammar is that it be consistent,

that is, the grammar should assign probability of one

to the set of all finite strings or parse trees that it

generates. In other words, the grammar should not

lose probability mass with strings or trees of infinite

length.

Several methods for the empirical estimation of

probabilistic context-free grammars have been pro-

posed in the literature, based on the optimization of

some function on the probabilities of the observed

data, such as the maximization of the likelihood of

a tree bank or a corpus of unannotated sentences. It

has been conjectured in (Wetherell, 1980) that these

methods always provide probabilistic context-free

grammars with the consistency property. A first re-

sult in this direction was presented in (Chaudhuri et

al., 1983), by showing that a probabilistic context-

free grammar estimated by maximizing the likeli-

hood of a sample of parse trees is always consistent.

In later work by (Sánchez and Benedı́, 1997)

and (Chi and Geman, 1998), the result was in-

dependently extended to expectation maximization,

which is an unsupervised method exploited to es-

timate probabilistic context-free grammars by find-

ing local maxima of the likelihood of a sample of

unannotated sentences. The proof in (Sánchez and

Benedı́, 1997) makes use of spectral analysis of ex-

pectation matrices, while the proof in (Chi and Ge-

man, 1998) is based on a simpler counting argument.

Both these proofs assume restrictions on the un-

derlying context-free grammars. More specifically,

in (Chi and Geman, 1998) empty rules and unary

rules are not allowed, thus excluding infinite ambi-

guity, that is, the possibility that some string in the

input sample has an infinite number of derivations in

the grammar. The treatment of general form context-

free grammars has been an open problem so far.

In this paper we consider several estimation meth-

ods for probabilistic context-free grammars, and we

show that the resulting grammars have the consis-

tency property. Our proofs are applicable under

the most general conditions, and our results also

include the expectation maximization method, thus

solving the open problem discussed above. We use

an alternative proof technique with respect to pre-
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vious work, based on an already known renormal-

ization construction for probabilistic context-free

grammars, which has been used in the context of

language modeling.

The structure of this paper is as follows. We pro-

vide some preliminary definitions in Section 2, fol-

lowed in Section 3 by a brief overview of the esti-

mation methods we investigate in this paper. In Sec-

tion 4 we prove some properties of a renormaliza-

tion technique for probabilistic context-free gram-

mars, and use this property to show our main results

in Section 5. Section 6 closes with some concluding

remarks.

2 Preliminaries

In this paper we use mostly standard notation, as for

instance in (Hopcroft and Ullman, 1979) and (Booth

and Thompson, 1973), which we summarize below.

A context-free grammar (CFG) is a 4-tuple G =
(N,Σ, S,R) where N and Σ are finite disjoint sets

of nonterminal and terminal symbols, respectively,

S ∈ N is the start symbol and R is a finite set of

rules. Each rule has the form A → α, where A ∈ N

and α ∈ (Σ ∪ N)∗. We write V for set Σ ∪ N .

Each CFG G is associated with a left-most de-

rive relation ⇒, defined on triples consisting of two

strings γ, δ ∈ V ∗ and a rule π ∈ R. We write γ
π
⇒ δ

if and only if γ = uAγ′ and δ = uαγ′, for some

u ∈ Σ∗, γ′ ∈ V ∗, and π = (A → α). A left-

most derivation for G is a string d = π1 · · ·πm,

m ≥ 0, such that γ0
π1⇒ γ1

π2⇒ · · ·
πm⇒ γm, for

some γ0, . . . , γm ∈ V ∗; d = ε (where ε denotes

the empty string) is also a left-most derivation. In

the remainder of this paper, we will let the term

derivation always refer to left-most derivation. If

γ0
π1⇒ · · ·

πm⇒ γm for some γ0, . . . , γm ∈ V ∗, then

we say that d = π1 · · ·πm derives γm from γ0 and

we write γ0
d
⇒ γm; d = ε derives any γ0 ∈ V ∗ from

itself.

A (left-most) derivation d such that S
d
⇒ w,

w ∈ Σ∗, is called a complete derivation. If d is

a complete derivation, we write y(d) to denote the

(unique) string w ∈ Σ∗ such that S
d
⇒ w. We

define D(G) to be the set of all complete deriva-

tions for G. The language generated by G is the set

of all strings derived by complete derivations, i.e.,

L(G) = {y(d) | d ∈ D(G)}. It is well-known that

there is a one-to-one correspondence between com-

plete derivations and parse trees for strings in L(G).
For X ∈ V and α ∈ V ∗, we write f(X, α) to

denote the number of occurrences of X in α. For

(A → α) ∈ R and a derivation d, f(A → α, d)
denotes the number of occurrences of A → α in d.

We let f(A, d) =
∑

α f(A → α, d).
A probabilistic CFG (PCFG) is a pair G =

(G, pG), where G is a CFG and pG is a function

from R to real numbers in the interval [0, 1]. We

say that G is proper if, for every A ∈ N , we have

∑

A→α

pG(A → α) = 1. (1)

Function pG can be used to assign probabilities to

derivations of the underlying CFG G, in the follow-

ing way. For d = π1 · · ·πm ∈ R∗, m ≥ 0, we define

pG(d) =
m∏

i=1

pG(πi). (2)

Note that pG(ε) = 1. The probability of a string

w ∈ Σ∗ is defined as

pG(w) =
∑

y(d)=w

pG(d). (3)

A PCFG is consistent if

∑

w

pG(w) = 1. (4)

Consistency implies that the PCFG defines a proba-

bility distribution over both sets D(G) and L(G).
If a PCFG is proper, then consistency means that

no probability mass is lost in derivations of infinite

length. All PCFGs in this paper are implicitly as-

sumed to be proper, unless otherwise stated.

3 Estimation of PCFGs

In this section we give a brief overview of some esti-

mation methods for PCFGs. These methods will be

later investigated to show that they always provide

consistent PCFGs.

In natural language processing applications, esti-

mation of a PCFG is usually carried out on the ba-

sis of a tree bank, which in this paper we assume to

be a sample, that is, a finite multiset, of complete

derivations. Let D be such a sample, and let D be
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the underlying set of derivations. For d ∈ D, we

let f(d,D) be the multiplicity of d in D, that is, the

number of occurrences of d in D. We define

f(A → α,D) =∑

d∈D

f(d,D) · f(A → α, d), (5)

and let f(A,D) =
∑

α f(A → α,D).
Consider a CFG G = (N,Σ,R, S) defined by

all and only the nonterminals, terminals and rules

observed in D. The criterion of maximum likeli-

hood estimation (MLE) prescribes the construction

of a PCFG G = (G, pG) such that pG maximizes the

likelihood of D, defined as

pG(D) =
∏

d∈D

pG(d)f(d,D), (6)

subject to the properness conditions
∑

α pG(A →
α) = 1 for each A ∈ N . The maximization problem

above has a unique solution, provided by the estima-

tor (see for instance (Chi and Geman, 1998))

pG(A → α) =
f(A → α,D)

f(A,D)
. (7)

We refer to this as the supervised MLE method.

In applications in which a tree bank is not avail-

able, one might still use the MLE criterion to train

a PCFG in an unsupervised way, on the basis of a

sample of unannotated sentences, also called a cor-

pus. Let us call C such a sample and C the underly-

ing set of sentences. For w ∈ C, we let f(w, C) be

the multiplicity of w in C.

Assume a CFG G = (N,Σ,R, S) that is able

to generate all of the sentences in C, and possibly

more. The MLE criterion prescribes the construc-

tion of a PCFG G = (G, pG) such that pG maxi-

mizes the likelihood of C, defined as

pG(C) =
∏

w∈C

pG(w)f(w,C), (8)

subject to the properness conditions as in the super-

vised case above. The above maximization prob-

lem provides a system of |R| nonlinear equations

(see (Chi and Geman, 1998))

pG(A → α) =
∑

w∈C f(w, C) · EpG(d |w) f(A → α, d)
∑

w∈C f(w, C) · EpG(d |w) f(A, d)
, (9)

where Ep denotes an expectation computed under

distribution p, and pG(d |w) is the probability of

derivation d conditioned by sentence w (so that

pG(d |w) > 0 only if y(d) = w). The solution to

the above system is not unique, because of the non-

linearity. Furthermore, each solution of (9) identi-

fies a point where the curve in (8) has partial deriva-

tives of zero, but this does not necessarily corre-

spond to a local maximum, let alone an absolute

maximum. (A point with partial derivatives of zero

that is not a local maximum could be a local min-

imum or even a so-called saddle point.) In prac-

tice, this system is typically solved by means of an

iterative algorithm called inside/outside (Charniak,

1993), which implements the expectation maximiza-

tion (EM) method (Dempster et al., 1977). Starting

with an initial function pG that probabilistically ex-

tends G, a so-called growth transformation is com-

puted, defined as

pG(A → α) =
∑

w∈C f(w, C)·
∑

y(d)=w
pG(d)
pG(w) ·f(A → α, d)

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A, d)

. (10)

Following (Baum, 1972), one can show that

pG(C) ≥ pG(C). Thus, by iterating the growth trans-

formation above, we are guaranteed to reach a local

maximum for (8), or possibly a saddle point. We

refer to this as the unsupervised MLE method.

We now discuss a third estimation method for

PCFGs, which was proposed in (Corazza and Satta,

2006). This method can be viewed as a general-

ization of the supervised MLE method to probabil-

ity distributions defined over infinite sets of com-

plete derivations. Let D be an infinite set of com-

plete derivations using nonterminal symbols in N ,

start symbol S ∈ N and terminal symbols in Σ.

We assume that the set of rules that are observed

in D is drawn from some finite set R. Let pD be

a probability distribution defined over D, that is,

a function from set D to interval [0, 1] such that∑
d∈D pD(d) = 1.

Consider the CFG G = (N,Σ,R, S). Note that

D ⊆ D(G). We wish to extend G to some PCFG

G = (G, pG) in such a way that pD is approxi-

mated by pG (viewed as a distribution over complete

derivations) as well as possible according to some

criterion. One possible criterion is minimization of
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the cross-entropy between pD and pG, defined as

the expectation, under distribution pD, of the infor-

mation of the derivations in D computed under dis-

tribution pG, that is

H(pD || pG) = EpD
log

1

pG(d)

= −
∑

d∈D

pD(d) · log pG(d). (11)

We thus want to assign to the parameters pG(A →
α), A → α ∈ R, the values that minimize (11), sub-

ject to the conditions
∑

α pG(A → α) = 1 for each

A ∈ N . Note that minimization of the cross-entropy

above is equivalent to minimization of the Kullback-

Leibler distance between pD and pG. Also note that

the likelihood of an infinite set of derivations would

always be zero and therefore cannot be considered

here.

The solution to the above minimization problem

provides the estimator

pG(A → α) =
EpD

f(A → α, d)

EpD
f(A, d)

. (12)

A proof of this result appears in (Corazza and Satta,

2006), and is briefly summarized in Appendix A,

in order to make this paper self-contained. We call

the above estimator the cross-entropy minimization

method.

The cross-entropy minimization method can be

viewed as a generalization of the supervised MLE

method in (7), as shown in what follows. Let D and

D be defined as for the supervised MLE method. We

define a distribution over D as

pD(d) =
f(d,D)

|D|
. (13)

Distribution pD is usually called the empirical dis-

tribution associated with D. Applying the estimator

in (12) to pD, we obtain

pG(A → α) =

=

∑
d∈D pD(d) · f(A → α, d)
∑

d∈D pD(d) · f(A, d)

=

∑
d∈D

f(d,D)
|D| · f(A → α, d)

∑
d∈D

f(d,D)
|D| · f(A, d)

=

∑
d∈D f(d,D) · f(A → α, d)
∑

d∈D f(d,D) · f(A, d)
. (14)

This is the supervised MLE estimator in (7). This re-

minds us of the well-known fact that maximizing the

likelihood of a (finite) sample through a PCFG dis-

tribution amounts to minimizing the cross-entropy

between the empirical distribution of the sample and

the PCFG distribution itself.

4 Renormalization

In this section we recall a renormalization technique

for PCFGs that was used before in (Abney et al.,

1999), (Chi, 1999) and (Nederhof and Satta, 2003)

for different purposes, and is exploited in the next

section to prove our main results. In the remainder

of this section, we assume a fixed, not necessarily

proper PCFG G = (G, pG), with G = (N,Σ, S,R).
We define the renormalization of G as the PCFG

R(G) = (G, pR) with pR specified by

pR(A → α) =

pG(A → α) ·

∑
d,w pG(α

d
⇒ w)

∑
d,w pG(A

d
⇒ w)

. (15)

It is not difficult to see that R(G) is a proper PCFG.

We now show an important property of R(G), dis-

cussed before in (Nederhof and Satta, 2003) in the

context of so-called weighted context-free gram-

mars.

Lemma 1 For each derivation d with A
d
⇒ w, A ∈

N and w ∈ Σ∗, we have

pR(A
d
⇒ w) =

pG(A
d
⇒ w)

∑
d′,w′ pG(A

d′
⇒ w′)

. (16)

Proof. The proof is by induction on the length of d,

written |d|. If |d| = 1 we must have d = (A → w),
and thus pR(d) = pR(A → w). In this case, the

statement of the lemma directly follows from (15).

Assume now |d| > 1 and let π = (A → α)
be the first rule used in d. Note that there must

be at least one nonterminal symbol in α. We can

then write α as u0A1u1A2 · · ·uq−1Aquq, for q ≥ 1,

Ai ∈ N , 1 ≤ i ≤ q, and uj ∈ Σ∗, 0 ≤
j ≤ q. In words, A1, . . . , Aq are all of the occur-

rences of nonterminals in α, as they appear from

left to right. Consequently, we can write d in the

form d = π · d1 · · · dq for some derivations di,

1 ≤ i ≤ q, with Ai
di⇒ wi, |di| ≥ 1 and with

346



w = u0w1u1w2 · · ·uq−1wquq. Below we use the

fact that pR(uj
ε
⇒ uj) = pG(uj

ε
⇒ uj) = 1 for

each j with 0 ≤ j ≤ q, and further using the def-

inition of pR and the inductive hypothesis, we can

write

pR(A
d
⇒ w) =

= pR(A → α) ·
q∏

i=1

pR(Ai
di⇒ wi)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·
q∏

i=1

pR(Ai
di⇒ wi)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·
q∏

i=1

pG(Ai
di⇒ wi)

∑
d′,w′ pG(Ai

d′
⇒ w′)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·

∏q
i=1 pG(Ai

di⇒ wi)
∏q

i=1

∑
d′,w′ pG(Ai

d′
⇒ w′)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·

∏q
i=1 pG(Ai

di⇒ wi)
∑

d′,w′ pG(α
d′
⇒ w′)

= pG(A → α) ·

∏q
i=1 pG(Ai

di⇒ wi)
∑

d′,w′ pG(A
d′
⇒ w′)

·

=
pG(A

d
⇒ w)

∑
d′,w′ pG(A

d′
⇒ w′)

. (17)

As an easy corollary of Lemma 1, we have that

R(G) is a consistent PCFG, as we can write

∑

d,w

pR(S
d
⇒ w) =

=
∑

d,w

pG(S
d
⇒ w)

∑
d′,w′ pG(S

d′
⇒ w′)

=

∑
d,w pG(S

d
⇒ w)

∑
d′,w′ pG(S

d′
⇒ w′)

= 1. (18)

5 Consistency

In this section we prove the main results of this

paper, namely that all of the estimation methods

discussed in Section 3 always provide consistent

PCFGs. We start with a technical lemma, central

to our results, showing that a PCFG that minimizes

the cross-entropy with a distribution over any set of

derivations must be consistent.

Lemma 2 Let G = (G, pG) be a proper PCFG

and let pD be a probability distribution defined over

some set D ⊆ D(G). If G minimizes function

H(pD || pG), then G is consistent.

Proof. Let G = (N,Σ, S,R), and assume that G is

not consistent. We establish a contradiction. Since G

is not consistent, we must have
∑

d,w pG(S
d
⇒ w) <

1. Let then R(G) = (G, pR) be the renormalization

of G, defined as in (15). For any derivation S
d
⇒ w,

w ∈ Σ∗, with d in D, we can use Lemma 1 and

write

pR(S
d
⇒ w) =

=
1

∑
d′,w′ pG(S

d′
⇒ w′)

· pG(S
d
⇒ w)

> pG(S
d
⇒ w). (19)

In words, every complete derivation d in D has a

probability in R(G) that is strictly greater than in

G. But this means H(pD || pR) < H(pD || pG),
against our hypothesis. Therefore, G is consistent

and pG is a probability distribution over set D(G).
Thus function H(pD || pG) can be interpreted as the

cross-entropy. (Observe that in the statement of the

lemma we have avoided the term ‘cross-entropy’,

since cross-entropies are only defined for probability

distributions.)

Lemma 2 directly implies that the cross-entropy

minimization method in (12) always provides a con-

sistent PCFG, since it minimizes cross-entropy for a

distribution defined over a subset of D(G). We have

already seen in Section 3 that the supervised MLE

method is a special case of the cross-entropy min-

imization method. Thus we can also conclude that

a PCFG trained with the supervised MLE method is
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always consistent. This provides an alternative proof

of a property that was first shown in (Chaudhuri et

al., 1983), as discussed in Section 1.

We now prove the same result for the unsuper-

vised MLE method, without any restrictive assump-

tion on the rules of our CFGs. This solves a problem

that was left open in the literature (Chi and Geman,

1998); see again Section 1 for discussion. Let C and

C be defined as in Section 3. We define the empiri-

cal distribution of C as

pC(w) =
f(w, C)

|C|
. (20)

Let G = (N,Σ, S,R) be a CFG such that C ⊆
L(G). Let D(C) be the set of all complete deriva-

tions for G that generate sentences in C, that is,

D(C) = {d | d ∈ D(G), y(d) ∈ C}.

Further, assume some probabilistic extension G =
(G, pG) of G, such that pG(d) > 0 for every d ∈
D(C). We define a distribution over D(C) by

pD(C)(d) = pC(y(d)) ·
pG(d)

pG(y(d))
. (21)

It is not difficult to verify that
∑

d∈D(C)

pD(C)(d) = 1. (22)

We now apply to G the estimator in (12), in order

to obtain a new PCFG Ĝ = (G, p̂G) that minimizes

the cross-entropy between pD(C) and p̂G. According

to Lemma 2, we have that Ĝ is a consistent PCFG.

Distribution p̂G is specified by

p̂G(A → α) =

=

∑
d∈D(C) pD(C)(d)·f(A → α, d)
∑

d∈D(C) pD(C)(d)·f(A, d)

=

∑
d∈D(C)

f(y(d),C)
|C| · pG(d)

pG(y(d)) ·f(A → α, d)
∑

d∈D(C)
f(y(d),C)

|C| · pG(d)
pG(y(d)) ·f(A, d)

=

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A → α, d)

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A, d)

=

∑
w∈C f(w, C)·EpG(d |w)f(A → α, d)
∑

w∈C f(w, C)·EpG(d |w)f(A, d)
. (23)

Since distribution pG was arbitrarily chosen, sub-

ject to the only restriction that pG(d) > 0 for ev-

ery d ∈ D(C), we have that (23) is the growth

estimator (10) already discussed in Section 3. In

fact, for each w ∈ L(G) and d ∈ D(G), we have

pG(d |w) = pG(d)
pG(w) . We conclude with the desired

result, namely that a general form PCFG obtained at

any iteration of the EM method for the unsupervised

MLE is always consistent.

6 Conclusions

In this paper we have investigated a number of

methods for the empirical estimation of probabilis-

tic context-free grammars, and have shown that the

resulting grammars have the so-called consistency

property. This property guarantees that all the prob-

ability mass of the grammar is used for the finite

strings it derives. Thus if the grammar is used in

combination with other probabilistic models, as for

instance in a speech processing system, consistency

allows us to combine or compare scores from differ-

ent modules in a sound way.

To obtain our results, we have used a novel proof

technique that exploits an already known construc-

tion for the renormalization of probabilistic context-

free grammars. Our proof technique seems more

intuitive than arguments previously used in the lit-

erature to prove the consistency property, based on

counting arguments or on spectral analysis. It is

not difficult to see that our proof technique can

also be used with probabilistic rewriting formalisms

whose underlying derivations can be characterized

by means of context-free rewriting. This is for

instance the case with probabilistic tree-adjoining

grammars (Schabes, 1992; Sarkar, 1998), for which

consistency results have not yet been shown in the

literature.

A Cross-entropy minimization

In order to make this paper self-contained, we sketch

a proof of the claim in Section 3 that the estimator

in (12) minimizes the cross entropy in (11). A full

proof appears in (Corazza and Satta, 2006).

Let D, pD and G = (N,Σ,R, S) be defined as

in Section 3. We want to find a proper PCFG G =
(G, pG) such that the cross-entropy H(pD || pG) is

minimal. We use Lagrange multipliers λA for each

A ∈ N and define the form

∇ =
∑

A∈N

λA · (
∑

α

pG(A → α) − 1) +
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−
∑

d∈D

pD(d) · log pG(d). (24)

We now consider all the partial derivatives of ∇. For

each A ∈ N we have

∂∇

∂λA

=
∑

α

pG(A → α) − 1. (25)

For each (A → α) ∈ R we have

∂∇

∂pG(A → α)
=

= λA −
∂

∂pG(A → α)

∑

d∈D

pD(d) · log pG(d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)
log pG(d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)

log
∏

(B→β)∈R

pG(B → β)f(B→β,d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)
∑

(B→β)∈R

f(B → β, d) · log pG(B → β)

= λA −
∑

d∈D

pD(d) ·
∑

(B→β)∈R

f(B → β, d) ·

∂

∂pG(A → α)
log pG(B → β)

= λA −
∑

d∈D

pD(d) · f(A → α, d) ·

·
1

ln(2)
·

1

pG(A → α)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·
∑

d∈D

pD(d) · f(A → α, d)

= λA −
1

ln(2)
·

1

pG(A → α)
·

· EpD
f(A → α, d). (26)

By setting to zero all of the above partial derivatives,

we obtain a system of |N |+|R| equations, which we

must solve. From ∂∇
∂pG(A→α) = 0 we obtain

λA · ln(2) · pG(A → α) =

EpD
f(A → α, d). (27)

We sum over all strings α such that (A → α) ∈ R,

deriving

λA · ln(2) ·
∑

α

pG(A → α) =

=
∑

α

EpD
f(A → α, d)

=
∑

α

∑

d∈D

pD(d) · f(A → α, d)

=
∑

d∈D

pD(d) ·
∑

α

f(A → α, d)

=
∑

d∈D

pD(d) · f(A, d)

= EpD
f(A, d). (28)

From each equation ∂∇
∂λA

= 0 we obtain∑
α pG(A → α) = 1 for each A ∈ N (our original

constraints). Combining this with (28) we obtain

λA · ln(2) = EpD
f(A, d). (29)

Replacing (29) into (27) we obtain, for every rule

(A → α) ∈ R,

pG(A → α) =
EpD

f(A → α, d)

EpD
f(A, d)

. (30)

This is the estimator introduced in Section 3.
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