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Abstract

This paper advocates a new architecture for tex-
tual inference in which finding a good alignment is
separated from evaluating entailment. Current ap-
proaches to semantic inference in question answer-
ing and textual entailment have approximated the
entailment problem as that of computing the best
alignment of the hypothesis to the text, using a lo-
cally decomposable matching score. We argue that
there are significant weaknesses in this approach,
including flawed assumptions of monotonicity and
locality. Instead we propose a pipelined approach
where alignment is followed by a classification
step, in which we extract features representing
high-level characteristics of the entailment prob-
lem, and pass the resulting feature vector to a statis-
tical classifier trained on development data. We re-
port results on data from the 2005 Pascal RTE Chal-
lenge which surpass previously reported results for
alignment-based systems.

1 Introduction

During the last five years there has been a surge in
work which aims to provide robust textual inference
in arbitrary domains about which the system has no
expertise. The best-known such work has occurred
within the field of question answering (Pasca and
Harabagiu, 2001; Moldovan et al., 2003); more re-
cently, such work has continued with greater focus
in addressing the PASCAL Recognizing Textual En-
tailment (RTE) Challenge (Dagan et al., 2005) and
within the U.S. Government AQUAINT program.
Substantive progress on this task is key to many
text and natural language applications. If one could
tell thatProtestors chanted slogans opposing a free
trade agreementwas a match forpeople demonstrat-
ing against free trade, then one could offer a form of
semantic search not available with current keyword-
based search. Even greater benefits would flow to
richer and more semantically complex NLP tasks.

Because full, accurate, open-domain natural lan-
guage understanding lies far beyond current capa-
bilities, nearly all efforts in this area have sought
to extract the maximum mileage from quite lim-
ited semantic representations. Some have used sim-
ple measures of semantic overlap, but the more in-
teresting work has largely converged on a graph-
alignment approach, operating on semantic graphs
derived from syntactic dependency parses, and using
a locally-decomposable alignment score as a proxy
for strength of entailment. (Below, we argue that
even approaches relying on weighted abduction may
be seen in this light.) In this paper, we highlight the
fundamental semantic limitations of this type of ap-
proach, and advocate a multi-stage architecture that
addresses these limitations. The three key limita-
tions are anassumption of monotonicity, anassump-
tion of locality, and aconfounding of alignment and
evaluation of entailment.

We focus on the PASCAL RTE data, examples
from which are shown in table 1. This data set con-
tains pairs consisting of a short text followed by a
one-sentence hypothesis. The goal is to say whether
the hypothesis follows from the text and general
background knowledge, according to the intuitions
of an intelligent human reader. That is, the standard
is not whether the hypothesis is logically entailed,
but whether it can reasonably be inferred.

2 Approaching a robust semantics

In this section we try to give a unifying overview
to current work on robust textual inference, to
present fundamental limitations of current meth-
ods, and then to outline our approach to resolving
them. Nearly all current textual inference systems
use a single-stage matching/proof process, and differ
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ID Text Hypothesis Entailed
59 Two Turkish engineers and an Afghan translator kidnapped

in December were freed Friday.
translator kidnapped in Iraq no

98 Sharon warns Arafat could be targeted for assassination. prime minister targeted for assassination no
152 Twenty-five of the dead were members of the law enforce-

ment agencies and the rest of the 67 were civilians.
25 of the dead were civilians. no

231 The memorandum noted the United Nations estimated that
2.5 million to 3.5 million people died of AIDS last year.

Over 2 million people died of AIDS last
year.

yes

971 Mitsubishi Motors Corp.’s new vehicle sales in the US fell
46 percent in June.

Mitsubishi sales rose 46 percent. no

1806 Vanunu, 49, was abducted by Israeli agents and convicted
of treason in 1986 after discussing his work as a mid-level
Dimona technician with Britain’s Sunday Times newspaper.

Vanunu’s disclosures in 1968 led experts
to conclude that Israel has a stockpile of
nuclear warheads.

no

2081 The main race track in Qatar is located in Shahaniya, on the
Dukhan Road.

Qatar is located in Shahaniya. no

Table 1: Illustrative examples from the PASCAL RTE data set,available athttp://www.pascal-network.org/Challenges/RTE.
Though most problems shown have answerno, the data set is actually balanced betweenyesandno.

mainly in the sophistication of the matching stage.
The simplest approach is to base the entailment pre-
diction on the degree of semantic overlap between
the text and hypothesis using models based on bags
of words, bags ofn-grams, TF-IDF scores, or some-
thing similar (Jijkoun and de Rijke, 2005). Such
models have serious limitations: semantic overlap is
typically a symmetric relation, whereas entailment
is clearly not, and, because overlap models do not
account for syntactic or semantic structure, they are
easily fooled by examples like ID 2081.

A more structured approach is to formulate the
entailment prediction as a graph matching problem
(Haghighi et al., 2005; de Salvo Braz et al., 2005).
In this formulation, sentences are represented as nor-
malized syntactic dependency graphs (like the one
shown in figure 1) and entailment is approximated
with an alignment between the graph representing
the hypothesis and a portion of the corresponding
graph(s) representing the text. Each possible align-
ment of the graphs has an associated score, and the
score of the best alignment is used as an approxi-
mation to the strength of the entailment: a better-
aligned hypothesis is assumed to be more likely to
be entailed. To enable incremental search, align-
ment scores are usually factored as a combination
of local terms, corresponding to the nodes and edges
of the two graphs. Unfortunately, even with factored
scores the problem of finding the best alignment of
two graphs is NP-complete, so exact computation is
intractable. Authors have proposed a variety of ap-
proximate search techniques. Haghighi et al. (2005)

divide the search into two steps: in the first step they
consider node scores only, which relaxes the prob-
lem to a weighted bipartite graph matching that can
be solved in polynomial time, and in the second step
they add the edges scores and hillclimb the align-
ment via an approximate local search.

A third approach, exemplified by Moldovan et al.
(2003) and Raina et al. (2005), is to translate de-
pendency parses into neo-Davidsonian-style quasi-
logical forms, and to perform weighted abductive
theorem proving in the tradition of (Hobbs et al.,
1988). Unless supplemented with a knowledge
base, this approach is actually isomorphic to the
graph matching approach. For example, the graph
in figure 1 might generate the quasi-LFrose(e1),
nsubj(e1, x1), sales(x1), nn(x1, x2), Mitsubishi(x2),
dobj(e1, x3), percent(x3), num(x3, x4), 46(x4).
There is a term corresponding to each node and arc,
and the resolution steps at the core of weighted ab-
duction theorem proving consider matching an indi-
vidual node of the hypothesis (e.g.rose(e1)) with
something from the text (e.g.fell(e1)), just as in
the graph-matching approach. The two models be-
come distinct when there is a good supply of addi-
tional linguistic and world knowledge axioms—as in
Moldovan et al. (2003) but not Raina et al. (2005).
Then the theorem prover may generate intermedi-
ate forms in the proof, but, nevertheless, individ-
ual terms are resolved locally without reference to
global context.

Finally, a few efforts (Akhmatova, 2005; Fowler
et al., 2005; Bos and Markert, 2005) have tried to
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translate sentences into formulas of first-order logic,
in order to test logical entailment with a theorem
prover. While in principle this approach does not
suffer from the limitations we describe below, in
practice it has not borne much fruit. Because few
problem sentences can be accurately translated to
logical form, and because logical entailment is a
strict standard, recall tends to be poor.

The simple graph matching formulation of the
problem belies three important issues. First, the
above systems assume a form of upward monotonic-
ity: if a good match is found with a part of the text,
other material in the text is assumed not to affect
the validity of the match. But many situations lack
this upward monotone character. Consider variants
on ID 98. Suppose the hypothesis wereArafat tar-
geted for assassination. This would allow a perfect
graph match or zero-cost weighted abductive proof,
because the hypothesis is a subgraph of the text.
However, this would be incorrect because it ignores
the modal operatorcould. Information that changes
the validity of a proof can also exist outside a match-
ing clause. Consider the alternate textSharon denies
Arafat is targeted for assassination.1

The second issue is the assumption of locality.
Locality is needed to allow practical search, but
many entailment decisions rely on global features of
the alignment, and thus do not naturally factor by
nodes and edges. To take just one example, drop-
ping a restrictive modifier preserves entailment in a
positive context, but not in a negative one. For exam-
ple,Dogs barked loudlyentailsDogs barked, butNo
dogs barked loudlydoes not entailNo dogs barked.
These more global phenomena cannot be modeled
with a factored alignment score.

The last issue arising in the graph matching ap-
proaches is the inherent confounding of alignment
and entailment determination. The way to show that
one graph element does not follow from another is
to make the cost of aligning them high. However,
since we are embedded in a search for the lowest
cost alignment, this will just cause the system to
choose an alternate alignment rather than recogniz-
ing a non-entailment. In ID 152, we would like the
hypothesis to align with the first part of the text, to

1This is the same problem labeled and addressed ascontext
in Tatu and Moldovan (2005).

be able to prove that civilians are not members of
law enforcement agencies and conclude that the hy-
pothesis does not follow from the text. But a graph-
matching system will to try to get non-entailment
by making the matching cost betweencivilians and
members of law enforcement agenciesbe very high.
However, the likely result of that is that the final part
of the hypothesis will align withwere civiliansat
the end of the text, assuming that we allow an align-
ment with “loose” arc correspondence.2 Under this
candidate alignment, the lexical alignments are per-
fect, and the only imperfect alignment is the subject
arc of were is mismatched in the two. A robust in-
ference guesser will still likely conclude that there is
entailment.

We propose that all three problems can be re-
solved in a two-stage architecture, where the align-
ment phase is followed by a separate phase of en-
tailment determination. Although developed inde-
pendently, the same division between alignment and
classification has also been proposed by Marsi and
Krahmer (2005), whose textual system is developed
and evaluated on parallel translations into Dutch.
Their classification phase features an output space
of five semantic relations, and performs well at dis-
tinguishing entailing sentence pairs.

Finding aligned content can be done by any search
procedure. Compared to previous work, we empha-
size structural alignment, and seek to ignore issues
like polarity and quantity, which can be left to a
subsequent entailment decision. For example, the
scoring function is designed to encourage antonym
matches, and ignore the negation of verb predicates.
The ideas clearly generalize to evaluating several
alignments, but we have so far worked with just
the one-best alignment. Given a good alignment,
the determination of entailment reduces to a simple
classification decision. The classifier is built over
features designed to recognize patterns of valid and
invalid inference. Weights for the features can be
hand-set or chosen to minimize a relevant loss func-
tion on training data using standard techniques from
machine learning. Because we already have a com-
plete alignment, the classifier’s decision can be con-

2Robust systems need to allow matches with imperfect arc
correspondence. For instance, givenBill went to Lyons to study
French farming practices, we would like to be able to conclude
thatBill studied French farmingdespite the structural mismatch.
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ditioned on arbitraryglobal features of the aligned
graphs, and it can detect failures of monotonicity.

3 System

Our system has three stages: linguistic analysis,
alignment, and entailment determination.

3.1 Linguistic analysis

Our goal in this stage is to compute linguistic rep-
resentations of the text and hypothesis that contain
as much information as possible about their seman-
tic content. We usetyped dependency graphs, which
contain a node for each word and labeled edges rep-
resenting the grammatical relations between words.
Figure 1 gives the typed dependency graph for ID
971. This representation contains much of the infor-
mation about words and relations between them, and
is relatively easy to compute from a syntactic parse.
However many semantic phenomena are not repre-
sented properly; particularly egregious is the inabil-
ity to represent quantification and modality.

We parse input sentences to phrase structure
trees using the Stanford parser (Klein and Manning,
2003), a statistical syntactic parser trained on the
Penn TreeBank. To ensure correct parsing, we pre-
process the sentences to collapse named entities into
new dedicated tokens. Named entities are identi-
fied by a CRF-based NER system, similar to that
described in (McCallum and Li, 2003). After pars-
ing, contiguous collocations which appear in Word-
Net (Fellbaum, 1998) are identified and grouped.

We convert the phrase structure trees to typed de-
pendency graphs using a set of deterministic hand-
coded rules (de Marneffe et al., 2006). In these rules,
heads of constituents are first identified using a mod-
ified version of the Collins head rules that favor se-
mantic heads (such as lexical verbs rather than aux-
iliaries), and dependents of heads are typed using
tregexpatterns (Levy and Andrew, 2006), an exten-
sion of thetgreppattern language. The nodes in the
final graph are then annotated with their associated
word, part-of-speech (given by the parser), lemma
(given by a finite-state transducer described by Min-
nen et al. (2001)) and named-entity tag.

3.2 Alignment

The purpose of the second phase is to find a good
partial alignment between the typed dependency

graphs representing the hypothesis and the text. An
alignment consists of a mapping from each node
(word) in the hypothesis graph to a single node in
the text graph, or to null.3 Figure 1 gives the align-
ment for ID 971.

The space of alignments is large: there are
O((m + 1)n) possible alignments for a hypothesis
graph withn nodes and a text graph withm nodes.
We define a measure of alignment quality, and a
procedure for identifying high scoring alignments.
We choose a locally decomposable scoring function,
such that the score of an alignment is the sum of
the local node and edge alignment scores. Unfor-
tunately, there is no polynomial time algorithm for
finding the exact best alignment. Instead we use an
incremental beam search, combined with a node or-
dering heuristic, to do approximate global search in
the space of possible alignments. We have exper-
imented with several alternative search techniques,
and found that the solution quality is not very sensi-
tive to the specific search procedure used.

Our scoring measure is designed to favor align-
ments which align semantically similar subgraphs,
irrespective of polarity. For this reason, nodes re-
ceive high alignment scores when the words they
represent are semantically similar. Synonyms and
antonyms receive the highest score, and unrelated
words receive the lowest. Our hand-crafted scor-
ing metric takes into account the word, the lemma,
and the part of speech, and searches for word relat-
edness using a range of external resources, includ-
ing WordNet, precomputed latent semantic analysis
matrices, and special-purpose gazettes. Alignment
scores also incorporate local edge scores, which are
based on the shape of the paths between nodes in
the text graph which correspond to adjacent nodes
in the hypothesis graph. Preserved edges receive the
highest score, and longer paths receive lower scores.

3.3 Entailment determination

In the final stage of processing, we make a deci-
sion about whether or not the hypothesis is entailed
by the text, conditioned on the typed dependency
graphs, as well as the best alignment between them.

3The limitations of using one-to-one alignments are miti-
gated by the fact that many multiword expressions (e.g. named
entities, noun compounds, multiword prepositions) have been
collapsed into single nodes during linguistic analysis.
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rose

sales

Mitsubishi

percent

46

nsubj dobj

nn num

Alignment

rose → fell
sales → sales
Mitsubishi → Mitsubishi Motors Corp.
percent → percent
46 → 46

Alignment score:−0.8962

Features

Antonyms aligned in pos/pos context −

Structure: main predicate good match +
Number: quantity match +
Date: text date deleted in hypothesis −

Alignment: good score +

Entailment score:−5.4262

Figure 1: Problem representation for ID 971: typed dependency graph (hypothesis only), alignment, and entailment features.

Because we have a data set of examples that are la-
beled for entailment, we can use techniques from su-
pervised machine learning to learn a classifier. We
adopt the standard approach of defining a featural
representation of the problem and then learning a
linear decision boundary in the feature space. We
focus here on the learning methodology; the next
section covers the definition of the set of features.

Defined in this way, one can apply any statistical
learning algorithm to this classification task, such
as support vector machines, logistic regression, or
naive Bayes. We used a logistic regression classifier
with a Gaussian prior parameter for regularization.
We also compare our learning results with those
achieved by hand-setting the weight parameters for
the classifier, effectively incorporating strong prior
(human) knowledge into the choice of weights.

An advantage to the use of statistical classifiers
is that they can be configured to output a proba-
bility distribution over possible answers rather than
just the most likely answer. This allows us to get
confidence estimates for computing a confidence
weighted score (see section 5). A major concern in
applying machine learning techniques to this clas-
sification problem is the relatively small size of the
training set, which can lead to overfitting problems.
We address this by keeping the feature dimensional-
ity small, and using high regularization penalties in
training.

4 Feature representation

In the entailment determination phase, the entail-
ment problem is reduced to a representation as a
vector of 28 features, over which the statistical
classifier described above operates. These features
try to capture salient patterns of entailment and
non-entailment, with particular attention to contexts
which reverse or block monotonicity, such as nega-
tions and quantifiers. This section describes the most

important groups of features.

Polarity features. These features capture the pres-
ence (or absence) of linguistic markers of negative
polarity contexts in both the text and the hypothesis,
such as simple negation (not), downward-monotone
quantifiers (no, few), restricting prepositions (with-
out, except) and superlatives (tallest).

Adjunct features. These indicate the dropping or
adding of syntactic adjuncts when moving from the
text to the hypothesis. For the common case of
restrictive adjuncts, dropping an adjunct preserves
truth (Dogs barked loudly|= Dogs barked), while
adding an adjunct does not (Dogs barked6|= Dogs
barked today). However, in negative-polarity con-
texts (such asNo dogs barked), this heuristic is
reversed: adjuncts can safely be added, but not
dropped. For example, in ID 59, the hypothesis
aligns well with the text, but the addition ofin Iraq
indicates non-entailment.

We identify the “root nodes” of the problem: the
root node of the hypothesis graph and the corre-
sponding aligned node in the text graph. Using de-
pendency information, we identify whether adjuncts
have been added or dropped. We then determine
the polarity (negative context, positive context or
restrictor of a universal quantifier) of the two root
nodes to generate features accordingly.

Antonymy features. Entailment problems might
involve antonymy, as in ID 971. We check whether
an aligned pairs of text/hypothesis words appear to
be antonymous by consulting a pre-computed list
of about 40,000 antonymous and other contrasting
pairs derived from WordNet. For each antonymous
pair, we generate one of three boolean features, in-
dicating whether (i) the words appear in contexts of
matching polarity, (ii) only the text word appears in
a negative-polarity context, or (iii) only the hypoth-
esis word does.
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Modality features. Modality features capture
simple patterns of modal reasoning, as in ID 98,
which illustrates the heuristic that possibility does
not entail actuality. According to the occurrence
(or not) of predefined modality markers, such as
must or maybe, we map the text and the hypoth-
esis to one of six modalities:possible, not possi-
ble, actual, not actual, necessary, andnot necessary.
The text/hypothesis modality pair is then mapped
into one of the following entailment judgments:yes,
weak yes, don’t know, weak no, or no. For example:

(not possible|= not actual)? ⇒ yes

(possible|= necessary)? ⇒ weak no

Factivity features. The context in which a verb
phrase is embedded may carry semantic presuppo-
sitions giving rise to (non-)entailments such asThe
gangster tried to escape6|= The gangster escaped.
This pattern of entailment, like others, can be re-
versed by negative polarity markers (The gangster
managed to escape|= The gangster escapedwhile
The gangster didn’t manage to escape6|= The gang-
ster escaped). To capture these phenomena, we
compiled small lists of “factive” and non-factive
verbs, clustered according to the kinds of entail-
ments they create. We then determine to which class
the parent of the text aligned with the hypothesis
root belongs to. If the parent is not in the list, we
only check whether the embedding text is an affir-
mative context or a negative one.

Quantifier features. These features are designed
to capture entailment relations among simple sen-
tences involving quantification, such asEvery com-
pany must report|= A company must report(or
The company, or IBM). No attempt is made to han-
dle multiple quantifiers or scope ambiguities. Each
quantifier found in an aligned pair of text/hypothesis
words is mapped into one of five quantifier cate-
gories: no, some, many, most, and all. The no
category is set apart, while an ordering over the
other four categories is defined. Thesomecategory
also includes definite and indefinite determiners and
small cardinal numbers. A crude attempt is made to
handle negation by interchangingno andall in the
presence of negation. Features are generated given
the categories of both hypothesis and text.

Number, date, and time features. These are de-
signed to recognize (mis-)matches between num-
bers, dates, and times, as in IDs 1806 and 231. We
do some normalization (e.g. of date representations)
and have a limited ability to do fuzzy matching. In
ID 1806, the mismatched years are correctly iden-
tified. Unfortunately, in ID 231 the significance of
over is not grasped and a mismatch is reported.

Alignment features. Our feature representation
includes three real-valued features intended to rep-
resent the quality of the alignment:score is the
raw score returned from the alignment phase, while
goodscoreandbadscoretry to capture whether the
alignment score is “good” or “bad” by computing
the sigmoid function of the distance between the
alignment score and hard-coded “good” and “bad”
reference values.

5 Evaluation

We present results based on the First PASCAL RTE
Challenge, which used a development set contain-
ing 567 pairs and a test set containing 800 pairs.
The data sets are balanced to contain equal num-
bers ofyesand no answers. The RTE Challenge
recommended two evaluation metrics: raw accuracy
and confidence weighted score (CWS). The CWS is
computed as follows: for each positive integerk up
to the size of the test set, we compute accuracy over
thek most confident predictions. The CWS is then
the average, overk, of these partial accuracies. Like
raw accuracy, it lies in the interval [0, 1], but it will
exceed raw accuracy to the degree that predictions
are well-calibrated.

Several characteristics of the RTE problems
should be emphasized. Examples are derived from a
broad variety of sources, including newswire; there-
fore systems must be domain-independent. The in-
ferences required are, from a human perspective,
fairly superficial: no long chains of reasoning are
involved. However, there are “trick” questions ex-
pressly designed to foil simplistic techniques. The
definition of entailment is informal and approx-
imate: whether a competent speaker with basic
knowledge of the world would typically infer the hy-
pothesis from the text. Entailments will certainly de-
pend on linguistic knowledge, and may also depend
on world knowledge; however, the scope of required
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Algorithm RTE1 Dev Set RTE1 Test Set
Acc CWS Acc CWS

Random 50.0% 50.0% 50.0% 50.0%
Jijkoun et al. 05 61.0% 64.9% 55.3% 55.9%
Raina et al. 05 57.8% 66.1% 55.5% 63.8%

Haghighi et al. 05 — — 56.8% 61.4%
Bos & Markert 05 — — 57.7% 63.2%
Alignment only 58.7% 59.1% 54.5% 59.7%

Hand-tuned 60.3% 65.3% 59.1% 65.0%
Learning 61.2% 74.4% 59.1% 63.9%

Table 2: Performance on the RTE development and test sets.
CWS stands for confidence weighted score (see text).

world knowledge is left unspecified.4

Despite the informality of the problem definition,
human judges exhibit very good agreement on the
RTE task, with agreement rate of 91–96% (Dagan
et al., 2005). In principle, then, the upper bound
for machine performance is quite high. In practice,
however, the RTE task is exceedingly difficult for
computers. Participants in the first PASCAL RTE
workshop reported accuracy from 49% to 59%, and
CWS from 50.0% to 69.0% (Dagan et al., 2005).

Table 2 shows results for a range of systems and
testing conditions. We report accuracy and CWS on
each RTE data set. The baseline for all experiments
is random guessing, which always attains 50% accu-
racy. We show comparable results from recent sys-
tems based on lexical similarity (Jijkoun and de Ri-
jke, 2005), graph alignment (Haghighi et al., 2005),
weighted abduction (Raina et al., 2005), and a mixed
system including theorem proving (Bos and Mark-
ert, 2005).

We then show results for our system under several
different training regimes. The row labeled “align-
ment only” describes experiments in which all fea-
tures except the alignment score are turned off. We
predict entailment just in case the alignment score
exceeds a threshold which is optimized on devel-
opment data. “Hand-tuning” describes experiments
in which all features are on, but no training oc-
curs; rather, weights are set by hand, according to
human intuition. Finally, “learning” describes ex-
periments in which all features are on, and feature
weights are trained on the development data. The

4Each RTE problem is also tagged as belonging to one of
seventasks. Previous work (Raina et al., 2005) has shown that
conditioning on task can significantly improve accuracy. Inthis
work, however, we ignore the task variable, and none of the
results shown in table 2 reflect optimization by task.

figures reported for development data performance
therefore reflect overfitting; while such results are
not a fair measure of overall performance, they can
help us assess the adequacy of our feature set: if
our features have failed to capture relevant aspects
of the problem, we should expect poor performance
even when overfitting. It is therefore encouraging
to see CWS above 70%. Finally, the figures re-
ported for test data performance are the fairest ba-
sis for comparison. These are significantly better
than our results for alignment only (Fisher’s exact
test,p < 0.05), indicating that we gain real value
from our features. However, the gain over compara-
ble results from other teams is not significant at the
p < 0.05 level.

A curious observation is that the results for hand-
tuned weights are as good or better than results for
learned weights. A possible explanation runs as fol-
lows. Most of the features represent high-level pat-
terns which arise only occasionally. Because the
training data contains only a few hundred exam-
ples, many features are active in just a handful of
instances; their learned weights are therefore quite
noisy. Indeed, a feature which is expected to fa-
vor entailment may even wind up with a negative
weight: the modal featureweak yesis an example.
As shown in table 3, the learned weight for this fea-
ture was strongly negative — but this resulted from
a single training example in which the feature was
active but the hypothesis was not entailed. In such
cases, we shouldn’t expect good generalization to
test data, and human intuition about the “value” of
specific features may be more reliable.

Table 3 shows the values learned for selected fea-
ture weights. As expected, the featuresadded ad-
junct in all context, modal yes, and text is factive
were all found to be strong indicators of entailment,
while date insert, date modifier insert, widening
from text to hypall indicate lack of entailment. Inter-
estingly,text has neg markerandtext & hyp diff po-
larity were also found to disfavor entailment; while
this outcome is sensible, it was not anticipated or
designed.

6 Conclusion

The best current approaches to the problem of tex-
tual inference work by aligning semantic graphs,
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Feature class & condition weight
Adjunct added adjunct inall context 1.40
Date date mismatch 1.30
Alignment good score 1.10
Modal yes 0.70
Modal no 0.51
Factive text is factive 0.46
. . . . . . . . .
Polarity text & hyp same polarity −0.45
Modal don’t know −0.59
Quantifier widening from text to hyp −0.66
Polarity text has neg marker −0.66
Polarity text & hyp diff polarity −0.72
Alignment bad score −1.53
Date date modifier insert −1.57
Modal weak yes −1.92
Date date insert −2.63

Table 3: Learned weights for selected features. Positive weights
favor entailment. Weights near 0 are omitted. Based on training
on the PASCAL RTE development set.

using a locally-decomposable alignment score as a
proxy for strength of entailment. We have argued
that such models suffer from three crucial limita-
tions: an assumption of monotonicity, an assump-
tion of locality, and a confounding of alignment and
entailment determination.

We have described a system which extends
alignment-based systems while attempting to ad-
dress these limitations. After finding the best align-
ment between text and hypothesis, we extract high-
level semantic features of the entailment problem,
and input these features to a statistical classifier to
make an entailment decision. Using this multi-stage
architecture, we report results on the PASCAL RTE
data which surpass previously-reported results for
alignment-based systems.

We see the present work as a first step in a promis-
ing direction. Much work remains in improving the
entailment features, many of which may be seen as
rough approximations to a formal monotonicity cal-
culus. In future, we aim to combine more precise
modeling of monotonicity effects with better mod-
eling of paraphrase equivalence.

Acknowledgements

We thank Anna Rafferty, Josh Ainslie, and partic-
ularly Roger Grosse for contributions to the ideas
and system reported here. This work was supported
in part by the Advanced Research and Development
Activity (ARDA)’s Advanced Question Answering

for Intelligence (AQUAINT) Program.

References
E. Akhmatova. 2005. Textual entailment resolution via atomic

propositions. InProceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment, 2005.

J. Bos and K. Markert. 2005. Recognising textual entailment
with logical inference. InEMNLP-05.

I. Dagan, O. Glickman, and B. Magnini. 2005. The PASCAL
recognising textual entailment challenge. InProceedings of
the PASCAL Challenges Workshop on Recognising Textual
Entailment.

Marie-Catherine de Marneffe, Bill MacCartney, and Christo-
pher D. Manning. 2006. Generating typed dependency
parses from phrase structure parses. InLREC 2006.

R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. 2005. An inference model for semantic entail-
ment and question-answering. InProceedings of the Twenti-
eth National Conference on Artificial Intelligence (AAAI).

C. Fellbaum. 1998.WordNet: an electronic lexical database.
MIT Press.

A. Fowler, B. Hauser, D. Hodges, I. Niles, A. Novischi, and
J. Stephan. 2005. Applying COGEX to recognize textual
entailment. InProceedings of the PASCAL Challenges Work-
shop on Recognising Textual Entailment.

A. Haghighi, A. Ng, and C. D. Manning. 2005. Robust textual
inference via graph matching. InEMNLP-05.

J. R. Hobbs, M. Stickel, P. Martin, and D. D. Edwards. 1988.
Interpretation as abduction. In26th Annual Meeting of the
Association for Computational Linguistics: Proceedings of
the Conference, pages 95–103, Buffalo, New York.

V. Jijkoun and M. de Rijke. 2005. Recognizing textual entail-
ment using lexical similarity. InProceedings of the PAS-
CAL Challenge Workshop on Recognising Textual Entail-
ment, 2005, pages 73–76.

D. Klein and C. D. Manning. 2003. Accurate unlexicalized
parsing. InProceedings of the 41st Meeting of the Associa-
tion of Computational Linguistics.

Roger Levy and Galen Andrew. 2006. Tregex and Tsurgeon:
tools for querying and manipulating tree data structures. In
LREC 2006.

E. Marsi and E. Krahmer. 2005. Classification of semantic re-
lations by humans and machines. InProceedings of the ACL
2005 Workshop on Empirical Modeling of Semantic Equiva-
lence and Entailment.

A. McCallum and W. Li. 2003. Early results for named entity
recognition with conditional random fields, feature induction
and web-enhanced lexicons. InProceedings of CoNLL 2003.

G. Minnen, J. Carroll, and D. Pearce. 2001. Applied morpho-
logical processing in English. InNatural Language Engi-
neering, volume 7(3), pages 207–233.

D. Moldovan, C. Clark, S. Harabagiu, and S. Maiorano. 2003.
COGEX: A logic prover for question answering. InNAACL-
03.

M. Pasca and S. Harabagiu. 2001. High performance ques-
tion/answering. InSIGIR-01, pages 366–374.

R. Raina, A .Ng, and C. D. Manning. 2005. Robust textual
inference via learning and abductive reasoning. InProceed-
ings of the Twentieth National Conference on Artificial Intel-
ligence (AAAI).

M. Tatu and D. Moldovan. 2005. A semantic approach to rec-
ognizing textual entailment. InHLT/EMNLP 2005, pages
371–378.

48


