
HLT-NAACL 2006

Human Language Technology
Conference of the

North American Chapter of the
Association of Computational Linguistics

Proceedings of the Main Conference

Robert C. Moore, General Chair
Jeff Bilmes, Jennifer Chu-Carroll and Mark Sanderson

Program Committee Chairs

June 4-9, 2006
New York, New York, USA

Published by the Association for Computational Linguistics
http://www.aclweb.org

Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53704

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Preface from the General Chair
This year marks the third time that the conference on Human Language Technology has combined with
the North American chapter meeting of the Association for Computational Linguistics. The roster of
accepted papers reveals an eclectic mix of topics in natural-language processing, speech processing,
and information retrieval. A gratifying number of the papers are difficult to classify because they span
more than one of these three major areas of human language technology. For example, the boundary
between natural-language processing and information retrieval is hard to draw in the papers that focus
on the World Wide Web as a corpus; moreover, several of these include speech-related aspects as well.

The crazy thing about putting on a conference like this is that you start out with a group of people who
have never done it before, and by the time they really figure out what they are doing, the conference is
over and you replace them with another group of people who have never done it before! To do a good job
as general chair, however, there is only one really important thing to learn: pick really good people to do
all the other jobs, sit back, and let them do all the work. I have been very fortunate to have a great group
of conference organizers to rely on: the NYU local arrangements committee, headed by Satoshi Sekine;
the program chairs Jennifer Chu-Carroll, Jeff Bilmes, and Mark Sanderson; the demonstration chairs
Alex Rudnicky, John Dowding, and Natasa Milic-Frayling; the publications chairs Sanjeev Khudanpur
and Brian Roark; the publicity chairs Dan Gildea, Ciprian Chelba, and Eric Brown; the sponsorship
and exhibits chairs Ed Hovy and Patrick Pantel; the tutorial chairs Chris Manning, Doug Oard, and
Jim Glass; the workshop chairs Lucy Vanderwende, Roberto Pieraccini, and Liz Liddy; the Doctoral
Consortium chairs Matt Huenerfauth and Bo Pang, and their faculty advisor, Mitch Marcus.

I would also like to thank ACL Business Manager Priscilla Rasmussen, who took on even more
responsibility than she usually does to insure that the conference is a success; and the NAACL executive
committee and HLT advisory board for encouragement and advice when we were just getting started
and didn’t know much about what needed to be done. Finally, I would like to thank the senior program
committee members, all the paper reviewers, the student volunteers, and the conference sponsors,
without whom the conference could not happen.

Robert C. Moore
Microsoft Research
General Chair

iii

Preface from the Program Co-Chairs
It is with pleasure that we preface the publications of the 2006Human Language Technology conference
— North American chapter of the Association for Computational Linguistics annual meeting (HLT-
NAACL 2006). The conference has a number of formats by which refereed work can be presented: full
papers, short papers (either as a talk or poster), and demonstrations. As befits this multi-disciplinary
conference, papers were submitted across the three topics of computational linguistics, information
retrieval and speech recognition. This year, 257 full papers were submitted and 62 accepted (25%
acceptance rate), 127 short papers submitted and 52 accepted (41% rate). It is pleasing to report that
these numbers mark a strong increase in submissions compared to the last HLT NAACL conference run
in 2004.

The selection of the high quality submissions in these proceedings was the product of a two tiered
reviewing system. The three PC chairs selected 28 senior program committee (PC) members, who are
internationally recognized for their subject expertise. This group constituted the top tier of the PC.
Each of the members selected a group of reviewers to review both the full and short submitted papers.
The complete PC numbered around 250. Three reviewers and one senior PC person were assigned per
paper. Reviewing was double blinded. The senior PC oversaw the reviewing process, helped resolve
any disputes, and at the end produced, for each paper, an overview of the reviewers’ comments along
with a preliminary decision on whether the submission should be accepted or not. These decisions
formed the basis of discussion at a program committee meeting. Separate PC meetings were held for
full and short papers. For full, a one day meeting was held at IBM Research Watson, NY; for short
papers, a telephone conference call was held between the three PC chairs.

The senior PC also nominated candidates for best paper and best student paper, the two selected for the
prizes were chosen by the PC chairs working in conjunction with the senior PCs. The papers that won
were “Probabilistic Context-Free Grammar Induction Based on Structural Zeros” by Mehryar Mohri
and Brian Roark and “Prototype-Driven Learning for Sequence Models” by Aria Haghighi and Dan
Klein. Congratulations to them both.

We are indebted to all those who submitted papers to the conference and to all the reviewers and senior
PC members who volunteered their time to help us in the selection process for the conference. We are
particularly indebted to all the senior PC members who attended the PC meeting in January and found
funds to pay for themselves to attend the meeting. Thanks guys, that was particularly generous of you.
We are also grateful to IBM Watson for providing facilities for the PC meeting, Bob Moore for all of
his prompt advice and help and a final thanks to Rich Gerber who ran and helped modify the START
reviewing system

The HLT-NAACL conference has a PC chair for each of its three disciplines. Although work tasks
were shared between the three chairs equally, as computational linguistics received by far the greatest
number of submissions, Jennifer Chu-Carroll ended up having to oversee more papers and recruit more
senior PC members than the other two chairs, she also volunteered to host the PC meeting at IBM.
Therefore, the two other chairs of HLT-NAACL 2006 (Mark Sanderson & Jeff Bilmes), wish to thank
Jennifer for all of her additional work in pulling this conference together. Jennifer, it couldn’t have been
done without you.

Jennifer Chu-Carroll — IBM Research (Watson)
Jeff Bilmes — University of Washington
Mark Sanderson — University of Sheffield
Program Co-Chairs

iv

Conference Organizers

General Chair:
Robert C. Moore - Microsoft Research (Redmond)

Local Arrangements Committee:
Satoshi Sekine, NYU (chair)
Ralph Grishman, NYU (co-chair)
Koji Murakami, NYU (webmaster)
David Westbrook, NYU (associate webmaster)
Adam Meyers, NYU (volunteer coordinator)

Program Committee Chairs:
Jeff Bilmes, University of Washington
Jennifer Chu-Carroll, IBM T.J. Watson Research Center
Mark Sanderson, University of Sheffield

ACL office:
Priscilla Rasmussen

Demonstration Chairs:
Alex Rudnicky, Carnegie Mellon University
John Dowding, University of California, Santa Cruz
Natasa Milic-Frayling, Microsoft Research (Cambridge)

Publications Chairs:
Sanjeev Khudanpur, Johns Hopkins University
Brian Roark, OGI-Oregon Health & Science University

Publicity Chairs:
Dan Gildea, University of Rochester
Ciprian Chelba, Microsoft Research (Redmond)
Eric Brown, IBM Research (Watson)

Sponsorship and Exhibits Chairs:
Ed Hovy, USC-ISI
Patrick Pantel, USC-ISI

Tutorial Chairs:
Chris Manning, Stanford University
Doug Oard, University of Maryland
Jim Glass, MIT

v

Workshop Chairs:
Lucy Vanderwende, Microsoft Research (Redmond)
Roberto Pieraccini, Tell-Eureka
Liz Liddy, Syracuse University

Doctoral Consortium Chairs:
Matt Huenerfauth, University of Pennsylvania
Bo Pang, Cornell University
Mitch Marcus, University of Pennsylvania (Faculty advisor)

Human Language Technology Advisory Board:
Donna Harman, NIST (2005-06)
Mary Harper, University of Maryland (2005-06)
Julia Hirschberg, Columbia University (2005)
Graeme Hirst, University of Toronto (2005-06)
Sanjeev Khudanpur, Johns Hopkins University (2005-06)
Tatiana Korelsky, NSF (2006)
Raymond Mooney, University of Texas at Austin (2005-06)
Robert Moore, Microsoft Research (2005-06)
Heather McCallum-Bayliss, ARDA (2006)
Joseph Olive, DARPA (2006)
John Prange, ARDA (2005)
Dragomir Radev, University of Michigan (2005)
Owen Rambow, Columbia University (2006)
Ellen Riloff, University of Utah (2005)
Charles Wayne, DARPA (2005)

Senior Program Committee Members:

Johan Bos, University of Roma “La Sapienza” Dragomir Radev, University of Michigan
Jamie Callan, Carnegie Mellon University Owen Rambow, CCLS, Columbia University
Joyce Chai, Michigan State University Steve Renals, University of Edinburgh
Jason Eisner, Johns Hopkins University Stefan Riezler, Google
Mark Gales, Cambridge University Rohini Srihari, SUNY Buffalo
Fredric Gey, University of California Berkeley Amanda Stent, SUNY Stony Brook
Roxana Girju, UIUC Michael Strube, EML Research
Mark Hasegawa-Johnson, UIUC Christoph Tillmann, IBM T.J. Watson Research Center
Julia Hirschberg, Columbia University Peter Turney, National Research Council Canada
Alon Lavie, Carnegie Mellon University Ellen Voorhees, NIST
Wei-Ying Ma, Microsoft Research Asia Ralph Weischedel, BBN Technologies
Mehryar Mohri, Courant Institute/Google Fei Xia, University of Washington
Marius Pasca, Google ChengXiang Zhai, UIUC
Gerald Penn, University of Toronto Ming Zhou, Microsoft Research Asia

vi

Program Committee Members:

Steven Abney, U. of Michigan Alex Acero, Microsoft Research
Cyril Allauzen, Courant Institute Yaser Al-Onaizan, IBM
Abeer Alwan, UCLA Elisabeth Andre, U. Augsburg
Chinatsu Aone, SRA Doug Appelt, SRI International
Michiel Bacchiani, Google Inc Tim Baldwin, U. of Melbourne
Srinivas Bangalore, AT&T Labs – Research Regina Barzilay, MIT CSAIL
John Bateman, U. Bremen Jerome Bellegarda, Apple Computer, Inc.
Anja Belz, ITRI, U. of Brighton Pushpak Bhattacharya, Indian Inst. of Technology
Timothy Bickmore, Northeastern U. Patrick Blackburn, INRIA Lorraine
Eric Brown, IBM Ralf Brown, Carnegie Mellon U.
John Burger, MITRE Bill Byrne, U. of Cambridge
Donna Byron, Ohio State U. Charles Callaway, U. of Edinburgh
Chris Callison-Burch, U. of Edinburgh Giuseppe Carenini, U. of British Columbia
Rolf Carlson, KTH Violetta Cavalli-Sforza, San Francisco State U.
Ciprian Chelba, Google John Chen, Janya Inc.
Stanley Chen, IBM David Chiang, USC-ISI
Lee-Feng Chien, Academia Sinica Tat-Seng Chua, National U. of Singapore
Grace Chung, MIT Alexander Clark, Royal Holloway U. of London
Stephen Clark, Oxford U. Michael Collins, MIT CSAIL
Tom Cornell, Janya Inc. Corinna Cortes, Google Research
Cassandre Creswell, Janya Inc. Mathias Creutz, Helsinki U. of Technology
Dick Crouch, PARC Ido Dagan, Bar Ilan U.
Tiphaine Dalmas, U. of Edinburgh Mary Dalrymple, U. of Oxford
Hoa Dang, NIST Franciska de Jong, U. of Twente
Li Deng, Microsoft Barbara di Eugenio, U. of Illinois at Chicago
Mona Diab, CCLS, Columbia U. Bill Dolan, Microsoft Research
Bonnie Dorr, U. of Maryland Markus Egg, Rijksuniversiteit Groningen
Gunes Erkan, U. of Michigan Oren Etzioni, U. of Washington
Patrick Fan, Virginia Tech David Farwell, New Mexico State U.
Eric Fosler-Lussier, Ohio State U. Anette Frank, DFKI
Robert Frank, Johns Hopkins U. Bob Frederking, Carnegie Mellon U.
Maria Fuentes, U. Politècnica de Catalunya Junichi Fukumoto, Ritsumeikan U.
Rob Gaizauskas, U. of Sheffield Michel Galley, Columbia U.
Jianfeng Gao, Microsoft Research Asia Claire Gardent, CNRS/LORIA
Daniel Gildea, U. of Rochester John Goldsmith, U. of Chicago
Sharon Goldwater, Brown U. Yoshi Gotoh, U. of Sheffield
Mark Greenwood, U. of Sheffield Ralph Grishman, New York U.
Joakim Gustafson, TeliaSonera Nizar Habash, CCLS, Columbia U.
Thomas Hain, U. of Sheffield Keith Hall, Johns Hopkins U.
Susan Haller, SUNY Potsdam Sanda Harabagiu, U. of Texas at Dallas
Mary Harper, Purdue U. Anthony Hartley, U. of Leeds
Marti Hearst, U. of California, Berkeley Peter Heeman, Oregon Graduate Institute
James Henderson, U. of Edinburgh John Henderson, The MITRE Corporation
Ulf Hermjakob, USC-ISI Djoerd Hiemstra, U. of Twente

vii

Program Committee Members (continued):

Keikichi Hirose, U. of Tokyo Graeme Hirst, U. of Toronto
Jerry Hobbs, USC-ISI Julia Hockenmaier, U. of Pennsylvania
Kristy Hollingshead, Oregon Health & Science U. Chiori Hori, CMU
Fei Huang, IBM Rebecca Hwa, U. of Pittsburgh
Diana Inkpen, U. of Ottawa Abraham Ittycheriah, IBM
Martin Jansche, CCLS, Columbia U. Rong Jin, Michigan State U.
Mark Johnson, Brown U. Michael Johnston, AT&T Labs - Research
Hideo Joho, U. of Glasgow Kristiina Jokinen, U. of Helsinki
Gareth Jones, Dublin City U. Joemon Jose, U. of Glasgow
Nanda Kambhatla, IBM Min Yen Kan, National U. of Singapore
Frank Keller, U. of Edinburgh Kazuaki Kishida, Surugadi U.
Kevin Knight, USC-ISI Kate Knill, Toshiba Research Europe Ltd
Philipp Koehn, U. of Edinburgh Alexander Koller, U. of the Saarland
Wessel Kraaij, TNO Emiel Krahmer, Tilburg U.
Jonas Kuhn, Saarland U., Saarbrücken Shankar Kumar, Google
KL Kwok, City U. of New York Philippe Langlais, U. de Montréal
Mirella Lapata, U. of Edinburgh Alex Lascarides, U. of Edinburgh
Victor Lavrenko, U. of Massachusetts at Amherst Lillian Lee, Cornell U.
Esther Levin, CCNY/CUNY Lori Levin, Carnegie Mellon U.
Gina Levow, U. of Chicago Elizabeth Liddy, Syracuse U.
Jimmy Lin, U. of Maryland Chin-Yew Lin, Microsoft Research Asia
Ken Litkowski, CL Research Diane Litman, U. of Pittsburgh
Bing Liu, U. of Illinois at Chicago Karen Livescu, MIT
Andrej Ljolje, AT&T Labs - Research Bente Maegaard, U. of Copenhagen
Bernardo Magnini, ITC-irst Steve Maiorano, ATP
Thomas Mandl, U. Hildesheim Inderjeet Mani, MITRE
Gideon Mann, U. of Massachusetts at Amherst Daniel Marcu, USC-ISI
Katja Markert, Leeds U. Yuji Matsumoto, Nara Inst. of Science and Tech.
James Mayfield, JHU/APL Andrew McCallum, U. of Massachusetts at Amherst
Michael McCord, IBM Iain McCowan, CSIRO ICT Centre, Australia
Ryan McDonald, U. of Pennsylvania Dan Melamed, New York U.
Helen Meng, Chinese U. of Hong Kong Rada Mihalcea, U. of North Texas
Teruko Mitamura, Carnegie Mellon U. Yusuke Miyao, U. of Tokyo
Marie-France Moens, Katholieke U. Leuven Dan Moldovan, U. of Texas at Dallas
Christof Monz, Queen Mary, U. of London Isabelle Moulinier, Thompson Legal
Yukiko Nakano, Tokyo U. of Agriculture & Tech. Shri Narayanan, USC
Mark-Jan Nederhof, Max Planck Inst. of Psych.. Hwee Tou Ng, National U. of Singapore
Vincent Ng, U. of Texas at Dallas Jian-Yun Nie, U. of Montréal
Cheng Niu, Microsoft Research Asia Tadashi Nomoto, National Inst. of Japanese Lit.
Franz Och, Google Mohamed Omar, IBM
Mari Ostendorf, U. of Washington Iadh Ounis, U. of Glasgow
Martha Palmer, U. of Colorado Kishore Papineni, IBM
Rebecca Passonneau, CCLS, Columbia U. Ted Pedersen, U. of Minnesota, Duluth
Fernando Pereira, U. of Pennsylvania Jose Perez-Carballo, California State U., LA

viii

Program Committee Members (continued):

Carol Peters, Italian National Research Council Paul Piwek, The Open U.
Richard Power, ITRI, U. of Brighton Sameer Pradhan, BBN Technologies
John Prager, IBM Kishore Prallahad, Carnegie Mellon U.
Rashmi Prasad, U. of Pennsylvania Mark Przybocki, NIST
Vasin Punyakanok, UIUC Matthew Purver, CSLI, Stanford U.
Bhuvana Ramabhadran, IBM Lance Ramshaw, BBN Technologies
Adwait Ratnaparkhi, Microsoft Research Deepak Ravichandran, Google
Ehud Reiter, U. of Aberdeen Norbert Reithinger, DFKI
Christian Retore’, U. Bordeaux 1 Steve Richardson, Microsoft Research
Michael Riley, Google, Inc Ellen Riloff, U. of Utah
Alex Rudnicky, Carnegie Mellon U. Gregory Sanders, NIST
Murat Saraçlar, Bŏgaziçi U. Anoop Sarkar, Simon Fraser U.
Michael Schiehlen, U. of Stuttgart Frank Schilder, Thomson Legal & Regulatory
Falk Scholer, RMIT U. Sabine Schulte, Saarlandes U.
Frank Seide, Microsoft Research Asia Stephanie Seneff, MIT CSAIL
Ben Shahshahani, Yahoo Koichi Shinoda, Tokyo Intstitute of Technology
Candy Sidner, Mitsubishi Electric Research Khalil Sima’an, U. van Amsterdam
Frank Soong, Microsoft Research Asia Richard Sproat, UIUC
Mark Steedman, U. of Edinburgh Mark Stevenson, U. of Sheffield
Suzanne Stevenson, U. of Toronto Nicola Stokes, U. of Melbourne
Matthew Stone, Rutgers U. Kristina Streignitz, Northwestern U.
Tomek Strzalkowski, SUNY Albany Keh-Yih Su, Behavior Design Corporation
Eiichiro Sumita, ATR Marc Swerts, Tilburg U.
Stan Szpakowicz, U. of Ottawa Egidio Terra, Amazon.com
Joel Tetreault, U. of Pittsburgh, LRDC Kentaro Torisawa, Japan Advanced Inst. of Sci&Tech.
David Traum, USC/Inst. of Creative Tech. Harald Trost, Medical U. of Vienna
Josef van Genabith, Dublin City U. Gertjan van Noord, U. of Groningen
Lucy Vanderwende, Microsoft Research Eric Villemonte de la Clergerie, INRIA
Phil Vines, Royal Melbourne Inst. of Tech. Taro Watanabe, NTT Communication Science Lab
Andy Way, Dublin City U. Bonnie Webber, U. of Edinburgh
Ji-Rong Wen, Microsoft Research Asia Janyce Wiebe, U. of Pittsburgh
Yoad Winter, Technion, Haifa Christa Womser-Hacker, U. Hildesheim
Dekai Wu, HKUST Roman Yangarber, U. of Helsinki
Steve Young, U. of Cambridge Deniz Yuret, Koc U.
Hugo Zaragoza, Yahoo! Research Dmitry Zelenko, SRA
Richard Zens, RWTH Aachen U. Yi Zhang, U. of California, Santa Cruz
Qifeng Zhu, Texas Instruments

Additional Reviewers:
Oana Frunza, U. of Ottawa Marcus Sammer, U. of Washington
Michael Gamon, Microsoft Research Marina Sokolova, U. de Montréal
Preslav Nakov, U. of Califonia, Berkeley Ana-Maria Popescu, U. of Washington
Carlos Prolo, Pontifı́cia U. Cat́olica do Rio Grande do Sul

ix

Table of Contents

Capitalizing Machine Translation
Wei Wang, Kevin Knight and Daniel Marcu .1

Do we need phrases? Challenging the conventional wisdom in Statistical Machine Translation
Chris Quirk and Arul Menezes .9

Improved Statistical Machine Translation Using Paraphrases
Chris Callison-Burch, Philipp Koehn and Miles Osborne .17

Segment Choice Models: Feature-Rich Models for Global Distortion in Statistical Machine Translation
Roland Kuhn, Denis Yuen, Michel Simard, Patrick Paul, George Foster, Eric Joanis and Howard

Johnson .25

Effectively Using Syntax for Recognizing False Entailment
Rion Snow, Lucy Vanderwende and Arul Menezes .33

Learning to recognize features of valid textual entailments
Bill MacCartney, Trond Grenager, Marie-Catherine de Marneffe, Daniel Cer and Christopher D. Man-

ning .41

Acquisition of Verb Entailment from Text
Viktor Pekar .49

Acquiring Inference Rules with Temporal Constraints by Using Japanese Coordinated Sentences and Noun-
Verb Co-occurrences

Kentaro Torisawa. .57

Role of Local Context in Automatic Deidentification of Ungrammatical, Fragmented Text
Tawanda Sibanda, Ozlem Uzuner and Ozlem Uzuner .65

Exploiting Domain Structure for Named Entity Recognition
Jing Jiang and ChengXiang Zhai .74

Named Entity Transliteration and Discovery from Multilingual Comparable Corpora
Alexandre Klementiev and Dan Roth .82

Reducing Weight Undertraining in Structured Discriminative Learning
Charles Sutton, Michael Sindelar and Andrew McCallum .89

A Maximum Entropy Approach to Combining Word Alignments
Necip Fazil Ayan and Bonnie J. Dorr .96

Alignment by Agreement
Percy Liang, Ben Taskar and Dan Klein .104

xi

Word Alignment via Quadratic Assignment
Simon Lacoste-Julien, Ben Taskar, Dan Klein and Michael I. Jordan .112

An Empirical Study of the Behavior of Active Learning for Word Sense Disambiguation
Jinying Chen, Andrew Schein, Lyle Ungar and Martha Palmer .120

Unknown word sense detection as outlier detection
Katrin Erk .128

Understanding Temporal Expressions in Emails
Benjamin Han, Donna Gates and Lori Levin .136

Partial Training for a Lexicalized-Grammar Parser
Stephen Clark and James Curran .144

Effective Self-Training for Parsing
David McClosky, Eugene Charniak and Mark Johnson .152

Multilingual Dependency Parsing using Bayes Point Machines
Simon Corston-Oliver, Anthony Aue, Kevin Duh and Eric Ringger .160

Multilevel Coarse-to-Fine PCFG Parsing
Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac Haxton, Cather-

ine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar and Theresa Vu. .168

A Fully-Lexicalized Probabilistic Model for Japanese Syntactic and Case Structure Analysis
Daisuke Kawahara and Sadao Kurohashi .176

Fully Parsing the Penn Treebank
Ryan Gabbard, Seth Kulick and Mitchell Marcus .184

Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution
Simone Paolo Ponzetto and Michael Strube .192

Identifying and Analyzing Judgment Opinions
Soo-Min Kim and Eduard Hovy .200

Learning to Detect Conversation Focus of Threaded Discussions
Donghui Feng, Erin Shaw, Jihie Kim and Eduard Hovy .208

Towards Automatic Scoring of Non-Native Spontaneous Speech
Klaus Zechner and Isaac Bejar. .216

Unsupervised and Semi-supervised Learning of Tone and Pitch Accent
Gina-Anne Levow. .224

Learning Pronunciation Dictionaries: Language Complexity and Word Selection Strategies
John Kominek and Alan W Black .232

xii

Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality
Bryant Huang and Kevin Knight .240

Grammatical Machine Translation
Stefan Riezler and John T. Maxwell III .248

Synchronous Binarization for Machine Translation
Hao Zhang, Liang Huang, Daniel Gildea and Kevin Knight .256

Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System with Generic,
Tutoring, and User Affect Parameters

Kate Forbes-Riley and Diane Litman .264

Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning
Joel Tetreault and Diane Litman .272

Backoff Model Training using Partially Observed Data: Application to Dialog Act Tagging
Gang Ji and Jeff Bilmes .280

Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
Min Zhang, Jie Zhang and Jian Su .288

Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text
Aron Culotta, Andrew McCallum and Jonathan Betz. .296

Preemptive Information Extraction using Unrestricted Relation Discovery
Yusuke Shinyama and Satoshi Sekine .304

Probabilistic Context-Free Grammar Induction Based on Structural Zeros
Mehryar Mohri and Brian Roark .312

Prototype-Driven Learning for Sequence Models
Aria Haghighi and Dan Klein. .320

Learning Morphological Disambiguation Rules for Turkish
Deniz Yuret and Ferhan Ture .328

Cross-Entropy and Estimation of Probabilistic Context-Free Grammars
Anna Corazza and Giorgio Satta .335

Estimation of Consistent Probabilistic Context-free Grammars
Mark-Jan Nederhof and Giorgio Satta .343

A Better N-Best List: Practical Determinization of Weighted Finite Tree Automata
Jonathan May and Kevin Knight .351

Aggregation via Set Partitioning for Natural Language Generation
Regina Barzilay and Mirella Lapata .359

xiii

Incorporating Speaker and Discourse Features into Speech Summarization
Gabriel Murray, Steve Renals, Jean Carletta and Johanna Moore .367

Nuggeteer: Automatic Nugget-Based Evaluation using Descriptions and Judgements
Gregory Marton and Alexey Radul .375

Will Pyramids Built of Nuggets Topple Over?
Jimmy Lin and Dina Demner-Fushman .383

Creating a Test Collection for Citation-based IR Experiments
Anna Ritchie, Simone Teufel and Stephen Robertson .391

A Machine Learning based Approach to Evaluating Retrieval Systems
Huyen-Trang Vu and Patrick Gallinari .399

Language Model Information Retrieval with Document Expansion
Tao Tao, Xuanhui Wang, Qiaozhu Mei and ChengXiang Zhai .407

Towards Spoken-Document Retrieval for the Internet: Lattice Indexing For Large-Scale Web-Search Archi-
tectures

Zheng-Yu Zhou, Peng Yu, Ciprian Chelba and Frank Seide .415

A fast finite-state relaxation method for enforcing global constraints on sequence decoding
Roy Tromble and Jason Eisner .423

Semantic role labeling of nominalized predicates in Chinese
Nianwen Xue .431

Learning for Semantic Parsing with Statistical Machine Translation
Yuk Wah Wong and Raymond Mooney .439

ParaEval: Using Paraphrases to Evaluate Summaries Automatically
Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu and Eduard Hovy .447

Paraphrasing for Automatic Evaluation
David Kauchak and Regina Barzilay .455

An Information-Theoretic Approach to Automatic Evaluation of Summaries
Chin-Yew Lin, Guihong Cao, Jianfeng Gao and Jian-Yun Nie .463

Cross Linguistic Name Matching in English and Arabic
Andrew Freeman, Sherri Condon and Christopher Ackerman .471

Language Model-Based Document Clustering Using Random Walks
Gunes Erkan. .479

Unlimited vocabulary speech recognition for agglutinative languages
Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola, Teemu Hirsimki, Janne Pylkknen, Tanel

Alume and Murat Saraclar .487

xiv

Conference Program

Sunday, June 4

9:00–5:30 Doctoral Consortium

Tutorials

9:00–12:30 T1: What‘s in a Name: Current Methods, Applications, and Evaluation in
Multilingual Name Search and Matching
Sherri Condon and Keith Miller

9:00–12:30 T2: Beyond EM: Bayesian Techniques for Human Language Technology Re-
searchers
Hal Daume III

9:00–12:30 T3: Graph-based Algorithms for Natural Language Processing and Informa-
tion Retrieval
Rada Mihalcea and Dragomir Radev

2:00–5:30 T4: Automatic Spoken Document Processing for Retrieval and Browsing
Ciprian Chelba and T. J. Hazen

2:00–5:30 T5: Tutorial on Inductive Semi-supervised Learning Methods: with Applica-
bility to Natural Language Processing
Anoop Sarkar and Gholamreza Haffari

2:00–5:30 T6: Automatic Semantic Role Labeling
Scott Wen-tau Yih and Kristina Toutanova

6:30–9:30 Reception at NYU

xv

Main Conference Program

Monday, June 5

9:00–9:10 Opening Session

9:10–10:10 Keynote Speaker I: Joshua Goodman
Email and Spam and Spim and Spat

10:10–10:40 Break

Machine Translation I

10:40–11:05 Capitalizing Machine Translation
Wei Wang, Kevin Knight and Daniel Marcu

11:05–11:30 Do we need phrases? Challenging the conventional wisdom in Statistical Machine
Translation
Chris Quirk and Arul Menezes

11:30–11:55 Improved Statistical Machine Translation Using Paraphrases
Chris Callison-Burch, Philipp Koehn and Miles Osborne

11:55–12:20 Segment Choice Models: Feature-Rich Models for Global Distortion in Statistical
Machine Translation
Roland Kuhn, Denis Yuen, Michel Simard, Patrick Paul, George Foster, Eric Joanis
and Howard Johnson

Inference and Entailment

10:40–11:05 Effectively Using Syntax for Recognizing False Entailment
Rion Snow, Lucy Vanderwende and Arul Menezes

11:05–11:30 Learning to recognize features of valid textual entailments
Bill MacCartney, Trond Grenager, Marie-Catherine de Marneffe, Daniel Cer and
Christopher D. Manning

11:30–11:55 Acquisition of Verb Entailment from Text
Viktor Pekar

11:55–12:20 Acquiring Inference Rules with Temporal Constraints by Using Japanese Coordi-
nated Sentences and Noun-Verb Co-occurrences
Kentaro Torisawa

xvi

Monday, June 5 (continued)

Named Entity Recognition

10:40–11:05 Role of Local Context in Automatic Deidentification of Ungrammatical, Fragmented Text
Tawanda Sibanda, Ozlem Uzuner and Ozlem Uzuner

11:05–11:30 Exploiting Domain Structure for Named Entity Recognition
Jing Jiang and ChengXiang Zhai

11:30–11:55 Named Entity Transliteration and Discovery from Multilingual Comparable Corpora
Alexandre Klementiev and Dan Roth

11:55–12:20 Reducing Weight Undertraining in Structured Discriminative Learning
Charles Sutton, Michael Sindelar and Andrew McCallum

12:20–1:50 Lunch

Short Papers: Machine Translation, Multi-Lingual Speech

1:50–2:05 Spectral Clustering for Example Based Machine Translation
Rashmi Gangadharaiah, Ralf Brown and Jaime Carbonell

2:05–2:20 Bridging the Inflection Morphology Gap for Arabic Statistical Machine Translation
Andreas Zollmann, Venugopal Ashish and Vogel Stephan

2:20–2:35 Arabic Preprocessing Schemes for Statistical Machine Translation
Nizar Habash and Fatiha Sadat

2:35–2:50 Thai Grapheme-Based Speech Recognition
Paisarn Charoenpornsawat, Sanjika Hewavitharana and Tanja Schultz

2:50–3:05 Story Segmentation of Broadcast News in English, Mandarin and Arabic
Andrew Rosenberg and Julia Hirschberg

3:05–3:20 Word Pronunciation Disambiguation using the Web
Eiichiro Sumita and Fumiaki Sugaya

xvii

Monday, June 5 (continued)

Short Papers: Discourse/Dialogue

1:50–2:05 Agreement/Disagreement Classification: Exploiting Unlabeled Data using Contrast Clas-
sifiers
Sangyun Hahn, Richard Ladner and Mari Ostendorf

2:05–2:20 Using Phrasal Patterns to Identify Discourse Relations
Manami Saito, Kazuhide Yamamoto and Satoshi Sekine

2:20–2:35 Evaluating Centering for Sentence Ordering in Two New Domains
Nikiforos Karamanis

2:35–2:50 Computational Modelling of Structural Priming in Dialogue
David Reitter, Frank Keller and Johanna D. Moore

2:50–3:05 Museli: A Multi-Source Evidence Integration Approach to Topic Segmentation of Sponta-
neous Dialogue
Jaime Arguello and Carolyn Rose

3:05–3:20 Automatic Recognition of Personality in Conversation
Franois Mairesse and Marilyn Walker

Short Papers: Retrieval, Language Models

1:50–2:05 Using the Web to Disambiguate Acronyms
Eiichiro Sumita and Fumiaki Sugaya

2:05–2:20 Lycos Retriever: An Information Fusion Engine
Brian Ulicny

2:20–2:35 BioEx: A Novel User-Interface that Accesses Images from Abstract Sentences
Hong Yu and Minsuk Lee

2:35–2:50 Selecting relevant text subsets from web-data for building topic specific language models
Abhinav Sethy, Panayiotis Georgiou and Shrikanth Narayanan

2:50–3:05 Factored Neural Language Models
Andrei Alexandrescu and Katrin Kirchhoff

3:05–3:20 Quantitative Methods for Classifying Writing Systems
Gerald Penn and Travis Choma

3:20–3:50 Break

xviii

Monday, June 5 (continued)

Word Alignment

3:50–4:15 A Maximum Entropy Approach to Combining Word Alignments
Necip Fazil Ayan and Bonnie J. Dorr

4:15–4:40 Alignment by Agreement
Percy Liang, Ben Taskar and Dan Klein

4:40–5:05 Word Alignment via Quadratic Assignment
Simon Lacoste-Julien, Ben Taskar, Dan Klein and Michael I. Jordan

Semantics I

3:50–4:15 An Empirical Study of the Behavior of Active Learning for Word Sense Disambiguation
Jinying Chen, Andrew Schein, Lyle Ungar and Martha Palmer

4:15–4:40 Unknown word sense detection as outlier detection
Katrin Erk

4:40–5:05 Understanding Temporal Expressions in Emails
Benjamin Han, Donna Gates and Lori Levin

Parsing I

3:50–4:15 Partial Training for a Lexicalized-Grammar Parser
Stephen Clark and James Curran

4:15–4:40 Effective Self-Training for Parsing
David McClosky, Eugene Charniak and Mark Johnson

4:40–5:05 Multilingual Dependency Parsing using Bayes Point Machines
Simon Corston-Oliver, Anthony Aue, Kevin Duh and Eric Ringger

xix

Tuesday, June 6

Parsing II

9:00–9:25 Multilevel Coarse-to-Fine PCFG Parsing
Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David Ellis, Isaac
Haxton, Catherine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar and Theresa Vu

9:25–9:50 A Fully-Lexicalized Probabilistic Model for Japanese Syntactic and Case Structure Anal-
ysis
Daisuke Kawahara and Sadao Kurohashi

9:50–10:15 Fully Parsing the Penn Treebank
Ryan Gabbard, Seth Kulick and Mitchell Marcus

Discourse

9:00–9:25 Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution
Simone Paolo Ponzetto and Michael Strube

9:25–9:50 Identifying and Analyzing Judgment Opinions
Soo-Min Kim and Eduard Hovy

9:50–10:15 Learning to Detect Conversation Focus of Threaded Discussions
Donghui Feng, Erin Shaw, Jihie Kim and Eduard Hovy

Spoken and Acoustic Aspects of Language

9:00–9:25 Towards Automatic Scoring of Non-Native Spontaneous Speech
Klaus Zechner and Isaac Bejar

9:25–9:50 Unsupervised and Semi-supervised Learning of Tone and Pitch Accent
Gina-Anne Levow

9:50–10:15 Learning Pronunciation Dictionaries: Language Complexity and Word Selection Strate-
gies
John Kominek and Alan W Black

10:15–10:45 Break

xx

Tuesday, June 6 (continued)

Machine Translation II

10:45–11:10 Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality
Bryant Huang and Kevin Knight

11:10–11:35 Grammatical Machine Translation
Stefan Riezler and John T. Maxwell III

11:35–12:00 Synchronous Binarization for Machine Translation
Hao Zhang, Liang Huang, Daniel Gildea and Kevin Knight

Dialogue

10:45–11:10 Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System
with Generic, Tutoring, and User Affect Parameters
Kate Forbes-Riley and Diane Litman

11:10–11:35 Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learn-
ing
Joel Tetreault and Diane Litman

11:35–12:00 Backoff Model Training using Partially Observed Data: Application to Dialog Act Tagging
Gang Ji and Jeff Bilmes

Relation Extraction

10:45–11:10 Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
Min Zhang, Jie Zhang and Jian Su

11:10–11:35 Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and
Patterns in Text
Aron Culotta, Andrew McCallum and Jonathan Betz

11:35–12:00 Preemptive Information Extraction using Unrestricted Relation Discovery
Yusuke Shinyama and Satoshi Sekine

12:00–1:30 Lunch

xxi

Tuesday, June 6 (continued)

Best Paper And Plenary Demo Presentations

1:30–2:00 Probabilistic Context-Free Grammar Induction Based on Structural Zeros
Mehryar Mohri and Brian Roark

2:00–2:30 Prototype-Driven Learning for Sequence Models
Aria Haghighi and Dan Klein

2:30–3:00 Plenary demos:

InfoMagnets: Making Sense of Corpus Data
Jamie Arguello and Carolyn Rose

Question Answering with Web, Mobile and Speech Interfaces
Edward Whittaker, Joanna Mrozinski, and Sadaoki Furui

From Pipedreams to Products and Promise!
Janet Baker and Patri Pugliese

3:00–3:15 Break

3:15–5:15 Posters and Demos

7:00 Banquet

Wednesday, June 7

9:00–10:00 Keynote Speaker II: Diane Litman
Spoken Dialogue for Intelligent Tutoring Systems: Opportunities and Challenges

10:00–10:30 Break

Morphology/Grammar Induction

10:30–10:55 Learning Morphological Disambiguation Rules for Turkish
Deniz Yuret and Ferhan Ture

10:55–11:20 Cross-Entropy and Estimation of Probabilistic Context-Free Grammars
Anna Corazza and Giorgio Satta

11:20–11:45 Estimation of Consistent Probabilistic Context-free Grammars
Mark-Jan Nederhof and Giorgio Satta

11:45–12:10 A Better N-Best List: Practical Determinization of Weighted Finite Tree Automata
Jonathan May and Kevin Knight

xxii

Wednesday, June 7 (continued)

Generation/Summarization/Question Answering

10:30–10:55 Aggregation via Set Partitioning for Natural Language Generation
Regina Barzilay and Mirella Lapata

10:55–11:20 Incorporating Speaker and Discourse Features into Speech Summarization
Gabriel Murray, Steve Renals, Jean Carletta and Johanna Moore

11:20–11:45 Nuggeteer: Automatic Nugget-Based Evaluation using Descriptions and Judgements
Gregory Marton and Alexey Radul

11:45–12:10 Will Pyramids Built of Nuggets Topple Over?
Jimmy Lin and Dina Demner-Fushman

Information Retrieval

10:30–10:55 Creating a Test Collection for Citation-based IR Experiments
Anna Ritchie, Simone Teufel and Stephen Robertson

10:55–11:20 A Machine Learning based Approach to Evaluating Retrieval Systems
Huyen-Trang Vu and Patrick Gallinari

11:20–11:45 Language Model Information Retrieval with Document Expansion
Tao Tao, Xuanhui Wang, Qiaozhu Mei and ChengXiang Zhai

11:45–12:10 Towards Spoken-Document Retrieval for the Internet: Lattice Indexing For Large-Scale
Web-Search Architectures
Zheng-Yu Zhou, Peng Yu, Ciprian Chelba and Frank Seide

12:10–1:40 Lunch

1:40–2:30 NAACL Business Meeting

xxiii

Wednesday, June 7 (continued)

Short Papers: Morphology/Syntax

2:30–2:45 Subword-based Tagging by Conditional Random Fields for Chinese Word Segmentation
Ruiqiang Zhang, Kikui Genichiro and sumita eiichiro

2:45–3:00 Accurate Parsing of the Proposition Bank
Gabriele Musillo and Paola Merlo

3:00–3:15 Early Deletion of Fillers In Processing Conversational Speech
Matthew Lease and Mark Johnson

3:15–3:30 Parser Combination by Reparsing
Kenji Sagae and Alon Lavie

Short Papers: Semantics

2:30–2:45 Unsupervised Induction of Modern Standard Arabic Verb Classes
Neal Snider and Mona Diab

2:45–3:00 Word Domain Disambiguation via Word Sense Disambiguation
Antonio Sanfilippo, Stephen Tratz and Michelle Gregory

3:00–3:15 Evaluation of Utility of LSA for Word Sense Discrimination
Esther Levin, Mehrbod Sharifi and Jerry Ball

3:15–3:30 Semi-supervised Relation Extraction with Label Propagation
Jinxiu Chen, Donghong Ji, Chew Lim Tan and Zhengyu Niu

Short Papers: Speech and Video Processing

2:30–2:45 Initial Study on Automatic Identification of Speaker Role in Broadcast News Speech
Yang Liu

2:45–3:00 Extracting Salient Keywords from Instructional Videos Using Joint Text, Audio and Visual
Cues
Youngja Park and Ying Li

3:00–3:15 Class Model Adaptation for Speech Summarisation
Pierre Chatain, Edward Whittaker, Joanna Mrozinski and Sadaoki Furui

3:15–3:30 Summarizing Speech Without Text Using Hidden Markov Models
Sameer Maskey and Julia Hirschberg

3:30–4:00 Break

xxiv

Wednesday, June 7 (continued)

Semantics II

4:00–4:25 A fast finite-state relaxation method for enforcing global constraints on sequence decoding
Roy Tromble and Jason Eisner

4:25–4:50 Semantic role labeling of nominalized predicates in Chinese
Nianwen Xue

4:50–5:15 Learning for Semantic Parsing with Statistical Machine Translation
Yuk Wah Wong and Raymond Mooney

Evaluation

4:00–4:25 ParaEval: Using Paraphrases to Evaluate Summaries Automatically
Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu and Eduard Hovy

4:25–4:50 Paraphrasing for Automatic Evaluation
David Kauchak and Regina Barzilay

4:50–5:15 An Information-Theoretic Approach to Automatic Evaluation of Summaries
Chin-Yew Lin, Guihong Cao, Jianfeng Gao and Jian-Yun Nie

Processing in/for Language Models

4:00–4:25 Cross Linguistic Name Matching in English and Arabic
Andrew Freeman, Sherri Condon and Christopher Ackerman

4:25–4:50 Language Model-Based Document Clustering Using Random Walks
Gunes Erkan

4:50–5:15 Unlimited vocabulary speech recognition for agglutinative languages
Mikko Kurimo, Antti Puurula, Ebru Arisoy, Vesa Siivola, Teemu Hirsimki, Janne
Pylkknen, Tanel Alume and Murat Saraclar

xxv

Workshops

Thursday, June 8

9:00–5:30 WS01: The Tenth Conference on Computational Natural Language Learning
(CoNLL-X) , Day 1

9:00–5:30 WS02: Document Understanding Conference (DUC), Day 1

9:00–5:30 WS03: Interactive Question Answering, Day 1

9:00–5:30 WS04: Statistical Machine Translation, Day 1

9:00–5:30 WS05: Special Interest Group on Computational Phonology (SIGPHON)

9:00–5:30 WS06: BioNLP’06: Linking Natural Language Processing and Biology: To-
wards deeper biological literature analysis

9:00–5:30 WS08: Analyzing Conversations in Text and Speech (ACTS)

9:00–5:30 WS09: Third International Workshop on Scalable Natural Language Under-
standing (ScaNaLU 2006)

Friday, June 9

9:00–5:30 WS01: The Tenth Conference on Computational Natural Language Learning
(CoNLL-X) , Day 2

9:00–5:30 WS02: Document Understanding Conference (DUC), Day 2

9:00–5:30 WS03: Interactive Question Answering, Day 2

9:00–5:30 WS04: Statistical Machine Translation, Day 2

9:00–5:30 WS10: Computationally Hard Problems and Joint Inference in Speech and
Language Processing

9:00–5:30 WS11: First International Workshop on Medical Speech Translation

9:00–5:30 WS12: Textgraphs: Graph-based Algorithms for Natural Language Process-
ing

xxvi

Keynote Speaker:

Joshua Goodman
Microsoft Research

Speaking on:

Email and Spam and Spim and Spat

Abstract

Email is the number one activity that people do on the internet: 74% of internet users check their email
on an average day. Email use in offices has more than doubled since 2000, and is now over 8 hours a week.
There are many great NLP problems for email, like automatic clustering and foldering, search, prioritiza-
tion, automatically finding keywords within messages, finding addresses, and summarization. Spam is the
number one problem for email. I?ll talk about how spam filters work, and the current open problems, as
well as other kinds of abuse like chat spam (Spat), IM spam (Spim), blog comment spam (Blat), etc. all of
which make great NLP problems.

Email and abuse problems like spam can be some of the most exciting for research: they inspire us to work
on new problems we would otherwise not have found. We are exploring areas like adversarial learning,
learning with unbalanced costs, and learning with partial user feedback. Shipping solutions to these prob-
lems is both surprisingly hard and surprisingly fun. For NLP Researchers, the hardest constraint is that
products ship in about 20 languages. By carefully choosing tools like word clustering that are easy to build
in many languages, instead of similar tools like taggers that may not exist everywhere, we increase the
chance of shipping. When we have actually built complete systems and given them to users, we have found
several new and interesting problems in the most exciting way, by shipping solutions that don?t work the
first time around.

Bio

Joshua Goodman is a Principal Researcher in the Machine Learning and Applied Statistic group at Mi-
crosoft Research, where he runs a team focused on Learning for Messaging and Adversarial Problems.
Spam filters he helped develop stop over a billion spam messages per day. He has also worked on language
modeling and machine learning, and has a Ph.D. in Computer Science from Harvard University for his work
on Statistical Parsing. He helped start and is now President of the Conference on Email and Anti-Spam.

xxvii

Keynote Speaker:

Diane Litman
University of Pittsburgh

Speaking on:

Spoken Dialogue for Intelligent Tutoring Systems:
Opportunities and Challenges

Abstract

In recent years, the development of intelligent tutoring dialogue systems has become more prevalent, in
an attempt to close the performance gap between human and computer tutors. With advances in speech
technology, several systems have begun to incorporate spoken language capabilities, hypothesizing that
adding speech technology will promote student learning by enhancing communication richness. Tutor-
ing applications differ in many ways, however, from the types of applications for which spoken dialogue
systems are typically developed. This talk will illustrate some of the opportunities and challenges in this
area, focusing on issues such as affective reasoning, discourse analysis, error handling, and performance
evaluation.

Bio

Diane Litman is Professor of Computer Science, as well as Research Scientist with the Learning Re-
search and Development Center, at the University of Pittsburgh. Previously, Dr. Litman was a member
of the Artificial Intelligence Principles Research Department, AT&T Labs - Research (formerly Bell Lab-
oratories); she was also an Assistant Professor of Computer Science at Columbia University. Dr. Litman
received her Ph.D. degree in Computer Science from the University of Rochester. Her current research
focuses on enhancing the effectiveness of tutorial dialogue systems through the use of spoken language
processing, affective computing, and machine learning. She has collaborated on the development of spoken
dialogue systems in multiple application areas, including intelligent tutoring (ITSPOKE), chat (CobotDS)
and database/web access (NJFun and TOOT). Dr. Litman has been Chair of the North American Chapter of
the Association for Computational Linguistics, a member of the Executive Committee of the Association
for Computational Linguistics, and a member of the editorial boards of Computational Linguistics and User
Modeling and User-Adapted Interaction.

xxviii

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 1–8,
New York, June 2006.c©2006 Association for Computational Linguistics

Capitalizing Machine Translation

Wei Wang and Kevin Knight and Daniel Marcu
Language Weaver, Inc.

4640 Admiralty Way, Suite 1210
Marina del Rey, CA, 90292

{wwang, kknight, dmarcu}@languageweaver.com

Abstract

We present a probabilistic bilingual capi-
talization model for capitalizing machine
translation outputs using conditional ran-
dom fields. Experiments carried out on
three language pairs and a variety of ex-
periment conditions show that our model
significantly outperforms a strong mono-
lingual capitalization model baseline, es-
pecially when working with small datasets
and/or European language pairs.

1 Introduction

Capitalization is the process of recovering case in-
formation for texts in lowercase. It is also called
truecasing (Lita et al., 2003). Usually, capitalization
itself tries to improve the legibility of texts. It, how-
ever, can affect the word choice or order when inter-
acting with other models. In natural language pro-
cessing, a good capitalization model has been shown
useful for tasks like name entity recognition, auto-
matic content extraction, speech recognition, mod-
ern word processors, and machine translation (MT).

Capitalization can be viewed as a sequence la-
beling process. The input to this process is a sen-
tence in lowercase. For each lowercased word in
the input sentence, we have several available cap-
italization tags: initial capital (IU), all uppercase
(AU), all lowercase (AL), mixed case (MX), and
all having no case (AN). The output of capital-
ization is a capitalization tag sequence. Associ-
ating a tag in the output with the corresponding

lowercased word in the input results in a surface
form of the word. For example, we can tag the
input sentence “click ok to save your changes to
/home/doc.” into “click IU ok AU to AL save AL
your AL changes AL to AL /home/doc MX . AN”,
getting the surface form “Click OK to save your
changes to /home/DOC .”.

A capitalizer is a tagger that recovers the capi-
talization tag for each input lowercased word, out-
putting a well-capitalized sentence. Since each low-
ercased word can have more than one tag, and as-
sociating a tag with a lowercased word can result
in more than one surface form (e.g., /home/doc MX
can be either /home/DOC or /home/Doc), we need a
capitalization model to solve the capitalization am-
biguities. For example, Lita et al. (2003) use a tri-
gram language model estimated from a corpus with
case information; Chelba and Acero (2004) use a
maximum entropy Markov model (MEMM) com-
bining features involving words and their cases.

Capitalization models presented in most previ-
ous approaches are monolingual because the models
are estimated only from monolingual texts. How-
ever, for capitalizing machine translation outputs,
using only monolingual capitalization models is not
enough. For example, if the sentence “click ok to
save your changes to /home/doc .” in the above
example is the translation of the French sentence
“CLIQUEZ SUR OK POUR ENREGISTRER VOS MODIFI-

CATIONS DANS /HOME/DOC .”, the correct capitaliza-
tion result should probably be “CLICK OK TO SAVE

YOUR CHANGES TO /HOME/DOC .”, where all words
are in all upper-case. Without looking into the case

1

of the MT input, we can hardly get the correct capi-
talization result.

Although monolingual capitalization models in
previous work can apply to MT output, a bilingual
model is more desirable. This is because MT out-
puts usually strongly preserve case from the input,
and because monolingual capitalization models do
not always perform as well on badly translated text
as on well-formed syntactic texts.

In this paper, we present a bilingual capitalization
model for capitalizing machine translation outputs
using conditional random fields (CRFs) (Lafferty et
al., 2001). This model exploits case information
from both the input sentence (source) and the out-
put sentence (target) of the MT system. We define a
series of feature functions to incorporate capitaliza-
tion knowledge into the model.

Experimental results are shown in terms of BLEU
scores of a phrase-based SMT system with the cap-
italization model incorporated, and in terms of cap-
italization precision. Experiments are performed
on both French and English targeted MT systems
with large-scale training data. Our experimental re-
sults show that the CRF-based bilingual capitaliza-
tion model performs better than a strong baseline
capitalizer that uses a trigram language model.

2 Related Work

A simple capitalizer is the 1-gram tagger: the case of
a word is always the most frequent one observed in
training data, with the exception that the sentence-
initial word is always capitalized. A 1-gram capital-
izer is usually used as a baseline for capitalization
experiments (Lita et al., 2003; Kim and Woodland,
2004; Chelba and Acero, 2004).

Lita et al. (2003) view capitalization as a lexi-
cal ambiguity resolution problem, where the lexi-
cal choices for each lowercased word happen to be
its different surface forms. For a lowercased sen-
tence e, a trigram language model is used to find the
best capitalization tag sequence T that maximizes
p(T, e) = p(E), resulting in a case-sensitive sen-
tence E. Besides local trigrams, sentence-level
contexts like sentence-initial position are employed
as well.

Chelba and Acero (2004) frame capitalization as
a sequence labeling problem, where, for each low-

MT Decoder

Train Monolingual
Capitalization Model

Monolingual Cap Model Capitalization

Lower Case

Lower Case
f

Lower Case

e

Finput

Eoutput

Train

Translation Model

Train
Language Model

Translation
Model

Languagel
Model

{F}

{E}

{f}

{e}

Figure 1: The monolingual capitalization scheme employed
by most statistical MT systems.

ercased sentence e, they find the label sequence T

that maximizes p(T |e). They use a maximum en-
tropy Markov model (MEMM) to combine features
of words, cases and context (i.e., tag transitions).

Gale et al. (1994) report good results on capital-
izing 100 words. Mikheev (1999) performs capital-
ization using simple positional heuristics.

3 Monolingual Capitalization Scheme

Translation and capitalization are usually performed
in two successive steps because removing case infor-
mation from the training of translation models sub-
stantially reduces both the source and target vocabu-
lary sizes. Smaller vocabularies lead to a smaller
translation model with fewer parameters to learn.
For example, if we do not remove the case informa-
tion, we will have to deal with at least nine prob-
abilities for the English-French word pair (click,
cliquez). This is because either “click” or “cliquez”
can have at least three tags (IU, AL, AU), and thus
three surface forms. A smaller translation model re-
quires less training data, and can be estimated more
accurately than otherwise from the same amount
of training data. A smaller translation model also
means less memory usage.

Most statistical MT systems employ the monolin-
gual capitalization scheme as shown in Figure 1. In
this scheme, the translation model and the target lan-
guage model are trained from the lowercased cor-
pora. The capitalization model is trained from the
case-sensitive target corpus. In decoding, we first
turn input into lowercase, then use the decoder to
generate the lowercased translation, and finally ap-

2

HYDRAULIC HEADER TILT CYLINDER KIT
Kit de vérin d’inclinaison hydraulique de la plate-forme
haut-parleur avant droit +
HAUT-PARLEUR AVANT DROIT +
Seat Controls, Standard
COMMANDES DU SIGE, STANDARD
loading a saved legend
Chargement d’une légende sauvegarde

Table 1: Errors made by monolingual capitalization model.
Each row contains a pair of MT input and MT output.

MT Decoder

CapitalizationBilingual
Cap Model

Train Bilingual
 Cap Model

alignment

 Word/Phrase Aligner

f

Lower Case

e

Finput

Eoutput

{F}

{E}

Figure 2: A bilingual capitalization scheme.

ply the capitalization model to recover the case of
the decoding output.

The monolingual capitalization scheme makes
many errors as shown in Table 1. Each cell in
the table contains the MT-input and the MT-output.
These errors are due to the capitalizer does not have
access to the source sentence.

Regardless, estimating mixed-cased translation
models, however, is a very interesting topic and
worth future study.

4 Bilingual Capitalization Model

4.1 The Model

Our probabilistic bilingual capitalization model ex-
ploits case information from both the input sentence
to the MT system and the output sentence from the
system (see Figure 2). An MT system translates a
capitalized sentence F into a lowercased sentence e.
A statistical MT system can also provide the align-
ment A between the input F and the output e; for
example, a statistical phrase-based MT system could
provide the phrase boundaries in F and e, and also
the alignment between the phrases.1

1We shall explain our capitalization model within the
phrase-based SMT framework, the model, however, could be

OK

Click OK

Cliquez

E

F

Ẽi

F̃j

Figure 3: Alignment graph. Brackets mean phrase bound-
aries.

The bilingual capitalization algorithm recovers
the capitalized sentence E from e, according to the
input sentence F , and the alignment A. Formally,
we look for the best capitalized sentence E∗ such
that

E∗ = arg maxE∈GEN(e)p(E|F,A) (1)

where GEN(e) is a function returning the set of
possible capitalized sentences consistent with e. No-
tice that e does not appear in p(E|F,A) because we
can uniquely obtain e from E. p(E|F,A) is the cap-
italization model of concern in this paper.2

To further decompose the capitalization model
p(E|F,A), we make some assumptions. As shown
in Figure 3, input sentence F , capitalized output E,
and their alignment can be viewed as a graph. Ver-
tices of the graph correspond to words in F and
E. An edge connecting a word in F and a word
in E corresponds to a word alignment. An edge
between two words in E represents the dependency
between them captured by monolingual n-gram lan-
guage models. We also assume that both E and
F have phrase boundaries available (denoted by the
square brackets), and that A is the phrase alignment.
In Figure 3, F̃j is the j-th phrase of F , Ẽi is the i-th
phrase of E, and they align to each other. We do not
require a word alignment; instead we find it reason-
able to think that a word in Ẽi can be aligned to any

adapted to syntax-based machine translation, too. To this end,
the translational correspondence is described within a transla-
tion rule, i.e., (Galley et al., 2004) (or a synchronous produc-
tion), rather than a translational phrase pair; and the training
data will be derivation forests, instead of the phrase-aligned
bilingual corpus.

2The capitalization model p(E|F, A) itself does not require
the existence of e. This means that in principle this model can
also be viewed as a capitalized translation model that performs
translation and capitalization in an integrated step. In our paper,
however, we consider the case where the machine translation
output e is given, which is reflected by the the fact that GEN(e)
takes e as input in Formula 1.

3

word in F̃j . A probabilistic model defined on this
graph is a Conditional Random Field. Therefore,
it is natural to formulate the bilingual capitalization
model using CRFs:3

pλ(E|F, A) =
1

Z(F, A, λ)
exp

I
X

i=1

λifi(E, F, A)

!

(2)

where

Z(F, A, λ) =
X

E∈GEN(e)

exp

I
X

i=1

λifi(E,F, A)

!

(3)

fi(E,F,A), i = 1...I are the I features, and
λ = (λ1, ..., λI) is the feature weight vector. Based
on this capitalization model, the decoder in the cap-
italizer looks for the best E∗ such that

E∗ = arg maxE∈GEN(e,F)

I∑

i=1

λifi(E,F,A) (4)

4.2 Parameter Estimation

Following Roark et al. (2004), Lafferty et al. (2001)
and Chen and Rosenfeld (1999), we are looking for
the set of feature weights λ maximizing the regu-
larized log-likelihood LLR(λ) of the training data
{E(n), F (n), A(n), n = 1, ..., N}.

LLR(λ) =

N
X

n=1

log p
“

E
(n)|F (n)

, A
(n)
”

−
||λ||2

2σ2
(5)

The second term at the right-hand side of For-
mula 5 is a zero-mean Gaussian prior on the pa-
rameters. σ is the variance of the Gaussian prior
dictating the cost of feature weights moving away
from the mean — a smaller value of σ keeps feature
weights closer to the mean. σ can be determined
by linear search on development data.4 The use of
the Gaussian prior term in the objective function has
been found effective in avoiding overfitting, leading
to consistently better results. The choice of LLR as
an objective function can be justified as maximum
a-posteriori (MAP) training within a Bayesian ap-
proach (Roark et al., 2004).

3We chose CRFs over other sequence labeling models (i.e.
MEMM) because CRFs have no label bias and we do not need
to compute the partition function during decoding.

4In our experiment, we use an empirical value σ = 0.5 as in
(Roark et al., 2004).

4.3 Feature Functions

We define features based on the alignment graph
in Figure 3. Each feature function is defined on a
word.

Monolingual language model feature. The
monolingual LM feature of word Ei is the loga-
rithm of the probability of the n-gram ending at
Ei:

fLM(Ei, F,A) = log p(Ei|Ei−1, ..., Ei−n+1) (6)

p should be appropriately smoothed such that it
never returns zero.

Capitalized translation model feature. Sup-
pose E phrase “Click OK” is aligned to F

phrase “Cliquez OK”. The capitalized transla-
tion model feature of “Click” is computed as
log p(Click|Cliquez)+log p(Click|OK). “Click” is
assumed to be aligned to any word in the F phrase.
The larger the probability that “Click” is translated
from an F word, i.e., “Cliquez”, the more chances
that “Click” preserves the case of “Cliquez”. For-
mally, for word Ei, and an aligned phrase pair Ẽl

and F̃m, where Ei ∈ Ẽl, the capitalized translation
model feature of Ei is

fcap·t1(Ei, F,A) = log

|F̃m|∑

k=1

p(Ei|F̃m,k) (7)

p(Ei|F̃m,k) is the capitalized translation table. It
needs smoothing to avoid returning zero, and is esti-
mated from a word-aligned bilingual corpus.

Capitalization tag translation feature. The fea-
ture value of E word “Click” aligning to F phrase
“Cliquez OK” is log p(IU|IU)p(click|cliquez) +
log p(IU|AU)p(click|ok). We see that this feature
is less specific than the capitalized translation model
feature. It is computed in terms of the tag transla-
tion probability and the lowercased word translation
probability. The lowercased word translation proba-
bility, i.e., p(click|ok), is used to decide how much
of the tag translation probability, i.e., p(IU|AU),
will contribute to the final decision. The smaller the
word translation probability, i.e., p(click|ok), is, the
smaller the chance that the surface form of “click”

4

preserves case from that of “ok”. Formally, this fea-
ture is defined as

fcap·tag·t1(Ei, F,A) =

log

|f̃m|∑

k=1

p(ei|f̃m,k) × p(τ(Ei)|τ(F̃m,k)) (8)

p(ei|f̃m,k) is the t-table over lowercased word pairs,
which is the usual “t-table” in a SMT system.
p(τ(Ei)|τ(F̃m,k)) is the probability of a target cap-
italization tag given a source capitalization tag and
can be easily estimated from a word-aligned bilin-
gual corpus. This feature attempts to help when
fcap−t1 fails (i.e., the capitalized word pair is un-
seen). Smoothing is also applied to both p(ei|f̃m,k)
and p(τ(Ei)|τ(F̃m,k)) to handle unseen words (or
word pairs).

Upper-case translation feature. Word Ei is in
all upper case if all words in the corresponding F

phrase F̃m are in upper case. Although this fea-
ture can also be captured by the capitalization tag
translation feature in the case where an AU tag in
the input sentence is most probably preserved in the
output sentence, we still define it to emphasize its
effect. This feature aims, for example, to translate
“ABC XYZ” into “UUU VVV” even if all words are
unseen.

Initial capitalization feature. An E word is ini-
tially capitalized if it is the first word that contains
letters in the E sentence. For example, for sentence
“• Please click the button” that starts with a bul-
let, the initial capitalization feature value of word
“please” is 1 because “•” does not contain a letter.

Punctuation feature template. An E word is ini-
tially capitalized if it follows a punctuation mark.
Non-sentence-ending punctuation marks like com-
mas will usually get negative weights.

As one can see, our features are “coarse-grained”
(e.g., the language model feature). In contrast, Kim
and Woodland (2004) and Roark et al. (2004) use
“fine-grained” features. They treat each n-gram as
a feature for, respectively, monolingual capitaliza-
tion and language modeling. Feature weights tuned
at a fine granularity may lead to better accuracy,
but they require much more training data, and re-
sult in much slower training speed, especially for

large-scale learning problems. Coarse-grained fea-
tures enable us to efficiently get the feature values
from a very large training corpus, and quickly tune
the weights on small development sets. For exam-
ple, we can train a bilingual capitalization model on
a 70 million-word corpus in several hours with the
coarse-grained features presented above, but in sev-
eral days with fine-grained n-gram count features.

4.4 The GEN Function

Function GEN generates the set of case-sensitive
candidates from a lowercased token. For exam-
ple GEN(mt) = {mt, mT, Mt, MT}. The follow-
ing heuristics can be used to reduce the range of
GEN. The returned set of GEN on a lower-cased to-
ken w is the union of: (i) {w,AU(w), IU(w)}, (ii)
{v|v is seen in training data and AL(v) = w},
and (iii) {F̃m,k|AL(F̃m,k) = AL(w)}. The heuris-
tic (iii) is designed to provide more candidates for
w when it is translated from a very strange input
word F̃m,k in the F phrase F̃m that is aligned to the
phrase that w is in. This heuristic creates good capi-
talization candidates for the translation of URLs, file
names, and file paths.

5 Generating Phrase-Aligned Training
Data

Training the bilingual capitalization model requires
a bilingual corpus with phrase alignments, which are
usually produced from a phrase aligner. In practice,
the task of phrase alignment can be quite computa-
tionally expensive as it requires to translate the en-
tire training corpus; also a phrase aligner is not al-
ways available. We therefore generate the training
data using a naı̈ve phrase aligner (NPA) instead of
resorting to a real one.

The input to the NPA is a word-aligned bilingual
corpus. The NPA stochastically chooses for each
sentence pair one segmentation and phrase align-
ment that is consistent with the word alignment. An
aligned phrase pair is consistent with the word align-
ment if neither phrase contains any word aligning
to a word outside the other phrase (Och and Ney,
2004). The NPA chunks the source sentence into
phrases according to a probabilistic distribution over
source phrase lengths. This distribution can be ob-
tained from the trace output of a phrase-based MT

5

Entire Corpus (#W) Test-BLEU
Languages Training Dev Test-Prec. (#sents)

E→F (IT) 62M 13K 15K 763
F→E (news) 144M 11K 22K 241
C→E (news) 50M 8K 17K 919

Table 2: Corpora used in experiments.

decoder on a small development set. The NPA has
to retry if the current source phrase cannot find any
consistent target phrase. Unaligned target words are
attached to the left phrase. Heuristics are employed
to prevent the NPA from not coming to a solution.
Obviously, the NPA is a special case of the phrase
extractor in (Och and Ney, 2004) in that it considers
only one phrase alignment rather than all possible
ones.

Unlike a real phrase aligner, the NPA need not
wait for the training of the translation model to fin-
ish, making it possible for parallelization of transla-
tion model training and capitalization model train-
ing. However, we believe that a real phrase aligner
may make phrase alignment quality higher.

6 Experiments

6.1 Settings

We conducted capitalization experiments on three
language pairs: English-to-French (E→F) with a
bilingual corpus from the Information Technology
(IT) domain; French-to-English (F→E) with a bilin-
gual corpus from the general news domain; and
Chinese-to-English (C→E) with a bilingual corpus
from the general news domain as well. Each lan-
guage pair comes with a training corpus, a develop-
ment corpus and two test sets (see Table 2). Test-
Precision is used to test the capitalization precision
of the capitalizer on well-formed sentences drawn
from genres similar to those used for training. Test-
BLEU is used to assess the impact of our capitalizer
on end-to-end translation performance; in this case,
the capitalizer may operate on ungrammatical sen-
tences. We chose to work with these three language
pairs because we wanted to test our capitalization
model on both English and French target MT sys-
tems and in cases where the source language has no
case information (such as in Chinese).

We estimated the feature functions, such as the
log probabilities in the language model, from the

training set. Kneser-Ney smoothing (Kneser and
Ney, 1995) was applied to features fLM, fcap·t1,
and fcap·tag·t1. We trained the feature weights of
the CRF-based bilingual capitalization model using
the development set. Since estimation of the feature
weights requires the phrase alignment information,
we efficiently applied the NPA on the development
set.

We employed two LM-based capitalizers as base-
lines for performance comparison: a unigram-based
capitalizer and a strong trigram-based one. The
unigram-based capitalizer is the usual baseline for
capitalization experiments in previous work. The
trigram-based baseline is similar to the one in
(Lita et al., 2003) except that we used Kneser-Ney
smoothing instead of a mixture.

A phrase-based SMT system (Marcu and Wong,
2002) was trained on the bitext. The capitalizer
was incorporated into the MT system as a post-
processing module — it capitalizes the lowercased
MT output. The phrase boundaries and alignments
needed by the capitalizer were automatically in-
ferred as part of the decoding process.

6.2 BLEU and Precision

We measured the impact of our capitalization model
in the context of an end-to-end MT system using
BLEU (Papineni et al., 2001). In this context, the
capitalizer operates on potentially ill-formed, MT-
produced outputs.

To this end, we first integrated our bilingual capi-
talizer into the phrase-based SMT system as a post-
processing module. The decoder of the MT sys-
tem was modified to provide the capitalizer with
the case-preserved source sentence, the lowercased
translation, and the phrase boundaries and their
alignments. Based on this information, our bilin-
gual capitalizer recovers the case information of the
lowercased translation, outputting a capitalized tar-
get sentence. The case-restored machine transla-
tions were evaluated against the target test-BLEU
set. For comparison, BLEU scores were also com-
puted for an MT system that used the two LM-based
baselines.

We also assessed the performance of our capital-
izer on the task of recovering case information for
well-formed grammatical texts. To this end, we used
the precision metric that counted the number of cor-

6

rectly capitalized words produced by our capitalizer
on well-formed, lowercased input

precision =
#correctly capitalized words

#total words
(9)

To obtain the capitalization precision, we im-
plemented the capitalizer as a standalone program.
The inputs to the capitalizer were triples of a case-
preserved source sentence, a lowercased target sen-
tence, and phrase alignments between them. The
output was the case-restored version of the target
sentence. In this evaluation scenario, the capitalizer
output and the reference differ only in case infor-
mation — word choices and word orders between
them are the same. Testing was conducted on Test-
Precision. We applied the NPA to the Test-Precision
set to obtain the phrases and their alignments be-
cause they were needed to trigger the features in
testing. We used a Test-Precision set that was dif-
ferent from the Test-BLEU set because word align-
ments were by-products only of training of transla-
tion models on the MT training data and we could
not put the Test-BLEU set into the MT training
data. Rather than implementing a standalone word
aligner, we randomly divided the MT training data
into three non-overlapping sets: Test-Precision set,
CRF capitalizer training set and dev set.

6.3 Results

The performance comparisons between our CRF-
based capitalizer and the two LM-based baselines
are shown in Table 3 and Table 4. Table 3 shows
the BLEU scores, and Table 4 shows the precision.
The BLEU upper bounds indicate the ceilings that a
perfect capitalizer can reach, and are computed by
ignoring the case information in both the capitalizer
outputs and the reference. Obviously, the precision
upper bounds for all language pairs are 100%.

The precision and end-to-end BLEU based com-
parisons show that, for European language pairs, the
CRF-based bilingual capitalization model outper-
forms significantly the strong LM-based baseline.
We got more than one BLEU point improvement on
the MT translation between English and French, a
34% relative reduction in capitalization error rate for
the French-to-English language pair, and a 42% rel-
ative error rate reduction for the English-to-French

language pair. These results show that source lan-
guage information provides significant help for cap-
italizing machine translation outputs. The results
also show that when the source language does not
have case, as in Chinese, the bilingual model equals
a monolingual one.

The BLEU difference between the CRF-based
capitalizer and the trigram one were larger than
the precision difference. This indicates that the
CRF-based capitalizer performs much better on non-
grammatical texts that are generated from an MT
system due to the bilingual feature of the CRF capi-
talizer.

6.4 Effect of Training Corpus Size

The experiments above were carried out on large
data sets. We also conducted experiments to exam-
ine the effect of the training corpus size on capital-
ization precision. Figure 4 shows the effects. The
experiment was performed on the E→F corpus. The
bilingual capitalizer performed significantly better
when the training corpus size was small (e.g., un-
der 8 million words). This is common in many do-
mains: when the training corpus size increases, the
difference between the two capitalizers decreases.

7 Conclusions

In this paper, we have studied how to exploit bilin-
gual information to improve capitalization perfor-
mance on machine translation output, and evaluated
the improvement over traditional methods that use
only monolingual language models.

We first presented a probabilistic bilingual cap-
italization model for capitalizing machine transla-
tion outputs using conditional random fields. This
model exploits bilingual capitalization knowledge as
well as monolingual information. We defined a se-
ries of feature functions to incorporate capitalization
knowledge into the model.

We then evaluated our CRF-based bilingual capi-
talization model both on well-formed texts in terms
of capitalization precision, and on possibly ungram-
matical end-to-end machine translation outputs in
terms of BLEU scores. Experiments were per-
formed on both French and English target MT sys-
tems with large-scale training data. Our experimen-
tal results showed that the CRF-based bilingual cap-

7

BLEU Scores

Translation
Unigram

Capitalizer
Trigram

Capitalizer
CRF-based
Capitalizer

Upper
Bound

F→E 24.96 26.73 27.92 28.85
E→F 32.63 34.66 36.10 36.17
C→E 23.81 25.92 25.89 -

Table 3: Impact of CRF-based capitalizer on end-to-end translation performance compared with two LM-based baselines.

Capitalization Precision (%)

Translation
Unigram

capitalizer
Trigram

capitalizer
CRF-based
capitalizer

F→E 94.03 98.79 99.20
E→F 91.52 98.47 99.11
C→E 90.77 96.40 96.76

Table 4: Impact of CRF-based capitalizer on capitalization precision compared with two LM-based baselines.

100

99

98

97

9696

95

94

93

92
64.032.016.08.04.02.01.00.50.20.1

P
re

ci
si

on
 (x

%
)

Training Corpus Size (MWs)

CRF-based capitalizer
LM-based capitalizer

Figure 4: Capitalization precision with respect to size of train-
ing corpus. LM-based capitalizer refers to the trigram-based
one. Results were on E→F corpus.

italization model performs significantly better than a
strong baseline, monolingual capitalizer that uses a
trigram language model.

In all experiments carried out at Language Weaver
with customer (or domain specific) data, MT sys-
tems trained on lowercased data coupled with the
CRF bilingual capitalizer described in this paper
consistently outperformed both MT systems trained
on lowercased data coupled with a strong monolin-
gual capitalizer and MT systems trained on mixed-
cased data.

References
Ciprian Chelba and Alex Acero. 2004. Adaptation of maxi-

mum entroy capitalizer: Little data can help a lot. In Pro-
ceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Barcelona, Spain.

Stanley Chen and Ronald Rosenfeld. 1999. A Gaussian prior
for smoothing Maximum Entropy models. Technical Report
CMUCS-99-108, Carnegie Mellon University.

William A. Gale, Kenneth W. Church, and David Yarowsky.
1994. Discrimination decisions for 100,000-dimensional

spaces. In Current issues in computational linguistics.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a Translation Rule? In Proceedings of the Human
Language Technology Conference and the North American
Association for Computational Linguistics (HLT-NAACL),
Boston, Massachusetts.

Ji-Hwan Kim and Philip C. Woodland. 2004. Automatic capi-
talization generation for speech input. Computer Speech and
Language, 18(1):67–90, January.

Reinhard Kneser and Hermann Ney. 1995. Improved backing-
off for m-gram language modeling. In Proceedings of the In-
ternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP) 1995, pages 181–184, Detroit, Michi-
gan. IEEE.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for segmen-
tation and labeling sequence data.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and Nanda
Kambhatla. 2003. tRuEcasIng. In Proceedings of the 40th
Annual Meeting of the Association for Computational Lin-
guistics (ACL), Sapporo, Japan, July.

Daniel Marcu and William Wong. 2002. A phrase-based, joint
probability model for statistical machine translation. In Pro-
ceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Philadelphia, PA.

A. Mikheev. 1999. A knowledge-free method fro capitalized
word disambiguation. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics
(ACL), College Park, Maryland, June.

Franz Och and Hermann Ney. 2004. The alignment template
approach to statistical machine translation. Computational
Linguistics, 30(4).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2001. BLEU: A method for automatic evaluation
of Machine Translation. Technical Report RC22176, IBM,
September.

Brian Roark, Murat Saraclar, Michael Collins, and Mark John-
son. 2004. Discriminative language modeling with condi-
tional random field and the perceptron algorithm. In Pro-
ceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), Barcelona, Spain.

8

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 9–16,
New York, June 2006.c©2006 Association for Computational Linguistics

Do we need phrases? Challenging the conventional wisdom in Statistical
Machine Translation

Chris Quirk and Arul Menezes
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
{chrisq,arulm}@microsoft.com

Abstract

We begin by exploring theoretical and
practical issues with phrasal SMT, several
of which are addressed by syntax-based
SMT. Next, to address problems not
handled by syntax, we propose the
concept of a Minimal Translation Unit
(MTU) and develop MTU sequence
models. Finally we incorporate these
models into a syntax-based SMT system
and demonstrate that it improves on the
state of the art translation quality within a
theoretically more desirable framework.

1. Introduction

The last several years have seen phrasal statistical
machine translation (SMT) systems outperform
word-based approaches by a wide margin (Koehn
2003). Unfortunately the use of phrases in SMT is
beset by a number of difficult theoretical and
practical problems, which we attempt to
characterize below. Recent research into syntax-
based SMT (Quirk and Menezes 2005; Chiang
2005) has produced promising results in
addressing some of the problems; research
motivated by other statistical models has helped
to address others (Banchs et al. 2005). We refine
and unify two threads of research in an attempt to
address all of these problems simultaneously.
Such an approach proves both theoretically more
desirable and empirically superior.

In brief, Phrasal SMT systems employ phrase
pairs automatically extracted from parallel
corpora. To translate, a source sentence is first
partitioned into a sequence of phrases I = s1…sI.
Each source phrase si is then translated into a
target phrase ti. Finally the target phrases are
permuted, and the translation is read off in order.

Beam search is used to approximate the optimal
translation. We refer the reader to Keohn et al.
(2003) for a detailed description. Unless
otherwise noted, the following discussion is
generally applicable to Alignment Template
systems (Och and Ney 2004) as well.

1.1. Advantages of phrasal SMT

Non-compositionality
Phrases capture the translations of idiomatic and
other non-compositional fixed phrases as a unit,
side-stepping the need to awkwardly reconstruct
them word by word. While many words can be
translated into a single target word, common
everyday phrases such as the English password
translating as the French mot de passe cannot be
easily subdivided. Allowing such translations to
be first class entities simplifies translation
implementation and improves translation quality.

Local re-ordering
Phrases provide memorized re-ordering decisions.
As previously noted, translation can be
conceptually divided into two steps: first, finding
a set of phrase pairs that simultaneously covers
the source side and provides a bag of translated
target phrases; and second, picking an order for
those target phrases. Since phrase pairs consist of
memorized substrings of the training data, they
are very likely to produce correct local re-
orderings.

Contextual information
Many phrasal translations may be easily
subdivided into word-for-word translation, for
instance the English phrase the cabbage may be
translated word-for-word as le chou. However we
note that la is also a perfectly reasonable word-
for-word translation of the, yet la chou is not a
grammatical French string. Even when a phrase
appears compositional, the incorporation of
contextual information often improves translation

9

quality. Phrases are a straightforward means of
capturing local context.

1.2. Theoretical problems with phrasal SMT

Exact substring match; no discontiguity
Large fixed phrase pairs are effective when an
exact match can be found, but are useless
otherwise. The alignment template approach
(where phrases are modeled in terms of word
classes instead of specific words) provides a
solution at the expense of truly fixed phrases.
Neither phrasal SMT nor alignment templates
allow discontiguous translation pairs.

Global re-ordering
Phrases do capture local reordering, but provide
no global re-ordering strategy, and the number of
possible orderings to be considered is not
lessened significantly. Given a sentence of n
words, if the average target phrase length is 4
words (which is unusually high), then the re-
ordering space is reduced from n! to only (n/4)!:
still impractical for exact search in most
sentences. Systems must therefore impose some
limits on phrasal reordering, often hard limits
based on distance as in Koehn et al. (2003) or
some linguistically motivated constraint, such as
ITG (Zens and Ney, 2004). Since these phrases
are not bound by or even related to syntactic
constituents, linguistic generalizations (such as
SVO becoming SOV, or prepositions becoming
postpositions) are not easily incorporated into the
movement models.

Probability estimation
To estimate the translation probability of a phrase
pair, several approaches are used, often
concurrently as features in a log-linear model.
Conditional probabilities can be estimated by
maximum likelihood estimation. Yet the phrases
most likely to contribute important translational
and ordering information—the longest ones—are
the ones most subject to sparse data issues.

Alternately, conditional phrasal models can be
constructed from word translation probabilities;
this approach is often called lexical weighting
(Vogel et al. 2003). This avoids sparse data
issues, but tends to prefer literal translations
where the word-for-word probabilities are high
Furthermore most approaches model phrases as
bags of words, and fail to distinguish between
local re-ordering possibilities.

Partitioning limitation
A phrasal approach partitions the sentence into
strings of words, making several questionable
assumptions along the way. First, the probability
of the partitioning is never considered. Long
phrases tend to be rare and therefore have sharp
probability distributions. This adds an inherent
bias toward long phrases with questionable MLE
probabilities (e.g. 1/1 or 2/2). 1

Second, the translation probability of each
phrase pair is modeled independently. Such an
approach fails to model any phenomena that reach
across boundaries; only the target language model
and perhaps whole-sentence bag of words models
cross phrase boundaries. This is especially
important when translating into languages with
agreement phenomena. Often a single phrase does
not cover all agreeing modifiers of a headword;
the uncovered modifiers are biased toward the
most common variant rather than the one agreeing
with its head. Ideally a system would consider
overlapping phrases rather than a single
partitioning, but this poses a problem for
generative models: when words are generated
multiple times by different phrases, they are
effectively penalized.

1.3. Practical problem with phrases: size

In addition to the theoretical problems with
phrases, there are also practical issues. While
phrasal systems achieve diminishing returns due

1 The Alignment Template approach differs slightly here.

Phrasal SMT estimates the probability of a phrase pair as:

�
=

'
)',(

),(
)|(

t
tscount

tscount
stφ

The Alignment Template method incorporates a loose
partitioning probability by instead estimating the probability
as (in the special case where each word has a unique class):

)(

),(
)|(

scount

tscount
stp =

Note that these counts could differ significantly. Picture a
source phrase that almost always translates into a
discontiguous phrase (e.g. English not becoming French ne
… pas), except for the rare occasion where, due to an
alignment error or odd training data, it translates into a
contiguous phrase (e.g. French ne parle pas). Then the first
probability formulation of ne parle pas given not would be
unreasonably high. However, this is a partial fix since it
again suffers from data sparsity problems, especially on
longer templates where systems hope to achieve the best
benefits from phrases.

10

to sparse data, one does see a small incremental
benefit with increasing phrase lengths. Given that
storing all of these phrases leads to very large
phrase tables, many research systems simply limit
the phrases gathered to those that could possibly
influence some test set. However, this is not
feasible for true production MT systems, since the
data to be translated is unknown.

2. Previous work

2.1. Delayed phrase construction

To avoid the major practical problem of phrasal
SMT—namely large phrase tables, most of which
are not useful to any one sentence—one can
instead construct phrase tables on the fly using an
indexed form of the training data (Zhang and
Vogel 2005; Callison-Burch et al. 2005).
However, this does not relieve any of the
theoretical problems with phrase-based SMT.

2.2. Syntax-based SMT

Two recent systems have attempted to address the
contiguity limitation and global re-ordering
problem using syntax-based approaches.

Hierarchical phrases
Recent work in the use of hierarchical phrases
(Chiang 2005) improves the ability to capture
linguistic generalizations, and also removes the
limitation to contiguous phrases. Hierarchical
phrases differ from standard phrases in one
important way: in addition to lexical items, a
phrase pair may contain indexed placeholders,
where each index must occur exactly once on
each side. Such a formulation leads to a formally
syntax-based translation approach, where
translation is viewed as a parallel parsing problem
over a grammar with one non-terminal symbol.
This approach significantly outperforms a phrasal
SMT baseline in controlled experimentation.

Hierarchical phrases do address the need for
non-contiguous phrases and suggest a powerful
ordering story in the absence of linguistic
information, although this reordering information
is bound in a deeply lexicalized form. Yet they do
not address the phrase probability estimation
problem; nor do they provide a means of
modeling phenomena across phrase boundaries.
The practical problems with phrase-based
translation systems are further exacerbated, since

the number of translation rules with up to two
non-adjacent non-terminals in a 1-1 monotone
sentence pair of n source and target words is
O(n6), as compared to O(n2) phrases.

Treelet Translation
Another means of extending phrase-based
translation is to incorporate source language
syntactic information. In Quirk and Menezes
(2005) we presented an approach to phrasal SMT
based on a parsed dependency tree representation
of the source language. We use a source
dependency parser and project a target
dependency tree using a word-based alignment,
after which we extract tree-based phrases
(‘treelets’) and train a tree-based ordering model.
We showed that using treelets and a tree-based
ordering model results in significantly better
translations than a leading phrase-based system
(Pharaoh, Koehn 2004), keeping all other models
identical.

Like the hierarchical phrase approach, treelet
translation succeeds in improving the global re-
ordering search and allowing discontiguous
phrases, but does not solve the partitioning or
estimation problems. While we found our treelet
system more resistant to degradation at smaller
phrase sizes than the phrase-based system, it
nevertheless suffered significantly at very small
phrase sizes. Thus it is also subject to practical
problems of size, and again these problems are
exacerbated since there are potentially an
exponential number of treelets.

2.3. Bilingual n-gram channel models

To address on the problems of estimation and
partitioning, one recent approach transforms
channel modeling into a standard sequence
modeling problem (Banchs et al. 2005). Consider
the following aligned sentence pair in Figure 1a.
In such a well-behaved example, it is natural to
consider the problem in terms of sequence
models. Picture a generative process that
produces a sentence pair in left to right, emitting a
pair of words in lock step. Let M = ‹ m1, …, mn ›
be a sequence of word pairs mi = ‹ s, t ›. Then one
can generatively model the probability of an
aligned sentence pair using techniques from n-
gram language modeling:

11

�

�

=

−
−

=

−

≈

=

=

k

i

i
nii

k

i

i
i

mmP

mmP

MPATSP

1

1

1

1
1

)|(

)|(

)(),,(

 When an alignment is one-to-one and
monotone, this definition is sufficient. However
alignments are seldom purely one-to-one and
monotone in practice; Figure 1b displays common
behavior such as one-to-many alignments,
inserted words, and non-monotone translation. To
address these problems, Banchs et al. (2005)
suggest defining tuples such that:

(1) the tuple sequence is monotone,
(2) there are no word alignment links between

two distinct tuples,
(3) each tuple has a non-NULL source side,

which may require that target words
aligned to NULL are joined with their
following word, and

(4) no smaller tuples can be extracted without
violating these constraints.

Note that M is now a sequence of phrase pairs
instead of word pairs. With this adjusted
definition, even Figure 1b can be generated using
the same process using the following tuples:

m1 = ‹ the, l’ ›
m2 = ‹ following example, exemple suivant ›
m3 = ‹ renames, change le nom ›
m4 = ‹ the, de la ›
m5 = ‹ table, table ›

There are several advantages to such an
approach. First, it largely avoids the partitioning
problem; instead of segmenting into potentially
large phrases, the sentence is segmented into
much smaller tuples, most often pairs of single
words. Furthermore the failure to model a
partitioning probability is much more defensible

when the partitions are much smaller. Secondly,
n-gram language model probabilities provide a
robust means of estimating phrasal translation
probabilities in context that models interactions
between all adjacent tuples, obviating the need for
overlapping mappings.

These tuple channel models still must address
practical issues such as model size, though much
work has been done to shrink language models
with minimal impact to perplexity (e.g. Stolcke
1998), which these models could immediately
leverage. Furthermore, these models do not
address the contiguity problem or the global
reordering problem.

3. Translation by MTUs

In this paper, we address all four theoretical
problems using a novel combination of our
syntactically-informed treelet approach (Quirk
and Menezes 2005) and a modified version of
bilingual n-gram channel models (Banchs et al.
2005). As in our previous work, we first parse the
sentence into a dependency tree. After this initial
parse, we use a global search to find a candidate
that maximizes a log-linear model, where these
candidates consist of a target word sequence
annotated with a dependency structure, a word
alignment, and a treelet decomposition.

We begin by exploring minimal translation
units and the models that concern them.

3.1. Minimal Translation Units

Minimal Translation Units (MTUs) are related to
the tuples of Banchs et al. (2005), but differ in
several important respects. First, we relieve the
restriction that the MTU sequence be monotone.
This prevents spurious expansion of MTUs to
incorporate adjacent context only to satisfy
monotonicity. In the example, note that the
previous algorithm would extract the tuple
‹following example, exemple suivant› even though
the translations are mostly independent. Their
partitioning is also context dependent: if the
sentence did not contain the words following or
suivant, then ‹ example, exemple › would be a
single MTU. Secondly we drop the requirement
that no MTU have a NULL source side. While
some insertions can be modeled in terms of
adjacent words, we believe more robust models
can be obtained if we consider insertions as

(a) Monotone aligned sentence pair

(b) More common non-monotone aligned sentence pair

Figure 1. Example aligned sentence pairs.

12

independent units. In the end our MTUs are
defined quite simply as pairs of source and target
word sets that follow the given constraints:

(1) there are no word alignment links between
distinct MTUs, and

(2) no smaller MTUs can be extracted without
violating the previous constraint.

Since our word alignment algorithm is able to
produce one-to-one, one-to-many, many-to-one,
one-to-zero, and zero-to-one translations, these
act as our basic units. As an example, let us
consider example (1) once again. Using this new
algorithm, the MTUs would be:

m1 = ‹ the, l’ ›
m2 = ‹ following, suivant ›
m3 = ‹ example, exemple ›
m4 = ‹ renames, change le nom ›
m5 = ‹ NULL, de ›
m6 = ‹ the, la ›
m7 = ‹ table, table ›

A finer grained partitioning into MTUs further
reduces the data sparsity and partitioning issues
associated with phrases. Yet it poses issues in
modeling translation: given a sequence of MTUs
that does not have a monotone segmentation, how
do we model the probability of an aligned
translation pair? We propose several solutions,
and use each in a log-linear combination of
models.

First, one may walk the MTUs in source order,
ignoring insertion MTUs altogether. Such a
model is completely agnostic of the target word
order; instead of generating an aligned source
target pair, it generates a source sentence along
with a bag of target phrases. This approach
expends a great deal of modeling effort in
regenerating the source sentence, which may not
be altogether desirable, though it does condition
on surrounding translations. Also, it can be
evaluated on candidates before orderings are
considered. This latter property may be useful in

two-stage decoding strategies where translations
are considered before orderings.

Secondly, one may walk the MTUs in target
order, ignoring deletion MTUs. Where the source-
order MTU channel model expends probability
mass generating the source sentence, this model
expends a probability mass generating the target
sentence and therefore may be somewhat
redundant with the target language model.

Finally, one may walk the MTUs in
dependency tree order. Let us assume that in
addition to an aligned source-target candidate
pair, we have a dependency parse of the source
side. Where the past models conditioned on
surface adjacent MTUs, this model conditions on
tree adjacent MTUs. Currently we condition only
on the ancestor chain, where parent1(m) is the
parent MTU of m, parent2(m) is the grandparent
of m, and so on:

))(|()(),,(1
1 mparentmPMPATSP n

Mm

−

∈
∏≈=

This model hopes to capture information
completely distinct from the other two models,
such as translational preferences contingent on the
head, even in the presence of long distance
dependencies. Note that it generates unordered
dependency tree pairs.

All of these models can be trained from a
parallel corpus that has been word aligned and the
source side dependency parsed. We walk through
each sentence extracting MTUs in source, target,
and tree order. Standard n-gram language
modeling tools can be used to train MTU
language models.

3.2. Decoding

We employ a dependency tree-based beam search
decoder to search the space of translations. First
the input is parsed into a dependency tree

 English French English Japanese
Training Sentences 300,000 500,000

 Words 4,441,465 5,198,932 7,909,198 9,379,240
 Vocabulary 63,343 59,290 79,029 95,813
 Singletons 35,328 29,448 44,111 52,911

Development test Sentences 200 200
 Words 3,045 3,456 3,436 4,095

Test Sentences 2,000 2,000
 Words 30,010 34,725 35,556 3,855
 OOV rate 5.5% 4.6% 6.9% 6.8%

Table 4.1 Data characteristics

13

structure. For each input node in the dependency
tree, an n-best list of candidates is produced.
Candidates consist of a target dependency tree
along with a treelet and word alignment. The
decoder generally assumes phrasal cohesion:
candidates covering a substring (not subsequence)
of the input sentence produce a potential substring
(not subsequence) of the final translation. In
addition to allowing a DP / beam decoder, this
allows us to evaluate string-based models (such as
the target language model and the source and
target order MTU n-gram models) on partial
candidates. This decoder is unchanged from our
previous work: the MTU n-gram models are
simply incorporated as feature functions in the
log-linear combination. In the experiments section
the MTU models are referred to as model set (1).

3.3. Other translation models

Phrasal channel models
We can estimate traditional channel models using
maximum likelihood or lexical weighting:

∏ ∏�

∏ ∏�

∏

∏

∈ ∈ ∈

∈ ∈ ∈

∈

∈

=

=

=

=

)(),(
InverseM1

)(),(
DirectM1

)(),(
InverseMLE

)(),(
DirectMLE

)|(),,(

)|(),,(

)(*,

),(
),,(

,*)(

),(
),,(

Atreelets s t

Atreelets t s

Atreelets

Atreelets

tspATSf

stpATSf

c

c
ATSf

c

c
ATSf

τσ σ τ

τσ τ σ

τσ

τσ

τ
τσ

σ
τσ

We use word probability tables p(t | s) and p(s | t)
estimated by IBM Model 1 (Brown et al. 1993).
Such models can be built over phrases if used in a
phrasal decoder or over treelets if used in a treelet
decoder. These models are referred to as set (2).

Word-based models
A target language model using modified Kneser-
Ney smoothing captures fluency; a word count
feature offsets the target LM preference for
shorter selections; and a treelet/phrase count helps
bias toward translations using fewer phrases.
These models are referred to as set (3).

|)(|),,(

||),,(

)|(),,(

tphrasecoun

wordcount

||

1

1
targetLM

AtreeletsATSf

TATSf

ttPATSf
T

i

i
nii

=
=

= ∏
=

−
−

Syntactic models
As in Quirk and Menezes (2005), we include a
linguistically-informed order model that predicts
the head-relative position of each node
independently, and a tree-based bigram target
language model; these models are referred to as
set (4).

∏
∏

∈

∈

=

=

Tt

Tt

tparenttPATSf

ATStpositionPATSf

))(|(),,(

),,|)((),,(

treeLM

order

4. Experimental setup

We evaluate the translation quality of the system
using the BLEU metric (Papineni et al., 02) under
a variety of configurations. As an additional
baseline, we compare against a phrasal SMT
decoder, Pharaoh (Koehn et al. 2003).

4.1. Data

Two language pairs were used for this
comparison: English to French, and English to
Japanese. The data was selected from technical
software documentation including software
manuals and product support articles; Table 4.1
presents the major characteristics of this data.

4.2. Training

We parsed the source (English) side of the
corpora using NLPWIN, a broad-coverage rule-
based parser able to produce syntactic analyses at
varying levels of depth (Heidorn 2002). For the
purposes of these experiments we used a
dependency tree output with part-of-speech tags
and unstemmed surface words. Word alignments
were produced by GIZA++ (Och and Ney 2003)
with a standard training regimen of five iterations
of Model 1, five iterations of the HMM Model,
and five iterations of Model 4, in both directions.
These alignments were combined heuristically as
described in our previous work.

We then projected the dependency trees and
used the aligned dependency tree pairs to extract
treelet translation pairs, train the order model, and
train MTU models. The target language models
were trained using only the target side of the
corpus. Finally we trained model weights by
maximizing BLEU (Och 2003) and set decoder
optimization parameters (n-best list size, timeouts

14

etc) on a development test set of 200 held-out
sentences each with a single reference translation.
Parameters were individually estimated for each
distinct configuration.

Pharaoh
The same GIZA++ alignments as above were
used in the Pharaoh decoder (Koehn 2004). We
used the heuristic combination described in (Och
and Ney 2003) and extracted phrasal translation
pairs from this combined alignment as described
in (Koehn et al., 2003). Aside from MTU models
and syntactic models (Pharaoh uses its own
ordering approach), the same models were used:
MLE and lexical weighting channel models,
target LM, and phrase and word count. Model
weights were also trained following Och (2003).

5. Results

We begin with a broad brush comparison of
systems in Table 5.1. Throughout this section,
treelet and phrase sizes are measured in terms of
MTUs, not words. By default, all systems
(including Pharaoh) use treelets or phrases of up
to four MTUs, and MTU bigram models. The first
results reiterate that the introduction of
discontiguous mappings and especially a
linguistically motivated order model (model set
(4)) can improve translation quality. Replacing
the standard channel models (model set (2)) with
MTU bigram models (model set (1)) does not

appear to degrade quality; it even seems to boost
quality on EF. Furthermore, the information in the
MTU models appears somewhat orthogonal to the
phrasal models; a combination results in
improvements for both language pairs.

The experiments in Table 5.2 compare quality
using different orders of MTU n-gram models.
(Treelets containing up to four MTUs were still
used as the basis for decoding; only the order of
the MTU n-gram models was adjusted.) A
unigram model performs surprisingly well. This
supports our intuition that atomic handling of
non-compositional multi-word translations is a
major contribution of phrasal SMT. Furthermore
bigram models increase translation quality
supporting the claim that local context is another
contribution. Models beyond bigrams had little
impact presumably due to sparsity and smoothing.

Table 5.3 explores the impact of using different
phrase/treelet sizes in decoding. We see that
adding MTU models makes translation more
resilient given smaller phrases. The poor
performance at size 1 is not particularly
surprising: both systems require insertions to be
lexically anchored: the only decoding operation
allowed is translation of some visible source
phrase, and insertions have no visible trace.

6. Conclusions

In this paper we have teased apart the role of

 EF EJ
Phrasal decoder (Pharaoh)
 Model sets (2),(3) 45.8±2.0 32.9±0.9
Treelet decoder, without discontiguous mappings
 Model sets (2),(3) 45.1±2.1 33.2±0.9
 Model sets (2),(3),(4) 48.4±2.0 34.8±0.9
Treelet decoder, with discontiguous mappings
 Model sets (2),(3) 46.4±2.1 34.3±0.9
 Model sets (2),(3),(4) 48.7±2.1 34.9±0.9
 Model sets (1),(3),(4) 49.6±2.1 33.9±0.8
 Model sets (1)-(4) 50.5±2.1 36.2±0.9

Table 5.1. Broad system comparison.

 EF EJ
Treelet decoder, model sets (1),(3),(4)
 MTU unigram 47.8±2.1 33.2±0.9
 MTU bigram 49.6±2.1 33.9±0.8
 MTU trigram 49.9±2.0 34.0±0.9
 MTU 4-gram 49.6±2.1 34.1±0.9
Treelet decoder, model sets (1)-(4)
 MTU unigram 48.6±2.1 34.3±1.0
 MTU bigram 50.5±2.1 36.2±0.9
 MTU trigram 48.9±2.0 36.1±0.9
 MTU 4-gram 50.4±2.0 36.2±1.0

Table 5.2. Varying MTU n-gram model order.

Table 5.3. Varying phrase / treelet size.

 Phrasal decoder
model sets (2),(3)

Treelet decoder: MTU bigram
model sets (1),(3),(4)

Treelet decoder: MTU bigram
model sets (1)-(4)

Size EF EJ EF EJ EF EJ
1 32.6±1.8 20.5±0.7 26.3±1.3 15.4±0.7 29.8±1.4 16.7±0.7
2 40.4±1.9 29.7±0.7 48.7±2.1 32.4±0.9 47.7±2.1 33.8±0.8
3 44.3±2.1 30.7±0.9 48.5±2.0 34.6±0.9 48.5±2.0 35.1±0.9
4 45.8±2.0 32.9±0.9 49.6±2.1 33.9±0.8 50.5±2.1 36.2±0.9

15

phrases and handled each contribution via a
distinct model best suited to the task. Non-
compositional translations stay as MTU phrases.
Context and robust estimation is provided by
MTU-based n-gram models. Local and global
ordering is handled by a tree-based model.

The first interesting result is that at normal
phrase sizes, augmenting an SMT system with
MTU n-gram models improves quality; whereas
replacing the standard phrasal channel models by
the more theoretically sound MTU n-gram
channel models leads to very similar
performance.

Even more interesting are the results on smaller
phrases. A system using very small phrases (size
2) and MTU bigram models matches (English-
French) or at least approaches (English-Japanese)
the performance of the baseline system using
large phrases (size 4). While this work does not
yet obviate the need for phrases, we consider it a
promising step in that direction.

An immediate practical benefit is that it allows
systems to use much smaller phrases (and hence
smaller phrase tables) with little or no loss in
quality. This result is particularly important for
syntax-based systems, or any system that allows
discontiguous phrases. Given a fixed length limit,
the number of surface phrases extracted from any
sentence pair of length n where all words are
uniquely aligned is O(n), but the number of
treelets is potentially exponential in the number of
children; and the number of rules with two gaps
extracted by Chiang (2005) is potentially O(n3).
Our results using MTUs suggest that such
systems can avoid unwieldy, poorly estimated
long phrases and instead anchor decoding on
shorter, more tractable knowledge units such as
MTUs, incorporating channel model information
and contextual knowledge with an MTU n-gram
model.

Much future work does remain. From
inspecting the model weights of the best systems,
we note that only the source order MTU n-gram
model has a major contribution to the overall
score of a given candidate. This suggests that the
three distinct models, despite their different walk
orders, are somewhat redundant. We plan to
consider other approaches for conditioning on
context. Furthermore phrasal channel models, in
spite of the laundry list of problems presented
here, have a significant impact on translation

quality. We hope to replace them with effective
models without the brittleness and sparsity issues
of heavy lexicalization.

References
Banchs, Rafael, Josep Crego, Adrià de Gispert, Patrik

Lambert, and Jose Mariño. 2005. Statistical machine
translation of Euparl data by using bilingual n-grams. In
Proceedings of ACL Workshop on Building and Using
Parallel Texts.

Brown, Peter, Vincent Della Pietra, Stephen Della Pietra, and
Robert Mercer. 1993. The mathematics of statistical
machine translation: parameter estimation. Computational
Linguistics 19(2): 263-311.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder.
2005. Scaling phrase-based machine translation to larger
corpora and longer phrases. In Proceedings of ACL.

Chiang, David. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of ACL.

Heidorn, George. 2000. “Intelligent writing assistance”. In
Dale et al. Handbook of Natural Language Processing,
Marcel Dekker.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003.
Statistical phrase based translation. In Proceedings of
NAACL.

Koehn, Philipp. 2004. Pharaoh: A beam search decoder for
phrase-based statistical machine translation models. In
Proceedings of AMTA.

Och, Franz Josef and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1): 19-51.

Och, Franz Josef and Hermann Ney. 2004. The Alignment
Template approach to statistical machine translation,
Computational Linguistics, 30(4):417-450.

Och, Franz Josef. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of ACL.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of ACL.

Quirk, Chris and Arul Menezes. 2005. Dependency tree
translation: syntactically-informed phrasal SMT. In
Proceedings of ACL.

Stolcke, Andreas. 1998. Entropy-based pruning of backoff
language models. In Proceedings of DARPA Broadcast
News Transcription and Understanding.

Vogel, Stephan, Ying Zhang, Fei Huang, Alicia Tribble,
Ashish Venugopal, Bing Zhao, Alex Waibel. 2003. The
CMU statistical machine translation system. In
Proceedings of MT Summit.

Zens, Richard, and Hermann Ney. 2003. A comparative
study on reordering constraints in statistical machine
translation. In Proceedings of ACL.

Zhang, Ying and Stephan Vogel. 2005. An efficient phrase-
to-phrase alignment model for arbitrarily long phrase and
large corpora. In Proceedings of EAMT.

16

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 17–24,
New York, June 2006.c©2006 Association for Computational Linguistics

Improved Statistical Machine Translation Using Paraphrases

Chris Callison-Burch Philipp Koehn Miles Osborne
School of Informatics

University of Edinburgh
2 Buccleuch Place

Edinburgh, EH8 9LW
callison-burch@ed.ac.uk

Abstract

Parallel corpora are crucial for training
SMT systems. However, for many lan-
guage pairs they are available only in
very limited quantities. For these lan-
guage pairs a huge portion of phrases en-
countered at run-time will be unknown.
We show how techniques from paraphras-
ing can be used to deal with these oth-
erwise unknown source language phrases.
Our results show that augmenting a state-
of-the-art SMT system with paraphrases
leads to significantly improved coverage
and translation quality. For a training
corpus with 10,000 sentence pairs we in-
crease the coverage of unique test set un-
igrams from 48% to 90%, with more than
half of the newly covered items accurately
translated, as opposed to none in current
approaches.

1 Introduction

As with many other statistical natural language pro-
cessing tasks, statistical machine translation (Brown
et al., 1993) produces high quality results when am-
ple training data is available. This is problematic for
so called “low density” language pairs which do not
have very large parallel corpora. For example, when
words occur infrequently in a parallel corpus param-
eter estimates for word-level alignments can be in-
accurate, which can in turn lead to inaccurate phrase
translations. Limited amounts of training data can
further lead to a problem of low coverage in that
many phrases encountered at run-time are not ob-

served in the training data and therefore their trans-
lations will not be learned.

Here we address the problem of unknown phrases.
Specifically we show that upon encountering an un-
known source phrase, we can substitute a paraphrase
for it and then proceed using the translation of that
paraphrase. We derive these paraphrases from re-
sources that are external to the parallel corpus that
the translation model is trained from, and we are
able to exploit (potentially more abundant) parallel
corpora from other language pairs to do so.

In this paper we:

• Define a method for incorporating paraphrases
of unseen source phrases into the statistical ma-
chine translation process.

• Show that by translating paraphrases we
achieve a marked improvement in coverage and
translation quality, especially in the case of un-
known words which to date have been left un-
translated.

• Argue that while we observe an improvement
in Bleu score, this metric is particularly poorly
suited to measuring the sort of improvements
that we achieve.

• Present an alternative methodology for targeted
manual evaluation that may be useful in other
research projects.

2 The Problem of Coverage in SMT

Statistical machine translation made considerable
advances in translation quality with the introduc-
tion of phrase-based translation (Marcu and Wong,
2002; Koehn et al., 2003; Och and Ney, 2004). By

17

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10000 100000 1e+06 1e+07

Te
st

 S
et

 It
em

s
wi

th
 T

ra
ns

la
tio

ns
 (%

)

Training Corpus Size (num words)

unigrams
bigrams
trigrams
4-grams

Figure 1: Percent of unique unigrams, bigrams, tri-
grams, and 4-grams from the Europarl Spanish test
sentences for which translations were learned in in-
creasingly large training corpora

increasing the size of the basic unit of translation,
phrase-based machine translation does away with
many of the problems associated with the original
word-based formulation of statistical machine trans-
lation (Brown et al., 1993). For instance, with multi-
word units less re-ordering needs to occur since lo-
cal dependencies are frequently captured. For exam-
ple, common adjective-noun alternations are mem-
orized. However, since this linguistic information
is not explicitly and generatively encoded in the
model, unseen adjective noun pairs may still be han-
dled incorrectly.

Thus, having observed phrases in the past dramat-
ically increases the chances that they will be trans-
lated correctly in the future. However, for any given
test set, a huge amount of training data has to be ob-
served before translations are learned for a reason-
able percentage of the test phrases. Figure 1 shows
the extent of this problem. For a training corpus
containing 10,000 words translations will have been
learned for only 10% of the unigrams (types, not
tokens). For a training corpus containing 100,000
words this increases to 30%. It is not until nearly
10,000,000 words worth of training data have been
analyzed that translation for more than 90% of the
vocabulary items have been learned. This problem
is obviously compounded for higher-order n-grams
(longer phrases), and for morphologically richer lan-
guages.

encargarnos to ensure, take care, ensure that
garantizar guarantee, ensure, guaranteed, as-

sure, provided
velar ensure, ensuring, safeguard, making

sure
procurar ensure that, try to, ensure, endeavour

to
asegurarnos ensure, secure, make certain
usado used
utilizado used, use, spent, utilized
empleado used, spent, employee
uso use, used, usage
utiliza used, uses, used, being used
utilizar to use, use, used

Table 1: Example of automatically generated para-
phrases for the Spanish wordsencargarnosandus-
adoalong with their English translations which were
automatically learned from the Europarl corpus

2.1 Handling unknown words

Currently most statistical machine translation sys-
tems are simply unable to handle unknown words.
There are two strategies that are generally employed
when an unknown source word is encountered. Ei-
ther the source word is simply omitted when pro-
ducing the translation, or alternatively it is passed
through untranslated, which is a reasonable strategy
if the unknown word happens to be a name (assum-
ing that no transliteration need be done). Neither of
these strategies is satisfying.

2.2 Using paraphrases in SMT

When a system is trained using 10,000 sentence
pairs (roughly 200,000 words) there will be a num-
ber of words and phrases in a test sentence which it
has not learned the translation of. For example, the
Spanish sentence

Es positivo llegar a un acuerdo sobre los
procedimientos, pero debemos encargar-
nos de que este sistema no sea susceptible
de ser usado como arma polı́tica.

may translate as
It is good reach an agreement on proce-
dures, but we mustencargarnosthat this
system is not susceptible to beusadoas
political weapon.

18

what is more, the relevant cost dynamic is completely under control

im übrigen ist die diesbezügliche kostenentwicklung völlig unter kontrolle

we owe it to the taxpayers to keep in checkthe costs

wir sind es den steuerzahlern die kosten zu habenschuldig unter kontrolle

Figure 2: Using a bilingual parallel corpus to extract paraphrases

The strategy that we employ for dealing with un-
known source language words is to substitute para-
phrases of those words, and then translate the para-
phrases. Table 1 gives examples of paraphrases and
their translations. If we had learned a translation of
garantizarwe could translate it instead ofencargar-
nos, and similarly forutilizado instead ofusado.

3 Acquiring Paraphrases

Paraphrases are alternative ways of expressing the
same information within one language. The auto-
matic generation of paraphrases has been the focus
of a significant amount of research lately. Many
methods for extracting paraphrases (Barzilay and
McKeown, 2001; Pang et al., 2003) make use of
monolingual parallel corpora, such as multiple trans-
lations of classic French novels into English, or the
multiple reference translations used by many auto-
matic evaluation metrics for machine translation.

Bannard and Callison-Burch (2005) use bilin-
gual parallel corpora to generate paraphrases. Para-
phrases are identified by pivoting through phrases in
another language. The foreign language translations
of an English phrase are identified, all occurrences
of those foreign phrases are found, and all English
phrases that they translate back to are treated as po-
tential paraphrases of the original English phrase.
Figure 2 illustrates how a German phrase can be
used as a point of identification for English para-
phrases in this way.

The method defined in Bannard and Callison-
Burch (2005) has several features that make it an
ideal candidate for incorporation into statistical ma-
chine translation system. Firstly, it can easily be ap-
plied to any language for which we have one or more

parallel corpora. Secondly, it defines a paraphrase
probability,p(e2|e1), which can be incorporated into
the probabilistic framework of SMT.

3.1 Paraphrase probabilities

The paraphrase probabilityp(e2|e1) is defined
in terms of two translation model probabilities:
p(f |e1), the probability that the original English
phrasee1 translates as a particular phrasef in the
other language, andp(e2|f), the probability that the
candidate paraphrasee2 translates as the foreign lan-
guage phrase. Sincee1 can translate as multiple for-
eign language phrases, we marginalizef out:

p(e2|e1) =
∑
f

p(f |e1)p(e2|f) (1)

The translation model probabilities can be com-
puted using any standard formulation from phrase-
based machine translation. For example,p(e2|f)
can be calculated straightforwardly using maximum
likelihood estimation by counting how often the
phrasese andf were aligned in the parallel corpus:

p(e2|f) ≈ count(e2, f)∑
e2 count(e2, f)

(2)

There is nothing that limits us to estimating para-
phrases probabilities from a single parallel corpus.
We can extend the definition of the paraphrase prob-
ability to include multiple corpora, as follows:

p(e2|e1) ≈
∑
c∈C

∑
f in c p(f |e1)p(e2|f)
|C|

(3)

where c is a parallel corpus from a set of paral-
lel corporaC. Thus multiple corpora may be used

19

by summing over all paraphrase probabilities calcu-
lated from a single corpus (as in Equation 1) and
normalized by the number of parallel corpora.

4 Experimental Design

We examined the application of paraphrases to deal
with unknown phrases when translating from Span-
ish and French into English. We used the pub-
licly available Europarl multilingual parallel corpus
(Koehn, 2005) to create six training corpora for the
two language pairs, and used the standard Europarl
development and test sets.

4.1 Baseline

For a baseline system we produced a phrase-based
statistical machine translation system based on the
log-linear formulation described in (Och and Ney,
2002)

ê = arg max
e

p(e|f) (4)

= arg max
e

M∑
m=1

λmhm(e, f) (5)

The baseline model had a total of eight feature
functions, hm(e, f): a language model probabil-
ity, a phrase translation probability, a reverse phrase
translation probability, lexical translation probabil-
ity, a reverse lexical translation probability, a word
penalty, a phrase penalty, and a distortion cost. To
set the weights,λm, we performed minimum error
rate training (Och, 2003) on the development set us-
ing Bleu (Papineni et al., 2002) as the objective func-
tion.

The phrase translation probabilities were deter-
mined using maximum likelihood estimation over
phrases induced from word-level alignments pro-
duced by performing Giza++ training on each of the
three training corpora. We used the Pharaoh beam-
search decoder (Koehn, 2004) to produce the trans-
lations after all of the model parameters had been
set.

When the baseline system encountered unknown
words in the test set, its behavior was simply to re-
produce the foreign word in the translated output.
This is the default behavior for many systems, as
noted in Section 2.1.

4.2 Translation with paraphrases

We extracted all source language (Spanish and
French) phrases up to length 10 from the test and
development sets which did not have translations in
phrase tables that were generated for the three train-
ing corpora. For each of these phrases we gener-
ated a list of paraphrases using all of the parallel cor-
pora from Europarl aside from the Spanish-English
and French-English corpora. We used bitexts be-
tween Spanish and Danish, Dutch, Finnish, French,
German, Italian, Portuguese, and Swedish to gener-
ate our Spanish paraphrases, and did similarly for
the French paraphrases. We manage the parallel
corpora with a suffix array -based data structure
(Callison-Burch et al., 2005). We calculated para-
phrase probabilities using the Bannard and Callison-
Burch (2005) method, summarized in Equation 3.
Source language phrases that included names and
numbers were not paraphrased.

For each paraphrase that had translations in the
phrase table, we added additional entries in the
phrase table containing the original phrase and the
paraphrase’s translations. We augmented the base-
line model by incorporating the paraphrase probabil-
ity into an additional feature function which assigns
values as follows:

h(e, f1) =

p(f2|f1) If phrase table entry(e, f1)

is generated from(e, f2)
1 Otherwise

Just as we did in the baseline system, we performed
minimum error rate training to set the weights of the
nine feature functions in our translation model that
exploits paraphrases.

We tested the usefulness of the paraphrase fea-
ture function by performing an additional experi-
ment where the phrase table was expanded but the
paraphrase probability was omitted.

4.3 Evaluation

We evaluated the efficacy of using paraphrases in
three ways: by calculating the Bleu score for the
translated output, by measuring the increase in cov-
erage when including paraphrases, and through a tar-
geted manual evaluation of the phrasal translations
of unseen phrases to determine how many of the
newly covered phrases were accurately translated.

20

ca
us
as

Alignment Tool

for
citizens
of
treatment
the
in
inequality
and
discrimination
combats
article
The

reasons
the

therein.
listed

la
s

po
r

ciu
da
da
no
s

lo
s

dede
sig
ua
l

tra
to

elyco
m
ba
te

ar
tíc
ul
o

El enen
um
er
ad
as

m
ism

o.
eldi
sc
rim
in
ac
ió
n

la

Figure 3: Test sentences and reference translations
were manually word-aligned. This allowed us to
equate unseen phrases with their corresponding En-
glish phrase. In this caseenumeradaswith listed.

Although Bleu is currently the standard metric for
MT evaluation, we believe that it may not meaning-
fully measure translation improvements in our setup.
By substituting a paraphrase for an unknown source
phrase there is a strong chance that its translation
may also be a paraphrase of the equivalent target
language phrase. Bleu relies on exact matches of
n-grams in a reference translation. Thus if our trans-
lation is a paraphrase of the reference, Bleu will fail
to score it correctly.

Because Bleu is potentially insensitive to the type
of changes that we were making to the translations,
we additionally performed a focused manual evalu-
ation (Callison-Burch et al., 2006). To do this, had
bilingual speakers create word-level alignments for
the first 150 and 250 sentence in the Spanish-English
and French-English test corpora, as shown in Figure
3. We were able to use these alignments to extract
the translations of the Spanish and French words that
we were applying our paraphrase method to.

Knowing this correspondence between foreign
phrases and their English counterparts allowed us to
directly analyze whether translations that were be-
ing produced from paraphrases remained faithful to
the meaning of the reference translation. When pro-

The article combats discrimination and inequality
in the treatment of citizens for the reasonslisted
therein.
The article combats discrimination and the dif-
ferent treatment of citizens for the reasonsmen-
tioned in the same.
The article fights against uneven and the treatment
of citizens for the reasonsenshrined in the same.
The article is countering discrimination and the
unequal treatment of citizens for the reasonsthat
in the same.

Figure 4: Judges were asked whether the highlighted
phrase retained the same meaning as the highlighted
phrase in the reference translation (top)

ducing our translations using the Pharaoh decoder
we employed its “trace” facility, which tells which
source sentence span each target phrase was derived
from. This allowed us to identify which elements
in the machine translated output corresponded to the
paraphrased foreign phrase. We asked a monolin-
gual judge whether the phrases in the machine trans-
lated output had the same meaning as of the refer-
ence phrase. This is illustrated in Figure 4.

In addition to judging the accuracy of 100 phrases
for each of the translated sets, we measured how
much our paraphrase method increased the cover-
age of the translation system. Because we focus
on words that the system was previously unable to
translate, the increase in coverage and the transla-
tion quality of the newly covered phrases are the
two most relevant indicators as to the efficacy of the
method.

5 Results

We produced translations under five conditions for
each of our training corpora: a set of baseline
translations without any additional entries in the
phrase table, a condition where we added the trans-
lations of paraphrases for unseen source words along
with paraphrase probabilities, a condition where we
added the translations of paraphrases of multi-word
phrases along with paraphrase probabilities, and two
additional conditions where we added the transla-
tions of paraphrases of single and multi-word para-
phrase without paraphrase probabilities.

21

Spanish-English French-English
Corpus size 10k 20k 40k 80k 160k 320k10k 20k 40k 80k 160k 320k
Baseline 22.6 25.0 26.5 26.5 28.730.0 21.9 24.3 26.3 27.8 28.8 29.5
Single word 23.1 25.2 26.6 28.0 29.0 30.0 22.7 24.2 26.9 27.7 28.9 29.8
Multi-word 23.3 26.0 27.2 28.0 28.8 29.7 23.7 25.1 27.1 28.5 29.1 29.8

Table 2: Bleu scores for the various training corpora, including baseline results without paraphrasing, results
for only paraphrasing unknown words, and results for paraphrasing any unseen phrase. Corpus size is
measured in sentences.

Corpus size 10k 20k 40k 80k 160k 320k10k 20k 40k 80k 160k 320k
Single w/o-ff 23.0 25.1 26.7 28.0 29.0 29.9 22.5 24.1 26.0 27.6 28.8 29.6
Multi w/o-ff 20.6 22.6 21.9 24.0 25.4 27.5 19.7 22.1 24.3 25.6 26.0 28.1

Table 3: Bleu scores for the various training corpora, when the paraphrase feature functionis not included

5.1 Bleu scores

Table 2 gives the Bleu scores for each of these con-
ditions. We were able to measure a translation im-
provement for all sizes of training corpora, under
both the single word and multi-word conditions, ex-
cept for the largest Spanish-English corpus. For the
single word condition, it would have been surprising
if we had seen a decrease in Bleu score. Because we
are translating words that were previously untrans-
latable it would be unlikely that we could do any
worse. In the worst case we would be replacing one
word that did not occur in the reference translation
with another, and thus have no effect on Bleu.

More interesting is the fact that by paraphrasing
unseen multi-word units we get an increase in qual-
ity above and beyond the single word paraphrases.
These multi-word units may not have been observed
in the training data as a unit, but each of the compo-
nent words may have been. In this case translating
a paraphrase would not be guaranteed to received
an improved or identical Bleu score, as in the single
word case. Thus the improved Bleu score is notable.

Table 3 shows that incorporating the paraphrase
probability into the model’s feature functions plays a
critical role. Without it, the multi-word paraphrases
harm translation performance when compared to the
baseline.

5.2 Manual evaluation

We performed a manual evaluation by judging the
accuracy of phrases for 100 paraphrased translations

from each of the sets using the manual word align-
ments.1 Table 4 gives the percentage of time that
each of the translations of paraphrases were judged
to have the same meaning as the equivalent target
phrase. In the case of the translations of single word
paraphrases for the Spanish accuracy ranged from
just below 50% to just below 70%. This number
is impressive in light of the fact that none of those
items are correctly translated in the baseline model,
which simply inserts the foreign language word. As
with the Bleu scores, the translations of multi-word
paraphrases were judged to be more accurate than
the translations of single word paraphrases.

In performing the manual evaluation we were ad-
ditionally able to determine how often Bleu was ca-
pable of measuring an actual improvement in trans-
lation. For those items judged to have the same
meaning as the gold standard phrases we could
track how many would have contributed to a higher
Bleu score (that is, which of them were exactly
the same as the reference translation phrase, or had
some words in common with the reference trans-
lation phrase). By counting how often a correct
phrase would have contributed to an increased Bleu
score, and how often it would fail to increase the
Bleu score we were able to determine with what fre-
quency Bleu was sensitive to our improvements. We
found that Bleu was insensitive to our translation im-
provements between 60-75% of the time, thus re-

1Note that for the larger training corpora fewer than 100
paraphrases occurred in the first 150 and 250 sentence pairs.

22

Spanish-English French-English
Corpus size 10k 20k 40k 80k 160k 320k 10k 20k 40k 80k 160k 320k
Single word 48% 53% 57% 67%∗ 33%∗ 50%∗ 54% 49% 45% 50% 39%∗ 21%∗

Multi-word 64% 65% 66% 71% 76%∗ 71%∗ 60% 67% 63% 58% 65% 42%∗

Table 4: Percent of time that the translation of a paraphrase was judged to retain the same meaning as the
corresponding phrase in the gold standard. Starred items had fewer than 100 judgments and should not be
taken as reliable estimates.

Size 1-gram 2-gram 3-gram 4-gram
10k 48% 25% 10% 3%
20k 60% 35% 15% 6%
40k 71% 45% 22% 9%
80k 80% 55% 29% 12%
160k 86% 64% 37% 17%
320k 91% 71% 45% 22%

Table 5: The percent of the unique test set phrases
which have translations in each of the Spanish-
English training corpora prior to paraphrasing

inforcing our belief that it is not an appropriate mea-
sure for translation improvements of this sort.

5.3 Increase in coverage

As illustrated in Figure 1, translation models suffer
from sparse data. When only a very small paral-
lel corpus is available for training, translations are
learned for very few of the unique phrases in a test
set. If we exclude 451 words worth of names, num-
bers, and foreign language text in 2,000 sentences
that comprise the Spanish portion of the Europarl
test set, then the number of unique n-grams in text
are: 7,331 unigrams, 28,890 bigrams, 44,194 tri-
grams, and 48,259 4-grams. Table 5 gives the per-
centage of these which have translations in each of
the three training corpora, if we do not use para-
phrasing.

In contrast after expanding the phrase table using
the translations of paraphrases, the coverage of the
unique test set phrases goes up dramatically (shown
in Table 6). For the first training corpus with 10,000
sentence pairs and roughly 200,000 words of text in
each language, the coverage goes up from less than
50% of the vocabulary items being covered to 90%.
The coverage of unique 4-grams jumps from 3% to
16% – a level reached only after observing more

Size 1-gram 2-gram 3-gram 4-gram
10k 90% 67% 37% 16%
20k 90% 69% 39% 17%
40k 91% 71% 41% 18%
80k 92% 73% 44% 20%
160k 92% 75% 46% 22%
320k 93% 77% 50% 25%

Table 6: The percent of the unique test set phrases
which have translations in each of the Spanish-
English training corpora after paraphrasing

than 100,000 sentence pairs, or roughly three mil-
lion words of text, without using paraphrases.

6 Related Work

Previous research on trying to overcome data spar-
sity issues in statistical machine translation has
largely focused on introducing morphological anal-
ysis as a way of reducing the number of types ob-
served in a training text. For example, Nissen and
Ney (2004) apply morphological analyzers to En-
glish and German and are able to reduce the amount
of training data needed to reach a certain level
of translation quality. Goldwater and McClosky
(2005) find that stemming Czech and using lemmas
improves the word-to-word correspondences when
training Czech-English alignment models. Koehn
and Knight (2003) show how monolingual texts and
parallel corpora can be used to figure out appropriate
places to split German compounds.

Still other approaches focus on ways of acquiring
data. Resnik and Smith (2003) develop a method
for gathering parallel corpora from the web. Oard
et al. (2003) describe various methods employed
for quickly gathering resources to create a machine
translation system for a language with no initial re-
sources.

23

7 Discussion

In this paper we have shown that significant gains in
coverage and translation quality can be had by inte-
grating paraphrases into statistical machine transla-
tion. In effect, paraphrases introduce some amount
of generalizationinto statistical machine translation.
Whereas before we relied on having observed a par-
ticular word or phrase in the training set in order to
produce a translation of it, we are no longer tied to
having seen every word in advance. We can exploit
knowledge that is external to the translation model
about what words have similar meanings and use
that in the process of translation. This method is
particularly pertinent to small data conditions, which
are plagued by sparse data problems.

In future work, we plan to determine how much
data is required to learn useful paraphrases. The sce-
nario described in this paper was very favorable to
creating high quality paraphrases. The large number
of parallel corpora between Spanish and the other
languages present in the Europarl corpus allowed
us to generate high quality, in domain data. While
this is a realistic scenario, in that many new official
languages have been added to the European Union,
some of which do not yet have extensive parallel cor-
pora, we realize that this may be a slightly idealized
scenario.

Finally, we plan to formalize our targeted manual
evaluation method, in the hopes of creating a eval-
uation methodology for machine translation that is
more thorough and elucidating than Bleu.

Acknowledgments

Thank you to Alexandra Birch and Stephanie Van-
damme for creating the word alignments.

References

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. InACL-2005.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. InACL-2001.

Peter Brown, Stephen Della Pietra, Vincent Della Pietra,
and Robert Mercer. 1993. The mathematics of ma-
chine translation: Parameter estimation.Computa-
tional Linguistics, 19(2):263–311, June.

Chris Callison-Burch, Colin Bannard, and Josh
Schroeder. 2005. Scaling phrase-based statisti-

cal machine translation to larger corpora and longer
phrases. InProceedings of ACL.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of bleu in ma-
chine translation. InProceedings of EACL.

Sharon Goldwater and David McClosky. 2005. Improv-
ing statistical MT through morphological analysis. In
Proceedings of EMNLP.

Philipp Koehn and Kevin Knight. 2003. Empirical meth-
ods for compound splitting. InProceedings of EACL.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProceed-
ings of HLT/NAACL.

Philipp Koehn. 2004. Pharaoh: A beam search decoder
for phrase-based statistical machine translation mod-
els. InProceedings of AMTA.

Philipp Koehn. 2005. A parallel corpus for statistical
machine translation. InProceedings of MT-Summit.

Daniel Marcu and William Wong. 2002. A phrase-based,
joint probability model for statistical machine transla-
tion. In Proceedings of EMNLP.

Sonja Nissen and Hermann Ney. 2004. Statisti-
cal machine translation with scarce resources using
morpho-syntatic analysis.Computational Linguistics,
30(2):181–204.

Doug Oard, David Doermann, Bonnie Dorr, Daqing He,
Phillip Resnik, William Byrne, Sanjeeve Khudanpur,
David Yarowsky, Anton Leuski, Philipp Koehn, and
Kevin Knight. 2003. Desperately seeking Cebuano.
In Proceedings of HLT-NAACL.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for statis-
tical machine translation. InProceedings of ACL.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. InProceedings of ACL.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations: Ex-
tracting paraphrases and generating new sentences. In
Proceedings of HLT/NAACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. InProceedings of ACL.

Philip Resnik and Noah Smith. 2003. The web as a par-
allel corpus. Computational Linguistics, 29(3):349–
380, September.

24

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 25–32,
New York, June 2006.c©2006 Association for Computational Linguistics

Segment Choice Models: Feature-Rich Models for Global
Distortion in Statistical Machine Translation

Roland Kuhn, Denis Yuen, Michel Simard, Patrick Paul,
George Foster, Eric Joanis, and Howard Johnson

Institute for Information Technology, National Research Council of Canada

Gatineau, Québec, CANADA
Email: { Roland.Kuhn, Michel.Simard, Patrick.Paul, George.Foster, Eric.Joanis,

Howard.Johnson} @cnrc-nrc.gc.ca; Denis Yuen: mucous@gmail.com

Abstract

This paper presents a new approach to
distortion (phrase reordering) in phrase-
based machine translation (MT). Distor-
tion is modeled as a sequence of choices
during translation. The approach yields
trainable, probabilistic distortion models
that are global: they assign a probability
to each possible phrase reordering. These
“segment choice” models (SCMs) can be
trained on “segment-aligned” sentence
pairs; they can be applied during decoding
or rescoring. The approach yields a metric
called “distortion perplexity” (“disperp”)
for comparing SCMs offline on test data,
analogous to perplexity for language
models. A decision-tree-based SCM is
tested on Chinese-to-English translation,
and outperforms a baseline distortion
penalty approach at the 99% confidence
level.

1 Introduction: Defining SCMs

The work presented here was done in the context
of phrase-based MT (Koehn et al., 2003; Och and
Ney, 2004). Distortion in phrase-based MT occurs
when the order of phrases in the source-language
sentence changes during translation, so the order of
corresponding phrases in the target-language trans-
lation is different. Some MT systems allow arbi-

trary reordering of phrases, but impose a distortion
penalty proportional to the difference between the
new and the original phrase order (Koehn, 2004).
Some interesting recent research focuses on reor-
dering within a narrow window of phrases (Kumar
and Byrne, 2005; Tillmann and Zhang, 2005; Till-
mann, 2004). The (Tillmann, 2004) paper intro-
duced lexical features for distortion modeling. A
recent paper (Collins et al., 2005) shows that major
gains can be obtained by constructing a parse tree
for the source sentence and then applying hand-
crafted reordering rules to rewrite the source in
target-language-like word order prior to MT.

Our model assumes that the source sentence is

completely segmented prior to distortion. This
simplifying assumption requires generation of hy-
potheses about the segmentation of the complete
source sentence during decoding. The model also
assumes that each translation hypothesis grows in a
predetermined order. E.g., Koehn’s decoder
(Koehn 2004) builds each new hypothesis by add-
ing phrases to it left-to-right (order is deterministic
for the target hypothesis). Our model doesn’ t re-
quire this order of operation – it would support
right-to-left or inwards-outwards hypothesis con-
struction – but it does require a predictable order.

One can keep track of how segments in the
source sentence have been rearranged during de-
coding for a given hypothesis, using what we call a
“distorted source-language hypothesis” (DSH). A
similar concept appears in (Collins et al., 2005)
(this paper’s preoccupations strongly resemble

25

ours, though our method is completely different:
we don’ t parse the source, and use only automati-
cally generated rules). Figure 1 shows an example
of a DSH for German-to-English translation (case
information is removed). Here, German “ ich habe
das buch gelesen .” is translated into English “ i
have read the book .” The DSH shows the distor-
tion of the German segments into an English-like
word order that occurred during translation (we
tend to use the word “segment” rather than the
more linguistically-charged “phrase”).

Figure 1. Example of German-to-English DSH

From the DSH, one can reconstruct the series of
segment choices. In Figure 1 - given a left-to-right
decoder - “ [ich]” was chosen from five candidates
to be the leftmost segment in the DSH. Next,
“ [habe]” was chosen from four remaining candi-
dates, “ [gelesen]” from three candidates, and “ [das
buch]” from two candidates. Finally, the decoder
was forced to choose “ [.]” .

Segment Choice Models (SCMs) assign

probabilities to segment choices made as the DSH
is constructed. The available choices at a given
time are called the “Remaining Segments” (RS).
Consider a valid (though stupid) SCM that assigns
equal probabilities to all segments in the RS. This
uniform SCM assigns a probability of 1/5! to the
DSH in Figure 1: the probability of choosing
“ [ich]” from among 5 RS was 1/5, then the
probability of “ [habe]” among 4 RS was 1/4 , etc.
The uniform SCM would be of little use to an MT
system. In the next two sections we describe some
more informative SCMs, define the “distortion
perplexity” (“disperp”) metric for comparing
SCMs offline on a test corpus, and show how to
construct this corpus.

2 Disperp and Distortion Corpora

2.1 Defining Disperp

The ultimate reason for choosing one SCM over
another will be the performance of an MT system
containing it, as measured by a metric like BLEU
(Papineni et al., 2002). However, training and

testing a large-scale MT system for each new SCM
would be costly. Also, the distortion component’s
effect on the total score is muffled by other
components (e.g., the phrase translation and target
language models). Can we devise a quick
standalone metric for comparing SCMs?

There is an offline metric for statistical language
models: perplexity (Jelinek, 1990). By analogy, the
higher the overall probability a given SCM assigns
to a test corpus of representative distorted sentence
hypotheses (DSHs), the better the quality of the
SCM. To define distortion perplexity (“disperp”),
let PrM(dk) = the probability an SCM M assigns to
a DSH for sentence k, dk. If T is a test corpus
comprising numerous DSHs, the probability of the
corpus according to M is PrM(T) =

�
k PrM(dk).

Let S(T) = total number of segments in T. Then
disperp(M,T) = PrM(T)-1/S(T). This gives the mean
number of choices model M allows; the lower the
disperp for corpus T, the better M is as a model for
T (a model X that predicts segment choice in T
perfectly would have disperp(X,T) = 1.0).

2.2 Some Simple A Priori SCMs

The uniform SCM assigns to the DSH dk that has
S(dk) segments the probability 1/[S(dk)!] . We call
this Model A. Let’s define some other illustrative
SCMs. Fig. 2 shows a sentence that has 7 segments
with 10 words (numbered 0-9 by original order).
Three segments in the source have been used; the
decoder has a choice of four RS. Which of the RS
has the highest probability of being chosen? Per-
haps [2 3], because it is the leftmost RS: the “ left-
most” predictor. Or, the last phrase in the DSH will
be followed by the phrase that originally followed
it, [8 9]: the “ following” predictor. Or, perhaps
positions in the source and target should be close,
so since the next DSH position to be filled is 4,
phrase [4] should be favoured: the “parallel” pre-
dictor.

Figure 2. Segment choice prediction example

Model B will be based on the “ leftmost” predic-
tor, giving the leftmost segment in the RS twice the
probability of the other segments, and giving the

Original German: [ich] [habe] [das buch] [gelesen] [.]
DSH for German: [ich] [habe] [gelesen] [das buch] [.]
(English: [i] [have] [read] [the book] [.])

original: [0 1] [2 3] [4] [5] [6] [7] [8 9]
DSH: [0 1] [5] [7], RS: [2 3], [4], [6], [8 9]

26

others uniform probabilities. Model C will be
based on the “ following” predictor, doubling the
probability for the segment in the RS whose first
word was the closest to the last word in the DSH,
and otherwise assigning uniform probabilities. Fi-
nally, Model D combines “ leftmost” and “ follow-
ing” : where the leftmost and following segments
are different, both are assigned double the uniform
probability; if they are the same segment, that
segment has four times the uniform probability. Of
course, the factor of 2.0 in these models is arbi-
trary. For Figure 2, probabilities would be:

• Model A: PrA([2 3])= PrA([4])= PrA([6])=
PrA([8 9]) = 1/4;

• Model B: PrB ([2 3])= 2/5, PrB([4])=
PrB([6])= PrB([8 9]) = 1/5;

• Model C: PrC ([2 3])= PrC ([4])= PrC([6])
= 1/5, PrC([8 9]) = 2/5;

• Model D: PrD ([2 3]) = PrD([8 9]) = 1/3,
PrD([4])= PrD([6]) = 1/6.

Finally, let’s define an SCM derived from the

distortion penalty used by systems based on the
“ following” predictor, as in (Koehn, 2004). Let ai =
start position of source phrase translated into ith
target phrase, bi -1= end position of source phrase
that’s translated into (i-1)th target phrase. Then
distortion penalty d(ai, bi-1) = � ¦ai– bi-1 -1¦; the total
distortion is the product of the phrase distortion
penalties. This penalty is applied as a kind of non-
normalized probability in the decoder. The value of

� for given (source, target) languages is optimized
on development data.

To turn this penalty into an SCM, penalties are
normalized into probabilities, at each decoding
stage; we call the result Model P (for “penalty”).
Model P with � = 1.0 is the same as uniform
Model A. In disperp experiments, Model P with �
optimized on held-out data performs better than
Models A-D (see Figure 5), suggesting that dis-
perp is a realistic measure.

Models A-D are models whose parameters were
all defined a priori; Model P has one trainable pa-
rameter, � . Next, let’s explore distortion models
with several trainable parameters.

2.3 Constructing a Distor tion Corpus

To compare SCMs using disperp and to train
complex SCMs, we need a corpus of representative
examples of DSHs. There are several ways of ob-
taining such a corpus. For the experiments de-
scribed here, the MT system was first trained on a
bilingual sentence-aligned corpus. Then, the sys-
tem was run in a second pass over its own training
corpus, using its phrase table with the standard dis-
tortion penalty to obtain a best-fit phrase alignment
between each (source, target) sentence pair. Each
such alignment yields a DSH whose segments are
aligned with their original positions in the source;
we call such a source-DSH alignment a “segment
alignment” . We now use a leave-one-out procedure
to ensure that information derived from a given
sentence pair is not used to segment-align that sen-
tence pair. In our initial experiments we didn’ t do
this, with the result that the segment-aligned cor-
pus underrepresented the case where words or N-
grams not in the phrase table are seen in the source
sentence during decoding.

3 A Trainable Decision Tree SCM

Almost any machine learning technique could be
used to create a trainable SCM. We implemented
one based on decision trees (DTs), not because
DTs necessarily yield the best results but for soft-
ware engineering reasons: DTs are a quick way to
explore a variety of features, and are easily inter-
preted when grown (so that examining them can
suggest further features). We grew N DTs, each
defined by the number of choices available at a
given moment. The highest-numbered DT has a
“+” to show it handles N+1 or more choices. E.g.,
if we set N=4, we grow a “2-choice” , a “3-choice” ,
a “4-choice” , and a “5+-choice tree” . The 2-choice
tree handles cases where there are 2 segments in
the RS, assigning a probability to each; the 3-
choice tree handles cases where there are 3 seg-
ments in the RS, etc. The 5+-choice tree is differ-
ent from the others: it handles cases where there
are 5 segments in the RS to choose from, and
cases where there are more than 5. The value of N
is arbitrary; e.g., for N=8, the trees go from “2-
choice” up to “9+-choice” .

Suppose a left-to-right decoder with an N=4
SCM is translating a sentence with seven phrases.
Initially, when the DSH is empty, the 5+-choice
tree assigns probabilities to each of these seven. It

27

will use the 5+-choice tree twice more, to assign
probabilities to six RS, then to five. To extend the
hypothesis, it will then use the 4-choice tree, the 3-
choice tree, and finally the 2-choice tree. Disperps
for this SCM are calculated on test corpus DSHs in
the same left-to-right way, using the tree for the
number of choices in the RS to find the probability
of each segment choice.

Segments need labels, so the N-choice DT can
assign probabilities to the N segments in the RS.
We currently use a “ following” labeling scheme.
Let X be the original source position of the last
word put into the DSH, plus 1. In Figure 2, this
was word 7, so X=8. In our scheme, the RS seg-
ment whose first word is closest to X is labeled
“A” ; the second-closest segment is labeled “B” ,
etc. Thus, segments are labeled in order of the
(Koehn, 2004) penalty; the “A” segment gets the
lowest penalty. Ties between segments on the right
and the left of X are broken by first labeling the
right segment. In Figure 2, the labels for the RS
are “A” = [8 9], “B” = [6], “C” = [4], “D” = [2 3].

Figure 3. Some question types for choice DTs

Figure 3 shows the main types of questions used
for tree-growing, comprising position questions
and word-based questions. Position questions
pertain to location, length, and ordering of seg-
ments. Some position questions ask about the dis-
tance between the first word of a segment and the
“ following” position X: e.g., if the answer to
“pos(A)-pos(X)=0?” is yes, then segment A comes
immediately after the last DSH segment in the
source, and is thus highly likely to be chosen.
There are also questions relating to the “ leftmost”
and “parallel” predictors (above, sec. 2.2). The
fseg() and bseg() functions count segments in the

RS from left to right and right to left respectively,
allowing, e.g., the question whether a given seg-
ment is the second last segment in the RS. The
only word-based questions currently implemented
ask whether a given word is contained in a given
segment (or anywhere in the DSH, or anywhere in
the RS). This type could be made richer by allow-
ing questions about the position of a given word in
a given segment, questions about syntax, etc.

Figure 4 shows an example of a 5+-choice DT.
The “+” in its name indicates that it will handle
cases where there are 5 or more segments in the
RS. The counts stored in the leaves of this DT rep-
resent the number of training data items that ended
up there; the counts are used to estimate probabili-
ties. Some smoothing will be done to avoid zero
probabilities, e.g., for class C in node 3.

Figure 4. Example of a 5+-choice tree

For “+” DTs, the label closest to the end of the
alphabet (“E” in Figure 4) stands for a class that
can include more than one segment. E.g., if this
5+-choice DT is used to estimate probabilities for a
7-segment RS, the segment closest to X is labeled
“A” , the second closest “B” , the third closest “C” ,
and the fourth closest “D” . That leaves 3 segments,
all labeled “E” . The DT shown yields probability
Pr(E) that one of these three will be chosen. Cur-
rently, we apply a uniform distribution within this
“ furthest from X” class, so the probability of any
one of the three “E” segments is estimated as
Pr(E)/3.

To train the DTs, we generate data items from
the second-pass DSH corpus. Each DSH generates
several data items. E.g., moving across a seven-
segment DSH from left to right, there is an exam-
ple of the seven-choice case, then one of the six-
choice case, etc. Thus, this DSH provides three
items for training the 5+-choice DT and one item

 pos(A)-pos(X)<0?
A:27 B:23 C:20 D:11 E:19

 today � DSH?
A:10 B:8 C:10 D:6 E:5

A:8 B:6 C:0 D:2 E:4 A:2 B:2 C:10 D:4 E:1

A:17 B:15 C:10 D:5 E:14

yes no

yes no

1.

3.

2. 5.

4.

1. Position Questions
Segment Length Questions
E.g., “ lgth(DSH)<5?”, “ lgth(B)=2?”, “ lgth(RS)<6?”, etc.
Questions about Original Position
Let pos(seg) = index of seg’s first word in source sentence
E.g., “pos(A)=9?”, “pos(C) <17?”, etc.
Questions With X (“ following” word position)
E.g., “pos(X)=9?”, “pos(C) – pos(X) <0?” , etc.
Segment Order Questions
Let fseg = segment # (forward), bseg = segment # (back-
ward)
E.g., “fseg(D) = 1?” , “bseg(A) <5?” , etc.
2. Word-Based Questions
E.g., “and � DSH?”, “November � B?” , etc.

28

each for training the 4-choice, 3-choice, and 2-
choice DTs. The DT training method was based on
Gelfand-Ravishankar-Delp expansion-pruning
(Gelfand et al., 1991), for DTs whose nodes con-
tain probability distributions (Lazaridès et al.,
1996).

4 Disperp Exper iments

We carried out SCM disperp experiments for the
English-Chinese task, in both directions. That is,
we trained and tested models both for the distortion
of English into Chinese-like phrase order, and the
distortion of Chinese into English-like phrase or-
der. For reasons of space, details about the “dis-
torted English” experiments won’ t be given here.
Training and development data for the distorted
Chinese experiments were taken from the NIST
2005 release of the FBIS corpus of Xinhua news
stories. The training corpus comprised 62,000
FBIS segment alignments, and the development
“dev” corpus comprised a disjoint set of 2,306
segment alignments from the same FBIS corpus.
All disperp results are obtained by testing on “dev”
corpus.

Distorted Chinese: Models A-D, P, & a four-DT
Model

1

2

3

4

5

6

7

8

50
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

62
00

0

training alignments (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Model A

Model B

Model C

Model D

Model P (alpha =
0.77)

Four DTs: pos +
100-wd qns

Figure 5. Several SCMs for distor ted Chinese

Figure 5 shows disperp results for the models
described earlier. The y axis begins at 1.0 (mini-
mum value of disperp). The x axis shows number
of alignments (DSHs) used to train DTs, on a log
scale. Models A-D are fixed in advance; Model P’s
single parameter � was optimized once on the en-
tire training set of 62K FBIS alignments (to 0.77)
rather than separately for each amount of training

data. Model P, the normalized version of Koehn’s
distortion penalty, is superior to Models A-D, and
the DT-based SCM is superior to Model P.

The Figure 5 DT-based SCM had four trees (2-
choice, 3-choice, 4-choice, and 5+-choice) with
position-based and word-based questions. The
word-based questions involved only the 100 most
frequent Chinese words in the training corpus. The
system’s disperp drops from 3.1 to 2.8 as the num-
ber of alignments goes from 500 to 62K.

Figure 6 examines the effect of allowing word-
based questions. These questions provide a signifi-
cant disperp improvement, which grows with the
amount of training data.

Distorted Chinese: effect of allowing word qns
(four- DT models)

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

50
0

10
00

20
00

40
00

80
00

16
00

0

32
00

0

62
00

0

training alignments (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Four DTs: pos qns
only

Four DTs: pos +
100-wd qns

Figure 6. Do word-based questions help?

In the “ four-DT” results above, examples with
five or more segments are handled by the same
“5+-choice” tree. Increasing the number of trees
allows finer modeling of multi-segment cases
while spreading the training data more thinly.
Thus, the optimal number of trees depends on the
amount of training data. Fixing this amount to 32K
alignments, we varied the number of trees. Figure
7 shows that this parameter has a significant im-
pact on disperp, and that questions based on the
most frequent 100 Chinese words help perform-
ance for any number of trees.

29

Distorted Chinese: Disperp vs. # of trees (all
trees grown on 32K alignments)

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3 4 5 6 7 8 9 10 11 12 13 14

of trees

D
is

p
er

p
 o

n
 "

d
ev

"

pos qns only

pos + 100-wd qns

Figure 7. Varying the number of DTs

In Figure 8 the number of the most frequent
Chinese words for questions is varied (for a 13-DT
system trained on 32K alignments). Most of the
improvement came from the 8 most frequent
words, especially from the most frequent, the
comma “ ,” . This behaviour seems to be specific to
Chinese. In our “distorted English” experiments,
questions about the 8 most frequent words also
gave a significant improvement, but each of the 8
words had a fairly equal share in the improvement.

Distorted Chinese: Disperp vs. #words (all trees
grown on 32K alignments)

2.58

2.6

2.62

2.64

2.66

2.68

2.7

2.72

0 2 8 32 12
8

51
2

words tried for qns (log scale)

D
is

p
er

p
 o

n
 "

d
ev

"

Performance of 13-
DT system

Figure 8. Varying #words (13-DT system)

Finally, we grew the DT system used for the MT
experiments: one with 13 trees and questions about
the 25 most frequent Chinese words, grown on
88K alignments. Its disperp on the “dev” used for
the MT experiments (a different “dev” from the
one above – see Sec. 5.2) was 2.42 vs. 3.48 for the
baseline Model P system: a 30% drop.

5 Machine Translation Exper iments

5.1 SCMs for Decoding

SCMs assume that the source sentence is fully
segmented throughout decoding. Thus, the system
must guess the segmentation for the unconsumed
part of the source (“ remaining source” : RS). For
the results below, we used a simple heuristic: RS is
broken into one-word segments. In future, we will
apply a more realistic segmentation model to RS
(or modify DT training to reflect accurately RS
treatment during decoding).

5.2 Chinese-to-English MT Exper iments

The training corpus for the MT system’s phrase
tables consists of all parallel text available for the
NIST MT05 Chinese-English evaluation, except
the Xinhua corpora and part 3 of LDC's “Multiple-
Translation Chinese Corpus” (MTCCp3). The Eng-
lish language model was trained on the same cor-
pora, plus 250M words from Gigaword. The DT-
based SCM was trained and tuned on a subset of
this same training corpus (above). The dev corpus
for optimizing component weights is MTCCp3.
The experimental results below were obtained by
testing on the evaluation set for MTeval NIST04.

Phrase tables were learned from the training cor-
pus using the “diag-and” method (Koehn et al.,
2003), and using IBM model 2 to produce initial
word alignments (these authors found this worked
as well as IBM4). Phrase probabilities were based
on unsmoothed relative frequencies. The model
used by the decoder was a log-linear combination
of a phrase translation model (only in the
P(source|target) direction), trigram language
model, word penalty (lexical weighting), an op-
tional segmentation model (in the form of a phrase
penalty) and distortion model. Weights on the
components were assigned using the (Och, 2003)
method for max-BLEU training on the develop-
ment set. The decoder uses a dynamic-
programming beam-search, like the one in (Koehn,
2004). Future-cost estimates for all distortion mod-
els are assigned using the baseline penalty model.

5.3 Decoding Results

30

29,40

29,60

29,80

30,00

30,20

30,40

30,60

30,80

31,00

31,20

no PP PP no PP PP

DP DT

B
L

E
U

 s
co

re

1x beam

4x beam

Figure 9. BLEU on NIST04 (95% conf. = ±0.7)

Figure 9 shows experimental results. The “DP”
systems use the distortion penalty in (Koehn, 2004)
with � optimized on “dev” , while “DT” systems
use the DT-based SCM. “1x” is the default beam
width, while “4x” is a wider beam (our notation
reflects decoding time, so “4x” takes four times as
long as “1x”). “PP” denotes presence of the phrase
penalty component. The advantage of DTs as
measured by difference between the score of the
best DT system and the best DP system is 0.75
BLEU at 1x and 0.5 BLEU at 4x. With a 95%
bootstrap confidence interval of ±0.7 BLEU (based
on 1000-fold resampling), the resolution of these
results is too coarse to draw firm conclusions.

Thus, we carried out another 1000-fold bootstrap
resampling test on NIST04, this time for pairwise
system comparison. Table 1 shows results for
BLEU comparisons between the systems with the
default (1x) beam. The entries show how often the
A system (columns) had a better score than the B
system (rows), in 1000 observations.

 A �
vs. B

�

DP,
no PP

DP, PP DT,
no PP

DT, PP

DP,
no PP

x 2.95% 99.45% 99.55%

DP, PP 97.05% x 99.95% 99.95%

DT,
no PP

0.55% 0.05% x 65.68%

DT, PP 0.45% 0.05% 34.32% x

Table 1. Pairwise compar ison for 1x systems

The table shows that both DT-based 1x systems
performed better than either of the DP systems
more than 99% of the time (underlined results).
Though not shown in the table, the same was true
with 4x beam search. The DT 1x system with a
phrase penalty had a higher score than the DT 1x
system without one about 66% of the time.

6 Summary and Discussion

In this paper, we presented a new class of probabil-
istic model for distortion, based on the choices
made during translation. Unlike some recent dis-
tortion models (Kumar and Byrne, 2005; Tillmann
and Zhang, 2005; Tillmann, 2004) these Segment
Choice Models (SCMs) allow phrases to be moved
globally, between any positions in the sentence.
They also lend themselves to quick offline com-
parison by means of a new metric called disperp.
We developed a decision-tree (DT) based SCM
whose parameters were optimized on a “dev” cor-
pus via disperp. Two variants of the DT system
were experimentally compared with two systems
with a distortion penalty on a Chinese-to-English
task. In pairwise bootstrap comparisons, the sys-
tems with DT-based distortion outperformed the
penalty-based systems more than 99% of the time.

The computational cost of training the DTs on
large quantities of data is comparable to that of
training phrase tables on the same data - large but
manageable – and increases linearly with the
amount of training data. However, currently there
is a major problem with DT training: the low pro-
portion of Chinese-English sentence pairs that can
be fully segment-aligned and thus be used for DT
training (about 27%). This may result in selection
bias that impairs performance. We plan to imple-
ment an alignment algorithm with smoothed phrase
tables (Johnson et al. 2006) to achieve segment
alignment on 100% of the training data.

Decoding time with the DT-based distortion
model is roughly proportional to the square of the
number of tokens in the source sentence. Thus,
long sentences pose a challenge, particularly dur-
ing the weight optimization step. In experiments on
other language pairs reported elsewhere (Johnson
et al. 2006), we applied a heuristic: DT training
and decoding involved source sentences with 60 or
fewer tokens, while longer sentences were handled
with the distortion penalty. A more principled ap-

31

proach would be to divide long source sentences
into chunks not exceeding 60 or so tokens, within
each of which reordering is allowed, but which
cannot themselves be reordered.

The experiments above used a segmentation
model that was a count of the number of source
segments (sometimes called “phrase penalty”), but
we are currently exploring more sophisticated
models. Once we have found the best segmentation
model, we will improve the system’s current naïve
single-word segmentation of the remaining source
sentence during decoding, and construct a more
accurate future cost function for beam search. An-
other obvious system improvement would be to
incorporate more advanced word-based features in
the DTs, such as questions about word classes
(Tillmann and Zhang 2005, Tillmann 2004).

We also plan to apply SCMs to rescoring N-best
lists from the decoder. For rescoring, one could
apply several SCMs, some with assumptions dif-
fering from those of the decoder. E.g., one could
apply right-to-left SCMs, or “distorted target”
SCMs which assume a target hypothesis generated
the source sentence, instead of vice versa.

Finally, we are contemplating an entirely differ-
ent approach to DT-based SCMs for decoding. In
this approach, only one DT would be used, with
only two output classes that could be called “C”
and “N” . The input to such a tree would be a par-
ticular segment in the remaining source sentence,
with contextual information (e.g., the sequence of
segments already chosen). The DT would estimate
the probability Pr(C) that the specified segment is
“chosen” and the probability Pr(N) that it is “not
chosen” . This would eliminate the need to guess
the segmentation of the remaining source sentence.

References

P. Brown, S. Della Pietra, V. Della Pietra, and R. Mer-
cer. 1993. “The Mathematics of Statistical Machine
Translation: Parameter Estimation” . Computational
Linguistics, 19(2), pp. 263-311.

M. Collins, P. Koehn, and I. Ku� erová. 2005. “Clause

Restructuring for Statistical Machine Translation” .
Proc. ACL, Ann Arbor, USA, pp. 531-540.

S. Gelfand, C. Ravishankar, and E. Delp. 1991. “An
Iterative Growing and Pruning Algorithm for Clas-
sification Tree Design” . IEEE Trans. Patt. Analy.
Mach. Int. (IEEE PAMI), V. 13, no. 2, pp. 163-174.

F. Jelinek. 1990. “Self-Organized Language Modeling

for Speech Recognition” in Readings in Speech
Recognition (ed. A. Waibel and K. Lee, publ. Mor-
gan Kaufmann), pp. 450-506.

H. Johnson, F. Sadat, G. Foster, R. Kuhn, M. Simard, E.

Joanis, and S. Larkin. 2006. “PORTAGE: with
Smoothed Phrase Tables and Segment Choice Mod-
els” . Submitted to NAACL 2006 Workshop on Statis-
tical Machine Translation, New York City.

P. Koehn. 2004. “Pharaoh: a Beam Search Decoder for
Phrase-Based Statistical Machine Translation Mod-
els” . Assoc. Machine Trans. Americas (AMTA04).

P. Koehn, F.-J. Och and D. Marcu. 2003. “Statistical

Phrase-Based Translation” . Proc. Human Lang.
Tech. Conf. N. Am. Chapt. Assoc. Comp. Ling.
(NAACL03), pp. 127-133.

S. Kumar and W. Byrne. 2005. “Local Phrase Reorder-

ing Models for Statistical Machine Translation” .
HLT/EMNLP, pp. 161-168, Vancouver, Canada.

A. Lazaridès, Y. Normandin, and R. Kuhn. 1996. “ Im-

proving Decision Trees for Acoustic Modeling” .
Int. Conf. Spoken Lang. Proc. (ICSLP96), V. 2, pp.
1053-1056, Philadelphia, Pennsylvania, USA.

F. Och and H. Ney. 2004. “The Alignment Template

Approach to Statistical Machine Translation” .
Comp. Linguistics, V. 30, Issue 4, pp. 417-449.

Franz Josef Och. 2003. “Minimum Error Rate Training

for Statistical Machine Translation” . Proc. ACL,
Sapporo, Japan.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.

“BLEU: A method for automatic evaluation of ma-
chine translation” . Proc. ACL, pp. 311-318.

C. Tillmann and T. Zhang. 2005. “A Localized Predic-

tion Model for Statistical Machine Translation” .
Proc. ACL.

C. Tillmann. 2004. “A Block Orientation Model for

Statistical Machine Translation” . HLT/NAACL.

S. Vogel, H. Ney, and C. Tillmann. 1996. “HMM-Based

Word Alignment in Statistical Translation”.
COLING, pp. 836-841.

32

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 33–40,
New York, June 2006.c©2006 Association for Computational Linguistics

Effectively Using Syntax for Recognizing False Entailment

Rion Snow
Computer Science Department

Stanford University
Stanford, CA 94305

rion@cs.stanford.edu

Lucy Vanderwende and Arul Menezes
Microsoft Research
One Microsoft Way

Redmond, WA 98027
{lucyv,arulm }@microsoft.com

Abstract

Recognizing textual entailment is a chal-
lenging problem and a fundamental com-
ponent of many applications in natural
language processing. We present a novel
framework for recognizing textual entail-
ment that focuses on the use of syntactic
heuristics to recognize false entailment.
We give a thorough analysis of our sys-
tem, which demonstrates state-of-the-art
performance on a widely-used test set.

1 Introduction

Recognizing the semantic equivalence of two frag-
ments of text is a fundamental component of many
applications in natural language processing. Recog-
nizing textual entailment, as formulated in the recent
PASCAL Challenge1, is the problem of determining
whether sometext sentenceT entails somehypothe-
sis sentenceH.

The motivation for this formulation was to iso-
late and evaluate the application-independent com-
ponent of semantic inference shared across many ap-
plication areas, reflected in the division of the PAS-
CAL RTE dataset into seven distinct tasks: Informa-
tion Extraction (IE), Comparable Documents (CD),
Reading Comprehension (RC), Machine Translation
(MT), Information Retrieval (IR), Question Answer-
ing (QA), and Paraphrase Acquisition (PP).

1http://www.pascal-network.org/Challenges/RTE. The ex-
amples given throughout this paper are from the first PASCAL
RTE dataset, described in Section 6.

The RTE problem as presented in the PASCAL
RTE dataset is particularly attractive in that it is a
reasonably simple task for human annotators with
high inter-annotator agreement (95.1% in one inde-
pendent labeling (Bos and Markert, 2005)), but an
extremely challenging task for automated systems.
The highest accuracy systems on the RTE test set
are still much closer in performance to a random
baseline accuracy of 50% than to the inter-annotator
agreement. For example, two high-accuracy systems
are those described in (Tatu and Moldovan, 2005),
achieving 60.4% accuracy with no task-specific in-
formation, and (Bos and Markert, 2005), which
achieves 61.2%task-dependentaccuracy, i.e. when
able to use the specific task labels as input.

Previous systems for RTE have attempted a wide
variety of strategies. Many previous approaches
have used a logical form representation of the text
and hypothesis sentences, focusing on deriving a
proof by which one can infer the hypothesis logical
form from the text logical form (Bayer et al., 2005;
Bos and Markert, 2005; Raina et al., 2005; Tatu and
Moldovan, 2005). These papers often cite that a ma-
jor obstacle to accurate theorem proving for the task
of textual entailment is the lack of world knowledge,
which is frequently difficult and costly to obtain and
encode. Attempts have been made to remedy this
deficit through various techniques, including model-
building (Bos and Markert, 2005) and the addition
of semantic axioms (Tatu and Moldovan, 2005).

Our system diverges from previous approaches
most strongly by focusing upon false entailments;
rather than assuming that a given entailment is false
until proven true, we make the opposite assump-

33

tion, and instead focus on applying knowledge-free
heuristics that can act locally on a subgraph of syn-
tactic dependencies to determine with high confi-
dence that the entailment is false. Our approach is
inspired by an analysis of the RTE dataset that sug-
gested a syntax-based approach should be approxi-
mately twice as effective at predicting false entail-
ment as true entailment (Vanderwende and Dolan,
2006). The analysis implied that a great deal of syn-
tactic information remained unexploited by existing
systems, but gave few explicit suggestions on how
syntactic information should be applied; this paper
provides a starting point for creating the heuristics
capable of obtaining the bound they suggest2.

2 System Description

Similar to most other syntax-based approaches to
recognizing textual entailment, we begin by rep-
resenting each text and hypothesis sentence pair
in logical forms. These logical forms are gener-
ated usingNLPWIN3, a robust system for natural
language parsing and generation (Heidorn, 2000).
Our logical form representation may be consid-
ered equivalently as a set of triples of the form
RELATION(nodei, nodej), or as a graph of syntac-
tic dependencies; we use both terminologies inter-
changeably. Our algorithm proceeds as follows:

1. Parse each sentence with theNLPWIN parser,
resulting in syntactic dependency graphs for the
text and hypothesis sentences.

2. Attempt an alignment of eachcontentnode in
the dependency graph of the hypothesis sen-
tence to some node in the graph of the text sen-
tence, using a set of heuristics for alignment
(described in Section 3).

3. Using the alignment, apply a set of syntactic
heuristics for recognizing false entailment (de-
scribed in Section 4); if any match, predict that
the entailment is false.

2(Vanderwende and Dolan, 2006) suggest that the truth or
falsehood of 48% of the entailment examples in the RTE test set
could be correctly identified via syntax and a thesaurus alone;
thus by random guessing on the rest of the examples one might
hope for an accuracy level of0.48 + 0.52

2
= 74%.

3To aid in the replicability of our experiments, we have
published theNLPWIN logical forms for all sentences from
the development and test sets in the PASCAL RTE dataset at
http://research.microsoft.com/nlp/Projects/RTE.aspx.

lemma: free

pos: Verb

features: Past,Pass,
T1,Proposition

lemma: _X

pos: PronTsub

lemma: hostage

pos: Noun

features: Plur,Humn,
Count,Anim,

Conc,Humn_sr

Tobj

lemma: six

pos: Adj

features: Quant,Plur,
Num,Value 6

Lops

lemma: Iraq

pos: Noun

features: Sing,PrprN,
Pers3,Cntry

Locn_in

Figure 1: Logical form produced byNLPWIN for
the sentence “Six hostages in Iraq were freed.”

4. If no syntactic heuristic matches, back off to
a lexical similarity model (described in section
5.1), with an attempt to align detected para-
phrases (described in section 5.2).

In addition to the typical syntactic information pro-
vided by a dependency parser, theNLPWIN parser
provides an extensive number of semantic features
obtained from various linguistic resources, creating
a rich environment for feature engineering. For ex-
ample, Figure 1 (from Dev Ex. #616) illustrates the
dependency graph representation we use, demon-
strating the stemming, part-of-speech tagging, syn-
tactic relationship identification, and semantic fea-
ture tagging capabilities ofNLPWIN.

We define acontentnode to be any node whose
lemma is not on a small stoplist of common stop
words. In addition to content vs. non-content nodes,
among content nodes we distinguish betweenen-
tities and nonentities: an entity node is any node
classified by theNLPWIN parser as being a proper
noun, quantity, or time.

Each of the features of our system were developed
from inspection of sentence pairs from the RTE de-
velopment data set, and used in the final system only
if they improved the system’s accuracy on the de-
velopment set (or improved F-score if accuracy was
unchanged); sentence pairs in the RTE test set were
left uninspected and used for testing purposes only.

3 Linguistic cues for node alignment

Our syntactic heuristics for recognizing false entail-
ment rely heavily on the correct alignment of words
and multiword units between the text and hypothesis
logical forms. In the notation below, we will con-
siderh and t to be nodes in the hypothesisH and

34

Hypothesis: ‘‘Hepburn, who won four Oscars...’’

Text: ‘‘Hepburn, a four-time Academy Award winner...’’

Hepburn

Noun

win

Verb
Tsub

Hepburn

Noun

String
match

Oscar

Noun
Tobj

winner

Noun

Derivational
form match

four

Adj
Lops

Academy_Award

Noun

Synonym
match

four-time

Adj

Value
match

Appostn

Attrib

Mod

Figure 2: Example of synonym, value, and deriva-
tional form alignment heuristics, Dev Ex. #767

text T logical forms, respectively. To accomplish
the task of node alignment we rely on the following
heuristics:

3.1 WordNet synonym match

As in (Herrera et al., 2005) and others, we align
a nodeh ∈ H to any nodet ∈ T that has both
the same part of speech and belongs to the same
synset in WordNet. Our alignment considers mul-
tiword units, including compound nouns (e.g., we
align “Oscar” to “Academy Award” as in Figure 2),
as well as verb-particle constructions such as “set
off” (aligned to “trigger” in Test Ex. #1983).

3.2 Numeric value match

The NLPWIN parser assigns a normalized numeric
value feature to each piece of text inferred to cor-
respond to a numeric value; this allows us to align
“6th” to “sixth” in Test Ex. #1175. and to align “a
dozen” to “twelve” in Test Ex. #1231.

3.3 Acronym match

Many acronyms are recognized using the syn-
onym match described above; nonetheless, many
acronyms are not yet in WordNet. For these cases we
have a specialized acronym match heuristic which
aligns pairs of nodes with the following properties:
if the lemma for some nodeh consists only of cap-
italized letters (with possible interceding periods),
and the letters correspond to the first characters of
some multiword lemma for somet ∈ T , then we
considerh andt to be aligned. This heuristic allows
us to align “UNDP” to “United Nations Develop-
ment Programme” in Dev Ex. #357 and “ANC” to
“African National Congress” in Test Ex. #1300.

3.4 Derivational form match

We would like to align words which have the same
root form (or have a synonym with the same root
form) and which possess similar semantic meaning,
but which may belong to different syntactic cate-
gories. We perform this by using a combination of
the synonym and derivationally-related form infor-
mation contained within WordNet. Explicitly our
procedure for constructing the set of derivationally-
related forms for a nodeh is to take the union of all
derivationally-related forms of all the synonyms of
h (includingh itself), i.e.:

DERIV(h) = ∪s∈WN-SYN(h)WN-DERIV(s)

In addition to the noun/verb derivationally-related
forms, we detect adjective/adverb derivationally-
related forms that differ only by the suffix ‘ly’.

Unlike the previous alignment heuristics, we do
not expect that two nodes aligned via derivationally-
related forms will play the same syntactic role in
their respective sentences. Thus we consider two
nodes aligned in this way to besoft-aligned, and we
do not attempt to apply our false entailment recog-
nition heuristics to nodes aligned in this way.

3.5 Country adjectival form / demonym match

As a special case of derivational form match, we
soft-align matches from an explicit list of place
names, adjectival forms, and demonyms4; e.g.,
“Sweden” and “Swedish” in Test Ex. #1576.

3.6 Other heuristics for alignment

In addition to these heuristics, we implemented a hy-
ponym match heuristic similar to that discussed in
(Herrera et al., 2005), and a heuristic based on the
string-edit distance of two lemmas; however, these
heuristics yielded a decrease in our system’s accu-
racy on the development set and were thus left out
of our final system.

4 Recognizing false entailment

The bulk of our system focuses on heuristics for
recognizing false entailment. For purposes of no-
tation, we define binary functions for the existence

4List of adjectival forms and demonyms based on the list at:
http://en.wikipedia.org/wiki/Listof demonyms

35

Unaligned Entity: ENTITY(h) ∧ ∀t.¬ALIGN(h, t) → False.
Negation Mismatch: ALIGN(h, t) ∧ NEG(t) 6= NEG(h) → False.
Modal Mismatch: ALIGN(h, t) ∧ MOD(t) ∧ ¬MOD(h) → False.
Antonym Match: ALIGN(h1, t1) ∧ REL(h0, h1) ∧ REL(t0, t1) ∧ LEMMA (t0) ∈ ANTONYMS(h0) → False
Argument Movement: ALIGN(h1, t1) ∧ ALIGN(h2, t2) ∧ REL(h1, h2) ∧ ¬REL(t1, t2) ∧ REL ∈ {SUBJ, OBJ, IND} → False
Superlative Mismatch: ¬(SUPR(h1) → (ALIGN(h1, t1) ∧ ALIGN(h2, t2) ∧ REL1(h2, h1) ∧ REL1(t2, t1)

∧∀t3.(REL2(t2, t3) ∧ REL2 ∈ {MOD,POSSR,LOCN} → REL2(h2, h3) ∧ ALIGN(h3, t3))) → False
Conditional Mismatch: ALIGN(h1, t1) ∧ ALIGN(h2, t2) ∧ COND ∈ PATH(t1, t2) ∧ COND /∈ PATH(h1, h2) → False

Table 1: Summary of heuristics for recognizing false entailment

of each semantic node feature recognized byNLP-
WIN; e.g., if h is negated, we state thatNEG(h) =
TRUE. Similarly we assign binary functions for
the existence of each syntactic relation defined over
pairs of nodes. Finally, we define the function
ALIGN(h, t) to be true if and only if the nodeh ∈ H
has been ‘hard-aligned’ to the nodet ∈ T using one
of the heuristics in Section 3. Other notation is de-
fined in the text as it is used. Table 1 summarizes all
heuristics used in our final system to recognize false
entailment.

4.1 Unaligned entity

If some nodeh has been recognized as an entity (i.e.,
as a proper noun, quantity, or time) but has not been
aligned to any nodet, we predict that the entailment
is false. For example, we predict that Test Ex. #1863
is false because the entities “Suwariya”, “20 miles”,
and “35” inH are unaligned.

4.2 Negation mismatch

If any two nodes(h, t) are aligned, and one (and
only one) of them is negated, we predict that the en-
tailment is false. Negation is conveyed by theNEG

feature inNLPWIN. This heuristic allows us to pre-
dict false entailment in the example “Pertussis is not
very contagious” and “...pertussis, is a highly conta-
gious bacterial infection” in Test Ex. #1144.

4.3 Modal auxiliary verb mismatch

If any two nodes(h, t) are aligned, andt is modified
by a modal auxiliary verb (e.g,can, might, should,
etc.) buth is not similarly modified, we predict that
the entailment is false. Modification by a modal aux-
iliary verb is conveyed by theMOD feature inNLP-
WIN. This heuristic allows us to predict false en-
tailment between the text phrase “would constitute

a threat to democracy”, and the hypothesis phrase
“constitutes a democratic threat” in Test Ex. #1203.

4.4 Antonym match

If two aligned noun nodes(h1, t1) are both subjects
or both objects of verb nodes(h0, t0) in their re-
spective sentences, i.e.,REL(h0, h1)∧ REL(t0, t1)∧
REL ∈ {SUBJ,OBJ}, then we check for a verb
antonym match between(h0, t0). We construct
the set of verb antonyms using WordNet; we con-
sider the antonyms ofh0 to be the union of the
antonyms of the first three senses ofLEMMA (h0),
or of the nearest antonym-possessing hypernyms if
those senses do not themselves have antonyms in
WordNet. Explicitly our procedure for constructing
the antonym set of a nodeh0 is as follows:

1. ANTONYMS(h0) = {}
2. For each of the first three listed sensess of

LEMMA (h0) in WordNet:

(a) While |WN-ANTONYMS(s)| = 0
i. s ← WN-HYPERNYM(s)

(b) ANTONYMS(h0) ← ANTONYMS(h0) ∪
WN-ANTONYMS(s)

3. returnANTONYMS(h0)

In addition to the verb antonyms in WordNet, we
detect the prepositional antonym pairs (before/after,
to/from, andover/under). This heuristic allows us to
predict false entailment between “Black holes can
lose mass...” and “Black holes can regain some of
their mass...” in Test Ex. #1445.

4.5 Argument movement

For any two aligned verb nodes(h1, t1), we con-
sider each noun childh2 of h1 possessing any of

36

Hypothesis Text

kill

Verb

Prime Minister
Robert Malval

Noun

Tobj

Aristide

Noun

Tsub

kill

Verb

Prime Minister
Robert Malval

Noun

Aristide

Noun

Tsub

conference

Noun

Tobj

call

Verb

Attrib

conference

Noun

TobjTsub

Port-au-Prince

Noun

Locn_in

Figure 3: Example of object movement signaling
false entailment

the subject, object, or indirect object relations to
h1, i.e., there existsREL(h1, h2) such thatREL ∈
{SUBJ, OBJ, IND}. If there is some nodet2 such that
ALIGN(h2, t2), but REL(t1, t2) 6= REL(h1, h2), then
we predict that the entailment is false.

As an example, consider Figure 3, representing
subgraphs from Dev Ex. #1916:
T : ...U.N. officials are also dismayed that Aristide killed a con-

ference called by Prime Minister Robert Malval...

H: Aristide kills Prime Minister Robert Malval.

Here let (h1, t1) correspond to the aligned verbs
with lemmakill , where the object ofh1 has lemma
Prime Minister Robert Malval, and the object oft1
has lemmaconference. Sinceh2 is aligned to some
nodet2 in the text graph, but¬OBJ(t1, t2), the sen-
tence pair is rejected as a false entailment.

4.6 Superlative mismatch

If some adjective nodeh1 in the hypothesis is iden-
tified as a superlative, check that all of the following
conditions are satisfied:

1. h1 is aligned to some superlativet1 in the text
sentence.

2. The noun phraseh2 modified byh1 is aligned
to the noun phraset2 modified byt1.

3. Any additional modifiert3 of the noun phrase
t2 is aligned to some modifierh3 of h2 in the
hypothesis sentence (reverse subset match).

If any of these conditions are not satisfied, we pre-
dict that the entailment is false. This heuristic allows
us to predict false entailment in (Dev Ex. #908):
T : Time Warner is the world’s largest media and Internet com-

pany.

H: Time Warner is the world’s largest company.

Here “largest media and Internet company” inT
fails the reverse subset match (condition 3) to
”largest company” inH.

4.7 Conditional mismatch

For any pair of aligned nodes(h1, t1), if there ex-
ists a second pair of aligned nodes(h2, t2) such
that the shortest pathPATH(t1, t2) in the depen-
dency graphT contains the conditional relation,
thenPATH(h1, h2) must also contain the conditional
relation, or else we predict that the entailment is
false. For example, consider the following false en-
tailment (Dev Ex. #60):
T : If a Mexican approaches the border, he’s assumed to be try-

ing to illegally cross.

H: Mexicans continue to illegally cross border.

Here, “Mexican” and “cross” are aligned, and the
path between them in the text contains the condi-
tional relation, but does not in the hypothesis; thus
the entailment is predicted to be false.

4.8 Other heuristics for false entailment

In addition to these heuristics, we additionally im-
plemented an IS-A mismatch heuristic, which at-
tempted to discover when an IS-A relation in the hy-
pothesis sentence was not implied by a correspond-
ing IS-A relation in the text; however, this heuristic
yielded a loss in accuracy on the development set
and was therefore not included in our final system.

5 Lexical similarity and paraphrase
detection

5.1 Lexical similarity using MindNet

In case none of the preceding heuristics for rejec-
tion are applicable, we back off to a lexical sim-
ilarity model similar to that described in (Glick-
man et al., 2005). For every content nodeh ∈ H

37

not already aligned by one of the heuristics in Sec-
tion 3, we obtain a similarity scoreMN(h, t) from a
similarity database that is constructed automatically
from the data contained in MindNet5 as described in
(Richardson, 1997). Our similarity function is thus:

sim(h, t) =

1 if ANY-ALIGN(h, t)
MN(h, t) if MN(h, t) > min
min otherwise

Where the minimum scoremin is a parameter
tuned for maximum accuracy on the development
set; min = 0.00002 in our final system. We then
compute the entailment score:

score(H, T) =
1
|H|

∏

h∈H

max
t∈T

sim(h, t)

This approach is identical to that used in (Glick-
man et al., 2005), except that we use alignment
heuristics and MindNet similarity scores in place
of their web-based estimation of lexical entailment
probabilities, and we take as our score the geomet-
ric mean of the component entailment scores rather
than the unnormalized product of probabilities.

5.2 Measuring phrasal similarity using the web

The methods discussed so far for alignment are lim-
ited to aligning pairs of single words or multiple-
word units constituting single syntactic categories;
these are insufficient for the problem of detecting
more complicated paraphrases. For example, con-
sider the following true entailment (Dev Ex. #496):
T : ...Muslims believe there is only one God.

H: Muslims are monotheistic.

Here we would like to align the hypothesis phrase
“are monotheistic” to the text phrase “believe there
is only one God”; unfortunately, single-node align-
ment aligns only the nodes with lemma “Muslim”.
In this section we describe the approach used in our
system to approximate phrasal similarity via distrib-
utional information obtained using the MSN Search
search engine.

We propose a metric for measuring phrasal simi-
larity based on a phrasal version of the distributional
hypothesis: we propose that a phrase templatePh

5http://research.microsoft.com/mnex

(e.g. ‘xh are monotheistic’) has high semantic simi-
larity to a templatePt (e.g. “xt believe there is only
one God”), with possible “slot-fillers”xh andxt, re-
spectively, if the overlap of the sets of observed slot-
fillers Xh ∩Xt for those phrase templates is high in
some sufficiently large corpus (e.g., the Web).

To measure phrasal similarity we issue the sur-
face text form of each candidate phrase template as
a query to a web-based search engine, and parse the
returned sentences in which the candidate phrase oc-
curs to determine the appropriate slot-fillers. For ex-
ample, in the above example, we observe the set of
slot-fillersXt = {Muslims, Christians, Jews, Saiv-
ities, Sikhs, Caodaists, People}, and Xh ∩ Xt =
{Muslims, Christians, Jews, Sikhs, People}.

Explicitly, given the text and hypothesis logical
forms, our algorithm proceeds as follows to compute
the phrasal similarity between all phrase templates
in H andT :

1. For each pair of aligned single node and un-
aligned leaf node(t1, tl) (or pair of aligned
nodes(t1, t2)) in the textT :

(a) Use NLPWIN to generate a surface text
stringS from the underlying logical form
PATH(t1, t2).

(b) Create the surface string template phrase
Pt by removing fromS the lemmas corre-
sponding tot1 (andt2, if path is between
aligned nodes).

(c) Perform a web search for the stringPt.

(d) Parse the resulting sentences containing
Pt and extract all non-pronoun slot fillers
xt ∈ Xt that satisfy the same syntactic
roles ast1 in the original sentence.

2. Similarly, extract the slot fillersXh for each
discovered phrase templatePh in H.

3. Calculate paraphrase similarity as a function of
the overlap between the slot-filler setsXt and
Xh, i.e: score(Ph, Pt) = |Xh∩Xt|

|Xt| .

We then incorporate paraphrase similarity within the
lexical similarity model by allowing, for some un-
aligned nodeh ∈ Ph, wheret ∈ Pt:

sim(h, t) = max(MN(h, t), score(Ph, Pt))

38

Our approach to paraphrase detection is most similar
to the TE/ASE algorithm (Szpektor et al., 2004), and
bears similarity to both DIRT (Lin and Pantel, 2001)
and KnowItAll (Etzioni et al., 2004). The chief
difference in our algorithm is that we generate the
surface text search strings from the parsed logical
forms using the generation capabilities ofNLPWIN

(Aikawa et al., 2001), and we verify that the syn-
tactic relations in each discovered web snippet are
isomorphic to those in the original candidate para-
phrase template.

6 Results and Discussion

In this section we present the final results of our sys-
tem on the PASCAL RTE-1 test set, and examine our
features in an ablation study. The PASCAL RTE-1
development and test sets consist of 567 and 800 ex-
amples, respectively, with the test set split equally
between true and false examples.

6.1 Results and Performance Comparison on
the PASCAL RTE-1 Test Set

Table 2 displays the accuracy and confidence-
weighted score6 (CWS) of our final system on each
of the tasks for both the development and test sets.

Our overall test set accuracy of 62.50% rep-
resents a 2.1% absolute improvement over the
task-independent system described in (Tatu and
Moldovan, 2005), and a20.2% relative improve-
ment in accuracy over their system with respect to
an uninformed baseline accuracy of 50%.

To compute confidence scores for our judgments,
any entailment determined to be false by any heuris-
tic was assigned maximum confidence; no attempts
were made to distinguish between entailments re-
jected by different heuristics. The confidence of
all other predictions was calculated as the ab-
solute value in the difference between the output
score(H, T) of the lexical similarity model and the
thresholdt = 0.1285 as tuned for highest accu-
racy on our development set. We would expect a
higher CWS to result from learning a more appro-
priate confidence function; nonetheless our overall

6As in (Dagan et al., 2005) we compute the confidence-
weighted score (or “average precision”) overn examples
{c1, c2, ..., cn} ranked in order of decreasing confidence as

cws = 1
n

∑n

i=1

(#correct-up-to-rank-i)
i

Dev Set Test Set
Task acc cws acc cws

CD 0.8061 0.8357 0.7867 0.8261
RC 0.5534 0.5885 0.6429 0.6476
IR 0.6857 0.6954 0.6000 0.6571
MT 0.7037 0.7145 0.6000 0.6350
IE 0.5857 0.6008 0.5917 0.6275
QA 0.7111 0.7121 0.5308 0.5463
PP 0.7683 0.7470 0.5200 0.5333
All 0.6878 0.6888 0.6250 0.6534

Table 2: Summary of accuracies and confidence-
weighted scores, by task

Alignment Feature Dev Test

Synonym Match 0.0106 0.0038
Derivational Form 0.0053 0.0025
Paraphrase 0.0053 0.0000
Lexical Similarity 0.0053 0.0000
Value Match 0.0017 0.0013
Acronym Match 0.0017 0.0013
Adjectival Form7 0.0000 0.0063

False Entailment Feature Dev Test

Negation Mismatch 0.0106 0.0025
Argument Movement 0.0070 0.0250
Conditional Mismatch 0.0053 0.0037
Modal Mismatch 0.0035 0.0013
Superlative Mismatch 0.0035 -0.0025
Entity Mismatch 0.0018 0.0063

Table 3: Feature ablation study; quantity is the ac-
curacy loss obtained by removal of single feature

test set CWS of 0.6534 is higher than previously-
reported task-independent systems (however, the
task-dependent system reported in (Raina et al.,
2005) achieves a CWS of 0.686).

6.2 Feature analysis

Table 3 displays the results of our feature ablation
study, analyzing the individual effect of each feature.

Of the seven heuristics used in our final system
for node alignment (including lexical similarity and
paraphrase detection), our ablation study showed

7As discussed in Section 2, features with no effect on devel-
opment set accuracy were included in the system if and only if
they improved the system’s unweighted F-score.

39

that five were helpful in varying degrees on our test
set, but that removal of either MindNet similarity
scores or paraphrase detection resulted in no accu-
racy loss on the test set.

Of the six false entailment heuristics used in the
final system, five resulted in an accuracy improve-
ment on the test set (the most effective by far was
the “Argument Movement”, resulting in a net gain
of 20 correctly-classified false examples); inclusion
of the “Superlative Mismatch” feature resulted in a
small net loss of two examples.

We note that our heuristics for false entailment,
where applicable, were indeed significantly more ac-
curate than our final system as a whole; on the set of
examples predicted false by our heuristics we had
71.3% accuracy on the training set (112 correct out
of 157 predicted), and 72.9% accuracy on the test set
(164 correct out of 225 predicted).

7 Conclusion

In this paper we have presented and analyzed a sys-
tem for recognizing textual entailment focused pri-
marily on the recognition offalse entailment, and
demonstrated higher performance than achieved by
previous approaches on the widely-used PASCAL
RTE test set. Our system achieves state-of-the-
art performance despite not exploiting a wide ar-
ray of sources of knowledge used by other high-
performance systems; we submit that the perfor-
mance of our system demonstrates the unexploited
potential in features designed specifically for the
recognition of false entailment.

Acknowledgments

We thank Chris Brockett, Michael Gamon, Gary
Kacmarick, and Chris Quirk for helpful discussion.
Also, thanks to Robert Ragno for assistance with
the MSN Search API. Rion Snow is supported by
an NDSEG Fellowship sponsored by the DOD and
AFOSR.

References

Takako Aikawa, Maite Melero, Lee Schwartz, and Andi
Wu. 2001. Multilingual Sentence Generation. In
Proc. of 8th European Workshop on Natural Language
Generation.

Samuel Bayer, John Burger, Lisa Ferro, John Henderson,
and Alexander Yeh. 2005. MITRE’s Submissions to
the EU Pascal RTE Challenge. InProc. of the PASCAL
Challenges Workshop on RTE 2005.

Johan Bos and Katja Markert. 2005. Recognizing Tex-
tual Entailment with Logical Inference. InProc. HLT-
EMNLP 2005.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL Recognising Textual Entailment
Challenge. InProceedings of the PASCAL Challenges
Workshop on RTE 2005.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley
Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S. Weld, and Alexander Yates. 2004.
Web-scale information extraction in KnowItAll. In
Proc. WWW 2004.

Christiane Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge,
Mass.

Oren Glickman, Ido Dagan, and Moshe Koppel. 2005.
Web Based Probabilistic Textual Entailment. InProc.
of the PASCAL Challenges Workshop on RTE 2005.

George E. Heidorn. 2000. Intelligent Writing Assis-
tance. In R. Dale, H. Moisl, and H. Somers (eds.),
A Handbook of Natural Language Processing: Tech-
niques and Applications for the Processing of Lan-
guage as Text. Marcel Dekker, New York. 181-207.

Jeśus Herrera, Anselmo Peñas, and Felisa Verdejo. 2005.
Textual Entailment Recognision Based on Depen-
dency Analysis and WordNet. InProc. of the PASCAL
Challenges Workshop on RTE 2005.

Dekang Lin and Patrick Pantel. 2001. DIRT - Discovery
of Inference Rules from Text. InProc. KDD 2001.

Rajat Raina, Andrew Y. Ng, and Christopher D. Man-
ning. 2005. Robust textual inference via learning and
abductive reasoning. InProc. AAAI 2005.

Stephen D. Richardson. 1997. Determining Similarity
and Inferring Relations in a Lexical Knowledge Base.
Ph.D. thesis, The City University of New York.

Idan Szpektor, Hristo Tanev, Ido Dagan, and Bonaventura
Coppola. 2004. Scaling Web-based Acquisition of
Entailment Relations. InProc. EMNLP 2004.

Marta Tatu and Dan Moldovan. 2005. A Semantic Ap-
proach to Recognizing Textual Entailment. InProc.
HLT-EMNLP 2005.

Lucy Vanderwende and William B. Dolan. 2006. What
Syntax Can Contribute in the Entailment Task. In
MLCW 2005, LNAI 3944, pp. 205–216. J. Quinonero-
Candela et al. (eds.). Springer-Verlag.

40

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 41–48,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning to recognize features of valid textual entailments

Bill MacCartney, Trond Grenager, Marie-Catherine de Marneffe,
Daniel Cer, and Christopher D. Manning

Computer Science Department
Stanford University
Stanford, CA 94305

{wcmac, grenager, mcdm, cerd, manning}@cs.stanford.edu

Abstract

This paper advocates a new architecture for tex-
tual inference in which finding a good alignment is
separated from evaluating entailment. Current ap-
proaches to semantic inference in question answer-
ing and textual entailment have approximated the
entailment problem as that of computing the best
alignment of the hypothesis to the text, using a lo-
cally decomposable matching score. We argue that
there are significant weaknesses in this approach,
including flawed assumptions of monotonicity and
locality. Instead we propose a pipelined approach
where alignment is followed by a classification
step, in which we extract features representing
high-level characteristics of the entailment prob-
lem, and pass the resulting feature vector to a statis-
tical classifier trained on development data. We re-
port results on data from the 2005 Pascal RTE Chal-
lenge which surpass previously reported results for
alignment-based systems.

1 Introduction

During the last five years there has been a surge in
work which aims to provide robust textual inference
in arbitrary domains about which the system has no
expertise. The best-known such work has occurred
within the field of question answering (Pasca and
Harabagiu, 2001; Moldovan et al., 2003); more re-
cently, such work has continued with greater focus
in addressing the PASCAL Recognizing Textual En-
tailment (RTE) Challenge (Dagan et al., 2005) and
within the U.S. Government AQUAINT program.
Substantive progress on this task is key to many
text and natural language applications. If one could
tell thatProtestors chanted slogans opposing a free
trade agreementwas a match forpeople demonstrat-
ing against free trade, then one could offer a form of
semantic search not available with current keyword-
based search. Even greater benefits would flow to
richer and more semantically complex NLP tasks.

Because full, accurate, open-domain natural lan-
guage understanding lies far beyond current capa-
bilities, nearly all efforts in this area have sought
to extract the maximum mileage from quite lim-
ited semantic representations. Some have used sim-
ple measures of semantic overlap, but the more in-
teresting work has largely converged on a graph-
alignment approach, operating on semantic graphs
derived from syntactic dependency parses, and using
a locally-decomposable alignment score as a proxy
for strength of entailment. (Below, we argue that
even approaches relying on weighted abduction may
be seen in this light.) In this paper, we highlight the
fundamental semantic limitations of this type of ap-
proach, and advocate a multi-stage architecture that
addresses these limitations. The three key limita-
tions are anassumption of monotonicity, anassump-
tion of locality, and aconfounding of alignment and
evaluation of entailment.

We focus on the PASCAL RTE data, examples
from which are shown in table 1. This data set con-
tains pairs consisting of a short text followed by a
one-sentence hypothesis. The goal is to say whether
the hypothesis follows from the text and general
background knowledge, according to the intuitions
of an intelligent human reader. That is, the standard
is not whether the hypothesis is logically entailed,
but whether it can reasonably be inferred.

2 Approaching a robust semantics

In this section we try to give a unifying overview
to current work on robust textual inference, to
present fundamental limitations of current meth-
ods, and then to outline our approach to resolving
them. Nearly all current textual inference systems
use a single-stage matching/proof process, and differ

41

ID Text Hypothesis Entailed
59 Two Turkish engineers and an Afghan translator kidnapped

in December were freed Friday.
translator kidnapped in Iraq no

98 Sharon warns Arafat could be targeted for assassination. prime minister targeted for assassination no
152 Twenty-five of the dead were members of the law enforce-

ment agencies and the rest of the 67 were civilians.
25 of the dead were civilians. no

231 The memorandum noted the United Nations estimated that
2.5 million to 3.5 million people died of AIDS last year.

Over 2 million people died of AIDS last
year.

yes

971 Mitsubishi Motors Corp.’s new vehicle sales in the US fell
46 percent in June.

Mitsubishi sales rose 46 percent. no

1806 Vanunu, 49, was abducted by Israeli agents and convicted
of treason in 1986 after discussing his work as a mid-level
Dimona technician with Britain’s Sunday Times newspaper.

Vanunu’s disclosures in 1968 led experts
to conclude that Israel has a stockpile of
nuclear warheads.

no

2081 The main race track in Qatar is located in Shahaniya, on the
Dukhan Road.

Qatar is located in Shahaniya. no

Table 1: Illustrative examples from the PASCAL RTE data set,available athttp://www.pascal-network.org/Challenges/RTE.
Though most problems shown have answerno, the data set is actually balanced betweenyesandno.

mainly in the sophistication of the matching stage.
The simplest approach is to base the entailment pre-
diction on the degree of semantic overlap between
the text and hypothesis using models based on bags
of words, bags ofn-grams, TF-IDF scores, or some-
thing similar (Jijkoun and de Rijke, 2005). Such
models have serious limitations: semantic overlap is
typically a symmetric relation, whereas entailment
is clearly not, and, because overlap models do not
account for syntactic or semantic structure, they are
easily fooled by examples like ID 2081.

A more structured approach is to formulate the
entailment prediction as a graph matching problem
(Haghighi et al., 2005; de Salvo Braz et al., 2005).
In this formulation, sentences are represented as nor-
malized syntactic dependency graphs (like the one
shown in figure 1) and entailment is approximated
with an alignment between the graph representing
the hypothesis and a portion of the corresponding
graph(s) representing the text. Each possible align-
ment of the graphs has an associated score, and the
score of the best alignment is used as an approxi-
mation to the strength of the entailment: a better-
aligned hypothesis is assumed to be more likely to
be entailed. To enable incremental search, align-
ment scores are usually factored as a combination
of local terms, corresponding to the nodes and edges
of the two graphs. Unfortunately, even with factored
scores the problem of finding the best alignment of
two graphs is NP-complete, so exact computation is
intractable. Authors have proposed a variety of ap-
proximate search techniques. Haghighi et al. (2005)

divide the search into two steps: in the first step they
consider node scores only, which relaxes the prob-
lem to a weighted bipartite graph matching that can
be solved in polynomial time, and in the second step
they add the edges scores and hillclimb the align-
ment via an approximate local search.

A third approach, exemplified by Moldovan et al.
(2003) and Raina et al. (2005), is to translate de-
pendency parses into neo-Davidsonian-style quasi-
logical forms, and to perform weighted abductive
theorem proving in the tradition of (Hobbs et al.,
1988). Unless supplemented with a knowledge
base, this approach is actually isomorphic to the
graph matching approach. For example, the graph
in figure 1 might generate the quasi-LFrose(e1),
nsubj(e1, x1), sales(x1), nn(x1, x2), Mitsubishi(x2),
dobj(e1, x3), percent(x3), num(x3, x4), 46(x4).
There is a term corresponding to each node and arc,
and the resolution steps at the core of weighted ab-
duction theorem proving consider matching an indi-
vidual node of the hypothesis (e.g.rose(e1)) with
something from the text (e.g.fell(e1)), just as in
the graph-matching approach. The two models be-
come distinct when there is a good supply of addi-
tional linguistic and world knowledge axioms—as in
Moldovan et al. (2003) but not Raina et al. (2005).
Then the theorem prover may generate intermedi-
ate forms in the proof, but, nevertheless, individ-
ual terms are resolved locally without reference to
global context.

Finally, a few efforts (Akhmatova, 2005; Fowler
et al., 2005; Bos and Markert, 2005) have tried to

42

translate sentences into formulas of first-order logic,
in order to test logical entailment with a theorem
prover. While in principle this approach does not
suffer from the limitations we describe below, in
practice it has not borne much fruit. Because few
problem sentences can be accurately translated to
logical form, and because logical entailment is a
strict standard, recall tends to be poor.

The simple graph matching formulation of the
problem belies three important issues. First, the
above systems assume a form of upward monotonic-
ity: if a good match is found with a part of the text,
other material in the text is assumed not to affect
the validity of the match. But many situations lack
this upward monotone character. Consider variants
on ID 98. Suppose the hypothesis wereArafat tar-
geted for assassination. This would allow a perfect
graph match or zero-cost weighted abductive proof,
because the hypothesis is a subgraph of the text.
However, this would be incorrect because it ignores
the modal operatorcould. Information that changes
the validity of a proof can also exist outside a match-
ing clause. Consider the alternate textSharon denies
Arafat is targeted for assassination.1

The second issue is the assumption of locality.
Locality is needed to allow practical search, but
many entailment decisions rely on global features of
the alignment, and thus do not naturally factor by
nodes and edges. To take just one example, drop-
ping a restrictive modifier preserves entailment in a
positive context, but not in a negative one. For exam-
ple,Dogs barked loudlyentailsDogs barked, butNo
dogs barked loudlydoes not entailNo dogs barked.
These more global phenomena cannot be modeled
with a factored alignment score.

The last issue arising in the graph matching ap-
proaches is the inherent confounding of alignment
and entailment determination. The way to show that
one graph element does not follow from another is
to make the cost of aligning them high. However,
since we are embedded in a search for the lowest
cost alignment, this will just cause the system to
choose an alternate alignment rather than recogniz-
ing a non-entailment. In ID 152, we would like the
hypothesis to align with the first part of the text, to

1This is the same problem labeled and addressed ascontext
in Tatu and Moldovan (2005).

be able to prove that civilians are not members of
law enforcement agencies and conclude that the hy-
pothesis does not follow from the text. But a graph-
matching system will to try to get non-entailment
by making the matching cost betweencivilians and
members of law enforcement agenciesbe very high.
However, the likely result of that is that the final part
of the hypothesis will align withwere civiliansat
the end of the text, assuming that we allow an align-
ment with “loose” arc correspondence.2 Under this
candidate alignment, the lexical alignments are per-
fect, and the only imperfect alignment is the subject
arc of were is mismatched in the two. A robust in-
ference guesser will still likely conclude that there is
entailment.

We propose that all three problems can be re-
solved in a two-stage architecture, where the align-
ment phase is followed by a separate phase of en-
tailment determination. Although developed inde-
pendently, the same division between alignment and
classification has also been proposed by Marsi and
Krahmer (2005), whose textual system is developed
and evaluated on parallel translations into Dutch.
Their classification phase features an output space
of five semantic relations, and performs well at dis-
tinguishing entailing sentence pairs.

Finding aligned content can be done by any search
procedure. Compared to previous work, we empha-
size structural alignment, and seek to ignore issues
like polarity and quantity, which can be left to a
subsequent entailment decision. For example, the
scoring function is designed to encourage antonym
matches, and ignore the negation of verb predicates.
The ideas clearly generalize to evaluating several
alignments, but we have so far worked with just
the one-best alignment. Given a good alignment,
the determination of entailment reduces to a simple
classification decision. The classifier is built over
features designed to recognize patterns of valid and
invalid inference. Weights for the features can be
hand-set or chosen to minimize a relevant loss func-
tion on training data using standard techniques from
machine learning. Because we already have a com-
plete alignment, the classifier’s decision can be con-

2Robust systems need to allow matches with imperfect arc
correspondence. For instance, givenBill went to Lyons to study
French farming practices, we would like to be able to conclude
thatBill studied French farmingdespite the structural mismatch.

43

ditioned on arbitraryglobal features of the aligned
graphs, and it can detect failures of monotonicity.

3 System

Our system has three stages: linguistic analysis,
alignment, and entailment determination.

3.1 Linguistic analysis

Our goal in this stage is to compute linguistic rep-
resentations of the text and hypothesis that contain
as much information as possible about their seman-
tic content. We usetyped dependency graphs, which
contain a node for each word and labeled edges rep-
resenting the grammatical relations between words.
Figure 1 gives the typed dependency graph for ID
971. This representation contains much of the infor-
mation about words and relations between them, and
is relatively easy to compute from a syntactic parse.
However many semantic phenomena are not repre-
sented properly; particularly egregious is the inabil-
ity to represent quantification and modality.

We parse input sentences to phrase structure
trees using the Stanford parser (Klein and Manning,
2003), a statistical syntactic parser trained on the
Penn TreeBank. To ensure correct parsing, we pre-
process the sentences to collapse named entities into
new dedicated tokens. Named entities are identi-
fied by a CRF-based NER system, similar to that
described in (McCallum and Li, 2003). After pars-
ing, contiguous collocations which appear in Word-
Net (Fellbaum, 1998) are identified and grouped.

We convert the phrase structure trees to typed de-
pendency graphs using a set of deterministic hand-
coded rules (de Marneffe et al., 2006). In these rules,
heads of constituents are first identified using a mod-
ified version of the Collins head rules that favor se-
mantic heads (such as lexical verbs rather than aux-
iliaries), and dependents of heads are typed using
tregexpatterns (Levy and Andrew, 2006), an exten-
sion of thetgreppattern language. The nodes in the
final graph are then annotated with their associated
word, part-of-speech (given by the parser), lemma
(given by a finite-state transducer described by Min-
nen et al. (2001)) and named-entity tag.

3.2 Alignment

The purpose of the second phase is to find a good
partial alignment between the typed dependency

graphs representing the hypothesis and the text. An
alignment consists of a mapping from each node
(word) in the hypothesis graph to a single node in
the text graph, or to null.3 Figure 1 gives the align-
ment for ID 971.

The space of alignments is large: there are
O((m + 1)n) possible alignments for a hypothesis
graph withn nodes and a text graph withm nodes.
We define a measure of alignment quality, and a
procedure for identifying high scoring alignments.
We choose a locally decomposable scoring function,
such that the score of an alignment is the sum of
the local node and edge alignment scores. Unfor-
tunately, there is no polynomial time algorithm for
finding the exact best alignment. Instead we use an
incremental beam search, combined with a node or-
dering heuristic, to do approximate global search in
the space of possible alignments. We have exper-
imented with several alternative search techniques,
and found that the solution quality is not very sensi-
tive to the specific search procedure used.

Our scoring measure is designed to favor align-
ments which align semantically similar subgraphs,
irrespective of polarity. For this reason, nodes re-
ceive high alignment scores when the words they
represent are semantically similar. Synonyms and
antonyms receive the highest score, and unrelated
words receive the lowest. Our hand-crafted scor-
ing metric takes into account the word, the lemma,
and the part of speech, and searches for word relat-
edness using a range of external resources, includ-
ing WordNet, precomputed latent semantic analysis
matrices, and special-purpose gazettes. Alignment
scores also incorporate local edge scores, which are
based on the shape of the paths between nodes in
the text graph which correspond to adjacent nodes
in the hypothesis graph. Preserved edges receive the
highest score, and longer paths receive lower scores.

3.3 Entailment determination

In the final stage of processing, we make a deci-
sion about whether or not the hypothesis is entailed
by the text, conditioned on the typed dependency
graphs, as well as the best alignment between them.

3The limitations of using one-to-one alignments are miti-
gated by the fact that many multiword expressions (e.g. named
entities, noun compounds, multiword prepositions) have been
collapsed into single nodes during linguistic analysis.

44

rose

sales

Mitsubishi

percent

46

nsubj dobj

nn num

Alignment

rose → fell
sales → sales
Mitsubishi → Mitsubishi Motors Corp.
percent → percent
46 → 46

Alignment score:−0.8962

Features

Antonyms aligned in pos/pos context −

Structure: main predicate good match +
Number: quantity match +
Date: text date deleted in hypothesis −

Alignment: good score +

Entailment score:−5.4262

Figure 1: Problem representation for ID 971: typed dependency graph (hypothesis only), alignment, and entailment features.

Because we have a data set of examples that are la-
beled for entailment, we can use techniques from su-
pervised machine learning to learn a classifier. We
adopt the standard approach of defining a featural
representation of the problem and then learning a
linear decision boundary in the feature space. We
focus here on the learning methodology; the next
section covers the definition of the set of features.

Defined in this way, one can apply any statistical
learning algorithm to this classification task, such
as support vector machines, logistic regression, or
naive Bayes. We used a logistic regression classifier
with a Gaussian prior parameter for regularization.
We also compare our learning results with those
achieved by hand-setting the weight parameters for
the classifier, effectively incorporating strong prior
(human) knowledge into the choice of weights.

An advantage to the use of statistical classifiers
is that they can be configured to output a proba-
bility distribution over possible answers rather than
just the most likely answer. This allows us to get
confidence estimates for computing a confidence
weighted score (see section 5). A major concern in
applying machine learning techniques to this clas-
sification problem is the relatively small size of the
training set, which can lead to overfitting problems.
We address this by keeping the feature dimensional-
ity small, and using high regularization penalties in
training.

4 Feature representation

In the entailment determination phase, the entail-
ment problem is reduced to a representation as a
vector of 28 features, over which the statistical
classifier described above operates. These features
try to capture salient patterns of entailment and
non-entailment, with particular attention to contexts
which reverse or block monotonicity, such as nega-
tions and quantifiers. This section describes the most

important groups of features.

Polarity features. These features capture the pres-
ence (or absence) of linguistic markers of negative
polarity contexts in both the text and the hypothesis,
such as simple negation (not), downward-monotone
quantifiers (no, few), restricting prepositions (with-
out, except) and superlatives (tallest).

Adjunct features. These indicate the dropping or
adding of syntactic adjuncts when moving from the
text to the hypothesis. For the common case of
restrictive adjuncts, dropping an adjunct preserves
truth (Dogs barked loudly|= Dogs barked), while
adding an adjunct does not (Dogs barked6|= Dogs
barked today). However, in negative-polarity con-
texts (such asNo dogs barked), this heuristic is
reversed: adjuncts can safely be added, but not
dropped. For example, in ID 59, the hypothesis
aligns well with the text, but the addition ofin Iraq
indicates non-entailment.

We identify the “root nodes” of the problem: the
root node of the hypothesis graph and the corre-
sponding aligned node in the text graph. Using de-
pendency information, we identify whether adjuncts
have been added or dropped. We then determine
the polarity (negative context, positive context or
restrictor of a universal quantifier) of the two root
nodes to generate features accordingly.

Antonymy features. Entailment problems might
involve antonymy, as in ID 971. We check whether
an aligned pairs of text/hypothesis words appear to
be antonymous by consulting a pre-computed list
of about 40,000 antonymous and other contrasting
pairs derived from WordNet. For each antonymous
pair, we generate one of three boolean features, in-
dicating whether (i) the words appear in contexts of
matching polarity, (ii) only the text word appears in
a negative-polarity context, or (iii) only the hypoth-
esis word does.

45

Modality features. Modality features capture
simple patterns of modal reasoning, as in ID 98,
which illustrates the heuristic that possibility does
not entail actuality. According to the occurrence
(or not) of predefined modality markers, such as
must or maybe, we map the text and the hypoth-
esis to one of six modalities:possible, not possi-
ble, actual, not actual, necessary, andnot necessary.
The text/hypothesis modality pair is then mapped
into one of the following entailment judgments:yes,
weak yes, don’t know, weak no, or no. For example:

(not possible|= not actual)? ⇒ yes

(possible|= necessary)? ⇒ weak no

Factivity features. The context in which a verb
phrase is embedded may carry semantic presuppo-
sitions giving rise to (non-)entailments such asThe
gangster tried to escape6|= The gangster escaped.
This pattern of entailment, like others, can be re-
versed by negative polarity markers (The gangster
managed to escape|= The gangster escapedwhile
The gangster didn’t manage to escape6|= The gang-
ster escaped). To capture these phenomena, we
compiled small lists of “factive” and non-factive
verbs, clustered according to the kinds of entail-
ments they create. We then determine to which class
the parent of the text aligned with the hypothesis
root belongs to. If the parent is not in the list, we
only check whether the embedding text is an affir-
mative context or a negative one.

Quantifier features. These features are designed
to capture entailment relations among simple sen-
tences involving quantification, such asEvery com-
pany must report|= A company must report(or
The company, or IBM). No attempt is made to han-
dle multiple quantifiers or scope ambiguities. Each
quantifier found in an aligned pair of text/hypothesis
words is mapped into one of five quantifier cate-
gories: no, some, many, most, and all. The no
category is set apart, while an ordering over the
other four categories is defined. Thesomecategory
also includes definite and indefinite determiners and
small cardinal numbers. A crude attempt is made to
handle negation by interchangingno andall in the
presence of negation. Features are generated given
the categories of both hypothesis and text.

Number, date, and time features. These are de-
signed to recognize (mis-)matches between num-
bers, dates, and times, as in IDs 1806 and 231. We
do some normalization (e.g. of date representations)
and have a limited ability to do fuzzy matching. In
ID 1806, the mismatched years are correctly iden-
tified. Unfortunately, in ID 231 the significance of
over is not grasped and a mismatch is reported.

Alignment features. Our feature representation
includes three real-valued features intended to rep-
resent the quality of the alignment:score is the
raw score returned from the alignment phase, while
goodscoreandbadscoretry to capture whether the
alignment score is “good” or “bad” by computing
the sigmoid function of the distance between the
alignment score and hard-coded “good” and “bad”
reference values.

5 Evaluation

We present results based on the First PASCAL RTE
Challenge, which used a development set contain-
ing 567 pairs and a test set containing 800 pairs.
The data sets are balanced to contain equal num-
bers ofyesand no answers. The RTE Challenge
recommended two evaluation metrics: raw accuracy
and confidence weighted score (CWS). The CWS is
computed as follows: for each positive integerk up
to the size of the test set, we compute accuracy over
thek most confident predictions. The CWS is then
the average, overk, of these partial accuracies. Like
raw accuracy, it lies in the interval [0, 1], but it will
exceed raw accuracy to the degree that predictions
are well-calibrated.

Several characteristics of the RTE problems
should be emphasized. Examples are derived from a
broad variety of sources, including newswire; there-
fore systems must be domain-independent. The in-
ferences required are, from a human perspective,
fairly superficial: no long chains of reasoning are
involved. However, there are “trick” questions ex-
pressly designed to foil simplistic techniques. The
definition of entailment is informal and approx-
imate: whether a competent speaker with basic
knowledge of the world would typically infer the hy-
pothesis from the text. Entailments will certainly de-
pend on linguistic knowledge, and may also depend
on world knowledge; however, the scope of required

46

Algorithm RTE1 Dev Set RTE1 Test Set
Acc CWS Acc CWS

Random 50.0% 50.0% 50.0% 50.0%
Jijkoun et al. 05 61.0% 64.9% 55.3% 55.9%
Raina et al. 05 57.8% 66.1% 55.5% 63.8%

Haghighi et al. 05 — — 56.8% 61.4%
Bos & Markert 05 — — 57.7% 63.2%
Alignment only 58.7% 59.1% 54.5% 59.7%

Hand-tuned 60.3% 65.3% 59.1% 65.0%
Learning 61.2% 74.4% 59.1% 63.9%

Table 2: Performance on the RTE development and test sets.
CWS stands for confidence weighted score (see text).

world knowledge is left unspecified.4

Despite the informality of the problem definition,
human judges exhibit very good agreement on the
RTE task, with agreement rate of 91–96% (Dagan
et al., 2005). In principle, then, the upper bound
for machine performance is quite high. In practice,
however, the RTE task is exceedingly difficult for
computers. Participants in the first PASCAL RTE
workshop reported accuracy from 49% to 59%, and
CWS from 50.0% to 69.0% (Dagan et al., 2005).

Table 2 shows results for a range of systems and
testing conditions. We report accuracy and CWS on
each RTE data set. The baseline for all experiments
is random guessing, which always attains 50% accu-
racy. We show comparable results from recent sys-
tems based on lexical similarity (Jijkoun and de Ri-
jke, 2005), graph alignment (Haghighi et al., 2005),
weighted abduction (Raina et al., 2005), and a mixed
system including theorem proving (Bos and Mark-
ert, 2005).

We then show results for our system under several
different training regimes. The row labeled “align-
ment only” describes experiments in which all fea-
tures except the alignment score are turned off. We
predict entailment just in case the alignment score
exceeds a threshold which is optimized on devel-
opment data. “Hand-tuning” describes experiments
in which all features are on, but no training oc-
curs; rather, weights are set by hand, according to
human intuition. Finally, “learning” describes ex-
periments in which all features are on, and feature
weights are trained on the development data. The

4Each RTE problem is also tagged as belonging to one of
seventasks. Previous work (Raina et al., 2005) has shown that
conditioning on task can significantly improve accuracy. Inthis
work, however, we ignore the task variable, and none of the
results shown in table 2 reflect optimization by task.

figures reported for development data performance
therefore reflect overfitting; while such results are
not a fair measure of overall performance, they can
help us assess the adequacy of our feature set: if
our features have failed to capture relevant aspects
of the problem, we should expect poor performance
even when overfitting. It is therefore encouraging
to see CWS above 70%. Finally, the figures re-
ported for test data performance are the fairest ba-
sis for comparison. These are significantly better
than our results for alignment only (Fisher’s exact
test,p < 0.05), indicating that we gain real value
from our features. However, the gain over compara-
ble results from other teams is not significant at the
p < 0.05 level.

A curious observation is that the results for hand-
tuned weights are as good or better than results for
learned weights. A possible explanation runs as fol-
lows. Most of the features represent high-level pat-
terns which arise only occasionally. Because the
training data contains only a few hundred exam-
ples, many features are active in just a handful of
instances; their learned weights are therefore quite
noisy. Indeed, a feature which is expected to fa-
vor entailment may even wind up with a negative
weight: the modal featureweak yesis an example.
As shown in table 3, the learned weight for this fea-
ture was strongly negative — but this resulted from
a single training example in which the feature was
active but the hypothesis was not entailed. In such
cases, we shouldn’t expect good generalization to
test data, and human intuition about the “value” of
specific features may be more reliable.

Table 3 shows the values learned for selected fea-
ture weights. As expected, the featuresadded ad-
junct in all context, modal yes, and text is factive
were all found to be strong indicators of entailment,
while date insert, date modifier insert, widening
from text to hypall indicate lack of entailment. Inter-
estingly,text has neg markerandtext & hyp diff po-
larity were also found to disfavor entailment; while
this outcome is sensible, it was not anticipated or
designed.

6 Conclusion

The best current approaches to the problem of tex-
tual inference work by aligning semantic graphs,

47

Feature class & condition weight
Adjunct added adjunct inall context 1.40
Date date mismatch 1.30
Alignment good score 1.10
Modal yes 0.70
Modal no 0.51
Factive text is factive 0.46
.
Polarity text & hyp same polarity −0.45
Modal don’t know −0.59
Quantifier widening from text to hyp −0.66
Polarity text has neg marker −0.66
Polarity text & hyp diff polarity −0.72
Alignment bad score −1.53
Date date modifier insert −1.57
Modal weak yes −1.92
Date date insert −2.63

Table 3: Learned weights for selected features. Positive weights
favor entailment. Weights near 0 are omitted. Based on training
on the PASCAL RTE development set.

using a locally-decomposable alignment score as a
proxy for strength of entailment. We have argued
that such models suffer from three crucial limita-
tions: an assumption of monotonicity, an assump-
tion of locality, and a confounding of alignment and
entailment determination.

We have described a system which extends
alignment-based systems while attempting to ad-
dress these limitations. After finding the best align-
ment between text and hypothesis, we extract high-
level semantic features of the entailment problem,
and input these features to a statistical classifier to
make an entailment decision. Using this multi-stage
architecture, we report results on the PASCAL RTE
data which surpass previously-reported results for
alignment-based systems.

We see the present work as a first step in a promis-
ing direction. Much work remains in improving the
entailment features, many of which may be seen as
rough approximations to a formal monotonicity cal-
culus. In future, we aim to combine more precise
modeling of monotonicity effects with better mod-
eling of paraphrase equivalence.

Acknowledgements

We thank Anna Rafferty, Josh Ainslie, and partic-
ularly Roger Grosse for contributions to the ideas
and system reported here. This work was supported
in part by the Advanced Research and Development
Activity (ARDA)’s Advanced Question Answering

for Intelligence (AQUAINT) Program.

References
E. Akhmatova. 2005. Textual entailment resolution via atomic

propositions. InProceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment, 2005.

J. Bos and K. Markert. 2005. Recognising textual entailment
with logical inference. InEMNLP-05.

I. Dagan, O. Glickman, and B. Magnini. 2005. The PASCAL
recognising textual entailment challenge. InProceedings of
the PASCAL Challenges Workshop on Recognising Textual
Entailment.

Marie-Catherine de Marneffe, Bill MacCartney, and Christo-
pher D. Manning. 2006. Generating typed dependency
parses from phrase structure parses. InLREC 2006.

R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. 2005. An inference model for semantic entail-
ment and question-answering. InProceedings of the Twenti-
eth National Conference on Artificial Intelligence (AAAI).

C. Fellbaum. 1998.WordNet: an electronic lexical database.
MIT Press.

A. Fowler, B. Hauser, D. Hodges, I. Niles, A. Novischi, and
J. Stephan. 2005. Applying COGEX to recognize textual
entailment. InProceedings of the PASCAL Challenges Work-
shop on Recognising Textual Entailment.

A. Haghighi, A. Ng, and C. D. Manning. 2005. Robust textual
inference via graph matching. InEMNLP-05.

J. R. Hobbs, M. Stickel, P. Martin, and D. D. Edwards. 1988.
Interpretation as abduction. In26th Annual Meeting of the
Association for Computational Linguistics: Proceedings of
the Conference, pages 95–103, Buffalo, New York.

V. Jijkoun and M. de Rijke. 2005. Recognizing textual entail-
ment using lexical similarity. InProceedings of the PAS-
CAL Challenge Workshop on Recognising Textual Entail-
ment, 2005, pages 73–76.

D. Klein and C. D. Manning. 2003. Accurate unlexicalized
parsing. InProceedings of the 41st Meeting of the Associa-
tion of Computational Linguistics.

Roger Levy and Galen Andrew. 2006. Tregex and Tsurgeon:
tools for querying and manipulating tree data structures. In
LREC 2006.

E. Marsi and E. Krahmer. 2005. Classification of semantic re-
lations by humans and machines. InProceedings of the ACL
2005 Workshop on Empirical Modeling of Semantic Equiva-
lence and Entailment.

A. McCallum and W. Li. 2003. Early results for named entity
recognition with conditional random fields, feature induction
and web-enhanced lexicons. InProceedings of CoNLL 2003.

G. Minnen, J. Carroll, and D. Pearce. 2001. Applied morpho-
logical processing in English. InNatural Language Engi-
neering, volume 7(3), pages 207–233.

D. Moldovan, C. Clark, S. Harabagiu, and S. Maiorano. 2003.
COGEX: A logic prover for question answering. InNAACL-
03.

M. Pasca and S. Harabagiu. 2001. High performance ques-
tion/answering. InSIGIR-01, pages 366–374.

R. Raina, A .Ng, and C. D. Manning. 2005. Robust textual
inference via learning and abductive reasoning. InProceed-
ings of the Twentieth National Conference on Artificial Intel-
ligence (AAAI).

M. Tatu and D. Moldovan. 2005. A semantic approach to rec-
ognizing textual entailment. InHLT/EMNLP 2005, pages
371–378.

48

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 49–56,
New York, June 2006.c©2006 Association for Computational Linguistics

Acquisition of Verb Entailment from Text

Viktor Pekar
Computational Linguistics Group

University of Wolverhampton
MB109 Stafford Street

Wolverhampton WV1 1SB, UK
v.pekar@wlv.ac.uk

Abstract

The study addresses the problem of auto-
matic acquisition of entailment relations
between verbs. While this task has much
in common with paraphrases acquisition
which aims to discover semantic equiva-
lence between verbs, the main challenge
of entailment acquisition is to capture
asymmetric, or directional, relations. Mo-
tivated by the intuition that it often under-
lies the local structure of coherent text, we
develop a method that discovers verb en-
tailment using evidence about discourse
relations between clauses available in a
parsed corpus. In comparison with earlier
work, the proposed method covers a much
wider range of verb entailment types and
learns the mapping between verbs with
highly varied argument structures.

1 Introduction

The entailment relations between verbs are a natural
language counterpart of the commonsense knowl-
edge that certain events and states give rise to other
events and states. For example, there is an entail-
ment relation between the verbsbuy and belong,
which reflects the commonsense notion that if some-
one has bought an object, this object belongs to that
person.

A lexical resource encoding entailment can serve
as a useful tool in many tasks where automatic in-
ferencing over natural language text is required. In
Question Answering, it has been used to establish
that a certain sentence found in the corpus can serve
as a suitable, albeit implicit answer to a query (Cur-
tis et al., 2005), (Girju, 2003), (Moldovan and Rus,

2001). In Information Extraction, it can similarly
help to recognize relations between named entities
in cases when the entities in the text are linked by
a linguistic construction that entails a known extrac-
tion pattern, but not by the pattern itself. A lexical
entailment resource can contribute to information re-
trieval tasks via integration into a textual entailment
system that aims to recognize entailment between
two larger text fragments (Dagan et al., 2005).

Since entailment is known to systematically inter-
act with the discourse organization of text (Hobbs,
1985), an entailment resource can be of interest to
tasks that deal with structuring a set of individual
facts into coherent text. In Natural Language Gener-
ation (Reiter and Dale, 2000) and Multi-Document
Summarization (Barzilay et al., 2002) it can be used
to order sentences coming from multiple, possibly
unrelated sources to produce a coherent document.
The knowledge is essential for compiling answers
for procedural questions in a QA system, when sen-
tences containing relevant information are spread
across the corpus (Curtis et al., 2005).

The present paper is concerned with the prob-
lem of automatic acquisition of verb entailment from
text. In the next section we set the background
for the study by describing previous work. We
then define the goal of the study and describe our
method for verb entailment acquisition. After that
we present results of its experimental evaluation. Fi-
nally, we draw conclusions and outline future work.

2 Previous Work

The task of verb entailment acquisition appears to
have much in common with that of paraphrase ac-
quisition (Lin and Pantel, 2001), (Pang et al., 2003),
(Szpektor et al., 2004). In both tasks the goal is
to discover pairs of related verbs and identify map-

49

pings between their argument structures. The impor-
tant distinction is that while in a paraphrase the two
verbs are semantically equivalent, entailment is a di-
rectional, or asymmetric, relation: one verb entails
the other, but the converse does not hold. For ex-
ample, the verbsbuyandpurchaseparaphrase each
other: either of them can substitute its counterpart in
most contexts without altering their meaning. The
verbbuyentailsownso thatbuycan be replaced with
own without introducing any contradicting content
into the original sentence. Replacingownwith buy,
however, does convey new meaning.

To account for the asymmetric character of entail-
ment, a popular approach has been to use lexico-
syntactic patterns indicative of entailment. In
(Chklovski and Pantel, 2004) different types of se-
mantic relations between verbs are discovered us-
ing surface patterns (like “X-ed by Y-ing” for en-
ablement1, which would match “obtained by bor-
rowing”, for example) and assessing the strength
of asymmetric relations as mutual information be-
tween the two verbs. (Torisawa, 2003) collected
pairs of coordinated verbs, i.e. matching patterns
like “X-ed and Y-ed”, and then estimated the prob-
ability of entailment using corpus counts. (Inui
et al., 2003) used a similar approach exploiting
causative expressions such asbecause, though, and
so. (Girju, 2003) extracted causal relations between
nouns like “Earthquakes generate tsunami” by first
using lexico-syntactic patterns to collect relevant
data and then using a decision tree classifier to learn
the relations. Although these techniques have been
shown to achieve high precision, their reliance on
surface patterns limits their coverage in that they ad-
dress only those relations that are regularly made
explicit through concrete natural language expres-
sions, and only within sentences.

The method for noun entailment acquisition by
(Geffet and Dagan, 2005) is based on the idea of dis-
tributional inclusion, according to which one noun
is entailed by the other if the set of occurrence con-
texts of the former subsumes that of the latter. How-
ever, this approach is likely to pick only a particular
kind of verb entailment, that of troponymy (such as

1In (Chklovski and Pantel, 2004) enablement is defined to
be a relation where one event often, but not necessarily always,
gives rise to the other event, which coincides with our definition
of entailment (see Section 3).

march-walk) and overlook pairs where there is little
overlap in the occurrence patterns between the two
verbs.

In tasks involving recognition of relations be-
tween entities such as Question Answering and In-
formation Extraction, it is crucial to encode the
mapping between the argument structures of two
verbs. Pattern-matching often imposes restrictions
on the syntactic configurations in which the verbs
can appear in the corpus: the patterns employed by
(Chklovski and Pantel, 2004) and (Torisawa, 2003)
derive pairs of only those verbs that have identical
argument structures, and often only those that in-
volve a subject and a direct object. The method
for discovery of inference rules by (Lin and Pantel,
2001) obtains pairs of verbs with highly varied argu-
ment structures, which also do not have to be iden-
tical for the two verbs. While the inference rules
the method acquires seem to encompass pairs re-
lated by entailment, these pairs are not distinguished
from paraphrases and the direction of relation in
such pairs is not recognized.

To sum up, a major challenge in entailment ac-
quisition is the need for more generic methods that
would cover an unrestricted range of entailment
types and learn the mapping between verbs with
varied argument structures, eventually yielding re-
sources suitable for robust large-scale applications.

3 Verb Entailment

Verb entailment relations have been traditionally at-
tracting a lot of interest from lexical semantics re-
search and their various typologies have been pro-
posed (see, e.g., (Fellbaum, 1998)). In this study,
with the view of potential practical applications, we
adopt an operational definition of entailment. We
define it to be a semantic relation between verbs
where one verb, termed premiseP , refers to event
Ep and at the same time implies eventEq, typically
denoted by the other verb, termed consequenceQ.

The goal of verb entailment acquisition is then
to find two linguistic templates each consisting of
a verb and slots for its syntactic arguments. In the
pair, (1) the verbs are related in accordance with
our definition of entailment above, (2) there is a
mapping between the slots of the two templates and
(3) the direction of entailment is indicated explic-

50

itly. For example, in the template pair “buy(obj:X)
⇒ belong(subj:X)” the operator⇒ specifies that the
premisebuy entails the consequencebelong, andX
indicates a mapping between the object ofbuy and
the subject ofbelong, as in The company bought
shares. - The shares belong to the company.

As opposed to logical entailment, we do not re-
quire that verb entailment holds in all conceivable
contexts and view it as a relation that may be more
plausible in some contexts than others. For each
verb pair, we therefore wish to assign a score quan-
tifying the likelihood of its satisfying entailment in
some random context.

4 Approach

The key assumption behind our approach is that the
ability of a verb to imply an event typically denoted
by a different verb manifests itself in the regular co-
occurrence of the two verbs inside locally coherent
text. This assumption is not arbitrary: as discourse
investigations show (Asher and Lascarides, 2003),
(Hobbs, 1985), lexical entailment plays an impor-
tant role in determining the local structure of dis-
course. We expect this co-occurrence regularity to
be equally characteristic of any pair of verbs related
by entailment, regardless of is type and the syntactic
behavior of verbs.

The method consists of three major steps. First,
it identifies pairs of clauses that are related in the
local discourse. From related clauses, it then cre-
ates templates by extracting pairs of verbs along
with relevant information as to their syntactic be-
havior. Third, the method scores each verb pair
in terms of plausibility of entailment by measuring
how strongly the premise signals the appearance of
the consequence inside the text segment at hand. In
the following sections, we describe these steps in
more detail.

4.1 Identifying discourse-related clauses

We attempt to capture local discourse relatedness
between clauses by a combination of several surface
cues. In doing so, we do not build a full discourse
representation of text, nor do we try to identify the
type of particular rhetorical relations between sen-
tences, but rather identify pairs of clauses that are
likely to be discourse-related.

Textual proximity . We start by parsing the cor-
pus with a dependency parser (we use Connexor’s
FDG (Tapanainen and Järvinen, 1997)), treating
every verb with its dependent constituents as a
clause. For two clauses to be discourse-related, we
require that they appear close to each other in the
text. Adjacency of sentences has been previously
used to model local coherence (Lapata, 2003). To
capture related clauses within larger text fragments,
we experiment with windows of text of various sizes
around a clause.

Paragraph boundaries. Since locally related
sentences tend to be grouped into paragraphs, we
further require that the two clauses appear within the
same paragraph.

Common event participant. Entity-based theo-
ries of discourse (e.g., (Grosz et al., 1995)) claim
that a coherent text segment tends to focus on a
specific entity. This intuition has been formalized
by (Barzilay and Lapata, 2005), who developed an
entity-based statistical representation of local dis-
course and showed its usefulness for estimating co-
herence between sentences. We also impose this as
a criterion for two clauses to be discourse-related:
their arguments need to refer to the same participant,
henceforth,anchor. We identify the anchor as the
same noun lemma appearing as an argument to the
verbs in both clauses, considering only subject, ob-
ject, and prepositional object arguments. The anchor
must not be a pronoun, since identical pronouns may
refer to different entities and making use of such cor-
respondences is likely to introduce noise.

4.2 Creating templates

Once relevant clauses have been identified, we cre-
ate pairs of syntactic templates, each consisting of a
verb and the label specifying the syntactic role the
anchor occupies near the verb. For example, given
a pair of clausesMary bought a house.and The
house belongs to Mary., the method will extract two
pairs of templates:{buy(obj:X), belong(subj:X)}
and{buy(subj:X), belong(to:X).}

Before templates are constructed, we automati-
cally convert complex sentence parses to simpler,
but semantically equivalent ones so as to increase
the amount of usable data and reduce noise:

• Passive constructions are turned into active

51

ones:X was bought by Y – Y bought X;

• Phrases with coordinated nouns and verbs are
decomposed:X bought A and B – X bought A,
X bought B; X bought and sold A – X bought A,
X sold A.

• Phrases with past and present participles are
turned into predicate structures:the group led
by A – A leads the group; the group leading the
market – the group leads the market.

The output of this step isV ∈ P ×Q, a set of pairs
of templates{p, q}, wherep ∈ P is the premise,
consisting of the verbvp andrp – the syntactic re-
lation betweenvp and the anchor, andq ∈ Q is the
consequence, consisting of the verbvq andrq – its
syntactic relation to the anchor.

4.3 Measuring asymmetric association

To score the pairs for asymmetric association, we
use a procedure similar to the method by (Resnik,
1993) for learning selectional preferences of verbs.

Each template in a pair is tried as both a premise
and a consequence. We quantify the ’preference’
of the premisep for the consequenceq as the con-
tribution of q to the amount of informationp con-
tains about its consequences seen in the data. First,
we calculate Kullback-Leibler Divergence (Cover.
and Thomas, 1991) between two probability distrib-
utions,u – the prior distribution of all consequences
in the data andw – their posterior distribution given
p, thus measuring the informationp contains about
its consequences:

Dp(u||w) =
∑
n

u(x) log
u(x)
w(x)

(1)

whereu(x) = P (qx|p), w(x) = P (qx), andx ranges
over all consequences in the data. Then, the score for
template{p, q} expressing the association ofq with
p is calculated as the proportion ofq’s contribution
to Dp(u||w):

Score(p, q) = P (q|p) log
P (q|p)
P (p)

Dp(u||w)−1 (2)

In each pair we compare the scores in both di-
rections, taking the direction with the greater score
to indicate the most likely premise and consequence
and thus the direction of entailment.

5 Evaluation Design

5.1 Task

To evaluate the algorithm, we designed a recognition
task similar to that of pseudo-word disambiguation
(Scḧutze, 1992), (Dagan et al., 1999). The task was,
given a certain premise, to select its correct conse-
quence out of a pool with several artificially created
incorrect alternatives.

The advantages of this evaluation technique are
twofold. On the one hand, the task mimics many
possible practical applications of the entailment re-
source, such as sentence ordering, where, given a
sentence, it is necessary to identify among several
alternatives another sentence that either entails or is
entailed by the given sentence. On the other hand,
in comparison with manual evaluation of the direct
output of the system, it requires minimal human in-
volvement and makes it possible to conduct large-
scale experiments.

5.2 Data

The experimental material was created from the
BLLIP corpus, a collection of texts from the Wall
Street Journal (years 1987-89). We chose 15 tran-
sitive verbs with the greatest corpus frequency and
used a pilot run of our method to extract 1000
highest-scoring template pairs involving these verbs
as a premise. From them, we manually selected 129
template pairs that satisfied entailment.

For each of the 129 template pairs, four false con-
sequences were created. This was done by randomly
picking verbs with frequency comparable to that of
the verb of the correct consequence. A list of parsed
clauses from the BLLIP corpus was consulted to se-
lect the most typical syntactic configuration of each
of the four false verbs. The resulting five template
pairs, presented in a random order, constituted a test
item. Figure 1 illustrates such a test item.

The entailment acquisition method was evaluated
on entailment templates acquired from the British
National Corpus. Even though the two corpora are
quite different in style, we assume that the evalua-
tion allows conclusions to be drawn as to the relative
quality of performance of the methods under consid-
eration.

52

1* buy(subj:X,obj:Y) ⇒own(subj:X,obj:Y)

2 buy(subj:X,obj:Y) ⇒approve(subj:X,obj:Y)

3 buy(subj:X,obj:Y) ⇒reach(subj:X,obj:Y)

4 buy(subj:X,obj:Y) ⇒decline(subj:X,obj:Y)

5 buy(subj:X,obj:Y) ⇒compare(obj:X,with:Y)

Figure 1: An item from the test dataset. The tem-
plate pair with the correct consequence is marked
by an asterisk.

5.3 Recognition algorithm

During evaluation, we tested the ability of the
method to select the correct consequence among the
five alternatives. Our entailment acquisition method
generates association scores for one-slot templates.
In order to score the double-slot templates in the
evaluation material, we used the following proce-
dure.

Given a double-slot template, we divide it into
two single-slot ones such that matching arguments
of the two verbs along with the verbs themselves
constitute a separate template. For example, “buy
(subj:X, obj:Y) ⇒ own (subj:X, obj:Y)” will be de-
composed into “buy (subj:X) ⇒ own (subj:X)” and
“buy (obj:Y) ⇒ own (obj:Y)”. The scores of these
two templates are then looked up in the generated
database and averaged. In each test item, the five
alternatives are scored in this manner and the one
with the highest score was chosen as containing the
correct consequence.

The performance was measured in terms of accu-
racy, i.e. as the ratio of correct choices to the total
number of test items. Ties, i.e. cases when the cor-
rect consequence was assigned the same score as one
or more incorrect ones, contributed to the final accu-
racy measure proportionate to the number of tying
alternatives.

This experimental design corresponds to a ran-
dom baseline of 0.2, i.e. the expected accuracy when
selecting a consequence template randomly out of 5
alternatives.

6 Results and Discussion

We now present the results of the evaluation of the
method. In Section 6.1, we study its parameters and
determine the best configuration. In Section 6.2, we
compare its performance against that of human sub-

jects as well as that of two state-of-the-art lexical re-
sources: the verb entailment knowledge contained in
WordNet2.0 and the inference rules from the DIRT
database (Lin and Pantel, 2001).

6.1 Model parameters

We first examined the following parameters of the
model: the window size, the use of paragraph
boundaries, and the effect of the shared anchor on
the quality of the model.

6.1.1 Window size and paragraph boundaries

As was mentioned in Section 4.1, a free parame-
ter in our model is a threshold on the distance be-
tween two clauses, that we take as an indicator that
the clauses are discourse-related. To find an opti-
mal threshold, we experimented with windows of
1, 2 ... 25 clauses around a given clause, taking
clauses appearing within the window as potentially
related to the given one. We also looked at the ef-
fect paragraph boundaries have on the identification
of related clauses. Figure 2 shows two curves de-
picting the accuracy of the method as a function of
the window size: the first one describes performance
when paragraph boundaries are taken into account
(PAR) and the second one when they are ignored
(NOPAR).

Figure 2: Accuracy of the algorithm as a function
of window size, with and without paragraph bound-
aries used for delineating coherent text.

One can see that both curves rise fairly steeply up
to window size of around 7, indicating that many en-
tailment pairs are discovered when the two clauses
appear close to each other. The rise is the steepest

53

between windows of 1 and 3, suggesting that entail-
ment relations are most often explicated in clauses
appearing very close to each other.

PARreaches its maximum at the window of 15,
where it levels off. Considering that 88% of para-
graphs in BNC contain 15 clauses or less, we take
this as an indication that a segment of text where
both a premise and its consequence are likely to be
found indeed roughly corresponds to a paragraph.
NOPAR’s maximum is at 10, then the accuracy
starts to decrease, suggesting that evidence found
deeper inside other paragraphs is misleading to our
model.

NOPAR performs consistently better thanPAR
until it reaches its peak, i.e. when the window size is
less than 10. This seems to suggest that several ini-
tial and final clauses of adjacent paragraphs are also
likely to contain information useful to the model.

We tested the difference between the maxima
of PAR and NOPAR using the sign test, the non-
parametric equivalent of the paired t-test. The test
did not reveal any significance in the difference be-
tween their accuracies (6-, 7+, 116 ties: p = 1.000).

6.1.2 Common anchor

We further examined how the criterion of the
common anchor influenced the quality of the model.
We compared this model (ANCHOR) against the one
that did not require that two clauses share an anchor
(NOANCHOR), i.e. considering only co-occurrence
of verbs concatenated with specific syntactic role la-
bels. Additionally, we included into the experiment
a model that looked at plain verbs co-occurring in-
side a context window (PLAIN). Figure 3 compares
the performance of these three models (paragraph
boundaries were taken into account in all of them).

Compared withANCHOR, the other two models
achieve considerably worse accuracy scores. The
differences between the maximum ofANCHORand
those of the other models are significant according
to the sign test (ANCHORvs NOANCHOR: 44+, 8-,
77 ties: p< 0.001;ANCHORvs PLAIN : 44+, 10-,
75 ties: p< 0.001). Their maxima are also reached
sooner (at the window of 7) and thereafter their per-
formance quickly degrades. This indicates that the
common anchor criterion is very useful, especially
for locating related clauses at larger distances in the
text.

Figure 3: The effect of the common anchor on the
accuracy of the method.

The accuracy scores forNOANCHORandPLAIN
are very similar across all the window size settings.
It appears that the consistent co-occurrence of spe-
cific syntactic labels on two verbs gives no addi-
tional evidence about the verbs being related.

6.2 Human evaluation

Once the best parameter settings for the method
were found, we compared its performance against
human judges as well as theDIRT inference rules
and the verb entailment encoded in the WordNet 2.0
database.

Human judges. To elicit human judgments on
the evaluation data, we automatically converted the
templates into a natural language form using a num-
ber of simple rules to arrange words in the correct
grammatical order. In cases where an obligatory
syntactic position near a verb was missing, we sup-
plied the pronounssomeoneor somethingin that po-
sition. In each template pair, the premise was turned
into a statement, and the consequence into a ques-
tion. Figure 4 illustrates the result of converting the
test item from the previous example (Figure 1) into
the natural language form.

During the experiment, two judges were asked
to mark those statement-question pairs in each test
item, where, considering the statement, they could
answer the question affirmatively. The judges’ deci-
sions coincided in 95 of 129 test items. The Kappa
statistic isκ=0.725, which provides some indication
about the upper bound of performance on this task.

54

X bought Y. After that:

1* Did X own Y?

2 Did X approve Y?

3 Did X reach Y?

4 Did X decline Y?

5 Did someone compare X with Y?

Figure 4: A test item from the test dataset. The cor-
rect consequence is marked by an asterisk.

DIRT . We also experimented with the inference
rules contained in the DIRT database (Lin and Pan-
tel, 2001). According to (Lin and Pantel, 2001), an
inference rule is a relation between two verbs which
are more loosely related than typical paraphrases,
but nonetheless can be useful for performing infer-
ences over natural language texts. We were inter-
ested to see how these inference rules perform on
the entailment recognition task.

For each dependency tree path (a graph linking a
verb with two slots for its arguments), DIRT con-
tains a list of the most similar tree paths along with
the similarity scores. To decide which is the most
likely consequence in each test item, we looked up
the DIRT database for the corresponding two depen-
dency tree paths. The template pair with the greatest
similarity was output as the correct answer.

WordNet. WordNet 2.0 contains manually en-
coded entailment relations between verb synsets,
which are labeled as “cause”, “troponymy”, or “en-
tailment”. To identify the template pair satisfying
entailment in a test item, we checked whether the
two verbs in each pair are linked in WordNet in
terms of one of these three labels. Because Word-
Net does not encode the information as to the rela-
tive plausibility of relations, all template pairs where
verbs were linked in WordNet, were output as cor-
rect answers.

Figure 5 describes the accuracy scores achieved
by our entailment acquisition algorithm, the two hu-
man judges, DIRT and WordNet. For comparison
purposes, the random baseline is also shown.

Our algorithm outperformed WordNet by 0.38
and DIRT by 0.15. The improvement is significant
vs. WordNet (73+, 27-, 29 ties: p<0.001) as well as
vs. DIRT (37+, 20-, 72 ties: p=0.034).

We examined whether the improvement on DIRT
was due to the fact that DIRT had less extensive

Figure 5: A comparison of performance of the
proposed algorithm, WordNet, DIRT, two human
judges, and a random baseline.

coverage, encoding only verb pairs with similarity
above a certain threshold. We re-computed the ac-
curacy scores for the two methods, ignoring cases
where DIRT did not make any decision, i.e. where
the database contained none of the five verb pairs
of the test item. On the resulting 102 items, our
method was again at an advantage, 0.735 vs. 0.647,
but the significance of the difference could not be
established (21+, 12-, 69 ties: p=0.164).

The difference in the performance between our al-
gorithm and the human judges is quite large (0.103
vs. Judge 1 and 0.088 vs Judge 2), but significance
to the 0.05 level could not be found (vs. Judge 1:
17-, 29+, 83 ties: p=0.105; vs. Judge 2: 15-, 27+,
ties 87: p=0.09).

7 Conclusion

In this paper we proposed a novel method for au-
tomatic discovery of verb entailment relations from
text, a problem that is of potential benefit for many
NLP applications. The central assumption behind
the method is that verb entailment relations mani-
fest themselves in the regular co-occurrence of two
verbs inside locally coherent text. Our evaluation
has shown that this assumption provides a promis-
ing approach for discovery of verb entailment. The
method achieves good performance, demonstrating
a closer approximation to the human performance
than inference rules, constructed on the basis of dis-
tributional similarity between paths in parse trees.

A promising direction along which this work

55

can be extended is the augmentation of the current
algorithm with techniques for coreference reso-
lution. Coreference, nominal and pronominal, is
an important aspect of the linguistic realization of
local discourse structure, which our model did not
take into account. As the experimental evaluation
suggests, many verbs related by entailment occur
close to one another in the text. It is very likely that
many common event participants appearing in such
proximity are referred to by coreferential expres-
sions, and therefore noticeable improvement can
be expected from applying coreference resolution
to the corpus prior to learning entailment patterns
from it.

Acknowledgements

We are grateful to Nikiforos Karamanis and Mirella Lapata
as well as three anonymous reviewers for valuable comments
and suggestions. We thank Patrick Pantel and Dekang Lin for
making the DIRT database available for this study.

References
N. Asher and A. Lascarides. 2003.Logics of Conversation.

Cambridge University Press.

R. Barzilay and M. Lapata. 2005. Modeling local coherence:
an entity-based approach. InProceedings of the 43rd An-
nual Meeting of the Association for Computational Linguis-
tics (ACL’05), pages 141–148.

R. Barzilay, N. Elhadad, and K. McKeown. 2002. Inferring
strategies for sentence ordering in multidocument summa-
rization. JAIR.

T. Chklovski and P. Pantel. 2004.VERBOCEAN: Mining the
web for fine-grained semantic verb relations. InIn Proceed-
ings of Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP’04).

T.M. Cover. and J.A. Thomas. 1991.Elements of Information
Theory. Wiley-Interscience.

J. Curtis, G. Matthews, and D. Baxter. 2005. On the effective
use of cyc in a question answering system. InProceedings
the IJCAI’05 Workshop on Knowledge and Reasoning for
Answering Questions.

I. Dagan, L. Lee, and F. Pereira. 1999. Similarity-based mod-
els of cooccurrence probabilities.Machine Learning, 34(1-
3):43–69.

I. Dagan, O. Glickman, and B. Magnini. 2005. The pascal
recognising textual entailment challenge. InPASCAL Chal-
lenges Workshop on Recognising Textual Entailment.

C. Fellbaum, 1998.WordNet: An Electronic Lexical Database,
chapter Semantic network of English verbs. MIT Press.

M. Geffet and I. Dagan. 2005. The distributional inclusion hy-
potheses and lexical entailment. InProceedings of the 43rd
Annual Meeting of the Association for Computational Lin-
guistics (ACL’05), pages 107–114.

R. Girju. 2003. Automatic detection of causal relations for
question answering. InProceedings of the ACL’03 Work-
shop on ”Multilingual Summarization and Question Answer-
ing - Machine Learning and Beyond”.

B. Grosz, A. Joshi, and S.Weinstein. 1995. Centering : a frame-
work for modeling the local coherence of discourse.Com-
putational Linguistics, 21(2):203–225.

J.R. Hobbs. 1985. On the coherence and structure of discourse.
Technical Report CSLI-85-37, Center for the Study of Lan-
guage and Information.

T. Inui, K.Inui, and Y.Matsumoto. 2003. What kinds and
amounts of causal knowledge can be acquired from text by
using connective markers as clues? InProceedings of the
6th International Conference on Discovery Science, pages
180–193.

M. Lapata. 2003. Probabilistic text structuring: experiments
with sentence ordering. InProceedings of the 41rd Annual
Meeting of the Association for Computational Linguistics
(ACL’03), pages 545–552.

D. Lin and P. Pantel. 2001. Discovery of inference rules
for question answering. Natural Language Engineering,
7(4):343–360.

D. Moldovan and V. Rus. 2001. Logic form transformation
of WordNet and its applicability to question answering. In
Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics (ACL’01).

B. Pang, K. Knight, and D. Marcu. 2003. Syntax-based
alignment of multiple translations: extracting paraphrases
and generating new sentences. InProceedings of HLT-
NAACL’2003.

E. Reiter and R. Dale. 2000.Building Natural Language Gen-
eration Systems. Cambidge University Press.

P. Resnik. 1993.Selection and Information: A Class-Based
Approach to Lexical Relationships. Ph.D. thesis, University
of Pennsylvania.

H. Scḧutze. 1992. Context space. InFall Symposium on Prob-
abilistic Approaches to Natural Language, pages 113–120.

I. Szpektor, H. Tanev, I. Dagan, and B. Coppola. 2004. Scaling
web-based acquisition of entailment relations. InProceed-
ings of Empirical Methods in Natural Language Processing
(EMNLP’04).

P. Tapanainen and T. Järvinen. 1997. A non-projective depen-
dency parser. InProceedings of the 5th Conference on Ap-
plied Natural Language Processing, pages 64–71.

K. Torisawa, 2003. Questions and Answers: Theoretical
and Applied Perspectives, chapter An unsupervised learning
method for commonsensical inference rules on events. Uni-
versity of Utrecht.

56

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 57–64,
New York, June 2006.c©2006 Association for Computational Linguistics

Acquiring Inference Rules with Temporal Constraints
by Using Japanese Coordinated Sentences and Noun-Verb Co-occurrences

Kentaro Torisawa
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi-shi, Ishikawa-ken, 923-1211 JAPAN
torisawa@jaist.ac.jp

Abstract

This paper shows that inference rules with

temporal constraints can be acquired by us-

ing verb-verb co-occurrences in Japanese

coordinated sentences and verb-noun co-

occurrences. For example, our unsuper-

vised acquisition method could obtain the

inference rule �If someone enforces a law,

usually someone enacts the law at the same

time as or before the enforcing of the

law� since the verbs �enact� and �enforce�

frequently co-occurred in coordinated sen-

tences and the verbs also frequently co-

occurred with the noun �law�. We also

show that the accuracy of the acquisition

is improved by using the occurrence fre-

quency of a single verb, which we assume

indicates how generic the meaning of the

verb is.

1 Introduction

Our goal is to develop an unsupervised method for

acquiring inference rules that describe logical impli-

cations between event occurrences. As clues to Þnd

the rules, we chose Japanese coordinated sentences,

which typically report two events that occur in a cer-

tain temporal order. Of course, not every coordi-

nated sentence necessarily expresses implications. We

found, though, that reliable rules can be acquired by

looking at co-occurrence frequencies between verbs

in coordinated sentences and co-occurrences between

verbs and nouns. For example, our method could ob-

tain the rule �If someone enforces a law, usually some-

one enacts the law at the same time as or before the

enforcing of the law�. In our experiments, when our

method produced 400 rules for 1,000 given nouns,

70% of the rules were considered proper by at least

three of four human judges.

Note that the acquired inference rules pose tempo-

ral constraints on occurrences of the events described

in the rules. In the �enacting-and-enforcing-law� ex-

ample, the constraints were expressed by the phrase

�at the same time as or before the event of�. We think

such temporally constrained rules should be beneÞcial

in various types of NLP applications. The rules should

allow Q&A systems to guess or restrict the time at

which a certain event occurs even if they cannot di-

rectly Þnd the time in given documents. In addition,

we found that a large part of the acquired rules can be

regarded as paraphrases, and many possible applica-

tions of paraphrases should also be target applications.

To acquire rules, our method uses a score, which is

basically an approximation of the probability that par-

ticular coordinated sentences will be observed. How-

ever, it is weighted by a bias, which embodies our as-

sumption that frequently observed verbs are likely to

appear as the consequence of a proper inference rule.

This is based on our intuition that frequently appear-

ing verbs have a generic meaning and tend to describe

a wide range of situations, and that natural language

expressions referring to a wide range of situations are

more likely to be a consequence of a proper rule than

speciÞc expressions describing only a narrow range of

events. A similar idea relying on word co-occurrence

was proposed by Geffet and Dagan (Geffet and Da-

gan, 2005) but our method is simpler and we expect it

to be applicable to a wider range of vocabularies.

Research on the automatic acquisition of inference

rules, paraphrases and entailments has received much

attention. Previous attempts have used, for instance,

the similarities between case frames (Lin and Pan-

57

tel, 2001), anchor words (Barzilay and Lee, 2003;

Shinyama et al., 2002; Szepektor et al., 2004), and a

web-based method (Szepektor et al., 2004; Geffet and

Dagan, 2005). There is also a workshop devoted to

this task (Dagan et al., 2005). The obtained accuracies

have still been low, however, and we think searching

for other clues, such as coordinated sentences and the

bias we have just mentioned, is necessary. In addition,

research has also been done on the acquisition of the

temporal relations (Fujiki et al., 2003; Chklovski and

Pantel, 2004) by using coordinated sentences as we

did, but these works did not consider the implications

between events.

2 Algorithm with a SimpliÞed Score

In the following, we begin by providing an overview

of our algorithm. We specify the basic steps in the al-

gorithm and the form of the rules to be acquired. We

also examine the direction of implications and tempo-

ral ordering described by the rules. After that, we de-

scribe a simpliÞed version of the scoring function that

our algorithm uses and then discuss a problem related

to it. The bias mechanism, which we mentioned in the

introduction, is described in the section after that.

2.1 Procedure and Generated Inference Rules

Our algorithm is given a noun as its input and pro-

duces a set of inference rules. A produced rule ex-

presses an implication relation between two descrip-

tions including the noun. Our basic assumptions for

the acquisition can be stated as follows.

• If verbs v1 and v2 frequently co-occur in coordi-

nated sentences, the verbs refer to two events that

actually frequently co-occur in the real world,

and a sentence including v1 and another sentence

including v2 are good candidates to be descrip-

tions that have an implication relation and a par-

ticular temporal order between them.

• The above tendency becomes stronger when the
verbs frequently co-occur with a given noun n;

i.e., if v1 and v2 frequently co-occur in coordi-

nated sentences and the verbs also frequently co-

occur with a noun n, a sentence including v1 and

n and another sentence including v2 and n are

good candidates to be descriptions that have an

implication relation between them.

Our procedure consists of the following steps.

Step 1 Select M verbs that take a given noun n as

their argument most frequently.

Step 2 For each possible pair of the selected verbs,

compute the value of a scoring function that em-

bodies our assumptions, and select the N verb

pairs that have the largest score values. Note

that we exclude the combination of the same verb

from the pairs to be considered.

Step 3 If the score value for a verb pair is higher than

a threshold θ and the verbs take n as their syntac-

tic objects, generate an inference rule from the

verb pair and the noun.

Note that we used 500 as the value of M . N was set

to 4 and θ was set to various values during our ex-

periments. Another important point is that, in Step 3,

the argument positions at which the given noun can

appear is restricted to syntactic objects. This was be-

cause we empirically found that the rules generated

from such verb-noun pairs were relatively accurate.

Assume that a given noun is �goods� and the verb

pair �sell� and �manufacture� is selected in Step 3.

Then, the following rule is generated.

• If someone sells goods, usually someone manu-
factures the goods at the same time as or before

the event of the selling of the goods.

Although the word �someone� occurs twice, we do

not demand that it refers to the same person in both

instances. It just works as a placeholder. Also note

that the adverb �usually�1 was inserted to prevent the

rule from being regarded as invalid by considering sit-

uations that are logically possible but unlikely in prac-

tice.

The above rule is produced when �manufacture�

and �sell� frequently co-occur in coordinated sen-

tences such as �The company manufactured goods

and it sold them�. One might be puzzled because the

order of the occurrences of the verbs in the coordi-

nated sentences is reversed in the rule. The verb �sell�

in the second (embedded) sentence/clause in the coor-

dinated sentence appears as a verb in the precondition

of the rule, while �manufacture� in the Þrst (embed-

ded) sentence/clause is the verb in the consequence.

A question then, is why we chose such an order,

or such a direction of implication. There is another

possibility, which might seem more straightforward.

From the same coordinated sentences, we could pro-

duce the rule where the direction is reversed; i.e,., �If

someone manufactures goods, usually someone sells

1We used �futsuu� as a Japanese translation.

58

the goods at the same time as or after the manufactur-

ing�. The difference is that the rules generated by our

procedure basically infer a past event from another

event, while the rules with the opposite direction have

to predict a future event. In experiments using our de-

velopment set, we observed that the rules predicting

future events were often unacceptable because of the

uncertainty that we usually encounter in predicting the

future or achieving a future goal. For instance, peo-

ple might do something (e.g., manufacturing) with an

intention to achieve some other goal (e.g., selling) in

the future. But they sometimes fail to achieve their fu-

ture goal for some reason. Some manufactured goods

are never sold because, for instance, they are not good

enough. In our experiments, we found that the preci-

sion rates of the rules with the direction we adopted

were much higher than those of the rules with the op-

posite direction.

2.2 SimpliÞed Scoring Function

To be precise, a rule generated by our method has the

following form, where vpre and vcon are verbs and n

is a given noun.

• If someone vpre n, usually someone vcon the n at

the same time as or before the vpre-ing of the n.

We assume that all three occurrences of noun n in the

rule refer to the same entity.
Now, we deÞne a simpliÞed version of our scoring

function as follows.

BasicS(n, vcon, vpre, arg, arg′) =
Pcoord(vcon, vpre)Parg′(n|vpre)Parg(n|vcon)/P (n)2

Here, Pcoord(vcon, vpre) is the probability that vcon

and vpre are observed in coordinated sentences in a

way that the event described by vcon temporally pre-

cedes or occurs at the same time as the event de-

scribed by vpre. (More precisely, vcon and vpre must

be the main verbs of two conjuncts S1 and S2 in a

Japanese coordinated sentence that is literally trans-

lated to the form �S1 and S2�.) This means that in

the coordinated sentences, vcon appears Þrst and vpre

second. Parg′(n|vpre) and Parg(n|vcon) are the condi-
tional probabilities that n occupies the argument posi-

tions arg′ of vpre and arg of vcon, respectively. At the

beginning, as possible argument positions, we speci-

Þed Þve argument positions, including the syntactic

object and the subject. Note that when vpre and vcon

frequently co-occur in coordinated sentences and n

often becomes arguments of vpre and vcon, the score

has a large value. This means that the score embodies

our assumptions for acquiring rules.

The term Pcoord(vcon, vpre)Parg′(n|vpre)Parg(n|vcon) in

BasicS is actually an approximation of the proba-

bility P (vpre, arg′, n, vcon, arg, n) that we will ob-
serve the coordinated sentences such that the two sen-

tences/clauses in the coordinated sentence are headed

by vpre and vcon and n occupies the argument posi-

tions arg′ of vpre and arg of vcon. Another important

point is that the score is divided by P (n)2. This is be-
cause the probabilities such as Parg(n|vcon) tend to be
large for a frequently observed noun n. The division

by P (n)2 is done to cancel such a tendency. This di-
vision does not affect the ranking for the same noun,

but, since we give a uniform threshold for selecting

the verb pairs for distinct nouns, such normalization

is desirable, as we conÞrmed in experiments using our

development set.

2.3 Paraphrases and Coordinated Sentences

Thus, we have deÞned our algorithm and a simpliÞed

scoring function. Now let us discuss a problem that is

caused by the scoring function.

As mentioned in the introduction, a large por-

tion of the acquired rules actually consists of para-

phrases. Here, by a paraphrase, we mean a rule con-

sisting of two descriptions referring to an identical

event. The following example is an English transla-

tion of such paraphrases obtained by our method. We

think this rule is acceptable. Note that we invented a

new English verb �clearly-write� as a translation of a

Japanese verb meiki-suruwhile �write� is a trans-

lation of another Japanese verb kaku.

• If someone clearly-writes a phone number, usu-
ally someone writes the phone number at the

same time as or before the clearly-writing of the

phone number.

Note that �clearly-write� and �write� have almost the

same meaning but the former is often used in texts

related to legal matters. Evidently, in the above rule,

�clearly-write� and �write� describe the same event,

and it can be seen as a paraphrase. There are two

types of coordinated sentence that our method can use

as clues to generate the rule.

• He clearly-wrote a phone number and wrote the
phone number.

• He clearly-wrote a phone number, and also wrote
an address.

The Þrst sentence is more similar to the inference

rule than the second in the sense that the two verbs

59

share the same object. However, it is ridiculous be-

cause it describes the same event twice. Such a sen-

tence is not observed frequently in corpora, and will

not be used as clues to generate rules in practice.

On the other hand, we frequently observe sen-

tences of the second type in corpora, and our method

generates the paraphrases from the verb-verb co-

occurrences taken from such sentences. However,

there is a mismatch between the sentence and the ac-

quired rule in the sense that the rule describes two

events related to the same object (i.e., a phone num-

ber), while the above sentence describes two events

that are related to distinct objects (i.e., a phone num-

ber and an address). Regarding this mismatch, two

questions need to be addressed.

The Þrst question is why our method can acquire

the rule despite the mismatch. The answer is that

our method obtains the verb-verb co-occurrence prob-

abilities (Pcoord(vcon, vpre)) and the verb-noun co-
occurrence probabilities (e.g., Parg(n|vcon)) indepen-
dently, and that the method does not check whether

the two verbs share an argument.

Then the next question is why our method can

acquire accurate paraphrases from such coordinated

sentences. Though we do not have a deÞnite answer

now, our hypothesis is related to the strategy that peo-

ple adopt in writing coordinated sentences. When two

similar but distinct events, which can be described by

the same verb, occur successively or at the same time,

people avoid repeating the same verb to describe the

two events in a single sentence. Instead they try to

use distinct verbs that have similar meanings. Sup-

pose that a person wrote his name and address. To

report what she did, she may write �I clearly-wrote

my name and also wrote my address� but will seldom

write �I clearly-wrote my name and also clearly-wrote

my address�. Thus, we can expect to be able to Þnd

in coordinated sentences a large number of verb pairs

consisting of two verbs with similar meanings. Note

that our method tends to produce two verbs that fre-

quently co-occur with a given noun. This also helps to

produce the inference rules consisting of two seman-

tically similar verbs.

3 Bias Mechanism

We now describe a bias used in our full scoring func-

tion, which signiÞcantly improves the precision. The

full scoring function is deÞned as

Score(n, vcon, vpre, arg, arg′) =
Parg(vcon)BasicS(n, vcon, vpre, arg, arg′).

The bias is denoted as Parg(vcon), which is the prob-
ability that we can observe the verb vcon, which is the

verb in the consequence of the rule, and its argument

position arg is occupied by a noun, no matter which

noun actually occupies the position.

An intuitive explanation of the assumption behind

this bias is that as the situation within which the de-

scription of the consequence in a rule is valid becomes

wider, the rule becomes more likely to be a proper

one. Consider the following rules.

• If someone demands a compensation payment,
someone orders the compensation payment.

• If someone demands a compensation payment,
someone requests the compensation payment.

We consider the Þrst rule to be unacceptable while the

second expresses a proper implication. The difference

is the situations in which the descriptions in the con-

sequences hold. In our view, the situations described

by �order� are more speciÞc than those referred to by

�request�. In other words, �order� holds in a smaller

range of situations than �request�. Requesting some-

thing can happen in any situations where there exists

someone who can demand something, but ordering

can occur only in a situations where someone in a par-

ticular social position can demand something. The ba-

sic assumption behind our bias is that rules with con-

sequences that can be valid in a wider range of situa-

tions, such as �requesting a compensation payment,�

are more likely to be proper ones than the rules with

consequences that hold in a smaller range of situa-

tions, such as �ordering a compensation payment�.

The bias Parg(vcon)was introduced to capture vari-
ations of the situations in which event descriptions are

valid. We assume that frequently observed verbs form

generic descriptions that can be valid within a wide

range of events, while less frequent verbs tend to de-

scribe events that can occur in a narrower range of sit-

uations and form more speciÞc descriptions than the

frequently observed verbs. Regarding the �request-

order� example, (a Japanese translation of) �request�

is observed more frequently than (a Japanese transla-

tion of) �order� in corpora and this observation is con-

sistent with our assumption. A similar idea by Geffet

and Dagan (Geffet and Dagan, 2005) was proposed

for capturing lexical entailment. The difference is that

they relied on word co-occurrences rather than the

frequency of words to measure the speciÞcity of the

semantic contents of lexical descriptions, and needed

Web search to avoid data sparseness in co-occurrence

60

statistics. On the other hand, our method needs only

simple occurrence probabilities of single verbs and we

expect our method to be applicable to wider vocabu-

lary than Geffet and Dagan�s method.

The following is a more mathematical justiÞcation

for the bias. According to the following discussion,

Parg(vcon) can be seen as a metric indicating how
easily we can establish an interpretation of the rule,

which is formalized as a mapping between events. In

our view, if we can establish the mapping easily, the

rule tends to be acceptable. The discussion starts from

a formalization of an interpretation of an inference

rule. Consider the rule �If exp1 occurs, usually exp2

occurs at the same time or before the occurrence of

exp1�, where exp1 and exp2 are natural language ex-

pressions referring to events. In the following, we call

such expressions event descriptions and distinguish

them from an actual event referred to by the expres-

sions. An actual event is called an event instance.
A possible interpretation of the rule is that, for any

event instance e1 that can be described by the event
description exp1 in the precondition of the rule, there
always exists an event instance e2 that can be de-
scribed by the event description exp2 in the conse-
quence and that occurs at the same time as or before
e1 occurs. Let us write e : exp if event instance e
can be described by event description exp. The above
interpretation can then be represented by the formula

Φ : ∃f(∀e1(e1 : exp1 → ∃e2(e2 = f(e1) ∧ e2 : exp2)).

Here, the mapping f represents a temporal relation

between events, and the formula e2 = f(e1) expresses
that e2 occurs at the same time as or before e1.

The bias Parg(vcon) can be considered (an approx-
imation of) a parameter required for computing the

probability that a mapping frandom satisÞes the re-

quirements for f in Φ when we randomly construct

frandom. The probability is denoted as P{e2 : exp2 ∧
e2 = frandom(e1)|e1 : exp1}

E1 where E1 denotes

the number of events describable by exp1. We as-

sume that the larger this probability is, the more eas-

ily we can establish f . We can approximate P{e2 :
exp2∧e2 = frandom(e1)|e1 : exp1} as P (exp2) by 1)
observing that the probabilistic variables e1 and e2 are

independent since frandom associates them in a com-

pletely random manner and by 2) assuming that the

occurrence probability of the event instances describ-

able by exp2 can be approximated by the probability

that exp2 is observed in text corpora. This means that

P (exp2) is one of the metrics indicating how easily

we can establish the mapping f in Φ.
Then, the next question is what kind of expressions

should be regarded as the event description exp2. A

primary candidate will be the whole sentence appear-

ing in the consequence part of the rule to be produced.

Since we specify only a verb vcon and its argument n

in the consequence in a rule, P (exp2) can be denoted
by Parg(n, vcon), which is the probability that we ob-
serve the expression such that vcon is a head verb and

n occupies an argument position arg of vcon. By mul-

tiplying this probability to BasicS as a bias, we ob-

tain the following scoring function.

Scorecooc(n, vcon, vpre, arg, arg′) =
Parg(n, vcon)BasicS(n, vcon, vpre, arg, arg′)

In our experiments, though, this score did not work

well. Since Parg(n, vcon) often has a small value, the
problem of data sparseness seems to arise. Then, we

used Parg(vcon), which denotes the probability of ob-
serving sentences that contain vcon and its argument

position arg, no matter which noun occupies arg, in-

stead of Parg(n, vcon). We multiplied the probability
to BasicS as a bias and obtained the following score,

which is actually the scoring function we propose.

Score(n, vcon, vpre, arg, arg′) =
Parg(vcon)BasicS(n, vcon, vpre, arg, arg′)

4 Experiments

4.1 Settings

We parsed 35 years of newspaper articles (Yomiuri

87-01, Mainichi 91-99, Nikkei 90-00, 3.24GB in to-

tal) and 92.6GB of HTML documents downloaded

from the WWW using an existing parser (Kanayama

et al., 2000) to obtain the word (co-occurrence) fre-

quencies. All the probabilities used in our method

were estimated by maximum likelihood estimation

from these frequencies. We randomly picked 600

nouns as a development set. We prepared three test

sets, namely test sets A, B, and C, which consisted of

100 nouns, 250 nouns and 1,000 nouns respectively.

Note that all the nouns in the test sets were randomly

picked and did not have any common items with the

development set. In all the experiments, four human

judges checked if each produced rule was a proper one

without knowing how each rule was produced.

4.2 Effects of Using Coordinated Sentences

In the Þrst series of experiments, we compared a

simpliÞed version of our scoring function BasicS

with some alternative scores. This was mainly

to check if coordinated sentences can improve

accuracy. The alternative scores we considered

61

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

P
re

c
is

io
n
 (

%
)

Number of inference rules

BasicS
S-VV
S-NV

MI
Conditional

Rand

Figure 1: Comparison with the alternatives (4 judges)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

P
re

c
is

io
n
 (

%
)

Number of inference rules

BasicS
S-VV
S-NV

MI
Conditional

Rand

Figure 2: Comparison with the alternatives (3 judges)

are presented below. Note that we did not test

our bias mechanism in this series of experiments.
S-V V (n, vcon, vpre, arg, arg′) =

Parg(n, vcon)Parg′(n, vpre)/P (n)2

S-NV (n, vcon, vpre) = Pcoord(vcon, vpre)
MI(n, vcon, vpre) = Pcoord(vcon, vpre)/(P (vcon)P (vpre))
Cond(n, vcon, vpre, arg, arg′)

= Pcoord(vcon, vpre, arg, arg′)Parg(n|vcon)Parg′(n|vpre)
/(Parg′(n, vpre)P (n))

Rand(n, vcon, vpre, arg, arg′) = random number

S-V V was obtained by approximating the proba-

bilities of coordinated sentences, as in the case of

BasicS. However, we assumed the occurrences of

two verbs were independent. The difference between

the performance of this score and that of BasicS

will indicate the effectiveness of using verb-verb

co-occurrences in coordinated sentences.

The second alternative, S-NV , simply ignores the

noun-verb co-occurrences in BasicS. MI is a score

based on mutual information and roughly corresponds

to the score used in a previous attempt to acquire tem-

poral relations between events (Chklovski and Pan-

tel, 2004). Cond is an approximation of the proba-

bility P (n, vcon|n, vpre); i.e., the conditional proba-

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
re

c
is

io
n
 (

%
)

Number of inference rules

BasicS
S-VV
S-NV

MI
Cond

Figure 3: Comparison with the alternatives (3 judges)

bility that the coordinated sentences consisting of n,

vcon and vpre are observed given the precondition part

consisting of vpre and n. Rand is a random number

and generates rules by combining verbs that co-occur

with the given n randomly. This was used as a base-

line method of our task

The resulting precisions are shown in Figures 1 and

2. The Þgure captions specify �(4 judges)�, as in Fig-

ure 1, when the acceptable rules included only those

regarded as proper by all four judges; the captions

specify �(3 judges)�, as in Figure 2, when the ac-

ceptable rules include those considered proper by at

least three of the four judges. We used test set A (100

nouns) and produced the top four rule candidates for

each noun according to each score. As the Þnal re-

sults, all the produced rules for all the nouns were

sorted according to each score, and a precision was

obtained for top N rules in the sorted list. This was

the same as the precision achieved by setting the score

value ofN -th rule in the sorted list as threshold θ. No-

tice that BasicS outperformed all the alternatives2 ,

though the difference between S-V V and BasicS

was rather small. Another important point is that the

precisions obtained with the scores that ignored noun-

verb co-occurrences were quite low. These Þndings

suggest that 1) coordinated sentences can be useful

clues for obtaining temporally constrained rules and

2) noun-verb co-occurrences are also important clues.

In the above experiments, we actually allowed noun

n to appear as argument types other than the syntac-

tic objects of a verb. When we restricted the argu-

2Actually, the experiments concerning Rand were conducted
considerably after the experiments on the other scores, and only
the two of the four judges for Rand were included in the judges
for other scores. However, we think that the superiority of our
score BasicS over the baseline method was conÞrmed since the
precision of Rand was drastically lower than that of BasicS

62

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350

P
re

c
is

io
n
 (

%
)

Number of inference rules

Proposed direction
Reversed

Figure 4: Two directions of implications (3 judges)

ment types to syntactic objects, as described in Sec-

tion 2, the precision shown in Figure 3 was obtained.

In most cases, BasicS outperformed the alternatives.

Although the number of produced rules was reduced

because of this restriction, the precision of all pro-

duced rules was improved. Because of this, we de-

cided to restrict the argument type to objects.

The kappa statistic for assessing the inter-rater

agreement was 0.53, which indicates moderate agree-

ment according to Landis and Koch, 1977. The kappa

value for only the judgments on rules produced by

BasicS rose to 0.59. After we restricted the verb-

noun co-occurrences to verb-object co-occurrences,

the kappa became 0.49, while that for the rules pro-

duced by BasicS was 0.543.

4.3 Direction of Implications

Next, we examined the directions of implications and

the temporal order between events. We produced

1,000 rules for test set B (250 nouns) using the score

BasicS, again without restricting the argument types

of given nouns to syntactic objects. When we re-

stricted the argument positions to objects, we obtained

347 rules. Then, from each generated rule, we created

a new rule having an opposite direction of implica-

tions. We swapped the precondition and the conse-

quence of the rule and reversed its temporal order. For

instance, we created �If someone enacts a law, usually

someone enforces the law at the same time as or after

the enacting of the law� from �If someone enforces a

law, usually someone enacts the law at the same time

as or before the enforcing of the law�.

Figure 4 shows the results. �Proposed direction�

3These kappa values were calculated for the results except for
the ones obtained by the score Rand, which were assessed by
different judges. The kappa for Rand was 0.33 (fair agreement).

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

P
re

c
is

io
n
 (

%
)

Number of inference rules

Score
reranked by Score

reranked by ScoreCooc
BasicS

reranked by PreBias

Figure 5: Effects of the bias (4 judges)

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

P
re

c
is

io
n
 (

%
)

Number of inference rules

Score
reranked by Score

reranked by ScoreCooc
BasicS

reranked by PreBias

Figure 6: Effects of the bias (3 judges)

refers to the precision of the rules generated by our

method. The precision of the rules with the opposite

direction is indicated by �Reversed.� The precision of

�Reversed� was much lower than that of our method,

and this justiÞes our choice of direction. The kappas

values for �BasicS� and �Reversed� were 0.54 and 0.46

respectively. Both indicate moderate agreement.

4.4 Effects of the Bias

Last, we compared Score and BasicS to see the ef-

fect of our bias. This time, we used test set C (1,000

nouns). The rules were restricted to those in which

the given nouns are syntactic objects of two verbs.

The evaluation was done for only the top 400 rules for

each score. The results are shown in Figures 5 and 6.

�Score� refers to the precision obtained with Score,

while �BasicS� indicates the precision with BasicS.

For most data points in both graphs, the �Score� pre-

cision was about 10% higher than the �BasicS� preci-

sion. In Figure 6, the precision reached 70% when the

400 rules were produced. These results indicate the

desirable effect of our bias for, at least, the top rules.

63

rank inference rules
/judges

4/0 moshi yougi wo hininsuru naraba,
yougi wo mitomeru
(If someone denies suspicions, usually
someone conÞrms the suspicions.)

6/4 moshi jikokiroku wo uwamawaru
naraba, jikokiroku wo koushinsuru
(If someone betters her best record, usually
someone breaks her best record.)

21/3 moshi katakuriko wo mabusu naraba,
katakuriko wo tsukeru
(If someone coats something with potato starch,
usually someone covers something with the starch)

194/4 moshi sasshi wo haifusuru naraba,
sasshi wo sakuseisuru
(If someone distributes a booklet, usually
someone makes the booklet.)

303/4 moshi netsuzou wo kokuhakusuru
naraba, netsuzou wo mitomeru
(If someone confesses to a fabrication, usually
someone admits the fabrication.)

398/3 moshi ifuku wo kikaeru naraba,
ifuku wo nugu
(If someone changes clothes, usually
someone gets out of the clothes.)

Figure 7: Examples of acquired inference rules

The 400 rules generated by Score included 175 dis-

tinct nouns and 272 distinct verb pairs. Examples of

the inference rules acquired by Score are shown in

Figure 7 along with the positions in the ranking and

the numbers of judges who judged the rule as being

proper. (We omitted the phrase �the same time as or

before� in the examples.) The kappa was 0.57 (mod-

erate agreement).

In addition, the graphs compare Score with some

other alternatives. This comparison was made to

check the effectiveness of our bias more carefully.

The 400 rules generated by BasicS were re-ranked

using Score and the alternative scores, and the pre-

cision for each was computed using the human judg-

ments for the rules generated by BasicS. (We did

not evaluate the rules directly generated by the al-

ternatives to reduce the workload of the judges.)

The Þrst alternative was Scorecooc, which was pre-

sented in Section 3. Here, �reranked by ScoreCooc�

refers to the precision obtained by re-ranking with of

Scorecooc. The precision was below that obtained by

the re-ranking with Score, (referred to as �reranked

by Score)�. As discussed in Section 3, this indicates

the bias Parg(vcon) in Score works better than the

bias Parg(n, vcon) in Scorecooc.

The second alternative was the scoring function ob-

tained by replacing the bias Parg(vcon) in Score with

Parg′(vpre) , which is roughly the probability that the
verb in the precondition will be observed. The score

is denoted as PreBias(n, vcon, vpre, arg, arg′) =
Parg′(vpre)BasicS(n, vcon, vpre, arg, arg′). The

precision of this score is indicated by �reranked by

PreBias� and is much lower than that of �reranked by

Score�, indicating that only probability of the verbs

in the consequences should be used as a bias. This is

consistent with our assumption behind the bias.

5 Conclusion

We have presented an unsupervised method for ac-

quiring inference rules with temporal constraints,

such as �If someone enforces a law, someone enacts

the law at the same time as or before the enforcing of

the law�. We used the probabilities of verb-verb co-

occurrences in coordinated sentences and verb-noun

co-occurrences. We have also proposed a bias mecha-

nism that can improve the precision of acquired rules.

References

R. Barzilay and L. Lee. 2003. Learning to paraphrase:an
unsupervised approach using multiple-sequence align-
ment. In Proc. of HLT-NAACL 2003, pages 16�23.

T. Chklovski and P. Pantel. 2004. Verbocean: Mining the
web for Þne-grained semantic verb relations. In Proc. of
EMNLP-04.

I. Dagan, O. Glickman, and B. Magnini, editors.
2005. Proceedings of the First Challenge Work-
shop: Recognizing Textual Entailment. available from
http://www.pascal-network.org/Challenges/RTE/.

T. Fujiki, H. Namba, and M. Okumura. 2003. Automatic
acquisition of script knowledge from text collection. In
Proc. of The Research Note Sessions of EACL�03.

M. Geffet and I. Dagan. 2005. The distributional inclu-
sion hypotheses and lexical entailment. In Proc. of ACL
2005, pages 107�114.

H. Kanayama, K. Torisawa, Y. Mitsuishi, and J. Tsujii.
2000. A hybrid Japanese parser with hand-crafted gram-
mar and statistics. In Proc. of COLING 2000.

J. R. Landis and G. G. Koch. 1977. The measurement
of observer agreement for categorial data. Biometrics,
33:159�174.

D. Lin and P. Pantel. 2001. Discovery of inference rules
for question answering. Journal of Natural Language
Engineering.

Y. Shinyama, S. Sekine, and K. Sudo. 2002. Automatic
paraphrase acquisition from news articles. In Proc. of
HLT2002.

I. Szepektor, H. Tanev, I. Dagan, and B. Coppola. 2004.
Scaling web-based acquisition of entailment relations.
In Proc. of EMNLP 2004.

64

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 65–73,
New York, June 2006.c©2006 Association for Computational Linguistics

Role of Local Context in Automatic Deidentification
of Ungrammatical, Fragmented Text

Tawanda Sibanda
CSAIL

Massachusetts Institute of Technology
Cambridge, MA 02139
tawanda@mit.edu

Ozlem Uzuner
Department of Information Studies

College of Computing and Information
University at Albany, SUNY

Albany, NY 12222
ouzuner@albany.edu

Abstract

Deidentification of clinical records is a
crucial step before these records can be
distributed to non-hospital researchers.
Most approaches to deidentification rely
heavily on dictionaries and heuristic rules;
these approaches fail to remove most per-
sonal health information (PHI) that cannot
be found in dictionaries. They also can fail
to remove PHI that is ambiguous between
PHI and non-PHI.

Named entity recognition (NER) tech-
nologies can be used for deidentification.
Some of these technologies exploit both
local and global context of a word to iden-
tify its entity type. When documents are
grammatically written, global context can
improve NER.

In this paper, we show that we can dei-
dentify medical discharge summaries us-
ing support vector machines that rely on a
statistical representation of local context.
We compare our approach with three dif-
ferent systems. Comparison with a rule-
based approach shows that a statistical
representation of local context contributes
more to deidentification than dictionaries
and hand-tailored heuristics. Compari-
son with two well-known systems, SNoW
and IdentiFinder, shows that when the lan-
guage of documents is fragmented, local
context contributes more to deidentifica-
tion than global context.

1 Introduction

Medical discharge summaries contain information
that is useful to clinical researchers who study the
interactions between, for example, different med-
ications and diseases. However, these summaries
include explicit personal health information (PHI)
whose release would jeopardize privacy. In the
United States, the Health Information Portability
and Accountability Act (HIPAA) provides guide-
lines for protecting the confidentiality of health care
information. HIPAA lists seventeen pieces of textual
PHI of which the following appear in medical dis-
charge summaries: first and last names of patients,
their health proxies, and family members; doctors’
first and last names; identification numbers; tele-
phone, fax, and pager numbers; hospital names; ge-
ographic locations; and dates. Removing PHI from
medical documents is the goal of deidentification.

This paper presents a method based on a statis-
tical representation of local context for automati-
cally removing explicit PHI from medical discharge
summaries, despite the often ungrammatical, frag-
mented, and ad hoc language of these documents,
even when some words in the documents are am-
biguous between PHI and non-PHI (e.g., “Hunting-
ton” as the name of a person and as the name of
a disease), and even when some of the PHI cannot
be found in dictionaries (e.g., misspelled and/or for-
eign names). This method differs from traditional
approaches to deidentification in its independence
from dictionaries and hand-tailored heuristics. It
applies statistical named entity recognition (NER)
methods to the more challenging task of deidenti-

65

fication but differs from traditional NER approaches
in its heavy reliance on a statistical representation of
local context. Finally, this approach targets all PHI
that appear in medical discharge summaries. Experi-
ments reported in this paper show that context plays
a more important role in deidentification than dic-
tionaries, and that a statistical representation of lo-
cal context contributes more to deidentification than
global context.

2 Related Work

In the literature, named entities such as people,
places, and organizations mentioned in news arti-
cles have been successfully identified by various ap-
proaches (Bikel et al., 1999; McCallum et al., 2000;
Riloff and Jones, 1996; Collins and Singer, 1999;
Hobbs et al., 1996). Most of these approaches are
tailored to a particular domain, e.g., understanding
disaster news; they exploit both the characteristics
of the entities they focus on and the contextual clues
related to these entities.

In the biomedical domain, NER has focused on
identification of biological entities such as genes
and proteins (Collier et al., 2000; Yu et al., 2002).
Various statistical approaches, e.g., a maximum
entropy model (Finkel et al., 2004), HMMs and
SVMs (GuoDong et al., 2005), have been used with
various feature sets including surface and syntac-
tic features, word formation patterns, morphologi-
cal patterns, part-of-speech tags, head noun triggers,
and coreferences.

Deidentification refers to the removal of identi-
fying information from records. Some approaches
to deidentification have focused on particular cat-
egories of PHI, e.g., Taira et al. focused on only
patient names (2002), Thomas et al. focused on
proper names including doctors’ names (2002). For
full deidentification, i.e., removal of all PHI, Gupta
et al. used “a complex set of rules, dictionaries,
pattern-matching algorithms, and Unified Medical
Language System” (2004). Sweeney’s Scrub sys-
tem employed competing algorithms that used pat-
terns and lexicons to find PHI. Each of the algo-
rithms included in her system specialized in one
kind of PHI, each calculated the probability that a
given word belonged to the class of PHI that it spe-
cialized in, and the algorithm with the highest prece-

dence and the highest probability labelled the given
word. This system identified 99-100% of all PHI in
the test corpus of patient records and letters to physi-
cians (1996).

We use a variety of features to train a support
vector machine (SVM) that can automatically ex-
tract local context cues and can recognize PHI (even
when some PHI are ambiguous between PHI and
non-PHI, and even when PHI do not appear in dic-
tionaries). We compare this approach with three
others: a heuristic rule-based approach (Douglass,
2005), the SNoW (Sparse Network of Winnows)
system’s NER component (Roth and Yih, 2002), and
IdentiFinder (Bikel et al., 1999). The heuristic rule-
based system relies heavily on dictionaries. SNoW
and IdentiFinder consider some representation of the
local context of words; they also rely on informa-
tion about global context. Local context helps them
recognize stereotypical names and name structures.
Global context helps these systems update the prob-
ability of observing a particular entity type based on
the other entity types contained in the sentence. We
hypothesize that, given the mostly fragmented and
ungrammatical nature of discharge summaries, local
context will be more important for deidentification
than global context. We further hypothesize that lo-
cal context will be a more reliable indication of PHI
than dictionaries (which can be incomplete). The re-
sults presented in this paper show that SVMs trained
with a statistical representation of local context out-
perform all baselines. In other words, a classifier
that relies heavily on local context (very little on
dictionaries, and not at all on global context) out-
performs classifiers that rely either on global con-
text or dictionaries (but make much less use of lo-
cal context). Global context cannot contribute much
to deidentification when the language of documents
is fragmented; dictionaries cannot contribute to dei-
dentification when PHI are either missing from dic-
tionaries or are ambiguous between PHI and non-
PHI. Local context remains a reliable indication of
PHI under these circumstances.

The features used for our SVM-based system can
be enriched in order to automatically acquire more
and varied local context information. The features
discussed in this paper have been chosen because of
their simplicity and effectiveness on both grammati-
cal and ungrammatical free text.

66

3 Corpora

Discharge summaries are the reports generated by
medical personnel at the end of a patient’s hospi-
tal stay and contain important information about the
patient’s health. Linguistic processing of these doc-
uments is challenging, mainly because these reports
are full of medical jargon, acronyms, shorthand no-
tations, misspellings, ad hoc language, and frag-
ments of sentences. Our goal is to identify the PHI
used in discharge summaries even when text is frag-
mented and ad hoc, even when many words in the
summaries are ambiguous between PHI and non-
PHI, and even when many PHI contain misspelled
or foreign words.

In this study, we worked with various corpora
consisting of discharge summaries. One of these
corpora was obtained already deidentified1; i.e.,
(many) PHI (and some non-PHI) found in this cor-
pus had been replaced with the generic placeholder
[REMOVED]. An excerpt from this corpus is below:

HISTORY OF PRESENT ILLNESS: The patient
is a 77-year-old-woman with long standing hyper-
tension who presented as a Walk-in to me at the
[REMOVED] Health Center on [REMOVED]. Re-
cently had been started q.o.d. on Clonidine since
[REMOVED] to taper off of the drug. Was told to
start Zestril 20 mg. q.d. again. The patient was sent
to the [REMOVED] Unit for direct admission for
cardioversion and anticoagulation, with the Cardi-
ologist, Dr. [REMOVED] to follow.
SOCIAL HISTORY: Lives alone, has one daughter
living in [REMOVED]. Is a non-smoker, and does
not drink alcohol.
HOSPITAL COURSE AND TREATMENT: Dur-
ing admission, the patient was seen by Cardiology,
Dr. [REMOVED], was started on IV Heparin, So-
talol 40 mg PO b.i.d. increased to 80 mg b.i.d.,
and had an echocardiogram. By [REMOVED] the
patient had better rate control and blood pressure
control but remained in atrial fibrillation. On [RE-
MOVED], the patient was felt to be medically sta-
ble.
...

We hand-annotated this corpus and experimented
with it in several ways: we used it to generate
a corpus of discharge summaries in which the
[REMOVED] tokens were replaced with appropri-
ate, fake PHI obtained from dictionaries2 (Douglass,

1Authentic clinical data is very difficult to obtain for privacy
reasons; therefore, the initial implementation of our system was
tested on previously deidentified data that we reidentified.

2e.g., John Smith initiated radiation therapy ...

2005); we used it to generate a second corpus in
which most of the [REMOVED] tokens and some
of the remaining text were appropriately replaced
with lexical items that were ambiguous between PHI
and non-PHI3; we used it to generate another cor-
pus in which all of the [REMOVED] tokens corre-
sponding to names were replaced with appropriately
formatted entries that could not be found in dictio-
naries4. For all of these corpora, we generated real-
istic substitutes for the [REMOVED] tokens using
dictionaries (e.g., a dictionary of names from US
Census Bureau) and patterns (e.g., names of people
could be of the formats, “Mr. F. Lastname”, “First-
name Lastname”, “Lastname”, “F. M. Lastname”,
etc.; dates could appear as “dd/mm/yy”, “dd Mon-
thName, yyyy”, “ddth of MonthName, yyyy”, etc.).
In addition to these reidentified corpora (i.e., cor-
pora generated from previously deidentified data),
we also experimented with authentic discharge sum-
maries5. The approximate distributions of PHI in the
reidentified corpora and in the authentic corpus are
shown in Table 1.

Class No. in reidentified No. in authentic
summaries summaries

Non-PHI 17872 112720
Patient 1047 287
Doctor 311 730
Location 24 84
Hospital 592 651
Date 735 1933
ID 36 477
Phone 39 32

Table 1: Distribution of different PHI (in terms of number of
words) in the corpora.

4 Baseline Approaches

4.1 Rule-Based Baseline: Heuristic+Dictionary

Traditional deidentification approaches rely heavily
on dictionaries and hand-tailored heuristics.

3e.g., D. Sessions initiated radiation therapy...
4e.g., O. Ymfgkstjj initiated radiation therapy ...
5We obtained authentic discharge summaries with real PHI

in the final stages of this project.

67

We obtained one such system (Douglass, 2005)
that used three kinds of dictionaries:

• PHI lookup tables for female and male first
names, last names, last name prefixes, hospital
names, locations, and states.

• A dictionary of “common words” that should
never be classified as PHI.

• Lookup tables for context clues such as titles,
e.g., Mr.; name indicators, e.g., proxy, daugh-
ter; location indicators, e.g., lives in.

Given these dictionaries, this system identifies key-
words that appear in the PHI lookup tables but do
not occur in the common words list, finds approx-
imate matches for possibly misspelled words, and
uses patterns and indicators to find PHI.

4.2 SNoW
SNoW is a statistical classifier that includes a NER
component for recognizing entities and their rela-
tions. To create a hypothesis about the entity type of
a word, SNoW first takes advantage of “words, tags,
conjunctions of words and tags, bigram and trigram
of words and tags”, number of words in the entity,
bigrams of words in the entity, and some attributes
such as the prefix and suffix, as well as informa-
tion about the presence of the word in a dictionary
of people, organization, and location names (Roth
and Yih, 2002). After this initial step, it uses the
possible relations of the entity with other entities in
the sentence to strengthen or weaken its hypothe-
sis about the entity’s type. The constraints imposed
on the entities and their relationships constitute the
global context of inference. Intuitively, information
about global context and constraints imposed on the
relationships of entities should improve recognition
of both entities and relations. Roth and Yih (2002)
present results that support this hypothesis.

SNoW can recognize entities that correspond to
people, locations, and organizations. For deidenti-
fication purposes, all of these entities correspond to
PHI; however, they do not constitute a comprehen-
sive set. We evaluated SNoW only on the PHI it is
built to recognize. We trained and tested its NER
component using ten-fold cross-validation on each
of our corpora.

4.3 IdentiFinder

IdentiFinder uses Hidden Markov Models to learn
the characteristics of names of entities, including
people, locations, geographic jurisdictions, organi-
zations, dates, and contact information (Bikel et al.,
1999). For each named entity class, this system
learns a bigram language model which indicates the
likelihood that a sequence of words belongs to that
class. This model takes into consideration features
of words, such as whether the word is capitalized, all
upper case, or all lower case, whether it is the first
word of the sentence, or whether it contains digits
and punctuation. Thus, it captures the local context
of the target word (i.e., the word to be classified; also
referred to as TW). To find the names of all entities,
the system finds the most likely sequence of entity
types in a sentence given a sequence of words; thus,
it captures the global context of the entities in a sen-
tence.

We obtained this system pre-trained on a news
corpus and applied it to our corpora. We mapped
its entity tags to our PHI and non-PHI labels. Ad-
mittedly, testing IdentiFinder on the discharge sum-
maries puts this system at a disadvantage compared
to the other statistical approaches. However, despite
this shortcoming, IdentiFinder helps us evaluate the
contribution of global context to deidentification.

5 SVMs with Local Context

We hypothesize that systems that rely on dictionar-
ies and hand-tailored heuristics face a major chal-
lenge when particular PHI can be used in many dif-
ferent contexts, when PHI are ambiguous, or when
the PHI cannot be found in dictionaries. We further
hypothesize that given the ungrammatical and ad
hoc nature of our data, despite being very powerful
systems, IdentiFinder and SNoW may not provide
perfect deidentification. In addition to being very
fragmented, discharge summaries do not present in-
formation in the form of relations between entities,
and many sentences contain only one entity. There-
fore, the global context utilized by IdentiFinder and
SNoW cannot contribute reliably to deidentification.
When run on discharge summaries, the strength of
these systems comes from their ability to recognize
the structure of the names of different entity types
and the local contexts of these entities.

68

Discharge summaries contain patterns that can
serve as local context. Therefore, we built an SVM-
based system that, given a target word (TW), would
accurately predict whether the TW was part of PHI.
We used a development corpus to find features that
captured as much of the immediate context of the
TW as possible, paying particular attention to cues
human annotators found useful for deidentification.
We added to this some surface characteristics for the
TW itself and obtained the following features: the
TW itself, the word before, and the word after (all
lemmatized); the bigram before and the bigram af-
ter TW (lemmatized); the part of speech of TW, of
the word before, and of the word after; capitalization
of TW; length of TW; MeSH ID of the noun phrase
containing TW (MeSH is a dictionary of Medical
Subject Headings and is a subset of the Unified Med-
ical Language System (UMLS) of the National Li-
brary of Medicine); presence of TW, of the word
before, and of the word after TW in the name, lo-
cation, hospital, and month dictionaries; the heading
of the section in which TW appears, e.g., “History
of Present Illness”; and, whether TW contains “-” or
“/” characters. Note that some of these features, e.g.,
capitalization and punctuation within TW, were also
used in IdentiFinder.

We used the SVM implementation provided by
LIBSVM (Chang and Lin, 2001) with a linear ker-
nel to classify each word in the summaries as ei-
ther PHI or non-PHI based on the above-listed fea-
tures. We evaluated this system using ten-fold cross-
validation.

6 Evaluation

Local context contributes differently to each of the
four deidentification systems. Our SVM-based ap-
proach uses only local context. The heuristic, rule-
based system relies heavily on dictionaries. Identi-
Finder uses a simplified representation of local con-
text and adds to this information about the global
context as represented by transition probabilities be-
tween entities in the sentence. SNoW uses local con-
text as well, but it also makes an effort to benefit
from relations between entities. Given the difference
in the strengths of these systems, we compared their
performance on both the reidentified and authentic
corpora (see Section 3). We hypothesized that given

the nature of medical discharge summaries, Iden-
tiFinder would not be able to find enough global
context and SNoW would not be able to make use
of relations (because many sentences in this cor-
pus contain only one entity). We further hypothe-
sized that when the data contain words ambiguous
between PHI and non-PHI, or when the PHI cannot
be found in dictionaries, the heuristic, rule-based ap-
proach would perform poorly. In all of these cases,
SVMs trained with local context information would
be sufficient for proper deidentification.

To compare the SVM approach with Identi-
Finder, we evaluated both on PHI consisting of
names of people (i.e., patient and doctor names),
locations (i.e., geographic locations), and organiza-
tions (i.e., hospitals), as well as PHI consisting of
dates, and contact information (i.e., phone numbers,
pagers). We omitted PHI representing ID numbers
from this experiment in order to be fair to Identi-
Finder which was not trained on this category. To
compare the SVM approach with SNoW, we trained
both systems with only PHI consisting of names of
people, locations, and organizations, i.e., the entities
that SNoW was designed to recognize.

6.1 Deidentifying Reidentified and Authentic
Discharge Summaries

We first deidentified:

• Previously deidentified discharge summaries
into which we inserted invented but realistic
surrogates for PHI without deliberately intro-
ducing ambiguous words or words not found in
dictionaries, and

• Authentic discharge summaries with real PHI.

Our experiments showed that SVMs with local
context outperformed all other approaches. On the
reidentified corpus, SVMs gave an F-measure of
97.2% for PHI. In comparison, IdentiFinder, hav-
ing been trained on the news corpus, gave an F-
measure of 67.4% and was outperformed by the
heuristic+dictionary approach (see Table 2).6

6Note that in deidentification, recall is much more important
than precision. Low recall indicates that many PHI remain in
the documents and that there is high risk to patient privacy. Low
precision means that words that do not correspond to PHI have
also been removed. This hurts the integrity of the data but does
not present a risk to privacy.

69

We evaluated SNoW only on the three kinds
of entities it is designed to recognize. We cross-
validated it on our corpora and found that its per-
formance in recognizing people, locations, and or-
ganizations was 96.2% in terms of F-measure (see
Table 37). In comparison, our SVM-based system,
when retrained to only consider people, locations,
and organizations so as to be directly comparable to
SNoW, had an F-measure of 98%.8

Method Class P R F
SVM PHI 96.8% 97.7% 97.2%
IFinder PHI 60.2% 76.7% 67.4%
H+D PHI 88.9% 67.6% 76.8%
SVM Non-PHI 99.6% 99.5% 99.6%
IFinder Non-PHI 95.8% 91.4% 93.6%
H+D Non-PHI 95.2% 95.2% 95.2%

Table 2: Precision, Recall, and F-measure on reidentified dis-
charge summaries. IFinder refers to IdentiFinder, H+D refers to
heuristic+dictionary approach.

Method Class P R F
SVM PHI 97.7% 98.2% 98.0%
SNoW PHI 96.1% 96.2% 96.2%
SVM Non-PHI 99.8% 99.8% 99.8%
SNoW Non-PHI 99.6% 99.6% 99.6%

Table 3: Evaluation of SNoW and SVM on recognizing peo-
ple, locations, and organizations found in reidentified discharge
summaries.

Similarly, on the authentic discharge summaries,
the SVM approach outperformed all other ap-
proaches in recognizing PHI (see Tables 4 and 5).

6.2 Deidentifying Data with Ambiguous PHI
In discharge summaries, the same words can appear
both as PHI and as non-PHI. For example, in the
same corpus, the word “Swan” can appear both as
the name of a medical device (i.e., “Swan Catheter”)
and as the name of a person, etc. Ideally, we would
like to deidentify data even when many words in the

7The best performances are marked in bold in all of the ta-
bles in this paper.

8For all of the corpora presented in this paper, a performance
difference of 1% or more is statistically significant at α = 0.05.

Method Class P R F
SVM PHI 97.5% 95.0% 96.2%
IFinder PHI 25.2% 45.2% 32.3%
H+D PHI 81.9% 87.6% 84.7%
SVM Non-PHI 99.8% 99.9% 99.9%
IFinder Non-PHI 97.1% 93.3% 95.2%
H+D Non-PHI 99.6% 99.6% 99.6%

Table 4: Evaluation on authentic discharge summaries.

Method Class P R F
SVM PHI 97.4% 93.8% 95.6%
SNoW PHI 93.7% 93.4% 93.6%
SVM Non-PHI 99.9% 100% 100%
SNoW Non-PHI 99.9% 99.9% 99.9%

Table 5: Evaluation of SNoW and SVM on authentic dis-
charge summaries.

corpus are ambiguous between PHI and non-PHI.
We hypothesize that given ambiguities in the data,
context will play an important role in determining
whether the particular instance of the word is PHI
and that given the many fragmented sentences in our
corpus, local context will be particularly useful. To
test these hypotheses, we generated a corpus by rei-
dentifying the previously deidentified corpus with
words that were ambiguous between PHI and non-
PHI, making sure to use each ambiguous word both
as PHI and non-PHI, and also making sure to cover
all acceptable formats of all PHI (see Section 3). The
resulting distribution of PHI is shown in Table 6.

Class Total # Words # Ambiguous Words
Non-PHI 19296 3781
Patient 1047 514
Doctor 311 247
Location 24 24
Hospital 592 82
Date 736 201
ID 36 0
Phone 39 0

Table 6: Distribution of PHI when some words are ambiguous
between PHI and non-PHI.

70

Our results showed that, on this corpus, the SVM-
based system accurately recognized 91.9% of all
PHI; its performance, measured in terms of F-
measure was also significantly better than all other
approaches both on the complete corpus containing
ambiguous entries (see Table 7 and Table 8) and only
on the ambiguous words in this corpus (see Table 9).

Method Class P R F
SVM PHI 92.0% 92.1% 92.0%
IFinder PHI 45.4% 71.4% 55.5%
H+D PHI 70.1% 46.6% 56.0%
SVM Non-PHI 98.9% 98.9% 98.9%
IFinder Non-PHI 95.0% 86.5% 90.1%
H+D Non-PHI 92.7% 92.7% 92.7%

Table 7: Evaluation on the corpus containing ambiguous
data.

Method Class P R F
SVM PHI 92.1% 92.8% 92.5%
SNoW PHI 91.6% 77% 83.7%
SVM Non-PHI 99.3% 99.2% 99.3%
SNoW Non-PHI 97.6% 99.3% 98.4%

Table 8: Evaluation of SNoW and SVM on ambiguous data.

Method Class P R F
SVM PHI 90.2% 87.5% 88.8%
IFinder PHI 55.8% 64.0% 59.6%
H+D PHI 59.8% 24.3% 34.6%
SNoW PHI 91.6% 82.9% 87.1%
SVM Non-PHI 90.5% 92.7% 91.6%
IFinder Non-PHI 69.0% 61.3% 64.9%
H+D Non-PHI 59.9% 87.4% 71.1%
SNoW Non-PHI 90.4% 95.5% 92.9%

Table 9: Evaluation only on ambiguous people, locations,
and organizations found in ambiguous data.

6.3 Deidentifying PHI Not Found in
Dictionaries

Some medical documents contain foreign or mis-
spelled names that need to be effectively removed.
To evaluate the different deidentification approaches

under such circumstances, we generated a corpus in
which the names of people, locations, and hospitals
were all random permutations of letters. The result-
ing words were not found in any dictionaries but fol-
lowed the general format of the entity name category
to which they belonged. The distribution of PHI in
this third corpus is in Table 10.

Class Total PHI PHI Not in Dict.
Non-PHI 17872 0
Patient 1045 1045
Doctor 302 302
Location 24 24
Hospital 376 376
Date 735 0
ID 36 0
Phone 39 0

Table 10: Distribution of PHI in the corpus where all PHI
associated with names are randomly generated so as not to be
found in dictionaries.

On this data set, dictionaries cannot contribute to
deidentification because none of the PHI appear in
dictionaries. Under these conditions, proper deiden-
tification relies completely on context. Our results
showed that SVM approach outperformed all other
approaches on this corpus also (Tables 11 and 12).

Method Class P R F
SVM PHI 94.0% 96.0% 95.0%
IFinder PHI 55.1% 65.5% 59.8%
H+D PHI 76.4% 27.8% 40.8%
SVM Non-PHI 99.4% 99.1% 99.3%
IFinder Non-PHI 94.4% 91.6% 92.9%
H+D Non-PHI 90.7% 90.7% 90.7%

Table 11: Evaluation on the corpus containing PHI not in
dictionaries.

Of only the PHI not found in dictionaries, 95.5%
was accurately identified by the SVM approach. In
comparison, the heuristic+dictionary approach ac-
curately identified those PHI that could not be found
in dictionaries 11.1% of the time, IdentiFinder rec-
ognized these entities 76.7% of the time and SNoW
gave an accuracy of 79% (see Table 13).

71

Method Class P R F
SVM PHI 93.9% 96.0% 95.0%
SNoW PHI 93.7% 79.0% 85.7%
SVM Non-PHI 99.6% 99.4% 99.5%
SNoW Non-PHI 98.0% 99.5% 98.7%

Table 12: Evaluation of SNoW and SVM on the people, loca-
tions, and organizations found in the corpus containing PHI not
found in dictionaries.

Method SVM IFinder SNoW H+D
Precision 95.5% 76.7% 79.0% 11.1%

Table 13: Precision on only the PHI not found in dictionaries.

6.4 Feature Importance

As hypothesized, in all experiments, the SVM-
based approach outperformed all other approaches.
SVM’s feature set included a total of 26 features,
12 of which were dictionary-related features (ex-
cluding MeSH). Information gain showed that the
most informative features for deidentification were
the TW, the bigram before TW, the bigram after TW,
the word before TW, and the word after TW.

Note that the TW itself is important for classifi-
cation; many of the non-PHI correspond to common
words that appear in the corpus frequently and the
SVM learns the fact that some words, e.g., the, ad-
mit, etc., are never PHI. In addition, the context of
TW (captured in the form of unigrams and bigrams
of words and part-of-speech tags surrounding TW)
contributes significantly to deidentification.

There are many ways of automatically capturing
context. In our data, unigrams and bigrams of words
and their part-of-speech tags seem to be sufficient
for a statistical representation of local context. The
global context, as represented within IdentiFinder
and SNoW, could not contribute much to deiden-
tification on this corpus because of the fragmented
nature of the language of these documents, because
most sentences in this corpus contain only one en-
tity, and because many sentences do not include ex-
plicit relations between entities. However, there is
enough structure in this data that can be captured by
local context; lack of relations between entities and
the inability to capture global context do not hold us
back from almost perfect deidentification.

7 Conclusion

We presented a set of experimental results that show
that local context contributes more to deidentifica-
tion than dictionaries and global context when work-
ing with medical discharge summaries. These docu-
ments are characterized by incomplete, fragmented
sentences, and ad hoc language. They use a lot
of jargon, many times omit subjects of sentences,
use entity names that can be misspelled or foreign
words, can include entity names that are ambigu-
ous between PHI and non-PHI, etc. Similar doc-
uments in many domains exist; our experiments
here show that even on such challenging corpora,
local context can be exploited to identify entities.
Even a rudimentary statistical representation of lo-
cal context, as captured by unigrams and bigrams of
lemmatized keywords and part-of-speech tags, gives
good results and outperforms more sophisticated ap-
proaches that rely on global context. The simplicity
of the representation of local context and the results
obtained using this simple representation are partic-
ularly promising for many tasks that require pro-
cessing ungrammatical and fragmented text where
global context cannot be counted on.

8 Acknowledgements

This publication was made possible by grant num-
ber R01-EB001659 from the National Institute
of Biomedical Imaging and Bioengineering; by
grant number N01-LM-3-3513 on National Multi-
Protocol Ensemble for Self-Scaling Systems for
Health from National Library of Medicine; and, by
grant number U54-LM008748 on Informatics for In-
tegrating Biology to the Bedside from National Li-
brary of Medicine.

We are grateful to Professor Peter Szolovits and
Dr. Boris Katz for their insights, and to Professor
Carol Doll, Sue Felshin, Gregory Marton, and Tian
He for their feedback on this paper.

References
J. J. Berman. 2002. Concept-Match Medical Data

Scrubbing: How Pathology Text Can Be Used in
Research. Archives of Pathology and Laboratory
Medicine, 127(6).

D. M. Bikel, R. Schwartz, and R. M. Weischedel. 1999.

72

An Algorithm That Learns What’s in a Name. Ma-
chine Learning Journal Special Issue on Natural Lan-
guage Learning, 34(1/3).

C. Chang and C. Lin. 2001. LIBSVM: a Library for Sup-
port Vector Machines.

N. Collier, C. Nobata, and J. Tsujii. 2000. Extracting
the Names of Genes and Gene Products with a Hidden
Markov Model. Proceedings of COLING.

M. Collins and Y. Singer. 1999. Unsupervised Mod-
els for Named Entity Classification. Proceedings of
EMNLP.

J. Finkel, S. Dingare, H. Nguyen, M. Nissim, C. Man-
ning, and G. Sinclair. 2004. Exploiting Context for
Biomedical Entity Recognition: From Syntax to the
Web. Proceedings of Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Applications
at COLING.

R. Gaizauskas, G. Demetriou, P. Artymiuk, and P. Willett.
2003. Protein Structures and Information Extraction
from Biological Texts: The PASTA System. Bioinfor-
matics, 19(1).

Z. GuoDong, Z. Jie, S. Jian, S. Dan, T. ChewLim. 2005.
Recognizing Names in Biomedical Texts: a Machine
Learning Approach. Bioinformatics, 20(7).

D. Gupta, M. Saul, J. Gilbertson. 2004. Evalua-
tion of a Deidentification (De-Id) Software Engine to
Share Pathology Reports and Clinical Documents for
Research. American Journal of Clinical Pathology,
121(6).

J. R. Hobbs, D. E. Appelt, J. Bear, D. Israel, M.
Kameyama, M. Stickel, and M. Tyson. 1996. FAS-
TUS: A Cascaded Finite-State Transducer for Extract-
ing Information from Natural-Language Text. In Fi-
nite State Devices for Natural Language Processing.
MIT Press, Cambridge, MA.

M. Douglass, G. D. Clifford, A. Reisner, G. B. Moody,
R. G. Mark. 2005. Computer-Assisted De-
Identification of Free Text in the MIMIC II Database.
Computers in Cardiology. 32:331-334.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-
mum Entropy Markov Models for Information Extrac-
tion and Segmentation. Proceedings of ICML.

E. Riloff and R. Jones. 1996. Automatically Generating
Extraction Patterns from Untagged Text. Proceedings
of AAAI-96.

D. Roth and W. Yih. 2002. Probabilistic Reasoning
for Entity and Relation Recognition. Proceedings of
COLING.

P. Ruch, R. H. Baud, A. Rassinoux, P. Bouillon, G.
Robert. 2000. Medical Document Anonymization
with a Semantic Lexicon. Proceedings of AMIA.

M. Surdeanu, S. M. Harabagiu, J. Williams, and P.
Aarseth. 2003. Using Predicate-Argument Structures
for Information Extraction. Proceedings of ACL 2003.

L. Sweeney. 1996. Replacing personally-identifying in-
formation in medical records, the scrub system. Jour-
nal of the American Medical Informatics Association.

R. K. Taira, A. A. T. Bui, H. Kangarloo. 2002. Identifi-
cation of patient name references within medical doc-
uments using semantic selectional restrictions. Pro-
ceedings of AMIA.

S. M. Thomas, B. Mamlin, G. Schadow, C. McDonald.
2002. A Successful Technique for Removing Names
in Pathology Reports Using an Augmented Search and
Replace Method. Proceedings of AMIA.

H. Yu, V. Hatzivassiloglou, C. Friedman, W. J. Wilbur.
2002. Automatic Extraction of Gene and Protein Syn-
onyms from MEDLINE and Journal Articles. Pro-
ceedings of AMIA.

73

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 74–81,
New York, June 2006.c©2006 Association for Computational Linguistics

Exploiting Domain Structure for Named Entity Recognition

Jing Jiang and ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{jiang4,czhai}@cs.uiuc.edu

Abstract

Named Entity Recognition (NER) is a
fundamental task in text mining and nat-
ural language understanding. Current ap-
proaches to NER (mostly based on super-
vised learning) perform well on domains
similar to the training domain, but they
tend to adapt poorly to slightly different
domains. We present several strategies
for exploiting the domain structure in the
training data to learn a more robust named
entity recognizer that can perform well on
a new domain. First, we propose a sim-
ple yet effective way to automatically rank
features based on their generalizabilities
across domains. We then train a classifier
with strong emphasis on the most general-
izable features. This emphasis is imposed
by putting a rank-based prior on a logis-
tic regression model. We further propose
a domain-aware cross validation strategy
to help choose an appropriate parameter
for the rank-based prior. We evaluated
the proposed method with a task of recog-
nizing named entities (genes) in biology
text involving three species. The exper-
iment results show that the new domain-
aware approach outperforms a state-of-
the-art baseline method in adapting to new
domains, especially when there is a great
difference between the new domain and
the training domain.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying and classifying phrases that denote cer-
tain types of named entities (NEs), such as per-
sons, organizations and locations in news articles,
and genes, proteins and chemicals in biomedical lit-
erature. NER is a fundamental task in many natural
language processing applications, such as question
answering, machine translation, text mining, and in-
formation retrieval (Srihari and Li, 1999; Huang and
Vogel, 2002).

Existing approaches to NER are mostly based on
supervised learning. They can often achieve high
accuracy provided that a large annotated training set
similar to the test data is available (Borthwick, 1999;
Zhou and Su, 2002; Florian et al., 2003; Klein et al.,
2003; Finkel et al., 2005). Unfortunately, when the
test data has some difference from the training data,
these approaches tend to not perform well. For ex-
ample, Ciaramita and Altun (2005) reported a per-
formance degradation of a named entity recognizer
trained on CoNLL 2003 Reuters corpus, where the
F1 measure dropped from 0.908 when tested on a
similar Reuters set to 0.643 when tested on a Wall
Street Journal set. The degradation can be expected
to be worse if the training data and the test data are
more different.

The performance degradation indicates that exist-
ing approaches adapt poorly to new domains. We
believe one reason for this poor adaptability is that
these approaches have not considered the fact that,
depending on the genre or domain of the text, the
entities to be recognized may have different mor-

74

phological properties or occur in different contexts.
Indeed, since most existing learning-based NER ap-
proaches explore a large feature space, without regu-
larization, a learned NE recognizer can easily overfit
the training domain.

Domain overfitting is a serious problem in NER
because we often need to tag entities in completely
new domains. Given any new test domain, it is gen-
erally quite expensive to obtain a large amount of
labeled entity examples in that domain. As a result,
in many real applications, we must train on data that
do not fully resemble the test data.

This problem is especially serious in recognizing
entities, in particular gene names, from biomedical
literature. Gene names of one species can be quite
different from those of another species syntactically
due to their different naming conventions. For exam-
ple, some biological species such as yeast use sym-
bolic gene names like tL(CAA)G3, while some other
species such as fly use descriptive gene names like
wingless.

In this paper, we present several strategies for ex-
ploiting the domain structure in the training data to
learn a more robust named entity recognizer that can
perform well on a new domain. Our work is mo-
tivated by the fact that in many real applications,
the training data available to us naturally falls into
several domains that are similar in some aspects but
different in others. For example, in biomedical lit-
erature, the training data can be naturally grouped
by the biological species being discussed, while for
news articles, the training data can be divided by
the genre, the time, or the news agency of the arti-
cles. Our main idea is to exploit such domain struc-
ture in the training data to identify generalizable fea-
tures which, presumably, are more useful for rec-
ognizing named entities in a new domain. Indeed,
named entities across different domains often share
certain common features, and it is these common
features that are suitable for adaptation to new do-
mains; features that only work for a particular do-
main would not be as useful as those working for
multiple domains. In biomedical literature, for ex-
ample, surrounding words such as expression and
encode are strong indicators of gene mentions, re-
gardless of the specific biological species being dis-
cussed, whereas species-specific name characteris-
tics (e.g., prefix = “-less”) would clearly not gener-

alize well, and may even hurt the performance on a
new domain. Similarly, in news articles, the part-of-
speeches of surrounding words such as “followed by
a verb” are more generalizable indicators of name
mentions than capitalization, which might be mis-
leading if the genre of the new domain is different;
an extreme case is when every letter in the new do-
main is capitalized.

Based on these intuitions, we regard a feature as
generalizable if it is useful for NER in all training
domains, and propose a generalizability-based fea-
ture ranking method, in which we first rank the fea-
tures within each training domain, and then combine
the rankings to promote the features that are ranked
high in all domains. We further propose a rank-
based prior on logistic regression models, which
puts more emphasis on the more generalizable fea-
tures during the learning stage in a principled way.
Finally, we present a domain-aware validation strat-
egy for setting an appropriate parameter value for
the rank-based prior. We evaluated our method on
a biomedical literature data set with annotated gene
names from three species, fly, mouse, and yeast, by
treating one species as the new domain and the other
two as the training domains. The experiment results
show that the proposed method outperforms a base-
line method that represents the state-of-the-art NER
techniques.

The rest of the paper is organized as follows: In
Section 2, we introduce a feature ranking method
based on the generalizability of features across do-
mains. In Section 3, we briefly introduce the logistic
regression models for NER. We then propose a rank-
based prior on logistic regression models and de-
scribe the domain-aware validation strategy in Sec-
tion 4. The experiment results are presented in Sec-
tion 5. Finally we discuss related work in Section 6
and conclude our work in Section 7.

2 Generalizability-Based Feature Ranking

We take a commonly used approach and treat NER
as a sequential tagging problem (Borthwick, 1999;
Zhou and Su, 2002; Finkel et al., 2005). Each token
is assigned the tag I if it is part of an NE and the tag
O otherwise. Let x denote the feature vector for a
token, and let y denote the tag for x. We first com-
pute the probability p(y|x) for each token, using a

75

learned classifier. We then apply Viterbi algorithm
to assign the most likely tag sequence to a sequence
of tokens, i.e., a sentence. The features we use fol-
low the common practice in NER, including surface
word features, orthographic features, POS tags, sub-
strings, and contextual features in a local window of
size 5 around the target token (Finkel et al., 2005).

As in any learning problem, feature selection
may affect the NER performance significantly. In-
deed, a very likely cause of the domain overfit-
ting problem may be that the learned NE recog-
nizer has picked up some non-generalizable fea-
tures, which are not useful for a new domain. Below,
we present a generalizability-based feature ranking
method, which favors more generalizable features.

Formally, we assume that the training examples
are divided into m subsets T1, T2, . . . , Tm, corre-
sponding to m different domains D1,D2, . . . , Dm.
We further assume that the test set Tm+1 is from
a new domain Dm+1, and this new domain shares
some common features of the m training domains.
Note that these are reasonable assumptions that re-
flect the situation in real problems.

We use generalizability to denote the amount of
contribution a feature can make to the classification
accuracy on any domain. Thus, a feature with high
generalizability should be useful for classification
on any domain. To identify the highly generalizable
features, we must then compare their contributions
to classification among different domains.

Suppose in each individual domain, the features
can be ranked by their contributions to the classifi-
cation accuracy. There are different feature ranking
methods based on different criteria. Without loss of
generality, let us use rT : F → {1, 2, . . . , |F |} to
denote a ranking function that maps a feature f ∈ F
to a rank rT (f) based on a set of training examples
T , where F is the set of all features, and the rank de-
notes the position of the feature in the final ranked
list. The smaller the rank rT (f) is, the more impor-
tant the feature f is in the training set T . For the m
training domains, we thus have m ranking functions
rT1 , rT2 , . . . , rTm .

To identify the generalizable features across the m
different domains, we propose to combine the m in-
dividual domain ranking functions in the following
way. The idea is to give high ranks to features that
are useful in all training domains . To achieve this

goal, we first define a scoring function s : F → R
as follows:

s(f) =
m

min
i=1

1
rTi(f)

. (1)

We then rank the features in decreasing order of their
scores using the above scoring function. This is es-
sentially to rank features according to their maxi-
mum rank maxi rTi(f) among the m domains. Let
function rgen return the rank of a feature in this com-
bined, generalizability-based ranked list.

The original ranking function rT used for indi-
vidual domain feature ranking can use different cri-
teria such as information gain or χ2 statistic (Yang
and Pedersen, 1997). In our experiments, we used a
ranking function based on the model parameters of
the classifier, which we will explain in Section 5.2.

Next, we need to incorporate this preference for
generalizable features into the classifier. Note that
because this generalizability-based feature ranking
method is independent of the learning algorithm, it
can be applied on top of any classifier. In this work,
we choose the logistic regression classifier. One way
to incorporate the feature ranking into the classifier
is to select the top-k features, where k is chosen by
cross validation. There are two potential problems
with this hard feature selection approach. First, once
k features are selected, they are treated equally dur-
ing the learning stage, resulting in a loss of the pref-
erence among these k features. Second, this incre-
mental feature selection approach does not consider
the correlation among features. We propose an al-
ternative way to incorporate the feature ranking into
the classifier, where the preference for generalizable
features is transformed into a non-uniform prior over
the feature parameters in the model. This can be re-
garded as a soft feature selection approach.

3 Logistic Regression for NER

In binary logistic regression models, the probability
of an observation x being classified as I is

p(I|x, β) =
exp(β0 +

∑|F |
i=1 βixi)

1 + exp(β0 +
∑|F |

i=1 βixi)
(2)

=
exp(β · x′)

1 + exp(β · x′)
, (3)

76

where β0 is the bias weight, βi (1 ≤ i ≤ |F |)
are the weights for the features, and x′ is the aug-
mented feature vector with x0 = 1. The weight vec-
tor β can be learned from the training examples by
a maximum likelihood estimator. It is worth point-
ing out that logistic regression has a close relation
with maximum entropy models. Indeed, when the
features in a maximum entropy model are defined as
conjunctions of a feature on observations only and
a Kronecker delta of a class label, which is a com-
mon practice in NER, the maximum entropy model
is equivalent to a logistic regression model (Finkel
et al., 2005). Thus the logistic regression method we
use for NER is essentially the same as the maximum
entropy models used for NER in previous work.

To avoid overfitting, a zero mean Gaussian prior
on the weights is usually used (Chen and Rosenfeld,
1999; Bender et al., 2003), and a maximum a poste-
rior (MAP) estimator is used to maximize the poste-
rior probability:

β̂ = arg max
β

p(β)
N∏

j=1

p(yj |xj,β), (4)

where yj is the true class label for xj, N is the num-
ber of training examples, and

p(β) =
|F |∏
i=1

1√
2πσ2

i

exp(− β2
i

2σ2
i

). (5)

In previous work, σi are set uniformly to the same
value for all features, because there is in general no
additional prior knowledge about the features.

4 Rank-Based Prior

Instead of using the same σi for all features, we pro-
pose a rank-based non-uniform Gaussian prior on
the weights of the features so that more general-
izable features get higher prior variances (i.e., low
prior strength) and features on the bottom of the list
get low prior variances (i.e., high prior strength).
Since the prior has a zero mean, such a prior would
force features on the bottom of the ranked list, which
have the least generalizability, to have near-zero
weights, but allow more generalizable features to be
assigned higher weights during the training stage.

4.1 Transformation Function
We need to find a transformation function h :
{1, 2, . . . , |F |} → R+ so that we can set σ2

i =
h(rgen(fi)), where rgen(fi) is the rank of feature
fi in the generalizability-based ranked feature list,
as defined in Section 2. We choose the following
h function because it has the desired properties as
described above:

h(r) =
a

r1/b
, (6)

where a and b (a, b > 0) are parameters that control
the degree of the confidence in the generalizability-
based ranked feature list. Note that a corresponds to
the prior variance assigned to the top-most feature in
the ranked list. When b is small, the prior variance
drops rapidly as the rank r increases, giving only a
small number of top features high prior variances.
When b is larger, there will be less discrimination
among the features. When b approaches infinity, the
prior becomes a uniform prior with the variance set
to a for all features. If we set a small threshold τ on
the variance, then we can derive that at least m =(

a
τ

)
b features have a prior variance greater than τ .

Thus b is proportional to the logarithm of the number
of features that are assigned a variance greater than
the threshold τ when a is fixed. Figure 1 shows the
h function when a is set to 20 and b is set to a set of
different values.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

h(
r)

r

b = 2
b = 4
b = 6
b = ∞

Figure 1: Transformation Function h(r) = 20
r1/b

4.2 Parameter Setting using Domain-Aware
Validation

We need to set the appropriate values for the param-
eters a and b. For parameter a, we use the following

77

simple strategy to obtain an estimation. We first train
a logistic regression model on all the training data
using a Gaussian prior with a fixed variance (set to
1 in our experiments). We then find the maximum
weight

βmax =
|F |

max
i=1

|βi| (7)

in this trained model. Finally we set a = β2
max. Our

reasoning is that since a is the variance of the prior
for the best feature, a is related to the “permissible
range” of β for the best feature, and βmax gives us a
way for adjusting a according to the empirical range
of βi’s.

As we pointed out in Section 4.1, when a is fixed,
parameter b controls the number of top features that
are given a relatively high prior variance, and hence
implicitly controls the number of top features to
choose for the classifier to put the most weights on.
To select an appropriate value of b, we can use a
held-out validation set to tune the parameter value
b. Here we present a validation strategy that exploits
the domain structure in the training data to set the
parameter b for a new domain. Note that in regular
validation, both the training set and the validation
set contain examples from all training domains. As
a result, the average performance on the validation
set may be dominated by domains in which the NEs
are easy to classify. Since our goal is to build a clas-
sifier that performs well on new domains, we should
pay more attention to hard domains that have lower
classification accuracy. We should therefore exam-
ine the performance of the classifier on each training
domain individually in the validation stage to gain
an insight into the appropriate value of b for a new
domain, which has an equal chance of being similar
to any of the training domains.

Our domain-aware validation strategy first finds
the optimal value of b for each training domain. For
each subset Ti of the training data belonging to do-
main Di, we divide it into a training set T t

i and a val-
idation set T v

i . Then for each domain Di, we train a
classifier on the training sets of all domains, that is,
we train on

⋃m
j=1 T t

j . We then test the classifier on
T v

i . We try a set of different values of b with a fixed
value of a, and choose the optimal b that gives the
best performance on T v

i . Let this optimal value of b
for domain Di be bi.

Given bi (1 ≤ i ≤ m), we can choose an appropri-
ate value of bm+1 for an unknown test domain Dm+1

based on the assumption that Dm+1 is a mixture of
all the training domains. bm+1 is then chosen to be
a weighted average of bi, (1 ≤ i ≤ m):

bm+1 =
m∑

i=1

λibi, (8)

where λi indicates how similar Dm+1 is to Di. In
many cases, the test domain Dm+1 is completely
unknown. In this case, the best we can do is to set
λi = 1/m for all i, that is, to assume that Dm+1 is
an even mixture of all training domains.

5 Empirical Evaluation

5.1 Experimental Setup
We evaluated our domain-aware approach to NER
on the problem of gene recognition in biomedical
literature. The data we used is from BioCreAtIvE
Task 1B (Hirschman et al., 2005). We chose this
data set because it contains three subsets of MED-
LINE abstracts with gene names from three species
(fly, mouse, and yeast), while no other existing an-
notated NER data set has such explicit domain struc-
ture. The original BioCreAtIvE 1B data was not
provided with every gene annotated, but for each ab-
stract, a list of genes that were mentioned in the ab-
stract was given. A gene synonym list was also given
for each species. We used a simple string matching
method with slight relaxation to tag the gene men-
tions in the abstracts. We took 7500 sentences from
each species for our experiments, where half of the
sentences contain gene mentions. We further split
the 7500 sentences of each species into two sets,
5000 for training and 2500 for testing.

We conducted three sets of experiments, each
combining the 5000-sentence training data of two
species as training data, and the 2500-sentence test
data of the third species as test data. The 2500-
sentence test data of the training species was used
for validation. We call these three sets of experi-
ments F+M⇒Y, F+Y⇒M, and M+Y⇒F.

we use FEX1 for feature extraction and BBR2 for
logistic regression in our experiments.

1http://l2r.cs.uiuc.edu/ cogcomp/asoftware.php?skey=FEX
2http://www.stat.rutgers.edu/ madigan/BBR/

78

5.2 Comparison with Baseline Method

Because the data set was generated by our automatic
tagging procedure using the given gene lists, there is
no previously reported performance on this data set
for us to compare with. Therefore, to see whether
using the domain structure in the training data can
really help the adaptation to new domains, we com-
pared our method with a state-of-the-art baseline
method based on logistic regression. It uses a Gaus-
sian prior with zero mean and uniform variance on
all model parameters. It also employs 5-fold regular
cross validation to pick the optimal variance for the
prior. Regular feature selection is also considered
in the baseline method, where the features are first
ranked according to some criterion, and then cross
validation is used to select the top-k features. We
tested three popular regular feature ranking meth-
ods: feature frequency (F), information gain (IG),
and χ2 statistic (CHI). These methods were dis-
cussed in (Yang and Pedersen, 1997). However, with
any of the three feature ranking criteria, cross valida-
tion showed that selecting all features gave the best
average validation performance. Therefore, the best
baseline method which we compare our method with
uses all features. We call the baseline method BL.

In our method, the generalizability-based feature
ranking requires a first step of feature ranking within
each training domain. While we could also use F,
IG or CHI to rank features in each domain, to make
our method self-contained, we used the following
strategy. We first train a logistic regression model
on each domain using a zero-mean Gaussian prior
with variance set to 1. Then, features are ranked
in decreasing order of the absolute values of their
weights. The rationale is that, in general, features
with higher weights in the logistic regression model
are more important. With this ranking within each
training domain, we then use the generalizability-
based feature ranking method to combine the m
domain-specific rankings. The obtained ranked fea-
ture list is used to construct the rank-based prior,
where the parameters a and b are set in the way as
discussed in Section 4.2. We call our method DOM.

In Table 1, we show the precision, recall, and F1
measures of our domain-aware method (DOM) and
the baseline method (BL) in all three sets of exper-
iments. We see that the domain-aware method out-

performs the baseline method in all three cases when
F1 is used as the primary performance measure. In
F+Y⇒M and M+Y⇒F, both precision and recall are
also improved over the baseline method.

Exp Method P R F1
F+M⇒Y BL 0.557 0.466 0.508

DOM 0.575 0.516 0.544
F+Y⇒M BL 0.571 0.335 0.422

DOM 0.582 0.381 0.461
M+Y⇒F BL 0.583 0.097 0.166

DOM 0.591 0.139 0.225

Table 1: Comparison of the domain-aware method
and the baseline method, where in the domain-aware
method, b = 0.5b1 + 0.5b2

Note that the absolute performance shown in Ta-
ble 1 is lower than the state-of-the-art performance
of gene recognition (Finkel et al., 2005).3 One rea-
son is that we explicitly excluded the test domain
from the training data, while most previous work on
gene recognition was conducted on a test set drawn
from the same collection as the training data. An-
other reason is that we used simple string match-
ing to generate the data set, which introduced noise
to the data because gene names often have irregular
lexical variants.

5.3 Comparison with Regular Feature Ranking
Methods

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 1 2 3 4 5 6 7 8 9 10

F1

b

F+M⇒Y

DOM
F

IG
CHI
BL

Figure 2: Comparison between regular feature rank-
ing and generalizability-based feature ranking on
F+M⇒Y

3Our baseline method performed comparably to the state-of-
the-art systems on the standard BioCreAtIvE 1A data.

79

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

F1

b

F+Y⇒M

DOM
F

IG
CHI
BL

Figure 3: Comparison between regular feature rank-
ing and generalizability-based feature ranking on
F+Y⇒M

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

F1

b

M+Y⇒F

DOM
F

IG
CHI
BL

Figure 4: Comparison between regular feature rank-
ing and generalizability-based feature ranking on
M+Y⇒F

To further understand how our method improved
the performance, we compared the generalizability-
based feature ranking method with the three regular
feature ranking methods, F, IG, and CHI, that were
used in the baseline method. To make fair compar-
ison, for the regular feature ranking methods, we
also used the rank-based prior transformation as de-
scribed in Section 4 to incorporate the preference for
top-ranked features. Figure 2, Figure 3 and Figure 4
show the performance of different feature ranking
methods in the three sets of experiments as the pa-
rameter b for the rank-based prior changes. As we
pointed out in Section 4, b is proportional to the log-
arithm of the number of “effective features”.

From the figures, we clearly see that the curve for
the generalizability-based ranking method DOM is
always above the curves of the other methods, indi-
cating that when the same amount of top features are
being emphasized by the prior, the features selected
by DOM give better performance on a new domain
than the features selected by the other methods. This
suggests that the top-ranked features in DOM are in-
deed more suitable for adaptation to new domains
than the top features ranked by the other methods.

The figures also show that the ranking method
DOM achieved better performance than the baseline
over a wide range of b values, especially in F+Y⇒M
and M+Y⇒F, whereas for methods F, IG and CHI,
the performance quickly converged to the baseline
performance as b increased.

It is interesting to note the comparison between F
and IG (or CHI). In general, when the test data is
similar to the training data, IG (or CHI) is advanta-
geous over F (Yang and Pedersen, 1997). However,
in this case when the test domain is different from
the training domains, F shows advantages for adap-
tation. A possible explanation is that frequent fea-
tures are in general less likely to be domain-specific,
and therefore feature frequency can also be used as a
criterion to select generalizable features and to filter
out domain-specific features, although it is still not
as effective as the method we proposed.

6 Related Work

The NER problem has been extensively studied in
the NLP community. Most existing work has fo-
cused on supervised learning approaches, employ-
ing models such as HMMs (Zhou and Su, 2002),
MEMMs (Bender et al., 2003; Finkel et al., 2005),
and CRFs (McCallum and Li, 2003). Collins and
Singer (1999) proposed an unsupervised method for
named entity classification based on the idea of co-
training. Ando and Zhang (2005) proposed a semi-
supervised learning method to exploit unlabeled data
for building more robust NER systems. In all these
studies, the evaluation is conducted on unlabeled
data similar to the labeled data.

Recently there have been some studies on adapt-
ing NER systems to new domains employing tech-
niques such as active learning and semi-supervised
learning (Shen et al., 2004; Mohit and Hwa, 2005),

80

or incorporating external lexical knowledge (Cia-
ramita and Altun, 2005). However, there has not
been any study on exploiting the domain structure
contained in the training examples themselves to
build generalizable NER systems. We focus on
the domain structure in the training data to build
a classifier that relies more on features generaliz-
able across different domains to avoid overfitting the
training domains. As our method is orthogonal to
most of the aforementioned work, they can be com-
bined to further improve the performance.

7 Conclusion and Future Work

Named entity recognition is an important problem
that can help many text mining and natural lan-
guage processing tasks such as information extrac-
tion and question answering. Currently NER faces
a poor domain adaptability problem when the test
data is not from the same domain as the training
data. We present several strategies to exploit the
domain structure in the training data to improve the
performance of the learned NER classifier on a new
domain. Our results show that the domain-aware
strategies we proposed improved the performance
over a baseline method that represents the state-of-
the-art NER techniques.

Acknowledgments

This work was in part supported by the National
Science Foundation under award numbers 0425852,
0347933, and 0428472. We would like to thank
Bruce Schatz, Xin He, Qiaozhu Mei, Xu Ling, and
some other BeeSpace project members for useful
discussions. We would like to thank Mark Sammons
for his help with FEX. We would also like to thank
the anonymous reviewers for their comments.

References
Rie Kubota Ando and Tong Zhang. 2005. A high-

performance semi-supervised learning method for text
chunking. In Proceedings of ACL-2005.

Oliver Bender, Franz Josef Och, and Hermann Ney.
2003. Maximum entropy models for named entity
recognition. In Proceedings of CoNLL-2003.

Andrew Borthwick. 1999. A Maximum Entropy Ap-
proach to Named Entity Recognition. Ph.D. thesis,
New York University.

Stanley F. Chen and Ronald Rosenfeld. 1999. A Gaus-
sian prior for smoothing maximum entropy models.
Technical Report CMU-CS-99-108, School of Com-
puter Science, Carnegie Mellon University.

Massimiliano Ciaramita and Yasemin Altun. 2005.
Named-entity recognition in novel domains with ex-
ternal lexical knowledge. In Workshop on Advances
in Structured Learning for Text and Speech Processing
(NIPS-2005).

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In Proceedings
of EMNLP/VLC-1999.

Jenny Finkel, Shipra Dingare, Christopher D. Manning,
Malvina Nissim, Beatrice Alex, and Claire Grover.
2005. Exploring the boundaries: Gene and protein
identification in biomedical text. BMC Bioinformat-
ics, 6(Suppl 1):S5.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of CoNLL-2003.

Lynette Hirschman, Marc Colosimo, Alexander Morgan,
and Alexander Yeh. 2005. Overview of BioCreAtIvE
task 1B: normailized gene lists. BMC Bioinformatics,
6(Suppl 1):S11.

Fei Huang and Stephan Vogel. 2002. Improved named
entity translation and bilingual named entity extrac-
tion. In ICMI-2002.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D. Manning. 2003. Named entity recogni-
tion with character-level models. In Proceedings of
CoNLL-2003.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of CoNLL-2003.

Behrang Mohit and Rebecca Hwa. 2005. Syntax-based
semi-supervised named entity tagging. In Proceedings
of ACL-2005.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and Chew-
Lim Tan. 2004. Multi-criteria-based active learning
for named entity recognition. In Proceedings of ACL-
2004.

Rohini Srihari and Wei Li. 1999. Information extraction
supported question answering. In TREC-8.

Yiming Yang and Jan O. Pedersen. 1997. A comparative
study on feature selection in text categorization. In
Proceedings of ICML-1997.

Guodong Zhou and Jian Su. 2002. Named entity recog-
nition using an HMM-based chunk tagger. In Proceed-
ings of ACL-2002.

81

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 82–88,
New York, June 2006.c©2006 Association for Computational Linguistics

Named Entity Transliteration and Discovery from Multilingual Comparable
Corpora

Alexandre Klementiev Dan Roth
Department of Computer Science

University of Illinois
Urbana, IL 61801�

klementi,danr � @uiuc.edu

Abstract

Named Entity recognition (NER) is an im-
portant part of many natural language pro-
cessing tasks. Most current approaches
employ machine learning techniques and
require supervised data. However, many
languages lack such resources. This paper
presents an algorithm to automatically dis-
cover Named Entities (NEs) in a resource
free language, given a bilingual corpora
in which it is weakly temporally aligned
with a resource rich language. We ob-
serve that NEs have similar time distribu-
tions across such corpora, and that they
are often transliterated, and develop an al-
gorithm that exploits both iteratively. The
algorithm makes use of a new, frequency
based, metric for time distributions and a
resource free discriminative approach to
transliteration. We evaluate the algorithm
on an English-Russian corpus, and show
high level of NEs discovery in Russian.

1 Introduction

Named Entity recognition has been getting much
attention in NLP research in recent years, since it
is seen as a significant component of higher level
NLP tasks such as information distillation and ques-
tion answering, and an enabling technology for bet-
ter information access. Most successful approaches
to NER employ machine learning techniques, which
require supervised training data. However, for many

languages, these resources do not exist. Moreover,
it is often difficult to find experts in these languages
both for the expensive annotation effort and even for
language specific clues. On the other hand, compa-
rable multilingual data (such as multilingual news
streams) are increasingly available (see section 4).

In this work, we make two independent observa-
tions about Named Entities encountered in such cor-
pora, and use them to develop an algorithm that ex-
tracts pairs of NEs across languages. Specifically,
given a bilingual corpora that is weakly temporally
aligned, and a capability to annotate the text in one
of the languages with NEs, our algorithm identifies
the corresponding NEs in the second language text,
and annotates them with the appropriate type, as in
the source text.

The first observation is that NEs in one language
in such corpora tend to co-occur with their coun-
terparts in the other. E.g., Figure 1 shows a his-
togram of the number of occurrences of the word
Hussein and its Russian transliteration in our bilin-
gual news corpus spanning years 2001 through late
2005. One can see several common peaks in the two
histograms, largest one being around the time of the
beginning of the war in Iraq. The word Russia, on
the other hand, has a distinctly different temporal
signature. We can exploit such weak synchronicity
of NEs across languages as a way to associate them.
In order to score a pair of entities across languages,
we compute the similarity of their time distributions.

The second observation is that NEs are often
transliterated or have a common etymological origin
across languages, and thus are phonetically similar.
Figure 2 shows an example list of NEs and their pos-

82

 0

 5

 10

 15

 20
’hussein’ (English)

 0

 5

 10

 15

 20
’hussein’ (Russian)

 0

 5

 10

 15

 20

01/01/01 10/05/05

N
um

be
r

of
 O

cc
ur

en
ce

s

Time

’russia’ (English)

Figure 1: Temporal histograms for Hussein (top),
its Russian transliteration (middle), and of the word
Russia (bottom).

sible Russian transliterations.

Approaches that attempt to use these two charac-
teristics separately to identify NEs across languages
would have significant shortcomings. Translitera-
tion based approaches require a good model, typi-
cally handcrafted or trained on a clean set of translit-
eration pairs. On the other hand, time sequence sim-
ilarity based approaches would incorrectly match
words which happen to have similar time signatures
(e.g. Taliban and Afghanistan in recent news).

We introduce an algorithm we call co-ranking
which exploits these observations simultaneously to
match NEs on one side of the bilingual corpus to
their counterparts on the other. We use a Discrete
Fourier Transform (Arfken, 1985) based metric for
computing similarity of time distributions, and we
score NEs similarity with a linear transliteration
model. For a given NE in one language, the translit-
eration model chooses a top ranked list of candidates
in another language. Time sequence scoring is then
used to re-rank the candidates and choose the one
best temporally aligned with the NE. That is, we at-
tempt to choose a candidate which is both a good
transliteration (according to the current model) and
is well aligned with the NE. Finally, pairs of NEs

����������	�
��� ����	�	����������
��������� ����� ��!
"�#%$ �'& #)(* ��+�,-!�+).
/ ('02143657(81 9 .�:8; *=< .7;
��> 0 / # � ��?�@ 9 +)��A
& 5-BDCE0-F�F G)<H*JI @-K
L 0M$ & CN02F�1�O P @-, I @2K4; Q

Figure 2: Example English NEs and their transliter-
ated Russian counterparts.

and the best candidates are used to iteratively train
the transliteration model.

A major challenge inherent in discovering
transliterated NEs is the fact that a single entity may
be represented by multiple transliteration strings.
One reason is language morphology. For example,
in Russian, depending on a case being used, the
same noun may appear with various endings. An-
other reason is the lack of transliteration standards.
Again, in Russian, several possible transliterations
of an English entity may be acceptable, as long as
they are phonetically similar to the source.

Thus, in order to rely on the time sequences we
obtain, we need to be able to group variants of
the same NE into an equivalence class, and col-
lect their aggregate mention counts. We would then
score time sequences of these equivalence classes.
For instance, we would like to count the aggregate
number of occurrences of

�
Herzegovina, Hercegov-

ina � on the English side in order to map it accu-
rately to the equivalence class of that NE’s vari-
ants we may see on the Russian side of our cor-
pus (e.g.

�HRTS8UWVXSMY)Z�[�\D]_^�`aRTS8UWVXSMY)Z�[�\D]cb)`�RdSeUWVXSMf
Y)Z�[�\D]TgW`dRTS8UWVXSMY)Z�[�\D]_Zdh\ �).

One of the objectives for this work was to use as
little of the knowledge of both languages as possible.
In order to effectively rely on the quality of time se-
quence scoring, we used a simple, knowledge poor
approach to group NE variants for Russian.

In the rest of the paper, whenever we refer to a
Named Entity, we imply an NE equivalence class.
Note that although we expect that better use of lan-
guage specific knowledge would improve the re-
sults, it would defeat one of the goals of this work.

83

2 Previous Work

There has been other work to automatically discover
NE with minimal supervision. Both (Cucerzan and
Yarowsky, 1999) and (Collins and Singer, 1999)
present algorithms to obtain NEs from untagged cor-
pora. However, they focus on the classification stage
of already segmented entities, and make use of con-
textual and morphological clues that require knowl-
edge of the language beyond the level we want to
assume with respect to the target language.

The use of similarity of time distributions for in-
formation extraction, in general, and NE extraction,
in particular, is not new. (Hetland, 2004) surveys
recent methods for scoring time sequences for sim-
ilarity. (Shinyama and Sekine, 2004) used the idea
to discover NEs, but in a single language, English,
across two news sources.

A large amount of previous work exists on
transliteration models. Most are generative and con-
sider the task of producing an appropriate translit-
eration for a given word, and thus require consid-
erable knowledge of the languages. For example,
(AbdulJaleel and Larkey, 2003; Jung et al., 2000)
train English-Arabic and English-Korean generative
transliteration models, respectively. (Knight and
Graehl, 1997) build a generative model for back-
ward transliteration from Japanese to English.

While generative models are often robust, they
tend to make independence assumptions that do not
hold in data. The discriminative learning framework
argued for in (Roth, 1998; Roth, 1999) as an alter-
native to generative models is now used widely in
NLP, even in the context of word alignment (Taskar
et al., 2005; Moore, 2005). We make use of it here
too, to learn a discriminative transliteration model
that requires little knowledge of the target language.

3 Co-ranking: An Algorithm for NE
Discovery

In essence, the algorithm we present uses temporal
alignment as a supervision signal to iteratively train
a discriminative transliteration model, which can be
viewed as a distance metric between and English NE
and a potential transliteration. On each iteration, it
selects a set of transliteration candidates for each NE
according to the current model (line 6). It then uses
temporal alignment (with thresholding) to select the

best transliteration candidate for the next round of
training (lines 8, and 9).

Once the training is complete, lines 4 through 10
are executed without thresholding for each NE in �
to discover its counterpart in � .

3.1 Time Sequence Generation and Matching

In order to generate time sequence for a word, we
divide the corpus into a sequence of temporal bins,
and count the number of occurrences of the word in
each bin. We then normalize the sequence.

We use a method called the F-index (Hetland,
2004) to implement the �������
	 similarity function
on line 8 of the algorithm. We first run a Discrete
Fourier Transform on a time sequence to extract its
Fourier expansion coefficients. The score of a pair of
time sequences is then computed as a Euclidian dis-
tance between their expansion coefficient vectors.

.
Input: Bilingual, comparable corpus (� , �), set of

named entities ���� from � , threshold �
Output: Transliteration model �
Initialize � ;1 �
������ � , collect time distribution ��� � ;2

repeat3 ��� �
;4

for each � � �!�� � do5

Use � to collect a set of candidates ��#"$�%�6
with high transliteration scores;�
�������" collect time distribution ���&" ;7

Select candidate � " ���� " with the best8 ')(+*-,/.10�243 �5� �76 �5�&"98 ;
if
'

exceeds � , add tuple
3 ��� 6 � " 8 to

�
;9

end10

Use

�
to train � ;11

until D stops changing between iterations ;12

Algorithm 1: Co-ranking: an algorithm for it-
erative cross lingual NE discovery.

3.1.1 Equivalence Classes

As we mentioned earlier, an NE in one language
may map to multiple morphological variants and
transliterations in another. Identification of the en-
tity’s equivalence class of transliterations is impor-
tant for obtaining its accurate time sequence.

In order to keep to our objective of requiring as lit-
tle language knowledge as possible, we took a rather
simplistic approach to take into account morpholog-

84

ical ambiguities of NEs in Russian. Two words were
considered variants of the same NE if they share a
prefix of size five or longer. At this point, our al-
gorithm takes a simplistic approach also for the En-
glish side of the corpus – each unique word had its
own equivalence class although, in principle, we can
incorporate works such as (Li et al., 2004) into the
algorithm. A cumulative distribution was then col-
lected for such equivalence classes.

3.2 Transliteration Model

Unlike most of the previous work to transliteration,
that consider generative transliteration models, we
take a discriminative approach. We train a linear
model to decide whether a word �����+� is a translit-
eration of an NE ����� � . The words in the pair
are partitioned into a set of substrings ��� and �	�
up to a particular length (including the empty string
). Couplings of the substrings
 ����1����� from both

sets produce features we use for training. Note
that couplings with the empty string represent inser-
tions/omissions.

Consider the following example: (��� , ���) =
(powell, pauel). We build a feature vector from this
example in the following manner:

� First, we split both words into all possible sub-
strings of up to size two:

����� � ���� �������1	������������ ��� �	�����%	��1	 ���!��� �
���"� � �����#$��%�1	����&���'#���#(%��% 	��1	 � �

� We build a feature vector by coupling sub-
strings from the two sets:

�
)�*� �+��
)���#,�+�.-/-/-0
1�2��#(%3�+�.-/-/-0
 		���1	 �4�+�.-/-5-0
������1		�6���
We use the observation that transliteration tends

to preserve phonetic sequence to limit the number
of couplings. For example, we can disallow the
coupling of substrings whose starting positions are
too far apart: thus, we might not consider a pair-
ing
)� ����%9		� in the above example. In our experi-
ments, we paired substrings if their positions in their
respective words differed by -1, 0, or 1.

We use the perceptron (Rosenblatt, 1958) algo-
rithm to train the model. The model activation pro-
vides the score we use to select best transliterations
on line 6. Our version of perceptron takes exam-
ples with a variable number of features; each ex-
ample is a set of all features seen so far that are

active in the input. As the iterative algorithm ob-
serves more data, it discovers and makes use of more
features. This model is called the infinite attribute
model (Blum, 1992) and it follows the perceptron
version in SNoW (Roth, 1998).

Positive examples used for iterative training are
pairs of NEs and their best temporally aligned
(thresholded) transliteration candidates. Negative
examples are English non-NEs paired with random
Russian words.

4 Experimental Study

We ran experiments using a bilingual comparable
English-Russian news corpus we built by crawling
a Russian news web site (www.lenta.ru).
The site provides loose translations of (and
pointers to) the original English texts. We col-
lected pairs of articles spanning from 1/1/2001
through 12/24/2004. The corpus consists of
2,022 documents with 0-8 documents per day.
The corpus is available on our web page at
http://L2R.cs.uiuc.edu/ 7 cogcomp/.
The English side was tagged with a publicly
available NER system based on the SNoW learning
architecture (Roth, 1998), that is available at the
same site. This set of English NEs was hand-pruned
to remove incorrectly classified words to obtain 978
single word NEs.

In order to reduce running time, some limited
preprocessing was done on the Russian side. All
classes, whose temporal distributions were close
to uniform (i.e. words with a similar likelihood
of occurrence throughout the corpus) were deemed
common and not considered as NE candidates.
Unique words were grouped into 15,594 equivalence
classes, and 1,605 of those classes were discarded
using this method.

Insertions/omissions features were not used in the
experiments as they provided no tangible benefit for
the languages of our corpus.

Unless mentioned otherwise, the transliteration
model was initialized with a subset of 254 pairs
of NEs and their transliteration equivalence classes.
Negative examples here and during the rest of the
training were pairs of randomly selected non-NE
English and Russian words.

In each iteration, we used the current transliter-

85

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

)

Iteration

Complete Algorithm
Transliteration Model Only

Sequence Only

Figure 3: Proportion of correctly discovered NE
pairs vs. iteration. Complete algorithm outperforms
both transliteration model and temporal sequence
matching when used on their own.

ation model to find a list of 30 best transliteration
equivalence classes for each NE. We then computed
time sequence similarity score between NE and each
class from its list to find the one with the best match-
ing time sequence. If its similarity score surpassed
a set threshold, it was added to the list of positive
examples for the next round of training. Positive ex-
amples were constructed by pairing each English NE
with each of the transliterations from the best equiv-
alence class that surpasses the threshold. We used
the same number of positive and negative examples.

For evaluation, random 727 of the total of 978 NE
pairs matched by the algorithm were selected and
checked by a language expert. Accuracy was com-
puted as the percentage of those NEs correctly dis-
covered by the algorithm.

4.1 NE Discovery

Figure 3 shows the proportion of correctly discov-
ered NE transliteration equivalence classes through-
out the run of the algorithm. The figure also shows
the accuracy if transliterations are selected accord-
ing to the current transliteration model (top scor-
ing candidate) and sequence matching alone. The
transliteration model alone achieves an accuracy of
about 47%, while the time sequence alone gets about

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

)

Iteration

254 examples
127 examples
85 examples

Figure 5: Proportion of the correctly discovered NE
pairs for various initial example set sizes. Decreas-
ing the size does not have a significant effect of the
performance on later iterations.

41%. The combined algorithm achieves about 66%,
giving a significant improvement.

In order to understand what happens to the
transliteration model as the algorithm proceeds, let
us consider the following example. Figure 4 shows
parts of transliteration lists for NE forsyth for two
iterations of the algorithm. The weak transliteration
model selects the correct transliteration (italicized)
as the 24th best transliteration in the first iteration.
Time sequence scoring function chooses it to be one
of the training examples for the next round of train-
ing of the model. By the eighth iteration, the model
has improved to select it as a best transliteration.

Not all correct transliterations make it to the top of
the candidates list (transliteration model by itself is
never as accurate as the complete algorithm on Fig-
ure 3). That is not required, however, as the model
only needs to be good enough to place the correct
transliteration anywhere in the candidate list.

Not surprisingly, some of the top transliteration
candidates start sounding like the NE itself, as train-
ing progresses. On Figure 4, candidates for forsyth
on iteration 7 include fross and fossett.

86

���������	��
����� ���������	��
�����
� ���������! #"$��%�"$&'%�"$&�(!��)��*%�"�&�(!+�&-, � .0/214365�7�8:9#;<5�=>;$=?;A@�B
C ��DE���*FG #"�H*��I��*%J"�H���I�+*+'%�"�+�HK%�"�+*L�M�, C �JDE�J�*FN #"�H*��I��*%�"�H*��I�+�+'%J"�+�HK%�"$+�L�M*,
O �����*��P�&*IQ �"$R*%�"2, O S������*TU �"�VJ�JFW%J"�V�R�%J"�H�+'%�"$L�TYX-%�"$V�TE%-Z�Z�Z�,
[D\H������! #"$I*�J%�"$I�]'%*"2%�"$I�]�+*+-, [DE���J���

^ _ DE�J���#��L! #"$L�%J"�L�R*%�"�LJ`J%J"$R*%�"�`�,
a bC [.0/21-365�7�8c9�;<5d=?;$=e;A@�B f
g h

Figure 4: Transliteration lists for forsyth for two iterations of the algorithm ranked by the current transliter-
ation model. As the model improves, the correct transliteration moves up the list.

4.2 Rate of Improvement vs. Initial Example
Set Size

We ran a series of experiments to see how the size
of the initial training set affects the accuracy of the
model as training progresses (Figure 5). Although
the performance of the early iterations is signifi-
cantly affected by the size of the initial training ex-
ample set, the algorithm quickly improves its perfor-
mance. As we decrease the size from 254, to 127, to
85 examples, the accuracy of the first iteration drops
by roughly 10% each time. However, starting at the
6th iteration, the three are with 3% of one another.

These numbers suggest that we only need a few
initial positive examples to bootstrap the translitera-
tion model. The intuition is the following: the few
examples in the initial training set produce features
corresponding to substring pairs characteristic for
English-Russian transliterations. Model trained on
these (few) examples chooses other transliterations
containing these same substring pairs. In turn, the
chosen positive examples contain other characteris-
tic substring pairs, which will be used by the model
to select more positive examples on the next round,
and so on.

5 Conclusions

We have proposed a novel algorithm for cross lin-
gual NE discovery in a bilingual weakly temporally
aligned corpus. We have demonstrated that using
two independent sources of information (transliter-
ation and temporal similarity) together to guide NE
extraction gives better performance than using either
of them alone (see Figure 3).

We developed a linear discriminative translitera-

ikjml�npopq�rtsui vxwyq�q�o�z�j{sui}|�~-wmo��?�E�Jnpz�q�q
�����*�#����� �*�*�������*���Q�#�A�����6���������-�
���2�#�J��� �J���#�����Q�#�A���������*�������
�����#�* ��*¡£¢�¤ ���*¥#�*���*�����
¦ � ¦ � ¦ �¤ §���§��#¨��!�#�$©*�����J���d�$©�ª�«E�J��¬'����©'�
���¡£����� ���J¥#���*�#�J®
��� ¦�¯ �� ����§�°J���Q�#�$�J®Y���2�
± �#��²W��¡ ®?��©�¨����³���$�*����§��
���¡£�#´£´6 ���J¥#��µ�µ������J�#�
��� ¦ �¶	�J� ·���¨J�d¸����Q�#�A�����2�
�� �¹ ± �� ��������®?���
º �����¶���»��¼ ½\���	¸����	¾Q�#�6���$���
��¼* J¶ ¿*�d¸��

Figure 6: Example of correct transliterations discov-
ered by the algorithm.

tion model, and presented a method to automatically
generate features. For time sequence matching, we
used a scoring metric novel in this domain. As sup-
ported by our own experiments, this method outper-
forms other scoring metrics traditionally used (such
as cosine (Salton and McGill, 1986)) when corpora
are not well temporally aligned.

In keeping with our objective to provide as lit-
tle language knowledge as possible, we introduced
a simplistic approach to identifying transliteration
equivalence classes, which sometimes produced er-
roneous groupings (e.g. an equivalence class for
NE lincoln in Russian included both lincoln and lin-
colnshire on Figure 6). This approach is specific
to Russian morphology, and would have to be al-
tered for other languages. For example, for Arabic,
a small set of prefixes can be used to group most NE
variants. We expect that language specific knowl-

87

edge used to discover accurate equivalence classes
would result in performance improvements.

6 Future Work

In this work, we only consider single word Named
Entities. A subject of future work is to extend the
algorithm to the multi-word setting. Many of the
multi-word NEs are translated as well as transliter-
ated. For example, Mount in Mount Rainier will
probably be translated, and Rainier - transliterated.
If a dictionary exists for the two languages, it can be
consulted first, and, if a match is found, translitera-
tion model can be bypassed.

The algorithm can be naturally extended to com-
parable corpora of more than two languages. Pair-
wise time sequence scoring and transliteration mod-
els should give better confidence in NE matches.

It seems plausible to suppose that phonetic fea-
tures (if available) would help learning our translit-
eration model. We would like to verify if this is in-
deed the case.

The ultimate goal of this work is to automatically
tag NEs so that they can be used for training of an
NER system for a new language. To this end, we
would like to compare the performance of an NER
system trained on a corpus tagged using this ap-
proach to one trained on a hand-tagged corpus.

7 Acknowledgments

We thank Richard Sproat, ChengXiang Zhai, and
Kevin Small for their useful feedback during this
work, and the anonymous referees for their help-
ful comments. This research is supported by
the Advanced Research and Development Activity
(ARDA)’s Advanced Question Answering for Intel-
ligence (AQUAINT) Program and a DOI grant under
the Reflex program.

References
Nasreen AbdulJaleel and Leah S. Larkey. 2003. Statistical

transliteration for english-arabic cross language information
retrieval. In Proceedings of CIKM, pages 139–146, New
York, NY, USA.

George Arfken. 1985. Mathematical Methods for Physicists.
Academic Press.

Avrim Blum. 1992. Learning boolean functions in an infinite
attribute space. Machine Learning, 9(4):373–386.

Michael Collins and Yoram Singer. 1999. Unsupervised mod-
els for named entity classification. In Proc. of the Confer-
ence on Empirical Methods for Natural Language Process-
ing (EMNLP).

Silviu Cucerzan and David Yarowsky. 1999. Language in-
dependent named entity recognition combining morpholog-
ical and contextual evidence. In Proc. of the Conference
on Empirical Methods for Natural Language Processing
(EMNLP).

Magnus Lie Hetland, 2004. Data Mining in Time Series
Databases, chapter A Survey of Recent Methods for Effi-
cient Retrieval of Similar Time Sequences. World Scientific.

Sung Young Jung, SungLim Hong, and Eunok Paek. 2000. An
english to korean transliteration model of extended markov
window. In Proc. the International Conference on Compu-
tational Linguistics (COLING), pages 383–389.

Kevin Knight and Jonathan Graehl. 1997. Machine translitera-
tion. In Proc. of the Meeting of the European Association of
Computational Linguistics, pages 128–135.

Xin Li, Paul Morie, and Dan Roth. 2004. Identification and
tracing of ambiguous names: Discriminative and generative
approaches. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 419–424.

Robert C. Moore. 2005. A discriminative framework for bilin-
gual word alignment. In Proc. of the Conference on Empir-
ical Methods for Natural Language Processing (EMNLP),
pages 81–88.

Frank Rosenblatt. 1958. The perceptron: A probabilistic model
for information storage and organization in the brain. Psy-
chological Review, 65.

Dan Roth. 1998. Learning to resolve natural language am-
biguities: A unified approach. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages
806–813.

Dan Roth. 1999. Learning in natural language. In Proc. of
the International Joint Conference on Artificial Intelligence
(IJCAI), pages 898–904.

Gerard Salton and Michael J. McGill. 1986. Introduction to
Modern Information Retrieval. McGraw-Hill, Inc., New
York, NY, USA.

Yusuke Shinyama and Satoshi Sekine. 2004. Named entity dis-
covery using comparable news articles. In Proc. the Interna-
tional Conference on Computational Linguistics (COLING),
pages 848–853.

Ben Taskar, Simon Lacoste-Julien, and Michael Jordan. 2005.
Structured prediction via the extragradient method. In The
Conference on Advances in Neural Information Processing
Systems (NIPS). MIT Press.

88

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 89–95,
New York, June 2006.c©2006 Association for Computational Linguistics

Reducing Weight Undertraining
in Structured Discriminative Learning

Charles Sutton, Michael Sindelar, and Andrew McCallum
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003 USA

{casutton,mccallum}@cs.umass.edu, msindela@student.umass.edu

Abstract

Discriminative probabilistic models are very
popular in NLP because of the latitude they
afford in designing features. But training
involves complex trade-offs among weights,
which can be dangerous: a few highly-
indicative features can swamp the contribution
of many individually weaker features, causing
their weights to be undertrained. Such a model
is less robust, for the highly-indicative features
may be noisy or missing in the test data. To
ameliorate this weight undertraining, we intro-
duce several new feature bagging methods, in
which separate models are trained on subsets
of the original features, and combined using a
mixture model or a product of experts. These
methods include the logarithmic opinion pools
used by Smith et al. (2005). We evaluate fea-
ture bagging on linear-chain conditional ran-
dom fields for two natural-language tasks. On
both tasks, the feature-bagged CRF performs
better than simply training a single CRF on all
the features.

1 Introduction
Discriminative methods for training probabilistic models
have enjoyed wide popularity in natural language pro-
cessing, such as in part-of-speech tagging (Toutanova et
al., 2003), chunking (Sha and Pereira, 2003), named-
entity recognition (Florian et al., 2003; Chieu and Ng,
2003), and most recently parsing (Taskar et al., 2004).
A discriminative probabilistic model is trained to maxi-
mize the conditional probability p(y|x) of output labels
y given input variables x, as opposed to modeling the
joint probability p(y,x), as in generative models such as
the Naive Bayes classifier and hidden Markov models.
The popularity of discriminative models stems from the
great flexibility they allow in defining features: because
the distribution over input features p(x) is not modeled,

it can contain rich, highly overlapping features without
making the model intractable for training and inference.

In NLP, for example, useful features include word bi-
grams and trigrams, prefixes and suffixes, membership in
domain-specific lexicons, and information from semantic
databases such as WordNet. It is not uncommon to have
hundreds of thousands or even millions of features.

But not all features, even ones that are carefully engi-
neered, improve performance. Adding more features to a
model can hurt its accuracy on unseen testing data. One
well-known reason for this is overfitting: a model with
more features has more capacity to fit chance regulari-
ties in the training data. In this paper, however, we focus
on another, more subtle effect: adding new features can
cause existing ones to be underfit. Training of discrimi-
native models, such as regularized logistic regression, in-
volves complex trade-offs among weights. A few highly-
indicative features can swamp the contribution of many
individually weaker features, even if the weaker features,
taken together, are just as indicative of the output. Such
a model is less robust, for the few strong features may be
noisy or missing in the test data.

This effect was memorably observed by Dean Pomer-
leau (1995) when training neural networks to drive vehi-
cles autonomously. Pomerleau reports one example when
the system was learning to drive on a dirt road:

The network had no problem learning and then
driving autonomously in one direction, but
when driving the other way, the network was
erratic, swerving from one side of the road to
the other. . . . It turned out that the network
was basing most of its predictions on an easily-
identifiable ditch, which was always on the
right in the training set, but was on the left
when the vehicle turned around. (Pomerleau,
1995)

The network had features to detect the sides of the road,
and these features were active at training and test time,
although weakly, because the dirt road was difficult to

89

detect. But the ditch was so highly indicative that the
network did not learn the dependence between the road
edge and the desired steering direction.

A natural way of avoiding undertraining is to train sep-
arate models for groups of competing features—in the
driving example, one model with the ditch features, and
one with the side-of-the-road features—and then average
them into a single model. This is same idea behind log-
arithmic opinion pools, used by Smith, Cohn, and Os-
borne (2005) to reduce overfitting in CRFs. In this pa-
per, we tailor our ensemble to reduce undertraining rather
than overfitting, and we introduce several new combina-
tion methods, based on whether the mixture is taken ad-
ditively or geometrically, and on a per-sequence or per-
transition basis. We call this general class of methods
feature bagging, by analogy to the well-known bagging
algorithm for ensemble learning.

We test these methods on conditional random fields
(CRFs) (Lafferty et al., 2001; Sutton and McCallum,
2006), which are discriminatively-trained undirected
models. On two natural-language tasks, we show that
feature bagging performs significantly better than train-
ing a single CRF with all available features.

2 Conditional Random Fields
Conditional random fields (CRFs) (Lafferty et al., 2001;
Sutton and McCallum, 2006) are undirected graphical
models of a conditional distribution. Let G be an undi-
rected graphical model over random vectors y and x.
As a typical special case, y = {yt} and x = {xt} for
t = 1, . . . , T , so that y is a labeling of an observed se-
quence x. For a given collection C = {{yc,xc}} of
cliques in G, a CRF models the conditional probability
of an assignment to labels y given the observed variables
x as:

pΛ(y|x) =
1

Z(x)

∏
c∈C

Φ(yc,xc), (1)

where Φ is a potential function and the partition function
Z(x) =

∑
y

∏
c∈C Φ(yc,xc) is a normalization factor

over all possible label assignments.
We assume the potentials factorize according to a set

of features {fk}, which are given and fixed, so that

Φ(yc,xc) = exp

(∑
k

λkfk(yc,xc)

)
(2)

The model parameters are a set of real weights Λ = {λk},
one weight for each feature.

Many applications have used the linear-chain CRF, in
which a first-order Markov assumption is made on the
hidden variables. In this case, the cliques of the condi-
tional model are the nodes and edges, so that there are
feature functions fk(yt−1, yt,x, t) for each label transi-
tion. (Here we write the feature functions as potentially

● ● ●
●

●

●

0 2 4 6 8 10

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Alpha

Ac
cu

ra
cy

Strong feature present
Strong feature removed

Figure 1: Effect of a single strong feature drowning out
weaker features in logistic regression on synthetic data.
The x-axis indicates the strength of the strong feature. In
the top line, the strong feature is present at training and
test time. In the bottom line, the strong feature is missing
from the training data at test time.

depending on the entire input sequence.) Feature func-
tions can be arbitrary. For example, a feature function
fk(yt−1, yt,x, t) could be a binary test that has value 1 if
and only if yt−1 has the label “adjective”, yt has the label
“proper noun”, and xt begins with a capital letter.

Linear-chain CRFs correspond to finite state machines,
and can be roughly understood as conditionally-trained
hidden Markov models (HMMs). This class of CRFs
is also a globally-normalized extension to Maximum En-
tropy Markov Models (McCallum et al., 2000) that avoids
the label bias problem (Lafferty et al., 2001).

Note that the number of state sequences is exponential
in the input sequence length T . In linear-chain CRFs, the
partition function Z(x), the node marginals p(yi|x), and
the Viterbi labeling can be calculated efficiently by vari-
ants of the dynamic programming algorithms for HMMs.

3 Weight Undertraining

In the section, we give a simple demonstration of weight
undertraining. In a discriminative classifier, such as
a neural network or logistic regression, a few strong
features can drown out the effect of many individually
weaker features, even if the weak features are just as
indicative put together. To demonstrate this effect, we
present an illustrative experiment using logistic regres-
sion, because of its strong relation to CRFs. (Linear-

90

chain conditional random fields are the generalization of
logistic regression to sequence data.)

Consider random variables x1 . . . xn, each distributed
as independent standard normal variables. The output
y is a binary variable whose probability depends on all
the xi; specifically, we define its distribution as y ∼
Bernoulli(logit(

∑
i xi)). The correct decision boundary

in this synthetic problem is the hyperplane tangent to the
weight vector (1, 1, . . . , 1). Thus, if n is large, each xi

contributes weakly to the output y. Finally, we include
a highly indicative feature xS = α

∑
i xi + N (µ =

0,σ2 = 0.04). This variable alone is sufficient to deter-
mine the distribution of y. The variable α is a parameter
of the problem that determines how strongly indicative
xS is; specifically, when α = 0, the variable xS is ran-
dom noise.

We choose this synthetic model by analogy to Pomer-
leau’s observations. The xi correspond to the side of
the road in Pomerleau’s case—the weak features present
at both testing and training—and xS corresponds to the
ditch—the strongly indicative feature that is corrupted at
test time.

We examine how badly the learned classifier is de-
graded when xS feature is present at training time but
missing at test time. For several values of the weight pa-
rameter α, we train a regularized logistic regression clas-
sifier on 1000 instances with n = 10 weak variables. In
Figure 1, we show how the amount of error caused by
ablating xS at test time varies according to the strength
of xS . Each point in Figure 1 is averaged over 100
randomly-generated data sets. When xS is weakly in-
dicative, it does not affect the predictions of the model at
all, and the classifier’s performance is the same whether
it appears at test time or not. When xS becomes strongly
indicative, however, the classifier learns to depend on it,
and performs much more poorly when xS is ablated, even
though exactly the same information is available in the
weak features.

4 Feature Bagging
In this section, we describe the feature bagging method.
We divide the set of features F = {fk} into a collec-
tion of possibly overlapping subsets F = {F1, . . . FM},
which we call feature bags. We train individual CRFs
on each of the feature bags using standard MAP training,
yielding individual CRFs {p1, . . . pM}.

We average the individual CRFs into a single com-
bined model. This averaging can be performed in several
ways: we can average probabilities of entire sequences,
or of individual transitions; and we can average using the
arithmetic mean, or the geometric mean. This yields four
combination methods:

1. Per-sequence mixture. The distribution over label

sequences y given inputs x is modeled as a mixture
of the individual CRFs. Given nonnegative weights
{α1, . . . αm} that sum to 1, the combined model is
given by

pSM(y|x) =
M∑
i=1

αipi(y|x). (3)

It is easily seen that if the sequence model is de-
fined as in Equation 3, then the pairwise marginals
are mixtures as well:

pSM(yt, yt−1|x) =
M∑
i=1

αipi(yt, yt−1|x). (4)

The probabilities pi(yt, yt−1|x) are pairwise
marginal probabilities in the individual mod-
els, which can be efficiently computed by the
forward-backward algorithm.
We can perform decoding in the mixture model by
maximizing the individual node marginals. That is,
to predict yt we compute

y∗t = arg max
yt

pSM(yt|x) = arg max
yt

∑
i

αipi(yt|x),

(5)
where pi(yt|x) is computed by first running
forward-backward on each of the individual CRFs.
In the results here, however, we compute the
maximum probability sequence approximately, as
follows. We form a linear-chain distribution
pAPPX(y|x) =

∏
t pSM(yt|yt−1,x), and compute the

most probable sequence according to pAPPX by the
Viterbi algorithm. This is approximate because pSM

is not a linear-chain distribution in general, even
when all the components are. However, the dis-
tribution pAPPX does minimize the KL-divergence
D(pSM‖q) over all linear-chain distributions q.
The mixture weights can be selected in a variety of
ways, including equal voting, as in traditional bag-
ging, or EM.

2. Per-sequence product of experts. These are the log-
arithmic opinion pools that have been applied to
CRFs by (Smith et al., 2005). The distribution over
label sequences y given inputs x is modeled as a
product of experts (Hinton, 2000). In a product of
experts, instead of summing the probabilities from
the individual models, we multiply them together.
Essentially we take a geometric mean instead of
an arithmetic mean. Given nonnegative weights
{α1, . . . αm} that sum to 1, the product model is

p(y|x) ∝
M∏
i=1

(pi(y|x))αi . (6)

91

The combined model can also be viewed as a condi-
tional random field whose features are the log prob-
abilities from the original models:

p(y|x) ∝ exp

{
M∑
i=1

αi log pi(y|x)

}
(7)

By substituting in the CRF definition, it can be seen
that the model in Equation 7 is simply a single CRF
whose parameters are a weighted average of the
original parameters. So feature bagging using the
product method does not increase the family of mod-
els that are considered: standard training of a single
CRF on all available features could potentially pick
the same parameters as the bagged model.
Nevertheless, in Section 5, we show that this feature
bagging method performs better than standard CRF
training.

The previous two combination methods combine the
individual models by averaging probabilities of en-
tire sequences. Alternatively, in a sequence model
we can average probabilities of individual transitions
pi(yt|yt−1,x). Computing these transition proba-
bilities requires performing probabilistic inference in
each of the original CRFs, because pi(yt|yt−1,x) =∑

y\yt,yt+1
p(y|yt−1,x).

This yields two other combination methods:

3. Per-transition mixture. The transition probabilities
are modeled as

pTM(yt|yt−1,x) =
M∑
i=1

αipi(yt|yt−1,x) (8)

Intuitively, the difference between per-sequence and
per-transition mixtures can be understood genera-
tively. In order to generate a label sequence y given
an input x, the per-sequence model selects a mix-
ture component, and then generates y using only
that component. The per-transition model, on the
other hand, selects a component, generates y1 from
that component, selects another component, gener-
ates y2 from the second component given y1, and so
on.

4. Per-transition product of experts. Finally, we can
combine the transition distributions using a product
model

pSP(yt|yt−1,x) ∝
M∏
i=1

p(yt|yt−1,x)αi (9)

Each transition distribution is thus—similarly to the
per-sequence case—an exponential-family distribu-
tion whose features are the log transition proba-
bilities from the individual models. Unlike the

per-sequence product, there is no weight-averaging
trick here, because the probabilities p(yt|yt−1,x)
are marginal probabilities.

Considered as a sequence distribution p(y|x),
the per-transition product is a locally-normalized
maximum-entropy Markov model (McCallum et al.,
2000). It would not be expected to suffer from label
bias, however, because each of the features take the
future into account; they are marginal probabilities
from CRFs.

Of these four combination methods, Method 2, the per-
sequence product of experts, is originally due to Smith et
al. (2005). The other three combination methods are as
far as we know novel. In the next section, we compare
the four combination methods on several sequence label-
ing tasks. Although for concreteness we describe them
in terms of sequence models, they may be generalized to
arbitrary graphical structures.

5 Results
We evaluate feature bagging on two natural language
tasks, named entity recognition and noun-phrase chunk-
ing. We use the standard CoNLL 2003 English data set,
which is taken from Reuters newswire and consists of
a training set of 14987 sentences, a development set of
3466 sentences, and a testing set of 3684 sentences. The
named-entity labels in this data set corresponding to peo-
ple, locations, organizations and other miscellaneous en-
tities. Our second task is noun-phrase chunking. We
use the standard CoNLL 2000 data set, which consists of
8936 sentences for training and 2012 sentences for test-
ing, taken from Wall Street Journal articles annotated by
the Penn Treebank project. Although the CoNLL 2000
data set is labeled with other chunk types as well, here
we use only the NP chunks.

As is standard, we compute precision and recall for
both tasks based upon the chunks (or named entities for
CoNLL 2003) as

P =
correctly labeled chunks

labeled chunks

R =
correctly labeled chunks

actual chunks
We report the harmonic mean of precision and recall as
F1 = (2PR)/(P + R).

For both tasks, we use per-sequence product-of-experts
feature bagging with two feature bags which we manu-
ally choose based on prior experience with the data set.
For each experiment, we report two baseline CRFs, one
trained on union of the two feature sets, and one trained
only on the features that were present in both bags, such
as lexical identity and regular expressions. In both data

92

sets, we trained the individual CRFs with a Gaussian
prior on parameters with variance σ2 = 10.

For the named entity task, we use two feature bags
based upon character ngrams and lexicons. Both bags
contain a set of baseline features, such as word identity
and regular expressions (Table 4). The ngram CRF in-
cludes binary features for character ngrams of length 2,
3, and 4 and word prefixes and suffixes of length 2, 3,
and 4. The lexicon CRF includes membership features
for a variety of lexicons containing people names, places,
and company names. The combined model has 2,342,543
features. The mixture weight α is selected using the de-
velopment set.

For the chunking task, the two feature sets are selected
based upon part of speech and lexicons. Again, a set of
baseline features are used, similar to the regular expres-
sions and word identity features used on the named entity
task (Table 4). The first bag also includes part-of-speech
tags generated by the Brill tagger and the conjunctions of
those tags used by Sha and Pereira (2003). The second
bag uses lexicon membership features for lexicons con-
taining names of people, places, and organizations. In ad-
dition, we use part-of-speech lexicons generated from the
entire Treebank, such as a list of all words that appear as
nouns. These lists are also used by the Brill tagger (Brill,
1994). The combined model uses 536,203 features. The
mixture weight α is selected using 2-fold cross valida-
tion. The chosen model had weight 0.55 on the lexicon
model, and weight 0.45 on the ngram model.

In both data sets, the bagged model performs better
than the single CRF trained with all of the features. For
the named entity task, bagging improves performance
from 85.45% to 86.61%, with a substantial error reduc-
tion of 8.32%. This is lower than the best reported results
for this data set, which is 89.3% (Ando and Zhang, 2005),
using a large amount of unlabeled data. For the chunking
task, bagging improved the performance from 94.34% to
94.77%, with an error reduction of 7.60%. In both data
sets, the improvement is statistically significant (McNe-
mar’s test; p < 0.01).

On the chunking task, the bagged model also outper-
forms the models of Kudo and Matsumoto (2001) and
Sha and Pereira (2003), and equals the currently-best re-
sults of (Ando and Zhang, 2005), who use a large amount
of unlabeled data. Although we use lexicons that were
not included in the previous models, the additional fea-
tures actually do not help the original CRF. Only with
feature bagging do these lexicons improve performance.

Finally, we compare the four bagging methods of Sec-
tion 4: pre-transition mixture, pre-transition product of
experts, and per-sequence mixture. On the named en-
tity data, all four models perform in a statistical tie, with
no statistically significant difference in their performance
(Table 1). As we mentioned in the last section, the de-

Model F1
Per-sequence Product of Experts 86.61
Per-transition Product of Experts 86.58
Per-sequence Mixture 86.46
Per-transition Mixture 86.42

Table 1: Comparison of various bagging methods on the
CoNLL 2003 Named Entity Task.

Model F1
Single CRF(Base Feat.) 81.52
Single CRF(All Feat.) 85.45

Combined CRF 86.61

Table 2: Results for the CoNLL 2003 Named Entity
Task. The bagged CRF performs significantly better than
a single CRF with all available features (McNemar’s test;
p < 0.01).

coding procedure for the per-sequence mixture is approx-
imate. It is possible that a different decoding procedure,
such as maximizing the node marginals, would yield bet-
ter performance.

6 Previous Work
In the machine learning literature, there is much work on
ensemble methods such as stacking, boosting, and bag-
ging. Generally, the ensemble of classifiers is generated
by training on different subsets of data, rather than dif-
ferent features. However, there is some literature within
unstructured classified on combining models trained on
feature subsets. Ho (1995) creates an ensemble of de-
cision trees by randomly choosing a feature subset on
which to grow each tree using standard decision tree
learners. Other work along these lines include that of Bay
(1998) using nearest-neighbor classifiers, and more re-
cently Bryll et al (2003). Also, in Breiman’s work on ran-
dom forests (2001), ensembles of random decision trees
are constructed by choosing a random feature at each
node. This literature mostly has the goal of improving
accuracy by reducing the classifier’s variance, that is, re-
ducing overfitting.

In contrast, O’Sullivan et al. (2000) specifically focus
on increasing robustness by training classifiers to use all
of the available features. Their algorithm FeatureBoost
is analogous to AdaBoost, except that the meta-learning
algorithm maintains weights on features instead of on in-
stances. Feature subsets are automatically sampled based
on which features, if corrupted, would most affect the
ensemble’s prediction. They show that FeatureBoost is
more robust than AdaBoost on synthetically corrupted
UCI data sets. Their method does not easily extend to se-
quence models, especially natural-language models with
hundreds of thousands of features.

93

Model F1
Single CRF(Base Feat.) 89.60
Single CRF(All Feat.) 94.34
(Sha and Pereira, 2003) 94.38
(Kudo and Matsumoto, 2001) 94.39
(Ando and Zhang, 2005) 94.70

Combined CRF 94.77

Table 3: Results for the CoNLL 2000 Chunking Task.
The bagged CRF performs significantly better than a sin-
gle CRF (McNemar’s test; p < 0.01), and equals the re-
sults of (Ando and Zhang, 2005), who use a large amount
of unlabeled data.

wt = w
wt begins with a capital letter
wt contains only capital letters
wt is a single capital letter
wt contains some capital letters and some lowercase
wt contains a numeric character
wt contains only numeric characters
wt appears to be a number
wt is a string of at least two periods
wt ends with a period
wt contains a dash
wt appears to be an acronym
wt appears to be an initial
wt is a single letter
wt contains punctuation
wt contains quotation marks
Pt = P
All features for time t + δ for all δ ∈ [−2, 2]

Table 4: Baseline features used in all bags. In the above
wt is the word at position t, Pt is the POS tag at position
t, w ranges over all words in the training data, and P
ranges over all chunk tags supplied in the training data.
The “appears to be” features are based on hand-designed
regular expressions.

There is less work on ensembles of sequence models,
as opposed to unstructured classifiers. One example is
Altun, Hofmann, and Johnson (2003), who describe a
boosting algorithm for sequence models, but they boost
instances, not features. In fact, the main advantage of
their technique is increased model sparseness, whereas in
this work we aim to fully use more features to increase
accuracy and robustness.

Most closely related to the present work is that on log-
arithmic opinion pools for CRFs (Smith et al., 2005),
which we have called per-sequence mixture of experts in
this paper. The previous work focuses on reducing over-
fitting, combining a model of many features with several
simpler models. In contrast, here we apply feature bag-
ging to reduce feature undertraining, combining several
models with complementary feature sets. Our current
positive results are probably not due to reduction in over-

fitting, for as we have observed, all the models we test,
including the bagged one, have 99.9% F1 on the train-
ing set. Now, feature undertraining can be viewed as a
type of overfitting, because it arises when a set of fea-
tures is more indicative in the training set than the test-
ing set. Understanding this particular type of overfitting
is useful, because it motivates the choice of feature bags
that we explore in this work. Indeed, one contribution of
the present work is demonstrating how a careful choice
of feature bags can yield state-of-the-art performance.

Concurrently and independently, Smith and Osborne
(2006) present similar experiments on the CoNLL-2003
data set, examining a per-sequence mixture of experts
(that is, a logarithmic opinion pool), in which the lexi-
con features are trained separately. Their work presents
more detailed error analysis than we do here, while we
present results both on other combination methods and
on NP chunking.

7 Conclusion
Discriminatively-trained probabilistic models have had
much success in applications because of their flexibil-
ity in defining features, but sometimes even highly-
indicative features can fail to increase performance. We
have shown that this can be due to feature undertrain-
ing, where highly-indicative features prevent training of
many weaker features. One solution to this is feature bag-
ging: repeatedly selecting feature subsets, training sepa-
rate models on each subset, and averaging the individual
models.

On large, real-world natural-language processing
tasks, feature bagging significantly improves perfor-
mance, even with only two feature subsets. In this work,
we choose the subsets based on our intuition of which
features are complementary for this task, but automati-
cally determining the feature subsets is an interesting area
for future work.

Acknowledgments
We thank Andrew Ng, Hanna Wallach, Jerod Weinman,
and Max Welling for helpful conversations. This work
was supported in part by the Center for Intelligent Infor-
mation Retrieval, in part by the Defense Advanced Re-
search Projects Agency (DARPA), in part by The Cen-
tral Intelligence Agency, the National Security Agency
and National Science Foundation under NSF grant #IIS-
0326249, and in part by The Central Intelligence Agency,
the National Security Agency and National Science
Foundation under NSF grant #IIS-0427594. Any opin-
ions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not nec-
essarily reflect those of the sponsor.

94

References
Yasemin Altun, Thomas Hofmann, and Mark Johnson.

2003. Discriminative learning for label sequences via
boosting. In Advances in Neural Information Process-
ing Systems (NIPS*15).

Rie Ando and Tong Zhang. 2005. A high-performance
semi-supervised learning method for text chunking. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’05), pages
1–9, Ann Arbor, Michigan, June. Association for Com-
putational Linguistics.

Stephen D. Bay. 1998. Combining nearest neighbor
classifiers through multiple feature subsets. In ICML
’98: Proceedings of the Fifteenth International Con-
ference on Machine Learning, pages 37–45. Morgan
Kaufmann Publishers Inc.

Leo Breiman. 2001. Random forests. Machine Learn-
ing, 45(1):5–32, October.

Eric Brill. 1994. Some advances in transformation-based
part of speech tagging. In AAAI ’94: Proceedings
of the twelfth national conference on Artificial intelli-
gence (vol. 1), pages 722–727. American Association
for Artificial Intelligence.

Robert Bryll, Ricardo Gutierrez-Osuna, and Francis
Quek. 2003. Attribute bagging: improving accuracy
of classifier ensembles by using random feature sub-
sets. Pattern Recognition, 36:1291–1302.

Hai Leong Chieu and Hwee Tou Ng. 2003. Named en-
tity recognition with a maximum entropy approach. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 160–163. Edmonton,
Canada.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of CoNLL-2003.

G.E. Hinton. 2000. Training products of experts by mini-
mizing contrastive divergence. Technical Report 2000-
004, Gatsby Computational Neuroscience Unit.

T. K. Ho. 1995. Random decision forests. In Proc. of
the 3rd Int’l Conference on Document Analysis and
Recognition, pages 278–282, Montreal, Canada, Au-
gust.

T. Kudo and Y. Matsumoto. 2001. Chunking with sup-
port vector machines. In Proceedings of NAACL-2001.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proc. 18th Inter-
national Conf. on Machine Learning.

Andrew McCallum, Dayne Freitag, and Fernando
Pereira. 2000. Maximum entropy Markov models
for information extraction and segmentation. In Proc.
17th International Conf. on Machine Learning, pages
591–598. Morgan Kaufmann, San Francisco, CA.

Joseph O’Sullivan, John Langford, Rich Caruana, and
Avrim Blum. 2000. Featureboost: A meta learning
algorithm that improves model robustness. In Interna-
tional Conference on Machine Learning.

Dean Pomerleau. 1995. Neural network vision for robot
driving. In M. Arbib, editor, The Handbook of Brain
Theory and Neural Networks.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings
of HLT-NAACL 2003. Association for Computational
Linguistics.

Andrew Smith and Miles Osborne. 2006. Using
gazetteers in discriminative information extraction. In
CoNLL-X, Tenth Conference on Computational Natu-
ral Language Learning.

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005.
Logarithmic opinion pools for conditional random
fields. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’05), pages 18–25, Ann Arbor, Michigan, June.
Association for Computational Linguistics.

Charles Sutton and Andrew McCallum. 2006. An in-
troduction to conditional random fields for relational
learning. In Lise Getoor and Ben Taskar, editors, Intro-
duction to Statistical Relational Learning. MIT Press.
To appear.

Ben Taskar, Dan Klein, Michael Collins, Daphne Koller,
and Chris Manning. 2004. Max-margin parsing. In
Empirical Methods in Natural Language Processing
(EMNLP04).

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In HLT-
NAACL 2003.

95

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 96–103,
New York, June 2006.c©2006 Association for Computational Linguistics

A Maximum Entropy Approach to Combining Word Alignments

Necip Fazil Ayan and Bonnie J. Dorr
Institute of Advanced Computer Studies (UMIACS)

University of Maryland
College Park, MD 20742

{nfa,bonnie}@umiacs.umd.edu

Abstract

This paper presents a new approach to
combining outputs of existing word align-
ment systems. Each alignment link is rep-
resented with a set of feature functions
extracted from linguistic features and in-
put alignments. These features are used
as the basis of alignment decisions made
by a maximum entropy approach. The
learning method has been evaluated on
three language pairs, yielding significant
improvements over input alignments and
three heuristic combination methods. The
impact of word alignment on MT quality
is investigated, using a phrase-based MT
system.

1 Introduction
Word alignment—detection of corresponding words
between two sentences that are translations of each
other—is usually an intermediate step of statisti-
cal machine translation (MT) (Brown et al., 1993;
Och and Ney, 2003; Koehn et al., 2003), but also
has been shown useful for other applications such
as construction of bilingual lexicons, word-sense
disambiguation, projection of resources, and cross-
language information retrieval.

Maximum entropy (ME) models have been used
in bilingual sense disambiguation, word reordering,
and sentence segmentation (Berger et al., 1996),
parsing, POS tagging and PP attachment (Ratna-
parkhi, 1998), machine translation (Och and Ney,
2002), and FrameNet classification (Fleischman et
al., 2003). They have also been used to solve the
word alignment problem (Garcia-Varea et al., 2002;
Ittycheriah and Roukos, 2005; Liu et al., 2005), but
a sentence-level approach to combining knowledge
sources is used rather than a word-level approach.

This paper describes an approach to combin-
ing evidence from alignments generated by exist-
ing systems to obtain an alignment that is closer
to the true alignment than the individual align-
ments. The alignment-combination approach (called
ACME) operates at the level of alignment links,
rather than at the sentence level (as in previous ME
approaches). ACME uses ME to decide whether
to include/exclude a particular alignment link based
on feature functions that are extracted from the in-
put alignments and linguistic features of the words.
Since alignment combination relies on evidence
from existing alignments, we focus on alignment
links that exist in at least one input alignment. An
important challenge in this approach is the selection
of appropriate links when two aligners make differ-
ent alignment choices.

We show that ACME yields a significant relative
error reduction over the input alignment systems and
heuristic-based combinations on three different lan-
guage pairs. Using a higher number of input align-
ments and partitioning the training data into disjoint
subsets yield further error-rate reductions.

The next section briefly overviews ME models.
Section 3 presents a new ME approach to combin-
ing existing word alignment systems. Section 4 de-
scribes the evaluation data, input alignments, and
evaluation metrics. Section 5 presents experiments
on three language pairs, upper bounds for alignment
error rate in alignment combination, and MT evalu-
ation on English-Chinese and English-Arabic. Sec-
tion 6 describes previous work on alignment combi-
nation and ME models on word alignment.

2 Maximum Entropy (ME) Models

In a statistical classification problem, the goal is to
estimate the probability of a class y in a given con-
text x, i.e., p(y|x). In an ideal scenario, if the train-
ing data contain evidence for all pairs of (y, x), it is

96

trivial to compute the probability distribution p. Un-
fortunately, due to training-data sparsity, p is gener-
ally modeled using only the available evidence.

Given a collection of facts, ME chooses a model
consistent with all the facts, but otherwise as uni-
form as possible (Berger et al., 1996). Formally, the
evidence is represented as feature functions, i.e., bi-
nary valued functions that map a class y and a con-
text x to either 0 or 1, i.e., hm : Y × X → {0, 1},
where Y is the set of all classes andX is the set of all
facts. The biggest advantage of maximum entropy
models is that they are able to focus on the selection
of feature functions rather than on how such func-
tions are used. Any context can be used to define
feature functions without concern for the indepen-
dence of the feature functions from each other or the
relevance of the feature functions to the final deci-
sion (Ratnaparkhi, 1998).

Each feature function hm is associated with a
model parameter λm. Given a set of M feature func-
tions h1, . . . , hM , the probability of class y given a
context x is equal to:

p(y|x) =
1
Zx

exp

(
M∑

m=1

λmhm(y, x)
)

where Zx is a normalization constant. The contri-
bution of each feature function to the final decision,
i.e., λm, can be automatically computed using Gen-
eralized Iterative Scaling (GIS) algorithm (Darroch
and Ratcliff, 1972). The final classification for a
given instance is the class y that maximizes p(y|x).

3 Alignment Combination: ACME
Let e = e1, . . . , eI and f = f1, . . . , fJ be two
sentences in two different languages. An align-
ment link (i, j) corresponds to a translational equiv-
alence between words ei and fj . Let Ak be an
alignment between sentences e and f , where each
element a ∈ Ak is an alignment link (i, j). Let
A = {A1, . . . , An} be a set of alignments between
e and f . We refer to the true alignment as T , where
each a ∈ T is of the form (i, j). The goal of
ACME is to combine the information in A such
that the combined alignment AC is closer to T . A
straightforward solution is to take the intersection or
union of the individual alignments. In this paper, an
additional model is learned to combine outputs of
A1, . . . , An.

In our combination framework, first, n differ-
ent word-alignment systems, A1, . . . , An, generate
word alignments between a given English sentence
and a foreign-language (FL) sentence. Then a Fea-
ture Extractor takes the output of these alignment
systems and the parallel corpus (which might be en-
riched with linguistic features) and extracts a set of
feature functions based on linguistic properties of
the words and the input alignments. Each feature
function hm is associated with a model parameter
λm. Next, an Alignment Combiner decides whether
to include or exclude an alignment link based on the
extracted feature functions and the model parame-
ters associated with them.

For each possible alignment link a set of features
is extracted from the input alignments and linguistic
properties of words. The features that are used for
representing an alignment link (i, j) are as follows:

1. Part-of-speech tags (posE, posF, prevposE,
prevposF, nextpostE, nextposF): POS tags for
the previous, current, and the next English and
FL words.

2. Outputs of input aligners (out): Whether
(i, j) exists in a given input alignment Ak.

3. Neighbors (neigh): A neighborhood of an
alignment link (i, j)—denoted by N(i, j)—
consists of 8 possible alignment links in a 3×3
window with (i, j) in the center of the window.
Each element of N(i, j) is called a neighbor-
ing link of (i, j). Neighbor features include:
(1) Whether a particular neighbor of (i, j) ex-
ists in a given input alignment Ak; and (2) To-
tal number of neighbors of (i, j) in a given in-
put alignment Ak.

4. Fertilities (fertE, fertF): The number of
words that ei (or fj) is aligned to in a given
input alignment Ak.

5. Monotonicity (mon): The absolute difference
between i and j.

Our combination approach employs feature func-
tions derived from a subset of the features above.
Assuming Y = {yes,no} represents the set of
classes, where each class denotes the existence or
absence of a link in the combined alignment, and
X is the set of features above, we generate various
feature functions h(y, x), where y ∈ Y and x are
instantiations of one or more features in X . Table 1
lists the feature sets with an example feature func-

97

Features Example Feature Function
posE h(′yes′, i, j) = 1 if (i, j) ∈ AC and pos(ei) = Noun
posF h(′no′, i, j) = 1 if (i, j) /∈ AC and pos(fj) = V erb
out h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and (i, j) ∈ Ak

out, neigh h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and (i− 1, j + 1) ∈ Ak

h(′yes′, i, j, k) = 1 if (i, j) ∈ AC and |NC| = 2 where NC = {n|n ∈ N(i, j), n ∈ Ak}
out, fertE h(′no′, i, j, k) = 1 if (i, j) /∈ AC and |FT | = 0 where FT = {t|(i, t) ∈ Ak}
out, fertF h(′no′, i, j, k) = 1 if (i, j) /∈ AC and |FT | = 1 where FT = {t|(t, j) ∈ Ak}
mon h(′yes′, i, j) = 1 if (i, j) ∈ AC and |i− j| = 2

Table 1: Feature Functions.

tion for each.1 For example, the feature function in
the fifth row has a value of 1 if there are 2 neighbor-
ing links to (i, j) that exist in the input alignment Ak

and the alignment link (i, j) exists in AC .
In combining evidence from different alignments,

it is assumed that, when an alignment link is left
out by all aligners, that particular link should not
be included in the final output. Since the majority
of all possible word pairs are unaligned in real data,
the inclusion of all possible word pairs in the train-
ing data leads to skewed results, where the learning
algorithm is biased toward labeling the links as in-
valid. To offset this problem, our training data in-
cludes only alignment links that appear in at least
one input alignment.

Once the feature functions are extracted, we learn
the model parameters using the YASMET ME pack-
age (Och, 2002), which is an efficient implementa-
tion of the GIS algorithm.

4 Experiment Data, Alignment Inputs, and
Metrics

The alignment combination techniques are evaluated
in this paper using data from three language pairs, as
shown in Table 2.

Lang # of # Words Source
Pair Sent’s (en/fl)
en-ch 491 13K/13K NIST MTEval ’022

en-ar 450 11K/13K NIST MTEval ’033

en-ro 248 5.5K/5.5K HLT Workshop ’034

Table 2: Data Used for Combination Experiments.

Input alignments are generated using two exist-
ing word alignment systems: GIZA++ (Och, 2000)

1In Table 1, NC corresponds to the set of (i, j)’s neighbors
that exist in the alignment Ak, and FT represents the set of
words that ei (or fj) is aligned to.

2From (Ayan et al., 2005).
3From (Ittycheriah and Roukos, 2005).
4From (Mihalcea and Pedersen, 2003).

and SAHMM (Lopez and Resnik, 2005). Both sys-
tems are run in two different directions with default
configurations. We indicate the two directions using
the notation Aligner(en → fl) and Aligner(fl →
en), where en is English, fl is either Chinese (ch),
Arabic (ar), or Romanian (ro).

To train both systems, additional data was used
for the three language pairs: 107K English-Chinese
sentence pairs (4.1M/3.3M English/Chinese words);
44K English-Arabic sentence pairs (1.4M/1M En-
glish/Arabic words); 48K English-Romanian sen-
tence pairs (1M/1M English/Romanian words).5

POS tags were generated using the MXPOST tag-
ger (Ratnaparkhi, 1998). POS tagger for English
was trained on Sections 0-18 of the Penn Treebank
Wall Street Journal corpus. On the FL side, we used
POS tagger for only Chinese and it was trained on
Sections 16-299 of Chinese Treebank.

For comparison purposes, three additional
heuristically-induced alignments are generated
for each system: (1) Intersection of both direc-
tions (Aligner(int)); (2) Union of both directions
(Aligner(union)); and (3) The previously best-
known heuristic combination approach called grow-
diag-final (Koehn et al., 2003) (Aligner(gdf)).

In our evaluation, we take A to be the set of align-
ment links for a set of sentences, S to be the set
of sure alignment links, and P be the set of proba-
ble alignment links (in the gold standard). Precision
(Pr), recall (Rc) and alignment error rate (AER)
are defined as follows:6

Pr =
|A ∩ P |
|A| Rc =

|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

5Note that both GIZA++ and SAHMM are unsupervised
learning systems. Sentence-aligned parallel texts are the only
required input.

6Note that AER= 1 - F-score when there is no distinction
between probable and sure alignment links.

98

Our gold standard for each language pair is a
manually aligned corpus. English-Chinese annota-
tions distinguish between sure and probable align-
ment links (i.e., S ⊂ P), but there is no such distinc-
tion for the other two language pairs (i.e., P = S).

Because of the availability of limited manually
annotated data, evaluations are performed using 5-
fold cross validation. Once the alignments are gen-
erated for each fold (using one as the test set and the
other 4 folds as training set), the results are concate-
nated to compute precision, recall and error rate on
the entire set of sentence pairs for each data set.7

5 Experiments and Results

This section presents several experiments and re-
sults comparing AER of ACME to those of standard
alignment approaches on English-Chinese data. We
also present experiments on additional languages,
analyses based on precision and recall, an upper-
bound oracle analysis, and MT evaluations.

5.1 English-Chinese Experiments

The experiments below test the effects of input
alignments, feature set, data partitioning, number of
inputs, and size of training data on the performance
of ACME.

2 Input alignments: Table 3 shows the AER for
GIZA++ and SAHMM (in each direction), three
heuristic-based combinations and ACME using 2
uni-directional alignments as input and all features
described in Section 3.8 (We use ‘ACME[2]’ in
this section to refer to ACME applied to two input
alignments and ACME[4] in later sections to refer
to ACME applied to four input alignments.)

Using 2 GIZA++ uni-directional alignments as in-
put, ACME yields a 22.0% AER—a relative error re-
duction of 25.9% over GIZA++(gdf). Similarly, us-
ing 2 SAHMM uni-directional alignments as input,
ACME produces a 20.6% AER—a relative error re-
duction of 28.0% and 25.4% over SAHMM(gdf) and
SAHMM(int), respectively.

7Because the NIST MTEval data include sentences that may
be related (according to the document in which they appear), the
training and test material could potentially be related; however,
given the types of features used in our experiments, we do not
believe this biases our results.

8For ease of readability, in the rest of this paper, we will
report precision, recall, and AER in percentages.

Alignments GIZA++ SAHMM
Aligner(en→ fl) 30.7 26.5
Aligner(fl → en) 32.2 31.3
Aligner(int) 31.2 27.6
Aligner(union) 31.6 29.8
Aligner(gdf) 29.7 28.6
ACME[2] 22.0 20.6

Table 3: Comparison of GIZA++ and SAHMM to
ACME[2] (on English-Chinese).

Feature Set: To examine the effects of each fea-
ture on the performance of ACME, we compute the
AER under a variety of conditions, removing each
feature one at a time. ACME is evaluated using
2 uni-directional GIZA++ alignments as input on
English-Chinese data. Using all features, the AER
is 22.0%. Our experiments show that there is no sig-
nificant increase in AER for the removal of features
corresponding to monotonicity (22.1%), neighbors
(22.8%), POS on English side (22.9%), POS on
foreign-language side (22.9%). On the other hand,
deleting POS tags on both sides yields an AER of
25.2% and deleting the fertility features increases
the AER to 25.9%. This indicates that both POS
tags (or fertilities) contribute heavily toward the de-
cision as to whether a particular alignment should be
included/excluded.

Partitioning Data: Previous work showed that
partitioning the data into disjoint subsets and learn-
ing a different model for each partition improves
the performance of the alignment systems (Ayan et
al., 2005). To test whether this same principle ap-
plies to alignment combination with maximum en-
tropy modeling, the training data was partitioned us-
ing POS tags for English and the FL, and different
weights were learned for each partition.

Alignments GIZA++ SAHMM
ACME[2] 22.0 20.6
ACME[2]-Part[posE] 19.8 18.0
ACME[2]-Part[posF] 20.0 18.1
ACME[2]-Part[posE, posF] 20.0 18.4

Table 4: Application of ACME[2] on Partitioned
Data (on English-Chinese).

Table 4 presents the AER for ACME[2], using ei-
ther two GIZA++ alignments or two SAHMM align-
ments, on English-Chinese data. Without any parti-
tioning, ACME achieves an AER of 22.0 (GIZA++)
and 20.6 (SAHMM). Using English POS tags for
data partitioning results in a significant reduction

99

in AER: 19.8% (GIZA++) and 18.0% (SAHMM).
Interestingly, using foreign-language (FL) tags on
their own or together with English POS tags does not
provide any improvement. Overall when ACME[2]
is applied to partitioned data (using posE for parti-
tioning) a relative error reduction of 33–37% over
GIZA++(gdf) and SAHMM(gdf) is achieved.

Number of Input Alignments: Table 5 presents
the English-Chinese AER for ACME[1] (using ei-
ther GIZA++ or SAHMM in only one direction),
ACME[2] (using either GIZA++ or SAHMM in
two directions) and ACME[4] (using GIZA++ and
SAHMM, each in two directions).

Regardless of the number of inputs, partitioning
the data (using English POS tags) yields lower AER
than no partitioning. Using one GIZA++ alignment
as input, ACME[1] with partitioning improves the
AER to 26.9% and 25.5% for each direction, respec-
tively. Similarly, using one SAHMM alignment as
input, ACME[1] with partitioning reduces the AER
to 22.9% and 24.7%. ACME[2] with partitioning
reduces the AER to 19.8% and 18.0% for GIZA++
and SAHMM, respectively. Finally, using all four
input alignments, ACME[4] with partitioning yields
a 15.6% AER—a relative error reduction of 21.2%
and 13.3% over each ACME[2] case.

Alignments GIZA++ SAHMM
ACME[1](en→ fl) 28.1 24.4
ACME[1]-Part[posE](en→ fl) 26.9 22.9
ACME[1](fl → en) 26.6 26.9
ACME[1]-Part[posE](fl → en) 25.5 24.7
ACME[2] 22.0 20.6
ACME[2]-Part[posE] 19.8 18.0
ACME[4] 17.8
ACME[4]-Part[posE] 15.6

Table 5: Application of ACME to 1, 2 and 4 Input
Alignments (on English-Chinese).

Size of Training Data to Obtain Input Align-
ments: In general, statistical alignment systems
improve as the size of the training data increases.
We present the AER for GIZA++ and ACME[2] us-
ing GIZA++ alignments as input, where GIZA++ is
trained on different sizes of data. We started with
20K sentence pairs of FBIS data and increased it to
all available FBIS data (241K sentence pairs).

Figure 1 compares the alignment performance
of: (1) uni-directional GIZA++ (each direction);
(2) GIZA++(gdf); and (3) ACME[2] with all fea-

Figure 1: Effects of Training Data Size Used for Ini-
tial Alignments on the performance of GIZA++ and
ACME[2] (on English-Chinese).

tures and English POS partitioning. With only
20K sentence pairs, ACME[2] achieves an AER of
23.7% in contrast to 34.3% AER for GIZA++(gdf).
With 241K sentence pairs, ACME[2] yields 18.3%
AER in contrast to 27.7% AER for GIZA++(gdf).
We should emphasize that ACME[2] on only 20K
sentence pairs yields a lower AER than those of
all GIZA++ alignments obtained on 241K sen-
tence pairs. Overall ACME[2] achieves a relative
error reduction of 31–38% over the input align-
ments, and a relative error reduction of 31–34% over
GIZA++(gdf) for different sizes of training data.

5.2 Expanding to Additional Languages

We also investigated the applicability of ACME to
additional language pairs. Table 6 presents the
AER for GIZA++ and SAHMM (in each direction),
three combination heuristics (gdf, int and union),
and ACME[2] and ACME[4] on English-Arabic and
English-Romanian data. We should emphasize that
no POS tagger on the FL side was used for these
experiments.

On English-Arabic data, ACME[2] (with POS
partitioning and including all features) yields 21.4%
(20.7%) AER—a relative error reduction of 24.6%
(13.0%) over the best combination heuristic with
GIZA++ (SAHMM) alignments. ACME[4] re-
duces the AER to 18.1%—a relative error reduc-
tion of 36.3% and 23.9% over GIZA++(int) and
SAHMM(int), respectively.

On English-Romanian data, ACME[2] (with POS
partitioning and including all features) yields 24.7%
(26.2%) AER—a relative error reduction of 14.3%
(10.6%) over the best combination heuristic with
GIZA++ (SAHMM) alignments. ACME[4] re-

100

English-Arabic English-Romanian
Alignments GIZA++ SAHMM GIZA++ SAHMM
Aligner(en→ fl) 34.5 27.8 32.7 31.0
Aligner(fl → en) 27.9 29.5 30.0 29.8
Aligner(int) 28.4 23.8 32.7 29.3
Aligner(union) 32.8 32.0 30.5 31.2
Aligner(gdf) 30.2 30.4 28.8 30.3
ACME[2] 23.2 21.9 25.2 27.0
ACME[2]-Part[posE] 21.4 20.7 24.7 26.2
ACME[4] 19.8 24.0
ACME[4]-Part[posE] 18.1 22.3

Table 6: AER for Input Alignments, Heuristic-based Alignments, and ACME Using 2 and 4 Input Align-
ments (on English-Arabic and English-Romanian).

duces the AER to 22.3%—a relative error reduc-
tion of 22.6% and 23.9% over GIZA++(int) and
SAHMM(int), respectively.

5.3 Precision, Recall and Upper-Bound
Analysis

We now turn to a precision vs. recall analysis of dif-
ferent alignments to elucidate the nature of the dif-
ferences between two alignments.

Figure 2 presents precision and recall values
for three combined alignments using GIZA++ (int,
union, gdf) as well as results for ACME[2] and
ACME[4] on three different language pairs. For
all three pairs, the ranking of the combined align-
ments is the same with respect to precision and
recall. GIZA++(int) yields the highest precision
(nearly 95%) but the lowest recall (53–57%). Both
union and gdf methods achieve low precision (56–
68%) but high recall (75–83%), and gdf is better
than union. By contrast, ACME[2] yields signifi-
cantly higher precision (nearly 87%) but lower recall
(67–75%) with respect to union and gdf. ACME[4]
has higher precision and recall than ACME[2]—an
absolute increase of 2–3% and 4%, respectively.

Next we compute an oracle upper-bound in AER
where mismatched input alignments are assumed to
be resolved perfectly within the alignment combina-
tion framework (i.e., an oracle chooses the correct
output in cases where the input aligners make differ-
ent choices).9

Table 7 presents the upper bounds using a generic
alignment combiner (denoted Oracle) with 2 and 4
input alignments on three language pairs, assuming
a perfect resolution of mismatched input alignments.
For English-Chinese, the upper bound is 9.4% (us-

9If the input aligners agree on a particular link, that decision
is taken as the final output in computing the upper bound.

Alignments GIZA++ SAHMM
Oracle[2] (en-ch) 9.4 8.4
Oracle[4] (en-ch) 4.7
Oracle[2] (en-ar) 9.8 11.1
Oracle[4] (en-ar) 5.5
Oracle[2] (en-ro) 15.4 17.7
Oracle[4] (en-ro) 11.3

Table 7: Oracle Upper Bounds on AER for Align-
ment Combination

ing Oracle[2]) and 4.7% (using Oracle[4]). The
English-Arabic data exhibits a slightly higher upper
bound of 5.5% for Oracle[4]. The upper bounds for
AER on English-Romanian data are even higher (up
to 17.7%), which indicates that the input alignments
are significantly worse than others. This may be
one of the main contributing factors to the lower im-
provement of ACME on English-Romanian in com-
parison to the other two language pairs.

5.4 MT Evaluation
To determine the contribution of improved align-
ment in an external application, we examined the
improvement in an off-the-shelf phrase-based MT
system Pharaoh (Koehn, 2004) on both Chinese and
Arabic data. In these experiments, all components
of the MT system were kept the same except for
the component that generates a phrase table from a
given alignment.

The input alignments were generated using
GIZA++ and SAHMM on 107K (44K) sentence
pairs for Chinese (Arabic). ACME (with English
POS partitioning) combines alignments using model
parameters learned from the corresponding manu-
ally aligned data. MT output is evaluated using the
standard MT evaluation metric BLEU (Papineni et
al., 2002).10 Table 8 presents the BLEU scores on

10We used the NIST script (version 11a) with its default set-

101

Figure 2: Precision and Recall Scores for GIZA++ and ACME Using 2 and 4 Input Alignments.

MTEval’03 data for 5 different Pharaoh runs, one for
each alignment. The parameters of the MT system
were optimized on MTEval’02 data using minimum
error rate training (Och, 2003).

For the language model, the SRI Language Mod-
eling Toolkit was used to train a trigram model with
modified Kneser-Ney smoothing on 155M words of
English newswire text, mostly from the Xinhua por-
tion of the Gigaword corpus. During decoding, the
number of English phrases per FL phrase was lim-
ited to 100 and the distortion of phrases was lim-
ited by 4. Based on the observations in (Koehn et
al., 2003), we also limited the phrase length to 3 for
computational reasons.

Alignment Chinese Arabic
GIZA++(union) 22.66 41.72
GIZA++(gdf) 23.79 43.82
GIZA++(int) 23.97 42.76
ACME[2] 25.20 44.94
ACME[4] 25.59 45.54

Table 8: Evaluation of Pharaoh with Different Initial
Alignments using BLEU (in percentages)

For both languages, ACME[2] and ACME[4]
outperform the other three alignment combination
techniques. ACME[4], for instance, yields the
BLEU scores of 25.59% for Chinese and 45.54% for
Arabic—an absolute 1.6-1.7% BLEU point increase
over the best of the other three alignment combina-
tions. The differences between the BLEU scores for
ACME and the other three BLEU scores are statisti-
cally significant, using a significance test with boot-
strap resampling (Zhang et al., 2004).

6 Related Work
ME models have been previously applied to several
NLP problems, including word alignments. For in-
tings: case-insensitive matching of n-grams up to n = 4, and
the shortest reference sentence for the brevity penalty.

stance, the IBM models (Brown et al., 1993) can be
improved by adding more context dependencies into
the translation model using a ME framework rather
than using only p(fj |ei) (Garcia-Varea et al., 2002).
In a later study, Och and Ney (2003) present a log-
linear combination of the HMM and IBM Model 4
that produces better alignments than either of those.
The major advantage of these two methods is that
they do not require manually annotated data.

The alignment process can be modeled as a prod-
uct of a transition model and an observation model,
where ME models the observations (Ittycheriah and
Roukos, 2005). Significant improvements are re-
ported using this approach but the need for large
manually aligned data is a bottleneck. An alterna-
tive ME approach models alignment directly as a
log-linear combination of feature functions (Liu et
al., 2005). Moore (2005) and Taskar et al. (2005)
represent alignments with several feature functions
that are then combined in a weighted sum to model
word alignments. Once a confidence score is as-
signed to all links, a non-trivial search is invoked to
find the best alignment using the scores associated
with the links. The major difference between these
approaches and that of ACME is that we use the ME
model to predict the correct class for each align-
ment link independently using outputs of existing
alignment systems, instead of generating them from
scratch at the level of the whole sentence, thus elim-
inating the need for an exhaustive search over all
possible alignments, i.e., previous approaches work
globally while ACME is a localized model. A dis-
cussion of these two contrasting approaches can be
found in (Tillmann and Zhang, 2005).

A recent attempt to combine outputs of differ-
ent alignments views the combination problem as a
classifier ensemble in the neural network framework

102

(Ayan et al., 2005). However, this method is subject
to the unpredictability of random network initializa-
tion, whereas ACME is guaranteed to find the model
that maximizes the likelihood of training data.

7 Conclusions

We presented a new approach, ACME, to combin-
ing the outputs of different word alignment systems
by reducing the combination problem to the level
of alignment links and using a maximum entropy
model to learn whether a particular alignment link
is included in the final alignment.

Our results indicate that ACME yields significant
relative error reduction over the input alignments
and their heuristic-based combinations on three dif-
ferent language pairs. Moreover, ACME provides
similar relative improvements for different sizes of
training data for the input alignment systems. We
have also shown that using a higher number of input
alignments, and partitioning the training data into
disjoint subsets and learning a different model for
each partition yield further improvements.

We have tested impact of the reduced AER on
MT and have shown that alignments generated by
ACME yield statistically significant improvements
in BLEU scores in two different languages, even
if we don’t employ a POS tagger on the FL side.
However, additional studies are needed to investi-
gate why huge improvements in AER result in rela-
tively smaller improvements in BLEU scores.

Because ACME is a supervised learning ap-
proach, it requires annotated data; however, our ex-
periments have shown that significant improvements
can be obtained using a small set of annotated data.

Acknowledgments This work has been supported, in
part, under ONR MURI Contract FCPO.810548265 and the
GALE program of the Defense Advanced Research Projects
Agency, Contracts No. HR0011-06-2-0001. We also thank
anonymous reviewers for their helpful comments.

References
Necip F. Ayan, Bonnie J. Dorr, and Christof Monz. 2005. Neu-

ralign: Combining word alignments using neural networks.
In Proceedings of EMNLP’2005, pages 65–72.

Adam L. Berger, Stephan A. Della-Pietra, and Vincent J. Della-
Pietra. 1996. A maximum entropy approach to natural lan-
guage processing. Computational Linguistics, 22(1).

Peter F. Brown, Stephan A. Della Pietra, and Robert L. Mer-
cer. 1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Computational Linguistics,
19(2):263–311.

J. N. Darroch and D. Ratcliff. 1972. Generalized iterative scal-
ing for log-linear models. Annals of Mathematical Statistics,
43:1470–1480.

Michael Fleischman, Namhee Kwon, and Eduard Hovy. 2003.
Maximum entropy models for framenet classification. In
Proceedings of EMNLP’2003.

Ismael Garcia-Varea, Franz Josef Och, Hermann Ney, and Fran-
cisco Casacuberta. 2002. Improving alignment quality in
statistical machine translation using context-dependent max-
imum entropy models. In Proceedings of COLING’2002.

Abraham Ittycheriah and Salim Roukos. 2005. A maximum
entropy word aligner for arabic-english machine translation.
In Proceedings of EMNLP’2005.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. In Proceedings of HLT-
NAACL’2003.

Philipp Koehn. 2004. Pharaoh: A beam search decoder for
phrase-based statistical machine translation. In Proceedings
of AMTA’2004.

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-linear models
for word alignment. In Proceedings of ACL’2005.

Adam Lopez and Philip Resnik. 2005. Improved HMM align-
ment models for languages with scarce resources. In Pro-
ceedings of the ACL’2005 Workshop on Building and Using
Parallel Texts: Data Driven Machine Translation and Be-
yond, pages 83–86.

Rada Mihalcea and Ted Pedersen. 2003. An evaluation ex-
ercise for word alignment. In Proceedings of the HLT-
NAACL’2003 Workshop: Building and Using Parallel Texts:
Data Driven Machine Translation and Beyond, pages 1–10.

Robert C. Moore. 2005. A discriminative framework for bilin-
gual word alignment. In Proceedings of EMNLP’2005.

Franz J. Och and Hermann Ney. 2002. Discriminative training
and maximum entropy models for statistical machine trans-
lation. In Proceedings of ACL’2002, pages 295–302.

Franz J. Och and Hermann Ney. 2003. A systematic compari-
son of various statistical alignment models. Computational
Linguistics, 29(1):9–51, March.

Franz J. Och. 2000. GIZA++: Training of statistical transla-
tion models. Technical report, RWTH Aachen, University
of Technology.

Franz J. Och. 2002. Yet another maxent toolkit: YASMET.
Available at http://www.fjoch.com/YASMET.html.

Franz J. Och. 2003. Minimum error rate training in statisti-
cal machine translation. In Proceedings of ACL’2003, pages
160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: A method for automatic evaluation of
machine translation. In Proceedings of ACL’2002, pages
311–318.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models for Nat-
ural Language Ambiguity Resolution. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia, PA.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. 2005. A
discriminative matching approach to word alignment. In
Proceedings of EMNLP’2005.

Christoph Tillmann and Tong Zhang. 2005. A localized predic-
tion model for statistical machine translation. In Proceed-
ings of ACL’2005.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Inter-
preting BLEU/NIST scores: How much improvement do we
need to have a better system? In Proceedings of LREC’2004,
pages 2051–2054.

103

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 104–111,
New York, June 2006.c©2006 Association for Computational Linguistics

Alignment by Agreement

Percy Liang
UC Berkeley

Berkeley, CA 94720
pliang@cs.berkeley.edu

Ben Taskar
UC Berkeley

Berkeley, CA 94720
taskar@cs.berkeley.edu

Dan Klein
UC Berkeley

Berkeley, CA 94720
klein@cs.berkeley.edu

Abstract

We present an unsupervised approach to
symmetric word alignment in which two
simple asymmetric models are trained
jointly to maximize a combination of
data likelihood and agreement between
the models. Compared to the stan-
dard practice of intersecting predictions of
independently-trained models, joint train-
ing provides a 32% reduction in AER.
Moreover, a simple and efficient pair of
HMM aligners provides a 29% reduction
in AER over symmetrized IBM model 4
predictions.

1 Introduction

Word alignment is an important component of a
complete statistical machine translation pipeline
(Koehn et al., 2003). The classic approaches to un-
supervised word alignment are based on IBM mod-
els 1–5 (Brown et al., 1994) and the HMM model
(Ney and Vogel, 1996) (see Och and Ney (2003) for
a systematic comparison). One can classify these
six models into two groups: sequence-based models
(models 1, 2, and HMM) and fertility-based models
(models 3, 4, and 5).1 Whereas the sequence-based
models are tractable and easily implemented, the
more accurate fertility-based models are intractable
and thus require approximation methods which are

1IBM models 1 and 2 are considered sequence-based models
because they are special cases of HMMs with transitions thatdo
not depend on previous states.

difficult to implement. As a result, many practition-
ers use the complex GIZA++ software package (Och
and Ney, 2003) as a black box, selecting model 4 as
a good compromise between alignment quality and
efficiency.

Even though the fertility-based models are more
accurate, there are several reasons to consider av-
enues for improvement based on the simpler and
faster sequence-based models. First, even with
the highly optimized implementations in GIZA++,
models 3 and above are still very slow to train. Sec-
ond, we seem to have hit a point of diminishing re-
turns with extensions to the fertility-based models.
For example, gains from the new model 6 of Och
and Ney (2003) are modest. When models are too
complex to reimplement, the barrier to improvement
is raised even higher. Finally, the fertility-based
models are asymmetric, and symmetrization is com-
monly employed to improve alignment quality by
intersecting alignments induced in each translation
direction. It is therefore natural to explore models
which are designed from the start with symmetry in
mind.

In this paper, we introduce a new method for word
alignment that addresses the three issues above. Our
development is motivated by the observation that in-
tersecting the predictions of two directional models
outperforms each model alone. Viewing intersec-
tion as a way of finding predictions that both models
agree on, we take the agreement idea one step fur-
ther. The central idea of our approach is to not only
make the predictions of the models agree at test time,
but also encourage agreement during training. We
define an intuitive objective function which incor-

104

porates both data likelihood and a measure of agree-
ment between models. Then we derive an EM-like
algorithm to maximize this objective function. Be-
cause the E-step is intractable in our case, we use
a heuristic approximation which nonetheless works
well in practice.

By jointly training two simple HMM models, we
obtain 4.9% AER on the standard English-French
Hansards task. To our knowledge, this is the lowest
published unsupervised AER result, and it is com-
petitive with supervised approaches. Furthermore,
our approach is very practical: it is no harder to
implement than a standard HMM model, and joint
training is no slower than the standard training of
two HMM models. Finally, we show that word
alignments from our system can be used in a phrase-
based translation system to modestly improve BLEU
score.

2 Alignment models: IBM 1, 2 and HMM

We briefly review the sequence-based word align-
ment models (Brown et al., 1994; Och and Ney,
2003) and describe some of the choices in our
implementation. All three models are generative
models of the formp(f | e) =

∑

a
p(a, f | e),

where e = (e1, . . . , eI) is the English sentence,
f = (f1, . . . , fJ) is the French sentence, anda =
(a1, . . . , aJ) is the (asymmetric) alignment which
specifies the position of an English word aligned to
each French word. All three models factor in the
following way:

p(a, f | e) =

J
∏

j=1

pd(aj | aj
−

, j)pt(fj | eaj
), (1)

wherej− is the position of the last non-null-aligned
French word before positionj.2

The translation parameterspt(fj | eaj
) are pa-

rameterized by an (unsmoothed) lookup table that
stores the appropriate local conditional probability
distributions. The distortion parameterspd(aj = i′ |
aj

−

= i) depend on the particular model (we write
aj = 0 to denote the event that thej-th French word

2The dependence onaj
−

can in fact be implemented as a
first-order HMM (see Och and Ney (2003)).

is null-aligned):

pd(aj =0 | aj
−

= i) = p0

pd(aj = i′ 6= 0 | aj
−

= i) ∝

(1 − p0) ·

1 (IBM 1)

c(i′−b jI
J
c) (IBM 2)

c(i′−i) (HMM) ,

wherep0 is the null-word probability andc(·) con-
tains the distortion parameters for each offset argu-
ment. We set the null-word probabilityp0 = 1

I+1

depending on the length of the English sentence,
which we found to be more effective than using a
constantp0.

In model 1, the distortionpd(· | ·) specifies a uni-
form distribution over English positions. In model
2, pd(· | ·) is still independent ofaj

−

, but it can now
depend onj andi′ throughc(·). In the HMM model,
there is a dependence onaj

−

= i, but only through
c(i − i′).

We parameterize the distortionc(·) using a multi-
nomial distribution over 11 offset bucketsc(≤
−5), c(−4), . . . , c(4), c(≥ 5).3 We use three sets of
distortion parameters, one for transitioning into the
first state, one for transitioning out of the last state,
and one for all other transitions. This works better
than using a single set of parameters or ignoring the
transitions at the two ends.

3 Training by agreement

To motivate our joint training approach, we first
consider the standard practice of intersecting align-
ments. While the English and French sentences
play a symmetric role in the word alignment task,
sequence-based models are asymmetric: they are
generative models of the formp(f | e) (E→F), or
p(e | f) (F→E) by reversing the roles of source and
target. In general, intersecting the alignment predic-
tions of two independently-trained directional mod-
els reduces AER, e.g., from 11% to 7% for HMM
models (Table 2). This suggests that two models
make different types of errors that can be eliminated
upon intersection. Figure 1 (top) shows a common
type of error that intersection can partly remedy. In

3For each sentence, the probability mass of each of the two
end bucketsc(≤−5) or c(≥ 5) is uniformly divided among
those valid offsets.

105

In
de

pe
nd

en
t

tr
ai

ni
ng

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

E→F: 84.2/92.0/13.0 F→E: 86.9/91.1/11.5 Intersection: 97.0/86.9/7.6

Jo
in

tt
ra

in
in

g

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

w
e

d
e
e
m

e
d

it

in
a
d
vi

sa
b
le

to

a
tt
e
n
d th
e

m
e
e
tin

g

a
n
d so

in
fo

rm
e
d

co
jo

.

nous

ne

avons

pas

cru

bon

de

assister

à

la

r éunion

et

en

avons

inform é

le

cojo

en

cons équence

.

E→F: 89.9/93.6/8.7 F→E: 92.2/93.5/7.3 Intersection: 96.5/91.4/5.7

Figure 1: An example of the Viterbi output of a pair of independently trained HMMs (top) and a pair of
jointly trained HMMs (bottom), both trained on 1.1 million sentences. Rounded boxes denote possible
alignments, square boxes are sure alignments, and solid boxes are model predictions. For each model, the
overall Precision/Recall/AER on the development set is given. See Section 4 for details.

this example,COJO is a rare word that becomes a
garbage collector (Moore, 2004) for the models in
both directions. Intersection eliminates the spurious
alignments, but at the expense of recall.

Intersection after training produces alignments
that both models agree on. The joint training pro-
cedure we describe below builds on this idea by en-
couraging the models to agree during training. Con-
sider the output of the jointly trained HMMs in Fig-
ure 1 (bottom). The garbage-collecting rare word is

no longer a problem. Not only are the individual
E→F and F→E jointly-trained models better than
their independently-trained counterparts, the jointly-
trained intersected model also provides a signifi-
cant overall gain over the independently-trained in-
tersected model. We maintain both high precision
and recall.

Before we introduce the objective function for
joint training, we will write the two directional mod-
els in a symmetric way so that they share the same

106

alignment spaces. We first replace the asymmetric
alignmentsa with a set of indicator variables for
each potential alignment edge(i, j): z = {zij ∈
{0, 1} : 1 ≤ i ≤ I, 1 ≤ j ≤ J}. Eachz can be
thought of as an element in the set ofgeneralized
alignments, where any subset of word pairs may be
aligned (Och and Ney, 2003). Sequence-based mod-
elsp(a | e, f) induce a distribution overp(z | e, f)
by letting p(z | e, f) = 0 for any z that does not
correspond to anya (i.e., if z contains many-to-one
alignments).

We also introduce the more compact notation
x = (e, f) to denote an input sentence pair. We
put arbitrary distributionsp(e) andp(f) to remove
the conditioning, noting that this has no effect on
the optimization problem in the next section. We
can now think of the two directional sequence-based
models as each inducing a distribution over the
same space of sentence pairs and alignments(x, z):

p1(x, z; θ1) = p(e)p(a, f | e; θ1)

p2(x, z; θ2) = p(f)p(a, e | f ; θ2).

3.1 A joint objective

In the next two sections, we describe how to jointly
train the two models using an EM-like algorithm.
We emphasize that this technique is quite general
and can be applied in many different situations
where we want to couple two tractable models over
inputx and outputz.

To train two modelsp1(x, z; θ1) andp2(x, z; θ2)
independently, we maximize the data likelihood
∏

x
pk(x; θk) =

∏

x

∑

z
pk(x, z; θk) of each model

separately,k ∈ {1, 2}:

max
θ1,θ2

∑

x

[log p1(x; θ1) + log p2(x; θ2)] . (2)

Above, the summation overx enumerates the sen-
tence pairs in the training data.

There are many possible ways to quantify agree-
ment between two models. We chose a particularly
simple and mathematically convenient measure —
the probability that the alignments produced by the
two models agree on an examplex:

∑

z

p1(z | x; θ1)p2(z | x; θ2).

We add the (log) probability of agreement to the
standard log-likelihood objective to couple the two
models:

max
θ1,θ2

∑

x

[log p1(x; θ1) + log p2(x; θ2) +

log
∑

z

p1(z | x; θ1)p2(z | x; θ2)]. (3)

3.2 Optimization via EM

We first review the EM algorithm for optimizing a
single model, which consists of iterating the follow-
ing two steps:

E : q(z;x) := p(z | x; θ),

M : θ′ := argmax
θ

∑

x,z

q(z;x) log p(x, z; θ).

In the E-step, we compute the posterior distribution
of the alignmentsq(z;x) given the sentence pairx
and current parametersθ. In the M-step, we use ex-
pected counts with respect toq(z;x) in the maxi-
mum likelihood updateθ := θ′.

To optimize the objective in Equation 3, we can
derive a similar and simple procedure. See the ap-
pendix for the derivation.

E: q(z;x) := 1

Zx

p1(z | x; θ1)p2(z | x; θ2),

M: θ′ = argmax
θ

∑

x,z

q(z;x) log p1(x, z; θ1)

+
∑

x,z

q(z;x) log p2(x, z; θ2),

whereZx is a normalization constant. The M-step
decouples neatly into two independent optimization
problems, which lead to single model updates using
the expected counts fromq(z;x). To computeZx in
the E-step, we must sum the product of two model
posteriors over the set of possiblezs with nonzero
probability under both models. In general, if both
posterior distributions over the latent variablesz

decompose in the same tractable manner, as in
the context-free grammar induction work of Klein
and Manning (2004), the summation could be
carried out efficiently, for example using dynamic
programming. In our case, we would have to sum
over the set of alignments where each word in
English is aligned to at most one word in French
and each word in French is aligned to at most one

107

word in English. Unfortunately, for even very
simple models such as IBM 1 or 2, computing the
normalization constant over this set of alignments
is a #P -complete problem, by a reduction from
counting matchings in a bipartite graph (Valiant,
1979). We could perhaps attempt to computeq us-
ing a variety of approximate probabilistic inference
techniques, for example, sampling or variational
methods. With efficiency as our main concern, we
opted instead for a simple heuristic procedure by
letting q be a product of marginals:

q(z;x) :=
∏

i,j

p1(zij | x; θ1)p2(zij | x; θ2),

where eachpk(zij | x; θk) is the posterior marginal
probability of the(i, j) edge being present (or ab-
sent) in the alignment according to each model,
which can be computed separately and efficiently.

Now the new E-step only requires simple
marginal computations under each of the mod-
els. This procedure is very intuitive: edges on
which the models disagree are discounted in the E-
step because the product of the marginalsp1(zij |
x; θ1)p2(zij | x; θ2) is small. Note that in general,
this new procedure is not guaranteed to increase our
joint objective. Nonetheless, our experimental re-
sults show that it provides an effective method of
achieving model agreement and leads to significant
accuracy gains over independent training.

3.3 Prediction

Once we have trained two models, either jointly
or independently, we must decide how to combine
those two models to predict alignments for new sen-
tences.

First, let us step back to the case of one model.
Typically, the Viterbi alignmentargmax

z
p(z | x)

is used. An alternative is to use posterior decoding,
where we keep an edge(i, j) if the marginal edge
posteriorp(zij | x) exceeds some threshold0 < δ <

1. In symbols,z = {zij = 1 : p(zij = 1 | x) ≥ δ}.4

Posterior decoding has several attractive advan-
tages over Viterbi decoding. Varying the threshold
δ gives a natural way to tradeoff precision and re-
call. In fact, these posteriors could be used more di-

4See Matusov et al. (2004) for an alternative use of these
marginals.

rectly in extracting phrases for phrase-based trans-
lation. Also, when we want to combine two mod-
els for prediction, finding the Viterbi alignment
argmax

z
p1(z | x)p2(z | x) is intractable for

HMM models (by a reduction from quadratic as-
signment), and a hard intersectionargmax

z1
p1(z1 |

x) ∩ argmax
z2

p2(z2 | x) might be too sparse.
On the other hand, we can threshold the product of
two edge posteriors quite easily:z = {zij = 1 :
p1(zij = 1 | x)p2(zij = 1 | x) ≥ δ}.

We noticed a 5.8% relative reduction in AER (for
our best model) by using posterior decoding with a
validation-set optimized thresholdδ instead of using
hard intersection of Viterbi alignments.

4 Experiments

We tested our approach on the English-French
Hansards data from the NAACL 2003 Shared Task,
which includes a training set of 1.1 million sen-
tences, a validation set of 37 sentences, and a test set
of 447 sentences. The validation and test sentences
have been hand-aligned (see Och and Ney (2003))
and are marked with bothsure and possible align-
ments. Using these alignments,alignment error rate
(AER) is calculated as:

(

1 −
|A ∩ S| + |A ∩ P |

|A| + |S|

)

× 100%,

whereA is a set of proposed edges,S is the sure
gold edges, andP is the possible gold edges.

As a preprocessing step, we lowercased all words.
Then we used the validation set and the first 100 sen-
tences of the test set as our development set to tune
our models. Lastly, we ran our models on the last
347 sentences of the test set to get final AER results.

4.1 Basic results

We trained models 1, 2, and HMM on the Hansards
data. Following past work, we initialized the trans-
lation probabilities of model 1 uniformly over word
pairs that occur together in some sentence pair.
Models 2 and HMM were initialized with uni-
form distortion probabilities and model 1 translation
probabilities. Each model was trained for 5 itera-
tions, using the same training regimen as in Och and
Ney (2003).

108

Model Indep. Joint Reduction

10K sentences
Model 1 27.4 23.6 13.8
Model 2 18.2 14.9 18.5
HMM 12.1 8.4 30.6

100K sentences
Model 1 21.5 19.2 10.9
Model 2 13.1 10.2 21.7
HMM 8.0 5.3 33.1

1.1M sentences
Model 1 20.0 16.5 17.5
Model 2 11.4 9.2 18.8
HMM 6.6 5.2 21.5

Table 1: Comparison of AER between independent
and joint training across different size training sets
and different models, evaluated on the development
set. The last column shows the relative reduction in
AER.

Table 1 shows a summary of the performance of
independently and jointly trained models under var-
ious training conditions. Quite remarkably, for all
training data sizes and all of the models, we see
an appreciable reduction in AER, especially on the
HMM models. We speculate that since the HMM
model provides a richer family of distributions over
alignments than either models 1 or 2, we can learn
to synchronize the predictions of the two models,
whereas models 1 and 2 have a much more limited
capacity to synchronize.

Table 2 shows the HMM models compared to
model 4 alignments produced by GIZA++ on the test
set. Our jointly trained model clearly outperforms
not only the standard HMM but also the more com-
plex IBM 4 model. For these results, the threshold
used for posterior decoding was tuned on the devel-
opment set. “GIZA HMM” and “HMM, indep” are
the same algorithm but differ in implementation de-
tails. The E→F and F→E models benefit a great
deal by moving from independent to joint training,
and the combined models show a smaller improve-
ment.

Our best performing model differs from standard
IBM word alignment models in two ways. First and
most importantly, we use joint training instead of

Model E→F F→E Combined

GIZA HMM 11.5 11.5 7.0
GIZA Model 4 8.9 9.7 6.9

HMM, indep 11.2 11.5 7.2
HMM, joint 6.1 6.6 4.9

Table 2: Comparison of test set AER between vari-
ous models trained on the full 1.1 million sentences.

Model I+V I+P J+V J+P

10K sentences
Model 1 29.4 27.4 22.7 23.6
Model 2 20.1 18.2 16.5 14.9
HMM 15.2 12.1 8.9 8.4

100K sentences
Model 1 22.9 21.5 18.6 19.2
Model 2 15.1 13.1 12.9 10.2
HMM 9.2 8.0 6.0 5.3

1.1M sentences
Model 1 20.0 19.4 16.5 17.3
Model 2 12.7 11.4 11.6 9.2
HMM 7.6 6.6 5.7 5.2

Table 3: Contributions of using joint training versus
independent training and posterior decoding (with
the optimal threshold) instead of Viterbi decoding,
evaluated on the development set.

independent training, which gives us a huge boost.
The second change, which is more minor and or-
thogonal, is using posterior decoding instead of
Viterbi decoding, which also helps performance for
model 2 and HMM, but not model 1. Table 3 quan-
tifies the contribution of each of these two dimen-
sions.

Posterior decoding In our results, we have tuned
our threshold to minimize AER. It turns out that
AER is relatively insensitive to the threshold as Fig-
ure 2 shows. There is a large range from 0.2 to 0.5
where posterior decoding outperforms Viterbi de-
coding.

Initialization and convergence In addition to im-
proving performance, joint training also enjoys cer-
tain robustness properties. Specialized initialization
is absolutely crucial for an independently-trained

109

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
er

fo
rm

an
ce

Posterior threshold

100-Precision
100-Recall

AER
Viterbi AER

Figure 2: The precision, recall, and AER as the
threshold is varied for posterior decoding in a jointly
trained pair of HMMs.

HMM model. If we initialize the HMM model with
uniform translation parameters, the HMM converges
to a completely senseless local optimum with AER
above 50%. Initializing the HMM with model 1 pa-
rameters alleviates this problem.

On the other hand, if we jointly train two HMMs
starting from a uniform initialization, the HMMs
converge to a surprisingly good solution. On the full
training set, training two HMMs jointly from uni-
form initialization yields 5.7% AER, only slightly
higher than 5.2% AER using model 1 initialization.
We suspect that the agreement term of the objective
forces the two HMMs to avoid many local optima
that each one would have on its own, since these lo-
cal optima correspond to posteriors over alignments
that would be very unlikely to agree. We also ob-
served that jointly trained HMMs converged very
quickly—in 5 iterations—and did not exhibit over-
fitting with increased iterations.

Common errors The major source of remaining
errors are recall errors that come from the shortcom-
ings of the HMM model. The E→F model gives 0
probability to any many-to-one alignments and the
F→E model gives 0 probability to any one-to-many
alignments. By enforcing agreement, the two mod-
els are effectively restricted to one-to-one (or zero)
alignments. Posterior decoding is in principle ca-
pable of proposing many-to-many alignments, but
these alignments occur infrequently since the poste-
riors are generally sharply peaked around the Viterbi

alignment. In some cases, however, we do get one-
to-many alignments in both directions.

Another common type of errors are precision er-
rors due to the models overly-aggressively prefer-
ring alignments that preserve monotonicity. Our
HMM model only uses 11 distortion parameters,
which means distortions are not sensitive to the lex-
ical context of the sentences. For example, in one
sentence,le is incorrectly aligned tothe as a mono-
tonic alignment following another pair of correctly
aligned words, and then the monotonicity is broken
immediately followingle–the. Here, the model is
insensitive to the fact that alignments following arti-
cles tend to be monotonic, but alignments preceding
articles are less so.

Another phenomenon is the insertion of “stepping
stone” alignments. Suppose two edges(i, j) and
(i+4, j+4) have a very high probability of being in-
cluded in an alignment, but the words between them
are not good translations of each other. If the inter-
vening English words were null-aligned, we would
have to pay a big distortion penalty for jumping 4
positions. On the other hand, if the edge(i+2, j+2)
were included, that penalty would be mitigated. The
translation cost for forcing that edge is smaller than
the distortion cost.

4.2 BLEU evaluation

To see whether our improvement in AER also im-
proves BLEU score, we aligned 100K English-
French sentences from the Europarl corpus and
tested on 3000 sentences of length 5–15. Using
GIZA++ model 4 alignments and Pharaoh (Koehn
et al., 2003), we achieved a BLEU score of 0.3035.
By using alignments from our jointly trained HMMs
instead, we get a BLEU score of 0.3051. While this
improvement is very modest, we are currently inves-
tigating alternative ways of interfacing with phrase
table construction to make a larger impact on trans-
lation quality.

5 Related Work

Our approach is similar in spirit to co-training,
where two classifiers, complementary by the virtue
of having different views of the data, are trained
jointly to encourage agreement (Blum and Mitchell,
1998; Collins and Singer, 1999). One key difference

110

in our work is that we rely exclusively on data like-
lihood to guide the two models in an unsupervised
manner, rather than relying on an initial handful of
labeled examples.

The idea of exploiting agreement between two la-
tent variable models is not new; there has been sub-
stantial previous work on leveraging the strengths
of two complementary models. Klein and Man-
ning (2004) combine two complementary mod-
els for grammar induction, one that models con-
stituency and one that models dependency, in a man-
ner broadly similar to the current work. Aside from
investigating a different domain, one novel aspect of
this paper is that we present a formal objective and a
training algorithm for combining two generic mod-
els.

6 Conclusion

We have described an efficient and fully unsuper-
vised method of producing state-of-the-art word
alignments. By training two simple sequence-based
models to agree, we achieve substantial error re-
ductions over standard models. Our jointly trained
HMM models reduce AER by 29% over test-time
intersected GIZA++ model 4 alignments and also
increase our robustness to varying initialization reg-
imens. While AER is only a weak indicator of final
translation quality in many current translation sys-
tems, we hope that more accurate alignments can
eventually lead to improvements in the end-to-end
translation process.

Acknowledgments We thank the anonymous re-
viewers for their comments.

References
Avrim Blum and Tom Mitchell. 1998. Combining Labeled

and Unlabeled Data with Co-training. InProceedings of the
COLT 1998.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1994. The Mathematics of Statistical
Machine Translation: Parameter Estimation.Computational
Linguistics, 19:263–311.

Michael Collins and Yoram Singer. 1999. Unsupervised Mod-
els for Named Entity Classification. InProceedings of
EMNLP 1999.

Abraham Ittycheriah and Salim Roukos. 2005. A maximum
entropy word aligner for arabic-english machine translation.
In Proceedings of HLT-EMNLP.

Dan Klein and Christopher D. Manning. 2004. Corpus-Based
Induction of Syntactic Structure: Models of Dependency and
Constituency. InProceedings of ACL 2004.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Sta-
tistical Phrase-Based Translation. InProceedings of HLT-
NAACL 2003.

E. Matusov, Zens. R., and H. Ney. 2004. Symmetric word
alignments for statistical machine translation. InProceed-
ings of the 20th International Conference on Computational
Linguistics, August.

Robert C. Moore. 2004. Improving IBM Word Alignment
Model 1. InProceedings of ACL 2004.

Robert C. Moore. 2005. A discriminative framework for bilin-
gual word alignment. InProceedings of EMNLP.

Hermann Ney and Stephan Vogel. 1996. HMM-Based Word
Alignment in Statistical Translation. InCOLING.

Franz Josef Och and Hermann Ney. 2003. A Systematic Com-
parison of Various Statistical Alignment Models.Computa-
tional Linguistics, 29:19–51.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. 2005. A
Discriminative Matching Approach to Word Alignment. In
Proceedings of EMNLP 2005.

L. G. Valiant. 1979. The complexity of computing the perma-
nent.Theoretical Computer Science, 8:189–201.

Appendix: Derivation of agreement EM
To simplify notation, we drop the explicit reference
to the parametersθ. Lower bound the objective in
Equation 3 by introducing a distributionq(z;x) and
using the concavity oflog:

X

x

log p1(x)p2(x)
X

z

p1(z | x)p2(z | x) (4)

≥
X

x,z

q(z;x) log
p1(x)p2(x)p1(z | x)p2(z | x)

q(z;x)
(5)

=
X

x,z

q(z;x) log
p1(z | x)p2(z | x)

q(z;x)
+ C (6)

=
X

x,z

q(z;x) log p1(x, z)p2(x, z) + D, (7)

whereC depends only onθ but not q and D de-
pends onlyq but notθ. The E-step choosesq given
a fixedθ to maximize the lower bound. Equation 6
is exactly

∑

x
−KL(q||p1p2) + C, which is maxi-

mized by settingq proportional top1p2. The M-step
choosesθ given a fixedq. Equation 7 decomposes
into two separate optimization problems.

111

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 112–119,
New York, June 2006.c©2006 Association for Computational Linguistics

Word Alignment via Quadratic Assignment

Simon Lacoste-Julien
UC Berkeley, Berkeley, CA 94720
slacoste@cs.berkeley.edu

Ben Taskar
UC Berkeley, Berkeley, CA 94720
taskar@cs.berkeley.edu

Dan Klein
UC Berkeley, Berkeley, CA 94720
klein@cs.berkeley.edu

Michael I. Jordan
UC Berkeley, Berkeley, CA 94720
jordan@cs.berkeley.edu

Abstract

Recently, discriminative word alignment methods
have achieved state-of-the-art accuracies by extend-
ing the range of information sources that can be
easily incorporated into aligners. The chief advan-
tage of a discriminative framework is the ability
to score alignments based on arbitrary features of
the matching word tokens, including orthographic
form, predictions of other models, lexical context
and so on. However, the proposed bipartite match-
ing model of Taskar et al. (2005), despite being
tractable and effective, has two important limita-
tions. First, it is limited by the restriction that
words have fertility of at most one. More impor-
tantly, first order correlations between consecutive
words cannot be directly captured by the model. In
this work, we address these limitations by enrich-
ing the model form. We give estimation and infer-
ence algorithms for these enhancements. Our best
model achieves a relative AER reduction of 25%
over the basic matching formulation, outperform-
ing intersected IBM Model 4 without using any
overly compute-intensive features. By including
predictions of other models as features, we achieve
AER of 3.8 on the standard Hansards dataset.

1 Introduction

Word alignment is a key component of most end-
to-end statistical machine translation systems. The
standard approach to word alignment is to construct
directional generative models (Brown et al., 1990;
Och and Ney, 2003), which produce a sentence in
one language given the sentence in another lan-
guage. While these models require sentence-aligned
bitexts, they can be trained with no further super-
vision, using EM. Generative alignment models do,
however, have serious drawbacks. First, they require
extensive tuning and processing of large amounts
of data which, for the better-performing models, is

a non-trivial resource requirement. Second, condi-
tioning on arbitrary features of the input is difficult;
for example, we would like to condition on the or-
thographic similarity of a word pair (for detecting
cognates), the presence of that pair in various dic-
tionaries, the similarity of the frequency of its two
words, choices made by other alignment systems,
and so on.

Recently, Moore (2005) proposed a discrimina-
tive model in which pairs of sentences (e, f) and
proposed alignments a are scored using a linear
combination of arbitrary features computed from the
tuples (a, e, f). While there are no restrictions on
the form of the model features, the problem of find-
ing the highest scoring alignment is very difficult
and involves heuristic search. Moreover, the param-
eters of the model must be estimated using averaged
perceptron training (Collins, 2002), which can be
unstable. In contrast, Taskar et al. (2005) cast word
alignment as a maximum weighted matching prob-
lem, in which each pair of words (ej , fk) in a sen-
tence pair (e, f) is associated with a score sjk(e, f)
reflecting the desirability of the alignment of that
pair. Importantly, this problem is computationally
tractable. The alignment for the sentence pair is the
highest scoring matching under constraints (such as
the constraint that matchings be one-to-one). The
scoring model sjk(e, f) can be based on a rich fea-
ture set defined on word pairs (ej , fk) and their con-
text, including measures of association, orthogra-
phy, relative position, predictions of generative mod-
els, etc. The parameters of the model are estimated
within the framework of large-margin estimation; in
particular, the problem turns out to reduce to the

112

solution of a (relatively) small quadratic program
(QP). The authors show that large-margin estimation
is both more stable and more accurate than percep-
tron training.

While the bipartite matching approach is a use-
ful first step in the direction of discriminative word
alignment, for discriminative approaches to com-
pete with and eventually surpass the most sophisti-
cated generative models, it is necessary to consider
more realistic underlying statistical models. Note in
particular two substantial limitations of the bipartite
matching model of Taskar et al. (2005): words have
fertility of at most one, and there is no way to incor-
porate pairwise interactions among alignment deci-
sions. Moving beyond these limitations—while re-
taining computational tractability—is the next major
challenge for discriminative word alignment.

In this paper, we show how to overcome both lim-
itations. First, we introduce a parameterized model
that penalizes different levels of fertility. While this
extension adds very useful expressive power to the
model, it turns out not to increase the computa-
tional complexity of the aligner, for either the pre-
diction or the parameter estimation problem. Sec-
ond, we introduce a more thoroughgoing extension
which incorporates first-order interactions between
alignments of consecutive words into the model. We
do this by formulating the alignment problem as a
quadratic assignment problem (QAP), where in ad-
dition to scoring individual edges, we also define
scores of pairs of edges that connect consecutive
words in an alignment. The predicted alignment is
the highest scoring quadratic assignment.

QAP is an NP-hard problem, but in the range of
problem sizes that we need to tackle the problem can
be solved efficiently. In particular, using standard
off-the-shelf integer program solvers, we are able to
solve the QAP problems in our experiments in under
a second. Moreover, the parameter estimation prob-
lem can also be solved efficiently by making use of
a linear relaxation of QAP for the min-max formu-
lation of large-margin estimation (Taskar, 2004).

We show that these two extensions yield signif-
icant improvements in error rates when compared
to the bipartite matching model. The addition of a
fertility model improves the AER by 0.4. Model-
ing first-order interactions improves the AER by 1.8.
Combining the two extensions results in an improve-

ment in AER of 2.3, yielding alignments of better
quality than intersected IBM Model 4. Moreover,
including predictions of bi-directional IBM Model
4 and model of Liang et al. (2006) as features, we
achieve an absolute AER of 3.8 on the English-
French Hansards alignment task—the best AER re-
sult published on this task to date.

2 Models

We begin with a quick summary of the maximum
weight bipartite matching model in (Taskar et al.,
2005). More precisely, nodes V = Vs ∪ V t cor-
respond to words in the “source” (Vs) and “tar-
get” (V t) sentences, and edges E = {jk : j ∈
Vs, k ∈ V t} correspond to alignments between word
pairs.1 The edge weights sjk represent the degree
to which word j in one sentence can be translated
using the word k in the other sentence. The pre-
dicted alignment is chosen by maximizing the sum
of edge scores. A matching is represented using a
set of binary variables yjk that are set to 1 if word
j is assigned to word k in the other sentence, and 0
otherwise. The score of an assignment is the sum of
edge scores: s(y) =

∑

jk sjkyjk. For simplicity, let
us begin by assuming that each word aligns to one or
zero words in the other sentence; we revisit the issue
of fertility in the next section. The maximum weight
bipartite matching problem, arg max

y∈Y s(y), can
be solved using combinatorial algorithms for min-
cost max-flow, expressed in a linear programming
(LP) formulation as follows:

max
0≤z≤1

∑

jk∈E

sjkzjk (1)

s.t.
∑

j∈Vs

zjk ≤ 1, ∀k ∈ V t;

∑

k∈Vt

zjk ≤ 1, ∀j ∈ Vs,

where the continuous variables zjk are a relax-
ation of the corresponding binary-valued variables
yjk. This LP is guaranteed to have integral (and
hence optimal) solutions for any scoring function
s(y) (Schrijver, 2003). Note that although the above
LP can be used to compute alignments, combina-
torial algorithms are generally more efficient. For

1The source/target designation is arbitrary, as the models
considered below are all symmetric.

113

t
h
e

b
a
c
k
b
o
n
e

o
f

o
u
r

e
c
o
n
o
m
y

de

épine

dorsale

à

notre

économie

t
h
e

b
a
c
k
b
o
n
e

o
f

o
u
r

e
c
o
n
o
m
y

de

épine

dorsale

à

notre

économie

(a) (b)

Figure 2: An example fragment that requires fertility
greater than one to correctly label. (a) The guess of
the baseline M model. (b) The guess of the M+F
fertility-augmented model.

example, in Figure 1(a), we show a standard con-
struction for an equivalent min-cost flow problem.
However, we build on this LP to develop our exten-
sions to this model below. Representing the predic-
tion problem as an LP or an integer LP provides a
precise (and concise) way of specifying the model
and allows us to use the large-margin framework
of Taskar (2004) for parameter estimation described
in Section 3.

For a sentence pair x, we denote position pairs by
xjk and their scores as sjk. We let sjk = w>f(xjk)
for some user provided feature mapping f and ab-
breviate w>f(x,y) =

∑

jk yjkw
>f(xjk). We can

include in the feature vector the identity of the two
words, their relative positions in their respective sen-
tences, their part-of-speech tags, their string similar-
ity (for detecting cognates), and so on.

2.1 Fertility

An important limitation of the model in Eq. (1) is
that in each sentence, a word can align to at most
one word in the translation. Although it is common
that words have gold fertility zero or one, it is cer-
tainly not always true. Consider, for example, the
bitext fragment shown in Figure 2(a), where back-
bone is aligned to the phrase épine dorsal. In this
figure, outlines are gold alignments, square for sure
alignments, round for possibles, and filled squares
are target alignments (for details on gold alignments,
see Section 4). When considering only the sure

alignments on the standard Hansards dataset, 7 per-
cent of the word occurrences have fertility 2, and 1
percent have fertility 3 and above; when considering
the possible alignments high fertility is much more
common—31 percent of the words have fertility 3
and above.

One simple fix to the original matching model is
to increase the right hand sides for the constraints
in Eq. (1) from 1 to D, where D is the maximum
allowed fertility. However, this change results in
an undesirable bimodal behavior, where maximum
weight solutions either have all words with fertil-
ity 0 or D, depending on whether most scores sjk

are positive or negative. For example, if scores tend
to be positive, most words will want to collect as
many alignments as they are permitted. What the
model is missing is a means for encouraging the
common case of low fertility (0 or 1), while allowing
higher fertility when it is licensed. This end can be
achieved by introducing a penalty for having higher
fertility, with the goal of allowing that penalty to
vary based on features of the word in question (such
as its frequency or identity).

In order to model such a penalty, we introduce
indicator variables zdj• (and zd•k) with the intended
meaning: node j has fertility of at least d (and node
k has fertility of at least d). In the following LP, we
introduce a penalty of

∑

2≤d≤D sdj•zdj• for fertility
of node j, where each term sdj• ≥ 0 is the penalty
increment for increasing the fertility from d − 1 to
d:

max
0≤z≤1

∑

jk∈E

sjkzjk (2)

−
∑

j∈Vs,2≤d≤D

sdj•zdj• −
∑

k∈Vt,2≤d≤D

sd•kzd•k

s.t.
∑

j∈Vs

zjk ≤ 1 +
∑

2≤d≤D

zd•k, ∀k ∈ V t;

∑

k∈Vt

zjk ≤ 1 +
∑

2≤d≤D

zdj•, ∀j ∈ Vs.

We can show that this LP always has integral so-
lutions by a reduction to a min-cost flow problem.
The construction is shown in Figure 1(b). To ensure
that the new variables have the intended semantics,
we need to make sure that sdj• ≤ sd′j• if d ≤ d′,
so that the lower cost zdj• is used before the higher
cost zd′j• to increase fertility. This restriction im-

114

(a) (b) (c)

Figure 1: (a) Maximum weight bipartite matching as min-cost flow. Diamond-shaped nodes represent flow
source and sink. All edge capacities are 1, with edges between round nodes (j, k) have cost −sjk, edges
from source and to sink have cost 0. (b) Expanded min-cost flow graph with new edges from source and to
sink that allow fertility of up to 3. The capacities of the new edges are 1 and the costs are 0 for solid edges
from source and to sink, s2j•, s2•k for dashed edges, and s3j•, s3•k for dotted edges. (c) Three types of pairs
of edges included in the QAP model, where the nodes on both sides correspond to consecutive words.

f
o
r

m
o
r
e

t
h
a
n a

y
e
a
r

depuis

plus

de

un

an

f
o
r

m
o
r
e

t
h
a
n a

y
e
a
r

depuis

plus

de

un

an

(a) (b)

Figure 3: An example fragment with a monotonic
gold alignment. (a) The guess of the baseline M
model. (b) The guess of the M+Q quadratic model.

plies that the penalty must be monotonic and convex
as a function of the fertility.

To anticipate the results that we report in Sec-
tion 4, adding fertility to the basic matching model
makes the target alignment of the backbone example
feasible and, in this case, the model correctly labels
this fragment as shown in Figure 2(b).

2.2 First-order interactions

An even more significant limitation of the model
in Eq. (1) is that the edges interact only indi-
rectly through the competition induced by the con-
straints. Generative alignment models like the
HMM model (Vogel et al., 1996) and IBM models 4
and above (Brown et al., 1990; Och and Ney, 2003)
directly model correlations between alignments of
consecutive words (at least on one side). For exam-

ple, Figure 3 shows a bitext fragment whose gold
alignment is strictly monotonic. This monotonicity
is quite common – 46% of the words in the hand-
aligned data diagonally follow a previous alignment
in this way. We can model the common local align-
ment configurations by adding bonuses for pairs of
edges. For example, strictly monotonic alignments
can be encouraged by boosting the scores of edges
of the form 〈(j, k), (j + 1, k + 1)〉. Another trend,
common in English-French translation (7% on the
hand-aligned data), is the local inversion of nouns
and adjectives, which typically involves a pair of
edges 〈(j, k + 1), (j + 1, k)〉. Finally, a word in one
language is often translated as a phrase (consecutive
sequence of words) in the other language. This pat-
tern involves pairs of edges with the same origin on
one side: 〈(j, k), (j, k+1)〉 or 〈(j, k), (j+1, k)〉. All
three of these edge pair patterns are shown in Fig-
ure 1(c). Note that the set of such edge pairs Q =
{jklm : |j − l| ≤ 1, |k − m| ≤ 1} is of linear size
in the number of edges.

Formally, we add to the model variables zjklm

which indicate whether both edge jk and lm are in
the alignment. We also add a corresponding score
sjklm, which we assume to be non-negative, since
the correlations we described are positive. (Nega-
tive scores can also be used, but the resulting for-
mulation we present below would be slightly differ-
ent.) To enforce the semantics zjklm = zjkzlm, we
use a pair of constraints zjklm ≤ zjk; zjklm ≤ zlm.
Since sjklm is positive, at the optimum, zjklm =

115

min(zjk, zlm). If in addition zjk, zlm are integral (0
or 1), then zjklm = zjkzlm. Hence, solving the fol-
lowing LP as an integer linear program will find the
optimal quadratic assignment for our model:

max
0≤z≤1

∑

jk∈E

sjkzjk +
∑

jklm∈Q

sjklmzjklm (3)

s.t.
∑

j∈Vs

zjk ≤ 1, ∀k ∈ V t;

∑

k∈Vt

zjk ≤ 1, ∀j ∈ Vs;

zjklm ≤ zjk, zjklm ≤ zlm, ∀jklm ∈ Q.

Note that we can also combine this extension with
the fertility extension described above.

To once again anticipate the results presented in
Section 4, the baseline model of Taskar et al. (2005)
makes the prediction given in Figure 3(a) because
the two missing alignments are atypical translations
of common words. With the addition of edge pair
features, the overall monotonicity pushes the align-
ment to that of Figure 3(b).

3 Parameter estimation

To estimate the parameters of our model, we fol-
low the large-margin formulation of Taskar (2004).
Our input is a set of training instances {(xi,yi)}

m
i=1

,
where each instance consists of a sentence pair xi

and a target alignment yi. We would like to find
parameters w that predict correct alignments on the
training data: yi = arg max

ȳi∈Yi

w>f(xi, ȳi) for each i,

where Yi is the space of matchings for the sentence
pair xi.

In standard classification problems, we typically
measure the error of prediction, `(yi, ȳi), using the
simple 0-1 loss. In structured problems, where we
are jointly predicting multiple variables, the loss is
often more complex. While the F-measure is a nat-
ural loss function for this task, we instead chose a
sensible surrogate that fits better in our framework:
weighted Hamming distance, which counts the num-
ber of variables in which a candidate solution ȳ dif-
fers from the target output y, with different penalty
for false positives (c+) and false negatives (c−):

`(y, ȳ) =
∑

jk

[

c+(1− yjk)ȳjk + c−(1− ȳjk)yjk

]

.

We use an SVM-like hinge upper bound on
the loss `(yi, ȳi), given by maxȳi∈Yi

[w>fi(ȳi) +
`i(ȳi) − w>fi(yi)], where `i(ȳi) = `(yi, ȳi), and
fi(ȳi) = f(xi, ȳi). Minimizing this upper bound
encourages the true alignment yi to be optimal with
respect to w for each instance i:

min
||w||≤γ

∑

i

max
ȳi∈Yi

[w>fi(ȳi) + `i(ȳi)]−w>fi(yi),

where γ is a regularization parameter.
In this form, the estimation problem is a mixture

of continuous optimization over w and combinato-
rial optimization over yi. In order to transform it
into a more standard optimization problem, we need
a way to efficiently handle the loss-augmented in-
ference, maxȳi∈Yi

[w>fi(ȳi) + `i(ȳi)]. This opti-
mization problem has precisely the same form as the
prediction problem whose parameters we are trying
to learn — maxȳi∈Yi

w>fi(ȳi) — but with an addi-
tional term corresponding to the loss function. Our
assumption that the loss function decomposes over
the edges is crucial to solving this problem. We omit
the details here, but note that we can incorporate the
loss function into the LPs for various models we de-
scribed above and “plug” them into the large-margin
formulation by converting the estimation problem
into a quadratic problem (QP) (Taskar, 2004). This
QP can be solved using any off-the-shelf solvers,
such as MOSEK or CPLEX.2 An important differ-
ence that comes into play for the estimation of the
quadratic assignment models in Equation (3) is that
inference involves solving an integer linear program,
not just an LP. In fact the LP is a relaxation of the in-
teger LP and provides an upper bound on the value
of the highest scoring assignment. Using the LP re-
laxation for the large-margin QP formulation is an
approximation, but as our experiments indicate, this
approximation is very effective. At testing time, we
use the integer LP to predict alignments. We have
also experimented with using just the LP relaxation
at testing time and then independently rounding each
fractional edge value, which actually incurs no loss
in alignment accuracy, as we discuss below.

2When training on 200 sentences, the QP we obtain contains
roughly 700K variables and 300K constraints and is solved in
roughly 10 minutes on a 2.8 GHz Pentium 4 machine. Aligning
the whole training set with the flow formulation takes a few
seconds, whereas using the integer programming (for the QAP
formulation) takes 1-2 minutes.

116

t
h
e

h
o
n
.

m
e
m
b
e
r

f
o
r

V
e
r
d
u
n

w
o
u
l
d

n
o
t

h
a
v
e

d
e
n
i
g
r
a
t
e
d

m
y

p
o
s
i
t
i
o
n

le

député

de

Verdun

ne

aurait

pas

déprécié

ma

position

t
h
e

h
o
n
.

m
e
m
b
e
r

f
o
r

V
e
r
d
u
n

w
o
u
l
d

n
o
t

h
a
v
e

d
e
n
i
g
r
a
t
e
d

m
y

p
o
s
i
t
i
o
n

le

député

de

Verdun

ne

aurait

pas

déprécié

ma

position

t
h
e

h
o
n
.

m
e
m
b
e
r

f
o
r

V
e
r
d
u
n

w
o
u
l
d

n
o
t

h
a
v
e

d
e
n
i
g
r
a
t
e
d

m
y

p
o
s
i
t
i
o
n

le

député

de

Verdun

ne

aurait

pas

déprécié

ma

position

(a) (b) (c)

Figure 4: An example fragment with several multiple fertility sure alignments. (a) The guess of the M+Q
model with maximum fertility of one. (b) The guess of the M+Q+F quadratic model with fertility two
permitted. (c) The guess of the M+Q+F model with lexical fertility features.

4 Experiments

We applied our algorithms to word-level alignment
using the English-French Hansards data from the
2003 NAACL shared task (Mihalcea and Pedersen,
2003). This corpus consists of 1.1M automatically
aligned sentences, and comes with a validation set of
37 sentence pairs and a test set of 447 sentences. The
validation and test sentences have been hand-aligned
(see Och and Ney (2003)) and are marked with both
sure and possible alignments. Using these align-
ments, alignment error rate (AER) is calculated as:

(

1−
|A ∩ S|+ |A ∩ P |

|A|+ |S|

)

× 100%.

Here, A is a set of proposed index pairs, S is the
sure gold pairs, and P is the possible gold pairs.
For example, in Figure 4, proposed alignments are
shown against gold alignments, with open squares
for sure alignments, rounded open squares for possi-
ble alignments, and filled black squares for proposed
alignments.

The input to our algorithm is a small number of
labeled examples. In order to make our results more
comparable with Moore (2005), we split the origi-
nal set into 200 training examples and 247 test ex-
amples. We also trained on only the first 100 to
make our results more comparable with the exper-
iments of Och and Ney (2003), in which IBM model

4 was tuned using 100 sentences. In all our experi-
ments, we used a structured loss function that penal-
ized false negatives 10 times more than false posi-
tives, where the value of 10 was picked by using a
validation set. The regularization parameter γ was
also chosen using the validation set.

4.1 Features and results

We parameterized all scoring functions sjk, sdj•,
sd•k and sjklm as weighted linear combinations of
feature sets. The features were computed from
the large unlabeled corpus of 1.1M automatically
aligned sentences.

In the remainder of this section we describe the
improvements to the model performance as various
features are added. One of the most useful features
for the basic matching model is, of course, the set of
predictions of IBM model 4. However, computing
these features is very expensive and we would like to
build a competitive model that doesn’t require them.
Instead, we made significant use of IBM model 2 as
a source of features. This model, although not very
accurate as a predictive model, is simple and cheap
to construct and it is a useful source of features.

The Basic Matching Model: Edge Features In
the basic matching model of Taskar et al. (2005),
called M here, one can only specify features on pairs
of word tokens, i.e. alignment edges. These features

117

include word association, orthography, proximity,
etc., and are documented in Taskar et al. (2005). We
also augment those features with the predictions of
IBM Model 2 run on the training and test sentences.
We provided features for model 2 trained in each
direction, as well as the intersected predictions, on
each edge. By including the IBM Model 2 features,
the performance of the model described in Taskar et
al. (2005) on our test set (trained on 200 sentences)
improves from 10.0 AER to 8.2 AER, outperforming
unsymmetrized IBM Model 4 (but not intersected
model 4).

As an example of the kinds of errors the baseline
M system makes, see Figure 2 (where multiple fer-
tility cannot be predicted), Figure 3 (where a prefer-
ence for monotonicity cannot be modeled), and Fig-
ure 4 (which shows several multi-fertile cases).

The Fertility Model: Node Features To address
errors like those shown in Figure 2, we increased
the maximum fertility to two using the parameter-
ized fertility model of Section 2.1. The model learns
costs on the second flow arc for each word via fea-
tures not of edges but of single words. The score of
taking a second match for a word w was based on
the following features: a bias feature, the proportion
of times w’s type was aligned to two or more words
by IBM model 2, and the bucketed frequency of the
word type. This model was called M+F. We also in-
cluded a lexicalized feature for words which were
common in our training set: whether w was ever
seen in a multiple fertility alignment (more on this
feature later). This enabled the system to learn that
certain words, such as the English not and French
verbs like aurait commonly participate in multiple
fertility configurations.

Figure 5 show the results using the fertility exten-
sion. Adding fertility lowered AER from 8.5 to 8.1,
though fertility was even more effective in conjunc-
tion with the quadratic features below. The M+F set-
ting was even able to correctly learn some multiple
fertility instances which were not seen in the training
data, such as those shown in Figure 2.

The First-Order Model: Quadratic Features
With or without the fertility model, the model makes
mistakes such as those shown in Figure 3, where
atypical translations of common words are not cho-
sen despite their local support from adjacent edges.

In the quadratic model, we can associate features
with pairs of edges. We began with features which
identify each specific pattern, enabling trends of
monotonicity (or inversion) to be captured. We also
added to each edge pair the fraction of times that
pair’s pattern (monotonic, inverted, one to two) oc-
curred according each version of IBM model 2 (for-
ward, backward, intersected).

Figure 5 shows the results of adding the quadratic
model. M+Q reduces error over M from 8.5 to 6.7
(and fixes the errors shown in Figure 3). When both
the fertility and quadratic extensions were added,
AER dropped further, to 6.2. This final model is
even able to capture the diamond pattern in Figure 4;
the adjacent cycle of alignments is reinforced by the
quadratic features which boost adjacency. The ex-
ample in Figure 4 shows another interesting phe-
nomenon: the multi-fertile alignments for not and
député are learned even without lexical fertility fea-
tures (Figure 4b), because the Dice coefficients of
those words with their two alignees are both high.
However the surface association of aurait with have
is much higher than with would. If, however, lexi-
cal features are added, would is correctly aligned as
well (Figure 4c), since it is observed in similar pe-
riphrastic constructions in the training set.

We have avoided using expensive-to-compute fea-
tures like IBM model 4 predictions up to this point.
However, if these are available, our model can im-
prove further. By adding model 4 predictions to the
edge features, we get a relative AER reduction of
27%, from 6.5 to 4.5. By also including as features
the posteriors of the model of Liang et al. (2006), we
achieve AER of 3.8, and 96.7/95.5 precision/recall.

It is comforting to note that in practice, the burden
of running an integer linear program at test time can
be avoided. We experimented with using just the LP
relaxation and found that on the test set, only about
20% of sentences have fractional solutions and only
0.2% of all edges are fractional. Simple rounding3

of each edge value in the LP solution achieves the
same AER as the integer LP solution, while using
about a third of the computation time on average.

3We slightly bias the system on the recall side by rounding
0.5 up, but this doesn’t yield a noticeable difference in the re-
sults.

118

Model Prec Rec AER

Generative
IBM 2 (E→F) 73.6 87.7 21.7
IBM 2 (F→E) 75.4 87.0 20.6
IBM 2 (intersected) 90.1 80.4 14.3
IBM 4 (E→F) 90.3 92.1 9.0
IBM 4 (F→E) 90.8 91.3 9.0
IBM 4 (intersected) 98.0 88.1 6.5

Discriminative (100 sentences)
Matching (M) 94.1 88.5 8.5
M + Fertility (F) 93.9 89.4 8.1
M + Quadratic (Q) 94.4 91.9 6.7
M + F + Q 94.8 92.5 6.2
M + F + Q + IBM4 96.4 94.4 4.5

Discriminative (200 sentences)
Matching (M) 93.4 89.7 8.2
M + Fertility (F) 93.6 90.1 8.0
M + Quadratic (Q) 95.0 91.1 6.8
M + F + Q 95.2 92.4 6.1
M + F + Q + IBM4 96.0 95.0 4.4

Figure 5: AER on the Hansards task.

5 Conclusion

We have shown that the discriminative approach to
word alignment can be extended to allow flexible
fertility modeling and to capture first-order inter-
actions between alignments of consecutive words.
These extensions significantly enhance the expres-
sive power of the discriminative approach; in partic-
ular, they make it possible to capture phenomena of
monotonicity, local inversion and contiguous fertil-
ity trends—phenomena that are highly informative
for alignment. They do so while remaining compu-
tationally efficient in practice both for prediction and
for parameter estimation.

Our best model achieves a relative AER reduc-
tion of 25% over the basic matching formulation,
beating intersected IBM Model 4 without the use
of any compute-intensive features. Including Model
4 predictions as features, we achieve a further rela-
tive AER reduction of 32% over intersected Model
4 alignments. By also including predictions of an-
other model, we drive AER down to 3.8. We are
currently investigating whether the improvement in
AER results in better translation BLEU score. Al-
lowing higher fertility and optimizing a recall bi-
ased cost function provide a significant increase in

recall relative to the intersected IBM model 4 (from
88.1% to 94.4%), with only a small degradation in
precision. We view this as a particularly promising
aspect of our work, given that phrase-based systems
such as Pharaoh (Koehn et al., 2003) perform better
with higher recall alignments.

References

P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della
Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and
P. S. Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2):79–85.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In Proc. EMNLP.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT-NAACL 2003.

P. Liang, B. Taskar, and D. Klein. 2006. Alignment by
agreement. In HLT-NAACL.

R. Mihalcea and T. Pedersen. 2003. An evaluation exer-
cise for word alignment. In Proceedings of the HLT-
NAACL 2003 Workshop, Building and Using parallel
Texts: Data Driven Machine Translation and Beyond,
pages 1–6, Edmonton, Alberta, Canada.

Robert C. Moore. 2005. A discriminative framework for
bilingual word alignment. In Proc. HLT/EMNLP.

F. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1):19–52.

A. Schrijver. 2003. Combinatorial Optimization: Poly-
hedra and Efficiency. Springer.

B. Taskar, S. Lacoste-Julien, and D. Klein. 2005. A dis-
criminative matching approach to word alignment. In
EMNLP.

B. Taskar. 2004. Learning Structured Prediction Mod-
els: A Large Margin Approach. Ph.D. thesis, Stanford
University.

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM-based
word alignment in statistical translation. In COLING
16, pages 836–841.

119

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 120–127,
New York, June 2006.c©2006 Association for Computational Linguistics

An Empirical Study of the Behavior of Active Learning for Word Sense
Disambiguation

1 Jinying Chen, 1 Andrew Schein, 1 Lyle Ungar, 2 Martha Palmer
1 Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA, 19104

{jinying,ais,ungar}@cis.upenn.edu
2 Linguistic Department
University of Colorado

Boulder, CO, 80309

Martha.Palmer@colorado.edu

Abstract
This paper shows that two uncertainty-
based active learning methods, combined
with a maximum entropy model, work
well on learning English verb senses.
Data analysis on the learning process,
based on both instance and feature levels,
suggests that a careful treatment of feature
extraction is important for the active
learning to be useful for WSD. The
overfitting phenomena that occurred
during the active learning process are
identified as classic overfitting in machine
learning based on the data analysis.

1 Introduction
Corpus-based methods for word sense
disambiguation (WSD) have gained popularity in
recent years. As evidenced by the SENSEVAL
exercises (http://www.senseval.org), machine
learning models supervised by sense-tagged
training corpora tend to perform better on the
lexical sample tasks than unsupervised methods.
However, WSD tasks typically have very limited
amounts of training data due to the fact that
creating large-scale high-quality sense-tagged
corpora is difficult and time-consuming. Therefore,
the lack of sufficient labeled training data has
become a major hurdle to improving the
performance of supervised WSD.

A promising method for solving this problem
could be the use of active learning. Researchers
use active learning methods to minimize the
labeling of examples by human annotators. A
decrease in overall labeling occurs because active
learners (the machine learning models used in

active learning) pick more informative examples
for the target word (a word whose senses need to
be learned) than those that would be picked
randomly. Active learning requires human labeling
of the newly selected training data to ensure high
quality.

We focus here on pool-based active learning
where there is an abundant supply of unlabeled
data, but where the labeling process is expensive.
In NLP problems such as text classification (Lewis
and Gale, 1994; McCallum and Nigam, 1998),
statistical parsing (Tang et al., 2002), information
extraction (Thompson et al., 1999), and named
entity recognition (Shen et al., 2004), pool-based
active learning has produced promising results.

This paper presents our experiments in applying
two active learning methods, a min-margin based
method and a Shannon-entropy based one, to the
task of the disambiguation of English verb senses.
The contribution of our work is not only in
demonstrating that these methods work well for the
active learning of coarse-grained verb senses, but
also analyzing the behavior of the active learning
process on two levels: the instance level and the
feature level. The analysis suggests that a careful
treatment of feature design and feature generation
is important for a successful application of active
learning to WSD. We also accounted for the
overfitting phenomena that occurred in the learning
process based on our data analysis.

The rest of the paper is organized as follows. In
Section 2, we introduce two uncertainty sampling
methods used in our active learning experiments
and review related work in using active learning
for WSD. We then present our active learning
experiments on coarse-grained English verb senses
in Section 3 and analyze the active learning

120

process in Section 4. Section 5 presents
conclusions of our study.

2 Active Learning Algorithms
The methods evaluated in this work fit into a
common framework described by Algorithm 1 (see
Table 1). The key difference between alternative
active learning methods is how they assess the
value of labeling individual examples, i.e., the
methods they use for ranking and selecting the
candidate examples for labeling. The framework is
wide open to the type of ranking rule employed.
Usually, the ranking rule incorporates the model
trained on the currently labeled data. This is the
reason for the requirement of a partial training set
when the algorithm begins.
 Algorithm 1
Require: initial training set, pool of unlabeled examples
 Repeat

Select T random examples from pool
 Rank T examples according to active learning rule
 Present the top-ranked example to oracle for labeling
 Augment the training set with the new example
 Until Training set reaches desirable size

Table 1. A Generalized Active Learning Loop

In our experiments we look at two variants of
the uncertainty sampling heuristic: entropy
sampling and margin sampling. Uncertainty
sampling is a term invented by Lewis and Gale
(Lewis and Gale, 1994) to describe a heuristic
where a probabilistic classifier picks examples for
which the model’s current predictions are least
certain. The intuitive justification for this approach
is that regions where the model is uncertain
indicate a decision boundary, and clarifying the
position of decision boundaries is the goal of
learning classifiers. Schein (2005) demonstrates
the two methods run quickly and compete
favorably against alternatives when combined with
the logistic regression classifier.

2.1 Entropy Sampling
A key question is how to measure uncertainty.
Different methods of measuring uncertainty will
lead to different variants of uncertainty sampling.
We will look at two such measures. As a
convenient notation we use q (a vector) to
represent the trained model’s predictions, with cq
equal to the predicted probability of class c . One
method is to pick the example whose prediction
vector q displays the greatest Shannon entropy:

∑−
c

cc qq log (1)

Such a rule means ranking candidate examples
in Algorithm 1 by Equation 1.

2.2 Margin Sampling
An alternative method picks the example with the
smallest margin: the difference between the largest
two values in the vector q (Abe and Mamitsuka,
1998). In other words, if c and 'c are the two most
likely categories for example nx , the margin is
measured as follows:

)|'Pr()|Pr(nnn xcxcM −= (2)
In this case Algorithm 1 would rank examples

by increasing values of margin, with the smallest
value at the top of the ranking.

Using either method of uncertainty sampling,
the computational cost of picking an example from
T candidates is: O(TD) where D is the number of
model parameters.

2.3 Related Work
To our best knowledge, there have been very few
attempts to apply active learning to WSD in the
literature (Fujii and Inui, 1999; Chklovski and
Mihalcea, 2002; Dang, 2004). Fujii and Inui (1999)
developed an example sampling method for their
example-based WSD system in the active learning
of verb senses in a pool-based setting. Unlike the
uncertainty sampling methods (such as the two
methods we used), their method did not select
examples for which the system had the minimal
certainty. Rather, it selected the examples such that
after training using those examples the system
would be most certain about its predictions on the
rest of the unlabeled examples in the next iteration.
This sample selection criterion was enforced by
calculating a training utility function. The method
performed well on the active learning of Japanese
verb senses. However, the efficient computation of
the training utility function relied on the nature of
the example-based learning method, which made
their example sampling method difficult to export
to other types of machine learning models.

Open Mind Word Expert (Chklovski and
Mihalcea, 2002) was a real application of active
learning for WSD. It collected sense-annotated
examples from the general public through the Web
to create the training data for the SENSEVAL-3
lexical sample tasks. The system used the

121

disagreement of two classifiers (which employed
different sets of features) on sense labels to
evaluate the difficulty of the unlabeled examples
and ask the web users to tag the difficult examples
it selected. There was no formal evaluation for this
active learning system.

Dang (2004) used an uncertainty sampling
method to get additional training data for her WSD
system. At each iteration the system selected a
small set of examples for which it had the lowest
confidence and asked the human annotators to tag
these examples. The experimental results on 5
English verbs with fine-grained senses (from
WordNet 1.7) were a little surprising in that active
learning performed no better than random
sampling. The proposed explanation was that the
quality of the manually sense-tagged data was
limited by an inconsistent or unclear sense
inventory for the fine-grained senses.

3 Active Learning Experiments
3.1 Experimental Setting
We experimented with the two uncertainty
sampling methods on 5 English verbs that had
coarse-grained senses (see Table 2), as described
below. By using coarse-grained senses, we limit
the impact of noisy data due to unclear sense
boundaries and therefore can get a clearer
observation of the effects of the active learning
methods themselves.
verb # of

sen.
baseline
acc. (%)

Size of data for
active learning

Size of
test data

Add 3 91.4 400 100
Do 7 76.9 500 200
Feel 3 83.6 400 90
See 7 59.7 500 200
Work 9 68.3 400 150
Table 2. The number of senses, the baseline
accuracy, the number of instances used for active
learning and for held-out evaluation for each verb

The coarse-grained senses are produced by
grouping together the original WordNet senses
using syntactic and semantic criteria (Palmer et al.,
2006). Double-blind tagging is applied to 50
instances of the target word. If the ITA < 90%, the
sense entry is revised by adding examples and
explanations of distinguishing criteria.

Table 2 summarizes the statistics of the data.
The baseline accuracy was computed by using the
“most frequent sense” heuristic to assign sense

labels to verb instances (examples). The data used
in active learning (Column 4 in Table 2) include
two parts: an initial labeled training set and a pool
of unlabeled training data. We experimented with
sizes 20, 50 and 100 for the initial training set. The
pool of unlabeled data had actually been annotated
in advance, as in most pool-based active learning
experiments. Each time an example was selected
from the pool by the active learner, its label was
returned to the learner. This simulates the process
of asking human annotators to tag the selected
unlabeled example at each time. The advantage of
using such a simulation is that we can experiment
with different settings (different sizes of the initial
training set and different sampling methods).

The data sets used for active learning and for
held-out evaluation were randomly sampled from a
large data pool for each round of the active
learning experiment. We ran ten rounds of the
experiments for each verb and averaged the
learning curves for the ten rounds.

In the experiments, we used random sampling
(picking up an unlabeled example randomly at
each time) as a lower bound. Another control
(ultimate-maxent) was the learner’s performance
on the test set when it was trained on a set of
labeled data that were randomly sampled from a
large data pool and equaled the amount of data
used in the whole active learning process (e.g., 400
training data for the verb add).

The machine learning model we used for active
learning was a regularized maximum entropy
(MaxEnt) model (McCallum, 2002). The features
used for disambiguating the verb senses included
topical, collocation, syntactic (e.g., the subject,
object, and preposition phrases taken by a target
verb), and semantic (e.g., the WordNet synsets and
hypernyms of the head nouns of a verb’s NP
arguments) features (Chen and Palmer, 2005).

3.2 Experimental Results
Due to space limits, Figure 1 only shows the
learning curves for 4 verbs do, feel, see, and work
(size of the initial training set = 20). The curve for
the verb add is similar to that for feel. These curves
clearly show that the two uncertainty sampling
methods, the entropy-based (called entropy-maxent
in the figure) and the margin-based (called
min_margin-maxent), work very well for active
learning of the senses of these verbs.

122

Figure 1 Active learning for four verbs

Both methods outperformed the random
sampling method in that they reached the upper-
bound accuracy earlier and had smoother learning
curves. For the four verbs add, do, feel and see,
their learning curves reached the upper bound at
about 200~300 iterations, which means 1/2 or 1/3
of the annotation effort can be saved for these
verbs by using active learning, while still achieving
the same level of performance as supervised WSD
without using active learning. Given the large-
scale annotation effort currently underway in the
OntoNotes project (Hovy et al., 2006), this could
provide considerable savings in annotation effort
and speed up the process of providing sufficient
data for a large vocabulary. The OntoNotes project
has now provided coarse-grained entries for over
350 verbs, with corresponding double–blind
annotation and adjudication in progress. As this
adjudicated data becomes available, we will be
able to train our system accordingly. Preliminary
results for 22 of these coarse-grained verbs (with
an average grouping polysemy of 4.5) give us an
average accuracy of 86.3%. This will also provide
opportunities for more experiments with active
learning, where there are enough instances. Active
learning could also be beneficial in porting these
supervised taggers to new genres with different
sense distributions.

We also experimented with different sizes of
the initial training set (20, 50 and 100) and found
no significant differences in the performance at
different settings. That means, for these 5 verbs,
only 20 labeled training instances will be enough
to initiate an efficient active learning process.

From Figure 1, we can see that the two
uncertainty sampling methods generally perform
equally well except that for the verb do, the min-
margin method is slightly better than the entropy
method at the beginning of active learning. This
may not be so surprising, considering that the two
methods are equal for two-class classification tasks
(see Equations 1 and 2 for their definition) and the
verbs used in our experiments have coarse-grained
senses and often have only 2 or 3 major senses.

An interesting phenomenon observed from
these learning curves is that for the two verbs add
and feel, the active learner reached the upper
bound very soon (at about 100 iterations) and then
even breached the upper bound. However, when
the training set was extended, the learner’s
performance dropped and eventually returned to

123

the same level of the upper bound. We discuss the
phenomenon below.

4 Analysis of the Learning Process
In addition to verifying the usefulness of active
learning for WSD, we are also interested in a
deeper analysis of the learning process. For
example, why does the active learner’s
performance drop sometimes during the learning
process? What are the characteristics of beneficial
features that help to boost the learner’s accuracy?
How do we account for the overfitting phenomena
that occurred during the active learning for the
verbs add and feel? We analyzed the effect of both
instances and features throughout the course of
active learning using min-margin-based sampling.

4.1 Instance-level Analysis
Intuitively, if the learner’s performance drops after
a new example is added to the training set, it is
likely that something has gone wrong with the new
example. To find out such bad examples, we
define a measure credit_inst for instance i as:

∑∑
=

+
=

−
m

r
ll

n

l
AccAcclisel

m 1
1

1
)(),(1

 (3)

where Accl and Accl+1 are the classification
accuracies of the active learner at the lth and
(l+1)th iterations. n is the total number of
iterations of active learning and m is the number of
rounds of active learning (m=10 in our case).

),(lisel is 1 iff instance i is selected by the active
learner at the lth iteration and is 0 if otherwise.

An example is a bad example if and only if it
satisfies the following conditions:

a) its credit_inst value is negative
b) it increases the learner’s performance, if it
does, less often than it decreases the
performance in the 10 rounds.
We ranked the bad examples by their

credit_inst values and their frequency of
decreasing the learner’s performance in the 10
rounds. Table 3 shows the top five bad examples
for feel and work. There are several reasons why
the bad examples may hurt the learner’s
performance. Column 3 of Table 3 proposes
reasons for many of our bad examples. We
categorized these reasons into three major types.

I. The major senses of a target verb depend
heavily on the semantic categories of its NP
arguments but WordNet sometimes fails to provide

the appropriate semantic categories (features) for
the head nouns of these NP arguments. For
example, feel in the board apparently felt no
pressure has Sense 1 (experience). In Sense 1, feel
typically takes an animate subject. However,
board, the head word of the verb’s subject in the
above sentence has no animate meanings defined
in WordNet. Even worse, the major meaning of
board, i.e., artifact, is typical for the subject of feel
in Sense 2 (touch, grope). Similar semantic type
mismatches hold for the last four bad examples of
the verb work in Table 3.

II. The contexts of the target verb are difficult
for our feature exaction module to analyze. For
example, the antecedent for the pronoun subject
they in the first example of work in Table 3 should
be ringers, an agent subject that is typical for
Sense 1 (exert oneself in an activity). However, the
feature exaction module found the wrong
antecedent changes that is an unlikely fit for the
intended verb sense. In the fourth example for feel,
the feature extraction module cannot handle the
expletive “it” (a dummy subject) in “it was felt
that”, therefore, it cannot identify the typical
syntactic pattern for Sense 3 (find, conclude), i.e.,
subject+feel+relative clause.

III. Sometimes, deep semantic and discourse
analyses are needed to get the correct meaning of
the target verb. For example, in the third example
of feel, “…, he or she feels age creeping up”, it is
difficult to tell whether the verb has Sense 1
(experience) or Sense 3 (find) without an
understanding of the meaning of the relative clause
and without looking at a broader discourse context.
The syntactic pattern identified by our feature
extraction module, subject+feel+relative clause,
favors Sense 3 (find), which leads to an inaccurate
interpretation for this case.

Recall that the motivation behind uncertainty
samplers is to find examples near decision
boundaries and use them to clarify the position of
these boundaries. Active learning often does find
informative examples, either ones from the less
common senses or ones close to the boundary
between the different senses. However, active
learning also identifies example sentences that are
difficult to analyze. The failure of our feature
extraction module, the lack of appropriate semantic
categories for certain NP arguments in WordNet,
the lack of deep analysis (semantic and discourse
analysis) of the context of the target verb can all

124

 Table 3 Data analysis of the top-ranked bad examples found for two verbs

produce misleading features. Therefore, in order to
make active learning useful for its applications,
both identifying difficult examples and getting
good features for these examples are equally
important. In other words, a careful treatment of
feature design and feature generation is necessary
for a successful application of active learning.

There is a positive side to identifying such
“bad” examples; one can have human annotators
look at the features generated from the sentences
(as we did above), and use this to improve the data
or the classifier. Note that this is exactly what we
did above: the identification of bad sentences was
automatic, and they could then be reannotated or
removed from the training set or the feature
extraction module needs to be refined to generate
informative features for these sentences.

Not all sentences have obvious interpretations;
hence the two question marks in Table 3. An
example can be bad for many reasons: conflicting
features (indicative of different senses), misleading
features (indicative of non-intended senses), or just
containing random features that are incorrectly
incorporated into the model. We will return to this

point in our discussion of the overfitting
phenomena for active learning in Section 4.3.

4.2 Feature-level Analysis

The purpose of our feature-level analysis is to
identify informative features for verb senses. The
learning curve of the active learner may provide
some clues. The basic idea is, if the learner’s
performance increases after adding a new example,
it is likely that the good example contains good
features that contribute to the clarification of sense
boundaries. However, the feature-level analysis is
much less straightforward than the instance-level
analysis since we cannot simply say the features
that are active (present) in this good example are
all good. Rather, an example often contains both
good and bad features, and many other features
that are somehow neutral or uninformative. The
interaction or balance between these features
determines the final outcome. On the other hand, a
statistics based analysis may help us to find
features that tend to be good or bad. For this
analysis, we define a measure credit_feat for
feature i as:

feel Proposed reasons for bad examples Senses
Some days the coaches make you feel as though you
are part of a large herd of animals .

? S1: experience

And , with no other offers on the table , the board
apparently felt no pressure to act on it.

subject: board, no “animate” meaning in
WordNet

S1: experience

Sometimes a burst of aggressiveness will sweep over a
man -- or his wife -- because he or she feels age
creeping up.

syntactic pattern: sbj+feel+relative clause
headed by that, a typical pattern for Sense
3 (find) rather than Sense 1 (experience)

S1: experience

At this stage it was felt I was perhaps more pertinent as
chief. executive .

syntactic pattern: sbj+feel+relative clause,
typical for Sense 3 (find) but has not been
detected by the feature exaction module

S3: find, conclude

I felt better Tuesday evening when I woke up. ? S1: experience
Work
When their changes are completed, and after they have
worked up a sweat, ringers often ……

subject: they, the feature exaction module
found the wrong antecedent (changes
rather than ringers) for they

S1: exert oneself
in an activity

Others grab books, records , photo albums , sofas and
chairs , working frantically in the fear that an
aftershock will jolt the house again .

subject: others (means people here), no
definition in WordNet

S1: exert oneself
in an activity

Security Pacific 's factoring business works with
companies in the apparel, textile and food industries …

subject: business, no “animate” meaning
in WordNet

S1: exert oneself
in an activity

… ; blacks could work there , but they had to leave at
night .

subject: blacks, no “animate” meaning in
WordNet

S1: exert oneself
in an activity

… has been replaced by alginates (gelatin-like material
) that work quickly and accurately and with least
discomfort to a child .

subject: alginates, unknown by WordNet S2: perform,
function, behave

125

∑∑
=

+
=

−
m

r l
ll

n

l act
AccAccliactive

m 1
1

1

1)(),(1
 (4)

where),(liactive is 1 iff feature i is active in the
example selected by the active learner at the lth
iteration and is 0 if otherwise. actl is the total
number of active features in the example selected
at the lth iteration. n and m have the same
definition as in Equation 3.

A feature is regarded as good if its credit_feat
value is positive. We ranked the good features by
their credit_feat values. By looking at the top-
ranked good features for the verb work (due to
space limitations, we omit the table data), we
identify two types of typically good features.

The first type of good feature occurs frequently
in the data and has a frequency distribution over
the senses similar to the data distribution over the
senses. Such features include those denoting that
the target verb takes a subject (subj), is not used in
a passive mode (morph_normal), does not take a
direct object (intransitive), occurs in present tense
(word_work, pos_vb, word_works, pos_vbz), and
semantic features denoting an abstract subject
(subjsyn_16993 1) or an entity subject (subjsyn_
1742), etc. We call such features background
features. They help the machine learning model
learn the appropriate sense distribution of the data.
In other words, a learning model only using such
features will be equal to the “most frequent sense”
heuristic used in WSD.

Another type of good feature occurs less
frequently and has a frequency distribution over
senses that mismatches with the sense distribution
of the data. Such features include those denoting
that the target verb takes an inanimate subject
(subj_it), takes a particle out (prt_out), is followed
directly by the word out (word+1_out), or occurs at
the end of the sentence. Such features are
indicative of less frequent verb senses that still
occur fairly frequently in the data. For example,
taking an inanimate subject (subj_it) is a strong
clue for Sense 2 (perform, function, behave) of the
verb work. Occurring at the end of the sentence is
also indicative of Sense 2 since when work is used
in Sense 1 (exert oneself in an activity), it tends to
take adjuncts to modify the activity as in He is
working hard to bring up his grade.

1 Those features are from the WordNet. The numbers are
WordNet ids of synsets and hypernyms.

There are some features that don’t fall into the
above two categories, such as the topical feature
tp_know and the collocation feature pos-2_nn.
There are no obvious reasons why they are good
for the learning process, although it is possible that
the combination of two or more such features
could make a clear sense distinction. However, this
hypothesis cannot be verified by our current
statistics-based analysis. It is also worth noting that
our current feature analysis is post-experimental
(i.e., based on the results). In the future, we will try
automatic feature selection methods that can be
used in the training phase to select useful features
and/or their combinations.

We have similar results for the feature analysis
of the other four verbs.

4.3 Account for the Overfitting Phenomena
Recall that in the instance-level analysis in Section
4.1, we found that some examples hurt the learning
performance during active learning but for no
obvious reasons (the two examples marked by ? in
Table 3). We found that these two examples
occurred in the overfitting region for feel. By
looking at the bad examples (using the same
definition for bad example as in Section 4.1) that
occurred in the overfitting region for both feel and
add, we identified two major properties of these
examples. First, most of them occurred only once
as bad examples (19 out 23 for add and 40 out of
63 for feel). Second, many of the examples had no
obvious reasons for their badness.

Based on the above observations, we believe
that the overfitting phenomena that occurred for
the two verbs during active learning is typical of
classic overfitting, which is consistent with a
"death by a thousand mosquito bites" of rare bad
features, and consistent with there often being (to
mix a metaphor) no "smoking gun" of a bad
feature/instance that is added in, especially in the
region far away from the starting point of active
learning.

5 Conclusions
We have shown that active learning can lead to
substantial reductions (often by half) in the number
of observations that need to be labeled to achieve a
given accuracy in word sense disambiguation,
compared to labeling randomly selected instances.
In a follow-up experiment, we also compared a
larger number of different active learning methods.

126

The results suggest that for tasks like word sense
disambiguation where maximum entropy methods
are used as the base learning models, the minimum
margin active criterion for active learning gives
superior results to more comprehensive
competitors including bagging and two variants of
query by committee (Schein, 2005). By also taking
into account the high running efficiency of the
min-margin method, it is a very promising active
learning method for WSD.

We did an analysis on the learning process on
two levels: instance-level and feature-level. The
analysis suggests that a careful treatment of feature
design and feature generation is very important for
the active learner to take advantage of the difficult
examples it finds during the learning process. The
feature-level analysis identifies some
characteristics of good features. It is worth noting
that the good features identified are not particularly
tied to active learning, and could also be obtained
by a more standard feature selection method rather
than by looking at how the features provide
benefits as they are added in.

For a couple of the verbs examined, we found
that active learning gives higher prediction
accuracy midway through the training than one
gets after training on the entire corpus. Analysis
suggests that this is not due to bad examples being
added to the training set. It appears that the widely
used maximum entropy model with Gaussian
priors is overfitting: the model by including too
many features and thus fitting noise as well as
signal. Using different strengths of the Gaussian
prior does not solve the problem. If a very strong
prior is used, then poorer accuracy is obtained. We
believe that using appropriate feature selection
would cause the phenomenon to vanish.

Acknowledgements
This work was supported by National Science
Foundation Grant NSF-0415923, Word Sense
Disambiguation, the DTO-AQUAINT NBCHC-
040036 grant under the University of Illinois
subcontract to University of Pennsylvania 2003-
07911-01 and the GALE program of the Defense
Advanced Research Projects Agency, Contract No.
HR0011-06-C-0022. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not
necessarily reflect the views of the National
Science Foundation, the DTO, or DARPA.

References
Naoki Abe and Hiroshi Mamitsuka. 1998. Query

learning strategies using boosting and bagging. In
Proc. of ICML1998, pages 1–10.

Jinying Chen and Martha Palmer. 2005. Towards
Robust High Performance Word Sense
Disambiguation of English Verbs Using Rich
Linguistic Features, In Proc. of IJCNLP2005, Oct.,
Jeju, Republic of Korea.

Tim Chklovski and Rada Mihalcea, Building a Sense
Tagged Corpus with Open Mind Word Expert, in
Proceedings of the ACL 2002 Workshop on "Word
Sense Disambiguation: Recent Successes and Future
Directions", Philadelphia, July 2002.

Hoa T. Dang. 2004. Investigations into the role of
lexical semantics in word sense disambiguation. PhD
Thesis. University of Pennsylvania.

Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui,
Hozumi Tanaka. 1998. Selective sampling for
example-based word sense disambiguation,
Computational Linguistics, v.24 n.4, p.573-597, Dec.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw and Ralph Weischedel. OntoNotes: The
90% Solution. Accepted by HLT-NAACL06. Short
paper.

David D. Lewis and William A. Gale. 1994. A
sequential algorithm for training text classifiers. In W.
Bruce Croft and Cornelis J. van Rijsbergen, editors,
Proceedings of SIGIR-94, Dublin, IE.

Andrew K. McCallum. 2002. MALLET: A Machine
Learning for Language Toolkit. http://www.cs.
umass.edu/~mccallum/mallet.

Andew McCallum and Kamal Nigam. 1998. Employing
EM in pool-based active learning for text
classification. In Proc. of ICML ‘98.

Martha Palmer, Hoa Trang Dang and Christiane
Fellbaum. (to appear, 2006). Making fine-grained and
coarse-grained sense distinctions, both manually and
automatically. Natural Language Engineering.

Andrew I. Schein. 2005. Active Learning for Logistic
Regression. Ph.D. Thesis. Univ. of Pennsylvania.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou and Chew
Lim Tan. 2004 Multi-criteria-based active learning
for named entity recognition, In Proc. of ACL04,
Barcelona, Spain.

Min Tang, Xiaoqiang Luo, and Salim Roukos. 2002.
Active learning for statistical natural language
parsing. In Proc. of ACL 2002.

Cynthia A. Thompson, Mary Elaine Califf, and
Raymond J. Mooney. 1999. Active learning for
natural language parsing and information extraction.
In Proc. of ICML-99.

127

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 128–135,
New York, June 2006.c©2006 Association for Computational Linguistics

Unknown word sense detection as outlier detection

Katrin Erk
Computational Linguistics

Saarland University
Saarbr̈ucken, Germany

erk@coli.uni-sb.de

Abstract

We address the problem ofunknown word
sense detection: the identification of cor-
pus occurrences that are not covered by
a given sense inventory. We model this
as an instance ofoutlier detection, using
a simple nearest neighbor-based approach
to measuring the resemblance of a new
item to a training set. In combination with
a method that alleviates data sparseness by
sharing training data across lemmas, the
approach achieves a precision of 0.77 and
recall of 0.82.

1 Introduction

If a system has seen only positive examples, how
does it recognize a negative example? This is
the problem addressed byoutlier detection, also
callednovelty detection1 (Markou and Singh, 2003a;
Markou and Singh, 2003b; Marsland, 2003): to de-
tect novel or unknown items that differ from all the
seen training data. Outlier detection approaches typ-
ically derive some model of “normal” objects from
the training set and use a distance measure and a
threshold to detect abnormal items.

In this paper, we apply outlier detection tech-
niques to the task ofunknown sense detection: the
identification of corpus occurrences that are not cov-
ered by a given sense inventory. The training set

1The termnovelty detectionis also used for the distinction
of novel and repeated information in information retrieval, a
different if related topic.

Figure 1: Wrong assignment due to missing sense:
from the Hound of the Baskervilles, Ch. 14

against which new occurrences are compared will
consist of sense-annotated text.

Unknown sense detection is related to word sense
disambiguation (WSD) and to word sense discrim-
ination (Scḧutze, 1998), but differs from both. In
WSD all senses are assumed known, and the task is
to select one of them, while in unknown sense detec-
tion the task is to decide whether a given occurrence
matches any of the known senses or none of them,
and all training instances, regardless of the sense to
which they belong, are modeled asone group of
knowndata. Unknown sense detection also differs
from word sense discrimination, where no sense in-
ventory is given and the task is to group occurrences
into senses. In unknown sense detection the model
respects the given word senses.

The main motivation for this study comes from
shallow semantic parsing, by which we mean a com-
bination of WSD and the automatic assignment of

128

semantic roles to free text. In cases where a sense
is missing from the inventory, WSD will wrongly
assign one of the existing senses. Figure 1 shows
an example, a sentence from theHound of the
Baskervilles, analyzed by the SHALMANESER (Erk
and Pado, 2006) shallow semantic parser. The anal-
ysis is based on FrameNet (Baker et al., 1998), a
resource that lists senses and semantic roles for En-
glish expressions. FrameNet is lacking a sense of
“expectation” or “being mentally prepared” for the
verb prepare, so preparedhas been assigned the
sense COOKING CREATION, a possible but improb-
able analysis2. Such erroneous labels can be fa-
tal when further processing builds on the results of
shallow semantic parsing, e.g. for drawing infer-
ences. Unknown sense detection can prevent such
mistakes.

All sense inventories face the problem of missing
senses, either because of their small overall size (as
is the case for some non-English WordNets) or when
they encounter domain-specific senses. Our study
will be evaluated on FrameNet because of our main
aim of improving shallow semantic parsing, but the
method we propose is applicable to any sense inven-
tory that has annotated data; in particular, it is also
applicable to WordNet.

In this paper we model unknown sense detec-
tion as outlier detection, using a simple Nearest
Neighbor-based method (Tax and Duin, 2000) that
compares the local probability density at each test
item with that of its nearest training item.

To our knowledge, there exists no other approach
to date to the problem of detecting unknown senses.
There are, however, approaches to the complemen-
tary problem of determining the closest known sense
for unknown words (Widdows, 2003; Curran, 2005;
Burchardt et al., 2005), which can be viewed as the
logical next step after unknown sense detection.

Plan of the paper. After a brief sketch of
FrameNet in Section 2, we describe the experimen-
tal setup used throughout this paper in Section 3.
Section 4 tests whether a very simple model suffices
for detecting unknown senses: a threshold on confi-
dence scores returned by the SHALMANESER WSD

2Unfortunately, the semantic roles have been mis-assigned
by the system. The wordI should fill the FOOD role, whilefor
a houndcould be assigned the optional RECEIVER role.

system. The result is that recall is much too low.
Section 5 introduces the NN-based outlier detection
approach that we use in section 6 for unknown sense
detection, with better results than in the first experi-
ment but still low recall. Section 7 repeats the exper-
iment of section 6 with added training data, making
use of the fact that one semantic class in FrameNet
typically pertains to several lemmas and achieving a
marked improvement in results.

2 FrameNet

Frame Semantics (Fillmore, 1982) models the mean-
ings of a word or expression by reference to
frameswhich describe the background and situa-
tional knowledge necessary for understanding what
the predicate is “about”. Each frame provides its
specific set of semantic roles.

The Berkeley FrameNet project (Baker et al.,
1998) is building a semantic lexicon for English de-
scribing the frames and linking them to the words
and expressions that canevokethem. These can
be verbs as well as nouns, adjectives, preposi-
tions, adverbs, and multiword expressions. Frames
are linked by IS-A and other relations. Currently,
FrameNet contains 609 frames with 8,755 lemma-
frame pairs, of which 5,308 are exemplified in an-
notated sentences from the British National Corpus.
The annotation comprises 133,846 sentences.

As FrameNet is a growing resource, many lem-
mas are still lacking senses, and many senses are still
lacking annotation. This is problematic for the use
of FrameNet analyses as a basis for inferences over
text, as e.g. in Tatu and Moldovan (2005).

For example, the verbprepare from Figure 1 is
associated with the frames

COOKING CREATION: prepare food
ACTIVITY PREPARE: get ready for an activity
ACTIVITY READY STATE: be ready for an activity
WILLINGNESS: be willing

of which only the COOKING CREATION sense has
been annotated. The sense in Figure 1 is not cov-
ered yet: ACTIVITY READY STATE would be more
appropriate than COOKING CREATION, but still not
optimal, since the sentence refers to a mental state
rather than the preparation of an activity.

129

3 Experimental setup and data

Experimental setup. To evaluate an unknown
sense detection system, we need occurrences that are
guaranteed not to belong to any of the seen senses.
To that end we use sense-annotated data, in our case
the FrameNet annotated sentences, simulating un-
known senses by designating one sense of each am-
biguous lemma as unknown. All occurrences of that
sense are placed in the test set, while occurrences
of all other senses are split randomly between train-
ing and test set, using 5-fold cross-validation. We
repeat the experiment with each of the senses of an
ambiguous lemma playing the part of the unknown
sense once. Viewing each cross-validation run for
each unknown sense as a separate experiment, we
then report precision and recall averaged over un-
known senses and cross-validation runs.

It may seem questionable that in this experimen-
tal setup, theunknown senseoccurrences of each
lemma all belong to the same sense. However, this
does not bias the experiment since none of the mod-
els we study take advantage of the shape of the test
set in any way. Rather, each test item is classified in-
dividually, without recourse to the other test items.

Data. All experiments in this paper were per-
formed on the FrameNet 1.2 annotated data per-
taining to ambiguous lemmas. After removal of
instances that were annotated with more than one
sense, we obtain 26,496 annotated sentences for the
1,031 ambiguous lemmas. They were parsed with
Minipar (Lin, 1993); named entities were computed
using Heart of Gold (Callmeier et al., 2004).

4 Experiment 1: WSD confidence scores
for unknown sense detection

In this section we test a very simple model of un-
known sense detection: Classifiers often return a
confidence score along with the assigned label. We
will try to detect unknown senses by a threshold
on confidence scores, declaring anything below the
threshold as unknown. Note that this method can
only be applied to lemmas that have more than one
sense, since for single-sense lemmas the system will
always return the maximum confidence score.

Data. While the approach that we follow in this
section is applicable to all lemmas with at least two

her and upwards

She
She

wave

hand outwards
s subj obj mod

gen punc conj

(1): subj , obj , mod (sinces andsubj corefer,
we use only one of them)
(2): she , hand , outwards
(3): subj-she , obj-hand , mod-outwards
(4): mod-obj-subj

Figure 2: Sample Minipar parse and extracted gram-
matical function features

senses, we need lemmas with at least three senses
to evaluate it: One of the senses of each lemma is
treated asunknown, which for lemmas with three or
more senses leaves at least two senses for the train-
ing set. This reduces our data set to 125 lemmas
with 7,435 annotated sentences.

Modeling. We test whether the WSD system built
into SHALMANESER (Erk, 2005) can distinguish
known senseitems fromunknown senseitems reli-
ably by its confidence scores. The system extracts
a rich feature set, which forms the basis of all three
experiments in this paper:

• a bag-of-words context, with a window size of
one sentence;

• bi- and trigrams centered on the target word;

• grammatical function information: for each de-
pendent of the target, (1) its function label, (2)
its headword, and (3) a combination of both are
used as features. (4) The concatenation of all
function labels constitutes another feature. For
PPs, function labels are extended by the prepo-
sition. As an example, Figure 2 shows a BNC
sentence and its grammatical function features.

• for verb targets, the target voice.

The feature set is based on Florian et al. (2002) but
contains additional syntax-related features. Each
word-related feature is represented as four features
for word, lemma, part of speech, and named entity.

SHALMANESER trains one Naive Bayes classifier
per lemma to be disambiguated. For this experiment,

130

θ Precision Recall
0.5 0.6524 (σ 0.115) 0.0011 (σ 0.0004)
0.75 0.7855 (σ 0.0086) 0.0527 (σ 0.0013)
0.9 0.7855 (σ 0.0093) 0.1006 (σ 0.0021)
0.98 0.7847 (σ 0.0073) 0.1744 (σ 0.0025)

Table 1: Experiment 1: Results for labelunknown
sense, WSD confidence level approach.θ: confi-
dence threshold.σ: std. dev.

all system parameters were set to their default set-
tings. To detect unknown senses building on this
WSD system, we use a fixed confidence threshold
and label all items below the threshold asunknown.

Results and discussion. Table 1 shows precision
and recall for labeling instances asunknownusing
different confidence thresholdsθ, averaged over un-
known senses and 5-fold cross-validation3. We see
that while the precision of this method is acceptable
at 0.74 to 0.765, recall is extremely low, i.e. almost
no items were labeledunknown, even at a threshold
of 0.98. However, SHALMANESER has very high
confidence values overall: Only 14.5% of all in-
stances in this study had a confidence value of 0.98
or below (7,697 of 53,206).

We conclude that with the given WSD system and
(rather standard) features, this simple method cannot
detect items with an unknown sense reliably. This
may be due to the indiscriminately high confidence
scores; or it could indicate that classifiers, which
are geared atdistinguishingbetween known classes
rather thandetectingobjects that differ from all seen
data, are not optimally suited to the task. However,
one further disadvantage of this approach is that, as
mentioned above, it can only be applied to lemmas
with more than one annotated sense. For FrameNet
1.2, this comprises only 19% of the lemmas.

5 A nearest neighbor-based method for
outlier detection

In the previous section we have tested a simple ap-
proach to unknown sense detection using WSD con-
fidence scores. Our conclusion was that it was not a
viable approach, given its low recall and given that

3Note that the minimum confidence score is 0.5 if 2 senses
are present in the training set, 0.33 for 3 present senses etc.

t
t‘

dtt´
x

dxt

Figure 3: Outlier detection by comparing distances
between nearest neighbors

it is only applicable to lemmas with more than one
known sense. In this section we introduce an al-
ternative approach, which uses distances to nearest
neighbors to detect outliers.

In general, the task of outlier detection is to de-
cide whether a new object belongs to a given training
set or not. Typically, outlier detection approaches
derive some boundary around the training set, or
they derive from the set some model of “normal-
ity” to which new objects are compared (Markou
and Singh, 2003a; Markou and Singh, 2003b; Mars-
land, 2003). Applications of outlier detection in-
clude fault detection (Hickinbotham and Austin,
2000), hand writing deciphering (Tax and Duin,
1998; Scḧolkopf et al., 2000), and network intru-
sion detection (Yeung and Chow, 2002; Dasgupta
and Forrest, 1999). One standard approach to out-
lier detection estimates the probability density of the
training set, such that a test object can be classified
as an outlier or non-outlier according to its probabil-
ity of belonging to the set.

Rather than estimating the complete density func-
tion, Tax and Duin (2000) approximate local density
at the test object by comparing distances between
nearest neighbors. Given a test objectx, the ap-
proach considers the training objectt nearest tox
and compares the distancedxt betweenx andt to the
distancedtt′ betweent and its own nearest training
data neighbort′. Then the quotient between the dis-
tances is used as an indicator of the (ab-)normality
of the test objectx:

pNN (x) =
dxt
dtt′

When the distancedxt is much larger thandtt′ , x is
considered an outlier. Figure 3 illustrates the idea.

The normality or abnormality of test objects is de-
cided by a fixed thresholdθ on pNN . The lowest

131

threshold that makes sense is 1.0, which rejects any
x that is further apart from its nearest training neigh-
bor t thant is from its neighbor. Tax and Duin use
Euclidean distance, i.e.

dxt =
√∑

i

(xi − ti)2

Applied to feature vectors with entries either 0 or 1,
this corresponds to the size of the symmetric differ-
ence of the two feature sets.

6 Experiment 2: NN-based outlier
detection

In this section we use the NN-based outlier detection
approach of the previous section for an experiment
in unknown sense detection. Experimental setup and
data are as described in Section 3.

Modeling. We model unknown sense detection as
an outlier detection task, using Tax and Duin’s out-
lier detection approach that we have outlined in
the previous section. Nearest neighbors (by Eu-
clidean distance) were computed using the ANN
tool (Mount and Arya, 2005). We compute one out-
lier detection model per lemma. With training and
test sets constructed as described in Section 3, the
average training set comprises 22.5 sentences.

We use the same features as in Section 4, with fea-
ture vector entries of 1 for present and 0 for absent
features. For a more detailed analysis of the contri-
bution of different feature types, we test on reduced
as well as full feature vectors:

All : full feature vectors

Cx: only bag-of-word context features (words, lem-
mas, POS, NE)

Syn: function labels of dependents

Syn-hw : Syn plus headwords of dependents

We compare the NN-based model to that of
Experiment 1, but not to any simpler baseline.
While for WSD it is possible to formulate simple
frequency-based methods that can serve as a base-
line, this is not so in unknown sense detection be-
cause the frequency of unknown senses is, by def-
inition, unknown. Furthermore, the number of an-
notated sentences per sense in FrameNet depends

Features Precision Recall
All 0.7072 (σ 0.0088) 0.2683 (σ 0.0043)
Cx 0.7016 (σ 0.0041) 0.3511 (σ 0.0035)
Syn 0.8333 (σ 0.0085) 0.2099 (σ 0.0042)
Syn-hw 0.7784 (σ 0.0029) 0.2368 (σ 0.0022)

Table 2: Experiment 2: Results for labelunknown
sense, NN-based outlier detection,θ = 1.0. σ: stan-
dard deviation

Precision Recall
Features all ≥ 10 ≥ 20 all ≥ 10 ≥ 20
All 0.71 0.70 0.67 0.27 0.35 0.45
Cx 0.70 0.70 0.67 0.35 0.47 0.58
Syn 0.83 0.81 0.77 0.21 0.22 0.21
Syn-hw 0.78 0.76 0.73 0.24 0.28 0.31

Table 3: Experiment 2: Results by training set size,
θ = 1.0

on the number of subcategorization frames of the
lemma rather than the frequency of the sense, which
makes frequency calculations meaningless.

Results. Table 2 shows precision and recall for la-
beling instances asunknownusing a distance quo-
tient threshold ofθ=1.0, averaged over unknown
senses and over 5-fold cross-validation. We see that
recall is markedly higher than in Experiment 1, es-
pecially for the two conditions that include context
words,All andCx. The syntax-based conditions
Syn andSyn-hw show a higher precision, with a
less pronounced increase in recall.

Raising the distance quotient threshold results in
little change in precision, but a large drop in recall.
For example,All vectors with a threshold ofθ =
1.1 achieve a recall of 0.14 in comparison to 0.27
for θ = 1.0 .

Training set size is an important factor in sys-
tem results. Table 3 lists precision and recall for all
training sets, for training sets of size≥ 10, and for
training sets of size≥ 20. Especially in conditions
All andCx, recall rises steeply when we only con-
sider cases with larger training sets. However note
that precision does not rise with larger training sets,
rather it shows a slight decline.

Another important factor is the number of senses
that a lemma has, as the upper part of Table 7 shows.
For lemmas with a higher number of senses, preci-

132

Figure 4: “Acceptance radius” of an outlier within
the training set (left) and a more “normal” training
set object (right)

sion is much lower, while recall is much higher.

Discussion. While results in this experiment are
better than in Experiment 1 – in particular recall has
risen by 19 points forCx –, system performance is
still not high enough to be usable in practice.

The uniformity of the training set has a large in-
fluence on performance, as Table 7 shows. The more
senses a lemma has, the harder it seems to be for the
model to identifyknown senseoccurrences. Preci-
sion for the assignment of theunknownlabel drops,
while recall rises. We see a tradeoff between preci-
sion and recall, in this table as well as in Table 3.
There, we see that many moreunknowntest objects
are identified when training sets are larger, but a
larger training set does not translate into universally
higher results.

One possible explanation for this lies in a prop-
erty of Tax and Duin’s approach. If a training itemt
is situated at distanced from its nearest neighbor in
the training set, then any test item within a radius of
d aroundt will be consideredknown. Thus we could
termd the “acceptance radius” oft. Now if t is an
outlierwithin the training set, thend will be large, as
illustrated in Figure 4. The sparser the training set is,
the more training outliers we are likely to find, with
large acceptance radii that assign a label ofknown
even to more distanced test items. Thus a sparse
training set could lead to lower recall ofunknown
senseassignment and at the same time higher pre-
cision, as the items labeledunknownwould be the
ones at great distance from any items on the training
set – conforming to the pattern in Tables 3 and 7.

7 Experiment 3: NN-based outlier
detection with added training data

While the NN-based outlier detection model we
used in the previous experiment showed better re-

Target lemma: put
Senses:ENCODING, PLACING

Sense currently treated as unknown:PLACING

Extend training set by: all annotated sentences for
lemmas other thanput in the sense ENCODING:
couch.v, expression.n, formulate.v, formulation.n,
frame.v, phrase.v, word.v, wording.n

Table 4: Extending training sets: an example

Features Precision Recall
All 0.7709 (σ 0.001) 0.7243 (σ 0.0018)
Cx 0.7727 (σ 0.0027) 0.8172 (σ 0.0035)
Syn 0.8571 (σ 0.0045) 0.1694 (σ 0.0012)
Syn-hw 0.8025 (σ 0.0041) 0.3383 (σ 0.0025)
Syn 0.8587 (σ 0.0081) 0.1748 (σ 0.0015)
Syn-hw 0.8055 (σ 0.0056) 0.3516 (σ 0.0015)

Table 5: Experiment 3: Results for labelunknown
sense, NN-based outlier detection,θ = 1.0. σ: stan-
dard deviation

sults than the WSD confidence model, its recall is
still low. We have suggested that data sparseness
may be responsible for the low performance. Con-
sequently, we repeat the experiment of the previous
section with more, but less specific, training data.

Like WordNet synsets, FrameNet frames are se-
mantic classes that typically comprise several lem-
mas or expressions. So, assuming that words with
similar meaning occur in similar contexts, the con-
text features for lemmas in the same frame should
be similar. Following this idea, we supplement the
training data for a lemma by all theotherannotated
data for the senses that are present in the training
set, where by “other data” we mean data with other
target lemmas. Table 4 shows an example4.

Modeling. Again, we use Tax and Duin’s outlier
detection approach for unknown sense detection.
The experimental design and evaluation are the same
as in Experiment 2, the only difference being the
training set extension. Training set extension raises
the average training set size from 22.5 to 374.

Results. Table 5 shows precision and recall for la-
beling instances asunknown, with a distance quo-
tient threshold of 1.0, averaged over unknown senses

4ConditionsSyn andSyn-hw were also tested using only
other target lemmas with the same part of speech. Results were
virtually unchanged.

133

Precision Recall
Features all ≥ 50 ≥ 200 all ≥ 50 ≥ 200
All 0.77 0.77 0.73 0.72 0.80 0.87
Cx 0.77 0.77 0.73 0.82 0.89 0.94
Syn 0.86 0.85 0.82 0.17 0.16 0.13
Syn-hw 0.80 0.79 0.76 0.38 0.36 0.38
Syn 0.86 0.85 0.82 0.17 0.17 0.14
Syn-hw 0.81 0.80 0.76 0.35 0.37 0.38

Table 6: Experiment 3: Results by training set size,
θ = 1.0

Number of senses
2 3 4 5

Exp. 2 Prec. 0.78 0.68 0.59 0.55
Rec. 0.21 0.38 0.47 0.59

Exp. 3 Prec. 0.83 0.71 0.63 0.56
Rec. 0.68 0.81 0.89 0.88

Table 7: Experiments 2 and 3: Results by the num-
ber of senses of a lemma, conditionAll , θ = 1.0

and 5-fold cross-validation. In comparison to Exper-
iment 2, precision has risen slightly, and for condi-
tionsAll , Cx andSyn-hw , recall has risen steeply;
the maximum recall is achieved byCx at 0.82.

As before, increasing the distance quotient thresh-
old leads to little change in precision but a sharp
drop in recall. ForAll vectors, recall is 0.72 for
threshold 1.0, 0.56 forθ = 1.1, and 0.41 forθ = 1.2.

Table 6 shows system performance by training set
size. As the average training set in this experiment
is much larger than in Experiment 2, we are now
inspecting sets of minimum size 50 and 200 rather
than 10 and 20. We find the same effect as in Ex-
periment 2, with noticeably higher recall for lemmas
with larger training sets, but slightly lower precision.

Table 7 breaks down system performance by the
degree of ambiguity of a lemma. Here, too, we see
the same effect as in Experiment 2: the more senses
a lemma has, the lower the precision and the higher
the recall ofunknownlabel assignment.

Discussion. In comparison to Experiment 2, Ex-
periment 3 shows a dramatic increase in recall, and
even some increase in precision. Precision and re-
call for conditionsAll andCx are good enough for
the system to be usable in practice.

Of the four conditions, the three that involve con-
text words,All , Cx and Syn-hw , show consid-

erably higher recall thanSyn. Furthermore, the
two conditions that do not involve syntactic fea-
tures, All and Cx, have markedly higher results
thanSyn-hw . This could mean that syntactic fea-
tures are not as helpful as context features in detect-
ing unknown senses; however in Experiment 2 the
performance difference betweenSyn and the other
conditions was not by far as large as in this experi-
ment. It could also mean that frames are not as uni-
form in their syntactic structure as they are in their
context words. This seems plausible as FrameNet
frames are constructed mostly on semantic grounds,
without recourse to similarity in syntactic structure.

Table 6 points to a sparse data problem, even with
training sets extended by additional items. It also
shows that the more a test condition relies on context
word information, the more it profits from additional
data. So it may be worthwhile to explore methods
for a further alleviation of data sparseness, e.g. by
generalizing over context words.

Table 7 underscores the large influence of train-
ing set uniformity: the more senses a lemma has, the
more likely the model is to classify a test instance as
unknown. This is the case even for extended training
sets. One possible way of addressing this problem
would be to take into account more than a single
nearest neighbor in NN-based outlier detection in
order to compute more precise boundaries between
known and unknown instances.

8 Conclusion and outlook

We have defined and addressed the problem of
unknown word sense detection: the identification
of corpus occurrences that are not covered by a
given sense inventory, using a training set of sense-
annotated data as a basis. We have modeled this
problem as an instance ofoutlier detection, using
the simple nearest neighbor-based approach of Tax
and Duin to measure the resemblance of a new oc-
currence to the training data. In combination with
a method that alleviates data sparseness by sharing
training data across lemmas, the approach achieves
good results that make it usable in practice: With
items represented as vectors of context words (in-
cluding lemma, POS and NE), the system achieves
0.77 precision and 0.82 recall in an evaluation on
FrameNet 1.2. The training set extension method,

134

which proved crucial to our approach, relies solely
on a grouping of annotated data by semantic simi-
larity. As such, the method is applicable to any re-
source that groups words into semantic classes, for
example WordNet.

For this first study on unknown sense detection,
we have chosen a maximally simple outlier detec-
tion method; many extensions are possible. One ob-
vious possibility is the extension of Tax and Duin’s
method to more than one nearest training neigh-
bor for a more accurate estimate of local density.
Furthermore, more sophisticated feature vectors can
be employed to generalize over context words, and
other outlier detection approaches (Markou and
Singh, 2003a; Markou and Singh, 2003b; Marsland,
2003) can be tested on this task.

Our immediate goal is to use unknown sense de-
tection in combination with WSD, to filter out items
that the WSD system cannot handle due to missing
senses. Once items have been identified asunknown,
they are available for further processing: If possible
one would like to assign some measure of sense in-
formation even to these items. Possibilities include
associating items with similar existing senses (Wid-
dows, 2003; Curran, 2005; Burchardt et al., 2005) or
clustering them into approximate senses.

References

C. Baker, C. Fillmore, and J. Lowe. 1998. The Berkeley
FrameNet Project. InProc. ACL-98, Montreal.

A. Burchardt, K. Erk, and A. Frank. 2005. A WordNet
detour to FrameNet. InProc. GLDV 2005 Workshop
GermaNet II, Bonn.

U. Callmeier, A. Eisele, U. Schäfer, and M. Siegel. 2004.
The DeepThought core architecture framework. In
Proc. LREC-04, Lisbon.

James Curran. 2005. Supersense tagging of unknown
nouns using semantic similarity. InProc. ACL-05,
Ann Arbor.

D. Dasgupta and S. Forrest. 1999. Novelty detection
in time series data using ideas from immunology. In
Proc. International Conference on Intelligent Systems.

Katrin Erk and Sebastian Pado. 2006. Shalmaneser -
a toolchain for shallow semantic parsing. InProc.
LREC-06, Genoa.

K. Erk. 2005. Frame assignment as word sense disam-
biguation. InProc. IWCS 2005, Tilburg.

C. Fillmore. 1982. Frame Semantics.Linguistics in the
Morning Calm.

R. Florian, S. Cucerzan, C. Schafer, and D. Yarowsky.
2002. Combining classifiers for word sense disam-
biguation.Journal of Natural Language Engineering,
8(4):327–431.

S. Hickinbotham and J. Austin. 2000. Neural networks
for novelty detection in airframe strain data. InProc.
International Joint Conference on Neural Networks.

D. Lin. 1993. Principle-based parsing without overgen-
eration. InProc. ACL-93, Columbus, OH.

M. Markou and S. Singh. 2003a. Novelty detection:
A review. part 1: Statistical approaches.ACM Signal
Processing, 83(12):2481 – 2497.

M. Markou and S. Singh. 2003b. Novelty detection:
A review. part 2: Neural network based approaches.
ACM Signal Processing, 83(12):2499 – 2521.

S. Marsland. 2003. Novelty detection in learning sys-
tems.Neural computing surveys, 3:157–195.

D. Mount and S. Arya. 2005. ANN: A library for approx-
imate nearest neighbor searching. Download from
http://www.cs.umd.edu/˜mount/ANN/ .

B. Scḧolkopf, R. Williamson, A. Smola, J. Shawe-Taylor,
and J. Platt. 2000. Support vector method for novelty
detection.Advances in neural information processing
systems, 12.

H. Scḧutze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97 – 123.

M. Tatu and D. Moldovan. 2005. A semantic approach to
recognizing textual entailment. InProc. HLT/EMNLP
2005, Vancouver.

D. Tax and R. Duin. 1998. Outlier detection using clas-
sifier instability. InAdvances in Pattern Recognition:
the Joint IAPR International Workshops.

D. Tax and R. Duin. 2000. Data description in sub-
spaces. InInternational Conference on Pattern recog-
nition, volume 2, Barcelona.

Dominic Widdows. 2003. Unsupervised methods for de-
veloping taxonomies by combining syntactic and sta-
tistical information. InProc. HLT/NAACL-03, Ed-
monton.

D. Yeung and C. Chow. 2002. Parzen-window network
intrusion detectors. InProc. International Conference
on Pattern Recognition.

135

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 136–143,
New York, June 2006.c©2006 Association for Computational Linguistics

Understanding Temporal Expressions in Emails

Benjamin Han, Donna Gates and Lori Levin
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213
{benhdj|dmg|lsl}@cs.cmu.edu

Abstract

Recent years have seen increasing re-
search on extracting and using temporal
information in natural language applica-
tions. However most of the works found
in the literature have focused on identi-
fying and understanding temporal expres-
sions in newswire texts. In this paper
we report our work on anchoring tempo-
ral expressions in a novel genre, emails.
The highly under-specified nature of these
expressions fits well with our constraint-
based representation of time, Time Cal-
culus for Natural Language (TCNL). We
have developed and evaluated a Tempo-
ral Expression Anchoror (TEA), and the
result shows that it performs significantly
better than the baseline, and compares fa-
vorably with some of the closely related
work.

1 Introduction

With increasing demand from ever more sophisti-
cated NLP applications, interest in extracting and
understanding temporal information from texts has
seen much growth in recent years. Several works
have addressed the problems of representing tem-
poral information in natural language (Setzer, 2001;
Hobbs and Pan, 2004; Saurı́ et al., 2006), extracting
and/or anchoring (normalizing) temporal and event
related expressions (Wiebe et al., 1998; Mani and
Wilson, 2000; Schilder and Habel, 2001; Vazov,

2001; Filatova and Hovy, 2001), and discovering the
ordering of events (Mani et al., 2003). Most of these
works have focused on capturing temporal informa-
tion contained in newswire texts, and whenever both
recognition and normalization tasks of temporal ex-
pressions were attempted, the latter almost always
fell far behind from the former in terms of perfor-
mance.

In this paper we will focus on a different combi-
nation of the problems: anchoring temporal expres-
sions in scheduling-related emails. In our project
work of building personal agents capable of schedul-
ing meetings among different users1, understand-
ing temporal expressions is a crucial step. We have
therefore developed and evaluated our system Tem-
poral Expression Anchorer (TEA) that is capable of
normalizing such expressions in texts. As input TEA
takes English text with temporal expressions al-
ready identified, and transduces the expressions into
their representations using Time Calculus for Nat-
ural Language (TCNL) (Han and Kohlhase, 2003).
These representations, or TCNL formulae, are then
evaluated by incorporating the contextual informa-
tion to give the final normalized output. TCNL has
the following characteristics: (1) a human calendar
(e.g., the Gregorian calendar) is explicitly modeled
as a constraint system to deal with the highly under-
specified nature of many temporal expressions, and
it allows easy extension to include new temporal
primitives; (2) a set of NL-motivated operators with
a granularity-enriched type system facilitates the
representation of the intensional meaning of a tem-

1Project RADAR,
http://www.radar.cs.cmu.edu/external.asp

136

poral expression in a compositional way; and (3) the
use of temporal references such as “focus” in the
representation cleanly separates the core meaning of
an expression from its contextual dependency.

The rest of this paper is organized as follows.
Sec. 2 first surveys the characteristics of temporal
expressions in emails compared to those in newswire
texts, and motivates the design of our representation.
Sec 3 then introduces the formalism TCNL. The sys-
tem TEA and the anchoring process is detailed in
Sec. 4, and the evaluation of the system is reported
in Sec. 5. Finally Sec. 6 concludes this paper and
outlines the future work.

2 Temporal Expressions in Emails

The extent of temporal expressions considered in
this paper includes most of the expressions using
temporal terms such as 2005, summer, evening,
1:30pm, tomorrow, etc. These expressions can be
classified into the following categories:

• Explicit: These expressions can be immedi-
ately anchored, i.e., positioned on a timeline.
E.g., June 2005, 1998 Summer, etc.

• Deictic: These expressions form a specific re-
lation with the speech time (timestamp of an
email). E.g., tomorrow, last year, two weeks
from today.

• Relative: These include the other expressions
that form a specific relation with a temporal fo-
cus, i.e., the implicit time central to the discus-
sion. E.g., from 5 to 7, on Wednesday, etc. Dif-
ferent from the speech time, a temporal focus
can shift freely during the discourse.

• Durational: These are the expressions that de-
scribe certain length in time. E.g., for about
an hour, less than 20 minutes. This is differ-
ent from an interval expression where both the
starting point and the ending point are given
(e.g., from 5 to 7). Most durational expres-
sions are used to build more complex expres-
sions, e.g., for the next 20-30 minutes.

It is worth emphasizing the crucial difference be-
tween deictic expressions and relative expressions:
anchoring the former only relies on the fixed speech

time while normalizing the latter requires the usually
hidden focus. As illustrated below the latter task can
be much more challenging:

“I’m free next week. Let’s meet on
Wednesday.”
“Are you free on Wednesday?”

In the first example the “Wednesday” denotes a dif-
ferent date since the first sentence sets up a different
focus. To make things even more interesting, ver-
bal tense can also play a role, e.g., “He finished the
report on Wednesday.”

There are other types of temporal expressions
such as recurrence (“every Tuesday”) and rate ex-
pressions (“twice on Wednesday”) that are not sup-
ported in our system, although they are planned in
our future work (Sec. 6).

To appreciate the different nature of emails as a
genre, an interesting observation can be made by
comparing the distributions of temporal expressions
in emails and in newswire texts. The email cor-
pora we used for development and testing were col-
lected from MBA students of Carnegie Mellon Uni-
versity over the year 1997 and 1998. The 277 stu-
dents, organized in approximately 50 teams of 4 to
6 members, were participating in a 14-week course
and running simulated companies in a variety of
market scenarios (Kraut et al., 2004). The original
dataset, the CSpace email corpus, contains approx-
imately 15,000 emails. We manually picked 1,196
emails that are related to scheduling - these include
scheduling meetings, presentations, or general plan-
ning for the groups. The emails are then randomly
divided into five sets (email1 to email5), and only
four of them are used in this work: email1 was used
to establish our baseline, email2 and email5 were
used for development, and part of email4 was used
for testing. Table 1 shows some basic statistics of
these three datasets2, and an edited sample email is
shown in Fig. 1 (names altered). The most appar-
ent difference comparing these emails to newswire
texts is in the percentage of explicit expressions oc-
curring in the two different genres. In (Mani et al.,
2003) it was reported that the proportion of such ex-
pressions is about 25% in the newswire corpus they

2The percentages in some rows do not add up to 100% be-
cause some expressions like coordination can be classified into
more than one type.

137

Date: Thu, 11 Sep 1997 00:14:36 -0500

I have put an outline out in the n10f1 OpReview directory...
(omitted)

We have very little time for this. Please call me Thursday
night to get clarification. I will need graphs and prose in
files by Saturday Noon.

– Mary

ps. Mark and John , I waited until AFTER midnight to
send this .

Figure 1: A sample email (edited)

used3. In contrast, explicit expressions on average
only account for around 9.5% in the three email
datasets. This is not surprising given that people
tend to use under-specified expressions in emails for
economic reasons. Another thing to note is that there
are roughly the same number of relative expressions
and non-relative expressions. Since non-relative ex-
pressions (including deictic expressions) can be an-
chored without tracking the temporal focus over a
discourse and therefore can be dealt with in a fairly
straightforward way, we may assign 50% as a some-
what generous baseline performance of any anchor-
ing system4.

Another difference between emails and newswire
texts is that the former is a medium for communi-
cation: an email can be used as a reply, or can be
attached within another email, or even be used to
address to multiple recipients. All of this compli-
cates a great deal of our task. Other notable dif-
ferences are that in emails hour ambiguity tend to
appear more often (“I’ll be home at 2.”), and peo-
ple tend to be more creative when they compose
short messages such as using tables (e.g., an entire
column of numbers to denote the number of min-
utes alloted for each presenter), bullet lists, abbrevi-
ations, and different month/day formats (“1/9” can
mean January 9 or September 1), etc. Emails also
contain more “human errors” such as misspellings
(“Thusday” to mean Thursday) and confusion about
dates (e.g., using “tomorrow” when sending emails

3Using the North American News Corpus.
4This is a bit generous since solving simple calendric arith-

metics such as anchoring last summer still requires a non-trivial
modeling of human calendars; see Sec. 3.

around midnight), etc. Overall it is very difficult to
recover from this type of errors.

3 Representing Times in Natural
Language

This section provides a concise overview of TCNL;
readers are referred to (Han and Kohlhase, 2003;
Han et al., 2006) for more detail.

TCNL has two major components: a constraint-
based model for human calendars and a represen-
tational language built on top of the model. Dif-
ferent from the other representations such as Zeit-
Gram (Stede and Haas, 1998), TOP (Androut-
sopoulos, 1999), and TimeML/Timex3 (Saurı́ et al.,
2006), the language component of TCNL is essen-
tially “calendar-agnostic” - any temporal unit can be
plugged in a formula once it is defined in the cal-
endar model, i.e., the calendar model serves as the
lexicon for the TCNL language.

Fig. 2 shows a partial model for the Gregorian cal-
endar used in TEA. The entire calendar model is ba-
sically a constraint graph with partial ordering. The
nodes labeled with “year” etc. represent temporal
units (or variables when viewed as a constraint sat-
isfaction problem (CSP) (Ruttkay, 1998)), and each
unit can take on a set of possible values. The undi-
rected edges represent constraints among the units,
e.g., the constraint between month and day man-
dates that February cannot have more than 29 days.
A temporal expression in NL is then viewed as if
it assigns values to some of the units, e.g., “Friday
the 13th” assigns values to only units dow (day-
of-week) and day. An interval-based AC-3 algo-
rithm with a chronological backtracking mechanism
is used to derive at the consistent assignments to the
other units, therefore allowing us to iterate to any
one of the possible Friday the 13th.

The ordering among the units is designated by two
relations: measurement and periodicity (arrows in
Fig. 2). These relations are essential for supporting
various operations provided by the TCNL language
such as determining temporal ordering of two time
points, performing arithmetic, and changing tempo-
ral granularity, etc. For example, to interpret the ex-
pression “early July”, we identify that July is a value
of unit month, and month is measured by day. We
then obtain the size of July in terms of day (31) and

138

Table 1: Basic statistics of the email corpora
of
emails

of
tempex

explicit deictic relative durational

email1 253 300 3 (1%) 139 (46.33%) 158 (52.67%) N/A
email2 253 344 19 (5.5%) 112 (32.6%) 187 (54.4%) 27 (7.8%)
email4 (part.) 149 279 71 (25.4%) 77 (27.6%) 108 (38.7%) 22 (7.9%)
email5 126 213 14 (6.6%) 105 (49.3%) 92 (43.2%) 3 (1.4%)

Year

Month Day

Hour

Minute

Second

Week

Day-of-week

Time-of-day

Time-of-week

Year component Week component

?

X component

unit constraints

alignment constraints

is-measured-by relation

is-periodic-in relation

*

*

*

*

*

*

*

(* marks a representative)

*

temporal unit

Figure 2: A partial model of the Gregorian calendar

designate the first 10 days (31/3) as the “early” part
of July.

Internally the calendar model is further parti-
tioned into several components, and different com-
ponents are aligned using non-binary constraints
(e.g., in Fig. 2 the year component and the week
component are aligned at the day and dow units).
This is necessary because the top units in these com-
ponent are not periodic within one another. All of
the operations are then extended to deal with multi-
ple calendar components.

Built on top of the calendar model is the typed
TCNL language. The three major types are coor-
dinates (time points; e.g., {sep,6day} for Septem-
ber 6), quantities (durations; e.g., |1hour| for one
hour) and enumerations (sets of points, including
intervals; e.g., [{wed},{fri}] for Wednesday and
Friday). More complex expressions can be rep-
resented by using various operators, relations and
temporal references; e.g., {now−|1day|} for yes-
terday, {|1mon|@{>= }} for the coming Monday
(or the first coming Monday in the future; the
‘ ’ represents the temporal focus), | < |1hour|| for
less than one hour, [{wed}:{fri}] for Wednes-

day to Friday, [f {sat, noon}] for by Saturday
noon5, and [[{15hour}:{17hour}]&{wed}] for 3-5pm
on Wednesday. The TCNL language is designed
in such a way that syntactically different formu-
lae can be evaluated to denote the same date;
e.g., {tue, now+|1week|} (“Tuesday next week”) and
{now+|1tue|} (“next Tuesday”) can denote the same
date.

Associated with the operators are type and granu-
larity requirements. For example, when a focus is
specified down to second granularity, the formula
{now+|1day|} will return a coordinate at the day
granularity - essentially stripping away information
finer than day. This is because the operator ‘+’
(called fuzzy forward shifting) requires the left-hand
side operand to have the same granularity as that of
the right-hand side operand. Type coercion can also
happen automatically if it is required by an operator.
For example, the operator ‘@’ (ordinal selection) re-
quires that the right-hand side operand to be of type
enumeration. When presenting a coordinate such as
{>= } (some point in the future), it will be coerced

5The f denotes the relation “finishes” (Allen, 1984); the for-
mula denotes a set of coordinates no later than a Saturday noon.

139

Table 2: Summary of operators in TCNL; LHS/RHS is the left/right operand, g(e) returns the granularity of
e and min(s) returns the set of minimal units among s.

operator Type requirement Granularity requirement Semantics Example
+ and − C × Q→ C g(LHS)← g(RHS) fuzzy forward/backward

shifting
{now+|1day|}
(“tomorrow”)

++ and −− C × Q→ C g(LHS)←
min(g(LHS)∪g(RHS))

exact forward/backward
shifting

{now++|2hour|}
(“2 hours from now”)

@ Q × E→ C g(RHS)← g(LHS) ordinal {|2{sun}|@{may}}
(“the 2nd Sunday in May”)

& C × C→ C
C × E→ E
E × C→ E
E × E→ E

g(LHS)←
min(g(LHS)∪g(RHS))

distribution {now &{now+|1year|}}
(“this time next year”)
[{15hour}&[{wed}:{fri}]]
(“3pm from Wednesday to
Friday”)

into an enumeration so that the ordinal operator can
select a requested element out of it. These designs
make granularity change and re-interpretation part
of a transparent process. Table 2 lists the operators
in the TCNL language.

Most of under-specified temporal expressions still
lack necessary information in themselves in order to
be anchored. For example, it is not clear what to
make out of “on Wednesday” with no context. In
TCNL more information can be supplied by using
one of the coordinate prefixes: the ‘+’/‘−’ prefix
signifies the relation of a coordinate with the fo-
cus (after/before the focus), and the ‘f’/‘p’ indicates
the relation of a coordinate with the speech time
(future/past). For example, the Wednesday in “the
company will announce on Wednesday” is repre-
sented as +f{wed}, while “the company announced
on Wednesday” is represented as −p{wed}. When
evaluating these formulae, TEA will rewrite the for-
mer into {|1wed|@{>= , >= now}} and the latter
into {−|1wed|@{<= , <= now}} if necessary, es-
sentially trying to find the nearest Wednesday ei-
ther in the future or in the past. Since TCNL for-
mulae can be embedded, prefixed coordinates can
also appear inside a more complex formula; e.g.,
{{|2{sun}|@f{may}}+|2day|} represents “2 days af-
ter a future Mother’s day”6.

Note that TCNL itself does not provide a mecha-
nism to instantiate the temporal focus (‘ ’). The re-
sponsibility of shifting a focus whenever necessary
(focus tracking) is up to TEA, which is described in
the next section.

6This denotes a possible range of dates, but it is still different
from an enumeration.

4 TEA: Temporal Expression Anchorer

The input to our system TEA is English texts with
temporal expression markups, and the output is a
time string for each temporal expression. The format
of a time string is similar to the ISO 8601 scheme:
for a time point the format is YYYYMMDDTHHMMSS
(T is a separator), for an interval it is a pair of points
separated by ‘/’ (slash). Also whenever there are
slots that lack information, we use ‘?’ (question
mark) in its place. If a points can reside at any place
between two bounds, we use (lower..upper)
to represent it. Table. 3 shows the TEA output over
the example email given in Fig. 1 (min and max are
the minimal and the maximal time points TEA can
reason with).

TEA uses the following procedure to anchor each
temporal expression:

1. The speech time (variable now) and the focus
(‘ ’) is first assigned to a timestamp (e.g., the
received date of an email).

2. For each temporal expression, its nearest verb
chunk is identified using the part-of-speech
tags of the sentence. Expressions associated
with a verb of past tense or present imperfective
will be given prefix “−p” to its TCNL formula,
otherwise it is given “+f”7.

3. A finite-state parser is then used to transduce an
expression into its TCNL formula. At the pars-
ing stage the tense and granularity information
is available to the parser.

7This is of course a simplification; future work needs to be
done to explore other possibilities.

140

Table 3: Anchoring example for the email in Fig. 1
Expression TCNL formula Temporal focus (f) Anchored time string
(timestamp) 19970911T001436
Thursday night +f{thu,night} 19970911T001436 (19970911T18????..

19970911T23????)
by Saturday Noon [f +f{sat,noon}] (19970911T18????..

19970911T23????)
min/19970913T12????

until AFTER mid-
night

[f{>= −p{midnight}}] 19970911T001436 min/(19970911..max)

4. The produced TCNL formula (or formulae
when ambiguity arises) is then evaluated with
the speech time and the current focus. In case
of ambiguity, one formula will be chosen based
on certain heuristics (below). The result of the
evaluation is the final output for the expression.

5. Recency-based focus tracking: we use the fol-
lowing procedure to determine if the result ob-
tained above can replace the current focus (be-
low). In cases where the result is an ambigu-
ous coordinate (i.e., it denotes a possible range
of points), if one of the bounds is min or max,
we use the other to be the new focus; if it is
not possible, we choose to keep the focus un-
changed. On the other hand, if the result is
an enumeration, we go through a similar pro-
cedure to avoid using an enumeration with a
min/max bound as the new focus. Finally no
quantity can become a focus.

Note that in Step 3 the decision to make partial
semantics of a temporal expression available to our
parser is based on the following observation: con-
sider the two expressions below

”Tuesday before Christmas”
= {tue, < {|25day|@{dec}}}
”Tuesday before 6pm”
= {< {tue,18hour}, de {tue}}

Both expressions share the same “X before Y ” pat-
tern, but their interpretations are different8. The key
to discriminate the two is to compare the granulari-
ties of X and Y : if Y if at a coarser granularity then
the first interpretation should be adopted.

In Step 4 we use the following procedure to dis-
ambiguate the result:

8de denotes a relation “during or equal” (Allen, 1984).

1. Remove any candidate that resulted in an in-
consistency when solving for a solution in the
calendar CSP.

2. If the result is meant to be a coordinate, pick
the one that is closest to the focus.

3. If the result is supposed to be an enumeration,
pick the one whose starting point is closest to
the focus, and whose length is the shortest one.

4. Otherwise pick the first one as the result.

For example, if the current time is 2:00 pm, for ex-
pression “at 3” with a present/future tense, the best
answer is 15:00. For expression “from 3 to 5”, the
best answer is from 3 pm to 5 pm.

When deciding whether a temporal expression
can become the next focus, we use simple heuris-
tics to rule out any expression that behaves like a
noun modifier. This is motivated by the following
example (timestamp: 19970919T103315):

IT basically analyses the breakdown on
labor costs and compares our 1998 labor
costs with their demands for 1999-2000.
...
I will check mail on Sunday and see any
feedback.

Without blocking the expression 1999-2000 from
becoming the focus, the last expression will be in-
correctly anchored in year 2000. The key obser-
vation here is that a noun-modifying temporal ex-
pression usually serves as a temporal co-reference
instead of representing a new temporal entity in the
discourse. These references tend to have a more con-
fined effect in anchoring the subsequent expressions.

141

Table 4: Development and testing results
Accuracy Parsing errors Human errors Anchoring errors

email2 (dev) 78.2% 10.47% 1.7% 9.63%
email5 (dev) 85.45% 5.16% 1% 8.39%
email4 (test-
ing)

76.34% 17.92% < 1% 5.74%

5 Evaluation

The temporal expressions in all of the datasets were
initially tagged using rules developed for Minor-
Third9, and subsequently corrected manually by two
of the authors. We then developed a prototype sys-
tem and established our baseline over email1 (50%).
The system at that time did not have any focus track-
ing mechanism (i.e., it always used the timestamp
as the focus), and it did not use any tense infor-
mation. The result confirms our estimate given in
Sec. 2. We then gradually developed TEA to its cur-
rent form using email1, email2 and email5. Dur-
ing the four-month development we added the focus
tracking mechanism, incorporating the tense infor-
mation into each TCNL formula via the coordinate
prefixes, and introduced several representational im-
provements. Finally we tested the system on the un-
seen dataset email4, and obtained the results shown
in Table 4. Note that the percentages reported in
the table are accuracies, i.e., the number of cor-
rectly anchored expressions over the total number
of temporal expressions over a dataset, since we are
assuming correct tagging of all of the expressions.
Our best result was achieved in the dev set email5
(85.45%), and the accuracy over the test set email4
was 76.34%.

Table 4 also lists the types of the errors made by
our system. The parsing errors are mistakes made
at transducing temporal expressions using the finite-
state parser into their TCNL formulae, the human
errors are described in Sec. 2, and the rest are the
anchoring errors. The accuracy numbers are all
compared favorably to the baseline (50%). To put
this performance in perspective, in (Wiebe et al.,
1998) a similar task was performed over transcribed
scheduling-related phone conversations. They re-
ported an average accuracy 80.9% over the CMU

9http://minorthird.sourceforge.net/

test set and 68.9% over the NMSU test set. Although
strictly speaking the two results cannot be compared
due to differences in the nature of the corpora (tran-
scription vs. typing), we nevertheless believe it rep-
resents a closer match compared to the other works
done on newswire genre.

It should also be noted that we adopted a simi-
lar recency-based focus model as in (Wiebe et al.,
1998). Although simple to implement, this naive
approach proved to be one major contributor to the
anchoring errors in our experiments. An example is
given below (the anchored times are shown in sub-
script):

This research can not proceed until the
trade-offs are known on Monday19970818 .
...
Mary will perform this by
Friday(min..19970822) using the data
from Monday19970825 .

The last expression received an incorrect date: it
should be the same date the expression “on Mon-
day” refers to. Our system made this error because
it blindly used the most recently mentioned time
((min..19970822)) as the focus to anchor the
formula +f{mon}. This error later also propagated
to the anchoring of the subsequent expressions.

6 Conclusion and Future Work

In this paper we have adopted a constraint-based
representation of time, Time Calculus for Natural
Language (TCNL), to tackle the task of anchoring
temporal expressions in a novel genre, emails. We
believe that the genre is sufficiently different from
newswire texts, and its highly under-specified nature
fits well with a constraint-based modeling of human
calendars. TCNL also allows for an explicit repre-
sentation of temporal focus, and many of our intu-
itions about granularity change and temporal arithe-

142

matics are encapsulated in its type system and oper-
ators. The performance of our anchoring system is
significantly better than baseline, and compares fa-
vorably with some of the closely related work.

In the future we will re-examine our focus track-
ing mechanism (being the most significant source of
errors), and possibly treat it as a classification prob-
lem (similar to (Mani et al., 2003)). We also need to
investigate the disambiguation procedure and pos-
sibly migrate the functionality into a separate dis-
course module. In addition, the co-referencing ten-
dency of noun-modifying expressions could lead to
a better way to anchoring this particular type of tem-
poral expressions. Finally we would like to ex-
pand our coverage of temporal expressions to in-
clude other types of expressions such as recurrence
expressions10.

Acknowledgments

This material is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHD030010.

Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency
(DARPA), or the Department of Interior-National
Business Center (DOI-NBC).

References
J. F. Allen. 1984. Towards a General Theory of Action

and Time. Artificial Intelligence, 23:123–154.

I. Androutsopoulos. 1999. Temporal Meaning Rep-
resentations in a Natural Language Front-end. In
M. Gergatsoulis and P. Rondogiannis, editors, Inten-
sional Programming II (Proceedings of the 12th In-
ternational Symposium on Languages for Intensional
Programming, Athens, Greece.

E. Filatova and E. Hovy. 2001. Assigning Time-
Stamps To Event-Clauses. In Proceedings of ACL-
2001: Workshop on Temporal and Spatial Information
Processing, Toulouse, France, 7.

10The current design of TCNL allows for a more restricted
type of recurrence: e.g., “3pm from Wednesday to Friday” is
represented as [{15hour}&[{wed}:{fri}]]. However this is in-
sufficient to represent expressions such as “every 4 years”.

Benjamin Han and Michael Kohlhase. 2003. A Time
Calculus for Natural Language. In The 4th Work-
shop on Inference in Computational Semantics, Nancy,
France, September.

B. Han, D. Gates, and L. Levin. 2006. From Language to
Time: A Temporal Expression Anchorer. In Proceed-
ings of the 13th International Symposium on Tempo-
ral Representation and Reasoning (TIME 2006), Bu-
dapest, Hungary.

J. R. Hobbs and Feng. Pan. 2004. An ontology of time
for the semantic web. TALIP Special Issue on Spa-
tial and Temporal Information Processing, 3(1):66–
85, March.

R. E. Kraut, S. R. Fussell, F. J. Lerch, and A Espinosa.
2004. Coordination in teams: Evidence from a sim-
ulated management game. Journal of Organizational
Behavior, to appear.

I. Mani and G. Wilson. 2000. Robust Temporal Process-
ing of News. In Proceedings of ACL-2000.

I. Mani, B. Schiffman, and J. Zhang. 2003. Inferring
Temporal Ordering of Events in News. In Proceedings
of the Human Language Technology Conference (HLT-
NAACL’03).

Zsófia Ruttkay. 1998. Constraint Satisfaction - a Survey.
Technical Report 11(2-3), CWI.

Roser Saurı́, Jessica Littman, Bob Knippen, Robert
Gaizauskas, Andrea Setzer, and James Pustejovsky,
2006. TimeML Annotation Guidelines, Version 1.2.1,
January 31.

F. Schilder and C. Habel. 2001. From Temporal Expres-
sions To Temporal Information: Semantic Tagging Of
News Messages. In Proceedings of ACL-2001: Work-
shop on Temporal and Spatial Information Processing,
Toulouse, France, 7.

Andrea Setzer. 2001. Temporal Information in Newswire
Articles: an Annotation Scheme and Corpus Study.
Ph.D. thesis, University of Sheffield.

M. Stede and S. Haas. 1998. Understanding and track-
ing temporal descriptions in dialogue. In B. Schröder,
W. Lenders, W. Hess, and T. Portele, editors, Proceed-
ings of the 4th Conference on Natural Language Pro-
cessing - KONVENS ’98.

N. Vazov. 2001. A System for Extraction of Tempo-
ral Expressions from French Texts Based on Syntac-
tic and Semantic Constraints. In Proceedings of ACL-
2001: Workshop on Temporal and Spatial Information
Processing, Toulouse, France, 7.

J. M. Wiebe, T. P. O’Hara, T. Ohrstrom-Sandgren, and
K. J. McKeever. 1998. An Empirical Approach to
Temporal Reference Resolution. Journal of Artificial
Intelligence Research, 9:247–293.

143

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 144–151,
New York, June 2006.c©2006 Association for Computational Linguistics

Partial Training for a Lexicalized-Grammar Parser

Stephen Clark

Oxford University Computing Laboratory

Wolfson Building, Parks Road

Oxford, OX1 3QD, UK

stephen.clark@comlab.ox.ac.uk

James R. Curran

School of Information Technologies

University of Sydney

NSW 2006, Australia

james@it.usyd.edu.au

Abstract

We propose a solution to the annotation

bottleneck for statistical parsing, by ex-

ploiting the lexicalized nature of Combi-

natory Categorial Grammar (CCG). The

parsing model uses predicate-argument

dependencies for training, which are de-

rived from sequences of CCG lexical cate-

gories rather than full derivations. A sim-

ple method is used for extracting depen-

dencies from lexical category sequences,

resulting in high precision, yet incomplete

and noisy data. The dependency parsing

model of Clark and Curran (2004b) is ex-

tended to exploit this partial training data.

Remarkably, the accuracy of the parser

trained on data derived from category se-

quences alone is only 1.3% worse in terms

of F-score than the parser trained on com-

plete dependency structures.

1 Introduction

State-of-the-art statistical parsers require large

amounts of hand-annotated training data, and are

typically based on the Penn Treebank, the largest

treebank available for English. Even robust parsers

using linguistically sophisticated formalisms, such

as TAG (Chiang, 2000), CCG (Clark and Curran,

2004b; Hockenmaier, 2003), HPSG (Miyao et al.,

2004) and LFG (Riezler et al., 2002; Cahill et al.,

2004), often use training data derived from the Penn

Treebank. The labour-intensive nature of the tree-

bank development process, which can take many

years, creates a significant barrier for the develop-

ment of parsers for new domains and languages.

Previous work has attempted parser adaptation

without relying on treebank data from the new do-

main (Steedman et al., 2003; Lease and Charniak,

2005). In this paper we propose the use of anno-

tated data in the new domain, but only partially an-

notated data, which reduces the annotation effort re-

quired (Hwa, 1999). We develop a parsing model

which can be trained using partial data, by exploiting

the properties of lexicalized grammar formalisms.

The formalism we use is Combinatory Categorial

Grammar (Steedman, 2000), together with a parsing

model described in Clark and Curran (2004b) which

we adapt for use with partial data.

Parsing with Combinatory Categorial Grammar

(CCG) takes place in two stages: first, CCG lexical

categories are assigned to the words in the sentence,

and then the categories are combined by the parser

(Clark and Curran, 2004a). The lexical categories

can be thought of as detailed part of speech tags and

typically express subcategorization information. We

exploit the fact that CCG lexical categories contain

a lot of syntactic information, and can therefore be

used for training a full parser, even though attach-

ment information is not explicitly represented in a

category sequence. Our partial training regime only

requires sentences to be annotated with lexical cate-

gories, rather than full parse trees; therefore the data

can be produced much more quickly for a new do-

main or language (Clark et al., 2004).

The partial training method uses the log-linear

dependency model described in Clark and Curran

(2004b), which uses sets of predicate-argument de-

144

pendencies, rather than derivations, for training. Our

novel idea is that, since there is so much informa-

tion in the lexical category sequence, most of the

correct dependencies can be easily inferred from the

categories alone. More specifically, for a given sen-

tence and lexical category sequence, we train on

those predicate-argument dependencies which occur

in k% of the derivations licenced by the lexical cat-

egories. By setting the k parameter high, we can

produce a set of high precision dependencies for

training. A similar idea is proposed by Carroll and

Briscoe (2002) for producing high precision data for

lexical acquisition.

Using this procedure we are able to produce de-

pendency data with over 99% precision and, re-

markably, up to 86% recall, when compared against

the complete gold-standard dependency data. The

high recall figure results from the significant amount

of syntactic information in the lexical categories,

which reduces the ambiguity in the possible depen-

dency structures. Since the recall is not 100%, we

require a log-linear training method which works

with partial data. Riezler et al. (2002) describe a

partial training method for a log-linear LFG parsing

model in which the “correct” LFG derivations for a

sentence are those consistent with the less detailed

gold standard derivation from the Penn Treebank.

We use a similar method here by treating a CCG

derivation as correct if it is consistent with the high-

precision partial dependency structure. Section 3 ex-

plains what we mean by consistency in this context.

Surprisingly, the accuracy of the parser trained on

partial data approaches that of the parser trained on

full data: our best partial-data model is only 1.3%

worse in terms of dependency F-score than the full-

data model, despite the fact that the partial data does

not contain any explicit attachment information.

2 The CCG Parsing Model

Clark and Curran (2004b) describes two log-linear

parsing models for CCG: a normal-form derivation

model and a dependency model. In this paper we

use the dependency model, which requires sets of

predicate-argument dependencies for training.1

1Hockenmaier and Steedman (2002) describe a generative
model of normal-form derivations; one possibility for training
this model on partial data, which has not been explored, is to
use the EM algorithm (Pereira and Schabes, 1992).

The predicate-argument dependencies are repre-

sented as 5-tuples: 〈hf , f, s, ha, l〉, where hf is the

lexical item of the lexical category expressing the

dependency relation; f is the lexical category; s is

the argument slot; ha is the head word of the ar-

gument; and l encodes whether the dependency is

non-local. For example, the dependency encoding

company as the object of bought (as in IBM bought

the company) is represented as follows:

〈bought2, (S\NP1)/NP2 , 2, company4,−〉 (1)

CCG dependency structures are sets of predicate-

argument dependencies. We define the probability

of a dependency structure as the sum of the probabil-

ities of all those derivations leading to that structure

(Clark and Curran, 2004b). “Spurious ambiguity” in

CCG means that there can be more than one deriva-

tion leading to any one dependency structure. Thus,

the probability of a dependency structure, π, given a

sentence, S, is defined as follows:

P (π|S) =
∑

d∈∆(π)

P (d, π|S) (2)

where ∆(π) is the set of derivations which lead to π.

The probability of a 〈d, π〉 pair, ω, conditional on

a sentence S, is defined using a log-linear form:

P (ω|S) =
1

ZS

eλ.f (ω) (3)

where λ.f(ω) =
∑

i λifi(ω). The function fi is the

integer-valued frequency function of the ith feature;

λi is the weight of the ith feature; and ZS is a nor-

malising constant.

Clark and Curran (2004b) describes the training

procedure for the dependency model, which uses a

discriminative estimation method by maximising the

conditional likelihood of the model given the data

(Riezler et al., 2002). The optimisation of the objec-

tive function is performed using the limited-memory

BFGS numerical optimisation algorithm (Nocedal

and Wright, 1999; Malouf, 2002), which requires

calculation of the objective function and the gradi-

ent of the objective function at each iteration.

The objective function is defined below, where

L(Λ) is the likelihood and G(Λ) is a Gaussian prior

term for smoothing.

145

He anticipates growth for the auto maker

NP (S [dcl]\NP)/NP NP (NP\NP)/NP NP [nb]/N N /N N

Figure 1: Example sentence with CCG lexical categories

L′(Λ) = L(Λ) − G(Λ) (4)

=
m∑

j=1

log
∑

d∈∆(πj)

eλ.f (d,πj)

−
m∑

j=1

log
∑

ω∈ρ(Sj)

eλ.f (ω) −
n∑

i=1

λ2
i

2σ2

S1, . . . , Sm are the sentences in the training data;

π1, . . . , πm are the corresponding gold-standard de-

pendency structures; ρ(S) is the set of possible

〈derivation, dependency-structure〉 pairs for S; σ is

a smoothing parameter; and n is the number of fea-

tures. The components of the gradient vector are:

∂L′(Λ)

∂λi
=

m∑

j=1

∑

d∈∆(πj)

eλ.f (d,πj)fi(d, πj)
∑

d∈∆(πj) eλ.f (d,πj)
(5)

−
m∑

j=1

∑

ω∈ρ(Sj)

eλ.f (ω)fi(ω)
∑

ω∈ρ(Sj) eλ.f (ω)
−

λi

σ2

The first two terms of the gradient are expecta-

tions of feature fi: the first expectation is over

all derivations leading to each gold-standard depen-

dency structure, and the second is over all deriva-

tions for each sentence in the training data. The es-

timation process attempts to make the expectations

in (5) equal (ignoring the Gaussian prior term). An-

other way to think of the estimation process is that

it attempts to put as much mass as possible on the

derivations leading to the gold-standard structures

(Riezler et al., 2002).

Calculation of the feature expectations requires

summing over all derivations for a sentence, and

summing over all derivations leading to a gold-

standard dependency structure. Clark and Cur-

ran (2003) shows how the sum over the complete

derivation space can be performed efficiently using

a packed chart and the inside-outside algorithm, and

Clark and Curran (2004b) extends this method to

sum over all derivations leading to a gold-standard

dependency structure.

3 Partial Training

The partial data we use for training the dependency

model is derived from CCG lexical category se-

quences only. Figure 1 gives an example sentence

adapted from CCGbank (Hockenmaier, 2003) to-

gether with its lexical category sequence. Note that,

although the attachment of the prepositional phrase

to the noun phrase is not explicitly represented, it

can be inferred in this example because the lexical

category assigned to the preposition has to combine

with a noun phrase to the left, and in this example

there is only one possibility. One of the key insights

in this paper is that the significant amount of syntac-

tic information in CCG lexical categories allows us

to infer attachment information in many cases.

The procedure we use for extracting dependencies

from a sequence of lexical categories is to return all

those dependencies which occur in k% of the deriva-

tions licenced by the categories. By giving the k pa-

rameter a high value, we can extract sets of depen-

dencies with very high precision; in fact, assuming

that the correct lexical category sequence licences

the correct derivation, setting k to 100 must result in

100% precision, since any dependency which occurs

in every derivation must occur in the correct deriva-

tion. Of course the recall is not guaranteed to be

high; decreasing k has the effect of increasing recall,

but at the cost of decreasing precision.

The training method described in Section 2 can

be adapted to use the (potentially incomplete) sets

of dependencies returned by our extraction proce-

dure. In Section 2 a derivation was considered cor-

rect if it produced the complete set of gold-standard

dependencies. In our partial-data version a deriva-

tion is considered correct if it produces dependen-

cies which are consistent with the dependencies re-

turned by our extraction procedure. We define con-

sistency as follows: a set of dependencies D is con-

sistent with a set G if G is a subset of D. We also

say that a derivation d is consistent with dependency

set G if G is a subset of the dependencies produced

by d.

146

This definition of “correct derivation” will intro-

duce some noise into the training data. Noise arises

from sentences where the recall of the extracted de-

pendencies is less than 100%, since some of the

derivations which are consistent with the extracted

dependencies for such sentences will be incorrect.

Noise also arises from sentences where the preci-

sion of the extracted dependencies is less than 100%,

since for these sentences every derivation which is

consistent with the extracted dependencies will be

incorrect. The hope is that, if an incorrect derivation

produces mostly correct dependencies, then it can

still be useful for training. Section 4 shows how the

precision and recall of the extracted dependencies

varies with k and how this affects parsing accuracy.

The definitions of the objective function (4) and

the gradient (5) for training remain the same in the

partial-data case; the only differences are that ∆(π)
is now defined to be those derivations which are con-

sistent with the partial dependency structure π, and

the gold-standard dependency structures πj are the

partial structures extracted from the gold-standard

lexical category sequences.2

Clark and Curran (2004b) gives an algorithm for

finding all derivations in a packed chart which pro-

duce a particular set of dependencies. This algo-

rithm is required for calculating the value of the ob-

jective function (4) and the first feature expectation

in (5). We adapt this algorithm for finding all deriva-

tions which are consistent with a partial dependency

structure. The new algorithm is shown in Figure 2.

The algorithm relies on the definition of a packed

chart, which is an instance of a feature forest (Miyao

and Tsujii, 2002). The idea behind a packed chart is

that equivalent chart entries of the same type and in

the same cell are grouped together, and back point-

ers to the daughters indicate how an individual entry

was created. Equivalent entries form the same struc-

tures in any subsequent parsing.

A feature forest is defined in terms of disjunctive

and conjunctive nodes. For a packed chart, the indi-

vidual entries in a cell are conjunctive nodes, and the

equivalence classes of entries are disjunctive nodes.

The definition of a feature forest is as follows:

A feature forest Φ is a tuple 〈C, D, R, γ, δ〉 where:

2Note that the procedure does return all the gold-standard
dependencies for some sentences.

〈C, D, R, γ, δ〉 is a packed chart / feature forest
G is a set of dependencies returned by the extraction procedure
Let c be a conjunctive node
Let d be a disjunctive node
deps(c) is the set of dependencies on node c

cdeps(c) = |deps(c) ∩ G|

dmax(c) =
∑

d∈δ(c)
dmax(d) + cdeps(c)

dmax(d) = max{dmax(c) | c ∈ γ(d)}

mark(d):
mark d as a correct node
foreach c ∈ γ(d)

if dmax(c) == dmax(d)
mark c as a correct node
foreach d′ ∈ δ(c)

mark(d′)

foreach dr ∈ R such that dmax. (dr) = |G|
mark(dr)

Figure 2: Finding nodes in derivations consistent

with a partial dependency structure

• C is a set of conjunctive nodes;

• D is a set of disjunctive nodes;

• R ⊆ D is a set of root disjunctive nodes;

• γ : D → 2C is a conjunctive daughter function;

• δ : C → 2D is a disjunctive daughter function.

Dependencies are associated with conjunctive

nodes in the feature forest. For example, if the

disjunctive nodes (equivalence classes of individual

entries) representing the categories NP and S\NP

combine to produce a conjunctive node S , the re-

sulting S node will have a verb-subject dependency

associated with it.

In Figure 2, cdeps(c) is the number of dependen-

cies on conjunctive node c which appear in partial

structure G; dmax(c) is the maximum number of

dependencies in G produced by any sub-derivation

headed by c; dmax(d) is the same value for disjunc-

tive node d. Recursive definitions for calculating

these values are given; the base case occurs when

conjunctive nodes have no disjunctive daughters.

The algorithm identifies all those root nodes head-

ing derivations which are consistent with the partial

dependency structure G, and traverses the chart top-

down marking the nodes in those derivations. The

insight behind the algorithm is that, for two con-

junctive nodes in the same equivalence class, if one

node heads a sub-derivation producing more depen-

dencies in G than the other node, then the node with

147

less dependencies in G cannot be part of a derivation

consistent with G.

The conjunctive and disjunctive nodes appearing

in derivations consistent with G form a new “gold-

standard” feature forest. The gold-standard forest,

and the complete forest containing all derivations

spanning the sentence, can be used to estimate the

likelihood value and feature expectations required

by the estimation algorithm. Let EΦ
Λfi be the ex-

pected value of fi over the forest Φ for model Λ;

then the values in (5) can be obtained by calculating

E
Φj

Λ fi for the complete forest Φj for each sentence

Sj in the training data (the second sum in (5)), and

also E
Ψj

Λ fi for each forest Ψj of derivations consis-

tent with the partial gold-standard dependency struc-

ture for sentence Sj (the first sum in (5)):

∂L(Λ)

∂λi
=

m∑

j=1

(E
Ψj

Λ fi − E
Φj

Λ fi) (6)

The likelihood in (4) can be calculated as follows:

L(Λ) =
m∑

j=1

(log ZΨj
− log ZΦj

) (7)

where log ZΦ is the normalisation constant for Φ.

4 Experiments

The resource used for the experiments is CCGbank

(Hockenmaier, 2003), which consists of normal-

form CCG derivations derived from the phrase-

structure trees in the Penn Treebank. It also contains

predicate-argument dependencies which we use for

development and final evaluation.

4.1 Accuracy of Dependency Extraction

Sections 2-21 of CCGbank were used to investigate

the accuracy of the partial dependency structures re-

turned by the extraction procedure. Full, correct de-

pendency structures for the sentences in 2-21 were

created by running our CCG parser (Clark and Cur-

ran, 2004b) over the gold-standard derivation for

each sentence, outputting the dependencies. This re-

sulted in full dependency structures for 37,283 of the

sentences in sections 2-21.

Table 1 gives precision and recall values for the

dependencies obtained from the extraction proce-

dure, for the 37,283 sentences for which we have

k Precision Recall SentAcc

0.99999 99.76 74.96 13.84

0.9 99.69 79.37 16.52

0.85 99.65 81.30 18.40

0.8 99.57 82.96 19.51

0.7 99.09 85.87 22.46

0.6 98.00 88.67 26.28

Table 1: Accuracy of the Partial Dependency Data

complete dependency structures. The SentAcc col-

umn gives the percentage of training sentences for

which the partial dependency structures are com-

pletely correct. For a given sentence, the extrac-

tion procedure returns all dependencies occurring in

at least k% of the derivations licenced by the gold-

standard lexical category sequence. The lexical cat-

egory sequences for the sentences in 2-21 can easily

be read off the CCGbank derivations.

The derivations licenced by a lexical category se-

quence were created using the CCG parser described

in Clark and Curran (2004b). The parser uses a small

number of combinatory rules to combine the cate-

gories, along with the CKY chart-parsing algorithm

described in Steedman (2000). It also uses some

unary type-changing rules and punctuation rules ob-

tained from the derivations in CCGbank.3 The parser

builds a packed representation, and counting the

number of derivations in which a dependency occurs

can be performed using a dynamic programming al-

gorithm similar to the inside-outside algorithm.

Table 1 shows that, by varying the value of k, it

is possible to get the recall of the extracted depen-

dencies as high as 85.9%, while still maintaining a

precision value of over 99%.

4.2 Accuracy of the Parser

The training data for the dependency model was cre-

ated by first supertagging the sentences in sections

2-21, using the supertagger described in Clark and

Curran (2004b).4 The average number of categories

3Since our training method is intended to be applicable in
the absence of derivation data, the use of such rules may appear
suspect. However, we argue that the type-changing and punc-
tuation rules could be manually created for a new domain by
examining the lexical category data.

4An improved version of the supertagger was used for this
paper in which the forward-backward algorithm is used to cal-
culate the lexical category probability distributions.

148

assigned to each word is determined by a parameter,

β, in the supertagger. A category is assigned to a

word if the category’s probability is within β of the

highest probability category for that word.

For these experiments, we used a β value of 0.01,

which assigns roughly 1.6 categories to each word,

on average; we also ensured that the correct lexi-

cal category was in the set assigned to each word.

(We did not do this when parsing the test data.) For

some sentences, the packed charts can become very

large. The supertagging approach we adopt for train-

ing differs to that used for testing: if the size of the

chart exceeds some threshold, the value of β is in-

creased, reducing ambiguity, and the sentence is su-

pertagged and parsed again. The threshold which

limits the size of the charts was set at 300 000 indi-

vidual entries. Two further values of β were used:

0.05 and 0.1.

Packed charts were created for each sentence and

stored in memory. It is essential that the packed

charts for each sentence contain at least one deriva-

tion leading to the gold-standard dependency struc-

ture. Not all rule instantiations in CCGbank can be

produced by our parser; hence it is not possible to

produce the gold standard for every sentence in Sec-

tions 2-21. For the full-data model we used 34 336

sentences (86.7% of the total). For the partial-data

models we were able to use slightly more, since the

partial structures are easier to produce. Here we

used 35,709 sentences (k = 0.85).

Since some of the packed charts are very large,

we used an 18-node Beowulf cluster, together with

a parallel version of the BFGS training algorithm.

The training time and number of iterations to con-

vergence were 172 minutes and 997 iterations for the

full-data model, and 151 minutes and 861 iterations

for the partial-data model (k = 0.85). Approximate

memory usage in each case was 17.6 GB of RAM.

The dependency model uses the same set of fea-

tures described in Clark and Curran (2004b): de-

pendency features representing predicate-argument

dependencies (with and without distance measures);

rule instantiation features encoding the combining

categories together with the result category (with

and without a lexical head); lexical category fea-

tures, consisting of word–category pairs at the leaf

nodes; and root category features, consisting of

headword–category pairs at the root nodes. Further

k LP LR F CatAcc

0.99999 85.80 84.51 85.15 93.77

0.9 85.86 84.51 85.18 93.78

0.85 85.89 84.50 85.19 93.71

0.8 85.89 84.45 85.17 93.70

0.7 85.52 84.07 84.79 93.72

0.6 84.99 83.70 84.34 93.65

FullData 87.16 85.84 86.50 93.79

Random 74.63 72.53 73.57 89.31

Table 2: Accuracy of the Parser on Section 00

generalised features for each feature type are formed

by replacing words with their POS tags.

Only features which occur more than once in the

training data are included, except that the cutoff

for the rule features is 10 or more and the count-

ing is performed across all derivations licenced by

the gold-standard lexical category sequences. The

larger cutoff was used since the productivity of the

grammar can lead to large numbers of these features.

The dependency model has 548 590 features. In or-

der to provide a fair comparison, the same feature set

was used for the partial-data and full-data models.

The CCG parsing consists of two phases: first the

supertagger assigns the most probable categories to

each word, and then the small number of combina-

tory rules, plus the type-changing and punctuation

rules, are used with the CKY algorithm to build a

packed chart.5 We use the method described in Clark

and Curran (2004b) for integrating the supertagger

with the parser: initially a small number of cat-

egories is assigned to each word, and more cate-

gories are requested if the parser cannot find a span-

ning analysis. The “maximum-recall” algorithm de-

scribed in Clark and Curran (2004b) is used to find

the highest scoring dependency structure.

Table 2 gives the accuracy of the parser on Section

00 of CCGbank, evaluated against the predicate-

argument dependencies in CCGbank.6 The table

gives labelled precision, labelled recall and F-score,

and lexical category accuracy. Numbers are given

for the partial-data model with various values of k,

and for the full-data model, which provides an up-

5Gold-standard POS tags from CCGbank were used for all
the experiments in this paper.

6There are some dependency types produced by our parser
which are not in CCGbank; these were ignored for evaluation.

149

LP LR F CatAcc

k = 0.85 86.21 85.01 85.60 93.90

FullData 87.50 86.37 86.93 94.01

Table 3: Accuracy of the Parser on Section 23

k Precision Recall SentAcc

0.99999 99.71 80.16 17.48

0.9999 99.68 82.09 19.13

0.999 99.49 85.18 22.18

0.99 99.00 88.95 27.69

0.95 98.34 91.69 34.95

0.9 97.82 92.84 39.18

Table 4: Accuracy of the Partial Dependency Data

using Inside-Outside Scores

per bound for the partial-data model. We also give a

lower bound which we obtain by randomly travers-

ing a packed chart top-down, giving equal proba-

bility to each conjunctive node in an equivalence

class. The precision and recall figures are over those

sentences for which the parser returned an analysis

(99.27% of Section 00).

The best result is obtained for a k value of 0.85,

which produces partial dependency data with a pre-

cision of 99.7 and a recall of 81.3. Interestingly, the

results show that decreasing k further, which results

in partial data with a higher recall and only a slight

loss in precison, harms the accuracy of the parser.

The Random result also dispels any suspicion that

the partial-model is performing well simply because

of the supertagger; clearly there is still much work

to be done after the supertagging phase.

Table 3 gives the accuracy of the parser on Sec-

tion 23, using the best performing partial-data model

on Section 00. The precision and recall figures are

over those sentences for which the parser returned

an analysis (99.63% of Section 23). The results

show that the partial-data model is only 1.3% F-

score short of the upper bound.

4.3 Further Experiments with Inside-Outside

In a final experiment, we attempted to exploit the

high accuracy of the partial-data model by using it

to provide new training data. For each sentence in

Section 2-21, we parsed the gold-standard lexical

category sequences and used the best performing

partial-data model to assign scores to each depen-

dency in the packed chart. The score for a depen-

dency was the sum of the probabilities of all deriva-

tions producing that dependency, which can be cal-

culated using the inside-outside algorithm. (This is

the score used by the maximum-recall parsing algo-

rithm.) Partial dependency structures were then cre-

ated by returning all dependencies whose score was

above some threshold k, as before. Table 4 gives the

accuracy of the data created by this procedure. Note

how these values differ to those reported in Table 1.

We then trained the dependency model on this

partial data using the same method as before. How-

ever, the peformance of the parser on Section 00 us-

ing these new models was below that of the previous

best performing partial-data model for all values of

k. We report this negative result because we had hy-

pothesised that using a probability model to score

the dependencies, rather than simply the number of

derivations in which they occur, would lead to im-

proved performance.

5 Conclusions

Our main result is that it is possible to train a CCG

dependency model from lexical category sequences

alone and still obtain parsing results which are only

1.3% worse in terms of labelled F-score than a

model trained on complete data. This is a notewor-

thy result and demonstrates the significant amount

of information encoded in CCG lexical categories.

The engineering implication is that, since the de-

pendency model can be trained without annotating

recursive structures, and only needs sequence in-

formation at the word level, then it can be ported

rapidly to a new domain (or language) by annotating

new sequence data in that domain.

One possible response to this argument is that,

since the lexical category sequence contains so

much syntactic information, then the task of anno-

tating category sequences must be almost as labour

intensive as annotating full derivations. To test this

hypothesis fully would require suitable annotation

tools and subjects skilled in CCG annotation, which

we do not currently have access to.

However, there is some evidence that annotat-

ing category sequences can be done very efficiently.

Clark et al. (2004) describes a porting experiment

150

in which a CCG parser is adapted for the ques-

tion domain. The supertagger component of the

parser is trained on questions annotated at the lex-

ical category level only. The training data consists

of over 1,000 annotated questions which took less

than a week to create. This suggests, as a very

rough approximation, that 4 annotators could an-

notate 40,000 sentences with lexical categories (the

size of the Penn Treebank) in a few months.

Another advantage of annotating with lexical cat-

egories is that a CCG supertagger can be used to per-

form most of the annotation, with the human an-

notator only required to correct the mistakes made

by the supertagger. An accurate supertagger can be

bootstrapped quicky, leaving only a small number of

corrections for the annotator. A similar procedure is

suggested by Doran et al. (1997) for porting an LTAG

grammar to a new domain.

We have a proposed a novel solution to the an-

notation bottleneck for statistical parsing which ex-

ploits the lexicalized nature of CCG, and may there-

fore be applicable to other lexicalized grammar for-

malisms such as LTAG.

References

A. Cahill, M. Burke, R. O’Donovan, J. van Genabith, and
A. Way. 2004. Long-distance dependency resolution in au-
tomatically acquired wide-coverage PCFG-based LFG ap-
proximations. In Proceedings of the 42nd Meeting of the
ACL, pages 320–327, Barcelona, Spain.

John Carroll and Ted Briscoe. 2002. High precision extrac-
tion of grammatical relations. In Proceedings of the 19th In-
ternational Conference on Computational Linguistics, pages
134–140, Taipei, Taiwan.

David Chiang. 2000. Statistical parsing with an automatically-
extracted Tree Adjoining Grammar. In Proceedings of the
38th Meeting of the ACL, pages 456–463, Hong Kong.

Stephen Clark and James R. Curran. 2003. Log-linear mod-
els for wide-coverage CCG parsing. In Proceedings of the
EMNLP Conference, pages 97–104, Sapporo, Japan.

Stephen Clark and James R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. In Proceed-
ings of COLING-04, pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the WSJ
using CCG and log-linear models. In Proceedings of the
42nd Meeting of the ACL, pages 104–111, Barcelona, Spain.

Stephen Clark, Mark Steedman, and James R. Curran. 2004.
Object-extraction and question-parsing using CCG. In
Proceedings of the EMNLP Conference, pages 111–118,
Barcelona, Spain.

C. Doran, B. Hockey, P. Hopely, J. Rosenzweig, A. Sarkar,
B. Srinivas, F. Xia, A. Nasr, and O. Rambow. 1997. Main-
taining the forest and burning out the underbrush in XTAG.
In Proceedings of the ENVGRAM Workshop, Madrid, Spain.

Julia Hockenmaier and Mark Steedman. 2002. Generative
models for statistical parsing with Combinatory Categorial
Grammar. In Proceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003. Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Rebbeca Hwa. 1999. Supervised grammar induction using
training data with limited constituent information. In Pro-
ceedings of the 37th Meeting of the ACL, pages 73–79, Uni-
versity of Maryland, MD.

Matthew Lease and Eugene Charniak. 2005. Parsing biomed-
ical literature. In Proceedings of the Second Interna-
tional Joint Conference on Natural Language Processing
(IJCNLP-05), Jeju Island, Korea.

Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. In Proceedings of the
Sixth Workshop on Natural Language Learning, pages 49–
55, Taipei, Taiwan.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum entropy
estimation for feature forests. In Proceedings of the Human
Language Technology Conference, San Diego, CA.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. 2004.
Corpus-oriented grammar development for acquiring a head-
driven phrase structure grammar from the Penn Treebank. In
Proceedings of the First International Joint Conference on
Natural Language Processing (IJCNLP-04), pages 684–693,
Hainan Island, China.

Jorge Nocedal and Stephen J. Wright. 1999. Numerical Opti-
mization. Springer, New York, USA.

Fernando Pereira and Yves Schabes. 1992. Inside-outside rees-
timation from partially bracketed corpora. In Proceedings of
the 30th Meeting of the ACL, pages 128–135, Newark, DE.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell III, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques. In Pro-
ceedings of the 40th Meeting of the ACL, pages 271–278,
Philadelphia, PA.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark,
Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen, Steve Baker,
and Jeremiah Crim. 2003. Bootstrapping statistical parsers
from small datasets. In Proceedings of the 11th Conference
of the European Association for Computational Linguistics,
Budapest, Hungary.

Mark Steedman. 2000. The Syntactic Process. The MIT Press,
Cambridge, MA.

151

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 152–159,
New York, June 2006.c©2006 Association for Computational Linguistics

Effective Self-Training for Parsing

David McClosky, Eugene Charniak, and Mark Johnson
Brown Laboratory for Linguistic Information Processing (BLLIP)

Brown University
Providence, RI 02912

{dmcc|ec|mj}@cs.brown.edu

Abstract

We present a simple, but surprisingly ef-
fective, method of self-training a two-
phase parser-reranker system using read-
ily available unlabeled data. We show
that this type of bootstrapping is possible
for parsing when the bootstrapped parses
are processed by a discriminative reranker.
Our improved model achieves anf -score
of 92.1%, an absolute 1.1% improvement
(12% error reduction) over the previous
best result for Wall Street Journal parsing.
Finally, we provide some analysis to bet-
ter understand the phenomenon.

1 Introduction

In parsing, we attempt to uncover the syntactic struc-
ture from a string of words. Much of the challenge
of this lies in extracting the appropriate parsing
decisions from textual examples. Given sufficient
labelled data, there are several “supervised” tech-
niques of training high-performance parsers (Char-
niak and Johnson, 2005; Collins, 2000; Henderson,
2004). Other methods are “semi-supervised” where
they use some labelled data to annotate unlabeled
data. Examples of this include self-training (Char-
niak, 1997) and co-training (Blum and Mitchell,
1998; Steedman et al., 2003). Finally, there are “un-
supervised” strategies where no data is labeled and
all annotations (including the grammar itself) must
be discovered (Klein and Manning, 2002).

Semi-supervised and unsupervised methods are
important because good labeled data is expensive,

whereas there is no shortage of unlabeled data.
While some domain-language pairs have quite a bit
of labelled data (e.g. news text in English), many
other categories are not as fortunate. Less unsuper-
vised methods are more likely to be portable to these
new domains, since they do not rely as much on ex-
isting annotations.

2 Previous work

A simple method of incorporating unlabeled data
into a new model isself-training. In self-training,
the existing model first labels unlabeled data. The
newly labeled data is then treated as truth and com-
bined with the actual labeled data to train a new
model. This process can be iterated over different
sets of unlabeled data if desired. It is not surprising
that self-training is not normally effective: Charniak
(1997) and Steedman et al. (2003) report either mi-
nor improvements or significant damage from using
self-training for parsing. Clark et al. (2003) applies
self-training to POS-tagging and reports the same
outcomes. One would assume that errors in the orig-
inal model would be amplified in the new model.

Parser adaptationcan be framed as a semi-
supervised or unsupervised learning problem. In
parser adaptation, one is given annotated training
data from a source domain and unannotated data
from a target. In some cases, some annotated data
from the target domain is available as well. The goal
is to use the various data sets to produce a model
that accurately parses the target domain data despite
seeing little or no annotated data from that domain.
Gildea (2001) and Bacchiani et al. (2006) show that
out-of-domain training data can improve parsing ac-

152

curacy. The unsupervised adaptation experiment by
Bacchiani et al. (2006) is the only successful in-
stance of parsing self-training that we have found.
Our work differs in that all our data is in-domain
while Bacchiani et al. uses the Brown corpus as la-
belled data. These correspond to different scenarios.
Additionally, we explore the use of a reranker.

Co-training is another way to train models from
unlabeled data (Blum and Mitchell, 1998). Unlike
self-training, co-training requires multiple learners,
each with a different “view” of the data. When one
learner is confident of its predictions about the data,
we apply the predicted label of the data to the train-
ing set of the other learners. A variation suggested
by Dasgupta et al. (2001) is to add data to the train-
ing set when multiple learners agree on the label. If
this is the case, we can be more confident that the
data was labelled correctly than if only one learner
had labelled it.

Sarkar (2001) and Steedman et al. (2003) inves-
tigated using co-training for parsing. These studies
suggest that this type of co-training is most effec-
tive when small amounts of labelled training data is
available. Additionally, co-training for parsing can
be helpful for parser adaptation.

3 Experimental Setup

Our parsing model consists of two phases. First, we
use a generative parser to produce a list of the topn
parses. Next, a discriminative reranker reorders the
n-best list. These components constitute two views
of the data, though the reranker’s view is restricted
to the parses suggested by the first-stage parser. The
reranker is not able to suggest new parses and, more-
over, uses the probability of each parse tree accord-
ing to the parser as a feature to perform the rerank-
ing. Nevertheless, the reranker’s value comes from
its ability to make use of more powerful features.

3.1 The first-stage 50-best parser

The first stage of our parser is the lexicalized proba-
bilistic context-free parser described in (Charniak,
2000) and (Charniak and Johnson, 2005). The
parser’s grammar is a smoothed third-order Markov
grammar, enhanced with lexical heads, their parts
of speech, and parent and grandparent informa-
tion. The parser uses five probability distributions,

one each for heads, their parts-of-speech, head-
constituent, left-of-head constituents, and right-of-
head constituents. As all distributions are condi-
tioned with five or more features, they are all heavily
backed off using Chen back-off (theaverage-count
method from Chen and Goodman (1996)). Also,
the statistics are lightly pruned to remove those that
are statistically less reliable/useful. As in (Char-
niak and Johnson, 2005) the parser has been mod-
ified to producen-best parses. However, then-best
parsing algorithm described in that paper has been
replaced by the much more efficient algorithm de-
scribed in (Jimenez and Marzal, 2000; Huang and
Chang, 2005).

3.2 The MaxEnt Reranker

The second stage of our parser is a Maximum En-
tropy reranker, as described in (Charniak and John-
son, 2005). The reranker takes the 50-best parses
for each sentence produced by the first-stage 50-
best parser and selects the best parse from those
50 parses. It does this using the reranking method-
ology described in Collins (2000), using a Maxi-
mum Entropy model with Gaussian regularization
as described in Johnson et al. (1999). Our reranker
classifies each parse with respect to 1,333,519 fea-
tures (most of which only occur on few parses).
The features consist of those described in (Char-
niak and Johnson, 2005), together with an additional
601,577 features. These features consist of the parts-
of-speech, possibly together with the words, that
surround (i.e., precede or follow) the left and right
edges of each constituent. The features actually used
in the parser consist of all singletons and pairs of
such features that have different values for at least
one of the best and non-best parses of at least 5 sen-
tences in the training data. There are 147,456 such
features involving only parts-of-speech and 454,101
features involving parts-of-speech and words. These
additional features are largely responsible for im-
proving the reranker’s performance on section 23
to 91.3%f -score (Charniak and Johnson (2005) re-
ported anf -score of 91.0% on section 23).

3.3 Corpora

Our labeled data comes from the Penn Treebank
(Marcus et al., 1993) and consists of about 40,000
sentences from Wall Street Journal (WSJ) articles

153

annotated with syntactic information. We use the
standard divisions: Sections 2 through 21 are used
for training, section 24 is held-out development, and
section 23 is used for final testing. Our unlabeled
data is the North American News Text corpus,NANC

(Graff, 1995), which is approximately 24 million un-
labeled sentences from various news sources.NANC

contains no syntactic information. Sentence bound-
aries inNANC are induced by a simple discrimina-
tive model. We also perform some basic cleanups on
NANC to ease parsing.NANC contains news articles
from various news sources including the Wall Street
Journal, though for this paper, we only use articles
from the LA Times.

4 Experimental Results

We use the reranking parser to produce 50-best
parses of unlabeled news articles fromNANC. Next,
we produce two sets of one-best lists from these 50-
best lists. The parser-best and reranker-best lists
represent the best parse for each sentence accord-
ing to the parser and reranker, respectively. Fi-
nally, we mix a portion of parser-best or reranker-
best lists with the standard Wall Street Journal train-
ing data (sections 2-21) to retrain a new parser (but
not reranker1) model. The Wall Street Journal train-
ing data is combined with theNANC data in the
following way: The count of each parsing event is
the (optionally weighted) sum of the counts of that
event in Wall Street Journal andNANC. Bacchiani
et al. (2006) show that count merging is more effec-
tive than creating multiple models and calculating
weights for each model (model interpolation). Intu-
itively, this corresponds to concatenating our train-
ing sets, possibly with multiple copies of each to ac-
count for weighting.

Some notes regarding evaluations: All numbers
reported aref -scores2. In some cases, we evaluate
only the parser’s performance to isolate it from the
reranker. In other cases, we evaluate the reranking
parser as a whole. In these cases, we will use the
termreranking parser.

Table 1 shows the difference in parser’s (not
reranker’s) performance when trained on parser-best

1We attempted to retrain the reranker using the self-trained
sentences, but found no significant improvement.

2The harmonic mean of labeled precision (P) and labeled
recall (R), i.e.f =

2×P×R

P+R

Sentences addedParser-best Reranker-best

0 (baseline) 90.3
50k 90.1 90.7
250k 90.1 90.7
500k 90.0 90.9
750k 89.9 91.0

1,000k 90.0 90.8
1,500k 90.0 90.8
2,000k – 91.0

Table 1: f -scores after adding either parser-best or
reranker-best sentences fromNANC to WSJ training
data. While the reranker was used to produce the
reranker-best sentences, we performed this evalua-
tion using only the first-stage parser to parse all sen-
tences from section 22. We did not train a model
where we added 2,000k parser-best sentences.

output versus reranker-best output. Adding parser-
best sentences recreates previous self-training ex-
periments and confirms that it is not beneficial.
However, we see a large improvement from adding
reranker-best sentences. One may expect to see a
monotonic improvement from this technique, but
this is not quite the case, as seen when we add
1,000k sentences. This may be due to some sec-
tions of NANC being less similar toWSJ or contain-
ing more noise. Another possibility is that these
sections contains harder sentences which we can-
not parse as accurately and thus are not as useful
for self-training. For our remaining experiments, we
will only use reranker-best lists.

We also attempt to discover the optimal number
of sentences to add fromNANC. Much of the im-
provement comes from the addition of the initial
50,000 sentences, showing that even small amounts
of new data can have a significant effect. As we add
more data, it becomes clear that the maximum ben-
efit to parsing accuracy by strictly adding reranker-
best sentences is about 0.7% and thatf -scores will
asymptote around 91.0%. We will return to this
when we consider the relative weightings ofWSJand
NANC data.

One hypothesis we consider is that the reranked
NANC data incorporated some of the features from
the reranker. If this were the case, we would not see
an improvement when evaluating a reranking parser

154

Sentences added 1 22 24

0 (baseline) 91.8 92.1 90.5
50k 91.8 92.4 90.8
250k 91.8 92.3 91.0
500k 92.0 92.4 90.9
750k 92.0 92.4 91.1

1,000k 92.1 92.2 91.3
1,500k 92.1 92.1 91.2
1,750k 92.1 92.0 91.3
2,000k 92.2 92.0 91.3

Table 2: f -scores from evaluating the rerank-
ing parser on three held-out sections after adding
reranked sentences fromNANC to WSJ training.
These evaluations were performed on all sentences.

on the same models. In Table 2, we see that the new
NANC data contains some information orthogonal to
the reranker and improves parsing accuracy of the
reranking parser.

Up to this point, we have only considered giving
our true training data a relative weight of one. In-
creasing the weight of the Wall Street Journal data
should improve, or at least not hurt, parsing perfor-
mance. Indeed, this is the case for both the parser
(figure not shown) and reranking parser (Figure 1).
Adding more weight to the Wall Street Journal data
ensures that the counts of our events will be closer
to our more accurate data source while still incorpo-
rating new data fromNANC. While it appears that
the performance still levels off after adding about
one million sentences fromNANC, the curves cor-
responding to higherWSJ weights achieve a higher
asymptote. Looking at the performance of various
weights across sections 1, 22, and 24, we decided
that the best combination of training data is to give
WSJ a relative weight of 5 and use the first 1,750k
reranker-best sentences fromNANC.

Finally, we evaluate our new model on the test
section of Wall Street Journal. In Table 3, we note
that baseline system (i.e. the parser and reranker
trained purely on Wall Street Journal) has improved
by 0.3% over Charniak and Johnson (2005). The
92.1% f -score is the 1.1% absolute improvement
mentioned in the abstract. The improvement from
self-training is significant in both macro and micro
tests (p < 10−5).

 91.7

 91.8

 91.9

 92

 92.1

 92.2

 92.3

 92.4

 0 5 10 15 20 25 30 35 40

f-
sc

or
e

NANC sentences added (units of 50k sentences)

WSJ x1
WSJ x3
WSJ x5

Figure 1: Effect of giving more relative weight to
WSJtraining data on reranking parserf -score. Eval-
uations were done from all sentences from section
1.

Model fparser freranker

Charniak and Johnson (2005) – 91.0
Current baseline 89.7 91.3

WSJ+ NANC 91.0 92.1

Table 3: f -scores onWSJ section 23. fparser and
freranker are the evaluation of the parser and rerank-
ing parser on all sentences, respectively. “WSJ +
NANC” represents the system trained onWSJ train-
ing (with a relative weight of 5) and 1,750k sen-
tences from the reranker-best list ofNANC.

5 Analysis

We performed several types of analysis to better un-
derstand why the new model performs better. We
first look at global changes, and then at changes at
the sentence level.

5.1 Global Changes

It is important to keep in mind that while the
reranker seems to be key to our performance im-
provement, the reranker per se never sees the extra
data. It only sees the 50-best lists produced by the
first-stage parser. Thus, the nature of the changes to
this output is important.

We have already noted that the first-stage parser’s
one-best has significantly improved (see Table 1). In
Table 4, we see that the 50-best oracle rate also im-

155

Model 1-best 10-best 50-best

Baseline 89.0 94.0 95.9
WSJ×1 + 250k 89.8 94.6 96.2

WSJ×5 + 1,750k 90.4 94.8 96.4

Table 4: Oraclef -scores of topn parses produced
by baseline, a small self-trained parser, and the
“best” parser

proves from 95.5% for the original first-stage parser,
to 96.4% for our final model. We do not show it here,
but if we self-train using first-stage one-best, there is
no change in oracle rate.

The first-stage parser also becomes more “deci-
sive.” The average (geometric mean) oflog2(Pr(1-
best) / Pr(50th-best)) (i.e. the ratios between the
probabilities in log space) increases from 11.959 for
the baseline parser, to 14.104 for the final parser. We
have seen earlier that this “confidence” is deserved,
as the first-stage one-best is so much better.

5.2 Sentence-level Analysis

To this point we have looked at bulk properties of the
data fed to the reranker. It has higher one best and
50-best-oracle rates, and the probabilities are more
skewed (the higher probabilities get higher, the lows
get lower). We now look at sentence-level proper-
ties. In particular, we analyzed the parsers’ behav-
ior on 5,039 sentences in sections 1, 22 and 24 of
the Penn treebank. Specifically, we classified each
sentence into one of three classes: those where the
self-trained parser’sf -score increased relative to the
baseline parser’sf -score, those where thef -score
remained the same, and those where the self-trained
parser’sf -score decreased relative to the baseline
parser’sf -score. We analyzed the distribution of
sentences into these classes with respect to four fac-
tors: sentence length, the number of unknown words
(i.e., words not appearing in sections 2–21 of the
Penn treebank) in the sentence, the number of coor-
dinating conjunctions (CC) in the sentence, and the
number of prepositions (IN) in the sentence. The
distributions of classes (better, worse, no change)
with respect to each of these factors individually are
graphed in Figures 2 to 5.

Figure 2 shows how the self-training affectsf -
score as a function of sentence length. The top line

0 10 20 30 40 50 60

20
40

60
80

10
0

Sentence length

N
um

be
r

of
 s

en
te

nc
es

 (
sm

oo
th

ed
)

Better
No change
Worse

Figure 2: How self-training improves performance
as a function of sentence length

shows that thef -score of most sentences remain un-
changed. The middle line is the number of sentences
that improved theirf -score, and the bottom are those
which got worse. So, for example, for sentences of
length 30, about 80 were unchanged, 25 improved,
and 22 worsened. It seems clear that there is no
improvement for either very short sentences, or for
very long ones. (For long ones the graph is hard
to read. We show a regression analysis later in this
section that confirms this statement.) While we did
not predict this effect, in retrospect it seems reason-
able. The parser was already doing very well on
short sentences. The very long ones are hopeless,
and the middle ones are just right. We call this the
Goldilocks effect.

As for the other three of these graphs, their stories
are by no means clear. Figure 3 seems to indicate
that the number of unknown words in the sentence
doesnotpredict that the reranker will help. Figure 4
might indicate that the self-training parser improves
prepositional-phrase attachment, but the graph looks
suspiciously like that for sentence length, so the im-
provements might just be due to the Goldilocks ef-
fect. Finally, the improvement in Figure 5 is hard to
judge.

To get a better handle on these effects we did a
factor analysis. The factors we consider are number
of CCs, INs, and unknowns, plus sentence length.
As Figure 2 makes clear, the relative performance
of the self-trained and baseline parsers does not

156

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Unknown words

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

Figure 3: How self-training improves performance
as a function of number of unknown words

Estimate Pr(> 0)

(Intercept) -0.25328 0.3649
BinnedLength(10,20] 0.02901 0.9228
BinnedLength(20,30] 0.45556 0.1201
BinnedLength(30,40] 0.40206 0.1808
BinnedLength(40,50] 0.26585 0.4084
BinnedLength(50,200] -0.06507 0.8671
CCs 0.12333 0.0541

Table 5: Factor analysis for the question: does the
self-trained parser improve the parse with the high-
est probability

vary linearly with sentence length, so we introduced
binned sentence length (with each bin of length 10)
as a factor.

Because the self-trained and baseline parsers pro-
duced equivalent output on 3,346 (66%) of the sen-
tences, we restricted attention to the 1,693 sentences
on which the self-trained and baseline parsers’f -
scores differ. We asked the program to consider the
following factors: binned sentence length, number
of PPs, number of unknown words, and number of
CCs. The results are shown in Table 5. The factor
analysis is trying to model the log odds as a sum of
linearly weighted factors. I.e,

log(P (1|x)/(1 − P (1|x))) = α0 +

m∑

j=1

αjfj(x)

In Table 5 the first column gives the name of the fac-

0 2 4 6 8 10

20
0

40
0

60
0

Number of INs

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

Figure 4: How self-training improves performance
as a function of number of prepositions

tor. The second the change in the log-odds resulting
from this factor being present (in the case of CCs
and INs, multiplied by the number of them) and the
last column is the probability that this factor is really
non-zero.

Note that there is no row for either PPs or un-
known words. This is because we also asked the pro-
gram to do a model search using the Akaike Infor-
mation Criterion (AIC) over all single and pairwise
factors. The model it chooses predicts that the self-
trained parser is likely produce a better parse than
the baseline only for sentences of length 20–40 or
sentences containing several CCs. It did not include
the number of unknown words and the number of
INs as factors because they did not receive a weight
significantly different from zero, and the AIC model
search dropped them as factors from the model.

In other words, the self-trained parser is more
likely to be correct for sentences of length 20–
40 and as the number of CCs in the sentence in-
creases. The self-trained parser doesnot improve
prepositional-phrase attachment or the handling of
unknown words.

This result is mildly perplexing. It is fair to say
that neither we, nor anyone we talked to, thought
conjunction handling would be improved. Conjunc-
tions are about the hardest things in parsing, and we
have no grip on exactly what it takes to help parse
them. Conversely, everyone expected improvements
on unknown words, as the self-training should dras-

157

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Number of CCs

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

Figure 5: How self-training improves performance
as a function of number of conjunctions

tically reduce the number of them. It is also the case
that we thought PP attachment might be improved
because of the increased coverage of preposition-
noun and preposition-verb combinations that work
such as (Hindle and Rooth, 1993) show to be so im-
portant.

Currently, our best conjecture is that unknowns
are not improved because the words that are un-
known in theWSJ are not significantly represented
in the LA Times we used for self-training. CCs
are difficult for parsers because each conjunct has
only one secure boundary. This is particularly the
case with longer conjunctions, those of VPs and Ss.
One thing we know is that self-training always im-
proves performance of the parsing model when used
as a language model. We think CC improvement is
connected with this fact and our earlier point that
the probabilities of the 50-best parses are becoming
more skewed. In essence the model is learning, in
general, what VPs and Ss look like so it is becom-
ing easier to pull them out of the stew surrounding
the conjunct. Conversely, language modeling has
comparatively less reason to help PP attachment. As
long as the parser is doing it consistently, attaching
the PP either way will work almost as well.

6 Conclusion

Contrary to received wisdom, self-training can im-
prove parsing. In particular we have achieved an ab-
solute improvement of 0.8% over the baseline per-

formance. Together with a 0.3% improvement due
to superior reranking features, this is a 1.1% im-
provement over the previous best parser results for
section 23 of the Penn Treebank (from 91.0% to
92.1%). This corresponds to a 12% error reduc-
tion assuming that a 100% performance is possible,
which it is not. The preponderance of evidence sug-
gests that it is somehow the reranking aspect of the
parser that makes this possible, but given no idea of
why this should be, so we reserve final judgement
on this matter.

Also contrary to expectations, the error analy-
sis suggests that there has been no improvement in
either the handing of unknown words, nor prepo-
sitional phrases. Rather, there is a general im-
provement in intermediate-length sentences (20-50
words), but no improvement at the extremes: a phe-
nomenon we call the Goldilocks effect. The only
specific syntactic phenomenon that seems to be af-
fected is conjunctions. However, this is good news
since conjunctions have long been considered the
hardest of parsing problems.

There are many ways in which this research
should be continued. First, the error analysis needs
to be improved. Our tentative guess for why sen-
tences with unknown words failed to improve should
be verified or disproven. Second, there are many
other ways to use self-trained information in pars-
ing. Indeed, the current research was undertaken
as the control experiment in a program to try much
more complicated methods. We still have them
to try: restricting consideration to more accurately
parsed sentences as training data (sentence selec-
tion), trying to learn grammatical generalizations di-
rectly rather than simply including the data for train-
ing, etc.

Next there is the question of practicality. In terms
of speed, once the data is loaded, the new parser is
pretty much the same speed as the old — just un-
der a second a sentence on average for treebank sen-
tences. However, the memory requirements are lar-
gish, about half a gigabyte just to store the data. We
are making our current best self-trained parser avail-
able3 as machines with a gigabyte or more of RAM
are becoming commonplace. Nevertheless, it would
be interesting to know if the data can be pruned to

3ftp://ftp.cs.brown.edu/pub/nlparser

158

make the entire system less bulky.
Finally, there is also the nature of the self-trained

data themselves. The data we use are from the LA
Times. Those of us in parsing have learned to expect
significant decreases in parsing accuracy even when
moving the short distance from LA Times to Wall
Street Journal. This seemingly has not occurred.
Does this mean that the reranking parser somehow
overcomes at least small genre differences? On this
point, we have some pilot experiments that show
great promise.

Acknowledgments

This work was supported by NSF grants LIS9720368, and

IIS0095940, and DARPA GALE contract HR0011-06-2-0001.

We would like to thank Michael Collins, Brian Roark, James

Henderson, Miles Osborne, and the BLLIP team for their com-

ments.

References

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. MAP adaptation of stochas-
tic grammars. Computer Speech and Language,
20(1):41–68.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. InProceed-
ings of the 11th Annual Conference on Computational
Learning Theory (COLT-98).

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
finen-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 173–180, Ann Arbor, Michigan, June. Associa-
tion for Computational Linguistics.

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. InProceed-
ings of the Fourteenth National Conference on Artifi-
cial Intelligence, Menlo Park. AAAI Press/MIT Press.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In1st Annual Meeting of the NAACL.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Arivind Joshi and Martha Palmer, editors,
Proceedings of the Thirty-Fourth Annual Meeting of
the Association for Computational Linguistics.

Stephen Clark, James Curran, and Miles Osborne. 2003.
Bootstrapping POS-taggers using unlabelled data. In
Proceedings of CoNLL-2003.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. InMachine Learning: Pro-
ceedings of the 17th International Conference (ICML
2000), pages 175–182, Stanford, California.

Sanjoy Dasgupta, M.L. Littman, and D. McAllester.
2001. PAC generalization bounds for co-training. In
Advances in Neural Information Processing Systems
(NIPS), 2001.

Daniel Gildea. 2001. Corpus variation and parser perfor-
mance. InConference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

David Graff. 1995.North American News Text Corpus.
Linguistic Data Consortium. LDC95T21.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. InProc. 42nd Meet-
ing of Association for Computational Linguistics (ACL
2004), Barcelona, Spain.

Donald Hindle and Mats Rooth. 1993. Structural ambi-
guity and lexical relations.Computational Linguistics,
19(1):103–120.

Liang Huang and David Chang. 2005. Better k-best pars-
ing. Technical Report MS-CIS-05-08, Department of
Computer Science, University of Pennsylvania.

Victor M. Jimenez and Andres Marzal. 2000. Computa-
tion of the n best parse trees for weighted and stochas-
tic context-free grammars. InProceedings of the Joint
IAPR International Workshops on Advances in Pattern
Recognition. Springer LNCS 1876.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochas-
tic “unification-based” grammars. InThe Proceedings
of the 37th Annual Conference of the Association for
Computational Linguistics, pages 535–541, San Fran-
cisco. Morgan Kaufmann.

Dan Klein and Christopher Manning. 2002. A genera-
tive constituent-context model for improved grammar
induction. InProceedings of the 40th Annual Meeting
of the ACL.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Anoop Sarkar. 2001. Applying cotraining methods to
statistical parsing. InProceedings of the 2001 NAACL
Conference.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrap-
ping statistical parsers from small datasets. InPro-
ceedings of EACL 03.

159

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 160–167,
New York, June 2006.c©2006 Association for Computational Linguistics

Multilingual Dependency Parsing using Bayes Point Machines

Simon Corston-Oliver
Microsoft Research
One Microsoft Way

Redmond, WA 98052
simonco@microsoft.com

Anthony Aue
Microsoft Research
One Microsoft Way

Redmond, WA 98052
anthaue@microsoft.com

Kevin Duh
Dept. of Electrical Eng.

Univ. of Washington
Seattle, WA 98195

duh@ee.washington.edu

Eric Ringger
Computer Science Dept.

Brigham Young Univ.
Provo, UT 84602

ringger@cs.byu.edu

Abstract

We develop dependency parsers for Ara-
bic, English, Chinese, and Czech using
Bayes Point Machines, a training algo-
rithm which is as easy to implement as
the perceptron yet competitive with large
margin methods. We achieve results com-
parable to state-of-the-art in English and
Czech, and report the first directed depen-
dency parsing accuracies for Arabic and
Chinese. Given the multilingual nature of
our experiments, we discuss some issues
regarding the comparison of dependency
parsers for different languages.

1 Introduction

Dependency parsing is an alternative to constituency
analysis with a venerable tradition going back at
least two millenia. The last century has seen at-
tempts to formalize dependency parsing, particu-
larly in the Prague School approach to linguistics
(Tesnière, 1959; Melčuk, 1988).

In a dependency analysis of syntax, words directly
modify other words. Unlike constituency analysis,
there are no intervening non-lexical nodes. We use
the terms child and parent to denote the dependent
term and the governing term respectively.

Parsing has many potential applications, rang-
ing from question answering and information re-
trieval to grammar checking. Our intended ap-
plication is machine translation in the Microsoft
Research Treelet Translation System (Quirk et al.,

2005; Menezes and Quirk, 2005). This system ex-
pects an analysis of the source language in which
words are related by directed, unlabeled dependen-
cies. For the purposes of developing machine trans-
lation for several language pairs, we are interested in
dependency analyses for multiple languages.

The contributions of this paper are two-fold: First,
we present a training algorithm called Bayes Point
Machines (Herbrich et al., 2001; Harrington et al.,
2003), which is as easy to implement as the per-
ceptron, yet competitive with large margin meth-
ods. This algorithm has implications for anyone
interested in implementing discriminative training
methods for any application. Second, we develop
parsers for English, Chinese, Czech, and Arabic and
probe some linguistic questions regarding depen-
dency analyses in different languages. To the best of
our knowledge, the Arabic and Chinese results are
the first reported results to date for directed depen-
dencies. In the following, we first describe the data
(Section 2) and the basic parser architecture (Section
3). Section 4 introduces the Bayes Point Machine
while Section 5 describes the features for each lan-
guage. We conclude with experimental results and
discussions in Sections 6 and 7.

2 Data

We utilize publicly available resources in Arabic,
Chinese, Czech, and English for training our depen-
dency parsers.

For Czech we used the Prague Dependency Tree-
bank version 1.0 (LDC2001T10). This is a corpus
of approximately 1.6 million words. We divided
the data into the standard splits for training, devel-

160

opment test and blind test. The Prague Czech De-
pendency Treebank is provided with human-edited
and automatically-assigned morphological informa-
tion, including part-of-speech labels. Training and
evaluation was performed using the automatically-
assigned labels.

For Arabic we used the Prague Arabic De-
pendency Treebank version 1.0 (LDC2004T23).
Since there is no standard split of the data into
training and test sections, we made an approxi-
mate 70%/15%/15% split for training/development
test/blind test by sampling whole files. The Ara-
bic Dependency Treebank is considerably smaller
than that used for the other languages, with approx-
imately 117,000 tokens annotated for morphologi-
cal and syntactic relations. The relatively small size
of this corpus, combined with the morphological
complexity of Arabic and the heterogeneity of the
corpus (it is drawn from five different newspapers
across a three-year time period) is reflected in the
relatively low dependency accuracy reported below.
As with the Czech data, we trained and evaluated us-
ing the automatically-assigned part-of-speech labels
provided with the data.

Both the Czech and the Arabic corpora are anno-
tated in terms of syntactic dependencies. For En-
glish and Chinese, however, no corpus is available
that is annotated in terms of dependencies. We there-
fore applied head-finding rules to treebanks that
were annotated in terms of constituency.

For English, we used the Penn Treebank version
3.0 (Marcus et al., 1993) and extracted dependency
relations by applying the head-finding rules of (Ya-
mada and Matsumoto, 2003). These rules are a
simplification of the head-finding rules of (Collins,
1999). We trained on sections 02-21, used section
24 for development test and evaluated on section
23. The English Penn Treebank contains approxi-
mately one million tokens. Training and evaluation
against the development test set was performed us-
ing human-annotated part-of-speech labels. Evalu-
ation against the blind test set was performed us-
ing part-of-speech labels assigned by the tagger de-
scribed in (Toutanova et al., 2003).

For Chinese, we used the Chinese Treebank ver-
sion 5.0 (Xue et al., 2005). This corpus contains
approximately 500,000 tokens. We made an approx-
imate 70%/15%/15% split for training/development

test/blind test by sampling whole files. As with the
English Treebank, training and evaluation against
the development test set was performed using
human-annotated part-of-speech labels. For evalu-
ation against the blind test section, we used an im-
plementation of the tagger described in (Toutanova
et al., 2003). Trained on the same training section
as that used for training the parser and evaluated on
the development test set, this tagger achieved a to-
ken accuracy of 92.2% and a sentence accuracy of
63.8%.

The corpora used vary in homogeneity from the
extreme case of the English Penn Treebank (a large
corpus drawn from a single source, the Wall Street
Journal) to the case of Arabic (a relatively small
corpus–approximately 2,000 sentences–drawn from
multiple sources). Furthermore, each language
presents unique problems for computational analy-
sis. Direct comparison of the dependency parsing
results for one language to the results for another
language is therefore difficult, although we do at-
tempt in the discussion below to provide some basis
for a more direct comparison. A common question
when considering the deployment of a new language
for machine translation is whether the natural lan-
guage components available are of sufficient quality
to warrant the effort to integrate them into the ma-
chine translation system. It is not feasible in every
instance to do the integration work first and then to
evaluate the output.

Table 1 summarizes the data used to train the
parsers, giving the number of tokens (excluding
traces and other empty elements) and counts of sen-
tences.1

3 Parser Architecture

We take as our starting point a re-implementation
of McDonald’s state-of-the-art dependency parser
(McDonald et al., 2005a). Given a sentence x, the
goal of the parser is to find the highest-scoring parse
ŷ among all possible parses y ∈ Y :

ŷ = arg max
y∈Y

s(x, y) (1)

1The files in each partition of the Chinese and Arabic data
are given at http://research.microsoft.com/˜simonco/
HLTNAACL2006.

161

Language Total Training Development Blind
Tokens Sentences Sentences Sentences

Arabic 116,695 2,100 446 449
Chinese 527,242 14,735 1,961 2,080
Czech 1,595,247 73,088 7,319 7,507
English 1,083,159 39,832 1,346 2,416

Table 1: Summary of data used to train parsers.

For a given parse y, its score is the sum of the scores
of all its dependency links (i, j) ∈ y:

s(x, y) =
∑

(i,j)∈y

d(i, j) =
∑

(i,j)∈y

w · f(i, j) (2)

where the link (i, j) indicates a head-child depen-
dency between the token at position i and the token
at position j. The score d(i, j) of each dependency
link (i, j) is further decomposed as the weighted
sum of its features f(i, j).

This parser architecture naturally consists of three
modules: (1) a decoder that enumerates all possi-
ble parses y and computes the argmax; (2) a train-
ing algorithm for adjusting the weights w given the
training data; and (3) a feature representation f(i, j).
Two decoders will be discussed here; the training al-
gorithm and feature representation are discussed in
the following sections.

A good decoder should satisfy several proper-
ties: ideally, it should be able to search through all
valid parses of a sentence and compute the parse
scores efficiently. Efficiency is a significant issue
since there are usually an exponential number of
parses for any given sentence, and the discrimina-
tive training methods we will describe later require
repeated decoding at each training iteration. We re-
implemented Eisner’s decoder (Eisner, 1996), which
searches among all projective parse trees, and the
Chu-Liu-Edmonds’ decoder (Chu and Liu, 1965;
Edmonds, 1967), which searches in the space of
both projective and non-projective parses. (A pro-
jective tree is a parse with no crossing dependency
links.) For the English and Chinese data, the head-
finding rules for converting from Penn Treebank
analyses to dependency analyses creates trees that
are guaranteed to be projective, so Eisner’s algo-
rithm suffices. For the Czech and Arabic corpora,
a non-projective decoder is necessary. Both algo-
rithms are O(N3), where N is the number of words

in a sentence.2 Refer to (McDonald et al., 2005b)
for a detailed treatment of both algorithms.

4 Training: The Bayes Point Machine

In this section, we describe an online learning al-
gorithm for training the weights w. First, we ar-
gue why an online learner is more suitable than a
batch learner like a Support Vector Machine (SVM)
for this task. We then review some standard on-
line learners (e.g. perceptron) before presenting the
Bayes Point Machine (BPM) (Herbrich et al., 2001;
Harrington et al., 2003).

4.1 Online Learning

An online learner differs from a batch learner in that
it adjusts w incrementally as each input sample is
revealed. Although the training data for our pars-
ing problem exists as a batch (i.e. all input sam-
ples are available during training), we can apply
online learning by presenting the input samples in
some sequential order. For large training set sizes,
a batch learner may face computational difficulties
since there already exists an exponential number of
parses per input sentence. Online learning is more
tractable since it works with one input at a time.

A popular online learner is the perceptron. It ad-
justs w by updating it with the feature vector when-
ever a misclassification on the current input sample
occurs. It has been shown that such updates con-
verge in a finite number of iterations if the data is lin-
early separable. The averaged perceptron (Collins,
2002) is a variant which averages the w across all
iterations; it has demonstrated good generalization
especially with data that is not linearly separable,
as in many natural language processing problems.

2The Chu-Liu-Edmonds’ decoder, which is based on a maxi-
mal spanning tree algorithm, can run in O(N2), but our simpler
implementation of O(N3) was sufficient.

162

Recently, the good generalization properties of Sup-
port Vector Machines have prompted researchers to
develop large margin methods for the online set-
ting. Examples include the margin perceptron (Duda
et al., 2001), ALMA (Gentile, 2001), and MIRA
(which is used to train the parser in (McDonald et al.,
2005a)). Conceptually, all these methods attempt to
achieve a large margin and approximate the maxi-
mum margin solution of SVMs.

4.2 Bayes Point Machines
The Bayes Point Machine (BPM) achieves good
generalization similar to that of large margin meth-
ods, but is motivated by a very different philoso-
phy of Bayesian learning or model averaging. In
the Bayesian learning framework, we assume a prior
distribution over w. Observations of the training
data revise our belief of w and produce a poste-
rior distribution. The posterior distribution is used
to create the final wBPM for classification:

wBPM = Ep(w|D)[w] =
|V (D)|∑

i=1

p(wi|D) wi (3)

where p(w|D) is the posterior distribution of the
weights given the data D and Ep(w|D) is the expec-
tation taken with respect to this distribution. The
term |V (D)| is the size of the version space V (D),
which is the set of weights wi that is consistent with
the training data (i.e. the set of wi that classifies the
training data with zero error). This solution achieves
the so-called Bayes Point, which is the best approx-
imation to the Bayes optimal solution given finite
training data.

In practice, the version space may be large, so we
approximate it with a finite sample of size I . Further,
assuming a uniform prior over weights, we get the
following equation:

wBPM = Ep(w|D)[w] ≈
I∑

i=1

1
I
wi (4)

Equation 4 can be computed by a very simple al-
gorithm: (1) Train separate perceptrons on different
random shuffles of the entire training data, obtaining
a set of wi. (2) Take the average (arithmetic mean)
of the weights wi. It is well-known that perceptron
training results in different weight vector solutions

Input: Training set D = ((x1, y1), (x2, y2), . . . , (xT , yT))
Output: wBPM

Initialize: wBPM = 0
for i = 1 to I; do

Randomly shuffle the sequential order of samples in D
Initialize: wi = 0
for t = 1 to T; do

ŷt = wi · xt

if (ŷt != yt) then wi = wi + ytxt

done
wBPM = wBPM + 1

I wi

done

Figure 1: Bayes Point Machine pseudo-code.

if the data samples are presented sequentially in dif-
ferent orders. Therefore, random shuffles of the data
and training a perceptron on each shuffle is effec-
tively equivalent to sampling different models (wi)
in the version space. Note that this averaging op-
eration should not be confused with ensemble tech-
niques such as Bagging or Boosting–ensemble tech-
niques average the output hypotheses, whereas BPM
averages the weights (models).

The BPM pseudocode is given in Figure 1. The
inner loop is simply a perceptron algorithm, so the
BPM is very simple and fast to implement. The
outer loop is easily parallelizable, allowing speed-
ups in training the BPM. In our specific implemen-
tation for dependency parsing, the line of the pseu-
docode corresponding to [ŷt = wi · xt] is replaced
by Eq. 1 and updates are performed for each in-
correct dependency link. Also, we chose to average
each individual perceptron (Collins, 2002) prior to
Bayesian averaging.

Finally, it is important to note that the definition of
the version space can be extended to include weights
with non-zero training error, so the BPM can handle
data that is not linearly separable. Also, although we
only presented an algorithm for linear classifiers (pa-
rameterized by the weights), arbitrary kernels can be
applied to BPM to allow non-linear decision bound-
aries. Refer to (Herbrich et al., 2001) for a compre-
hensive treatment of BPMs.

5 Features

Dependency parsers for all four languages were
trained using the same set of feature types. The
feature types are essentially those described in (Mc-
Donald et al., 2005a). For a given pair of tokens,

163

where one is hypothesized to be the parent and the
other to be the child, we extract the word of the par-
ent token, the part of speech of the parent token, the
word of the child token, the part of speech of the
child token and the part of speech of certain adjacent
and intervening tokens. Some of these atomic fea-
tures are combined in feature conjunctions up to four
long, with the result that the linear classifiers de-
scribed below approximate polynomial kernels. For
example, in addition to the atomic features extracted
from the parent and child tokens, the feature [Par-
entWord, ParentPOS, ChildWord, ChildPOS] is also
added to the feature vector representing the depen-
dency between the two tokens. Additional features
are created by conjoining each of these features with
the direction of the dependency (i.e. is the parent to
the left or right of the child) and a quantized measure
of the distance between the two tokens. Every token
has exactly one parent. The root of the sentence has
a special synthetic token as its parent.

Like McDonald et al, we add features that con-
sider the first five characters of words longer than
five characters. This truncated word crudely approx-
imates stemming. For Czech and English the addi-
tion of these features improves accuracy. For Chi-
nese and Arabic, however, it is clear that we need a
different backoff strategy.

For Chinese, we truncate words longer than a sin-
gle character to the first character.3 Experimental
results on the development test set suggested that an
alternative strategy, truncation of words longer than
two characters to the first two characters, yielded
slightly worse results.

The Arabic data is annotated with gold-standard
morphological information, including information
about stems. It is also annotated with the output
of an automatic morphological analyzer, so that re-
searchers can experiment with Arabic without first
needing to build these components. For Arabic, we
truncate words to the stem, using the value of the
lemma attribute.

All tokens are converted to lowercase, and num-
bers are normalized. In the case of English, Czech
and Arabic, all numbers are normalized to a sin-

3There is a near 1:1 correspondence between characters
and morphemes in contemporary Mandarin Chinese. However,
most content words consist of more than one morpheme, typi-
cally two.

gle token. In Chinese, months are normalized to a
MONTH token, dates to a DATE token, years to a
YEAR token. All other numbers are normalized to a
single NUMBER token.

The feature types were instantiated using all or-
acle combinations of child and parent tokens from
the training data. It should be noted that when the
feature types are instantiated, we have considerably
more features than McDonald et al. For example,
for English we have 8,684,328 whereas they report
6,998,447 features. We suspect that this is mostly
due to differences in implementation of the features
that backoff to stems.

The averaged perceptrons were trained on the
one-best parse, updating the perceptron for every
edge and averaging the accumulated perceptrons af-
ter every sentence. Experiments in which we up-
dated the perceptron based on k-best parses tended
to produce worse results. The Chu-Liu-Edmonds al-
gorithm was used for Czech. Experiments with the
development test set suggested that the Eisner de-
coder gave better results for Arabic than the Chu-
Liu-Edmonds decoder. We therefore used the Eisner
decoder for Arabic, Chinese and English.

6 Results

Table 2 presents the accuracy of the dependency
parsers. Dependency accuracy indicates for how
many tokens we identified the correct head. Root ac-
curacy, i.e. for how many sentences did we identify
the correct root or roots, is reported as F1 measure,
since sentences in the Czech and Arabic corpora can
have multiple roots and since the parsing algorithms
can identify multiple roots. Complete match indi-
cates how many sentences were a complete match
with the oracle dependency parse.

A convention appears to have arisen when report-
ing dependency accuracy to give results for English
excluding punctuation (i.e., ignoring punctuation to-
kens in the output of the parser) and to report results
for Czech including punctuation. In order to facil-
itate comparison of the present results with previ-
ously published results, we present measures includ-
ing and excluding punctuation for all four languages.
We hope that by presenting both sets of measure-
ments, we also simplify one dimension along which
published results of parse accuracy differ. A direct

164

Including punctuation Excluding punctuation
Language Dependency Root Complete Dependency Root Complete

Accuracy Accuracy Match Accuracy Accuracy Match
Arabic 79.9 90.0 9.80 79.8 87.8 10.2
Chinese 71.2 66.2 17.5 73.3 66.2 18.2
Czech 84.0 88.8 30.9 84.3 76.2 32.2
English 90.0 93.7 35.1 90.8 93.7 37.6

Table 2: Bayes Point Machine accuracy measured on blind test set.

comparison of parse results across languages is still
difficult for reasons to do with the different nature
of the languages, the corpora and the differing stan-
dards of linguistic detail annotated, but a compar-
ison of parsers for two different languages where
both results include punctuation is at least preferable
to a comparison of results including punctuation to
results excluding punctuation.

The results reported here for English and Czech
are comparable to the previous best published num-
bers in (McDonald et al., 2005a), as Table 3 shows.
This table compares McDonald et al.’s results for an
averaged perceptron trained for ten iterations with
no check for convergence (Ryan McDonald, pers.
comm.), MIRA, a large margin classifier, and the
current Bayes Point Machine results. To determine
statistical significance we used confidence intervals
for p=0.95. For the comparison of English depen-
dency accuracy excluding punctuation, MIRA and
BPM are both statistically significantly better than
the averaged perceptron result reported in (McDon-
ald et al., 2005a). MIRA is significantly better
than BPM when measuring dependency accuracy
and root accuracy, but BPM is significantly better
when measuring sentences that match completely.
From the fact that neither MIRA nor BPM clearly
outperforms the other, we conclude that we have
successfully replicated the results reported in (Mc-
Donald et al., 2005a) for English.

For Czech we also determined significance using
confidence intervals for p=0.95 and compared re-
sults including punctuation. For both dependency
accuracy and root accuracy, MIRA is statisticallty
significantly better than averaged perceptron, and
BPM is statistically significantly better than MIRA.
Measuring the number of sentences that match com-
pletely, BPM is statistically significantly better than

averaged perceptron, but MIRA is significantly bet-
ter than BPM. Again, since neither MIRA nor BPM
outperforms the other on all measures, we conclude
that the results constitute a valiation of the results
reported in (McDonald et al., 2005a).

For every language, the dependency accuracy of
the Bayes Point Machine was greater than the ac-
curacy of the best individual perceptron that con-
tributed to that Bayes Point Machine, as Table 4
shows. As previously noted, when measuring
against the development test set, we used human-
annotated part-of-speech labels for English and Chi-
nese.

Although the Prague Czech Dependency Tree-
bank is much larger than the English Penn Treebank,
all measurements are lower than the corresponding
measurements for English. This reflects the fact that
Czech has considerably more inflectional morphol-
ogy than English, leading to data sparsity for the lex-
ical features.

The results reported here for Arabic are, to our
knowledge, the first published numbers for depen-
dency parsing of Arabic. Similarly, the results for
Chinese are the first published results for the depen-
dency parsing of the Chinese Treebank 5.0.4 Since
the Arabic and Chinese numbers are well short of
the numbers for Czech and English, we attempted
to determine what impact the smaller corpora used
for training the Arabic and Chinese parsers might
have. We performed data reduction experiments,
training the parsers on five random samples at each
size smaller than the entire training set. Figure 2
shows the dependency accuracy measured on the
complete development test set when training with
samples of the data. The graph shows the average

4(Wang et al., 2005) report numbers for undirected depen-
dencies on the Chinese Treebank 3.0. We cannot meaningfully
compare those numbers to the numbers here.

165

Language Algorithm DA RA CM
English Avg. Perceptron 90.6 94.0 36.5
(exc punc) MIRA 90.9 94.2 37.5

Bayes Point Machine 90.8 93.7 37.6
Czech Avg. Perceptron 82.9 88.0 30.3
(inc punc) MIRA 83.3 88.6 31.3

Bayes Point Machine 84.0 88.8 30.9

Table 3: Comparison to previous best published results reported in (McDonald et al., 2005a).

Arabic Chinese Czech English
Bayes Point Machine 78.4 83.8 84.5 91.2
Best averaged perceptron 77.9 83.1 83.5 90.8
Worst averaged perceptron 77.4 82.6 83.3 90.5

Table 4: Bayes Point Machine accuracy vs. averaged perceptrons, measured on development test set, ex-
cluding punctuation.

dependency accuracy for five runs at each sample
size up to 5,000 sentences. English and Chinese
accuracies in this graph use oracle part-of-speech
tags. At all sample sizes, the dependency accu-
racy for English exceeds the dependency accuracy
of the other languages. This difference is perhaps
partly attributable to the use of oracle part-of-speech
tags. However, we suspect that the major contribu-
tor to this difference is the part-of-speech tag set.
The tags used in the English Penn Treebank encode
traditional lexical categories such as noun, prepo-
sition, and verb. They also encode morphological
information such as person (the VBZ tag for exam-
ple is used for verbs that are third person, present
tense–typically with the suffix -s), tense, number
and degree of comparison. The part-of-speech tag
sets used for the other languages encode lexical cat-
egories, but do not encode morphological informa-
tion.5 With small amounts of data, the perceptrons
do not encounter sufficient instances of each lexical
item to calculate reliable weights. The perceptrons
are therefore forced to rely on the part-of-speech in-
formation.

It is surprising that the results for Arabic and Chi-
nese should be so close as we vary the size of the

5For Czech and Arabic we followed the convention estab-
lished in previous parsing work on the Prague Czech Depen-
dency Treebank of using the major and minor part-of-speech
tags but ignoring other morphological information annotated on
each node.

training data (Figure 2) given that Arabic has rich
morphology and Chinese very little. One possible
explanation for the similarity in accuracy is that the
rather poor root accuracy in Chinese indicates parses
that have gone awry. Anecdotal inspection of parses
suggests that when the root is not correctly identi-
fied, there are usually cascading related errors.

Czech, a morphologically complex language in
which root identification is far from straightfor-
ward, exhibits the worst performance at small sam-
ple sizes. But (not shown) as the sample size in-
creases, the accuracy of Czech and Chinese con-
verge.

7 Conclusions

We have successfully replicated the state-of-the-art
results for dependency parsing (McDonald et al.,
2005a) for both Czech and English, using Bayes
Point Machines. Bayes Point Machines have the ap-
pealing property of simplicity, yet are competitive
with online wide margin methods.

We have also presented first results for depen-
dency parsing of Arabic and Chinese, together with
some analysis of the performance on those lan-
guages.

In future work we intend to explore the discrim-
inative reranking of n-best lists produced by these
parsers and the incorporation of morphological fea-
tures.

166

60

65

70

75

80

85

90

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample size

De
pe

nd
en

cy
 A

cc
ur

ac
y

English
Chinese
Arabic
Czech

Figure 2: Dependency accuracy at various sample
sizes. Graph shows average of five samples at each
size and measures accuracy against the development
test set.

Acknowledgements

We would like to thank Ryan McDonald, Otakar
Smrž and Hiroyasu Yamada for help in various
stages of the project.

References
Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-

cence of a directed graph. Science Sinica, 14:1396–
1400.

Michael John Collins. 1999. Head-Driven Statistical
Models for Natural Language Processing. Ph.D. the-
sis, University of Pennsylvania.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Proceedings of EMNLP.

R. O. Duda, P. E. Hart, and D. G. Stork. 2001. Pattern
Classification. John Wiley & Sons, Inc.: New York.

J. Edmonds. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of COLING 1996, pages 340–345.

Claudio Gentile. 2001. A new approximate maximal
margin classification algorithm. Journal of Machine
Learning Research, 2:213–242.

Edward Harrington, Ralf Herbrich, Jyrki Kivinen,
John C. Platt, and Robert C. Williamson. 2003. On-
line bayes point machines. In Proc. 7th Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 241–252.

Ralf Herbrich, Thore Graepel, and Colin Campbell.
2001. Bayes point machines. Journal of Machine
Learning Research, pages 245–278.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank. Computational Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting of
the Assocation for Computational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005b. Online large-margin training of dependency
parsers. Technical Report MS-CIS-05-11, Dept. of
Computer and Information Science, Univ. of Pennsyl-
vania.

Igor A. Melčuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Arul Menezes and Chris Quirk. 2005. Microsoft re-
search treelet translation system: IWSLT evaluation.
In Proceedings of the International Workshop on Spo-
ken Language Translation.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proceedings of the 43rd annual meet-
ing of the Association for Computational Linguistics.

Lucien Tesnière. 1959. Éléments de syntaxe structurale.
Librairie C. Klincksieck.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003, pages 252–259.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. 2005.
Strictly lexical dependency parsing. In Proceedings
of the Ninth International Workshop on Parsing Tech-
nologies, pages 152–159.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2).

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, pages 195–206.

167

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 168–175,
New York, June 2006.c©2006 Association for Computational Linguistics

Multilevel Coarse-to-fine PCFG Parsing

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil,

David Ellis, Isaac Haxton, Catherine Hill, R. Shrivaths,

Jeremy Moore, Michael Pozar, and Theresa Vu

Brown Laboratory for Linguistic Information Processing (BLLIP)
Brown University

Providence, RI 02912

ec@cs.brown.edu

Abstract

We present a PCFG parsing algorithm
that uses a multilevel coarse-to-fine
(mlctf) scheme to improve the effi-
ciency of search for the best parse.
Our approach requires the user to spec-
ify a sequence of nested partitions or
equivalence classes of the PCFG non-
terminals. We define a sequence of
PCFGs corresponding to each parti-
tion, where the nonterminals of each
PCFG are clusters of nonterminals of
the original source PCFG. We use the
results of parsing at a coarser level
(i.e., grammar defined in terms of a
coarser partition) to prune the next
finer level. We present experiments
showing that with our algorithm the
work load (as measured by the total
number of constituents processed) is
decreased by a factor of ten with no de-
crease in parsing accuracy compared to
standard CKY parsing with the origi-
nal PCFG. We suggest that the search
space over mlctf algorithms is almost
totally unexplored so that future work
should be able to improve significantly
on these results.

1 Introduction

Reasonably accurate constituent-based parsing
is fairly quick these days, if fairly quick means
about a second per sentence. Unfortunately, this
is still too slow for many applications. In some

cases researchers need large quantities of parsed
data and do not have the hundreds of machines
necessary to parse gigaword corpora in a week
or two. More pressingly, in real-time applica-
tions such as speech recognition, a parser would
be only a part of a much larger system, and
the system builders are not keen on giving the
parser one of the ten seconds available to pro-
cess, say, a thirty-word sentence. Even worse,
some applications require the parsing of multi-
ple candidate strings per sentence (Johnson and
Charniak, 2004) or parsing from a lattice (Hall
and Johnson, 2004), and in these applications
parsing efficiency is even more important.

We present here a multilevel coarse-to-fine
(mlctf) PCFG parsing algorithm that reduces
the complexity of the search involved in find-
ing the best parse. It defines a sequence of in-
creasingly more complex PCFGs, and uses the
parse forest produced by one PCFG to prune
the search of the next more complex PCFG.
We currently use four levels of grammars in our
mlctf algorithm. The simplest PCFG, which we
call the level-0 grammar, contains only one non-
trivial nonterminal and is so simple that min-
imal time is needed to parse a sentence using
it. Nonetheless, we demonstrate that it identi-
fies the locations of correct constituents of the
parse tree (the “gold constituents”) with high
recall. Our level-1 grammar distinguishes only
argument from modifier phrases (i.e., it has two
nontrivial nonterminals), while our level-2 gram-
mar distinguishes the four major phrasal cate-
gories (verbal, nominal, adjectival and preposi-
tional phrases), and level 3 distinguishes all of
the standard categories of the Penn treebank.

168

The nonterminal categories in these grammars
can be regarded as clusters or equivalence classes
of the original Penn treebank nonterminal cat-
egories. (In fact, we obtain these grammars by
relabeling the node labels in the treebank and
extracting a PCFG from this relabelled treebank
in the standard fashion, but we discuss other ap-
proaches below.) We require that the partition
of the nonterminals defined by the equivalence
classes at level l + 1 be a refinement of the par-
tition defined at level l. This means that each
nonterminal category at level l+1 is mapped to a
unique nonterminal category at level l (although
in general the mapping is many to one, i.e., each
nonterminal category at level l corresponds to
several nonterminal categories at level l + 1).

We use the correspondence between categories
at different levels to prune possible constituents.
A constituent is considered at level l + 1 only
if the corresponding constituent at level l has
a probability exceeding some threshold.. Thus
parsing a sentence proceeds as follows. We first
parse the sentence with the level-0 grammar to
produce a parse forest using the CKY parsing
algorithm. Then for each level l + 1 we reparse
the sentence with the level l + 1 grammar us-
ing the level l parse forest to prune as described
above. As we demonstrate, this leads to consid-
erable efficiency improvements.

The paper proceeds as follows. We next dis-
cuss previous work (Section 2). Section 3 out-
lines the algorithm in more detail. Section
4 presents some experiments showing that the
work load (as measured by the total number of
constituents processed) is decreased by a fac-
tor of ten over standard CKY parsing at the
final level. We also discuss some fine points of
the results therein. Finally in section 5 we sug-
gest that because the search space of mlctf al-
gorithms is, at this point, almost totally unex-
plored, future work should be able to improve
significantly on these results.

2 Previous Research

Coarse-to-fine search is an idea that has ap-
peared several times in the literature of com-
putational linguistics and related areas. The

first appearance of this idea we are aware of is
in Maxwell and Kaplan (1993), where a cover-
ing CFG is automatically extracted from a more
detailed unification grammar and used to iden-
tify the possible locations of constituents in the
more detailed parses of the sentence. Maxwell
and Kaplan use their covering CFG to prune the
search of their unification grammar parser in es-
sentially the same manner as we do here, and
demonstrate significant performance improve-
ments by using their coarse-to-fine approach.

The basic theory of coarse-to-fine approxima-
tions and dynamic programming in a stochastic
framework is laid out in Geman and Kochanek
(2001). This paper describes the multilevel
dynamic programming algorithm needed for
coarse-to-fine analysis (which they apply to de-
coding rather than parsing), and show how
to perform exact coarse-to-fine computation,
rather than the heuristic search we perform here.

A paper closely related to ours is Goodman
(1997). In our terminology, Goodman’s parser
is a two-stage ctf parser. The second stage is a
standard tree-bank parser while the first stage is
a regular-expression approximation of the gram-
mar. Again, the second stage is constrained by
the parses found in the first stage. Neither stage
is smoothed. The parser of Charniak (2000)
is also a two-stage ctf model, where the first
stage is a smoothed Markov grammar (it uses
up to three previous constituents as context),
and the second stage is a lexicalized Markov
grammar with extra annotations about parents
and grandparents. The second stage explores
all of the constituents not pruned out after the
first stage. Related approaches are used in Hall
(2004) and Charniak and Johnson (2005).

A quite different approach to parsing effi-
ciency is taken in Caraballo and Charniak (1998)
(and refined in Charniak et al. (1998)). Here
efficiency is gained by using a standard chart-
parsing algorithm and pulling constituents off
the agenda according to (an estimate of) their
probability given the sentence. This probability
is computed by estimating Equation 1:

p(nk
i,j | s) =

α(nk
i,j)β(nk

i,j)

p(s)
. (1)

169

It must be estimated because during the
bottom-up chart-parsing algorithm, the true
outside probability cannot be computed. The
results cited in Caraballo and Charniak (1998)
cannot be compared directly to ours, but are
roughly in the same equivalence class. Those
presented in Charniak et al. (1998) are superior,
but in Section 5 below we suggest that a com-
bination of the techniques could yield better re-
sults still.

Klein and Manning (2003a) describe efficient
A∗ for the most likely parse, where pruning is
accomplished by using Equation 1 and a true
upper bound on the outside probability. While
their maximum is a looser estimate of the out-
side probability, it is an admissible heuristic and
together with an A∗ search is guaranteed to find
the best parse first. One question is if the guar-
antee is worth the extra search required by the
looser estimate of the true outside probability.

Tsuruoka and Tsujii (2004) explore the frame-
work developed in Klein and Manning (2003a),
and seek ways to minimize the time required
by the heap manipulations necessary in this
scheme. They describe an iterative deepening
algorithm that does not require a heap. They
also speed computation by precomputing more
accurate upper bounds on the outside proba-
bilities of various kinds of constituents. They
are able to reduce by half the number of con-
stituents required to find the best parse (com-
pared to CKY).

Most recently, McDonald et al. (2005) have
implemented a dependency parser with good
accuracy (it is almost as good at dependency
parsing as Charniak (2000)) and very impres-
sive speed (it is about ten times faster than
Collins (1997) and four times faster than Char-
niak (2000)). It achieves its speed in part be-
cause it uses the Eisner and Satta (1999) algo-
rithm for n3 bilexical parsing, but also because
dependency parsing has a much lower grammar
constant than does standard PCFG parsing —
after all, there are no phrasal constituents to
consider. The current paper can be thought of
as a way to take the sting out of the grammar
constant for PCFGs by parsing first with very
few phrasal constituents and adding them only

Level: 0 1 2 3

S1
{

S1
{

S1
{

S1

P

HP

S

S
VP
UCP
SQ
SBAR
SBARQ
SINV

N

NP
NAC
NX
LST
X
UCP
FRAG

MP

A

ADJP
QP
CONJP
ADVP
INTJ
PRN
PRT

P

PP
PRT
RRC
WHADJP
WHADVP
WHNP
WHPP

Figure 1: The levels of nonterminal labels

after most constituents have been pruned away.

3 Multilevel Course-to-fine Parsing

We use as the underlying parsing algorithm a
reasonably standard CKY parser, modified to
allow unary branching rules.

The complete nonterminal clustering is given
in Figure 1. We do not cluster preterminals.
These remain fixed at all levels to the standard
Penn-tree-bank set Marcus et al. (1993).

Level-0 makes two distinctions, the root node
and everybody else. At level 1 we make one
further distinction, between phrases that tend
to be heads of constituents (NPs, VPs, and Ss)
and those that tend to be modifiers (ADJPs,
PPs, etc.). Level-2 has a total of five categories:
root, things that are typically headed by nouns,
those headed by verbs, things headed by prepo-
sitions, and things headed by classical modifiers
(adjectives, adverbs, etc.). Finally, level 3 is the

170

S1

P

P

PRP

He

P

VBD

ate

P

IN

at

P

DT

the

NN

mall

.

.

S1

HP

HP

PRP

He

HP

VBD

ate

MP

IN

at

HP

DT

the

NN

mall

.

.

S1

S_

N_

PRP

He

S_

VBD

ate

P_

IN

at

N_

DT

the

NN

mall

.

.

S1

S

NP

PRP

He

VP

VBD

ate

PP

IN

at

NP

DT

the

NN

mall

.

.

Figure 2: A tree represented at levels 0 to 3

classical tree-bank set. As an example, Figure 2
shows the parse for the sentence “He ate at the
mall.” at levels 0 to 3.

During training we create four grammars, one
for each level of granularity. So, for example, at
level 1 the tree-bank rule

S →NP VP .

would be translated into the rule

HP →HP HP .

That is, each constituent type found in “S →NP
VP .” is mapped into its generalization at level 1.
The probabilities of all rules are computed us-
ing maximum likelihood for constituents at that
level.

The grammar used by the parser can best be
described as being influenced by four compo-
nents:

1. the nonterminals defined at that level of
parsing,

2. the binarization scheme,

3. the generalizations defined over the bina-
rization, and

4. extra annotation to improve parsing accu-
racy.

The first of these has already been covered. We
discuss the other three in turn.

In anticipation of eventually lexicalizing the
grammar we binarize from the head out. For
example, consider the rule

A →a b c d e

where c is the head constituent. We binarize
this as follows:

A →A1 e
A1 →A2 d
A2 →a A3

A3 →b c

Grammars induced in this way tend to be
too specific, as the binarization introduce a very
large number of very specialized phrasal cat-
egories (the Ai). Following common practice
Johnson (1998; Klein and Manning (2003b) we
Markovize by replacing these nonterminals with
ones that remember less of the immediate rule
context. In our version we keep track of only the
parent, the head constituent and the constituent
immediately to the right or left, depending on
which side of the constituent we are processing.
With this scheme the above rules now look like
this:

A →Ad,c e
Ad,c →Aa,c d
Aa,c →a Ab,c

Ab,c →b c

So, for example, the rule “A →Ad,c e” would
have a high probability if constituents of type
A, with c as their head, often have d followed
by e at their end.

Lastly, we add parent annotation to phrasal
categories to improve parsing accuracy. If we
assume that in this case we are expanding a rule
for an A used as a child of Q, and a, b, c, d, and
e are all phrasal categories, then the above rules
become:

AQ →Ad,c eA

Ad,c →Aa,c dA

Aa,c →aA Ab,c

Ab,c →bA cA

171

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0.0001

0.001

0.01

0.1

Level 0
Level 1
Level 2
Level 3

Figure 3: Probability of a gold constituent being
pruned as a function of pruning thresholds for
the first 100 sentences of the development corpus

Once we have parsed at a level, we evaluate
the probability of a constituent p(nk

i,j | s) ac-
cording to the standard inside-outside formula
of Equation 1. In this equation nk

i,j is a con-
stituent of type k spanning the words i to j, and
α(·) and β(·) are the outside and inside proba-
bilities of the constituent, respectively. Because
we prune at the end each granularity level, we
can evaluate the equation exactly; no approxi-
mations are needed (as in, e.g., Charniak et al.
(1998)).

During parsing, instead of building each con-
stituent allowed by the grammar, we first test
if the probability of the corresponding coarser
constituent (which we have from Equation 1 in
the previous round of parsing) is greater than
a threshold. (The threshold is set empirically
based upon the development data.) If it is below
the threshold, we do not put the constituent in
the chart. For example, before we can use a NP
and a VP to create a S (using the rule above),
we would first need to check that the probability
in the coarser grammar of using the same span
HP and HP to create a HP is above the thresh-
old. We use the standard inside-outside for-
mula to calculate this probability (Equation 1).
The empirical results below justify our conjec-
ture that there are thresholds that allow signifi-
cant pruning while leaving the gold constituents
untouched.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0.001

0.01

0.1

1

Level 0
Level 1
Level 2
Level 3

Figure 4: Fraction of incorrect constituents kept
as a function of pruning thresholds for the first
100 sentences of the development corpus

4 Results

In all experiments the system is trained on the
Penn tree-bank sections 2-21. Section 23 is used
for testing and section 24 for development. The
input to the parser are the gold-standard parts
of speech, not the words.

The point of parsing at multiple levels of gran-
ularity is to prune the results of rough levels be-
fore going on to finer levels. In particular, it is
necessary for any pruning scheme to retain the
true (gold-standard WSJ) constituents in the
face of the pruning. To gain an idea of what
is possible, consider Figure 3. According to the
graph, at the zeroth level of parsing and a the
pruning level 10−4 the probability that a gold
constituent is deleted due to pruning is slightly
more than 0.001 (or 0.1%). At level three it is
slightly more that 0.01 (or 1.0%).

The companion figure, Figure 4 shows the
retention rate of the non-gold (incorrect) con-
stituents. Again, at pruning level 10−4 and pars-
ing level 0 we retain about .3 (30%) of the bad
constituents (so we pruned 70%), whereas at
level 3 we retain about .004 (0.4%). Note that
in the current paper we do not actually prune
at level 3, instead return the Viterbi parse. We
include pruning results here in anticipation of
future work in which level 3 would be a precur-
sor to still more fine-grained parsing.

As noted in Section 2, there is some (implicit)

172

Level Constits Constits % Pruned
Produced Pruned

∗106 ∗106

0 8.82 7.55 86.5
1 9.18 6.51 70.8
2 11.2 9.48 84.4
3 11,8 0 0.0

total 40.4 – –
3-only 392.0 0 0

Figure 5: Total constituents pruned at all levels
for WSJ section 23, sentences of length ≤ 100

debate in the literature on using estimates of
the outside probability in Equation 1, or instead
computing the exact upper bound. The idea is
that an exact upper bound gives one an admis-
sible search heuristic but at a cost, since it is a
less accurate estimator of the true outside prob-
ability. (Note that even the upper bound does
not, in general, keep all of the gold constituents,
since a non-perfect model will assign some of
them low probability.) As is clear from Figure
3, the estimate works very well indeed.

On the basis of this graph, we set the lowest
allowable constituent probability at ≥ 5 · 10−4,
≥ 10−5, and ≥ 10−4 for levels 0,1, and 2, re-
spectively. No pruning is done at level 3, since
there is no level 4. After setting the pruning
parameters on the development set we proceed
to parse the test set (WSJ section 23). Figure 5
shows the resulting pruning statistics. The to-
tal number of constituents created at level 0, for
all sentences combined, is 8.82 · 106. Of those
7.55 · 106 (or 86.5%) are pruned before going on
to level 1. At level 1, the 1.3 million left over
from level 0 expanded to a total of 9.18 · 106.
70.8% of these in turn are pruned, and so forth.
The percent pruned at, e.g., level 1 in Figure 3
is much higher than that shown here because it
considers all of the possible level-1 constituents,
not just those left unpruned after level 0.

There is no pruning at level 3. There we sim-
ply return the Viterbi parse. We also show that
with pruning we generate a total of 40.4 · 106

constituents. For comparison exhaustively pars-
ing using the tree-bank grammar yields a total
of 392 · 106 constituents. This is the factor-of-10

Level Time for Level Running Total
0 1598 1598
1 2570 4168
2 4303 8471
3 1527 9998

3-only 114654 –

Figure 6: Running times in seconds on WSJ sec-
tion 23, with and without pruning

workload reduction mentioned in Section 1.

There are two points of interest. The first is
that each level of pruning is worthwhile. We do
not get most of the effect from one or the other
level. The second point is that we get signif-
icant pruning at level 0. The reader may re-
member that level 0 distinguishes only between
the root node and the rest. We initially ex-
pected that it would be too coarse to distinguish
good from bad constituents at this level, but it
proved as useful as the other levels. The expla-
nation is that this level does use the full tree-
bank preterminal tags, and in many cases these
alone are sufficient to make certain constituents
very unlikely. For example, what is the proba-
bility of any constituent of length two or greater
ending in a preposition? The answer is: very
low. Similarly for constituents of length two or
greater ending in modal verbs, and determiners.
Not quite so improbable, but nevertheless less
likely than most, would be constituents ending
in verbs, or ending just short of the end of the
sentence.

Figure 6 shows how much time is spent at each
level of the algorithm, along with a running to-
tal of the time spent to that point. (This is for
all sentences in the test set, length ≤ 100.) The
number for the unpruned parser is again about
ten times that for the pruned version, but the
number for the standard CKY version is prob-
ably too high. Because our CKY implementa-
tion is quite slow, we ran the unpruned version
on many machines and summed the results. In
all likelihood at least some of these machines
were overloaded, a fact that our local job dis-
tributer would not notice. We suspect that the
real number is significantly lower, though still

173

No pruning 77.9

With pruning 77.9

Klein and Manning (2003b) 77.4

Figure 7: Labeled precision/recall f-measure,
WSJ section 23, all sentences of length ≤ 100

much higher than the pruned version.
Finally Figure 7 shows that our pruning is ac-

complished without loss of accuracy. The results
with pruning include four sentences that did not
receive any parses at all. These sentences re-
ceived zeros for both precision and recall and
presumably lowered the results somewhat. We
allowed ourselves to look at the first of these,
which turned out to contain the phrase:

(NP ... (INTJ (UH oh) (UH yes)) ...)

The training data does not include interjections
consisting of two “UH”s, and thus a gold parse
cannot be constructed. Note that a different
binarization scheme (e.g. the one used in Klein
and Manning (2003b) would have smoothed over
this problem. In our case the unpruned version
is able to patch together a lot of very unlikely
constituents to produce a parse, but not a very
good one. Thus we attribute the problem not to
pruning, but to binarization.

We also show the results for the most similar
Klein and Manning (2003b) experiment. Our
results are slightly better. We attribute the dif-
ference to the fact that we have the gold tags
and they do not, but their binarization scheme
does not run into the problems that we encoun-
tered.

5 Conclusion and Future Research

We have presented a novel parsing algorithm
based upon the coarse-to-fine processing model.
Several aspects of the method recommend it.
First, unlike methods that depend on best-first
search, the method is “holistic” in its evalua-
tion of constituents. For example, consider the
impact of parent labeling. It has been repeat-
edly shown to improve parsing accuracy (John-
son, 1998; Charniak, 2000; Klein and Manning,
2003b), but it is difficult if not impossible to

integrate with best-first search in bottom-up
chart-parsing (as in Charniak et al. (1998)). The
reason is that when working bottom up it is diffi-
cult to determine if, say, ssbar is any more or less
likely than ss, as the evidence, working bottom
up, is negligible. Since our method computes
the exact outside probability of constituents (al-
beit at a coarser level) all of the top down in-
formation is available to the system. Or again,
another very useful feature in English parsing
is the knowledge that a constituent ends at the
right boundary (minus punctuation) of a string.
This can be included only in an ad-hoc way when
working bottom up, but could be easily added
here.

Many aspects of the current implementation
that are far from optimal. It seems clear to
us that extracting the maximum benefit from
our pruning would involve taking the unpruned
constituents and specifying them in all possible
ways allowed by the next level of granularity.
What we actually did is to propose all possi-
ble constituents at the next level, and immedi-
ately rule out those lacking a corresponding con-
stituent remaining at the previous level. This
was dictated by ease of implementation. Before
using mlctf parsing in a production parser, the
other method should be evaluated to see if our
intuitions of greater efficiency are correct.

It is also possible to combine mlctf parsing
with queue reordering methods. The best-first
search method of Charniak et al. (1998) esti-
mates Equation 1. Working bottom up, estimat-
ing the inside probability is easy (we just sum
the probability of all the trees found to build
this constituent). All the cleverness goes into
estimating the outside probability. Quite clearly
the current method could be used to provide a
more accurate estimate of the outside probabil-
ity, namely the outside probability at the coarser
level of granularity.

There is one more future-research topic to add
before we stop, possibly the most interesting of
all. The particular tree of coarser to finer con-
stituents that governs our mlctf algorithm (Fig-
ure 1) was created by hand after about 15 min-
utes of reflection and survives, except for typos,
with only two modifications. There is no rea-

174

son to think it is anywhere close to optimal. It
should be possible to define “optimal” formally
and search for the best mlctf constituent tree.
This would be a clustering problem, and, for-
tunately, one thing statistical NLP researchers
know how to do is cluster.

Acknowledgments

This paper is the class project for Computer
Science 241 at Brown University in fall 2005.
The faculty involved were supported in part
by DARPA GALE contract HR0011-06-2-0001.
The graduate students were mostly supported
by Brown University fellowships. The under-
graduates were mostly supported by their par-
ents. Our thanks to all.

References

Sharon Caraballo and Eugene Charniak. 1998. Fig-
ures of merit for best-first probabalistic parsing.
Computational Linguistics, 24(2):275–298.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 2005 Meeting of
the Association for Computational Linguistics.

Eugene Charniak, Sharon Goldwater, and Mark
Johnson. 1998. Edge-based best-first chart pars-
ing. In Proceedings of the Sixth Workshop on
Very Large Corpora, pages 127–133. Morgan Kauf-
mann.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the North Amer-
ican Chapter of the Association for Computational
Linguistics, pages 132–139.

Michael Collins. 1997. Three generative, lexicalized
models for statistical parsing. In Proceedings of
the 35th Annual Meeting of the Association for
Computational Linguistics, San Francisco. Mor-
gan Kaufmann.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head
automaton grammars. In Proceedings of the 37th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 457–464.

Stuart Geman and Kevin Kochanek. 2001. Dy-
namic programming and the representation of
soft-decodable codes. IEEE Transactions on In-
formation Theory, 47:549–568.

Joshua Goodman. 1997. Global thresholding and
multiple-pass parsing. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 1997).

Keith Hall and Mark Johnson. 2004. Attention shift-
ing for parsing speech. In The Proceedings of the
42th Annual Meeting of the Association for Com-
putational Linguistics, pages 40–46.

Keith Hall. 2004. Best-first Word-lattice Pars-
ing: Techniques for Integrated Syntactic Language
Modeling. Ph.D. thesis, Brown University.

Mark Johnson and Eugene Charniak. 2004. A TAG-
based noisy-channel model of speech repairs. In
Proceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 33–
39.

Mark Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguistics,
24(4):613–632.

Dan Klein and Chris Manning. 2003a. A* parsing:
Fast exact viterbi parse selection. In Proceedings
of HLT-NAACL’03.

Dan Klein and Christopher Manning. 2003b. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics.

Michell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313–
330.

John T. Maxwell and Ronald M. Kaplan. 1993.
The interface between phrasal and functional con-
straints. Computational Linguistics, 19(4):571–
590.

Ryan McDonald, Toby Crammer, and Fernando
Pereira. 2005. Online large margin training of
dependency parsers. In Proceedings of the 43rd
Meeting of the Association for Computational Lin-
guistics.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2004. It-
erative cky parsing for probabilistic context-free
grammars. In International Joint Conference on
Natural-Language Processing.

175

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 176–183,
New York, June 2006.c©2006 Association for Computational Linguistics

A Fully-Lexicalized Probabilistic Model
for Japanese Syntactic and Case Structure Analysis

Daisuke Kawahara∗ and Sadao Kurohashi†

Graduate School of Information Science and Technology, University of Tokyo

7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8656, Japan

{kawahara,kuro}@kc.t.u-tokyo.ac.jp

Abstract

We present an integrated probabilistic

model for Japanese syntactic and case

structure analysis. Syntactic and case

structure are simultaneously analyzed

based on wide-coverage case frames that

are constructed from a huge raw corpus in

an unsupervised manner. This model se-

lects the syntactic and case structure that

has the highest generative probability. We

evaluate both syntactic structure and case

structure. In particular, the experimen-

tal results for syntactic analysis on web

sentences show that the proposed model

significantly outperforms known syntactic

analyzers.

1 Introduction

Case structure (predicate-argument structure or log-

ical form) represents what arguments are related to

a predicate, and forms a basic unit for conveying the

meaning of natural language text. Identifying such

case structure plays an important role in natural lan-

guage understanding.

In English, syntactic case structure can be mostly

derived from word order. For example, the left ar-

gument of the predicate is the subject, and the right

argument of the predicate is the object in most cases.

Blaheta and Charniak proposed a statistical method
∗Currently, National Institute of Information and Communi-

cations Technology, JAPAN, dk@nict.go.jp
†Currently, Graduate School of Informatics, Kyoto Univer-

sity, kuro@i.kyoto-u.ac.jp

for analyzing function tags in Penn Treebank, and

achieved a really high accuracy of 95.7% for syn-

tactic roles, such as SBJ (subject) and DTV (da-

tive) (Blaheta and Charniak, 2000). In recent years,

there have been many studies on semantic structure

analysis (semantic role labeling) based on PropBank

(Kingsbury et al., 2002) and FrameNet (Baker et al.,

1998). These studies classify syntactic roles into se-

mantic ones such as agent, experiencer and instru-

ment.

Case structure analysis of Japanese is very differ-

ent from that of English. In Japanese, postpositions

are used to mark cases. Frequently used postposi-

tions are “ga”, “wo” and “ni”, which usually mean

nominative, accusative and dative. However, when

an argument is followed by the topic-marking post-

position “wa”, its case marker is hidden. In addi-

tion, case-marking postpositions are often omitted in

Japanese. These troublesome characteristics make

Japanese case structure analysis very difficult.

To address these problems and realize Japanese

case structure analysis, wide-coverage case frames

are required. For example, let us describe how to

apply case structure analysis to the following sen-

tence:

bentou-wa taberu

lunchbox-TM eat

(eat lunchbox)

In this sentence, taberu (eat) is a verb, and bentou-

wa (lunchbox-TM) is a case component (i.e. argu-

ment) of taberu. The case marker of “bentou-wa”

is hidden by the topic marker (TM) “wa”. The an-

alyzer matches “bentou” (lunchbox) with the most

176

suitable case slot (CS) in the following case frame

of “taberu” (eat).

CS examples

taberu
ga person, child, boy, · · ·
wo lunch, lunchbox, dinner, · · ·

Since “bentou” (lunchbox) is included in “wo” ex-

amples, its case is analyzed as “wo”. As a result, we

obtain the case structure “φ:ga bentou:wo taberu”,

which means that “ga” (nominative) argument is

omitted, and “wo” (accusative) argument is “bentou”

(lunchbox). In this paper, we run such case structure

analysis based on example-based case frames that

are constructed from a huge raw corpus in an unsu-

pervised manner.

Let us consider syntactic analysis, into which our

method of case structure analysis is integrated. Re-

cently, many accurate statistical parsers have been

proposed (e.g., (Collins, 1999; Charniak, 2000) for

English, (Uchimoto et al., 2000; Kudo and Mat-

sumoto, 2002) for Japanese). Since they somehow

use lexical information in the tagged corpus, they are

called “lexicalized parsers”. On the other hand, un-

lexicalized parsers achieved an almost equivalent ac-

curacy to such lexicalized parsers (Klein and Man-

ning, 2003; Kurohashi and Nagao, 1994). Accord-

ingly, we can say that the state-of-the-art lexicalized

parsers are mainly based on unlexical (grammatical)

information due to the sparse data problem. Bikel

also indicated that Collins’ parser can use bilexical

dependencies only 1.49% of the time; the rest of

the time, it backs off to condition one word on just

phrasal and part-of-speech categories (Bikel, 2004).

This paper aims at exploiting much more lexical

information, and proposes a fully-lexicalized proba-

bilistic model for Japanese syntactic and case struc-

ture analysis. Lexical information is extracted not

from a small tagged corpus, but from a huge raw cor-

pus as case frames. This model performs case struc-

ture analysis by a generative probabilistic model

based on the case frames, and selects the syntactic

structure that has the highest case structure proba-

bility.

2 Automatically Constructed Case Frames

We employ automatically constructed case frames

(Kawahara and Kurohashi, 2002) for our model of

Table 1: Case frame examples (examples are ex-

pressed only in English for space limitation.).
CS examples

ga <agent>, group, party, · · ·
youritsu (1) wo <agent>, candidate, applicant

(support) ni <agent>, district, election, · · ·
ga <agent>

youritsu (2) wo <agent>, member, minister, · · ·
(support) ni <agent>, candidate, successor

...
...

...

itadaku (1) ga <agent>
(have) wo soup

ga <agent>
itadaku (2) wo advice, instruction, address
(be given) kara <agent>, president, circle, · · ·

...
...

...

case structure analysis. This section outlines the

method for constructing the case frames.

A large corpus is automatically parsed, and case

frames are constructed from modifier-head exam-

ples in the resulting parses. The problems of auto-

matic case frame construction are syntactic and se-

mantic ambiguities. That is to say, the parsing re-

sults inevitably contain errors, and verb senses are

intrinsically ambiguous. To cope with these prob-

lems, case frames are gradually constructed from re-

liable modifier-head examples.

First, modifier-head examples that have no syn-

tactic ambiguity are extracted, and they are dis-

ambiguated by a couple of a verb and its closest

case component. Such couples are explicitly ex-

pressed on the surface of text, and can be consid-

ered to play an important role in sentence mean-

ings. For instance, examples are distinguished not

by verbs (e.g., “tsumu” (load/accumulate)), but by

couples (e.g., “nimotsu-wo tsumu” (load baggage)

and “keiken-wo tsumu” (accumulate experience)).

Modifier-head examples are aggregated in this way,

and yield basic case frames.

Thereafter, the basic case frames are clustered

to merge similar case frames. For example, since

“nimotsu-wo tsumu” (load baggage) and “busshi-wo

tsumu” (load supply) are similar, they are clustered.

The similarity is measured using a thesaurus (Ike-

hara et al., 1997).

Using this gradual procedure, we constructed case

frames from the web corpus (Kawahara and Kuro-

177

hashi, 2006). The case frames were obtained from

approximately 470M sentences extracted from the

web. They consisted of 90,000 verbs, and the aver-

age number of case frames for a verb was 34.3.

In Figure 1, some examples of the resulting case

frames are shown. In this table, ‘CS’ means a case

slot. <agent> in the table is a generalized example,

which is given to the case slot where half of the ex-

amples belong to <agent> in a thesaurus (Ikehara

et al., 1997). <agent> is also given to “ga” case

slot that has no examples, because “ga” case com-

ponents are usually agentive and often omitted.

3 Integrated Probabilistic Model for

Syntactic and Case Structure Analysis

The proposed method gives a probability to each

possible syntactic structure T and case structure L

of the input sentence S, and outputs the syntactic

and case structure that have the highest probability.

That is to say, the system selects the syntactic struc-

ture Tbest and the case structure Lbest that maximize

the probability P (T,L|S):

(Tbest, Lbest) = argmax
(T,L)

P (T,L|S)

= argmax
(T,L)

P (T,L, S)

P (S)

= argmax
(T,L)

P (T,L, S) (1)

The last equation is derived because P (S) is con-

stant.

3.1 Generative Model for Syntactic and Case

Structure Analysis

We propose a generative probabilistic model based

on the dependency formalism. This model considers

a clause as a unit of generation, and generates the

input sentence from the end of the sentence in turn.

P (T,L, S) is defined as the product of a probability

for generating a clause Ci as follows:

P (T,L, S) =
∏

i=1..n

P (Ci|bhi
) (2)

where n is the number of clauses in S, and bhi
is Ci’s

modifying bunsetsu1. The main clause Cn at the end
1In Japanese, bunsetsu is a basic unit of dependency, con-

sisting of one or more content words and the following zero or
more function words. It corresponds to a base phrase in English,
and “eojeol” in Korean.

Figure 1: An Example of Probability Calculation.

of a sentence does not have a modifying head, but

we handle it by assuming bhn
= EOS (End Of Sen-

tence).

For example, consider the sentence in Figure 1.

There are two possible dependency structures, and

for each structure the product of probabilities indi-

cated below of the tree is calculated. Finally, the

model chooses the highest-probability structure (in

this case the left one).

Ci is decomposed into its predicate type fi (in-

cluding the predicate’s inflection) and the rest case

structure CSi. This means that the predicate in-

cluded in CSi is lemmatized. Bunsetsu bhi
is also

decomposed into the content part whi
and the type

fhi
.

P (Ci|bhi
) = P (CSi, fi|whi

, fhi
)

= P (CSi|fi, whi
, fhi

)P (fi|whi
, fhi

)

≈ P (CSi|fi, whi
)P (fi|fhi

) (3)

The last equation is derived because the content part

in CSi is independent of the type of its modifying

head (fhi
), and in most cases, the type fi is indepen-

dent of the content part of its modifying head (whi
).

For example, P (bentou-wa tabete|syuppatsu-shita)
is calculated as follows:

P (CS(bentou-wa taberu)|te, syuppatsu-suru)P (te|ta.)

We call P (CSi|fi, whi
) generative model for case

structure and P (fi|fhi
) generative model for predi-

cate type. The following two sections describe these

models.

3.2 Generative Model for Case Structure

We propose a generative probabilistic model of case

structure. This model selects a case frame that

178

Figure 2: An example of case assignment CAk.

matches the input case components, and makes cor-

respondences between input case components and

case slots.

A case structure CSi consists of a predicate vi,

a case frame CFl and a case assignment CAk.

Case assignment CAk represents correspondences

between input case components and case slots as

shown in Figure 2. Note that there are various pos-

sibilities of case assignment in addition to that of

Figure 2, such as corresponding “bentou” (lunch-

box) with “ga” case. Accordingly, the index k of

CAk ranges up to the number of possible case as-

signments. By splitting CSi into vi, CFl and CAk,

P (CSi|fi, whi
) is rewritten as follows:

P (CSi|fi, whi
) = P (vi, CFl, CAk|fi, whi

)

= P (vi|fi, whi
)

× P (CFl|fi, whi
, vi)

× P (CAk|fi, whi
, vi, CFl)

≈ P (vi|whi
)

× P (CFl|vi)

× P (CAk|CFl, fi) (4)

The above approximation is given because it is

natural to consider that the predicate vi depends on

its modifying head whi
, that the case frame CFl only

depends on the predicate vi, and that the case assign-

ment CAk depends on the case frame CFl and the

predicate type fi.

The probabilities P (vi|whi
) and P (CFl|vi) are

estimated from case structure analysis results of a

large raw corpus. The remainder of this section il-

lustrates P (CAk|CFl, fi) in detail.

3.2.1 Generative Probability of Case

Assignment

Let us consider case assignment CAk for each

case slot sj in case frame CFl. P (CAk|CFl, fi)
can be decomposed into the following product de-

pending on whether a case slot sj is filled with an

input case component (content part nj and type fj)

or vacant:

P (CAk|CFl, fi) =
∏

sj :A(sj)=1

P (A(sj) = 1, nj , fj |CFl, fi, sj)

×
∏

sj :A(sj)=0

P (A(sj) = 0|CFl, fi, sj)

=
∏

sj :A(sj)=1

{

P (A(sj) = 1|CFl, fi, sj)

×P (nj , fj |CFl, fi, A(sj) = 1, sj)
}

×
∏

sj :A(sj)=0

P (A(sj) = 0|CFl, fi, sj) (5)

where the function A(sj) returns 1 if a case slot sj

is filled with an input case component; otherwise 0.

P (A(sj) = 1|CFl, fi, sj) and P (A(sj) =
0|CFl, fi, sj) in equation (5) can be rewritten as

P (A(sj) = 1|CFl, sj) and P (A(sj) = 0|CFl, sj),
because the evaluation of case slot assignment de-

pends only on the case frame. We call these proba-

bilities generative probability of a case slot, and they

are estimated from case structure analysis results of

a large corpus.

Let us calculate P (CSi|fi, whi
) using the ex-

ample in Figure 1. In the sentence, “wa” is

a topic marking (TM) postposition, and hides

the case marker. The generative probability of

case structure varies depending on the case slot

to which the topic marked phrase is assigned.

For example, when a case frame of “taberu”

(eat) CFtaberu1 with “ga” and “wo” case slots is

used, P (CS(bentou-wa taberu)|te, syuppatsu-suru)
is calculated as follows:

P1(CS(bentou-wa taberu)|te, syuppatsu-suru) =

P (taberu|syuppatsu-suru)

× P (CFtaberu1|taberu)

× P (bentou, wa|CFtaberu1, te, A(wo) = 1, wo)

× P (A(wo) = 1|CFtaberu1, wo)

× P (A(ga) = 0|CFtaberu1, ga) (6)

179

P2(CS(bentou-wa taberu)|te, syupatsu-suru) =

P (taberu|syuppatsu-suru)

× P (CFtaberu1|taberu)

× P (bentou, wa|CFtaberu1, te, A(ga) = 1, ga)

× P (A(ga) = 1|CFtaberu1, ga)

× P (A(wo) = 0|CFtaberu1, wo) (7)

Such probabilities are computed for each case frame

of “taberu” (eat), and the case frame and its cor-

responding case assignment that have the highest

probability are selected.

We describe the generative probability of a case

component P (nj , fj |CFl, fi, A(sj) = 1, sj) below.

3.2.2 Generative Probability of Case

Component

We approximate the generative probability of a

case component, assuming that:

• a generative probability of content part nj is in-

dependent of that of type fj ,

• and the interpretation of the surface case in-

cluded in fj does not depend on case frames.

Taking into account these assumptions, the genera-

tive probability of a case component is approximated

as follows:

P (nj , fj |CFl, fi, A(sj) = 1, sj) ≈

P (nj |CFl, A(sj) = 1, sj) P (fj |sj , fi) (8)

P (nj |CFl, A(sj) = 1, sj) is the probability of

generating a content part nj from a case slot sj in a

case frame CFl. This probability is estimated from

case frames.

Let us consider P (fj |sj , fi) in equation (8). This

is the probability of generating the type fj of a case

component that has a correspondence with the case

slot sj . Since the type fj consists of a surface case

cj
2, a punctuation mark (comma) pj and a topic

marker “wa” tj , P (fj |sj , fi) is rewritten as follows

2A surface case means a postposition sequence at the end of
bunsetsu, such as “ga”, “wo”, “koso” and “demo”.

(using the chain rule):

P (fj |sj , fi) = P (cj , tj , pj |sj , fi)

= P (cj |sj , fi)

× P (pj |sj , fi, cj)

× P (tj |sj , fi, cj , pj)

≈ P (cj |sj)

× P (pj |fi)

× P (tj |fi, pj) (9)

This approximation is given by assuming that cj

only depends on sj , pj only depends on fj , and tj
depends on fj and pj . P (cj |sj) is estimated from the

Kyoto Text Corpus (Kawahara et al., 2002), in which

the relationship between a surface case marker and

a case slot is annotated by hand.

In Japanese, a punctuation mark and a topic

marker are likely to be used when their belong-

ing bunsetsu has a long distance dependency. By

considering such tendency, fi can be regarded as

(oi, ui), where oi means whether a dependent bun-

setsu gets over another head candidate before its

modifying head vi, and ui means a clause type of

vi. The value of oi is binary, and ui is one of the

clause types described in (Kawahara and Kurohashi,

1999).

P (pj |fi) = P (pj |oi, ui) (10)

P (tj |fi, pj) = P (tj |oi, ui, pj) (11)

3.3 Generative Model for Predicate Type

Now, consider P (fi|fhi
) in the equation (3). This is

the probability of generating the predicate type of a

clause Ci that modifies bhi
. This probability varies

depending on the type of bhi
.

When bhi
is a predicate bunsetsu, Ci is a subor-

dinate clause embedded in the clause of bhi
. As for

the types fi and fhi
, it is necessary to consider punc-

tuation marks (pi, phi
) and clause types (ui, uhi

).

To capture a long distance dependency indicated by

punctuation marks, ohi
(whether Ci has a possible

head candidate before bhi
) is also considered.

PV Bmod(fi|fhi
) = PV Bmod(pi, ui|phi

, uhi
, ohi

)
(12)

When bhi
is a noun bunsetsu, Ci is an embedded

clause in bhi
. In this case, clause types and a punc-

tuation mark of the modifiee do not affect the prob-

ability.

PNBmod(fi|fhi
) = PNBmod(pi|ohi

) (13)

180

Table 2: Data for parameter estimation.
probability what is generated data

P (pj |oi, uj) punctuation mark Kyoto Text Corpus
P (tj |oi, ui, pj) topic marker Kyoto Text Corpus
P (pi, ui|phi

, uhi
, ohi

) predicate type Kyoto Text Corpus
P (cj |sj) surface case Kyoto Text Corpus
P (vi|whi

) predicate parsing results
P (nj |CFl, A(sj) = 1, sj) words case frames
P (CFl|vi) case frame case structure analysis results
P (A(sj) = {0, 1} |CFl, sj) case slot case structure analysis results

Table 3: Experimental results for syntactic analysis.
baseline proposed

all 3,447/3,976 (86.7%) 3,477/3,976 (87.4%)

NB→VB 1,310/1,547 (84.7%) 1,328/1,547 (85.8%)
TM 244/298 (81.9%) 242/298 (81.2%)

others 1,066/1,249 (85.3%) 1,086/1,249 (86.9%)
NB→NB 525/556 (94.4%) 526/556 (94.6%)
VB→VB 593/760 (78.0%) 601/760 (79.1%)
VB→NB 453/497 (91.1%) 457/497 (92.0%)

4 Experiments

We evaluated the syntactic structure and case struc-

ture outputted by our model. Each parameter is es-

timated using maximum likelihood from the data

described in Table 2. All of these data are not

existing or obtainable by a single process, but ac-

quired by applying syntactic analysis, case frame

construction and case structure analysis in turn. The

process of case structure analysis in this table is a

similarity-based method (Kawahara and Kurohashi,

2002). The case frames were automatically con-

structed from the web corpus comprising 470M sen-

tences, and the case structure analysis results were

obtained from 6M sentences in the web corpus.

The rest of this section first describes the exper-

iments for syntactic structure, and then reports the

experiments for case structure.

4.1 Experiments for Syntactic Structure

We evaluated syntactic structures analyzed by the

proposed model. Our experiments were run on

hand-annotated 675 web sentences 3. The web sen-

tences were manually annotated using the same cri-

teria as the Kyoto Text Corpus. The system input

was tagged automatically using the JUMAN mor-

phological analyzer (Kurohashi et al., 1994). The

syntactic structures obtained were evaluated with re-

3The test set is not used for case frame construction and
probability estimation.

gard to dependency accuracy — the proportion of

correct dependencies out of all dependencies except

for the last dependency in the sentence end 4.

Table 3 shows the dependency accuracy. In

the table, “baseline” means the rule-based syn-

tactic parser, KNP (Kurohashi and Nagao, 1994),

and “proposed” represents the proposed method.

The proposed method significantly outperformed the

baseline method (McNemar’s test; p < 0.05). The

dependency accuracies are classified into four types

according to the bunsetsu classes (VB: verb bun-

setsu, NB: noun bunsetsu) of a dependent and its

head. The “NB→VB” type is further divided into

two types: “TM” and “others”. The type that is most

related to case structure is “others” in “NB→VB”.

Its accuracy was improved by 1.6%, and the error

rate was reduced by 10.9%. This result indicated

that the proposed method is effective in analyzing

dependencies related to case structure.

Figure 3 shows some analysis results, where the

dotted lines represent the analysis by the baseline

method, and the solid lines represent the analysis by

the proposed method. Sentence (1) and (2) are in-

correctly analyzed by the baseline but correctly ana-

lyzed by the proposed method.

There are two major causes that led to analysis

errors.

Mismatch between analysis results and annota-

tion criteria

In sentence (3) in Figure 3, the baseline

method correctly recognized the head of “iin-wa”

(commissioner-TM) as “hirakimasu” (open). How-

ever, the proposed method incorrectly judged it as

“oujite-imasuga” (offer). Both analysis results can

be considered to be correct semantically, but from

4Since Japanese is head-final, the second last bunsetsu un-
ambiguously depends on the last bunsetsu, and the last bunsetsu
has no dependency.

181

? ?

(1) mizu-ga takai tokoro-kara hikui tokoro-he nagareru.
water-nom high ground-abl low ground-all flow

(Water flows from high ground to low ground.)

? ?

(2) ... Kobe shi-ga senmonchishiki-wo motsu volunteer-wo bosyushita ...
Kobe city-nom expert knowledge-acc have volunteer-acc recruited

(Kobe city recruited a volunteer who has expert knowledge, ...)

??

(3) iin-wa, jitaku-de minasan-karano gosoudan-ni oujite-imasuga, ... soudansyo-wo hirakimasu
commissioner-TM at home all of you consultation-dat offer window open

(the commissioner offers consultation to all of you at home, but opens a window ...)

Figure 3: Examples of analysis results.

Table 4: Experimental results for case structure anal-

ysis.
baseline proposed

TM 72/105 (68.6%) 82/105 (78.1%)
clause 107/155 (69.0%) 121/155 (78.1%)

the viewpoint of our annotation criteria, the latter is

not a syntactic relation, but an ellipsis relation. To

address this problem, it is necessary to simultane-

ously evaluate not only syntactic relations but also

indirect relations, such as ellipses and anaphora.

Linear weighting on each probability

We proposed a generative probabilistic model,

and thus cannot optimize the weight of each proba-

bility. Such optimization could be a way to improve

the system performance. In the future, we plan to

employ a machine learning technique for the opti-

mization.

4.2 Experiments for Case Structure

We applied case structure analysis to 215 web sen-

tences which are manually annotated with case

structure, and evaluated case markers of TM phrases

and clausal modifiees by comparing them with the

gold standard in the corpus. The experimental re-

sults are shown in table 4, in which the baseline

refers to a similarity-based method (Kawahara and

Kurohashi, 2002). The experimental results were re-

ally good compared to the baseline. It is difficult to

compare the results with the previous work stated in

the next section, because of different experimental

settings (e.g., our evaluation includes parse errors in

incorrect cases).

5 Related Work

There have been several approaches for syntactic

analysis handling lexical preference on a large scale.

Shirai et al. proposed a PGLR-based syntactic

analysis method using large-scale lexical preference

(Shirai et al., 1998). Their system learned lexical

preference from a large newspaper corpus (articles

of five years), such as P (pie|wo, taberu), but did

not deal with verb sense ambiguity. They reported

84.34% accuracy on 500 relatively short sentences

from the Kyoto Text Corpus.

Fujio and Matsumoto presented a syntactic anal-

ysis method based on lexical statistics (Fujio and

Matsumoto, 1998). They made use of a probabilistic

model defined by the product of a probability of hav-

ing a dependency between two cooccurring words

and a distance probability. The model was trained

on the EDR corpus, and performed with 86.89% ac-

curacy on 10,000 sentences from the EDR corpus 5.

On the other hand, there have been a number

of machine learning-based approaches using lexical

preference as their features. Among these, Kudo

and Matsumoto yielded the best performance (Kudo

and Matsumoto, 2002). They proposed a chunking-

based dependency analysis method using Support

Vector Machines. They used two-fold cross valida-

tion on the Kyoto Text Corpus, and achieved 90.46%

5The evaluation includes the last dependencies in the sen-
tence end, which are always correct.

182

accuracy 5. However, it is very hard to learn suffi-

cient lexical preference from several tens of thou-

sands sentences of a hand-tagged corpus.

There has been some related work analyzing

clausal modifiees and TM phrases. For exam-

ple, Torisawa analyzed TM phrases using predicate-

argument cooccurences and word classifications in-

duced by the EM algorithm (Torisawa, 2001). Its

accuracy was approximately 88% for “wa” and 84%

for “mo”. It is difficult to compare the accuracy

of their system to ours, because the range of tar-

get expressions is different. Unlike related work,

it is promising to utilize the resultant case frames

for subsequent analyzes such as ellipsis or discourse

analysis.

6 Conclusion

We have described an integrated probabilistic model

for syntactic and case structure analysis. This model

takes advantage of lexical selectional preference of

large-scale case frames, and performs syntactic and

case analysis simultaneously. The experiments indi-

cated the effectiveness of our model. In the future,

by incorporating ellipsis resolution, we will develop

an integrated model of syntactic, case and ellipsis

analysis.

References

Collin Baker, Charles Fillmore, and John Lowe. 1998. The
Berkeley FrameNet Project. In Proceedings of the 17th In-
ternational Conference on Computational Linguistics and
the 36th Annual Meeting of the Association for Computa-
tional Linguistics, pages 86–90.

Daniel M. Bikel. 2004. Intricacies of Collins’ parsing model.
Computational Linguistics, 30(4):479–511.

Don Blaheta and Eugene Charniak. 2000. Assigning function
tags to parsed text. In Proceedings of the 1st Meeting of
the North American Chapter of the Association for Compu-
tational Linguistics, pages 234–240.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of the 1st Meeting of the North American
Chapter of the Association for Computational Linguistics,
pages 132–139.

Michael Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

Masakazu Fujio and Yuji Matsumoto. 1998. Japanese depen-
dency structure analysis based on lexicalized statistics. In

Proceedings of the 3rd Conference on Empirical Methods in
Natural Language Processing, pages 88–96.

Satoru Ikehara, Masahiro Miyazaki, Satoshi Shirai, Akio
Yokoo, Hiromi Nakaiwa, Kentarou Ogura, Yoshifumi
Oyama, and Yoshihiko Hayashi, editors. 1997. Japanese
Lexicon. Iwanami Publishing.

Daisuke Kawahara and Sadao Kurohashi. 1999. Corpus-based
dependency analysis of Japanese sentences using verb bun-
setsu transitivity. In Proceedings of the 5th Natural Lan-
guage Processing Pacific Rim Symposium, pages 387–391.

Daisuke Kawahara and Sadao Kurohashi. 2002. Fertilization of
case frame dictionary for robust Japanese case analysis. In
Proceedings of the 19th International Conference on Com-
putational Linguistics, pages 425–431.

Daisuke Kawahara and Sadao Kurohashi. 2006. Case frame
compilation from the web using high-performance comput-
ing. In Proceedings of the 5th International Conference on
Language Resources and Evaluation.

Daisuke Kawahara, Sadao Kurohashi, and Kôiti Hasida. 2002.
Construction of a Japanese relevance-tagged corpus. In Pro-
ceedings of the 3rd International Conference on Language
Resources and Evaluation, pages 2008–2013.

Paul Kingsbury, Martha Palmer, and Mitch Marcus. 2002.
Adding semantic annotation to the Penn TreeBank. In Pro-
ceedings of the Human Language Technology Conference.

Dan Klein and Christopher D. Manning. 2003. Accurate un-
lexicalized parsing. In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguistics, pages
423–430.

Taku Kudo and Yuji Matsumoto. 2002. Japanese dependency
analysis using cascaded chunking. In Proceedings of the
Conference on Natural Language Learning, pages 29–35.

Sadao Kurohashi and Makoto Nagao. 1994. A syntactic anal-
ysis method of long Japanese sentences based on the detec-
tion of conjunctive structures. Computational Linguistics,
20(4):507–534.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Matsumoto, and
Makoto Nagao. 1994. Improvements of Japanese morpho-
logical analyzer JUMAN. In Proceedings of the Interna-
tional Workshop on Sharable Natural Language, pages 22–
28.

Kiyoaki Shirai, Kentaro Inui, Takenobu Tokunaga, and Hozumi
Tanaka. 1998. An empirical evaluation on statistical parsing
of Japanese sentences using lexical association statistics. In
Proceedings of the 3rd Conference on Empirical Methods in
Natural Language Processing, pages 80–87.

Kentaro Torisawa. 2001. An unsupervised method for canon-
icalization of Japanese postpositions. In Proceedings of the
6th Natural Language Processing Pacific Rim Simposium,
pages 211–218.

Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hi-
toshi Isahara. 2000. Dependency model using posterior
context. In Proceedings of the 6th International Workshop
on Parsing Technology, pages 321–322.

183

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 184–191,
New York, June 2006.c©2006 Association for Computational Linguistics

Fully Parsing the Penn Treebank�

Ryan Gabbard Mitchell Marcus

Department of
Computer and Information Science

University of Pennsylvania
{gabbard,mitch}@cis.upenn.edu

Seth Kulick

Institute for Research in
Cognitive Science

University of Pennsylvania
skulick@cis.upenn.edu

Abstract

We present a two stage parser that recov-

ers Penn Treebank style syntactic analy-

ses of new sentences including skeletal

syntactic structure, and, for the first time,

both function tags and empty categories.

The accuracy of the first-stage parser on

the standard Parseval metric matches that

of the (Collins, 2003) parser on which it

is based, despite the data fragmentation

caused by the greatly enriched space of

possible node labels. This first stage si-

multaneously achieves near state-of-the-

art performance on recovering function

tags with minimal modifications to the un-

derlying parser, modifying less than ten

lines of code. The second stage achieves

state-of-the-art performance on the recov-

ery of empty categories by combining a

linguistically-informed architecture and a

rich feature set with the power of modern

machine learning methods.

1 Introduction

The trees in the Penn Treebank (Bies et al., 1995) are

annotated with a great deal of information to make

various aspects of the predicate-argument structure

easy to decode, including both function tags and

markers of “empty” categories that represent dis-

placed constituents. Modern statistical parsers such

as (Collins, 2003) and (Charniak, 2000) however ig-

nore much of this information and return only an

�We would like to thank Fernando Pereira, Dan Bikel, Tony
Kroch and Mark Liberman for helpful suggestions. This work
was supported in part under the GALE program of the Defense
Advanced Research Projects Agency, Contract No. HR0011-
06-C-0022, and in part by the National Science Foundation un-
der grants NSF IIS-0520798 and NSF EIA 02-05448 and under
an NSF graduate fellowship.

impoverished version of the trees. While there has

been some work in the last few years on enrich-

ing the output of state-of-the-art parsers that output

Penn Treebank-style trees with function tags (e.g.

(Blaheta, 2003)) or empty categories (e.g. (Johnson,

2002; Dienes and Dubey, 2003a; Dienes and Dubey,

2003b), only one system currently available, the de-

pendency graph parser of (Jijkoun and de Rijke,

2004), recovers some representation of both these

aspects of the Treebank representation; its output,

however, cannot be inverted to recover the original

tree structures. We present here a parser,1 the first

we know of, that recovers full Penn Treebank-style

trees. This parser uses a minimal modification of the

Collins parser to recover function tags, and then uses

this enriched output to achieve or better state-of-the-

art performance on recovering empty categories.

We focus here on Treebank-style output for two

reasons: First, annotators developing additional

treebanks in new genres of English that conform to

the Treebank II style book (Bies et al., 1995) must

currently add these additional annotations by hand, a

much more laborious process than correcting parser

output (the currently used method for annotating the

skeletal structure itself). Our new parser is now in

use in a new Treebank annotation effort. Second, the

accurate recovery of semantic structure from parser

output requires establishing the equivalent of the in-

formation encoded within these representations.

Our parser consists of two components. The first-

stage is a modification of Bikel’s implementation

(Bikel, 2004) of Collins’ Model 2 that recovers func-

tion tags while parsing. Remarkably little modifica-

tion to the parser is needed to allow it to produce

function tags as part of its output, yet without de-

creasing the regular Parseval metric. While it is dif-

ficult to evaluate function tag assignment in isola-

1The parser consists of two boxes; those who prefer to label
it by its structure, as opposed to what it does, might call it a
parsing system.

184

(S

(NP-SBJ (DT The) (NN luxury)

(NN auto) (NN maker))

(NP-TMP (JJ last) (NN year))

(VP (VBD sold)

(NP (CD 1,214) (NNS cars))

(PP-LOC (IN in)

(NP (DT the) (NNP U.S.)))))

Figure 1: Example Tree

tion across the output of different parsers, our re-

sults match or exceed all but the very best of earlier

tagging results, even though this earlier work is far

more complicated than ours. The second stage uses

a cascade of statistical classifiers which recovers the

most important empty categories in the Penn Tree-

bank style. These classifiers utilize a wide range of

features, including crucially the function tags recov-

ered in the first stage of parsing.

2 Motivation

Function tags are used in the current Penn Treebanks

to augment nonterminal labels for various syntactic

and semantic roles (Bies et al., 1995). For example,

in Figure 1, -SBJ indicates the subject, -TMP indi-

cates that the NP last year is serving as a tem-

poral modifier, and -LOC indicates that the PP is

specifying a location. Note that without these tags,

it is very difficult to determine which of the two NPs

directly dominated by S is in fact the subject. There

are twenty function tags in the Penn Treebank, and

following (Blaheta, 2003), we collect them into the

five groups shown in Figure 2. While nonterminals

can be assigned tags from different groups, they do

not receive more than one tag from within a group.

The Syntactic and Semantic groups are by far the

most common tags, together making up over 90% of

the function tag instances in the Penn Treebank.

Certain non–local dependencies must also be in-

cluded in a syntactic analysis if it is to be most use-

ful for recovering the predicate–argument structure

of a complex sentence. For instance, in the sentence

“The dragon I am trying to slay is green,” it is im-

portant to know that I is the semantic subject and

the dragon the semantic object of the slaying. The

Penn Treebank (Bies et al., 1995) represents such

dependencies by including nodes with no overt con-

tent (empty categories) in parse trees. In this work,

we consider the three most frequent2 and semanti-

cally important types of empty category annotations

in most Treebank genres:

Null complementizers are denoted by the sym-

bol 0. They typically appear in places where, for

example, an optional that or who is missing: “The

king said 0 he could go.” or “The man (0) I saw.”

Traces of wh–movement are denoted by *T*,

such as the noun phrase trace in “What1 do you

want (NP *T*-1)?” Note that wh–traces are co–

indexed with their antecedents.

(NP *)s are used for several purposes in the

Penn Treebank. Among the most common are pas-

sivization “(NP-1 I) was captured (NP *-1),”

and control “(NP-1 I) tried (NP *-1) to get the

best results.”

Under this representation the above sentence

would look like “(NP-1 The dragon) 0 (NP-2 I) am

trying (NP *-2) to slay (NP *T*-1) is green.”

Despite their importance, these annotations have

largely been ignored in statistical parsing work. The

importance of returning this information for most

real applications of parsing has been greatly ob-

scured by the Parseval metric (Black et al., 1991),

which explicitly ignores both function tags and null

elements. Because much statistical parsing research

has been driven until recently by this metric, which

has never been updated, the crucial role of parsing

in recovering semantic structure has been generally

ignored. An early exception to this was (Collins,

1997) itself, where Model 2 used function tags dur-

ing the training process for heuristics to identify ar-

guments (e.g., the TMP tag on the NP in Figure 1

disqualifies the NP-TMP from being treated as an

argument). However, after this use, the tags are ig-

nored, not included in the models, and absent from

the parser output. Collins’ Model 3 attempts to re-

cover traces of Wh-movement, with limited success.

3 Function Tags: Approach

Our system for restoring function tags is a modifica-

tion of Collins’ Model 2. We use the (Bikel, 2004)

2Excepting empty units (e.g. “$ 1,000,000 *U*”), which are
not very interesting. According to Johnson, (NP *)s occur
28,146 times in the training portion of the PTB, (NP *T*)s
occur 8,620 times, 0s occur 7,969 times, and (ADVP *T*)s
occur 2,492 times. In total, the types we consider cover roughly
84% of all the instances of empty categories in the training cor-
pus.

185

Syntactic (55.9%) Semantic (36.4%) Misc (1.0%) CLR (5.8%)

DTV Dative NOM Nominal EXT Extent CLF It-cleft CLR Closely-

LGS Logical subj ADV Non-specific LOC Location HLN Headline Related

PRD Predicate Adverbial MNR Manner TTL Title

PUT LOC of ’put’ BNF Benefactive PRP Purpose Topicalization

SBJ Subject DIR Direction TMP Temporal (2.6%)

VOC Vocative TPC Topic

Figure 2: Function Tags - Also shown is the percentage of each category in the Penn Treebank

emulation of the Collins parser.3 Remarkably little

modification to the parser is needed to allow it to

produce function tags as part its output, without de-

creasing the regular Parseval metric.

The training process for the unmodified Collins

parser carries out various preprocessing steps, which

modify the trees in various ways before taking ob-

servations from them for the model. One of these

steps is to identify and mark arguments with a parser

internal tag (-A), using function tags as part of the

heuristics for doing so. A following preprocessing

step then deletes the original function tags.

We modify the Collins parser in a very simple

way: the parser now retains the function tags af-

ter using them for argument identification, and so

includes them in all the parameter classes. We

also augment the argument identification heuristic

to treat any nonterminal with any of the tags in the

Syntactic group to be an argument; these are treated

as synonyms for the internal tag that the parser uses

to mark arguments. This therefore extends (Collins,

2003)’s use of function tags for excluding potential

argument to also use them for including arguments.4

The parser is then trained as before.

4 Function Tags: Evaluation

We compare our tagging results in isolation with the

tagging systems of (Blaheta, 2003), since that work

has the first highly detailed accounting of function

tag results on the Penn Treebank, and with two re-

cent tagging systems. We use both Blaheta’s metric

and his function tag groupings, shown in Figure 2,

3Publicly available at http://www.cis.upenn.edu/
˜dbikel/software.html.

4Bikel’s parser, in its latest version, already does something
like this for Chinese and Arabic. However, the interaction with
the subcat frame is different, in that it puts all nonterminals with
a function tag into the miscellaneous slot in the subcat frame.

although our assignments are made by a fully inte-

grated system. There are two aspects of Blaheta’s

metric that require discussion: First, this metric in-

cludes only constituents that were otherwise parsed

correctly (ignoring function tag). Second, the metric

ignores cases in which both the gold and test nonter-

minals are lacking function tags, since they would

inflate the results.

5 Function Tags: Results

We trained the Bikel emulations of Collins’ model

2 and our modified versions on sections 2-21 and

tested on section 23. Scores are for all sentences,

not just those with less than 40 words.

Parseval labelled recall/precision scores for the

unmodified and modified parsers, show that there is

almost no difference in the scores:

Parser LR/LP

Model 2 88.12/88.31

Model 2-FuncB 88.23/88.31

We find this somewhat surprising, as we had ex-

pected that sparse data problems would arise, due

to the shattering of NP into NP-TMP, NP-SBJ, etc.

Table 1 shows the overall results and the break-

down for the different function tag groups. For pur-

poses of comparison, we have calculated our over-

all score both with and without CLR.5 The (Blaheta,

2003) numbers in parentheses in Table 1 are from

his feature trees specialized for the Syntactic and Se-

mantic groups, while all his other numbers, includ-

ing the overall score, are from using a single feature

set for his four function tag groups.6

5(Jijkoun and de Rijke, 2004) do not state whether they are
including CLR, but since they are comparing their results to
(Blaheta and Charniak, 2000), we are assuming that they do.
They do not break their results down by group.

6The P/R/F scores in (Blaheta, 2003)[p. 23] are internally

186

— Overall — — Breakdown by Function Tag Group —

w/CLR w/o CLR Syn Sem Top Misc CLR

Tag Group Frequency 55.87% 36.40% 2.60% 1.03% 5.76%

Model2-Ftags 88.95 90.78 95.76 84.56 93.89 17.31 65.86

88.28 95.16 79.81 93.72 39.44

Blaheta, 2003 (95.89) (83.37)

Jijkoun and de Rijke, 2004 88.50

Musillo and Merlo, 2005 96.5 85.6

Table 1: Overall Results (F-measure) and Breakdown by Function Tag Groups

Even though our tagging system results from only

eliminating a few lines of code from the Collins

parse, it has a higher overall score than (Blaheta,

2003), and a large increase over Blaheta’s non-

specialized Semantic score (79.81). It also out-

performs even Blaheta’s specialized Semantic score

(83.37), and is very close to Blaheta’s specialized

score for the Syntactic group (95.89). However,

since the evaluation is over a different set of non-

terminals, arising from the different parsers,7 it is

difficult to draw conclusions as to which system is

definitively “better”. It does seem clear, though,

that by integrating the function tags into the lexi-

calized parser, the results are roughly comparable

with the post-processing work, and it is much sim-

pler, without the need for a separate post-processing

level or for specialized feature trees for the different

tag groups.8

Our results clarify, we believe, the recent results

of (Musillo and Merlo, 2005), now state-of-the-art,

which extends the parser of

report a significant modification of the Henderson

parser to incorporate strong notions of linguistic lo-

cality. They also manually restructure some of the

function tags using tree transformations, and then

train on these relabelled trees. Our results indicate

that perhaps the simplest possible modification of an

existing parser suffices to perform better than post-

inconsistent for the Semantic and Overall scores. We have kept
the Precision and Recall and recalculated the F-measures, ad-
justing the Semantic score upwards from 79.15% to 79.81% and
the Overall score downward from 88.63% to 88.28%.

7And the (Charniak, 2000) parser that (Blaheta, 2003) used
has a reported F-measure of 89.5, higher than the Bikel parser
used here.

8Our score on the Miscellaneous category is significantly
lower, but as can be seen from Figure 2 and repeated in 1, this
is a very rare category.

processing approaches. The linguistic sophistication

of the work of (Musillo and Merlo, 2005) then pro-

vides an added boost in performance over simple in-

tegration.

6 Empty Categories: Approach

Most learning–based, phrase–structure–based

(PSLB) work9 on recovering empty categories

has fallen into two classes: those which integrate

empty category recovery into the parser (Dienes and

Dubey, 2003a; Dienes and Dubey, 2003b) and those

which recover empty categories from parser output

in a post–processing step (Johnson, 2002; Levy and

Manning, 2004). Levy and Manning note that thus

far no PSLB post–processing approach has come

close to matching the integrated approach on the

most numerous types of empty categories.

However, there is a rule–based post–processing

approach consisting of a set of entirely hand–

designed rules (Campbell, 2004) which has better

9As above, we consider only that work which both inputs
and outputs phrase–structure trees. This notably excludes Ji-
jkoun and de Rijke (Jijkoun and de Rijke, 2004), who have a
system which seems to match the performance of Dienes and
Dubey. However, they provide only aggregate statistics over all
the types of empty categories, making any sort of detailed com-
parison impossible. Finally, it is not clear that their numbers
are in fact comparable to those of Dienes and Dubey on parsed
data because the metrics used are not quite equivalent, partic-
ularly for (NP *)s: among other differences, unlike Jijkoun
and de Rijke’s metric (taken from (Johnson, 2002)), Dienes and
Dubey’s is sensitive to the string extent of the antecedent node,
penalizing them if the parser makes attachment errors involving
the antecedent even if the system recovered the long–distance
dependency itself correctly. Johnson noted that the two metrics
did not seem to differ much for his system, but we found that
evaluating our system with the laxer metric reduced error by
20% on the crucial task of restoring and finding the antecedents
of (NP *)s, which make up almost half the empty categories
in the Treebank.

187

results than the integrated approach. Campbell’s

rules make heavy use of aspects of linguistic repre-

sentation unexploited by PSLB post–processing ap-

proaches, most importantly function tags and argu-

ment annotation.10

7 Empty Categories: Method

7.1 Runtime

The algorithm applies a series five maximum–

entropy and two perceptron–based classifiers:

[1] For each PP, VP, and S node, ask the classifier

NPTRACE to determine whether to insert an (NP

*) as the object of a preposition, an argument of a

verb, or the subject of a clause, respectively.

[2] For each node , ask NULLCOMP to determine

whether or not to insert a 0 to the right.

[3] For each S node , ask WHXPINSERT to de-

termine whether or not to insert a null wh–word to

the left. If one should be, ask WHXPDISCERN to

decide if it should be a (WHNP 0) or a (WHADVP

0).

[4] For each S which is a sister of WHNP or

WHADVP, consider all possible places beneath it a

wh–trace could be placed. Score each of them using

WHTRACE, and insert a trace in the highest scoring

position.

[5] For any S lacking a subject, insert (NP *).

[6] For each (NP *) in subject position, look at

all NPs which c–command it. Score each of these us-

ing PROANTECEDENT, and co–index the (NP *)

with the NPwith the highest score. For all (NP *)s

in non–subject positions, we follow Campbell in as-

signing the local subject as the controller.

[7] For each (NP *), ask ANTECEDENTLESS to

determine whether or not to remove the co–indexing

between it and its antecedent.

The sequencing of classifiers and choice of how

to frame the classification decisions closely follows

Campbell with the exception of finding antecedents

of (NP *)s and inserting wh–traces, which follow

Levy and Manning in using a competition–based ap-

proach. We differ from Levy and Manning in using

a perceptron–based approach for these, rather than a

10The non–PSLB system of Jijkoun and de Rijke uses func-
tion tags, and Levy and Manning mention that the lack of this
information was sometimes an obstacle for them. Also, access
to argument annotation inside the parser may account for a part
of the good performance of Dienes and Dubey.

maximum–entropy one. Also, rather than introduc-

ing an extra zero node for uncontrolled (NP *)s,

we always assign a controller and then remove co–

indexing from uncontrolled (NP *)s using a sepa-

rate classifier.

7.2 Training

Each of the maximum–entropy classifiers men-

tioned above was trained using MALLET (McCal-

lum, 2002) over a common feature set. The most

notable departure of this feature list from previous

ones is in the use of function tags and argument

markings, which were previously ignored for the un-

derstandable reason that though they are present in

the Penn Treebank, parsers generally do not produce

them. Another somewhat unusual feature examined

right and left sisters.

The PROANTECEDENT perceptron classifier

uses the local features of the controller and the con-

trolled (NP *), whether the controller precedes or

follows the controlled (NP *), the sequence of cat-

egories on the path between the two (with the ‘turn-

ing’ category marked), the length of that path, and

which categories are contained anywhere along the

path.

The WHTRACE perceptron classifier uses the fol-

lowing features each conjoined with the type of wh–

trace being sought: the sequence of categories found

on the path between the trace and its antecedent,

the path length, which categories are contained any-

where along the path, the number of bounding cat-

egories crossed and whether the trace placement vi-

olates subjacency, whether or not the trace insertion

site’s parent is the first verb on the path, whether or

not the insertion site’s parent contains another verb

beneath it, and if the insertion site’s parent is a verb,

whether or not the verb is saturated.11

All maximum–entropy classifiers were trained on

sections 2-21 of the Penn Treebank’s Wall Street

Journal section; the perceptron–based classifiers

were trained on sections 10-18. Section 24 was used

for development testing while choosing the feature

11To provide the verb saturation feature, we calculated the
number of times each verb in the training corpus occurs with
each number of NP arguments (both overt and traces). When
calculating the feature value, we compare the number of in-
stances seen in the training corpus of the verb with the number
of argument NPs it overtly has with the number of times in the
corpus the verb occurs with one more argument NP.

188

set and other aspects of the system, and section 23

was used for the final evaluation.

8 Empty Categories: Results

8.1 Metrics

For the sake of easy comparison, we report our re-

sults using the most widely–used metric for perfor-

mance on this task, that proposed by Johnson. This

metric judges an entity correct if it matches the gold

standard in type and string position (and, if there is

an antecedent, in its label and string extent). Be-

cause Campell reports results by category using only

his own metric, we use this metric to compare our

results to his. There is much discussion in the litera-

ture of metrics for this task; Levy and Manning and

Campbell both note that the Johnson metric fails to

catch when an empty category has a correct string

position but incorrect parse tree attachment. While

we do not have space to discuss this issue here, the

metrics they in turn propose also have significant

weaknesses. In any event, we use the metrics that

allow the most widespread comparison.

8.2 Comparison to Other PSLB Methods

Category Pres LM J DD

Comb. 0 87.8 87.0 77.1

COMP-SBAR 91.9 88.0 85.5

COMP-WHNP 61.5 47.0 48.8

COMP-WHADVP 69.0

NP * 69.1 61.1 55.6 70.3

Comb. wh–trace 78.2 63.3 75.2 75.3

NP *T* 80.9 80.0 82.0

ADVP *T* 69.8 56 53.6

Table 2: F1 scores comparing our system to the

two PSLB post–processing systems and Dienes and

Dubey’s integrated system on automatically parsed

trees from section 23 using Johnson’s metric.

F1 scores on parsed sentences from section 23

are given in table 2. Note that our system’s

parsed scores were obtained using our modified

version of Bikel’s implementation of Collins’s the-

sis parser which assigns function tags, while the

other PSLB post–processing systems use Charniak’s

parser (Charniak, 2000) and Dienes and Dubey inte-

grate empty category recovery directly into a variant

of Collins’s parser.

On parsed trees, our system outperforms other

PSLB post–processing systems. On the most numer-

ous category by far, (NP *), our system reduces

the error of the best PSLB post–processing approach

by 21%. Comparing our aggregate wh–trace results

to the others,12 we reduce error by 41% over Levy

and Manning and by 12% over Johnson.

System Precision Recall F1

D&D 78.50 68.08 72.92

Pres 74.70 74.62 74.66

Table 3: Comparison of our system with that of Di-

enes and Dubey on parsed data from section 23 over

the aggregation of all categories in table 2 except-

ing the infrequent (WHADVP 0)s, which they do

not report but which we almost certainly outperform

them on.

Performance on parsed data compared to the inte-

grated system of Dienes and Dubey is split. We re-

duce error by 25% and 44% on plain 0s and (WHNP

0)s, respectively and by 12% on wh–traces. We

increase error by 4% on (NP *)s. Aggregating

over all the categories under consideration, the more

balanced precision and recall of our system puts it

ahead of Dienes and Dubey’s, with a 6.4% decrease

in error (table 3).

8.3 Comparison to Campbell

Category Present Campbell

NP * 88.8 86.9

NP *T* 96.3 96.0

ADVP *T* 82.2 79.9

0 99.8 98.5

Table 4: A comparison of the present system with

Campbell’s rule–based system on gold–standard

trees from section 23 using Campbell’s metric

12Levy and Manning report Johnson to have an aggregate
wh–trace score of 80, but Johnson’s paper gives 80 as his score
for (NP *T*)s only, with 56 as his score for (ADVP *T*)s.
A similar problem seems to have occured with Levy and Man-
ning’s numbers for Dienes and Dubey on this and on (NP *)s.
This error makes the other two systems appear to outperform
Levy and Manning on wh–traces by a slightly larger margin than
they actually do.

189

Classifier Features with largest weights
NPTRACE daughter categories, function tags, argumentness, heads, and POS tags, subjectless

S. . .
NULLCOMP is first daughter?, terminalness, aunt’s label and POS tag, mother’s head, daughters’

heads, great–grandmother’s label. . .
WHXPINSERT is first daughter?, left sister’s terminalness, labels of mother, aunt, and left sister,

aunt’s head. . .
WHXPDISCERN words contained by grandmother, grandmother’s head, aunt’s head, grandmother’s

function tags, aunt’s label, aunt’s function tags. . .
WHTRACE lack of subject, daughter categories, child argument information, subjacency viola-

tion, saturation, whether or not there is a verb below, path information. . .
PROANTECEDENT controller’s sisters’ function tags, categories path contains, path length, path shape,

controller’s function tags, controller’s sisters’ heads, linear precedence informa-
tion. . .

ANTECEDENTLESS mother’s function tags, great–grandmother’s label, aunt’s head (“It is difficult
to. . . ”), grandmother’s function tag, mother’s head. . .

Table 5: A few of the most highly weighted features for various classifiers

On gold-standard trees,13 our system out-

performs Campbell’s rule–based system on all four

categories, reducing error by 87% on 0s,14 by 11%

on (ADVP *T*)s, by 7% on (NP *T*)s, and by

8% on the extremely numerous (NP *)s.

9 Empty Categories: Discussion

We have shown that a PSLB post–processing ap-

proach can outperform the state–of–the–art inte-

grated approach of Dienes and Dubey.15 Given that

their modifications to Collins’s parser caused a de-

crease in local phrase structure parsing accuracy

due to sparse data difficulties (Dienes and Dubey,

2003a), our post–processing approach seems to be

an especially attractive choice. We have further

shown that our PSLB approach, using only sim-

ple, unconjoined features, outperforms Campbell’s

state–of–the–art, complex system on gold–standard

data, suggesting that much of the power of his sys-

tem lies in his richer linguistic representation and

his structuring of decisions rather than the hand–

designed rules.

We have also compared our system to that of Levy

and Manning which is based on a similar learning

technique and have shown large increases in perfor-

13Only aggregate statistics over a different set of empty cat-
egories were available for Campbell on parsed data, making a
comparison impossible.

14Note that for comparison with Campbell, the 0 numbers
here exclude (WHNP 0)s and (WHADVP 0)s.

15And therefore also very likely outperforms the
dependency–based post–processing approach of Jijkoun
and de Rijke, even if its performance does in fact equal Dienes
and Dubey’s.

mance on all of the most common types of empty

categories; this increase seems to have come al-

most entirely from an enrichment of the linguistic

representation and a slightly different structuring of

the problem, rather than any use of more powerful

machine–learning techniques

We speculate that the primary source of our per-

formance increase is the enrichment of the linguis-

tic representation with function tags and argument

markings from the parser’s first stage, as table 5 at-

tests. We also note that several classifiers make use

of the properties of aunt nodes, which have previ-

ously been exploited only in a limite form in John-

son’s patterns. For example, ANTECEDENTLESS

uses the aunt’s head word to learn an entire class of

uncontrolled PRO constructions like “It is difficult

(NP *) to imagine living on Mars.”

10 Conclusion

This work has presented a two stage parser that re-

covers Penn Treebank style syntactic analyses of

new sentences including skeletal syntactic structure,

and, for the first time, both function tags and empty

categories. The accuracy of the first-stage parser

on the standard Parseval metric matches that of the

(Collins, 2003) parser on which it is based, despite

the data fragmentation caused by the greatly en-

riched space of possible node labels for the Collins

statistical model. This first stage simultaneously

achieves near state-of-the-art performance on recov-

ering function tags with minimal modifications to

the underlying parser, modifying less than ten lines

190

of code. We speculate that this success is due to the

lexicalization of the Collins model, combined with

the sophisticated backoff structure already built into

the Collins model. The second stage achieves state-

of-the-art performance on the recovery of empty cat-

egories by combining the linguistically-informed ar-

chitecture of (Campbell, 2004) and a rich feature set

with the power of modern machine learning meth-

ods. This work provides an example of how small

enrichments in linguistic representation and changes

in the structure of the problem having significant

effects on the performance of a machine–learning–

based system. More concretely, we showed for the

first time that a PSLB post–processing system can

outperform the state–of–the–art for both rule–based

post–processing and integrated approaches to the

empty category restoration problem.

Most importantly from the point of view of the

authors, we have constructed a system that recov-

ers sufficiently rich syntactic structure based on the

Penn Treebank to provide rich syntactic guidance for

the recovery of predicate-argument structure in the

near future. We also expect that productivity of syn-

tactic annotation of further genres of English will be

significantly enhanced by the use of this new tool,

and hope to have practical evidence of this in the

near future.

References

Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-
Intyre. 1995. Bracketing guidelines for Treebank II
style Penn Treebank project. Technical report, Uni-
versity of Pennsylvania.

Daniel M. Bikel. 2004. On the Parameter Space of Lex-
icalized Statistical Parsing Models. Ph.D. thesis, De-
partment of Computer and Information Sciences, Uni-
versity of Pennsylvania.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A proce-
dure for quantitatively comparing the syntactic cov-
erage of English grammars. In Proceedings of the
Fourth DARPA Workshop on Speech and Natural Lan-
guage, pages 306–311, CA.

Don Blaheta and Eugene Charniak. 2000. Assigning
function tags to parsed text. In Proceedings of the
1st Annual Meeting of the North American Chapter of

the Association for Computational Linguistics, pages
234–240, Seattle.

Don Blaheta. 2003. Function Tagging. Ph.D. thesis,
Brown University.

Richard Campbell. 2004. Using linguistic principles to
recover empty categories. In Proceedings of ACL.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Annual Meeting of the
North American Chapter of the Association for Com-
putational Linguistics.

Michael Collins. 1997. Three generative, lexicalized
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics, Madrid.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29:589–637.

Peter Dienes and Amit Dubey. 2003a. Antecedent recov-
ery: Experiments with a trace tagger. In Proceedings
of EMNLP.

Peter Dienes and Amit Dubey. 2003b. Deep process-
ing by combining shallow methods. In Proceedings of
ACL.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Pro-
ceedings of NLT-NAACL 2003, Edmonton, Alberta,
Canada. Association for Computational Linguistics.

Valentin Jijkoun and Maarten de Rijke. 2004. Enrich-
ing the output of a parser using memory-based learn-
ing. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics, Barcelona,
Spain.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40st Annual Meet-
ing of the Association for Computational Linguistics,
Philadelphia, PA.

Roger Levy and Christopher Manning. 2004. Deep de-
pendencies from context–free statistical parsers: cor-
recting the surface dependency approximation. In Pro-
ceedings of the ACL.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Gabriele Musillo and Paolo Merlo. 2005. Lexical and
structural biases for function parsing. In Proceedings
of the Ninth International Workshop on Parsing Tech-
nology, pages 83–92, Vancouver, British Columbia,
October. Association for Computational Linguistics.

191

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 192–199,
New York, June 2006.c©2006 Association for Computational Linguistics

Exploiting Semantic Role Labeling, WordNet and Wikipedia
for Coreference Resolution

Simone Paolo Ponzetto andMichael Strube
EML Research gGmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

http://www.eml-research.de/nlp

Abstract

In this paper we present an extension of
a machine learning based coreference res-
olution system which uses features in-
duced from different semantic knowledge
sources. These features represent knowl-
edge mined from WordNet and Wikipedia,
as well as information about semantic role
labels. We show that semantic features in-
deed improve the performance on differ-
ent referring expression types such as pro-
nouns and common nouns.

1 Introduction

The last years have seen a boost of work devoted to
the development of machine learning based coref-
erence resolution systems (Soon et al., 2001; Ng &
Cardie, 2002; Yang et al., 2003; Luo et al., 2004,
inter alia). While machine learning has proved to
yield performance rates fully competitive with rule
based systems, current coreference resolution sys-
tems are mostly relying on rather shallow features,
such as the distance between the coreferent expres-
sions, string matching, and linguistic form. How-
ever, the literature emphasizes since the very begin-
ning the relevance of world knowledge and infer-
ence for coreference resolution (Charniak, 1973).

This paper explores whether coreference resolu-
tion can benefit from semantic knowledge sources.
More specifically, whether a machine learning based
approach to coreference resolution can be improved
and which phenomenaare affected by such infor-
mation. We investigate the use of the WordNet and
Wikipedia taxonomies for extractingsemantic simi-
larity andrelatednessmeasures, as well as semantic

parsing information in terms ofsemantic role label-
ing (Gildea & Jurafsky, 2002, SRL henceforth).

We believe that the lack of semantics in the cur-
rent systems leads to a performance bottleneck.
In order to correctly identify the discourse entities
which are referred to in a text, it seems essential to
reason over the lexical semantic relations, as well as
the event representations embedded in the text. As
an example, consider a fragment from the Automatic
Content Extraction (ACE) 2003 data.

(1) But frequent visitors say that given the sheer weight of
the country’s totalitarian ideology and generations of
mass indoctrination, changingthis country’s course will
be something akin to turning a huge ship at sea. Opening
North Korea up, even modestly, and exposingpeople to
the idea that Westerners – and South Koreans – are not
devils, alone represents an extraordinary change. [...] as
his people begin to get a clearer idea of the deprivation
they have suffered, especially relative totheir neighbors.
“This is a society that has been focused most of all on
stability, [...]”.

In order to correctly resolve the anaphoric expres-
sions highlighted in bold, it seems that some kind
of lexical semantic and encyclopedic knowledge is
required. This includes thatNorth Koreais acoun-
try, that countriesconsist ofpeopleand aresoci-
eties. The resolution requires an encyclopedia (i.e.
Wikipedia) look-up and reasoning on the content re-
latedness holding between the different expressions
(i.e. as a path measure along the links of the Word-
Net and Wikipedia taxonomies). Event representa-
tions seem also to be important for coreference res-
olution, as shown below:

(2) A state commission of inquiry into the sinking of the
Kursk will convene in Moscow on Wednesday,the
Interfax news agency reported.It said that the diving
operation will be completed by the end of next week.

192

In this example, knowing thatthe Interfax news
agencyis the AGENT of thereport predicate andIt
being the AGENT ofsaycould trigger the (seman-
tic parallelism based) inference required to correctly
link the two expressions, in contrast to anchoring
the pronoun toMoscow. SRL provides the seman-
tic relationships that constituents have with predi-
cates, thus allowing us to include such document-
levelevent descriptive informationinto the relations
holding between referring expressions (REs).

Instead of exploring different kinds of data rep-
resentations, task definitions or machine learning
techniques (Ng & Cardie, 2002; Yang et al., 2003;
Luo et al., 2004) we focus on a few promising se-
mantic features which we evaluate in a controlled
environment. That way we try to overcome the
plateauing in performance in coreference resolution
observed by Kehler et al. (2004).

2 Related Work

Vieira & Poesio (2000), Harabagiu et al. (2001),
and Markert & Nissim (2005) explore the use of
WordNet for different coreference resolution sub-
tasks, such as resolving bridging reference,other-
and definite NP anaphora, and MUC-style corefer-
ence resolution. All of them present systems which
infer coreference relations from a set of potential an-
tecedents by means of a WordNet search. Our ap-
proach to WordNet here is to cast the search results
in terms of semantic similarity measures. Their out-
put can be used as features for a learner. These mea-
sures are not specifically developed for coreference
resolution but simply taken ‘off-the-shelf’ and ap-
plied to our task without any specific tuning — i.e.
in contrast to Harabagiu et al. (2001), who weight
WordNet relations differently in order to compute
the confidence measure of the path.

To the best of our knowledge, we do not know
of any previous work using Wikipedia or SRL for
coreference resolution. In the case of SRL, this
layer of semantic context abstracts from the specific
lexical expressions used, and therefore represents a
higher level of abstraction than (still related) work
involving predicate argument statistics. Kehler et al.
(2004) observe no significant improvement due to
predicate argument statistics. The improvement re-
ported by Yang et al. (2005) is rather caused by their

twin-candidate model than by the semantic knowl-
edge. Employing SRL is closer in spirit to Ji et al.
(2005), who explore the employment of the ACE
2004 relation ontology as a semantic filter.

3 Coreference Resolution Using Semantic
Knowledge Sources

3.1 Corpora Used

To establish a competitive coreference resolver, the
system was initially prototyped using the MUC-6
and MUC-7 data sets (Chinchor & Sundheim, 2003;
Chinchor, 2001), using the standard partitioning
of 30 texts for training and 20-30 texts for test-
ing. Then, we moved on and developed and tested
the system with the ACE 2003 Training Data cor-
pus (Mitchell et al., 2003)1. Both the Newswire
(NWIRE) and Broadcast News (BNEWS) sections
where split into 60-20-20% document-based par-
titions for training, development, and testing, and
later per-partition merged (MERGED) for system
evaluation. The distribution of coreference chains
and referring expressions is given in Table 1.

3.2 Learning Algorithm

For learning coreference decisions, we used a Maxi-
mum Entropy (Berger et al., 1996) model. This was
implemented using the MALLET library (McCal-
lum, 2002). To prevent the model from overfitting,
we employed a tunable Gaussian prior as a smooth-
ing method. The best parameter value is found by
searching in the [0,10] interval with step value of
0.5 for the variance parameter yielding the highest
MUC score F-measure on the development data.

Coreference resolution is viewed as a binary clas-
sification task: given a pair of REs, the classifier has
to decide whether they are coreferent or not. The
MaxEnt model produces a probability for each cat-
egoryy (coreferent or not) of a candidate pair, con-
ditioned on the contextx in which the candidate oc-
curs. The conditional probability is calculated by:

p(y|x) =
1

Zx

[

∑

i

λifi(x, y)

]

1We used the training data corpus only, as the availability
of the test data is restricted to ACE participants. Therefore, the
results we report cannot be compared directly with those using
the official test data.

193

BNEWS (147 docs – 33,479 tokens) NWIRE (105 docs – 57,205 tokens)
#coref ch. #pron. #comm. nouns #prop. names#coref ch. #pron. #comm. nouns #prop. names

TRAIN. 587 876 572 980 904 1,037 1,210 2,023
DEVEL 201 315 163 465 399 358 485 923
TEST 228 291 238 420 354 329 484 712
TOTAL 1,016 1,482 973 1,865 1,657 1,724 2,179 3,658
TOTAL (%) 34.3% 22.5% 43.2% 22.8% 28.8% 48.4%

Table 1: Partitions of the ACE 2003 training data corpus

wherefi(x, y) is the value of featurei on outcomey
in contextx, andλi is the weight associated withi in
the model.Zx is a normalization constant. The fea-
tures used in our model are all binary-valued feature
functions (or indicator functions), e.g.

fI SEMROLE(ARG0/RUN, COREF) =

1 if candidate pair is
coreferent and antecedent
is the semantic argument
ARG0 of predicaterun

0 else

In our system, a set of pre-processing compo-
nents including a POS tagger (Giménez & Màrquez,
2004), NP chunker (Kudoh & Matsumoto, 2000)
and theAlias-I LingPipeNamed Entity Recognizer2

is applied to the text in order to identify the noun
phrases, which are further taken as referring ex-
pressions (REs) to be used for instance generation.
Therefore, we use automatically extracted noun
phrases, rather than assuming perfect NP chunk-
ing. This is in contrast to other related works
in coreference resolution (e.g. Luo et al. (2004),
Kehler et al. (2004)).

Instances are created following Soon et al. (2001).
We create a positive training instance from each pair
of adjacent coreferent REs. Negative instances are
obtained by pairing the anaphoric REs with any RE
occurring between the anaphor and the antecedent.
During testing each text is processed from left to
right: each RE is paired with any preceding RE from
right to left, until a pair labeled as coreferent is out-
put, or the beginning of the document is reached.
The classifier imposes a partitioning on the available
REs by clustering each set of expressions labeled as
coreferent into the same coreference chain.

2http://alias-i.com/lingpipe

3.3 Baseline System Features

Following Ng & Cardie (2002), our baseline sys-
tem reimplements the Soon et al. (2001) system.
The system uses 12 features. Given a potential an-
tecedent REi and a potential anaphor REj the fea-
tures are computed as follows3.
(a) Lexical features

STRING MATCH T if REi and REj have the
same spelling, else F.

ALIAS T if one RE is an alias of the other; else F.

(b) Grammatical features

I PRONOUN T if REi is a pronoun; else F.

J PRONOUN T if REj is a pronoun; else F.

J DEF T if REj starts withthe; else F.

J DEM T if REj starts with this, that, these, or
those; else F.

NUMBER T if both REi and REj agree in number;
else F.

GENDER U if either REi or REj have an undefined
gender. Else if they are both defined and agree
T; else F.

PROPER NAME T if both REi and REj are
proper names; else F.

APPOSITIVE T if REj is in apposition with REi;
else F.

(c) Semantic features

WN CLASS U if either REi or REj have an unde-
fined WordNet semantic class. Else if they both
have a defined one and it is the same T; else F.

(d) Distance features

DISTANCE how many sentences REi and REj are
apart.

3Possible values are U(nknown), T(rue) and F(alse). Note
that in contrast to Ng & Cardie (2002) we interpret ALIAS as
a lexical feature, as it solely relies on string comparison and
acronym string matching.

194

3.4 WordNet Features

In the baseline system semantic information is lim-
ited to WordNet semantic class matching. Unfor-
tunately, a WordNet semantic class lookup exhibits
problems such as coverage, sense proliferation and
ambiguity4, which make the WNCLASS feature
very noisy. We enrich the semantic information
available to the classifier by using semantic similar-
ity measures based on the WordNet taxonomy (Ped-
ersen et al., 2004). The measures we use include
path length based measures (Rada et al., 1989; Wu &
Palmer, 1994; Leacock & Chodorow, 1998), as well
as ones based on information content (Resnik, 1995;
Jiang & Conrath, 1997; Lin, 1998).

In our case, the measures are obtained by comput-
ing the similarity scores between the head lemmata
of each potential antecedent-anaphor pair. In order
to overcome the sense disambiguation problem, we
factorise over all possible sense pairs: given a can-
didate pair, we take the cross product of each an-
tecedent and anaphor sense to form pairs of synsets.
For each measure WNSIMILARITY, we compute
the similarity score for all synset pairs, and create
the following features.

WN SIMILARITY BEST the highest similarity
score from all〈SENSEREi,n, SENSEREj ,m〉 synset
pairs.

WN SIMILARITY AVG the average similarity
score from all〈SENSEREi,n, SENSEREj ,m〉 synset
pairs.

Pairs containing REs which cannot be mapped to
WordNet synsets are assumed to have a null simi-
larity measure.

3.5 Wikipedia Features

Wikipedia is a multilingual Web-based free-content
encyclopedia5. The English version, as of 14 Febru-
ary 2006, contains 971,518 articles with 16.8 mil-
lion internal hyperlinks thus providing a large cover-
age available knowledge resource. In addition, since
May 2004 it provides also a taxonomy by means of
the category feature: articles can be placed in one

4Following the system to be replicated, we simply mapped
each RE to the first WordNet sense of the head noun.

5Wikipedia can be downloaded athttp://download.
wikimedia.org/. In our experiments we use the English
Wikipedia database dump from 19 February 2006.

or more categories, which are further categorized to
provide a category tree. In practice, the taxonomy
is not designed as a strict hierarchy or tree of cat-
egories, but allows multiple categorisation schemes
to co-exist simultaneously. Because each article can
appear in more than one category, and each category
can appear in more than one parent category, the cat-
egories do not form a tree structure, but a more gen-
eral directed graph. As of December 2005, 78% of
the articles have been categorized into 87,000 differ-
ent categories.

Wikipedia mining works as follows (for an in-
depth description of the methods for computing
semantic relatedness in Wikipedia see Strube &
Ponzetto (2006)): given the candidate referring ex-
pressions REi and REj we first pull the pages they
refer to. This is accomplished by querying the page
titled as the head lemma or, in the case of NEs, the
full NP. We follow all redirects and check for dis-
ambiguation pages, i.e. pages for ambiguous entries
which contain links only (e.g.Lincoln). If a disam-
biguation page is hit, we first get all the hyperlinks
in the page. If a link containing the other queried RE
is found (i.e. a link containingpresidentin theLin-
coln page), the linked page (President of the United
States) is returned, else we return the first article
linked in the disambiguation page. Given a candi-
date coreference pair REi/j and the Wikipedia pages
PREi/j

they point to, obtained by querying pages ti-
tled asTREi/j

, we extract the following features:

I/J GLOSS CONTAINS U if no Wikipedia page
titled TREi/j

is available. Else T if the first para-
graph of text ofPREi/j

containsTREj/i
; else F.

I/J RELATED CONTAINS U if no Wikipedia
page titled asTREi/j

is available. Else T if at
least one Wikipedia hyperlink ofPREi/j

con-
tainsTREj/i

; else F.

I/J CATEGORIES CONTAINS U if no Wiki-
pedia page titled asTREi/j

is available. Else T if
the list of categoriesPREi/j

belongs to contains
TREj/i

; else F.

GLOSS OVERLAP the overlap score between the
first paragraph of text ofPREi andPREj . Fol-
lowing Banerjee & Pedersen (2003) we compute
the score as

∑

n m2 for n phrasalm-word over-
laps.

195

Additionally, we use the Wikipedia category graph.
We ported the WordNet similarity path length based
measures to the Wikipedia category graph. How-
ever, the category relations in Wikipedia cannot only
be interpreted as corresponding tois-a links in a
taxonomy since they denote meronymic relations
as well. Therefore, the Wikipedia-based measures
are to be taken as semantic relatedness measures.
The measures from Rada et al. (1989), Leacock &
Chodorow (1998) and Wu & Palmer (1994) are com-
puted in the same way as for WordNet. Path search
takes place as a depth-limited search of maximum
depth of 4 for a least common subsumer. We no-
ticed that limiting the search improves the results as
it yields a better correlation of the relatedness scores
with human judgements (Strube & Ponzetto, 2006).
This is due to the high regions of the Wikipedia cat-
egory tree being too strongly connected.

In addition, we use the measure from Resnik
(1995), which is computed using an intrinsic in-
formation content measure relying on the hierar-
chical structure of the category tree (Seco et al.,
2004). GivenPREi/j

and the lists of categories
CREi/j

they belong to, we factorise over all pos-
sible category pairs. That is, we take the cross
product of each antecedent and anaphor category to
form pairs of ‘Wikipedia synsets’. For each mea-
sure WIKI RELATEDNESS, we compute the relat-
edness score for all category pairs, and create the
following features.

WIKI RELATEDNESS BEST the highest relat-
edness score from all〈CREi,n, CREj ,m〉 cate-
gory pairs.

WIKI RELATEDNESS AVG the average relat-
edness score from all〈CREi,n, CREj ,m〉 cate-
gory pairs.

3.6 Semantic Role Features

The last semantic knowledge enhancement for the
baseline system uses SRL information. In our exper-
iments we use the ASSERT parser (Pradhan et al.,
2004), an SVM based semantic role tagger which
uses a full syntactic analysis to automatically iden-
tify all verb predicates in a sentence together with
their semantic arguments, which are output as Prop-
Bank arguments (Palmer et al., 2005). It is of-
ten the case that the semantic arguments output by

the parser do not align with any of the previously
identified noun phrases. In this case, we pass a
semantic role label to a RE only when the two
phrases share the same head. Labels have the form
“ARG1 pred1 . . . ARGn predn” for n semantic roles
filled by a constituent, where each semantic argu-
ment label is always defined with respect to a predi-
cate. Given such level of semantic information avail-
able at the RE level, we introduce two new features6.

I SEMROLE the semantic role argument-
predicate pairs of REi.

J SEMROLE the semantic role argument-
predicate pairs of REj.

For the ACE 2003 data, 11,406 of 32,502 automati-
cally extracted noun phrases were tagged with 2,801
different argument-predicate pairs.

4 Experiments

4.1 Performance Metrics

We report in the following tables the MUC
score (Vilain et al., 1995). Scores in Table 2 are
computed for all noun phrases appearing in either
the key or the system response, whereas Tables 3
and 4 refer to scoring only those phrases which ap-
pear in both the key and the response. We therefore
discard those responses not present in the key, as we
are interested in establishing the upper limit of the
improvements given by our semantic features. That
is, we want to define a baseline against which to es-
tablish the contribution of the semantic information
sources explored here for coreference resolution.

In addition, we report the accuracy score for all
three types of ACE mentions, namely pronouns,
common nouns and proper names. Accuracy is the
percentage of REs of a given mention type correctly
resolved divided by the total number of REs of the
same type given in the key. A RE is said to be cor-
rectly resolved when both it and its direct antecedent
are placed by the key in the same coreference class.

6During prototyping we experimented unpairing the argu-
ments from the predicates, which yielded worse results. This
is supported by the PropBank arguments always being defined
with respect to a target predicate. Binarizing the features— i.e.
do REi and REj have the same argument or predicate label with
respect to their closest predicate? — also gave worse results.

196

MUC-6 MUC-7
original R P F1 R P F1
Soon et al. 58.6 67.3 62.3 56.1 65.5 60.4
duplicated
baseline

64.9 65.6 65.3 55.1 68.5 61.1

Table 2: Results on MUC

4.2 Feature Selection

For determining the relevant feature sets we follow
an iterative procedure similar to the wrapper ap-
proach for feature selection (Kohavi & John, 1997)
using the development data. The feature subset se-
lection algorithm performs a hill-climbing search
along the feature space. We start with a model
based on all available features. Then we train mod-
els obtained by removing one feature at a time. We
choose the worst performing feature, namely the one
whose removal gives the largest improvement based
on the MUC score F-measure, and remove it from
the model. We then train classifiers removing each
of the remaining features separately from the en-
hanced model. The process is iteratively run as long
as significant improvement is observed.

4.3 Results

Table 2 compares the results between our duplicated
Soon baseline and the original system. We assume
that the slight improvements of our system are due
to the use of current pre-processing components and
another classifier. Tables 3 and 4 show a comparison
of the performance between our baseline system and
the ones incremented with semantic features. Per-
formance improvements are highlighted in bold7.

4.4 Discussion

The tables show thatsemantic features improve sys-
tem recall, rather than acting as a ‘semantic filter’
improving precision. Semantics therefore seems to
trigger a response in cases where more shallow fea-
tures do not seem to suffice (see examples (1-2)).

Different feature sources account for different
RE type improvements. WordNet and Wikipedia
features tend to increase performance on common

7All changes in F-measure are statistically significant at the
0.05 level or higher. We follow Soon et al. (2001) in performing
a simple one-tailed, paired sample t-test between the baseline
system’s MUC score F-measure and each of the other systems’
F-measure scores on the test documents.

nouns, whereas SRL improves pronouns. Word-
Net features are able to improve by 14.3% and
7.7% the accuracy rate for common nouns on the
BNEWS and NWIRE datasets (+34 and+37 cor-
rectly resolved common nouns out of 238 and 484
respectively), whereas employing Wikipedia yields
slightly smaller improvements (+13.0% and+6.6%
accuracy increase on the same datasets). Similarly,
when SRL features are added to the baseline system,
we register an increase in the accuracy rate for pro-
nouns, ranging from 0.7% in BNEWS and NWIRE
up to 4.2% in the MERGED dataset (+26 correctly
resolved pronouns out of 620).

If semantics helps for pronouns and common
nouns, it does not affect performance on proper
names, where features such as string matching and
alias suffice. This suggests that semantics plays a
role in pronoun and common noun resolution, where
surface features cannot account for complex prefer-
ences and semantic knowledge is required.

The best accuracy improvement on pronoun res-
olution is obtained on the MERGED dataset. This
is due to making more data available to the classi-
fier, as the SRL features are very sparse and inher-
ently suffer from data fragmentation. Using a larger
dataset highlights the importance of SRL, whose
features are never removed in any feature selection
process8. The accuracy on common nouns shows
that features induced from Wikipedia are competi-
tive with the ones from WordNet. The performance
gap on all three datasets is quite small, which indi-
cates the usefulness of using an encyclopedic knowl-
edge base as a replacement for a lexical taxonomy.

As a consequence of having different knowledge
sources accounting for the resolution of different RE
types, the best results are obtained by (1)combin-
ing featuresgeneratedfrom different sources; (2)
performing feature selection. When combining dif-
ferent feature sources, we register an accuracy im-
provement on pronouns and common nouns, as well
as an increase in F-measure due to a higher recall.

Feature selection always improves results. This
is due to the fact that our full feature set is ex-

8To our knowledge, most of the recent work in coreference
resolution on the ACE data keeps the document source sepa-
rated for evaluation. However, we believe that document source
independent evaluation provides useful insights on the robust-
ness of the system (cf. the CoNLL 2005 shared task cross-
corpora evaluation).

197

BNEWS NWIRE
R P F1 Ap Acn Apn R P F1 Ap Acn Apn

baseline 46.7 86.2 60.6 36.4 10.5 44.0 56.7 88.2 69.0 37.6 23.1 55.6
+WordNet 54.8 86.1 66.9 36.8 24.8 47.6 61.3 84.9 71.2 38.9 30.8 55.5
+Wiki 52.7 86.8 65.6 36.1 23.5 46.2 60.6 83.6 70.3 38.0 29.7 55.2
+SRL 53.3 85.1 65.5 37.1 13.9 46.2 58.0 89.0 70.2 38.3 25.0 56.0
all features 59.1 84.4 69.5 37.5 27.3 48.1 63.1 83.0 71.7 39.8 31.8 52.8

Table 3: Results on the ACE 2003 data (BNEWS and NWIRE sections)

R P F1 Ap Acn Apn

baseline 54.5 88.0 67.3 34.7 20.4 53.1
+WordNet 56.7 87.1 68.6 35.6 28.5 49.6
+Wikipedia 55.8 87.5 68.1 34.8 26.0 50.5
+SRL 56.3 88.4 68.8 38.9 21.6 51.7
all features 61.0 84.2 70.7 38.9 29.9 51.2

Table 4: Results ACE (merged BNEWS/NWIRE)

tremely redundant: in order to explore the useful-
ness of the knowledge sources we included overlap-
ping features (i.e. usingbestand averagesimilar-
ity/relatedness measures at the same time), as well as
features capturing the same phenomenon from dif-
ferent point of views (i.e. usingmultiple measures
at the same time). In order to yield the desired per-
formance improvements, it turns out to be essential
to filter out irrelevant features.

Table 5 shows the relevance of the best perform-
ing features on the BNEWS section. As our fea-
ture selection mechanism chooses the best set of fea-
tures by removing them (see Section 4.2), we eval-
uate the contributions of the remaining features as
follows. We start with a baseline system using all
the features from Soon et al. (2001) that were not
removed in the feature selection process (i.e. DIS-
TANCE). We then train classifiers combining the
current feature set with each feature in turn. We
then choose the best performing feature based on the
MUC score F-measure and add it to the model. We
iterate the process until all features are added to the
baseline system. The table indicates that all knowl-
edge sources are relevant for coreference resolution,
as it includes SRL, WordNet and Wikipedia features.
The Wikipedia features rank high, indicating again
that it provides a valid knowledge base.

5 Conclusions and Future Work

The results are somehow surprising, as one would
not expect a community-generated categorization
to be almost as informative as a well structured

Feature set F1

baseline (Soon w/o DISTANCE) 58.4%
+WIKI WU PALMER BEST +4.3%
+J SEMROLE +1.8%
+WIKI PATH AVG +1.2%
+I SEMROLE +0.8%
+WN WU PALMER BEST +0.7%

Table 5: Feature selection (BNEWS section)

lexical taxonomy such as WordNet. Nevertheless
Wikipedia offers promising results, which we expect
to improve as well as the encyclopedia goes under
further development.

In this paper we investigated the effects of using
different semantic knowledge sources within a ma-
chine learning based coreference resolution system.
This involved mining the WordNet taxonomy and
the Wikipedia encyclopedic knowledge base, as well
as including semantic parsing information, in order
to induce semantic features for coreference learning.
Empirical results show that coreference resolution
benefits from semantics. The generated model is
able to learn selectional preferences in cases where
surface morpho-syntactic features do not suffice, i.e.
pronoun and common name resolution. While the
results given by using ‘the free encyclopedia that
anyone can edit’ are satisfactory, major improve-
ments can come from developing efficient query
strategies – i.e. a more refined disambiguation tech-
nique taking advantage of the context in which the
queries (e.g. referring expressions) occur.

Future work will include turning Wikipedia into
an ontology with well defined taxonomic relations,
as well as exploring its usefulness of for other NLP
applications. We believe that an interesting aspect of
Wikipedia is that it offers large coverage resources
for many languages, thus making it a natural choice
for multilingual NLP systems.

Semantics plays indeed a role in coreference
resolution. But semantic features are expensive to

198

compute and the development of efficient methods
is required to embed them into large scale systems.
Nevertheless, we believe that exploiting semantic
knowledge in the manner we described will assist
the research on coreference resolution to overcome
the plateauing in performance observed by Kehler
et al. (2004).

Acknowledgements: This work has been funded
by the Klaus Tschira Foundation, Heidelberg, Ger-
many. The first author has been supported by a
KTF grant (09.003.2004). We thank Katja Filip-
pova, Margot Mieskes and the three anonymous re-
viewers for their useful comments.

References

Banerjee, S. & T. Pedersen (2003). Extended gloss overlap as
a measure of semantic relatedness. InProc. of IJCAI-03, pp.
805–810.

Berger, A., S. A. Della Pietra & V. J. Della Pietra (1996). A
maximum entropy approach to natural language processing.
Computational Linguistics, 22(1):39–71.

Charniak, E. (1973). Jack and Janet in search of a theory of
knowledge. InAdvance Papers from the Third International
Joint Conference on Artificial Intelligence, Stanford, Cal.,
pp. 337–343.

Chinchor, N. (2001). Message Understanding Conference
(MUC) 7. LDC2001T02, Philadelphia, Penn: Linguistic
Data Consortium.

Chinchor, N. & B. Sundheim (2003).Message Understanding
Conference (MUC) 6.LDC2003T13, Philadelphia, Penn:
Linguistic Data Consortium.

Gildea, D. & D. Jurafsky (2002). Automatic labeling of seman-
tic roles.Computational Linguistics, 28(3):245–288.

Giménez, J. & L. Màrquez (2004). SVMTool: A general POS
tagger generator based on support vector machines. InProc.
of LREC ’04, pp. 43–46.

Harabagiu, S. M., R. C. Bunescu & S. J. Maiorano (2001). Text
and knowledge mining for coreference resolution. InProc.
of NAACL-01, pp. 55–62.

Ji, H., D. Westbrook & R. Grishman (2005). Using semantic re-
lations to refine coreference decisions. InProc. HLT-EMNLP
’05, pp. 17–24.

Jiang, J. J. & D. W. Conrath (1997). Semantic similarity based
on corpus statistics and lexical taxonomy. InProceedings of
the 10th International Conference on Research in Computa-
tional Linguistics (ROCLING).

Kehler, A., D. Appelt, L. Taylor & A. Simma (2004). The
(non)utility of predicate-argument frequencies for pronoun
interpretation. InProc. of HLT-NAACL-04, pp. 289–296.

Kohavi, R. & G. H. John (1997). Wrappers for feature subset
selection.Artificial Intelligence Journal, 97(1-2):273–324.

Kudoh, T. & Y. Matsumoto (2000). Use of Support Vector Ma-
chines for chunk identification. InProc. of CoNLL-00, pp.
142–144.

Leacock, C. & M. Chodorow (1998). Combining local con-
text and WordNet similarity for word sense identifica-
tion. In C. Fellbaum (Ed.),WordNet. An Electronic Lexical

Database, Chp. 11, pp. 265–283. Cambridge, Mass.: MIT
Press.

Lin, D. (1998). An information-theoretic definition of similar-
ity. In Proceedings of the 15th International Conference on
Machine Learning, pp. 296–304.

Luo, X., A. Ittycheriah, H. Jing, N. Kambhatla & S. Roukos
(2004). A mention-synchronous coreference resolution al-
gorithm based on the Bell Tree. InProc. of ACL-04, pp.
136–143.

Markert, K. & M. Nissim (2005). Comparing knowledge
sources for nominal anaphora resolution.Computational
Linguistics, 31(3):367–401.

McCallum, A. K. (2002). MALLET: A Machine Learning for
Language Toolkit.

Mitchell, A., S. Strassel, M. Przybocki, J. Davis, G. Dodding-
ton, R. Grishman, A. Meyers, A. Brunstain, L. Ferro &
B. Sundheim (2003).TIDES Extraction (ACE) 2003 Mul-
tilingual Training Data.LDC2004T09, Philadelphia, Penn.:
Linguistic Data Consortium.

Ng, V. & C. Cardie (2002). Improving machine learning ap-
proaches to coreference resolution. InProc. of ACL-02, pp.
104–111.

Palmer, M., D. Gildea & P. Kingsbury (2005). The proposition
bank: An annotated corpus of semantic roles.Computational
Linguistics, 31(1):71–105.

Pedersen, T., S. Patwardhan & J. Michelizzi (2004). Word-
Net::Similarity – Measuring the relatedness of concepts. In
Companion Volume of the Proceedings of the Human Tech-
nology Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pp. 267–270.

Pradhan, S., W. Ward, K. Hacioglu, J. H. Martin & D. Juraf-
sky (2004). Shallow semantic parsing using Support Vector
Machines. InProc. of HLT-NAACL-04, pp. 233–240.

Rada, R., H. Mili, E. Bicknell & M. Blettner (1989). Devel-
opment and application of a metric to semantic nets.IEEE
Transactions on Systems, Man and Cybernetics, 19(1):17–
30.

Resnik, P. (1995). Using information content to evaluate seman-
tic similarity in a taxonomy. InProc. of IJCAI-95, Vol. 1, pp.
448–453.

Seco, N., T. Veale & J. Hayes (2004). An intrinsic information
content metric for semantic similarity in WordNet. InProc.
of ECAI-04, pp. 1089–1090.

Soon, W. M., H. T. Ng & D. C. Y. Lim (2001). A machine
learning approach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

Strube, M. & S. P. Ponzetto (2006). WikiRelate! Computing
semantic relatedness using Wikipedia. InProc. of AAAI-06.

Vieira, R. & M. Poesio (2000). An empirically-based system for
processing definite descriptions.Computational Linguistics,
26(4):539–593.

Vilain, M., J. Burger, J. Aberdeen, D. Connolly & L. Hirschman
(1995). A model-theoretic coreference scoring scheme. In
Proceedings of the 6th Message Understanding Conference
(MUC-6), pp. 45–52.

Wu, Z. & M. Palmer (1994). Verb semantics and lexical selec-
tion. In Proc. of ACL-94, pp. 133–138.

Yang, X., J. Su & C. L. Tan (2005). Improving pronoun reso-
lution using statistics-based semantic compatibility informa-
tion. In Proc. of ACL-05, pp. 165–172.

Yang, X., G. Zhou, J. Su & C. L. Tan (2003). Coreference
resolution using competition learning approach. InProc. of
ACL-03, pp. 176–183.

199

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 200–207,
New York, June 2006.c©2006 Association for Computational Linguistics

Identifying and Analyzing Judgment Opinions

Soo-Min Kim and Eduard Hovy
USC Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
{skim, hovy}@ISI.EDU

Abstract

In this paper, we introduce a methodology
for analyzing judgment opinions. We de-
fine a judgment opinion as consisting of a
valence, a holder, and a topic. We decom-
pose the task of opinion analysis into four
parts: 1) recognizing the opinion; 2) iden-
tifying the valence; 3) identifying the
holder; and 4) identifying the topic. In this
paper, we address the first three parts and
evaluate our methodology using both in-
trinsic and extrinsic measures.

1 Introduction

Recently, many researchers and companies have
explored the area of opinion detection and analysis.
With the increased immersion of Internet users has
come a proliferation of opinions available on the
web. Not only do we read more opinions from the
web, such as in daily news editorials, but also we
post more opinions through mechanisms such as
governmental web sites, product review sites, news
group message boards and personal blogs. This
phenomenon has opened the door for massive
opinion collection, which has potential impact on
various applications such as public opinion moni-
toring and product review summary systems.
 Although in its infancy, many researchers have
worked in various facets of opinion analysis. Pang
et al. (2002) and Turney (2002) classified senti-
ment polarity of reviews at the document level.
Wiebe et al. (1999) classified sentence level sub-
jectivity using syntactic classes such as adjectives,
pronouns and modal verbs as features. Riloff and
Wiebe (2003) extracted subjective expressions
from sentences using a bootstrapping pattern learn-
ing process. Yu and Hatzivassiloglou (2003) iden-
tified the polarity of opinion sentences using
semantically oriented words. These techniques

were applied and examined in different domains,
such as customer reviews (Hu and Liu 2004) and
news articles1. These researchers use lists of opin-
ion-bearing clue words and phrases, and then apply
various additional techniques and refinements.

Along with many opinion researchers, we par-
ticipated in a large pilot study, sponsored by NIST,
which concluded that it is very difficult to define
what an opinion is in general. Moreover, an ex-
pression that is considered as an opinion in one
domain might not be an opinion in another. For
example, the statement “The screen is very big”
might be a positive review for a wide screen desk-
top review, but it could be a mere fact in general
newspaper text. This implies that it is hard to apply
opinion bearing words collected from one domain
to an application for another domain. One might
therefore need to collect opinion clues within indi-
vidual domains. In case we cannot simply find
training data from existing sources, such as news
article analysis, we need to manually annotate data
first.

Most opinions are of two kinds: 1) beliefs about
the world, with values such as true, false, possible,
unlikely, etc.; and 2) judgments about the world,
with values such as good, bad, neutral, wise, fool-
ish, virtuous, etc. Statements like “I believe that he
is smart” and “Stock prices will rise soon” are ex-
amples of beliefs whereas “I like the new policy on
social security” and “Unfortunately this really was
his year: despite a stagnant economy, he still won
his re-election” are examples of judgment opinions.
However, judgment opinions and beliefs are not
necessarily mutually exclusive. For example, “I
think it is an outrage” or “I believe that he is
smart” carry both a belief and a judgment.

In the NIST pilot study, it was apparent that
human annotators often disagreed on whether a
belief statement was or was not an opinion. How-
ever, high annotator agreement was seen on judg-

1 TREC novelty track 2003 and 2004

200

ment opinions. In this paper, we therefore focus
our analysis on judgment opinions only. We hope
that future work yields a more precise definition of
belief opinions on which human annotators can
agree.

We define a judgment opinion as consisting of
three elements: a valence, a holder, and a topic.
The valence, which applies specifically to judg-
ment opinions and not beliefs, is the value of the
judgment. In our framework, we consider the fol-
lowing valences: positive, negative, and neutral.
The holder of an opinion is the person, organiza-
tion or group whose opinion is expressed. Finally,
the topic is the event or entity about which the
opinion is held.

In previous work, Choi et al. (2005) identify
opinion holders (sources) using Conditional Ran-
dom Fields (CRF) and extraction patterns. They
define the opinion holder identification problem as
a sequence tagging task: given a sequence of words
(nxxx L21) in a sentence, they generate a se-
quence of labels (nyyy L21) indicating whether
the word is a holder or not. However, there are
many cases where multiple opinions are expressed
in a sentence each with its own holder. In those
cases, finding opinion holders for each individual
expression is necessary. In the corpus they used,
48.5% of the sentences which contain an opinion
have more than one opinion expression with multi-
ple opinion holders. This implies that multiple
opinion expressions in a sentence occur signifi-
cantly often. A major challenge of our work is
therefore not only to focus on sentence with only
one opinion, but also to identify opinion holders
when there is more than one opinion expressed in a
sentence. For example, consider the sentence “In
relation to Bush’s axis of evil remarks, the German
Foreign Minister also said, Allies are not satellites,
and the French Foreign Minister caustically criti-
cized that the United States’ unilateral, simplistic
worldview poses a new threat to the world”. Here,
“the German Foreign Minister” should be the
holder for the opinion “Allies are not satellites”
and “the French Foreign Minister” should be the
holder for “caustically criticized”.

In this paper, we introduce a methodology for
analyzing judgment opinions. We decompose the
task into four parts: 1) recognizing the opinion; 2)
identifying the valence; 3) identifying the holder;
and 4) identifying the topic. For the purposes of

this paper, we address the first three parts and
leave the last for future work. Opinions can be ex-
tracted from various granularities such as a word, a
sentence, a text, or even multiple texts. Each is
important, but we focus our attention on word-
level opinion detection (Section 2.1) and the detec-
tion of opinions in short emails (Section 3). We
evaluate our methodology using intrinsic and ex-
trinsic measures.

The remainder of the paper is organized as fol-
lows. In the next section, we describe our method-
ology addressing the three steps described above,
and in Section 4 we present our experimental re-
sults. We conclude with a discussion of future
work.

2 Analysis of Judgment Opinions

In this section, we first describe our methodology
for detecting opinion bearing words and for identi-
fying their valence, which is described in Section
2.1. Then, in Section 2.2, we describe our algo-
rithm for identifying opinion holders. In Section 3,
we show how to use our methodology for detecting
opinions in short emails.

2.1 Detecting Opinion-Bearing Words
and Identifying Valence

We introduce an algorithm to classify a word as
being positive, negative, or neutral classes. This
classifier can be used for any set of words of inter-
est and the resulting words with their valence tags
can help in developing new applications such as a
public opinion monitoring system. We define an
opinion-bearing word as a word that carries a posi-
tive or negative sentiment directly such as “good”,
“bad”, “foolish”, “virtuous”, etc. In other words,
this is the smallest unit of opinion that can thereaf-
ter be used as a clue for sentence-level or text-level
opinion detection.

We treat word sentiment classification into Posi-
tive, Negative, and Neutral as a three-way classifi-
cation problem instead of a two-way classification
problem of Positive and Negative. By adding the
third class, Neutral, we can prevent the classifier
from assigning either positive or negative senti-
ment to weak opinion-bearing words. For example,
the word “central” that Hatzivassiloglou and
McKeown (1997) included as a positive adjective
is not classified as positive in our system. Instead

201

we mark it as “neutral” since it is a weak clue for
an opinion. If an unknown word has a strong rela-
tionship with the neutral class, we can therefore
classify it as neutral even if it has some small con-
notation of Positive or Negative as well.

Approach: We built a word sentiment classifier
using WordNet and three sets of positive, negative,
and neutral words tagged by hand. Our insight is
that synonyms of positive words tend to have posi-
tive sentiment. We expanded those manually se-
lected seed words of each sentiment class by
collecting synonyms from WordNet. However, we
cannot simply assume that all the synonyms of
positive words are positive since most words could
have synonym relationships with all three senti-
ment classes. This requires us to calculate the
closeness of a given word to each category and
determine the most probable class. The following
formula describes our model for determining the
category of a word:

(1)).....,|(maxarg)|(maxarg 21 n
cc

synsynsyncPwcP ≅

where c is a category (Positive, Negative, or Neu-
tral) and w is a given word; synn is a WordNet
synonym of the word w. We calculate this close-
ness as follows;

(2))|()(maxarg

)|()(maxarg

)|()(maxarg)|(maxarg

1

))(,(

 ...3 2 1

∏
=

=

=

=

m

k

wsynsetfcount
k

c

n
c

cc

kcfPcP

csynsynsynsynPcP

cwPcPwcP

where kf is the kth feature of class c which is also a
member of the synonym set of the given word w.
count(fk ,synset(w)) is the total number of occur-
rences of the word feature fk in the synonym set of
word w. In section 4.1, we describe our manually
annotated dataset which we used for seed words
and for our evaluation.

2.2 Identifying Opinion Holders

Despite successes in identifying opinion expres-
sions and subjective words/phrases (See Section
1), there has been less achievement on the factors
closely related to subjectivity and polarity, such as
identifying the opinion holder. However, our re-
search indicates that without this information, it is
difficult, if not impossible, to define ‘opinion’ ac-
curately enough to obtain reasonable inter-
annotator agreement. Since these factors co-occur
and mutually reinforce each other, the question
“Who is the holder of this opinion?” is as impor-

tant as “Is this an opinion?” or “What kind of opin-
ion is expressed here?”.

In this section, we describe the automated iden-
tification for opinion holders. We define an opin-
ion holder as an entity (person, organization,
country, or special group of people) who expresses
explicitly or implicitly the opinion contained in the
sentence.

Previous work that is related to opinion holder
identification is (Bethard et al. 2004) who identify
opinion propositions and holders. However, their
opinion is restricted to propositional opinion and
mostly to verbs. Another related work is (Choi et al.
2005) who use the MPQA corpus2 to learn patterns
of opinion sources using a graphical model and
extraction pattern learning. However, they have a
different task definition from ours. They define the
task as identifying opinion sources (holders) given
a sentence, whereas we define it as identifying
opinion sources given an opinion expression in a
sentence. We discussed their work in Section 1.

Data: As training data, we used the MPQA cor-
pus (Wilson and Wiebe, 2003), which contains
news articles manually annotated by 5 trained an-
notators. They annotated 10657 sentences from
535 documents, in four different aspects: agent,
expressive-subjectivity, on, and inside. Expressive-
subjectivity marks words and phrases that indi-
rectly express a private state that is defined as a
term for opinions, evaluations, emotions, and
speculations. The on annotation is used to mark
speech events and direct expressions of private
states. As for the holder, we use the agent of the
selected private states or speech events. While
there are many possible ways to define what opin-
ion means, intuitively, given an opinion, it is clear
what the opinion holder means. Table 1 shows an
example of the annotation. In this example, we
consider the expression “the U.S. government ‘is
the source of evil’ in the world” with an expres-

2 http://www.cs.pitt.edu/~wiebe/pubs/ardasummer02/

Sentence

Iraqi Vice President Taha Yassin Rama-
dan, responding to Bush’s ‘axis of evil’
remark, said the U.S. government ‘is the
source of evil’ in the world.

Expressive
subjectivity

the U.S. government ‘is the source of evil’
in the world

Strength Extreme
Source Iraqi Vice President Taha Yassin Ramadan

Table 1: Annotation example

202

sive-subjectivity tag as an opinion of the holder
“Iraqi Vice President Taha Yassin Ramadan”.

Approach: Since more than one opinion may be
expressed in a sentence, we have to find an opinion
holder for each opinion expression. For example,
in a sentence “A thinks B’s criticism of T is
wrong”, B is the holder of “the criticism of T”,
whereas A is the person who has an opinion that
B’s criticism is wrong. Therefore, we define our
task as finding an opinion holder, given an opinion
expression. Our earlier work (ref suppressed) fo-
cused on identifying opinion expressions within
text. We employ that system in tandem with the
one described here.

To learn opinion holders automatically, we use a
Maximum Entropy model. Maximum Entropy
models implement the intuition that the best model
is the one that is consistent with the set of con-
straints imposed by the evidence but otherwise is
as uniform as possible (Berger et al. 1996). There
are two ways to model the problem with ME: clas-
sification and ranking. Classification allocates each
holder candidate to one of a set of predefined
classes while ranking selects a single candidate as
answer. This means that classification modeling3
can select many candidates as answers as long as
they are marked as true, and does not select any
candidate if every one is marked as false. In con-
trast, ranking always selects the most probable
candidate as an answer, which suits our task better.
Our earlier experiments showed poor performance
with classification modeling, an experience also
reported for Question Answering (Ravichandran et
al. 2003).

We modeled the problem to choose the most
probable candidate that maximizes a given condi-
tional probability distribution, given a set of holder
candidates h

1
h

2
. . . h

N
and opinion expression e.

The conditional probability P h h
1

h
2
. . . h

N
, e

can be calculated based on K feature func-
tions f

k
h , h

1
h

2
. .. h

N
, e . We write a decision rule

for the ranking as follows:
{ }

{ }]e),hhh(h,fλ[=

e)],hhh|[P(hh

K

=k
Nkk

h

N
h

∑

=

1
21

21

...argmax

...argmax

Each kλ is a model parameter indicating the
weight of its feature function.

3 In our task, there are two classes: holder and non-holder.

Figure 1 illustrates our holder identification sys-
tem. First, the system generates all possible holder
candidates, given a sentence and an opinion ex-
pression <E>. After parsing the sentence, it ex-
tracts features such as the syntactic path
information between each candidate <H> and the
expression <E> and a distance between <H> and
<E>. Then it ranks holder candidates according to
the score obtained by the ME ranking model. Fi-
nally the system picks the candidate with the high-
est score. Below, we describe in turn how to select
holder candidates and how to select features for the
training model.

Holder Candidate Selection: Intuitively, one
would expect most opinion holders to be named
entities (PERSON or ORGANIZATION)4. However,
other common noun phrases can often be opinion
holders, such as “the leader”, “three nations”, and
“the Arab and Islamic world”. Sometimes, pro-
nouns like he, she, and they that refer to a PERSON,
or it that refers to an ORGANIZATION or country,
can be an opinion holder. In our study, we consider
all noun phrases, including common noun phrases,
named entities, and pronouns, as holder candidates.

Feature Selection: Our hypothesis is that there
exists a structural relation between a holder <H>
and an expression <E> that can help to identify
opinion holders. This relation may be represented
by lexical-level patterns between <H> and <E>,
but anchoring on surface words might run into the
data sparseness problem. For example, if we see
the lexical pattern “<H> recently criticized <E>” in
the training data, it is impossible to match the ex-
pression “<H> yesterday condemned <E>”. These,
however, have the same syntactic features in our

4 We use BBN’s named entity tagger IdentiFinder to collect
named entities.

Sentence : w1 w2 w3 w4 w5 w6 w7 w8 w9 … wn
Opinion expression <E> : w6 w7 w8

… w2 ... w4 w5 w6 w7 w8 … w11 w12 w13 … w18 … w23 w24 w25 ..

 C1 C2 <E> C3 C4 C5

given

Candidate
holder

selection

Feature
extraction:

Parsing

C1 C2 <E> C3 C4 C5

Rank the candidates by
ME model 1.C1 2. C5 3.C3 4.C2 5.C4

Pick the best candidate as a holder C1

Figure 1: Overall system architecture

203

model. We therefore selected structural features
from a deep parse, using the Charniak parser.

After parsing the sentence, we search for the
lowest common parent node of the words in <H>
and <E> respectively (<H> and <E> are mostly
expressed with multiple words). A lowest common
parent node is a non-terminal node in a parse tree
that covers all the words in <H> and <E>. Figure 2
shows a parsed example of a sentence with the
holder “China’s official Xinhua news agency” and
the opinion expression “accusing”. In this example,
the lowest common parent of words in <H> is the
bold NP and the lowest common parent of <E> is
the bold VBG. We name these nodes Hhead and
Ehead respectively. After finding these nodes, we
label them by subscript (e.g., NPH and VBGE) to
indicate they cover <H> and <E>. In order to see
how Hhead and Ehead are related to each other in
the parse tree, we define another node, HEhead,
which covers both Hhead and Ehead. In the exam-
ple, HEhead is S at the top of the parse tree since it
covers both NPH and VBGE. We also label S by
subscript as SHE.

To express tree structure for ME training, we
extract path information between <H> and <E>. In
the example, the complete path from Hhead to
Ehead is “<H> NP S VP S S VP VBG <E>”. How-
ever, representing each complete path as a single
feature produces so many different paths with low
frequencies that the ME system would learn
poorly. Therefore, we split the path into three
parts: HEpath, Hpath an Epath. HEpath is defined
as a path from HEhead to its left and right child
nodes that are also parents of Hhead and Ehead.
Hpath is a path from Hhead and one of its ancestor
nodes that is a child of HEhead. Similarly, Epath is

defined as a path from Ehead to one of its ances-
tors that is also a child of HEhead. With this split-
ting, the system can work when any of HEpath,
Hpath or Epath appeared in the training data, even
if the entire path from <H> to <E> is unseen. Table
2 summarizes these concepts with two holder can-
didate examples in the parse tree of Figure 2.

We also include two non-structural features. The
first is the type of the candidate, with values NP,
PERSON, ORGANIZATION, and LOCATION. The
second feature is the distance between <H> and
<E>, counted in parse tree words. This is moti-
vated by the intuition that holder candidates tend to
lie closer to their opinion expression. All features
are listed in Table 3. We describe the performance
of the system in Section 4.

Candidate 1 Candidate 2
 China’s official Xinu-

hua news agency Bush

Hhead NPH NNPH
Ehead VBGE VBGE
HEhead SHE VPHE
Hpath NPH NNPH NPH NPH

NPH PPH
Epath VBGE VPE SE SE VPE VBGE VPE SE SE
HEpath SHE NPH VPE VPHE PPH SE

Table 2: Heads and paths for the Figure 2 example

Features Description
F1 Type of <H>
F2 HEpath
F3 Hpath
F4 Epath
F5 Distance between <H> and <E>

Table 3: Features for ME training

NP ADVP VP

S

.
NP JJ

NNP NNNN

NNP POS

RB
VBD PP

PP

,

NPIN

NNP

NPIN

PPNP

NNNP NPIN

S

S
official

China ‘s

Xinhua news agency

also

weighed

in

sunday

on

NNP POS

choice

Bush ‘s

of NNS

words

VP

VBG

PPNP

accusing
the

DT NN
IN S

president

of VP

VBG NP PP

orchestrating

public opinion

JJ NN In advance of possible
strikes against the three

countries in an expansion of
the war against terrorism

Figure 2: A parsing example

204

Model 1

· Translate a German email to English
· Apply English opinion-bearing words

Model 2
· Translate English opinion-bearing words to
German

· Analyze a German email using the German
opinion-bearing words.

Table 4: Two models of German Email opinion
analysis system

3 Applying our Methodology to German
Emails

In this section, we describe a German email analy-
sis system into which we included the opinion-
bearing words from Section 2.1 to detect opinions
expressed in emails. This system is part of a col-
laboration with the EU-funded project QUALEG
(Quality of Service and Legitimacy in eGovern-
ment) which aims at enabling local governments to
manage their policies in a transparent and trustable
way5. For this purpose, local governments should
be able to measure the performance of the services
they offer, by assessing the satisfaction of its citi-
zens. This need makes a system that can monitor
and analyze citizens’ emails essential. The goal of
our system is to classify emails as neutral or as
bearing a positive or negative opinion.

To generate opinion bearing words, we ran the
word sentiment classifier from Section 2.1 on 8011
verbs to classify them into 807 positive, 785 nega-
tive, and 6149 neutral. For 19748 adjectives, the
system classified them into 3254 positive, 303
negative, and 16191 neutral. Since our opinion-
bearing words are in English and our target system
is in German, we also applied a statistical word
alignment technique, GIZA++ 6 (Och and Ney
2000). Running it on version two of the European
Parliament corpus, we obtained statistics for
678,340 German-English word pairs and 577,362
English-German word pairs. Obtaining these two
lists of translation pairs allows us to convert Eng-
lish words to German, and German to English,
without a full document translation system. To util-
ize our English opinion-bearing words in a German
opinion analysis system, we developed two models,

5 http://www.qualeg.eupm.net/my_spip/index.php
6 http://www.fjoch.com/GIZA++.html

outlined in Table 4, each of which is triggered at
different points in the system.

In both models, however, we still need to decide
how to apply opinion-bearing words as clues to
determine the sentiment of a whole email. Our
previous work on sentence level sentiment classifi-
cation (ref suppressed) shows that the presence of
any negative words is a reasonable indication of a
negative sentence. Since our emails are mostly
short (the average number of words in each email
is 19.2) and we avoided collecting weak negative
opinion clue words, we hypothesize that our previ-
ous sentence sentiment classification study works
on the email sentiment analysis. This implies that
an email is negative if it contains more than certain
number of strong negative words. We tune this
parameter using our training data. Conversely, if
an email contains mostly positive opinion-bearing
words, we classify it as a positive email. We assign
neutral if an email does not contain any strong
opinion-bearing words.

Manually annotated email data was provided by
our joint research site. This data contains 71 emails
from citizens regarding a German festival. 26 of
them contained negative complaints, for example,
the lack of parking space, and 24 of them were
positive with complimentary comments to the or-
ganization. The rest of them were marked as
“questions” such as how to buy festival tickets,
“only text” of simple comments, “fuzzy”, and “dif-
ficult”. So, we carried system experiments on posi-
tive and negative emails with precision and recall.
We report system results in Section 4.

4 Experiment Results

In this section, we evaluate the three systems de-
scribed in Sections 2 and 3: detecting opinion-
bearing words and identifying valence, identifying
opinion holders, and the German email opinion
analysis system.

4.1 Detecting Opinion-bearing Words

We described a word classification system to de-
tect opinion-bearing words in Section 2.1. To ex-
amine its effectiveness, we annotated 2011 verbs
and 1860 adjectives, which served as a gold stan-
dard7. These words were randomly selected from a

7 Although nouns and adverbs may also be opinion-bearing,
we focus only on verbs and adjectives for this study.

205

collection of 8011 English verbs and 19748 Eng-
lish adjectives. We use training data as seed words
for the WordNet expansion part of our algorithm
(described in Section 2.1). Table 5 shows the dis-
tribution of each semantic class. In both verb and
adjective annotation, neutral class has much more
words than the positive or negative classes.

We measured the precision, recall, and F-score
of our system using 10-fold cross validation. Table
6 shows the results with 95% confidence bounds.
Overall (combining positive, neutral and negative),
our system achieved 77.7% ± 1.2% accuracy on
verbs and 69.1% ± 2.1% accuracy on adjectives.
The system has very high precision in the neutral
category for both verbs (97.2%) and adjectives
(89.5%), which we interpret to mean that our sys-
tem is really good at filtering non-opinion bearing
words. Recall is high in all cases but precision var-
ies; very high for neutral and relatively high for
negative but low for positive.

4.2 Opinion Holder Identification

We conducted experiments on 2822 <sentence;
opinion expression; holder> triples and divided the
data set into 10 <training; test> sets for cross vali-
dation. For evaluation, we consider to match either
fully or partially with the holder marked in the test
data. The holder matches fully if it is a single entity
(e.g., “Bush”). The holder matches partially when
it is part of the multiple entities that make up the
marked holder. For example, given a marked
holder “Michel Sidibe, Director of the Country and
Regional Support Department of UNAIDS”, we

consider both “Michel Sidibe” and “Director of the
Country and Regional Support Department of
UNAIDS” as acceptable answers.

Our experiments consist of two parts based on
the candidate selection method. Besides the selec-
tion method we described in Section 2.2, we also
conducted a separate experiment by excluding pro-
nouns from the candidate list. With the second
method, the system always produces a non-
pronoun holder as an answer. This selection
method is useful in some Information Extraction
application that only cares non-pronoun holders.

We report accuracy (the percentage of correct
answers the system found in the test set) to evalu-
ate our system. We also report how many correct
answers were found within the top2 and top3 sys-
tem answers. Tables 7 and 8 show the system accu-
racy with and without considering pronouns as
alias candidates, respectively. Table 8 mostly
shows lower accuracies than Table 7 because test
data often has only a non-pronoun entity as a
holder and the system picks a pronoun as its an-
swer. Even if the pronoun refers the same entity
marked in the test data, the evaluation system
counts it as wrong because it does not match the
hand annotated holder.

To evaluate the effectiveness of our system, we
set the baseline as a system choosing the closest
candidate to the expression as a holder without the
Maximum Entropy decision. The baseline system
had an accuracy of only 21.3% for candidate selec-
tion over all noun phrases and 23.2% for candidate
selection excluding pronouns.

The results show that detecting opinion holders
is a hard problem, but adopting syntactic features
(F2, F3, and F4) helps to improve the system. A
promising avenue of future work is to investigate
the use of semantic features to eliminate noun

 Positive Negative Neutral Total
Verb 69 151 1791 2011

Adjective 199 304 1357 1860
Table 5: Word distribution in our gold standard

 Precision Recall F-score
V 20.5% ± 3.5% 82.4% ± 7.5% 32.3% ± 4.6% P
A 32.4% ± 3.8% 75.5% ± 6.1% 45.1% ± 4.4%
V 97.2% ± 0.6% 77.6% ± 1.4% 86.3% ± 0.7%

X
A 89.5% ± 1.7% 67.1% ± 2.7% 76.6% ± 2.1%
V 37.8% ± 4.9% 76.2% ± 8.0% 50.1% ± 5.6% N
A 60.0% ± 4.1% 78.5% ± 4.9% 67.8% ± 3.8%

Table 6: Precision, recall, and F-score on word va-
lence categorization for Positive (P), Negative (N)
and Neutral (X) verbs (V) and adjectives (A) (with
95% confidence intervals)

 Baseline F5 F15 F234 F12345
Top1 23.2% 21.8% 41.6% 50.8% 52.7%
Top2 39.7% 61.9% 66.3% 67.9%
Top3 52.2% 72.5% 77.1% 77.8%

Table 7: Opinion holder identification results
(excluding pronouns from candidates)

 Baseline F5 F15 F234 F12345
Top1 21.3% 18.9% 41.8% 47.9% 50.6%
Top2 37.9% 61.6% 64.8% 66.7%
Top3 51.2% 72.3% 75.3% 76.0%

Table 8: Opinion holder identification results (All
noun phrases as candidates)

206

phrases such as “cheap energy subsidies” or “pos-
sible strikes” from the candidate set before we run
our ME model, since they are less likely to be an
opinion holder than noun phrases like “three na-
tions” or “Palestine people.”

4.3 German Emails

For our experiment, we performed 7-fold cross
validation on a set of 71 emails. Table 9 shows the
average precision, recall, and F-score. Results
show that our system identifies negative emails
(complaints) better than praise. When we chose a
system parameter for the focus, we intended to find
negative emails rather than positive emails because
officials who receive these emails need to act to
solve problems when people complain but they
have less need to react to compliments. By high-
lighting high recall of negative emails, we may
misclassify a neutral email as negative but there is
also less chance to neglect complaints.

Category Model1 Model2

Precision 0.72 0.55
Recall 0.40 0.65

Positive
(P)

F-score 0.51 0.60
Precision 0.55 0.61
Recall 0.80 0.42

Negative
(N)

F-score 0.65 0.50
Table 9: German email opinion analysis system results

5 Conclusion and Future Work

In this paper, we presented a methodology for ana-
lyzing judgment opinions, which we define as
opinions consisting of a valence, a holder, and a
topic. We presented models for recognizing sen-
tences containing judgment opinions, identifying
the valence of the opinion, and identifying the
holder of the opinion. Remaining is to also finally
identify the topic of the opinion. Past tests with
human annotators indicate that the accuracy of
identifying valence, holder and topic is much in-
creased when all three are being done simultane-
ously. We plan to investigate a joint model to
verify this intuition.

Our past work indicated that, for newspaper
texts, it is feasible for annotators to identify judg-
ment opinion sentences and for them to identify
their holders and judgment valences. It is encour-
aging to see that we achieved good results on a
new genre − emails sent from citizens to a city co-

unsel − and in a new language, German.
This paper presents a computational framework

for analyzing judgment opinions. Even though
these are the most common opinions, it is a pity
that the research community remains unable to de-
fine belief opinions (i.e., those opinions that have
values such as true, false, possible, unlikely, etc.)
with high enough inter-annotator agreement. Only
once we properly define belief opinion will we be
capable of building a complete opinion analysis
system.

References
Berger, A, S. Della Pietra, and V. Della Pietra. 1996. A Maximum

Entropy Approach to Natural Language. Computational Linguis-
tics 22(1).

Bethard, S., H. Yu, A. Thornton, V. Hatzivassiloglou, and D. Jurafsky.
2004. Automatic Extraction of Opinion Propositions and their
Holders. AAAI Spring Symposium on Exploring Attitude and Affect
in Text.

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. Proc. of
NAACL-2000.

Choi, Y., C. Cardie, E. Riloff, and S. Patwardhan. 2005. Identifying
Sources of Opinions with Conditional Random Fields and Extrac-
tion Patterns. Proc. of Human Language Technology Confer-
ence/Conference on Empirical Methods in Natural Language
Processing (HLT-EMNLP 2005).

Esuli, A. and F. Sebastiani. 2005. Determining the semantic orienta-
tion of terms through gloss classification. Proc. of CIKM-05, 14th
ACM International Conference on Information and Knowledge
Management.

Hatzivassiloglou, V. and McKeown, K. (1997). Predicting the seman-
tic orientation of adjectives. Proc. 35th Annual Meeting of the
Assoc. for Computational Linguistics (ACL-EACL 97.

Hu, M. and Liu, B. 2004. Mining and summarizing customer reviews.
Proc. of KDD’04. pp.168 - 177

Och, F.J. 2002. Yet Another MaxEnt Toolkit: YASMET
http://wasserstoff.informatik.rwth-aachen.de/Colleag ues/och/

Och, F.J and Ney, H. 2000. Improved statistical alignment models.
Proc. of ACL-2000, pp. 440–447, Hong Kong, China.

Pang, B, L. Lee, and S. Vaithyanathan. 2002. Thumbs up? Sentiment
Classification using Machine Learning Techniques. Proc. of
EMNLP 2002.

Ravichandran, D., E. Hovy, and F.J. Och. 2003. Statistical QA - clas-
sifier vs re-ranker: What’s the difference? Proc. of the ACL Work-
shop on Multilingual Summarization and Question Answering.

Riloff, E. and J. Wiebe. 2003. Learning Extraction Patterns for Sub-
jective Expressions. Proc. of EMNLP-03.

Turney, P. 2002. Thumbs Up or Thumbs Down? Semantic Orientation
Applied to Unsupervised Classification of Reviews. Proc. of the
40th Annual Meeting of the ACL, 417–424.

Wiebe, J, R. Bruce, and T. O’Hara. 1999. Development and use of a
gold standard data set for subjectivity classifications. Proc. of the
37th Annual Meeting of the Association for Computational Linguis-
tics (ACL-99), 246–253.

Wilson, T. and J. Wiebe. 2003. Annotating Opinions in the World
Press. Proc. of ACL SIGDIAL-03.

Yu, H. and V. Hatzivassiloglou. 2003. Towards Answering Opinion
Questions: Separating Facts from Opinions and Identifying the Po-
larity of Opinion Sentences. Proc. of EMNLP.

207

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 208–215,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning to Detect Conversation Focus of Threaded Discussions

Donghui Feng Erin Shaw Jihie Kim Eduard Hovy
Information Sciences Institute

University of Southern California
Marina del Rey, CA, 90292

{donghui, shaw, jihie, hovy}@isi.edu

Abstract

In this paper we present a novel feature-
enriched approach that learns to detect the
conversation focus of threaded discus-
sions by combining NLP analysis and IR
techniques. Using the graph-based algo-
rithm HITS, we integrate different fea-
tures such as lexical similarity, poster
trustworthiness, and speech act analysis of
human conversations with feature-
oriented link generation functions. It is
the first quantitative study to analyze hu-
man conversation focus in the context of
online discussions that takes into account
heterogeneous sources of evidence. Ex-
perimental results using a threaded dis-
cussion corpus from an undergraduate
class show that it achieves significant per-
formance improvements compared with
the baseline system.

1 Introduction

Threaded discussion is popular in virtual cyber
communities and has applications in areas such as
customer support, community development, inter-
active reporting (blogging) and education. Discus-
sion threads can be considered a special case of
human conversation, and since we have huge re-
positories of such discussion, automatic and/or
semi-automatic analysis would greatly improve the
navigation and processing of the information.

A discussion thread consists of a set of messages
arranged in chronological order. One of the main
challenges in the Question Answering domain is
how to extract the most informative or important
message in the sequence for the purpose of answer-
ing the initial question, which we refer to as the

conversation focus in this paper. For example,
people may repeatedly discuss similar questions in
a discussion forum and so it is highly desirable to
detect previous conversation focuses in order to
automatically answer queries (Feng et al., 2006).

Human conversation focus is a hard NLP (Natu-
ral Language Processing) problem in general be-
cause people may frequently switch topics in a real
conversation. The threaded discussions make the
problem manageable because people typically fo-
cus on a limited set of issues within a thread of a
discussion. Current IR (Information Retrieval)
techniques are based on keyword similarity meas-
ures and do not consider some features that are
important for analyzing threaded discussions. As a
result, a typical IR system may return a ranked list
of messages based on keyword queries even if,
within the context of a discussion, this may not be
useful or correct.

Threaded discussion is a special case of human
conversation, where people may express their
ideas, elaborate arguments, and answer others’
questions; many of these aspects are unexplored by
traditional IR techniques. First, messages in
threaded discussions are not a flat document set,
which is a common assumption for most IR sys-
tems. Due to the flexibility and special characteris-
tics involved in human conversations, messages
within a thread are not necessarily of equal impor-
tance. The real relationships may differ from the
analysis based on keyword similarity measures,
e.g., if a 2nd message “corrects” a 1st one, the 2nd

message is probably more important than the 1st.
IR systems may give different results. Second,
messages posted by different users may have dif-
ferent degrees of correctness and trustworthiness,
which we refer to as poster trustworthiness in this
paper. For instance, a domain expert is likely to be
more reliable than a layman on the domain topic.

208

In this paper we present a novel feature-enriched
approach that learns to detect conversation focus of
threaded discussions by combining NLP analysis
and IR techniques. Using the graph-based algo-
rithm HITS (Hyperlink Induced Topic Search,
Kleinberg, 1999), we conduct discussion analysis
taking into account different features, such as lexi-
cal similarity, poster trustworthiness, and speech
act relations in human conversations. We generate
a weighted threaded discussion graph by applying
feature-oriented link generation functions. All the
features are quantified and integrated as part of the
weight of graph edges. In this way, both quantita-
tive features and qualitative features are combined
to analyze human conversations, specifically in the
format of online discussions.

To date, it is the first quantitative study to ana-
lyze human conversation that focuses on threaded
discussions by taking into account heterogeneous
evidence from different sources. The study de-
scribed here addresses the problem of conversation
focus, especially for extracting the best answer to a
particular question, in the context of an online dis-
cussion board used by students in an undergraduate
computer science course. Different features are
studied and compared when applying our approach
to discussion analysis. Experimental results show
that performance improvements are significant
compared with the baseline system.

The remainder of this paper is organized as fol-
lows: We discuss related work in Section 2. Sec-
tion 3 presents thread representation and the
weighted HITS algorithm. Section 4 details fea-
ture-oriented link generation functions. Compara-
tive experimental results and analysis are given in
Section 5. We discuss future work in Section 6.

2 Related Work

Human conversation refers to situations where two
or more participants freely alternate in speaking
(Levinson, 1983). What makes threaded discus-
sions unique is that users participate asynchro-
nously and in writing. We model human
conversation as a set of messages in a threaded
discussion using a graph-based algorithm.

Graph-based algorithms are widely applied in
link analysis and for web searching in the IR com-
munity. Two of the most prominent algorithms are
Page-Rank (Brin and Page, 1998) and the HITS
algorithm (Kleinberg, 1999). Although they were

initially proposed for analyzing web pages, they
proved useful for investigating and ranking struc-
tured objects. Inspired by the idea of graph based
algorithms to collectively rank and select the best
candidate, research efforts in the natural language
community have applied graph-based approaches
on keyword selection (Mihalcea and Tarau, 2004),
text summarization (Erkan and Radev, 2004; Mi-
halcea, 2004), word sense disambiguation (Mihal-
cea et al., 2004; Mihalcea, 2005), sentiment
analysis (Pang and Lee, 2004), and sentence re-
trieval for question answering (Otterbacher et al.,
2005). However, until now there has not been any
published work on its application to human con-
versation analysis specifically in the format of
threaded discussions. In this paper, we focus on
using HITS to detect conversation focus of
threaded discussions.

Rhetorical Structure Theory (Mann and Thom-
son, 1988) based discourse processing has attracted
much attention with successful applications in sen-
tence compression and summarization. Most of the
current work on discourse processing focuses on
sentence-level text organization (Soricut and
Marcu, 2003) or the intermediate step (Sporleder
and Lapata, 2005). Analyzing and utilizing dis-
course information at a higher level, e.g., at the
paragraph level, still remains a challenge to the
natural language community. In our work, we util-
ize the discourse information at a message level.

Zhou and Hovy (2005) proposed summarizing
threaded discussions in a similar fashion to multi-
document summarization; but then their work does
not take into account the relative importance of
different messages in a thread. Marom and Zuker-
man (2005) generated help-desk responses using
clustering techniques, but their corpus is composed
of only two-party, two-turn, conversation pairs,
which precludes the need to determine relative im-
portance as in a multi-ply conversation.

In our previous work (Feng et al., 2006), we im-
plemented a discussion-bot to automatically an-
swer student queries in a threaded discussion but
extract potential answers (the most informative
message) using a rule-based traverse algorithm that
is not optimal for selecting a best answer; thus, the
result may contain redundant or incorrect informa-
tion. We argue that pragmatic knowledge like
speech acts is important in conversation focus
analysis. However, estimated speech act labeling
between messages is not sufficient for detecting

209

human conversation focus without considering
other features like author information. Carvalho
and Cohen (2005) describe a dependency-network
based collective classification method to classify
email speech acts. Our work on conversation focus
detection can be viewed as an immediate step fol-
lowing automatic speech act labeling on discussion
threads using similar collective classification ap-
proaches.

We next discuss our approach to detect conver-
sation focus using the graph-based algorithm HITS
by taking into account heterogeneous features.

3 Conversation Focus Detection

In threaded discussions, people participate in a
conversation by posting messages. Our goal is to
be able to detect which message in a thread con-
tains the most important information, i.e., the focus
of the conversation. Unlike traditional IR systems,
which return a ranked list of messages from a flat
document set, our task must take into account
characteristics of threaded discussions.

First, messages play certain roles and are related
to each other by a conversation context. Second,
messages written by different authors may vary in
value. Finally, since postings occur in parallel, by
various people, message threads are not necessarily
coherent so the lexical similarity among the mes-
sages should be analyzed. To detect the focus of
conversation, we integrate a pragmatics study of
conversational speech acts, an analysis of message
values based on poster trustworthiness and an
analysis of lexical similarity. The subsystems that
determine these three sources of evidence comprise
the features of our feature-based system.

Because each discussion thread is naturally rep-
resented by a directed graph, where each message
is represented by a node in the graph, we can apply
a graph-based algorithm to integrate these sources
and detect the focus of conversation.

3.1 Thread Representation

A discussion thread consists of a set of messages
posted in chronological order. Suppose that each
message is represented by mi, i =1,2,…, n. Then
the entire thread is a directed graph that can be rep-
resented by G= (V, E), where V is the set of nodes
(messages), V= {mi,i=1,...,n}, and E is the set of
directed edges. In our approach, the set V is auto-
matically constructed as each message joins in the

discussion. E is a subset of VxV. We will discuss
the feature-oriented link generation functions that
construct the set E in Section 4.

We make use of speech act relations in generat-
ing the links. Once a speech act relation is identi-
fied between two messages, links will be generated
using generation functions described in next sec-
tion. When mi is a message node in the thread
graph, VmF i ⊂)(represents the set of nodes that
node mi points to (i.e., children of mi), and

VmB i ⊂)(represents the set of nodes that point to
mi (i.e., parents of mi).

3.2 Graph-Based Ranking Algorithm: HITS

Graph-based algorithms can rank a set of objects in
a collective way and the affect between each pair
can be propagated into the whole graph iteratively.
Here, we use a weighted HITS (Kleinberg, 1999)
algorithm to conduct message ranking.

Kleinberg (1999) initially proposed the graph-
based algorithm HITS for ranking a set of web
pages. Here, we adjust the algorithm for the task of
ranking a set of messages in a threaded discussion.
In this algorithm, each message in the graph can be
represented by two identity scores, hub score and
authority score. The hub score represents the qual-
ity of the message as a pointer to valuable or useful
messages (or resources, in general). The authority
score measures the quality of the message as a re-
source itself. The weighted iterative updating com-
putations are shown in Equations 1 and 2.

∑
∈

+ =
)(

1)(*)(
ij mFm

j
r

iji
r mauthoritywmhub (1)

∑
∈

+ =
)(

1)(*)(
ij mBm

j
r

jii
r mhubwmauthority (2)

where r and r+1 are the numbers of iterations.
The number of iterations required for HITS to

converge depends on the initialization value for
each message node and the complexity of the
graph. Graph links can be induced with extra
knowledge (e.g. Kurland and Lee, 2005). To help
integrate our heterogeneous sources of evidence
with our graph-based HITS algorithm, we intro-
duce link generation functions for each of the three
features, (gi, i=1, 2, 3), to add links between mes-
sages.

4 Feature-Oriented Link Generation

210

Conversation structures have received a lot of at-
tention in the linguistic research community (Lev-
inson, 1983). In order to integrate conversational
features into our computational model, we must
convert a qualitative analysis into quantitative
scores. For conversation analysis, we adopted the
theory of Speech Acts proposed by (Austin, 1962;
Searle, 1969) and defined a set of speech acts (SAs)
that relate every pair of messages in the corpus.
Though a pair of messages may only be labeled
with one speech act, a message can have multiple
SAs with other messages.

We group speech acts by function into three
categories, as shown in Figure 1. Messages may
involve a request (REQ), provide information
(INF), or fall into the category of interpersonal
(INTP) relationship. Categories can be further di-
vided into several single speech acts.

Figure 1. Categories of Message Speech Act.

The SA set for our corpus is given in Table 1. A
speech act may a represent a positive, negative or
neutral response to a previous message depending
on its attitude and recommendation. We classify
each speech act as a direction as POSITIVE (+),
NEGATIVE (−) or NEUTRAL, referred to as SA
Direction, as shown in the right column of Table 1.

The features we wish to include in our approach
are lexical similarity between messages, poster
trustworthiness, and speech act labels between
message pairs in our discussion corpus.

The feature-oriented link generation is con-
ducted in two steps. First, our approach examines
in turn all the speech act relations in each thread
and generates two types of links based on lexical
similarity and SA strength scores. Second, the sys-

tem iterates over all the message nodes and assigns
each node a self-pointing link associated with its
poster trustworthiness score. The three features are
integrated into the thread graph accordingly by the
feature-oriented link generation functions. Multiple
links with the same start and end points are com-
bined into one.
Speech

Act Name Description Dir.

ACK Acknowl-
edge

Confirm or
acknowledge +

CANS Complex
Answer

Give answer requiring a
full description of pro-
cedures, reasons, etc.

COMM Command Command or
announce

COMP Compli-
ment

Praise an argument or
suggestion +

CORR Correct Correct a wrong answer
or solution −

CRT Criticize Criticize an argument −

DESC Describe Describe a fact or
situation

ELAB Elaborate Elaborate on a previous
argument or question

OBJ Object Object to an argument
or suggestion −

QUES Question Ask question about a
specific problem

SANS Simple
Answer

Answer with a short
phrase or few words
(e.g. factoid, yes/no)

SUG Suggest Give advice or suggest a
solution

SUP Support Support an argument or
suggestion +

Table 1. Types of message speech acts in corpus.

4.1 Lexical Similarity

Discussions are constructed as people express
ideas, opinions, and thoughts, so that the text itself
contains information about what is being dis-
cussed. Lexical similarity is an important measure
for distinguishing relationships between message
pairs. In our approach, we do not compute the lexi-
cal similarity of any arbitrary pair of messages,
instead, we consider only message pairs that are
present in the speech act set. The cosine similarity
between each message pair is computed using the
TF*IDF technique (Salton, 1989).

Messages with similar words are more likely to
be semantically-related. This information is repre-
sented by term frequency (TF). However, those

Inform:
INF

Interpersonal:
INTP

COMM
QUES

Speech
Act Request:

REQ

ACK
COMP
CRT
OBJ
SUP

CANS
CORR
DESC
ELAB
SANS
SUG

211

with more general terms may be unintentionally
biased when only TF is considered so Inverse
Document Frequency (IDF) is introduced to miti-
gate the bias. The lexical similarity score can be
calculated using their cosine similarity.

),(cos_ ji
l mmsimW = (3)

For a given a speech act, SAij(mi→mj), connect-
ing message mi and mj, the link generation function
g1 is defined as follows:

)()(1
l

ijij WarcSAg = (4)
The new generated link is added to the thread
graph connecting message node mi and mj with a
weight of Wl.

4.2 Poster Trustworthiness

Messages posted by different people may have dif-
ferent degrees of trustworthiness. For example,
students who contributed to our corpus did not
seem to provide messages of equal value. To de-
termine the trustworthiness of a person, we studied
the responses to their messages throughout the en-
tire corpus. We used the percentage of POSITIVE
responses to a person’s messages to measure that
person’s trustworthiness. In our case, POSITIVE
responses, which are defined above, included SUP,
COMP, and ACK. In addition, if a person’s mes-
sage closed a discussion, we rated it POSITIVE.

Suppose the poster is represented by kperson ,
the poster score, pW , is a weight calculated by

))((
))(_(

)(
k

k
k

p

personfeedbackcount
personfeedbackpositivecount

personW =

 (5)
For a given single speech act, SAij(mi→mj), the

poster score indicates the importance of message
mi by itself and the generation function is given by

)()(2
p

iiij WarcSAg = (6)
The generated link is self-pointing, and contains
the strength of the poster information.

4.3 Speech Act Analysis

We compute the strength of each speech act in a
generative way, based on the author and trustwor-
thiness of the author. The strength of a speech act
is a weighted average over all authors.

)(
)(

)(
)()(k

P

person

persons personW
SAcount

SAcount
dirsignSAW

k

k∑= (7)

where the sign function of direction is defined with
Equation 8.

⎩
⎨
⎧−

=
 Otherwise 1

NEGATIVE isdir if 1
)(dirsign (8)

All SA scores are computed using Equation 7
and projected to [0, 1]. For a given speech act,
SAij(mi→mj), the generation function will generate
a weighted link in the thread graph as expressed in
Equation 9.

⎪⎩

⎪
⎨
⎧

=
 Otherwise)(

NEUTRAL is if)(
)(3 s

ij

ij
s

ii
ij Warc

SAWarc
SAg (9)

The SA scores represent the strength of the rela-
tionship between the messages. Depending on the
direction of the SA, the generated link will either
go from message mi to mj or from message mi to mi
(i.e., to itself). If the SA is NEUTRAL, the link will
point to itself and the score is a recommendation to
itself. Otherwise, the link connects two different
messages and represents the recommendation de-
gree of the parent to the child message.

5 Experiments

5.1 Experimental Setup

We tested our conversation-focus detection ap-
proach using a corpus of threaded discussions from
three semesters of a USC undergraduate course in
computer science. The corpus includes a total of
640 threads consisting of 2214 messages, where a
thread is defined as an exchange containing at least
two messages.

Length of thread Number of threads
3 139
4 74
5 47
6 30
7 13
8 11

Table 2. Thread length distribution.
From the complete corpus, we selected only

threads with lengths of greater than two and less
than nine (messages). Discussion threads with
lengths of only two would bias the random guess
of our baseline system, while discussion threads
with lengths greater than eight make up only 3.7%
of the total number of threads (640), and are the
least coherent of the threads due to topic-switching
and off-topic remarks. Thus, our evaluation corpus
included 314 threads, consisting of 1307 messages,
with an average thread length of 4.16 messages per

212

thread. Table 2 gives the distribution of the lengths
of the threads.

The input of our system requires the identifica-
tion of speech act relations between messages. Col-
lective classification approaches, similar to the
dependency-network based approach that Carvalho
and Cohen (2005) used to classify email speech
acts, might also be applied to discussion threads.
However, as the paper is about investigating how
an SA analysis, along with other features, can
benefit conversation focus detection, so as to avoid
error propagation from speech act labeling to sub-
sequent processing, we used manually-annotated
SA relationships for our analysis.

Code Frequency Percentage
(%)

ACK 53 3.96
CANS 224 16.73
COMM 8 0.6
COMP 7 0.52
CORR 20 1.49
CRT 23 1.72

DESC 71 5.3
ELAB 105 7.84
OBJ 21 1.57

QUES 450 33.61
SANS 23 1.72
SUG 264 19.72
SUP 70 5.23

Table 3. Frequency of speech acts.
The corpus contains 1339 speech acts. Table 3

gives the frequencies and percentages of speech
acts found in the data set. Each SA generates fea-
ture-oriented weighted links in the threaded graph
accordingly as discussed previously.

Number of best
answers

Number of threads

1 250
2 56
3 5
4 3

Table 4. Gold standard length distribution.
We then read each thread and choose the mes-

sage that contained the best answer to the initial
query as the gold standard. If there are multiple
best-answer messages, all of them will be ranked
as best, i.e., chosen for the top position. For exam-
ple, different authors may have provided sugges-

tions that were each correct for a specified
situation. Table 4 gives the statistics of the num-
bers of correct messages of our gold standard.

We experimented with further segmenting the
messages so as to narrow down the best-answer
text, under the assumption that long messages
probably include some less-than-useful informa-
tion. We applied TextTiling (Hearst, 1994) to seg-
ment the messages, which is the technique used by
Zhou and Hovy (2005) to summarize discussions.
For our corpus, though, the ratio of segments to
messages was only 1.03, which indicates that our
messages are relatively short and coherent, and that
segmenting them would not provide additional
benefits.
5.2 Baseline System

To compare the effectiveness of our approach with
different features, we designed a baseline system
that uses a random guess approach. Given a dis-
cussion thread, the baseline system randomly se-
lects the most important message. The result was
evaluated against the gold standard. The perform-
ance comparisons of the baseline system and other
feature-induced approaches are presented next.
5.3 Result Analysis and Discussion

We conducted extensive experiments to investigate
the performance of our approach with different
combinations of features. As we discussed in Sec-
tion 4.2, each poster acquires a trustworthiness
score based on their behavior via an analysis of the
whole corpus. Table 5 is a sample list of some
posters with their poster id, the total number of
responses (to their messages), the total number of
positive responses, and their poster scores pW .

Poster
ID

 Total
Response

 Positive
Response pW

193 1 1 1
93 20 18 0.9
38 15 12 0.8
80 8 6 0.75
47 253 182 0.719
22 3 2 0.667
44 9 6 0.667
91 6 4 0.667
147 12 8 0.667
32 10 6 0.6
190 9 5 0.556
97 20 11 0.55
12 2 1 0.5

Table 5. Sample poster scores.

213

Based on the poster scores, we computed the
strength score of each SA with Equation 7 and pro-
jected them to [0, 1]. Table 6 shows the strength
scores for all of the SAs. Each SA has a different
strength score and those in the NEGATIVE cate-
gory have smaller ones (weaker recommendation).

SA)(SAWs SA)(SAWs

CANS 0.8134 COMM 0.6534
DESC 0.7166 ELAB 0.7202
SANS 0.8281 SUG 0.8032
QUES 0.6230
ACK 0.6844 COMP 0.8081
SUP 0.8057

CORR 0.2543 CRT 0.1339
OBJ 0.2405

Table 6. SA strength scores.
We tested the graph-based HITS algorithm with

different feature combinations and set the error rate
to be 0.0001 to get the algorithm to converge. In
our experiments, we computed the precision score
and the MRR (Mean Reciprocal Rank) score
(Voorhees, 2001) of the most informative message
chosen (the first, if there was more than one). Ta-
ble 7 shows the performance scores for the system
with different feature combinations. The perform-
ance of the baseline system is shown at the top.

The HITS algorithm assigns both a hub score
and an authority score to each message node, re-
sulting in two sets of results. Scores in the HITS_
AUTHORITY rows of Table 7 represent the re-
sults using authority scores, while HITS_HUB
rows represent the results using hub scores.

Due to the limitation of thread length, the lower
bound of the MRR score is 0.263. As shown in the
table, a random guess baseline system can get a
precision of 27.71% and a MRR score of 0.539.

When we consider only lexical similarity, the
result is not so good, which supports the notion
that in human conversation context is often more
important than text at a surface level. When we
consider poster and lexical score together, the per-
formance improves. As expected, the best per-
formances use speech act analysis. More features
do not always improve the performance, for exam-
ple, the lexical feature will sometimes decrease
performance. Our best performance produced a
precision score of 70.38% and an MRR score of
0.825, which is a significant improvement over the

baseline’s precision score of 27.71% and its MRR
score of 0.539.

Algorithm &
Features

Correct
(out of 314)

Precision
(%) MRR

Baseline 87 27.71 0.539
Lexical 65 20.70 0.524
Poster 90 28.66 0.569
SA 215 68.47 0.819
Lexical +
Poster 91 28.98 0.565

Lexical +
SA 194 61.78 0.765

Poster +
SA 221 70.38 0.825

H
IT

S_
A

U
TH

O
R

IT
Y

Lexical +
Poster +
SA

212 67.52 0.793

Lexical 153 48.73 0.682
Poster 79 25.16 0.527
SA 195 62.10 0.771
Lexical +
Poster 158 50.32 0.693

Lexical +
SA 177 56.37 0.724

Poster +
SA 207 65.92 0.793

H
IT

S_
H

U
B

Lexical +
Poster +
SA

196 62.42 0.762

Table 7. System Performance Comparison.
Another widely-used graph algorithm in IR is

PageRank (Brin and Page, 1998). It is used to in-
vestigate the connections between hyperlinks in
web page retrieval. PageRank uses a “random
walk” model of a web surfer’s behavior. The surfer
begins from a random node mi and at each step
either follows a hyperlink with the probability of d,
or jumps to a random node with the probability of
(1-d). A weighted PageRank algorithm is used to
model weighted relationships of a set of objects.
The iterative updating expression is

∑ ∑∈
∈

+ +−=
)(

)(

1)(*)1()(
ij

jk

mBm
j

r

mFm
jk

ji
i

r mPR
w

w
ddmPR (10)

where r and r+1 are the numbers of iterations.

We also tested this algorithm in our situation,
but the best performance had a precision score of
only 47.45% and an MRR score of 0.669. It may
be that PageRank’s definition and modeling ap-
proach does not fit our situation as well as the
HITS approach. In HITS, the authority and hub-

214

based approach is better suited to human conversa-
tion analysis than PageRank, which only considers
the contributions from backward links of each
node in the graph.
6 Conclusions and Future Work

We have presented a novel feature-enriched ap-
proach for detecting conversation focus of threaded
discussions for the purpose of answering student
queries. Using feature-oriented link generation and
a graph-based algorithm, we derived a unified
framework that integrates heterogeneous sources
of evidence. We explored the use of speech act
analysis, lexical similarity and poster trustworthi-
ness to analyze discussions.

From the perspective of question answering, this
is the first attempt to automatically answer com-
plex and contextual discussion queries beyond fac-
toid or definition questions. To fully automate
discussion analysis, we must integrate automatic
SA labeling together with our conversation focus
detection approach. An automatic system will help
users navigate threaded archives and researchers
analyze human discussion.

Supervised learning is another approach to de-
tecting conversation focus that might be explored.
The tradeoff and balance between system perform-
ance and human cost for different learning algo-
rithms is of great interest. We are also exploring
the application of graph-based algorithms to other
structured-objects ranking problems in NLP so as
to improve system performance while relieving
human costs.

Acknowledgements
The work was supported in part by DARPA grant DOI-
NBC Contract No. NBCHC050051, Learning by Read-
ing, and in part by a grant from the Lord Corporation
Foundation to the USC Distance Education Network.
The authors want to thank Deepak Ravichandran, Feng
Pan, and Rahul Bhagat for their helpful suggestions
with the manuscript. We would also like to thank the
HLT-NAACL reviewers for their valuable comments.

References
Austin, J. 1962. How to do things with words. Cam-

bridge, Massachusetts: Harvard Univ. Press.
Brin, S. and Page, L. 1998. The anatomy of a large-

scale hypertextual web search engine. Computer
Networks and ISDN Systems, 30(1-7):107--117.

Carvalho, V.R. and Cohen, W.W. 2005. On the collec-
tive classification of email speech acts. In Proceed-
ings of SIGIR-2005, pp. 345-352.

Erkan, G. and Radev, D. 2004. Lexrank: graph-based
centrality as salience in text summarization. Journal
of Artificial Intelligence Research (JAIR).

Feng, D., Shaw, E., Kim, J., and Hovy, E.H. 2006. An
intelligent discussion-bot for answering student que-
ries in threaded discussions. In Proceedings of Intel-
ligent User Interface (IUI-2006), pp. 171-177.

Hearst, M.A. 1994. Multi-paragraph segmentation of
expository text. In Proceedings of ACL-1994.

Kleinberg, J. 1999. Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5).

Kurland, O. and Lee L. 2005. PageRank without hyper-
links: Structural re-ranking using links induced by
language models. In Proceedings of SIGIR-2005.

Levinson, S. 1983. Pragmatics. Cambridge Univ. Press.
Mann, W.C. and Thompson, S.A. 1988. Rhetorical

structure theory: towards a functional theory of text
organization. Text, 8 (3), pp. 243-281.

Marom, Y. and Zukerman, I. 2005. Corpus-based gen-
eration of easy help-desk responses. Technical Re-
port, Monash University. Available at:
http://www.csse.monash.edu.au/publications/2005/tr-
2005-166-full.pdf.

Mihalcea, R. 2004. Graph-based ranking algorithms for
sentence extraction, applied to text summarization. In
Companion Volume to ACL-2004.

Mihalcea, R. 2005. unsupervised large-vocabulary word
sense disambiguation with graph-based algorithms
for sequence data labeling. In HLT/EMNLP 2005.

Mihalcea, R. and Tarau, P. 2004. TextRank: bringing
order into texts. In Proceedings of EMNLP 2004.

Mihalcea, R., Tarau, P. and Figa, E. 2004. PageRank on
semantic networks, with application to word sense
disambiguation. In Proceedings of COLING 2004.

Otterbacher, J., Erkan, G., and Radev, D. 2005. Using
random walks for question-focused sentence re-
trieval. In Proceedings of HLT/EMNLP 2005.

Pang, B. and Lee, L. 2004. A sentimental education:
sentiment analysis using subjectivity summarization
based on minimum cuts. In ACL-2004.

Salton, G. 1989. Automatic Text Processing, The Trans-
formation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, Reading, MA, 1989.

Searle, J. 1969. Speech Acts. Cambridge: Cambridge
Univ. Press.

Soricut, R. and Marcu, D. 2003. Sentence level dis-
course parsing using syntactic and lexical informa-
tion. In Proceedings of HLT/NAACL-2003.

Sporleder, C. and Lapata, M. 2005. Discourse chunking
and its application to sentence compression. In Pro-
ceedings of HLT/EMNLP 2005.

Voorhees, E.M. 2001. Overview of the TREC 2001
question answering track. In TREC 2001.

Zhou, L. and Hovy, E.H. 2005. Digesting virtual “geek
”culture: the summarization of technical internet re-
lay chats. In Proceedings of ACL 2005.

215

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 216–223,
New York, June 2006.c©2006 Association for Computational Linguistics

Towards Automatic Scoring of Non-Native Spontaneous Speech

Klaus Zechner and Isaac I. Bejar
Educational Testing Service

Princeton, NJ, USA
(kzechner,ibejar)@ets.org

Abstract

This paper investigates the feasibility of
automated scoring of spoken English
proficiency of non-native speakers.
Unlike existing automated assessments
of spoken English, our data consists of
spontaneous spoken responses to
complex test items. We perform both a
quantitative and a qualitative analysis of
these features using two different
machine learning approaches. (1) We
use support vector machines to produce
a score and evaluate it with respect to a
mode baseline and to human rater
agreement. We find that scoring based
on support vector machines yields
accuracies approaching inter-rater
agreement in some cases. (2) We use
classification and regression trees to
understand the role of different features
and feature classes in the
characterization of speaking proficiency
by human scorers. Our analysis shows
that across all the test items most or all
the feature classes are used in the nodes
of the trees suggesting that the scores
are, appropriately, a combination of
multiple components of speaking
proficiency. Future research will
concentrate on extending the set of
features and introducing new feature
classes to arrive at a scoring model that
comprises additional relevant aspects of
speaking proficiency.

1 Introduction

While automated scoring of open-ended written
discourse has been approached by several

groups recently (Rudner & Gagne, 2001; Sher-
mis & Burstein, 2003), automated scoring of
spontaneous spoken language has proven to be
more challenging and complex. Spoken lan-
guage tests are still mostly scored by human rat-
ers. However, several systems exist that score
different aspects of spoken language; (Bernstein,
1999; C. Cucchiarini, H. Strik, & L. Boves,
1997a; Franco et al., 2000). Our work departs
from previous research in that our goal is to
study the feasibility of automating scoring for
spontaneous speech, that is, when the spoken
text is not known in advance.

We approach scoring here as the characteri-
zation of a speaker’s oral proficiency based on
features that can be extracted from a spoken re-
sponse to a well defined test question by means
of automatic speech recognition (ASR). We
further approach scoring as the construction of a
mapping from a set of features to a score scale,
in our case five discrete scores from 1 (least pro-
ficient) to 5 (most proficient). The set of fea-
tures and the specific mapping are motivated by
the concept of communicative competence
(Bachman, 1990; Canale & Swain, 1980;
Hymes, 1972). This means that the features in
the scoring system we are developing are meant
to characterize specific components of commu-
nicative competence, such as mastery of pronun-
ciation, fluency, prosodic, lexical, grammatical
and pragmatical subskills. The selection of fea-
tures is guided by an understanding of the nature
of speaking proficiency. We rely on the scoring
behavior of judges to evaluate the features (sec-
tion 8) as well as a convenient criterion for
evaluating the feasibility of automated scoring
based on those features (section 7). That is, the
role of human scorers in this context is to pro-
vide a standard for system evaluations (see sec-
tion 7), as well as to validate specific features
and feature classes chosen by the authors (sec-
tion 8). We use support vector machines (SVMs)

 1
216

to determine how well the features recover hu-
man scores. We collect performance data under
three different conditions, where features are
either based on actual recognizer output or on
forced alignment. (Forced alignment describes a
procedure in speech recognition where the rec-
ognizer is looking for the most likely path
through the Hidden Markov Models given a
transcription of the speech file by an experi-
enced transcriber. This helps, e.g., in finding
start and end times of words or phonemes.) We
then use classification and regression trees
(CART) as a means to evaluate the relative im-
portance and salience of our features. When the
classification criterion is a human score, as is the
case in this study, an inspection of the CART
tree can give us insights into the feature prefer-
ences a human judge might have in deciding on
a score.

The organization of this paper is as follows:
first, we discuss related work in spoken lan-
guage scoring. Next, we introduce the data of
our study and the speech recognizer used. In
section 5 we describe features we used for this
study. Section 6 describes the agreement among
raters for this data. Section 7 describes the SVM
analysis, section 8 the CART analysis. This is
followed by a discussion and then finally by
conclusions and an outlook on future work.

2 Related work

There has been previous work to characterize
aspects of communicative competence such as
fluency, pronunciation, and prosody. (Franco et
al., 2000) present a system for automatic evalua-
tion of pronunciation performance on a phone
level and a sentence level of native and non-
native speakers of English and other languages
(EduSpeak). Candidates read English text and a
forced alignment between the speech signal and
the ideal path through the Hidden Markov
Model (HMM) was computed. Next, the log
posterior probabilities for pronouncing a certain
phone at a certain position in the signal were
computed to achieve a local pronunciation score.
These scores are then combined with other
automatically derived measures such as the rate
of speech (number of words per second) or the
duration of phonemes to yield global scores.

(C. Cucchiarini, S. Strik, & L. Boves,
1997b)) and (Cucchiarini et al., 1997a)) describe
a system for Dutch pronunciation scoring along
similar lines. Their feature set, however, is more
extensive and contains, in addition to log likeli-
hood Hidden Markov Model scores, various du-
ration scores, and information on pauses, word
stress, syllable structure, and intonation. In an
evaluation, they find good agreement between
human scores and machine scores.

(Bernstein, 1999)) presents a test for spo-
ken English (SET-10) that has the following
types of items: reading, repetition, fill-in-the-
blank, opposites and open-ended answers. All
types except for the last are scored automatically
and a score is reported that can be interpreted as
an indicator of how native-like a speaker’s
speech is. In (Bernstein, DeJong, Pisoni, &
Townshend, 2000), an experiment is performed
to establish the generalizability of the SET-10
test. It is shown that this test’s output can suc-
cessfully be mapped to the Council of Europe’s
Framework for describing second language pro-
ficiency (North, 2000). This paper further re-
ports on studies done to correlate the SET-10
with two other tests of English proficiency,
which are scored by humans and where commu-
nicative competence is tested for. Correlations
were found to be between 0.73 and 0.88.

3 Data

The data we are using for the experiments
in this paper comes from a 2002 trial administra-
tion of TOEFLiBT® (Test Of English as a For-
eign Language—internet-Based Test) for non-
native speakers (LanguEdge ™). Item responses
were transcribed from the digital recording of
each response. In all there are 927 responses
from 171 speakers. Of these, 798 recordings
were from one of five main test items, identified
as P-A, P-C, P-T, P-E and P-W. The remaining
129 responses were from other questions. As
reported below, we use all 927 responses in the
adaptation of the speech recognizer but the SVM
and CART analyses are based on the 798 re-
sponses to the five test items. Of the five test
items, three are independent tasks (P-A, P-C, P-
T) where candidates have to talk freely about a
certain topic for 60 seconds. An example might
be “Tell me about your favorite teacher.” Two of

 2
217

the test items are integrated tasks (P-E, P-W)
where candidates first read or listen to some ma-
terial to which they then have to relate in their
responses (90 seconds speaking time). An ex-
ample might be that the candidates listen to a
conversational argument about studying at home
vs. studying abroad and then are asked to sum-
marize the advantages and disadvantages of both
points of view.

The textual transcription of our data set con-
tains about 123,000 words and the audio files are
in WAV format and recorded with a sampling
rate of 11025Hz and a resolution of 8 bit.

For the purpose of adaptation of the speech
recognizer, we split the full data (927 re-
cordings) into a training (596) and a test set (331
recordings). For the CART and SVM analyses
we have 511 files in the train and 287 files in
the eval set, summing up to 798. (Both data sets
are subsets from the ASR adaptation training
and test sets, respectively.) The transcriptions of
the audio files were done according to a tran-
scription manual derived from the German
VerbMobil project (Burger, 1995). A wide vari-
ety of disfluencies are accounted for, such as,
e.g., false starts, repetitions, fillers, or incom-
plete words. One single annotator transcribed
the complete corpus; for the purpose of testing
inter-coder agreement, a second annotator tran-
scribed about 100 audio files, which were ran-
domly selected from the complete set of 927
files. The disagreement between annotators,
measured as word error rate (WER = (substitu-
tions + deletions + insertions) / (substitutions +
deletions + correct)) was slightly above 20%
(only lexical entries were measured here). This
is markedly more disagreement than in other
corpora, e.g., in SwitchBoard (Meteer & al.,
1995) where disagreements in the order of 5%
are reported, but we have non-native speech
from speakers at different levels of proficiency
which is more challenging to transcribe.

4 Speech recognition system

Our speech recognizer is a gender-independent
Hidden Markov Model system that was trained

on 200 hours of dictation data by native speakers
of English. 32 cepstral coefficients are used; the
dictionary has about 30,000 entries. The sam-
pling rate of the recognizer is 16000Hz as op-
posed to 11025Hz for the LanguEdge™ corpus.
The recognizer can accommodate this difference
internally by up-sampling the input data stream.

As our speech recognition system was
trained on data quite different from our applica-
tion (dictation vs. spontaneous speech and native
vs. non-native speakers) we adapted the system
to the LanguEdge ™ corpus. We were able to
increase word accuracy on the unseen test set
from 15% before adaptation to 33% in the fully
adapted model (both acoustic and language
model adaptation).

5 Features

Our feature set, partly inspired by (Cucchiarini
et al., 1997a), focuses on low-level fluency fea-
tures, but also includes some features related to
lexical sophistication and to content. The feature
set also stems, in part, from the written guide-
lines used by human raters for scoring this data.
The features can be categorized as follows: (1)
Length measures, (2) lexical sophistication
measures, (3) fluency measures, (4) rate meas-
ures, and (5) content measures. Table 1 renders a
complete list of the features we computed, along
with a brief explanation. We do not claim these
features to provide a full characterization of
communicative competence; they should be seen
as a first step in this direction. The goal of the
research is to gradually build such a set of fea-
tures to eventually achieve as large a coverage
of communicative competence as possible. The
features are computed based on the output of the
recognition engine based on either forced align-
ment or on actual recognition. The output con-
sists of (a) start and end time of every token and
hence potential silence in between (used for
most features); (b) identity of filler words (for
disfluency-related features); and (c) word iden-
tity (for content features).

 3
218

Lexical counts and length measures
Segdur Total duration in seconds of all the utterances
Numutt Number of utterances in the response
Numwds Total number of word forms in the speech sample
Numdff Number of disfluencies (fillers)
Numtok Number of tokens = Numwds+Numdff
Lexical sophistication
Types Number of unique word forms in the speech sample
Ttratio Ratio Types/Numtok (type-token ratio, TTR)
Fluency measures
(based on pause information)
Numsil Number of silences, excluding silences between utterances
Silpwd Ratio Numsil/Numwds
Silmean Mean duration in seconds of all silences in a response to a test item
Silstddv Standard deviation of silence duration

Rate measures
Wpsec Number of words per second
Dpsec. Number of disfluencies per second
Tpsec Number of types per second
Silpsec. Number of silences per second
Content measures We first compute test-item-specific word vectors with the frequency

counts of all words occurring in the train set for each test item
(wvec_testitem). Then we generate for every item response a word
vector in kind (wvec_response) and finally compute the inner prod-
uct to yield a similarity score:
sim = wvec_testitem*wvec_response

Cvfull wvec_testitem*wvec_response
6 other Cv*-features As Cvfull but measure similarity to a subset of wvec_testitem, based

on the scores in the train set (e.g., “all responses with score 1”)
Cvlennorm Length-normalized Cvfull: Cvfull/Numwds

Table 1: List of features with definitions.

6 Inter-rater agreement

The training and scoring procedures followed
standard practices in large scale testing. Scorers
are trained to apply the scoring standards that
have been previously agreed upon by the devel-
opers of the test. The training takes the form of
discussing multiple instances of responses at
each score level. The scoring of the responses
used for training other raters is done by more
experienced scorers working closely with the
designers of the test.

All the 927 speaking samples (see section 3)
were rated once by one of several expert raters,
which we call Rater1. A second rating was ob-
tained for approximately one half (454) of the
speaking samples, which we call Rater2. We

computed the exact agreement for all Rater1-
Rater2 pairs for all five test items and report the
results in the last column of Table 2. Overall, the
exact agreement was about 49% and the kappa
coefficient 0.34. These are rather low numbers
and certainly demonstrate the difficulty of the
rating task for humans. Inter-rater agreement for
integrated tasks is lower than for independent
tasks. We conjecture that this is related to the
dual nature of scoring integrated tasks: for one,
the communicative competence per se needs to
be assessed, but on the other hand so does the
correct interpretation of the written or auditory
stimulus material. The low agreement in general
is also understandable since the number of fea-
ture dimensions that have to be mentally inte-

 4
219

grated pose a significant cognitive load for
judges.1

7 SVM models

As we have mentioned earlier, the rationale be-
hind using support vector machines for score
prediction is to yield a quantitative analysis of
how well our features would work in an actual
scoring system, measured against human expert
raters. The choice of the particular classifier be-
ing SVMs was due to their superior performance
in many machine learning tasks.

7.1 Support vector machines

Support vector machines (SVMs) were in-
troduced by (Vapnik, 1995) as an instantiation
of his approach to model regularization. They
attempt to solve a multivariate discrete classifi-
cation problem where an n-dimensional hyper-
plane separates the input vectors into, in the
simplest case, two distinct classes. The optimal
hyperplane is selected to minimize the classifi-
cation error on the training data, while maintain-
ing a maximally large margin (the distance of
any point from the separating hyperplane).

1 Inter-human agreement rates for written language, such as
essays, are significantly higher, around 70-80% with a 5-
point scale (Y.Attali, personal communication). More re-
cently we observed agreement rates of about 60% for spo-
ken test items, but here a 4-point scale was used.

7.2 Experiments

We built five SVM models based on the
train data, one for each of the five test items.
Each model has two versions: (a) based on
forced alignment with the true reference, repre-
senting the case with 100% word accuracy
(align), and (b) based on the actual recognition
output hypotheses (hypo). The SVM models
were tested on the eval data set and there were
three test conditions: (1) both training and test
conditions derived from forced alignment (align-
align); (2) models trained on forced alignment
and evaluated based on actual recognition hy-
potheses (align-hypo; this represented the realis-
tic situation that while human transcriptions are
made for the training set, they would turn out to
be too costly when the system is running con-
tinuously); and (3) both training and evaluation
are based on ASR output in recognition mode
(hypo-hypo).

We identified the best models by running a
set of SVMs with varying cost factors, ranging
from 0.01 to 15, and three different kernels: ra-
dial basis function, and polynomial, of second
degree and of third degree. We selected the best
performing models measured on the train set
and report results with these models on the eval
set. The cost factor for all three configurations
varied between 5 and 15 among the five test
items, and as best kernel we found the radial
basis function in almost all cases, except for
some polynomial kernels in the hypo-hypo con-
figuration

Mode
(% of
eval
set)

Train : align
Eval : align

Train : align
Eval : hypo

Train : hypo
Eval : hypo

Human Rater
Agreement (%
of all pairs)

P-A (ind) 34 40.7 33.9 35.9 53
P-C (ind) 53 50.0 55.0 56.7 57
P-T (ind) 38 43.4 18.9 37.7 54
P-E (int) 25 42.1 26.3 47.4 43
P-W (int) 29 34.5 20.7 39.7 42

Table 2: Speech scoring: Mode baseline, SVM performance on forced alignment and standard recogni-
tion data, and human agreement for all five test items (ind=independent task; int=integrated task).

5

220

7.3 Results

Table 2 shows the results for the SVM analysis
as well as a baseline measure of agreement and
the inter rater agreement. The baseline refers
to the expected level of agreement with Rater1
by simply assigning the mode of the distribution
of scores for a given question, i.e., to always
assign the most frequently occurring score on
the train set. Table 2 also reports the agreement
between trained raters. As can be seen the hu-
man agreement is consistently higher than the
mode agreement but the difference is less for the
integrated questions suggesting that humans
scorers found those questions more challenging
to score consistently.

The other 3 columns of Table 2 report the
results for the perfect agreement between a score
assigned by the SVM developed for that test
question and Rater1 on the eval corpus, which
was not used in the development of the SVM.
We observe that for the align-align configura-
tion, accuracies are all clearly better than the
mode baseline, except for P-C, which has an
unusually skewed score distribution and there-
fore a rather high mode baseline. In the align-
hypo case, where SVM models were built based
on features derived from ASR forced alignment
and where these models were tested using ASR
output in recognition mode, we see a general
drop in performance – again except for P-C –
which is to be expected as the training and test
data were derived in different ways. Finally, in
the hypo-hypo configuration, using ASR recog-
nition output for both training and testing, SVM
models are, in comparison to the align-align
models, improved for the two integrated tasks
but not for the independent tasks, again except
for P-C. The SVM classification accuracies for
the integrated tasks are in the range of human
scorer agreement, which indicates that a per-
formance ceiling may have been reached al-
ready. These results suggest that the recovery of
scores is more feasible for integrated rather than
independent tasks. However, it is also the case
that human scorers had more difficulty with the
integrated tasks, as discussed in the previous
section.

The fact that the classification performance of
the hypo-hypo models is not greatly lower than

that of the align-align models, and in some cases
even higher ---and that with the relatively low
word accuracy of 33%---, leads to our conjecture
that this could be due to the majority of features
being based on measures which do not require a
correct word identity such as measures of rate or
pauses.

In a recent study (Xi, Zechner, & Bejar, 2006)
with a similar speech corpus we found that while
the hypo-hypo models are better than the align-
align models when using features related to flu-
ency, the converse is true when using word-
based vocabulary features.

8 CART models

8.1 Classification and regression trees

Classification and regression trees (CART trees)
were introduced by (Breiman, Friedman, Ol-
shen, & Stone, 1984). The goal of a classifica-
tion tree is to classify the data such that the data
in the terminal or classification nodes is as pure
as possible meaning all the cases have the same
true classification, in the present case a score
provided by a human rater, the variable Rater1
above. At the top of the tree all the data is avail-
able and is split into two groups based on a split
of one of the features available. Each split is
treated in the same manner until no further splits
are possible, in which case a terminal node has
been reached.

8.2 Tree analysis

For each of the five test items described above
we estimated a classification tree using as inde-
pendent variables the features described in Table
1 and as the dependent variable a human score.
The trees were built on the train set. Table 3
shows the distribution of features in the CART
tree nodes of the five test items (rows) based on
feature classes (columns). For P-A, for exam-
ple, it can be seen that three of the feature
classes have a count greater than 0. The last
column shows the number of classes appearing
in the tree and the number of total features, in
parentheses. The P-A tree, for example has six
features from three classes. The last row sum-
marizes the number of test items that relied on a
feature class and the number of features from

 6
221

that class across all five test items, in parenthe-
sis. For example, Rate and Length were present
in every test item and lexical sophistication was
present in all but one test item. The table sug-
gests that across all test items there was good
coverage of feature classes but length was espe-
cially well represented. This is to be expected
with a group heterogeneous in speaking profi-
ciency. The length features often were used to
classify students in the lower scores, that is, stu-
dents who could not manage to speak suffi-
ciently to be responsive to the test item.

9 Discussion

9.1 Speech recognition

We successfully adapted an off-the-shelf speech
recognition engine for the purpose of assessing
spontaneous speaking proficiency. By acoustic
and language model adaptation, we were able to
markedly increase our speech recognition en-
gine’s word accuracy, from initially 15% to
eventually 33%. Although a 33% recognition
rate is not high by current standards, the hurdles
to higher recognition are significant, including
the fact that the recognizer’s acoustic model was
originally trained on quite different data, and the
fact that our data is based on highly accented

speech from non-native speakers of English of a
range of proficiencies, which are harder to rec-
ognize than native speakers.

9.2 SVM and CART models

Our goal in this research has been to develop
models for automatically scoring communicative
competence in non-native speakers of English.
The approach we took is to compute features
from ASR output that may eventually serve as
indicators of communicative competence. We
evaluated those features (a) in quantitative re-
spect by using SVM models for score prediction
and (b) in qualitative respect in terms of their
roles in assigning scores based on a human crite-
rion by means of CART analyses.

We found in the analysis of the SVM mod-
els that despite low word accuracy, with ASR
recognition as a basis for training and testing,
scores near inter-rater agreement levels can be
reached for those items that include a listening
or reading passage. When simulating perfect
word accuracy (in the align-align configuration),
4 of 5 test items achieve scoring accuracies
above the mode baseline. These results are very
encouraging in the light that we are continuing
to add features to the models on various levels of
speech proficiency.

Test item Length Lexical
sophistication

Fluency Rate Content Total:
classes
(# features)

P-A 4 1 0 1 0 3 (6)
P-C 4 0 1 1 1 4 (7)
P-T 2 1 0 1 1 4 (5)
P-E 1 1 2 1 1 5 (6)
P-W 1 2 0 1 0 3 (4)
Total #
classes (#
features)

5 (12) 4 (5) 2 (3) 5 (5) 3 (3) 19 (28)

Table 3: Distribution of features from the nodes of five CART trees (rows) into feature classes (columns). The “to-
tals” in the last colunmn and row count first the number of classes with at least one feature and then sums the fea-
tures (in parentheses).

 7
222

CART trees have the advantage of being in-
spectable and interpretable (unlike, e.g., neural
nets or support vector machines with non-linear
kernels). It is easy to trace a path from the root

of the tree to any leaf node and record the final
decisions made along the way. We looked at the
distribution of features in these CART tree
nodes (Table 3) and

found that all the different categories of features
were used by the set of trees. For all 5 test items,
most classes occurred in the nodes of the respec-
tive CART trees (with a minimum of 3 out of 5
classes).

10 Conclusions and future work

This paper is concerned with explorations into
scoring spoken language test items of non-native
speakers of English. We demonstrated that an ex-
tended feature set comprising features related to
length, lexical sophistication, fluency, rate and
content could be used to predict human scores in
SVM models and to illuminate their distribution
into five different classes by means of a CART
analysis.

An important step for future work will be to
train the acoustic and language models of the
speech recognizer directly from our corpus; we are
additionally planning to use automatic speaker ad-
aptation and to evaluate its benefits. Furthermore
we are aware that, maybe with the exception of the
classes related to fluency, rate and length, our fea-
ture set is as of yet quite rudimentary and will need
significant expansion in order to obtain a broader
coverage of communicative competence.

In summary, future work will focus on im-
proving speech recognition, and on significantly
extending the feature sets in different categories.
The eventual goal is to have a well-balanced multi-
component scoring system which can both rate
non-native speech as closely as possible according
to communicative criteria, as well as provide use-
ful feedback for the language learner.

References

Bachman, L. F. (1990). Fundamental considerations in

language testing. Oxford: Oxford University Press.
Bernstein, J. (1999). PhonePass Testing: Structure and

Construct. Menlo Park, CA: Ordinate Corporation.
Bernstein, J., DeJong, J., Pisoni, D., & Townshend, B.

(2000). Two experiments in automatic scoring of
spoken language proficiency. Paper presented at the
InSTIL2000, Dundee, Scotland.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and Regression Trees. Bel-
mont, California: Wadsworth Int. Group.

Burger, S. (1995). Konventionslexikon zur Translitera-
tion von Spontansprache. Munich, Germany.

Canale, M., & Swain, M. (1980). Theoretical bases of
communicative approaches to second language
teaching and testing. Applied Linguistics, 1(1), 1-47.

Cucchiarini, C., Strik, H., & Boves, L. (1997a, Septem-
ber). Using speech recognition technology to assess
foreign speakers' pronunciation of Dutch. Paper pre-
sented at the Third international symposium on the
acquisition of second language speech: NEW
SOUNDS 97, Klagenfurt, Austria.

Cucchiarini, C., Strik, S., & Boves, L. (1997b). Auto-
matic evaluation of Dutch pronunciation by using
speech recognition technology. Paper presented at
the IEEE Automatic Speech Recognition and Under-
standing Workshop, Santa Barbara, CA.

Franco, H., Abrash, V., Precoda, K., Bratt, H., Rao, R.,
& Butzberger, J. (2000). The SRI EduSpeak system:
Recognition and pronunciation scoring for language
learning. Paper presented at the InSTiLL-2000 (In-
telligent Speech Technology in Language Learning),
Dundee, Scotland.

Hymes, D. H. (1972). On communicative competence.
In J. B. Pride & J. Holmes (Eds.), Sociolinguistics:
selected readings (pp. 269-293). Harmondsworth,
Middlesex: Penguin.

Meteer, M., & al., e. (1995). Dysfluency Annotation
Stylebook for the Switchboard Corpus.Unpublished
manuscript.

North, B. (2000). The Development of a Common
Framework Scale of Language Proficiency. New
York, NY: Peter Lang.

Rudner, L., & Gagne, P. (2001). An overview of three
approaches to scoring written essays by computer.
Practical Assessment, Research & Development,
7(26).

Shermis, M. D., & Burstein, J. (2003). Automated essay
scoring: A cross-disciplinary perspective. Hillsdale,
NJ: Lawrence Erlbaum Associates, Inc.

Vapnik, V. N. (1995). The Nature of Statistical Learn-
ing Theory: Springer.

Xi, X., Zechner, K., & Bejar, I. (2006, April). Extract-
ing meaningful speech features to support diagnostic
feedback: an ECD approach to automated scoring.
Paper presented at the NCME, San Francisco, CA.

 8
223

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 224–231,
New York, June 2006.c©2006 Association for Computational Linguistics

Unsupervised and Semi-supervised Learning of Tone and Pitch Accent

Gina-Anne Levow
University of Chicago

1100 E. 58th St.
Chicago, IL 60637 USA

levow@cs.uchicago.edu

Abstract

Recognition of tone and intonation is es-
sential for speech recognition and lan-
guage understanding. However, most ap-
proaches to this recognition task have re-
lied upon extensive collections of man-
ually tagged data obtained at substantial
time and financial cost. In this paper,
we explore two approaches to tone learn-
ing with substantially reductions in train-
ing data. We employ both unsupervised
clustering and semi-supervised learning
to recognize pitch accent in English and
tones in Mandarin Chinese. In unsu-
pervised Mandarin tone clustering exper-
iments, we achieve 57-87% accuracy on
materials ranging from broadcast news to
clean lab speech. For English pitch accent
in broadcast news materials, results reach
78%. In the semi-supervised framework,
we achieve Mandarin tone recognition ac-
curacies ranging from 70% for broadcast
news speech to 94% for read speech, out-
performing both Support Vector Machines
(SVMs) trained on only the labeled data
and the 25% most common class assign-
ment level. These results indicate that the
intrinsic structure of tone and pitch accent
acoustics can be exploited to reduce the
need for costly labeled training data for
tone learning and recognition.

1 Introduction

Tone and intonation play a crucial role across many
languages. However, the use and structure of tone
varies widely, ranging from lexical tone which de-
termines word identity to pitch accent signalling in-
formation status. Here we consider the recognition
of lexical tones in Mandarin Chinese syllables and
pitch accent in English.

Although intonation is an integral part of lan-
guage and is requisite for understanding, recogni-
tion of tone and pitch accent remains a challeng-
ing problem. The majority of current approaches to
tone recognition in Mandarin and other East Asian
tone languages integrate tone identification with the
general task of speech recognition within a Hid-
den Markov Model framework. In some cases tone
recognition is done only implicitly when a word
or syllable is constrained jointly by the segmental
acoustics and a higher level language model and the
word identity determines tone identity. Other strate-
gies build explicit and distinct models for the syl-
lable final region, the vowel and optionally a final
nasal, for each tone.

Recent research has demonstrated the importance
of contextual and coarticulatory influences on the
surface realization of tones.(Xu, 1997; Shen, 1990)
The overall shape of the tone or accent can be sub-
stantially modified by the local effects of adjacent
tone and intonational elements. Furthermore, broad
scale phenomena such as topic and phrase struc-
ture can affect pitch height, and pitch shape may be
variably affected by the presence of boundary tones.
These findings have led to explicit modeling of tonal

224

context within the HMM framework. In addition
to earlier approaches that employed phrase structure
(Fujisaki, 1983), several recent approaches to tone
recognition in East Asian languages (Wang and Sen-
eff, 2000; Zhou et al., 2004) have incorporated ele-
ments of local and broad range contextual influence
on tone. Many of these techniques create explicit
context-dependent models of the phone, tone, or ac-
cent for each context in which they appear, either
using the tone sequence for left or right context or
using a simplified high-low contrast, as is natural
for integration in a Hidden Markov Model speech
recognition framework. In pitch accent recognition,
recent work by (Hasegawa-Johnson et al., 2004) has
integrated pitch accent and boundary tone recogni-
tion with speech recognition using prosodically con-
ditioned models within an HMM framework, im-
proving both speech and prosodic recognition.

Since these approaches are integrated with HMM
speech recognition models, standard HMM training
procedures which rely upon large labeled training
sets are used for tone recognition as well. Other
tone and pitch accent recognition approaches us-
ing other classification frameworks such as support
vector machines (Thubthong and Kijsirikul, 2001)
and decision trees with boosting and bagging (Sun,
2002) have relied upon large labeled training sets -
thousands of instances - for classifier learning. This
labelled training data is costly to construct, both in
terms of time and money, with estimates for some in-
tonation annotation tasks reaching tens of times real-
time. This annotation bottleneck as well as a theo-
retical interest in the learning of tone motivates the
use of unsupervised or semi-supervised approaches
to tone recognition whereby the reliance on this of-
ten scarce resource can be reduced.

Little research has been done in the application
of unsupervised and semi-supervised techniques for
tone and pitch accent recognition. Some prelimi-
nary work by (Gauthier et al., 2005) employs self-
organizing maps and measures of f0 velocity for
tone learning. In this paper we explore the use
of spectral and standard k-means clustering for un-
supervised acquisition of tone, and the framework
of manifold regularization for semi-supervised tone
learning. We find that in clean read speech, un-
supervised techniques can identify the underlying
Mandarin tone categories with high accuracy, while

even on noisier broadcast news speech, Mandarin
tones can be recognized well above chance levels,
with English pitch accent recognition at near the
levels achieved with fully supervised Support Vec-
tor Machine (SVM) classifiers. Likewise in the
semi-supervised framework, tone classification out-
performs both most common class assignment and
a comparable SVM trained on only the same small
set of labeled instances, without recourse to the un-
labeled instances.

The remainder of paper is organized as fol-
lows. Section 2 describes the data sets on which
English pitch accent and Mandarin tone learning
are performed and the feature extraction process.
Section 3 describes the unsupervised and semi-
supervised techniques employed. Sections 4 and
5 describe the experiments and results in unsuper-
vised and semi-supervised frameworks respectively.
Section 6 presents conclusions and future work.

2 Data Sets

We consider two corpora: one in English for pitch
accent recognition and two in Mandarin for tone
recognition. We introduce each briefly below.

2.1 English Corpus

We employ a subset of the Boston Radio News Cor-
pus (Ostendorf et al., 1995), read by female speaker
F2B, comprising 40 minutes of news material. The
corpus includes pitch accent, phrase and boundary
tone annotation in the ToBI framework (Silverman
et al., 1992) aligned with manual transcription and
syllabification of the materials. Following earlier re-
search (Ostendorf and Ross, 1997; Sun, 2002), we
collapse the ToBI pitch accent labels to four classes:
unaccented, high, low, and downstepped high for ex-
perimentation.

2.2 Mandarin Chinese Tone Data

Mandarin Chinese is a language with lexical tone
in which each syllable carries a tone and the mean-
ing of the syllable is jointly determined by the tone
and segmental information. Mandarin Chinese has
four canonical lexical tones, typically described as
follows: 1) high level, 2) mid-rising, 3) low falling-
rising, and 4) high falling.1 The canonical pitch con-

1For the experiments in this paper, we exclude the neutral
tone, which appears on unstressed syllables, because the clear

225

Figure 1: Contours for canonical Mandarin tones

tours for these tones appear in Figure 1.
We employ data from two distinct sources in the

experiments reported here.

2.2.1 Read Speech

The first data set is very clean speech data drawn
from a collection of read speech collected under lab-
oratory conditions by (Xu, 1999). In these mate-
rials, speakers read a set of short sentences where
syllable tone and position of focus were varied to
assess the effects of focus position on tone realiza-
tion. Focus here corresponds to narrow focus, where
speakers were asked to emphasize a particular word
or syllable. Tones on focussed syllables were found
to conform closely to the canonical shapes described
above, and in previous supervised experiments using
a linear support vector machine classifier trained on
focused syllables, accuracy approached 99%. For
these materials, pitch tracks were manually aligned
to the syllable and automatically smoothed and time-
normalized by the original researcher, resulting in 20
pitch values for each syllable.

2.2.2 Broadcast News Speech

The second data set is drawn from the Voice of
America Mandarin broadcast news, distributed by
the Linguistic Data Consortium2, as part of the Topic
Detection and Tracking (TDT-2) evaluation. Us-
ing the corresponding anchor scripts, automatically
word-segmented, as gold standard transcription, au-
dio from the news stories was force-aligned to the
text transcripts. The forced alignment employed the
language porting functionality of the University of

speech data described below contains no such instances.
2http://www.ldc.upenn.edu

Colorado Sonic speech recognizer (Pellom et al.,
2001). A mapping from the transcriptions to English
phone sequences supported by Sonic was created
using a Chinese character-pinyin pronunciation dic-
tionary and a manually constructed mapping from
pinyin sequences to the closest corresponding En-
glish phone sequences.3

2.3 Acoustic Features

Using Praat’s (Boersma, 2001) ”To pitch” and ”To
intensity” functions and the alignments generated
above, we extract acoustic features for the prosodic
region of interest. This region corresponds to the
“final” region of each syllable in Chinese, including
the vowel and any following nasal, and to the sylla-
ble nucleus in English.4 For all pitch and intensity
features in both datasets, we compute per-speaker z-
score normalized log-scaled values. We extract pitch
values from points across valid pitch tracked regions
in the syllable. We also compute mean pitch across
the syllable. Recent phonetic research (Xu, 1997;
Shih and Kochanski, 2000) has identified signifi-
cant effects of carryover coarticulation from preced-
ing adjacent syllable tones. To minimize these ef-
fects consistent with the pitch target approximation
model (Xu et al., 1999), we compute slope features
based on the second half of this final region, where
this model predicts that the underlying pitch height
and slope targets of the syllable will be most accu-
rately approached. We further log-scale and normal-
ize slope values to compensate for greater speeds of
pitch fall than pitch rise(Xu and Sun, 2002).

We consider two types of contextualized features
as well, to model and compensate for coarticula-
tory effects from neighboring syllables. The first set
of features, referred to as ”extended features”, in-
cludes the maximum and mean pitch from adjacent
syllables as well as the nearest pitch point or points
from the preceding and following syllables. These
features extend the modeled tone beyond the strict
bounds of the syllable segmentation. A second set
of contextual features, termed ”difference features”,
captures the change in pitch maximum, mean, mid-
point, and slope as well as intensity maximum be-

3All tone transformations due to third tone sandhi are ap-
plied to create the label set.

4We restrict our experiments to syllables with at least 50 ms
of tracked pitch in this final region.

226

tween the current syllable and the previous or fol-
lowing syllable.

In prior supervised experiments using support
vector machines(Levow, 2005), variants of this rep-
resentation achieved competitive recognition levels
for both tone and pitch accent recognition. Since
many of the experiments for Mandarin Chinese tone
recognition deal with clean, careful lab speech, we
anticipate little coarticulatory influence, and use
a simple pitch-only context-free representation for
our primary Mandarin tone recognition experiments.
For primary experiments in pitch accent recognition,
we employ a high-performing contextualized repre-
sentation in (Levow, 2005), using both ”extended”
and ”difference” features computed only on the pre-
ceding syllable. We will also report some contrastive
experimental results varying the amount of contex-
tual information.

3 Unsupervised and Semi-supervised
Learning

The bottleneck of time and monetary cost asso-
ciated with manual annotation has generated sig-
nificant interest in the development of techniques
for machine learning and classification that reduce
the amount of annotated data required for train-
ing. Likewise, learning from unlabeled data aligns
with the perspective of language acquisition, as
child learners must identify these linguistic cate-
gories without explicit instruction by observation of
natural language interaction. Of particular interest
are techniques in unsupervised and semi-supervised
learning where the structure of unlabeled examples
may be exploited. Here we consider both unsuper-
vised techniques with no labeled training data and
semi-supervised approaches where unlabeled train-
ing data is used in conjunction with small amounts
of labeled data.

A wide variety of unsupervised clustering tech-
niques have been proposed. In addition to classic
clustering techniques such as k-means, recent work
has shown good results for many forms of spec-
tral clustering including those by (Shi and Ma-
lik, 2000; Belkin and Niyogi, 2002; Fischer and
Poland, 2004). In the unsupervised experiments re-
ported here, we employ asymmetric k-lines clus-
tering by (Fischer and Poland, 2004) using code

available at the authors’ site, as our primary unsu-
pervised learning approach. Asymmetric clustering
is distinguished from other techniques by the con-
struction and use of context-dependent kernel radii.
Rather than assuming that all clusters are uniform
and spherical, this approach enhances clustering ef-
fectiveness when clusters may not be spherical and
may vary in size and shape. We will see that this
flexibility yields a good match to the structure of
Mandarin tone data where both shape and size of
clusters vary across tones. In additional contrastive
experiments reported below, we also compare k-
means clustering, symmetric k-lines clustering (Fis-
cher and Poland, 2004), and Laplacian Eigenmaps
(Belkin and Niyogi, 2002) with k-lines clustering.
The spectral techniques all perform spectral decom-
position on some representation of the affinity or ad-
jacency graph.

For semi-supervised learning, we employ learn-
ers in the Manifold Regularization framework de-
veloped by (Belkin et al., 2004). This work postu-
lates an underlying intrinsic distribution on a low di-
mensional manifold for data with an observed, am-
bient distribution that may be in a higher dimen-
sional space. It further aims to preserve locality in
that elements that are neighbors in the ambient space
should remain ”close” in the intrinsic space. A semi-
supervised classification algorithm, termed ”Lapla-
cian Support Vector Machines”, allows training and
classification based on both labeled and unlabeled
training examples.

We contrast results under both unsupervised and
semi-supervised learning with most common class
assignment and previous results employing fully su-
pervised approaches, such as SVMs.

4 Unsupervised Clustering Experiments

We executed four sets of experiments in unsu-
pervised clustering using the (Fischer and Poland,
2004) asymmetric clustering algorithm.

4.1 Experiment Configuration

In these experiments, we chose increasingly diffi-
cult and natural test materials. In the first experi-
ment with the cleanest data, we used only focused
syllables from the read Mandarin speech dataset.
In the second, we included both in-focus (focused)

227

and pre-focus syllables from the read Mandarin
speech dataset.5 In the third and fourth experiments,
we chose subsets of broadcast news report data,
from the Voice of America (VOA) in Mandarin and
Boston University Radio News corpus in English.

In all experiments on Mandarin data, we per-
formed clustering on a balanced sampling set of
tones, with 100 instances from each class6, yield-
ing a baseline for assignment of a single class to all
instances of 25%. We then employed a two-stage re-
peated clustering process, creating 2 or 3 clusters at
each stage.

For experiments on English data, we extracted a
set of 1000 instances, sampling pitch accent types
according to their frequency in the collection. We
performed a single clustering phase with 2 to 16
clusters, reporting results at different numbers of
clusters.

For evaluation, we report accuracy based on as-
signing the most frequent class label in each cluster
to all members of the cluster.

4.2 Experimental Results

We find that in all cases, accuracy based on the
asymmetric clustering is significantly better than
most common class assignment and in some cases
approaches labelled classification accuracy. Unsur-
prisingly, the best results, in absolute terms, are
achieved on the clean focused syllables, reaching
87% accuracy. For combined in-focus and pre-focus
syllables, this rate drops to 77%. These rates con-
trast with 99-93% accuracies in supervised classi-
fication using linear SVM classifiers with several
thousand labelled training examples(Surendran et
al., 2005).

On broadcast news audio, accuracy for Mandarin
reaches 57%, still much better than the 25% level,
though below a 72% accuracy achieved using super-
vised linear SVMs with 600 labeled training exam-
ples. Interestingly, for English pitch accent recogni-
tion, accuracy reaches 78.4%, aproaching the 80.1%

5Post-focus syllables typically have decreased pitch height
and range, resulting in particularly poor recognition accuracy.
We chose not to concentrate on this specific tone modeling
problem here.

6Sample sizes were bounded to support rapid repeated ex-
perimentation and for consistency with the relatively small
VOA data set.

Figure 2: Differences for alternative unsupervised
learners across numbers of clusters.

accuracy achieved with SVMs on a comparable data
representation.

4.3 Contrastive Experiments

We further contrast the use of different unsupervised
learners, comparing the three spectral techniques
and k-means with Euclidean distance. All contrasts
are presented for English pitch accent classification,
ranging over different numbers of clusters, with the
best parameter setting of neighborhood size. The re-
sults are illustrated in Figure 2. K-means and the
asymmetric clustering technique are presented for
the clean focal Mandarin speech under the standard
two stage clustering, in Table 1.

The asymmetric k-lines clustering approach con-
sistently outperforms the corresponding symmetric
clustering learner, as well as Laplacian Eigenmaps
with binary weights for pitch accent classification.
Somewhat surprisingly, k-means clustering outper-
forms all of the other approaches when producing 3-
14 clusters. Accuracy for the optimal choice of clus-
ters and parameters is comparable for asymmetric
k-lines clustering and k-means, and somewhat bet-
ter than all other techniques considered. The care-
ful feature selection process for tone and pitch ac-
cent modeling may reduce the difference between
the spectral and k-means approaches. In contrast,
for the four tone classification task in Mandarin us-
ing two stage clustering with 2 or 3 initial clusters,
the best clustering using asymmetric k-lines strongly
outperforms k-means.

We also performed a contrastive experiment in
pitch accent recognition in which we excluded con-
textual information from both types of contextual
features. We find little difference for the majority of

228

Asymm. K-means
Clear speech 87% 74.75%

Table 1: Clustering effectiveness for asymmetric k-lines and k-means on clear focused speech.

Figure 3: Scatterplot of pitch height vs pitch slope.
Open Diamond: High tone (1), Filled black traingle:
Rising tone (2), Filled grey square: Low tone (3), X:
Falling tone (4)

the unsupervised clustering algorithms, with results
from symmetric, asymmetric and k-means cluster-
ing differing by less than 1% in absolute accuracy.
It is, however, worth noting that exclusion of these
features from experiments using supervised learning
led to a 4% absolute reduction in accuracy.

4.4 Discussion

An examination of both the clusters formed and the
structure of the data provides insight into the effec-
tiveness of this process. Figure 3 displays 2 dimen-
sions of the Mandarin four-tone data from the fo-
cused read speech, where normalized pitch mean is
on the x-axis and slope is on the y-axis. The sepa-
ration of classes and their structure is clear. One ob-
serves that rising tone (tone 2) lies above the x-axis,
while high-level (tone 1) lies along the x-axis. Low
(tone 3) and falling (tone 4) tones lie mostly below
the x-axis as they generally have falling slope. Low
tone (3) appears to the left of falling tone (4) in the
figure, corresponding to differences in mean pitch.

In clustering experiments, an initial 2- or 3-way
split separates falling from rising or level tones
based on pitch slope. The second stage of cluster-
ing splits either by slope (tones 1,2, some 3) or by

pitch height (tones 3,4). These clusters capture the
natural structure of the data where tones are charac-
terized by pitch height and slope targets.

5 Semi-supervised Learning

By exploiting a semi-supervised approach, we hope
to enhance classification accuracy over that achiev-
able by unsupervised methods alone by incorporat-
ing small amounts of labeled data while exploiting
the structure of the unlabeled examples.

5.1 Experiment Configuration

We again conduct contrastive experiments using
both the clean focused read speech and the more
challenging broadcast news data. In each Mandarin
case, for each class, we use only a small set (40) of
labeled training instances in conjunction with an ad-
ditional sixty unlabeled instances, testing on 40 in-
stances. For English pitch accent, we restricted the
task to the binary classification of syllables as ac-
cented or unaccented. For the one thousand samples
we proportionally labeled 200 unaccented examples
and 100 accented examples. 7

We configure the Laplacian SVM classification
with binary neighborhood weights, radial basis func-
tion kernel, and cosine distance measure typically
with 6 nearest neighbors. Following (C-C.Cheng
and Lin, 2001), for � -class classification we train���������	�

 binary classifiers. We then classify each
test instance using all of the classifiers and assign
the most frequent prediction, with ties broken ran-
domly. We contrast these results both with conven-
tional SVM classification with a radial basis func-
tion kernel excluding the unlabeled training exam-
ples and with most common class assignment, which
gives a 25% baseline.

5.2 Experimental Results

For the Mandarin focused read syllables, we achieve
94% accuracy on the four-way classification task.

7The framework is transductive; the test samples are a subset
of the unlabeled training examples.

229

For the noisier broadcast news data, the accuracy is
70% for the comparable task. These results all sub-
stantially outperform the 25% most common class
assignment level. The semi-supervised classifier
also reliably outperforms an SVM classifier with an
RBF kernel trained on the same labeled training in-
stances. This baseline SVM classifier with a very
small training set achieves 81% accuracy on clean
read speech, but only � 35% on the broadcast news
speech. Finally, for English pitch accent recogni-
tion in broadcast news data, the classifier achieves
81.5%, relative to 84% accuracy in the fully super-
vised case.

6 Conclusion & Future Work

We have demonstrated the effectiveness of both
unsupervised and semi-supervised techniques for
recognition of Mandarin Chinese syllable tones and
English pitch accents using acoustic features alone
to capture pitch target height and slope. Although
outperformed by fully supervised classification tech-
niques using much larger samples of labelled train-
ing data, these unsupervised and semi-supervised
techniques perform well above most common class
assignment, in the best cases approaching 90%
of supervised levels, and, where comparable, well
above a good discriminative classifier trained on a
comparably small set of labelled data. Unsuper-
vised techniques achieve accuracies of 87% on the
cleanest read speech, reaching 57% on data from a
standard Mandarin broadcast news corpus, and over
78% on pitch accent classification for English broad-
cast news. Semi-supervised classification in the
Mandarin four-class classification task reaches 94%
accuracy on read speech, 70% on broadcast news
data, improving dramatically over both the simple
baseline of 25% and a standard SVM with an RBF
kernel trained only on the labeled examples.

Future work will consider a broader range of tone
and intonation classification, including the richer
tone set of Cantonese as well as Bantu family tone
languages, where annotated data truly is very rare.
We also hope to integrate a richer contextual rep-
resentation of tone and intonation consistent with
phonetic theory within this unsupervised and semi-
supervised learning framework. We will further ex-
plore improvements in classification accuracy based

on increases in labeled and unlabeled training exam-
ples.

Acknowledgements

We would like to thank Yi Xu for granting access
to the read speech data, Vikas Sindhwani, Mikhail
Belkin, and Partha Niyogi for their implementation
of Laplacian SVM, and Igor Fischer and J. Poland
for their implementation of asymmetric clustering.

References
Mikhail Belkin and Partha Niyogi. 2002. Laplacian

eigenmaps and spectral techniques for embedding and
clustering. In Proceeding of NIPS’02.

M. Belkin, P. Niyogi, and V. Sindhwani. 2004. Mani-
fold regularization: a geometric framework for learn-
ing from examples. Technical Report TR-2004-06,
University of Chicago Computer Science.

P. Boersma. 2001. Praat, a system for doing phonetics
by computer. Glot International, 5(9–10):341–345.

C-C.Cheng and C-J. Lin. 2001. LIBSVM:a library
for support vector machines. Software available at:
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

I. Fischer and J. Poland. 2004. New methods for spectral
clustering. Technical Report ISDIA-12-04, IDSIA.

H. Fujisaki. 1983. Dynamic characteristics of voice fun-
damental frequency in speech and singing. In The Pro-
duction of Speech, pages 39–55. Springer-Verlag.

Bruno Gauthier, Rushen Shi, Yi Xu, and Robert Proulx.
2005. Neural-network simulation of tonal categoriza-
tion based on f0 velocity profiles. Journal of the
Acoustical Society of America, 117, Pt. 2:2430.

M. Hasegawa-Johnson, Jennifer Cole, Chilin Shih abd
Ken Chen, Aaron Cohen, Sandra Chavarria, Heejin
Kim, Taejin Yoon, Sarah Borys, and Jeung-Yoon Choi.
2004. Speech recognition models of the interdepen-
dence among syntax, prosody, and segmental acous-
tics. In HLT/NAACL-2004.

Gina-Anne Levow. 2005. Context in multi-lingual tone
and pitch accent prediction. In Proc. of Interspeech
2005 (to appear).

M. Ostendorf and K. Ross. 1997. A multi-level model
for recognition of intonation labels. In Y. Sagisaka,
N. Campbell, and N. Higuchi, editors, Computing
Prosody, pages 291–308.

M. Ostendorf, P. J. Price, and S. Shattuck-Hufnagel.
1995. The Boston University radio news corpus.
Technical Report ECS-95-001, Boston University.

230

B. Pellom, W. Ward, J. Hansen, K. Hacioglu, J. Zhang,
X. Yu, and S. Pradhan. 2001. University of Colorado
dialog systems for travel and navigation.

Xiao-Nan Shen. 1990. Tonal co-articulation in Man-
darin. Journal of Phonetics, 18:281–295.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts
and image segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(8).

C. Shih and G. P. Kochanski. 2000. Chinese tone model-
ing with stem-ml. In Proceedings of the International
Conference on Spoken Language Processing, Volume
2, pages 67–70.

K. Silverman, M. Beckman, J. Pitrelli, M. Osten-
dorf, C. Wightman, P. Price, J. Pierrehumbert, and
J. Hirschberg. 1992. ToBI: A standard for labelling
English prosody. In Proceedings of ICSLP, pages
867–870.

Xuejing Sun. 2002. Pitch accent prediction using ensem-
ble machine learning. In Proceedings of ICSLP-2002.

D. Surendran, Gina-Anne Levow, and Yi Xu. 2005. Tone
recognition in Mandarin using focus. In Proc. of Inter-
speech 2005 (to appear).

Nuttakorn Thubthong and Boonserm Kijsirikul. 2001.
Support vector machines for Thai phoneme recogni-
tion. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 9(6):803–813.

C. Wang and S. Seneff. 2000. Improved tone recogni-
tion by normalizing for coarticulation and intonation
effects. In Proceedings of 6th International Confer-
ence on Spoken Language Processing.

Yi Xu and X. Sun. 2002. Maximum speed of pitch
change and how it may relate to speech. Journal of
the Acoustical Society of America, 111.

C.X. Xu, Y. Xu, and L.-S. Luo. 1999. A pitch tar-
get approximation model for f0 contours in Mandarin.
In Proceedings of the 14th International Congress of
Phonetic Sciences, pages 2359–2362.

Yi Xu. 1997. Contextual tonal variations in Mandarin.
Journal of Phonetics, 25:62–83.

Y. Xu. 1999. Effects of tone and focus on the formation
and alignment of f0 contours - evidence from Man-
darin. Journal of Phonetics, 27.

J. L. Zhou, Ye Tian, Yu Shi, Chao Huang, and Eric
Chang. 2004. Tone articulation modeling for Man-
darin spontaneous speech recognition. In Proceedings
of ICASSP 2004.

231

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 232–239,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning Pronunciation Dictionaries
Language Complexity and Word Selection Strategies

John Kominek Alan W Black
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{jkominek,awb}@cs.cmu.edu

Abstract

The speed with which pronunciation dictio-
naries can be bootstrapped depends on the ef-
ficiency of learning algorithms and on the or-
dering of words presented to the user. This pa-
per presents an active-learning word selection
strategy that is mindful of human limitations.
Learning rates approach that of an oracle sys-
tem that knows the final LTS rule set.

1 Introduction

The construction of speech-to-speech translation
systems is difficult, complex, and prohibitively ex-
pensive for all but handful of major languages. De-
veloping systems for new languages is a highly
skilled job requiring considerable effort, as is the
process of training people to acquire the necessary
technical knowledge.

Ideally, a native speaker of a (minor) language –
with the right tools – should be able to develop a
speech system with little or no technical knowl-
edge of speech recognition, machine translation,
dialog management, or speech synthesis. Rapid de-
velopment of machine translation, for example, is
the goal of (Lavie et al., 2003). Similarly, com-
bined development of speech recognition and
speech synthesis is the stated goal of (Engelbrecht
and Schultz, 2005).

Here we concentrate on lexicon creation for
synthesis and recognition tasks, with the affiliated
problem of letter-to-sound rule inference. Two
central questions of dictionary building are: what
letter-to-sound rule representation lends itself well
to incremental learning? – and which words should
be presented to the user, in what order?

In this paper we investigate various approaches
to the word ordering problem, including an active
learning algorithm. An “active learner” is a class
of machine learning algorithms that choose the or-
der in which it is exposed to training examples
(Auer, 2000). This is valuable when there isn't a
pre-existing set of training data and when the cost
of acquiring such data is high. When humans are
adding dictionary entries the time and accuracy de-
pends on the selected word (short words are easier
than long; familiar are easier than unfamiliar), and
on how quickly the learner's error rate drops (long
words are more informative than short). Also,
mindful that no answer key exists for new lan-
guages – and that humans easily become impatient
– we would like to know when a language's letter
to sound rule system is, say, 90% complete. This
turns out to be surprising elusive to pin down.

The next section outlines our working assump-
tions and issues we seek to address. Section 3 de-
scribes our LTS learning framework, an elabora-
tion of (Davel and Barnard, 2003). The learning
behavior on multiple test languages is documented
in Section 4, followed in Section 5 by a compari-
son of several word selection strategies.

2 Assumptions and Issues

In designing language technology development
tools we find it helpful to envision our target user,
whom may be characterized as “non-technical.”
Such a person speaks, reads, and writes the target
language, is able to enumerate the character set of
that language, distinguish punctuation from
whitespace, numerals, and regular letters or
graphemes, and specify if the language distin-
guishes upper and lower casing. When presented

232

with the pronunciation of a word (as a synthesized
wavefile), the user can say whether it is right or
wrong. In addition, such a person has basic com-
puter fluency, can record sound files, and can navi-
gate the HTML interface of our software tools. If
these latter requirements present a barrier then we
assume the availability of a field agent to config-
ure the computer, familiarize the user, plus trans-
late the English instructions, if necessary.

Ideally, our target user need not have explicit
knowledge of their own language's phoneme set,
nor even be aware that a word can be transcribed
as a sequence of phonemes (differently from let-
ters). The ability to reliably discover a workable
phoneme set from an unlabeled corpus of speech
is not yet at hand, however. Instead we elicit a lan-
guage's phoneme set during an initialization stage
by presenting examples of IPA wavefiles (Wells
and House, 1995).

Currently, pronunciations are spelled out using
a romanized phonetic alphabet. Following the rec-
ommendation of (Davel and Barnard, 2005) a can-
didate pronunciation is accompanied with a wave-
file generated from a phoneme-concatenation syn-
thesizer. Where possible, more than one pronunci-
ation is generated for each word presented, under
that assumption that it is easier for a listener to se-
lect from among a small number of choices than
correct a wrong prediction.

2.1 Four Questions to Address

1. What is our measure of success? Ultimately,
the time to build a lexicon of a certain coverage
and correctness. As a proxy for time we use the
number of characters presented. (Not words, as
is typically the case, since long words contain
more information than short, and yet are harder
for a human to verify.)

2. For a given language, how many words (let-
ters) are needed to learn its LTS rule system?
The true, yet not too useful answer is “it de-
pends.” The complexity of the relation be-
tween graphemic representation and acoustic
realization varies greatly across languages. That
being the case, we seek a useful measure of a
language's degree of complexity.

3. Can the asymptote of the LTS system be esti-
mated, so that one can determine when the
learned rules are 90 or 95% complete? In Sec-
tion 4 we present evidence that this may not be

possible. The fall-back position is percentage
coverage of the supplied corpus.

4. Which words should be presented to the user,
and in what order? Each additional word
should maximize the marginal information gain
to the system. However, short words are easier
for humans to contend with than long. Thus a
length-based weighting needs to be considered.

3 LTS Algorithm Basics

A wide variety of approaches have been applied to
the problem of letter-to-sound rule induction. Due
to simplicity of representation and ease of manipu-
lation, our LTS rule learner follows the Default &
Refine algorithm of Davel (Davel and Barnard,
2004). In this framework, each letter c is assigned
a default production p1-p2... denoting the sequence
of zero or more phonemes most often associated
with that letter. Any exceptions to a letter's default
rule is explained in terms of the surrounding con-
text of letters. The default rules have a context
width of one (the letter itself), while each addition-
al letter increases the width of the context window.
For example, if we are considering the first occur-
rence of 's' in the word basics, the context win-
dows are as listed in Table 1. By convention, the
underscore character denotes the predicted posi-
tion, while the hash represents word termination.

width context sets ordered by increasing width
1 {_}

2 {a_ , _i}

3 {ba_ , a_i , _ic}

4 (#ba_ , ba_i , a_ic , _ics}

5 {#ba_i , ba_ic , a_ics , _ics#}

6 {#ba_ic , ba_ics , a_ics#}

7 {#ba_ics , ba_ics#}

8 {#ba_ics#}
Table 1. Letter contexts for the first 's' in basics.

In this position there are 20 possible explanatory
contexts. The order in which they are visited de-
fines an algorithm's search strategy. In the class of
algorithms knows as “dynamically expanding con-
text (DEC)”, contexts are considered top-down as
depicted in Table 1. Within one row, some algo-
rithms follow a fixed order (e.g. center, left, right).
Another variant tallies the instances of productions

233

associated with a candidate context and chooses
the one with the largest count. For example, in
Spanish the letter 'c' may generate K (65%), or TH
when followed by e or i (32%), or CH when fol-
lowed by h (3%). These are organized by frequen-
cy into a “rule chain.”

Rule rank RHS Context Frequency
1 K _ 65.1%

2 TH _i 23.6%

3 TH _e 8.5%

4 CH _h 2.8%
If desired, rules 2 and 3 in this example can be
condensed into 'c' → TH /_{i,e}, but in general are
left separated for sake of simplicity.

In our variant, before adding a new rule all pos-
sible contexts of all lengths are considered when
selecting the best one. Thus the rule chains do not
obey a strict order of expanding windows, though
shorter contexts generally precede longer ones in
the rule chains.

One limitation of our representation is that it
does not support gaps in the letter context. Consid-
er the word pairs tom/tome, top/tope, tot/tote. A
CART tree can represent this pattern with the rule:
if (c-1 = 't' and c0='o' and c2='e') then ph=OW. In prac-
tice, the inability to skip letters is not a handicap.

3.1 Multiple Pronunciation Predictions

Given a word, finding the predicted pronunciation
is easy. Rule chains are indexed by the letter to be
predicted, and possible contexts are scanned start-
ing from the most specific until a match is found.
Continuing our example, the first letter in the
Spanish word ciento fails rule 4, fails rule 3, then
matches rule 2 to yield TH. For additional pronun-
ciations the search continues until another match is
found: here, the default rule 'c' → K /_. This proce-
dure is akin to predicting from progressively
smoother models. In a complex language such as
English, a ten letter word can readily generate
dozens of alternate pronunciations, necessitating
an ordering policy to keep the total manageable.

4 Language Characterization

English is notorious for having a highly irregular
spelling system. Conversely, Spanish is admired
for its simplicity. Most others lie somewhere in be-
tween. To estimate how many words need to be

seen in order to acquire 90% coverage of a lan-
guage's LTS rules, it helps to have a quantitative
measure. In this section we offer a perplexity-
based measure of LTS regularity and present mea-
surements of several languages with varying cor-
pus size. These measurements establish, surpris-
ingly, that a rule system's perplexity increases
without bound as the number of training words in-
creases. This holds true whether the language is
simple or complex. In response, we resort to a
heuristic measure for positioning languages on a
scale of relative difficulty.

4.1 A Test Suite of Seven Languages

Our test suite consists of pronunciation dictionar-
ies from seven languages, with English considered
under two manifestations.

English. Version 0.6d of CMU-DICT, consid-
ered without stress (39 phones) and with two level
stress marking (58 phones). German. The Celex
dictionary of 321k entries (Burnage, 1990). Dutch.
The Fonilex dictionary of 218k entries (Mertens
and Vercammen, 1998). Fonilex defines an ab-
stract phonological level from which specific di-
alects are specified. We tested on the “standard”
dialect. Afrikaans. A 37k dictionary developed lo-
cally. Afrikaans is a language of South Africa and
is a recent derivative of Dutch. Italian. A 410k
dictionary distributed as part of a free Festival-
based Italian synthesizer (Cosi, 2000). Spanish.
Generated by applying a set of hand written rules
to a 52k lexicon. The LTS rules are a part of the
standard Festival Spanish distribution. Telugu. An
8k locally developed dictionary. In its native or-
thography, this language of India possess a highly
regular syllabic writing system. We've adopted a
version of the Itrans-3 transliteration scheme
(Kishore 2003) in which sequences of two to four
English letters map onto Telugu phonemes.

4.2 Perplexity as a Measure of Difficulty

A useful way of considering letter to sound pro-
duction is as a Markov process in which the gener-
ator passes through a sequence of states (letters),
each probabilistically emitting observation sym-
bols (phonemes) before transitioning to the next
state (following letter). For a letter c, the unpre-
dictability of phoneme emission is its entropy
H c=−∑ pi log pi or equivalently its perplexity
P c=eH c . The perplexity can be interpreted as

234

the average number of output symbols generated
by a letter. The production perplexity of the char-
acter set is the sum of each individual letter's per-
plexity weighted by its unigram probability pc.

 (1)

Continuing with our Spanish example, the letter 'c'
emits the observation symbols (K, TH, CH) with a
probability distribution of (.651, .321, .028), for a
perplexity of 2.105. This computation applies
when each letter is assigned a single probabilistic
state. The process of LTS rule discovery effective-
ly splits the state 'c' into four context-defined sub-
states: (-,c,-), (-,c,i), (-,c,e), (-,c,h). Each of these
states emits only a single symbol. Rule addition is
therefore an entropy reduction process; when the
rule set is complete the letter-to-sound system has
a perplexity of 1, i.e. it is perfectly predictable.

The “price paid” for perfect predictability is a
complex set of rule chains. To measure rule com-
plexity we again associate a single state with each
letter. But, instead of phonemes, the rules are the
emission symbols. Thus the letter 'c' emits the
symbols (K/_, TH/_i, TH/_e, CH/_h) with a distri-
bution of (.651, .236, .085, .028), for a perplexity
of 2.534. Applying equation (1) to the full set of
rules defines the LTS system's average perplexity.

4.3 Empirical Measurements

In the Default & Refine representation, the rule
chain for each letter is is initialized with its most
probably production. Additional context-depen-
dent rules are appended to cover additional letter
productions, with the rule offering the greatest in-
cremental coverage being added first. (Ties are
broken in an implementation-dependent way.)

Figure 1 uses Spanish to illustrate a characteris-
tic pattern: the increase in coverage as rules are
added one at a time. Since the figure of merit is
letter-based, the upper curve (% letters correct) in-
creases monotonically, while the middle curve (%
words correct) can plateau or decrease briefly.

In the lower curve of Figure 1 the growth proce-
dure is constrained such that all width 1 rules are
added before width 2 rules, which in turn must be
exhausted before width 3 rules are considered.
This constraint leads to its distinctive scalloped
shape. The upper limit of the W=1 region shows
the performance of the unaided default rules (68%
words correct).

Figure 1. Coverage of Spanish (52k corpus) as a
function of rule size. For the lower curve, W indi-
cates the rule context window width. The middle
(blue) curve tracks near-optimal performance im-
provement with the introduction of new rules.

For more complex languages the majority of rules
have a context width in the range of 3 to 6. This is
seen in Figure 2 for English, Dutch, Afrikaans, and
Italian. However, a larger rule set does not mean
that the average context width is greater. In Table
2, below, compare Italian to Dutch.

Language Number of Rules Average Width
English 40k 19231 5.06

Dutch 40k 10071 4.35

Afrikaans 37k 5993 4.66

Italian 40k 3385 4.78

Spanish 52k 76 1.66
Table 2. Number of LTS rules for five language
and their average context width.

Figure 2. Distribution of LTS rules by context
window width for four languages: English, Dutch,
Afrikaans, and Italian.

Perave=∑
c

pc e
−∑

i
pi log pi

Window Width

2 4 6 8 10

N
u
m

b
e
r

o
f
R
u
le

s

0

1000

2000

3000

4000

5000

6000
LTS Rule Count vs Window Width

Legend

English 40k
Dutch 40k
Afrikaans 37k
Italian 40k

Legend

Chars Correct
Words Correct
Words Correct

Number of Rules

0 10 20 30 40 50 60

P
e
rc

e
n
t

C
o
rr

ec
t

0

20

40

60

80

100
Spanish LTS Ruleset Performance

W=3W=2W=1

235

Beyond a window width of 7, rule growth tapers
off considerably. In this region most new rules
serve to identify particular words of irregular
spelling, as it is uncommon for long rules to gener-
alize beyond a single instance. Thus when training
a smoothed LTS rule system it is fair to ignore
contexts larger than 7, as is done for example in
the Festival synthesis system (Black, 1998).

Figure 2 contrasts four languages with training
data of around 40k words, but says nothing of how
rule sets grow as the corpus size increases. Figure
3 summarizes measurements taken on eight encod-
ings of seven languages (English twice, with and
without stress marking), tested from a range of 100
words to over 100,000. Words were subsampled
from each alphabetized lexicon at equal spacings.
The results are interesting, and for us, unexpected.

Figure 3. Rule system growth as the corpus size is
increased, for seven languages. From top to bot-
tom: English (twice), Dutch, German, Afrikaans,
Italian, Telugu, Spanish. The Telugu lexicon uses
an Itrans-3 encoding into roman characters, not the
native script, which is a nearly perfect syllabic
transcription. The context window has a maximum
width of 9 in these experiments.

Within this experimental range none of the lan-
guages reach an asymptotic limit, though some
hint at slowed growth near the upper end. A
straight line on a log-log graph is characteristic of
geometric growth, to which a power law function
y=axb+c is an appropriate parametric fit. For diffi-
cult languages the growth rates (power exponent
b) vary between 0.5 and 0.9, as summarized in Ta-
ble 3. The language with the fastest growth is En-
glish, followed, not by Dutch, but Italian. Italian is
nonetheless the simpler of these two, as indicated
by the smaller multiplicative factor a.

Language a b
English (stressed) 2.97 0.88

English (plain) 3.27 0.85

Dutch 12.6 0.64

German 39.86 0.49

 Afrikaans 15.34 0.57

Italian 2.16 0.69
Table 3. Parameters a and b for the power law fit
y=axb+c to the growth of LTS system size.

It would be good if a tight ceiling could be estimat-
ed from partial data in order to know (and report to
the lexicon builder) that with n rules defined the
system is m percent complete. However, this trend
of geometric growth suggests that asking “how
many letter-to-sound rules does a given language
have?” is an ill-posed question.

In light of this, two questions are worth asking.
First, is the geometric trend particular to our rule
representation? And second, is “total number of
rules” the right measure of LTS complexity? To
answer the first question we repeated the experi-
ments with the CART tree builder available from
the Festival speech synthesis toolkit. As it turns
out – see Table 4 – a comparison of contextual
rules and node counts for Italian demonstrate that
a CART tree representation also exhibits geometric
growth with respect to lexicon size.

Num Words
in Lexicon

Contextual
LTS Rules

CART Tree
Nodes

100 80 145
250 131 272
500 198 399

1000 283 601
2500 506 1169
5000 821 1888

10,000 1306 2840
20,000 2109 4642
40,000 3385 7582
80,000 5524 13206

Table 4. A comparison of rule system growth for
Italian as the corpus size is increased. CART tree
nodes (i.e. questions) are the element comparable
to LTS rules used in letter context chains. The fit-
ted parameters to the CART data are a=2.29 and
b=0.765. This compares to a=2.16 and b=0.69.

Num Words in Lexicon

100 1000 10000 100000

N
u
m

 L
T
S
 R

u
le

s

100

1000

10000

LTS Rules vs. Lexicon Size
Legend

English (w/stress)
English (no stress)
Dutch
German
Afrikaans
Italian
Telugu (itrans-3)
Spanish

236

If geometric growth and lack of an obvious asymp-
tote is not particular to expanding context rule
chains, then what of the measure? The measure
proposed in Section 4.2 is average chain perplexi-
ty. The hypothesis is that a system close to satura-
tion will still add new rules, but that the average
perplexity levels off. Instead, the data shows little
sign of saturation (Figure 4). In contrast, the aver-
age perplexity of the letter-to-phoneme distribu-
tions remains level with corpus size (Figure 5).

Figure 4. Growth of average rule perplexity as a
function of lexicon size. Except for Spanish and
Telugu, the average rule system perplexity not
only grows, but grows at an accelerating rate.

Figure 5. Growth of average letter-to-phoneme
production perplexity as a function of lexicon size.

Considering these observations we've resorted to
the following heuristic to measure language com-
plexity: a) fix the window width to 5, b) measure
the average rule perplexity at lexicon sizes of 10k,
20k, and 40k, then c) take the average of these
three values. Fixing the window width to 5 is
somewhat arbitrary, but is intended to prevent the
system from learning an unbounded suite of excep-
tions. Available values are contained in Table 5.

Language Ave Letter
Perplexity

Heuristic
Perplexity

Perplexity
Ratio

English 3.25 50.11 15.42

Dutch 2.73 16.80 6.15

German 2.41 16.70 6.93

Afrikaans 2.32 11.48 8.32

Italian 1.38 3.52 2.55

Spanish 1.16 1.21 1.04
 Table 5. Perplexity measures for six languages.
The third (rightmost) column is the ratio of the
second divided by the first. A purely phonetic sys-
tem has a heuristic perplexity of one.

From these measurements we conclude, for exam-
ple, that Dutch and German are equally difficult,
that English is 3 times more complex than either of
these, and that English is 40 times more complex
than Spanish.

5 Word Selection Strategies

A selection strategy is a method for choosing an
ordered list of words from a lexicon. It may be
based on an estimate of expected maximum return,
or be as simple as random selection. A good strate-
gy should enable rapid learning, avoid repetition,
be robust, and not overtax the human verifier.

This section compares competing selection
strategies on a single lexicon. We've chosen a 10k
Italian lexicon as a problem of intermediate diffi-
culty, and focus on early stage learning. To pro-
vide a useful frame of reference, Figure 6 shows
the results of running 5000 experiments in which
the word sequence has been chosen randomly. The
x-axis is number of letters examined.

Figure 6. Random sampling of Italian 10k corpus.

Legend

English (w/stress)
English (no stress)
Dutch
German
Afrikaans
Italian
Telugu
Spanish

Num Words in Lexicon

100 1000 10000 100000

LT
S
 R

u
le

 P
e
rp

le
x
it
y

0.0

5.0

10.0

15.0

20.0

25.0

30.0
LTS Rule Perplexity vs Lexicon Size

Legend

English (no stress)
Dutch
German
Afrikaans
Italian
Telugu (itrans)
Spanish

37k4k

170k1k

Ave Productions per Letter

0 2 4 6 8 10 12

A
v
e
 P

ro
d
u
ct

io
n
 P

e
rp

le
x
it
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Letter to Phoneme Perplexity

Spanish

Iraqi

Phonetic alphabet

1k 40k

80k
Telugu

Italian

Num Letters Examined

0 1000 2000 3000 4000 5000 6000

W
o
rd

s
C
o
rr

e
ct

 (
%

)

10

20

30

40

50

60

70

80
Word Accuracy, Random Selection

Italian, 10k dict, maxwin=5

237

Figure 7 compares average random performance to
four deterministic strategies. They are: alphabeti-
cal word ordering, reverse alphabetical, alphabeti-
cal sorted by word length (groups of single charac-
ter words first, followed by two character words,
etc.), and a greedy ngram search. Of the first three,
reverse alphabetical performs best because it intro-
duces a greater variety of ngrams more quickly
than the others. Yet, all of these three are substan-
tially worse than random. Notice that grouping
words from short to long degrades performance.
This implies that strategies tuned to the needs of
humans will incur a machine learning penalty.

Figure 7. Comparison of three simple word order-
ings to the average random curve, as well as
greedy ngram search.

It might be expected that selecting words contain-
ing the most popular ngrams first would out-per-
forms random, but as is seen in Figure 7, greedy
selection closely tracks the random curve. This
leads us to investigate active leaning algorithms,
which we treat as variants of ngram selection.

5.1 Algorithm Description

Let W = {w1,w2,...} be the lexicon word set, having A =
{'a', 'b',...} as the alphabet of letters. We seek an ordered
list V = (... wi ...) s.t. score(wi) ≥ score (wi+1). V is initial-
ly empty and is extended one word at a time with wb, the
“best” new word. Let g=c1c2...cn ` A* be an ngram of
length n, and Gw={gi}, gi ` w are all the ngrams found in
word w. Then GW = 5 Gw, w ` W, is the set of all
ngrams in the lexicon W, and GV = 5 Gw, w ` Vis the set
of all ngrams in the selected word list V. The number of
occurrences of g in W is score(g), while score(w) = ∑
score(g) st. g ` w and g v GV. The scored ngrams are
segmented into separately sorted lists, forming an or-
dered list of queues Q = (q1,q2,...qN) where qn contains
ngram of length n and only n.

Algorithm
for q in Q

g = pop(q)
for L = 1 to |longest word in W|

Wg,L = {wi} s.t. |wi| = L, g ` wi and wi v V
wb = argmax score(Wg,L)
if score (wb) > 0 then

V = V + wb

GV = GV 4 Gwb

return wb

In this search the outer loop orders ngrams by length,
while the inner loop orders words by length. For selec-
tion based on ngram coverage, the queue Q is computed
only once for the given lexicon W. In our active learner,
Q is re-evaluated after each word is selected, based on
the ngrams present in the current LTS rule contexts. Let
GLTS = {gi} s.t. gi ` some letter context in the LTS rules.
Initially GLTS,0 = {}. Then, at any iteration k, GLTS,k are
the ngrams present in the rules, and G'LTS,k+1 is an ex-
panded set of candidate ngrams that constitute the ele-
ments of Q. G' is formed by prepending each letter c of
A to each g in G, plus appending each c to g. That is,
G'LTS,k+1 = A%GLTS,k 4 GLTS,k%A where % is the Cartesian
product. Executing the algorithm returns wb and yields
GLTS,k+1 the set of ngrams covered by the expanded rule
set. In this way knowledge of the current LTS rules
guides the search for maximally informative new words.

5.2 Active Learner Performance

Figure 8 displays the performance of our active
learner on the Italian 10k corpus, shown as the
blue curve. For the first 500 characters encoun-
tered, the active learner's performance is almost
everywhere better than average random, typically
one half to one standard deviation above this refer-
ence level.

Two other references are shown. Immediately
above the active learner curve is “Oracle” word se-
lection. The Oracle has access to the final LTS sys-
tem and selects words that maximally increases
coverage of the known rules. The topmost curve is
for a “Perfect Oracle.” This represents an even
more unrealistic situation in which each letter of
each word carries with it information about the
corresponding production rule. For example, that
'g' yields /F/ 10% of the time, when followed by
the letter 'h' (as in “laugh”) . Carrying complete in-
formation with each letter allows the LTS system
to be constructed directly and without mistake. In
contrast, the non-perfect oracle makes mistakes
sequencing rules in each letter's rule chain. This
decreases performance.

Italian, 10k dict, maxwin=5

Num Letters Examined

0 1000 2000 3000 4000 5000 6000

W
o
rd

s
C
o
rr

e
ct

 (
%

)

10

20

30

40

50

60

70

80
Word Accuracy, Simple Strategies

Legend

Average random
n-gram coverage
Reverse alphabetic
Alphabetic order
Length, alpha order

238

Figure 8. From top to bottom: a perfect Oracle, a
word selection Oracle, our active learner, and av-
erage random performance. The perfect Oracle de-
marcates (impossibly high) optimal performance,
while Oracle word selection suggests near-opti-
mality. For comparison, standard deviation error
bars are added to the random curve.

Encouragingly, the active learning algorithm strad-
dles the range in between average random (the
baseline) and Oracle word selection (near-optimal-
ity). Less favorable is the non-monotonicity of the
performance curve; for example, when the number
of letters examined is 135, and 210. Analysis
shows that these drops occur when a new letter-to-
sound production is encountered but more than
one context offers an equally likely explanation.
Faced with a tie, the LTS learner sometimes
chooses incorrectly. Not being aware of this mis-
take it does not seek out correcting words. Flat
plateaus occur when additional words (containing
the next most popular ngrams) do not contain pre-
viously unseen letter-to-sound productions.

6 Conclusions

While this work does not definitively answer the
question of “how may words to learn the rules,”
we have developed ways of characterizing lan-
guage complexity, which can guide developers.
We've devised a word selection strategy that ap-
pears to perform better than the (surprisingly high)
standard set by randomly selection. Further im-
provements are possible by incorporating knowl-
edge of word alignment and rule sequencing er-
rors. By design, our strategy is biased towards
short words over long, thereby being “nice” to lex-
icon developers – our original objective.

Acknowledgments
This material is in part based upon work supported by

the National Science Foundation under Grant No.
0415201. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
Peter Auer, 2000. Using upper confidence bounds for

online learning. Proceedings of the 41st Annual Sym-
posium on Foundations of Computer Science, pp.

Alan W Black, Kevin Lenzo, and Vincent Pagel, 1998.
Issues in Building General Letter to Sound Rules. 3rd
ESCA Workshop on Speech Synthesis, Australia.

Gavin Burnage, 1990. CELEX – A Guide for Users. Hi-
jmegen: Centre for Lexical Information, University of
Nijmegen.

Piero Cosi, Roberto Gretter, Fabio Tesser, 2000. Festi-
val parla italiano. Proceedings of GFS2000, Gior-
nate del Gruppo di Fonetica Sperimentale, Padova.

Marelie Davel and Etienne Barnard, 2003. Bootstrap-
ping in Language Resource Generation. Proceedings
of the 14th Symposium of the Pattern Recognition As-
sociation of South Africa, pp. 97-100.

Marelie Davel and Etienne Barnard, 2004. A default-
and-refine approach to pronunciation prediction,
Proceedings of the 15th Symposium of the Pattern
Recognition Association of South Africa.

Marelie Davel and Etienne Barnard, 2005. Bootstrap-
ping Pronunciation Dictionaries: Practical Issues.
Proceedings of the 9th International Conference on
Spoken Language Processing, Lisbon, Portugal.

Herman Engelbrecht, Tanja Schultz, 2005. Rapid De-
velopment of an Afrikaans-English Speech-to-Speech
Translator, International Workshop on Spoken Lan-
guage Translation, Pittsburgh, PA. pp.169-176.

S P Kishore and Alan W Black, 2003. Unit Size in Unit
Selection Speech Synthesis. Proceedings of the 8th Eu-
ropean Conference on Spoken Language Processing,
Geneva, Switzerland.

Alon Lavie, et al. 2003. Experiments with a Hindi-to-
English Transfer-based MT System under a Miserly
Data Scenario, ACM Transactions on Asian Lan-
guage Information Processing, 2(2).

Piet Mertens and Filip Vercammen, 1998. Fonilex Man-
ual, Technical Report, K. U. Leuven CCL.

John Wells and Jill House, 1995. Sounds of the IPA.
http://www.phon.ucl.ac.uk/shop/soundsipa.php.

Italian, 10k dict, maxwin=5

Legend

Perfect Oracle
Oracle word selection
Active learner
Averge random

Num Letters Examined

0 100 200 300 400 500

W
o
rd

s
C
or

re
ct

 (
%

)

0

20

40

60

80

100
Word Accuracy, Active Learner

239

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 240–247,
New York, June 2006.c©2006 Association for Computational Linguistics

Relabeling Syntax Trees to Improve Syntax-Based Machine Translation
Quality

Bryant Huang
Language Weaver, Inc.

4640 Admiralty Way, Suite 1210
Marina del Rey, CA 90292

bhuang@languageweaver.com

Kevin Knight
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
knight@isi.edu

Abstract

We identify problems with the Penn Tree-
bank that render it imperfect for syntax-
based machine translation and propose
methods of relabeling the syntax trees to
improve translation quality. We develop a
system incorporating a handful of relabel-
ing strategies that yields a statistically sig-
nificant improvement of 2.3 BLEU points
over a baseline syntax-based system.

1 Introduction

Recent work in statistical machine translation (MT)
has sought to overcome the limitations of phrase-
based models (Marcu and Wong, 2002; Koehn et
al., 2003; Och and Ney, 2004) by making use
of syntactic information. Syntax-based MT of-
fers the potential advantages of enforcing syntax-
motivated constraints in translation and capturing
long-distance/non-contiguous dependencies. Some
approaches have used syntax at the core (Wu, 1997;
Alshawi et al., 2000; Yamada and Knight, 2001;
Gildea, 2003; Eisner, 2003; Hearne and Way, 2003;
Melamed, 2004) while others have integrated syn-
tax into existing phrase-based frameworks (Xia and
McCord, 2004; Chiang, 2005; Collins et al., 2005;
Quirk et al., 2005).

In this work, we employ a syntax-based model
that applies a series of tree/string (xRS) rules (Gal-
ley et al., 2004; Graehl and Knight, 2004) to a source
language string to produce a target language phrase
structure tree. Figure 1 exemplifies the translation

process, which is called a derivation, from Chinese
into English. The source string to translate (

� � ���� �

� � �������� �	�� ��

.) is shown at the top left. Rule 1©

replaces the Chinese word
� � �����

(shaded) with the
English NP-C police. Rule 2© then builds a VP over
the
� � �

NP-C
� � ��

sequence. Next,
� � ���� �

is translated
as the NP-C the gunman by rule 3©. Finally, rule 4©
combines the sequence of NP-C VP . into an S, denot-
ing a complete tree. The yield of this tree gives the
target translation: the gunman was killed by police .

The Penn English Treebank (PTB) (Marcus et al.,
1993) is our source of syntactic information, largely
due to the availability of reliable parsers. It is not
clear, however, whether this resource is suitable, as
is, for the task of MT. In this paper, we argue that the
overly-general tagset of the PTB is problematic for
MT because it fails to capture important grammati-
cal distinctions that are critical in translation. As a
solution, we propose methods of relabeling the syn-
tax trees that effectively improve translation quality.

Consider the derivation in Figure 2. The output
translation has two salient errors: determiner/noun
number disagreement (*this Turkish positions) and
auxiliary/verb tense disagreement (*has demon-
strate). The first problem arises because the DT

tag, which does not distinguish between singular and
plural determiners, allows singular this to be used
with plural NNS positions. In the second problem,
the VP-C tag fails to communicate that it is headed by
the base verb (VB) demonstrate, which should pre-
vent it from being used with the auxiliary VBZ has.
Information-poor tags like DT and VP-C can be rela-
beled to encourage more fluent translations, which
is the thrust of this paper.

240

Figure 1: A derivation from a Chinese sentence to
an English tree.

Section 2 describes our data and experimental
procedure. Section 3 explores different relabeling
approaches and their impact on translation qual-
ity. Section 4 reports a substantial improvement in
BLEU achieved by combining the most effective re-
labeling methods. Section 5 concludes.

2 Experimental Framework

Our training data consists of 164M+167M words of
parallel Chinese/English text. The English half was
parsed with a reimplementation of Collins’ Model
2 (Collins, 1999) and the two halves were word-
aligned using GIZA++ (Och and Ney, 2000). These
three components — Chinese strings, English parse
trees, and their word alignments — were inputs
to our experimental procedure, which involved five
steps: (1) tree relabeling, (2) rule extraction, (3) de-
coding, (4) n-best reranking, (5) evaluation.

This paper focuses on step 1, in which the orig-
inal English parse trees are transformed by one or
more relabeling strategies. Step 2 involves extract-
ing minimal xRS rules (Galley et al., 2004) from
the set of string/tree/alignments triplets. These rules
are then used in a CKY-type parser-decoder to trans-
late the 878-sentence 2002 NIST MT evaluation test
set (step 3). In step 4, the output 2,500-sentence n-
best list is reranked using an n-gram language model
trained on 800M words of English news text. In
the final step, we score our translations with 4-gram
BLEU (Papineni et al., 2002).

Separately for each relabeling method, we ran
these five steps and compared the resulting BLEU
score with that of a baseline system with no re-
labeling. To determine if a BLEU score increase
or decrease is meaningful, we calculate statistical
significance at 95% using paired bootstrap resam-
pling (Koehn, 2004; Zhang et al., 2004) on 1,000
samples.

Figure 3 shows the results from each relabel-
ing experiment. The second column indicates the
change in the number of unique rules from the base-
line number of 16.7M rules. The third column gives
the BLEU score along with an indication whether it
is a statistically significant increase (▲), a statisti-
cally significant decrease (▼), or neither (?) over
the baseline BLEU score.

241

Figure 2: A bad translation fixable by relabeling.

242

Relabeling Variant ∆ # Rules BLEU ∆

BASELINE — 20.06 —
LEX_PREP 1 +301.2K 20.2 ▲

2 +254.8K 20.36 ▲
3 +188.3K 20.14 ▲

LEX_DT 1 +36.1K 20.15 ▲
2 +29.6K 20.18 ▲

LEX_AUX 1 +5.1K 20.09 ▲
2 +8.0K 20.09 ?
3 +1.6K 20.11 ▲
4 +13.8K 20.07 ?

LEX_CC +3.3K 20.03 ▼
LEX_% +0.3K 20.14 ▲
TAG_VP +123.6K 20.28 ▲

SISTERHOOD 1 +1.1M 21.33 ▲
2 +935.5K 20.91 ▲
3 +433.1K 20.36 ▲
4 +407.0K 20.59 ▲

PARENT 1 +1.1M 19.77 ▼
2 +9.0K 20.01 ▼
3 +2.9M 15.63 ▼

COMP_IN +17.4K 20.36 ▲

REM_NPB –3.5K 19.93 ▼
REM_-C –143.4K 19.3 ▼
REM_SG –9.4K 20.01 ▼

Figure 3: For each relabeling method and variant,
the impact on ruleset size and BLEU score over the
baseline.

3 Relabeling

The small tagset of the PTB has the advantage of
being simple to annotate and to parse. On the other
hand, this can lead to tags that are overly generic.
Klein and Manning (2003) discuss this as a prob-
lem in parsing and demonstrate that annotating ad-
ditional information onto the PTB tags leads to im-
proved parsing performance. We similarly propose
methods of relabeling PTB trees that notably im-
prove MT quality. In the next two subsections, we
explore relabeling strategies that fall under two cate-
gories introduced by Klein and Manning — internal
annotation and external annotation.

3.1 Internal Annotation

Internal annotation reveals information about a
node and its descendants to its surrounding nodes
(ancestors, sisters, and other relatives) that is other-
wise hidden. This is paramount in MT because the
contents of a node must be understood before the
node can be reliably translated and positioned in a
sentence. Here we discuss two such strategies: lexi-

Figure 4: Rules before and after lexicalization.

calization and tag annotation.

3.1.1 Lexicalization

Many state-of-the-art statistical parsers incor-
porate lexicalization to effectively capture word-
specific behavior, which has proved helpful in our
system as well. We generalize lexicalization to al-
low a lexical item (terminal word) to be annotated
onto any ancestor label, not only its parent.

Let us revisit the determiner/noun number dis-
agreement problem in Figure 2 (*this Turkish po-
sitions). If we lexicalize all DTs in the parse trees,
the problematic DT is relabeled more specifically as
DT_this, as seen in rule 2′© in Figure 4. This also
produces rules like 4′©, where both the determiner
and the noun are plural (notice the DT_these), and
4′′©, where both are singular. With such a ruleset, 2′©

could only combine with 4′′©, not 4′©, enforcing the
grammatical output this Turkish position.

We explored five lexicalization strategies, each
targeting a different grammatical category. A com-
mon translation mistake was the improper choice of
prepositions, e.g., responsibility to attacks. Lexical-
izing prepositions proved to be the most effective
lexicalization method (LEX_PREP). We annotated
a preposition onto both its parent (IN or TO) and its
grandparent (PP) since the generic PP tag was often
at fault. We tried lexicalizing all prepositions (vari-
ant 1), the top 15 most common prepositions (variant
2), and the top 5 most common (variant 3). All gave
statistically significant BLEU improvements, espe-
cially variant 2.

The second strategy was DT lexicalization

243

(LEX_DT), which we encountered previously in Fig-
ure 4. This addresses two features of Chinese that
are problematic in translation to English: the infre-
quent use of articles and the lack of overt number in-
dicators on nouns. We lexicalized these determiners:
the, a, an, this, that, these, or those, and grouped to-
gether those with similar grammatical distributions
(a/an, this/that, and these/those). Variant 1 included
all the determiners mentioned above and variant 2
was restricted to the and a/an to focus only on arti-
cles. The second slightly improved on the first.

The third type was auxiliary lexicalization
(LEX_AUX), in which all forms of the verb be
are annotated with _be, and similarly with do and
have. The PTB purposely eliminated such distinc-
tions; here we seek to recover them. However,
auxiliaries and verbs function very differently and
thus cannot be treated identically. Klein and Man-
ning (2003) make a similar proposal but omit do.
Variants 1, 2, and 3, lexicalize have, be, and do, re-
spectively. The third variant slightly outperformed
the other variants, including variant 4, which com-
bines all three.

The last two methods are drawn directly from
Klein and Manning (2003). In CC lexicalization
(LEX_CC), both but and & are lexicalized since
these two conjunctions are distributed very differ-
ently compared to other conjunctions. Though help-
ful in parsing, it proved detrimental in our system.
In % lexicalization (LEX_%), the percent sign (%) is
given its own PCT tag rather than its typical NN tag,
which gave a statistically significant BLEU increase.

3.1.2 Tag Annotation

In addition to propagating up a terminal word, we
can also propagate up a nonterminal, which we call
tag annotation. This partitions a grammatical cat-
egory into more specific subcategories, but not as
fine-grained as lexicalization. For example, a VP

headed by a VBG can be tag-annotated as VP_VBG

to represent a progressive verb phrase.
Let us once again return to Figure 2 to address

the auxiliary/verb tense disagreement error (*has
demonstrate). The auxiliary has expects a VP-C, per-
mitting the bare verb phrase demonstrate to be incor-
rectly used. However, if we tag-annotate all VP-Cs,
rule 6© would be relabeled as VP-C_VB in rule 6′©

and rule 7© as 7′© in Figure 5. Rule 6′© can no longer

Figure 5: Rules before and after tag annotation.

join with 7′©, while the variant rule 6′′© can, which
produces the grammatical result has demonstrated.

We noticed many wrong verb tense choices, e.g.,
gerunds and participles used as main sentence verbs.
We resolved this by tag-annotating every VP and VP-

C with its head verb (TAG_VP). Note that we group
VBZ and VBP together since they have very similar
grammatical distributions and differ only by number.
This strategy gave a healthy BLEU improvement.

3.2 External Annotation

In addition to passing information from inside a
node to the outside, we can pass information from
the external environment into the node through ex-
ternal annotation. This allows us to make transla-
tion decisions based on the context in which a word
or phrase is found. In this subsection, we look at
three such methods: sisterhood annotation, parent
annotation, and complement annotation.

3.2.1 Sisterhood Annotation

The single most effective relabeling scheme we
tried was sisterhood annotation. We annotate each
nonterminal with #L if it has any sisters to the left,
#R if any to the right, #LR if on both sides, and noth-
ing if it has no sisters. This distinguishes between
words that tend to fall on the left or right border of
a constituent (often head words, like NN#L in an NP

or IN#R in a PP), in the middle of a constituent (of-
ten modifiers, like JJ#LR in an NP), or by themselves

244

Figure 6: A bad translation fixable by sisterhood or
parent annotation.

(often particles and pronouns, like RP and PRP). In
our outputs, we frequently find words used in posi-
tions where they should be disallowed or disfavored.

Figure 6 presents a derivation that leads to the
ungrammatical output *deeply love she. The sub-
ject pronoun she is incorrectly preferred over the ob-
ject form her because the most popular NP-C trans-
lation for � � � is she. We can sidestep this mistake
through sisterhood-annotation, which yields the re-
labeled rules 3′© and 4′© in Figure 7. Rule 4′© ex-
pects an NP-C on the right border of the constituent
(NP-C#L). Since she never occurs in this position in
the PTB, it should never be sisterhood-annotated as
an NP-C#L. It does occur with sisters to the right,
which gives the NP-C#R rule 3′©. The object NP-C

her, on the other hand, is frequently rightmost in a
constituent, which is reflected in the NP-C#L rule 3′′©.
Using this rule with rule 4′© gives the desired result
deeply love her.

We experimented with four sisterhood annotation
(SISTERHOOD) variants of decreasing complexity.
The first was described above, which includes right-
most (#L), leftmost (#R), middle (#LR), and alone (no
annotation). Variant 2 omitted #LR, variant 3 kept
only #LR, and variant 4 only annotated nodes with-
out sisters. Variants 1 and 2 produced the largest
gains from relabeling: 1.27 and 0.85 BLEU points,
respectively.

Figure 7: Rules before and after sisterhood annota-
tion.

Figure 8: Rules before and after parent annotation.

3.2.2 Parent Annotation

Another common relabeling method in parsing is
parent annotation (Johnson, 1998), in which a node
is annotated with its parent’s label. Typically, this
is done only to nonterminals, but Klein and Man-
ning (2003) found that annotating preterminals as
well was highly effective. It seemed likely that such
contextual information could also benefit MT.

Let us tackle the bad output from Figure 6 with
parent annotation. In Figure 8, rule 4© is relabeled as
rule 4′© and expects an NP-CˆVP, i.e., an NP-C with a
VP parent. In the PTB, we observe that the NP-C she
never has a VP parent, while her does. In fact, the
most popular parent for the NP-C her is VP, while the
most popular parent for she is S. Rule 3© is relabeled
as the NP-CˆS rule 3′© and her is expressed as the NP-

CˆVP rule 3′′©. Only rule 3′′© can partner with rule 4′©,
which produces the correct output deeply love her.

We tested three variants of parent annota-
tion (PARENT): (1) all nonterminals are parent-
annotated, (2) only S nodes are parent-annotated,
and (3) all nonterminals are parent- and grandparent-
annotated (the annotation of a node’s parent’s par-
ent). The first and third variants yielded the largest
ruleset sizes of all relabeling methods. The second
variant was restricted only to S to capture the dif-
ference between top-level clauses (SˆTOP) and em-

245

bedded clauses (like SˆS-C). Unfortunately, all three
variants turned out to be harmful in terms of BLEU.

3.2.3 Complement Annotation

In addition to a node’s parent, we can also anno-
tate a node’s complement. This captures the fact that
words have a preference of taking certain comple-
ments over others. For instance, 96% of cases where
the IN of takes one complement in the PTB, it takes
NP-C. On the other hand, although never takes NP-C

but takes S-C 99% of the time.
Consider the derivation in Figure 9 that results in

the bad output *postponed out May 6. The IN out
is incorrectly allowed despite the fact that it almost
never takes an NP-C complement (0.6% of cases in
the PTB). A way to restrict this is to annotate the
IN’s complement. Complement-annotated versions
of rules 2© and 3© are given in Figure 10. Rule
2© is relabeled as the IN/PP-C rule 2′© since PP-C

is the most common complement for out (99% of
the time). Since rule 3′′© expects an IN/NP-C, rule 2′©

is disqualified. The preposition from (rule 2′′©), on
the other hand, frequently takes NP-C as complement
(82% of the time). Combining rule 2′′© with rule 3′©

ensures the correct output postponed from May 6.
Complement-annotating all IN tags with their

complement if they had one and only one comple-
ment (COMP_IN) gave a significant BLEU improve-
ment with only a modest increase in ruleset size.

3.3 Removal of Parser Annotations

Many parsers, though trained on the PTB, do not
preserve the original tagset. They may omit func-
tion tags (like -TMP), indices, and null/gap elements
or add annotations to increase parsing accuracy and
provide useful grammatical information. It is not
obvious whether these modifications are helpful for
MT, so we explore the effects of removing them.

The statistical parser we used makes three re-
labelings: (1) base NPs are relabeled as NPB, (2)
argument nonterminals are suffixed with -C, and
(3) subjectless sentences are relabeled from S to
SG. We tried removing each annotation individually
(REM_NPB, REM_-C, and REM_SG), but doing so
significantly dropped the BLEU score. This leads us
to conclude these parser additions are helpful in MT.

Figure 9: A bad translation fixable by complement
annotation.

Figure 10: Rules before and after complement anno-
tation.

4 Evaluation

To maximize the benefit of relabeling, we incorpo-
rated five of the most promising relabeling strategies
into one additive system: LEX_%, LEX_DT variant

246

∆ # Rules BLEU
Relabeling Variant Ind. Cum. Ind. Cum.
BASELINE — — 20.06 20.06
LEX_% +0.3K +0.3K 20.14 20.14
LEX_DT 2 +29.6K +29.9K 20.18 20.3
TAG_VP +123.6K +153.5K 20.28 20.43
LEX_PREP 2 +254.8K +459.0K 20.36 21.25
SISTERHOOD 1 +1.1M +1.5M 21.33 22.38

Figure 11: Relabelings in the additive system and
their individual/cumulative effects over the baseline.

2, TAG_VP, LEX_PREP variant 2, and SISTERHOOD
variant 1. These relabelings contributed to a 2.3 ab-
solute (11.6% relative) BLEU point increase over
the baseline, with a score of 22.38. Figure 11 lists
these relabelings in the order they were added.

5 Conclusion

We have demonstrated that relabeling syntax trees
for use in syntax-based machine translation can sig-
nificantly boost translation performance. It is naïve
to assume that linguistic resources can be immedi-
ately useful out of the box, in our case, the Penn
Treebank for MT. Rather, we targeted features of the
PTB tagset that impair translatability and proposed
relabeling strategies to overcome these weaknesses.
Many of our ideas effectively raised the BLEU score
over a baseline system without relabeling. Finally,
we demonstrated through an additive system that re-
labelings can be combined together to achieve an
even greater improvement in translation quality.

Acknowledgments

This research was supported in part by NSF grant
IIS-0428020. We would like to thank Greg Lang-
mead, Daniel Marcu, and Wei Wang for helpful
comments. This paper describes work conducted
while the first author was at the University of South-
ern California/Information Sciences Institute.

References
Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas. 2000.

Learning dependency translation models as collections of
finite state head transducers. Computational Linguistics,
26(1):45–60.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of ACL-05.

Michael Collins, Philipp Koehn, and Ivona Kučerová. 2005.
Clause restructuring for statistical machine translation. In
Proceedings of ACL-05, pages 531–540.

Michael Collins. 1999. Head-driven statistical models for nat-
ural language parsing. Ph.D. thesis, University of Pennsyl-
vania.

Jason Eisner. 2003. Learning non-isomorphic tree mappings
for machine translation. In Proceedings of ACL-03 (Com-
panion Volume), pages 205–208.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Proceed-
ings of HLT/NAACL-04, pages 273–280.

Dan Gildea. 2003. Loosely tree-based alignment for machine
translation. In Proceedings of ACL-03.

Jonathan Graehl and Kevin Knight. 2004. Training tree trans-
ducers. In Proceedings of HLT/NAACL-04, pages 105–112.

Mary Hearne and Andy Way. 2003. Seeing the wood for
the trees: Data-Oriented Translation. In Proceedings of MT
Summit IX.

Mark Johnson. 1998. PCFG models of linguistic tree represen-
tations. Computational Linguistics, 24(4):613–632.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. In Proceedings of ACL-03, pages 423–430.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings of
HLT/NAACL-03.

Philipp Koehn. 2004. Statistical significance tests for machine
translation evaluation. In Proceedings of EMNLP-04.

Daniel Marcu and William Wong. 2002. A phrase-based, joint
probability model for statistical machine translation. In Pro-
ceedings of EMNLP-02.

Mitchell Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

I. Dan Melamed. 2004. Statistical machine translation by pars-
ing. In Proceedings of ACL-04, pages 653–660.

Franz Josef Och and Hermann Ney. 2000. Improved statistical
alignment models. In Proceedings of ACL-00.

Franz Josef Och and Hermann Ney. 2004. The alignment tem-
plate approach to statistical machine translation. Computa-
tional Linguistics, 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. BLEU: a method for automatic evaluation of
machine translation. In Proceedings of ACL-02.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: syntactically informed phrasal
SMT. In Proceedings of ACL-05, pages 271–279.

Dekai Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Fei Xia and Michael McCord. 2004. Improving a statistical
MT system with automatically learned rewrite patterns. In
Proceedings of COLING-04.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statis-
tical translation model. In Proceedings of ACL-01.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. Inter-
preting BLEU/NIST scores: how much improvement do we
need to have a better system? In Proceedings of LREC-04.

247

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 248–255,
New York, June 2006.c©2006 Association for Computational Linguistics

Grammatical Machine Translation

Stefan Riezler and John T. Maxwell III
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304

Abstract

We present an approach to statistical
machine translation that combines ideas
from phrase-based SMT and traditional
grammar-based MT. Our system incor-
porates the concept of multi-word trans-
lation units into transfer of dependency
structure snippets, and models and trains
statistical components according to state-
of-the-art SMT systems. Compliant with
classical transfer-based MT, target depen-
dency structure snippets are input to a
grammar-based generator. An experimen-
tal evaluation shows that the incorpora-
tion of a grammar-based generator into an
SMT framework provides improved gram-
maticality while achieving state-of-the-art
quality on in-coverage examples, suggest-
ing a possible hybrid framework.

1 Introduction

Recent approaches to statistical machine translation
(SMT) piggyback on the central concepts of phrase-
based SMT (Och et al., 1999; Koehn et al., 2003)
and at the same time attempt to improve some of its
shortcomings by incorporating syntactic knowledge
in the translation process. Phrase-based translation
with multi-word units excels at modeling local or-
dering and short idiomatic expressions, however, it
lacks a mechanism to learn long-distance dependen-
cies and is unable to generalize to unseen phrases
that share non-overt linguistic information. Publicly

available statistical parsers can provide the syntactic
information that is necessary for linguistic general-
izations and for the resolution of non-local depen-
dencies. This information source is deployed in re-
cent work either for pre-ordering source sentences
before they are input to to a phrase-based system
(Xia and McCord, 2004; Collins et al., 2005), or
for re-ordering the output of translation models by
statistical ordering models that access linguistic in-
formation on dependencies and part-of-speech (Lin,
2004; Ding and Palmer, 2005; Quirk et al., 2005)1 .

While these approaches deploy dependency-style
grammars for parsing source and/or target text, a uti-
lization of grammar-based generation on the output
of translation models has not yet been attempted in
dependency-based SMT. Instead, simple target lan-
guage realization models that can easily be trained
to reflect the ordering of the reference translations in
the training corpus are preferred. The advantage of
such models over grammar-based generation seems
to be supported, for example, by Quirk et al.’s (2005)
improvements over phrase-based SMT as well as
over an SMT system that deploys a grammar-based
generator (Menezes and Richardson, 2001) on n-
gram based automatic evaluation scores (Papineni et
al., 2001; Doddington, 2002). Another data point,
however, is given by Charniak et al. (2003) who
show that parsing-based language modeling can im-
prove grammaticality of translations, even if these
improvements are not recorded under n-gram based
evaluation measures.

1A notable exception to this kind of approach is Chiang
(2005) who introduces syntactic information into phrase-based
SMT via hierarchical phrases rather than by external parsing.

248

In this paper we would like to step away from
n-gram based automatic evaluation scores for a
moment, and investigate the possible contributions
of incorporating a grammar-based generator into
a dependency-based SMT system. We present a
dependency-based SMT model that integrates the
idea of multi-word translation units from phrase-
based SMT into a transfer system for dependency
structure snippets. The statistical components of
our system are modeled on the phrase-based sys-
tem of Koehn et al. (2003), and component weights
are adjusted by minimum error rate training (Och,
2003). In contrast to phrase-based SMT and to the
above cited dependency-based SMT approaches, our
system feeds dependency-structure snippets into a
grammar-based generator, and determines target lan-
guage ordering by applying n-gram and distortion
models after grammar-based generation. The goal of
this ordering model is thus not foremost to reflect the
ordering of the reference translations, but to improve
the grammaticality of translations.

Since our system uses standard SMT techniques
to learn about correct lexical choice and idiomatic
expressions, it allows us to investigate the contri-
bution of grammar-based generation to dependency-
based SMT2. In an experimental evaluation on the
test-set that was used in Koehn et al. (2003) we
show that for examples that are in coverage of
the grammar-based system, we can achieve state-
of-the-art quality on n-gram based evaluation mea-
sures. To discern the factors of grammaticality
and translational adequacy, we conducted a man-
ual evaluation on 500 in-coverage and 500 out-of-
coverage examples. This showed that an incorpo-
ration of a grammar-based generator into an SMT
framework provides improved grammaticality over
phrase-based SMT on in-coverage examples. Since
in our system it is determinable whether an example
is in-coverage, this opens the possibility for a hy-
brid system that achieves improved grammaticality
at state-of-the-art translation quality.

2A comparison of the approaches of Quirk et al. (2005) and
Menezes and Richardson (2001) with respect to ordering mod-
els is difficult because they differ from each other in their statis-
tical and dependency-tree alignment models.

2 Extracting F-Structure Snippets

Our method for extracting transfer rules for depen-
dency structure snippets operates on the paired sen-
tences of a sentence-aligned bilingual corpus. Sim-
ilar to phrase-based SMT, our approach starts with
an improved word-alignment that is created by in-
tersecting alignment matrices for both translation di-
rections, and refining the intersection alignment by
adding directly adjacent alignment points, and align-
ment points that align previously unaligned words
(see Och et al. (1999)). Next, source and target sen-
tences are parsed using source and target LFG gram-
mars to produce a set of possible f(unctional) de-
pendency structures for each side (see Riezler et al.
(2002) for the English grammar and parser; Butt et
al. (2002) for German). The two f-structures that
most preserve dependencies are selected for further
consideration. Selecting the most similar instead of
the most probable f-structures is advantageous for
rule induction since it provides for higher cover-
age with simpler rules. In the third step, the many-
to-many word alignment created in the first step is
used to define many-to-many correspondences be-
tween the substructures of the f-structures selected
in the second step. The parsing process maintains
an association between words in the string and par-
ticular predicate features in the f-structure, and thus
the predicates on the two sides are implicitly linked
by virtue of the original word alignment. The word
alignment is extended to f-structures by setting into
correspondence the f-structure units that immedi-
ately contain linked predicates. These f-structure
correspondences are the basis for hypothesizing can-
didate transfer rules.

To illustrate, suppose our corpus contains the fol-
lowing aligned sentences (this example is taken from
our experiments on German-to-English translation):

Dafür bin ich zutiefst dankbar.
I have a deep appreciation for that.

Suppose further that we have created the many-to-
many bi-directional word alignment

Dafür{6 7} bin{2} ich{1} zutiefst{3 4 5}
dankbar{5}

indicating for example that Dafür is aligned with
words 6 and 7 of the English sentence (for and that).

249

PRED sein

SUBJ
[

PRED ich
]

XCOMP

PRED dankbar

ADJ

[

PRED zutiefst
]

[

PRED dafür
]

PRED have

SUBJ
[

PRED I
]

OBJ

PRED appreciation

SPEC
[

PRED a
]

ADJ

[

PRED deep
]

PRED for

OBJ
[

PRED that
]

Figure 1: F-structure alignment for induction of German-to-English transfer rules.

This results in the links between the predicates of the
source and target f-structures shown in Fig. 1.

From these source-target f-structure alignments
transfer rules are extracted in two steps. In the first
step, primitive transfer rules are extracted directly
from the alignment of f-structure units. These in-
clude simple rules for mapping lexical predicates
such as:

PRED(%X1, ich) ==> PRED(%X1, I)

and somewhat more complicated rules for mapping
local f-structure configurations. For example, the
rule shown below is derived from the alignment of
the outermost f-structures. It maps any f-structure
whose pred is sein to an f-structure with pred have,
and in addition interprets the subj-to-subj link as an
indication to map the subject of a source with this
predicate into the subject of the target and the xcomp
of the source into the object of the target. Features
denoting number, person, type, etc. are not shown;
variables %X denote f-structure values.

PRED(%X1,sein) PRED(%X1,have)
SUBJ(%X1,%X2) ==> SUBJ(%X1,%X2)
XCOMP(%X1,%X3) OBJ(%X1,%X3)

The following rule shows how a single source f-
structure can be mapped to a local configuration of
several units on the target side, in this case the sin-
gle f-structure headed by dafür into one that corre-
sponds to an English preposition+object f-structure.

PRED(%X1,for)
PRED(%X1, dafür) ==> OBJ(%X1,%X2)

PRED(%X2,that)

Transfer rules are required to only operate on con-
tiguous units of the f-structure that are consistent
with the word alignment. This transfer contiguity
constraint states that

1. source and target f-structures are each con-
nected.

2. f-structures in the transfer source can only be
aligned with f-structures in the transfer target,
and vice versa.

This constraint on f-structures is analogous to the
constraint on contiguous and alignment-consistent
phrases employed in phrase-based SMT. It prevents
the extraction of a transfer rule that would trans-
late dankbar directly into appreciation since appre-
ciation is aligned also to zutiefst and its f-structure
would also have to be included in the transfer. Thus,
the primitive transfer rule for these predicates must
be:

PRED(%X1,dankbar) PRED(%X1,appr.)
ADJ(%X1,%X2) ==> SPEC(%X1,%X2)
in set(%X3,%X2) PRED(%X2,a)
PRED(%X3,zutiefst) ADJ(%X1,%X3)

in set(%X4,%X3)
PRED(%X4,deep)

In the second step, rules for more complex map-
pings are created by combining primitive transfer
rules that are adjacent in the source and target f-
structures. For instance, we can combine the prim-
itive transfer rule that maps sein to have with the
primitive transfer rule that maps ich to I to produce
the complex transfer rule:

PRED(%X1,sein) PRED(%X1,have)
SUBJ(%X1,%X2) ==> SUBJ(%X1,%X2)
PRED(%X2,ich) PRED(%X2,I)
XCOMP(%X1,%X3) OBJ(%X1,%X3)

In the worst case, there can be an exponential
number of combinations of primitive transfer rules,
so we only allow at most three primitive transfer
rules to be combined. This produces O(n2) trans-

250

fer rules in the worst case, where n is the number of
f-structures in the source.

Other points where linguistic information comes
into play is in morphological stemming in f-
structures, and in the optional filtering of f-structure
phrases based on consistency of linguistic types. For
example, the extraction of a phrase-pair that trans-
lates zutiefst dankbar into a deep appreciation is
valid in the string-based world, but would be pre-
vented in the f-structure world because of the incom-
patibility of the types A and N for adjectival dankbar
and nominal appreciation. Similarly, a transfer rule
translating sein to have could be dispreferred be-
cause of a mismatch in the the verbal types V/A and
V/N. However, the transfer of sein zutiefst dankbar
to have a deep appreciation is licensed by compati-
ble head types V.

3 Parsing-Transfer-Generation

We use LFG grammars, producing c(onstituent)-
structures (trees) and f(unctional)-structures (at-
tribute value matrices) as output, for parsing source
and target text (Riezler et al., 2002; Butt et al., 2002).
To increase robustness, the standard grammar is aug-
mented with a FRAGMENT grammar. This allows
sentences that are outside the scope of the standard
grammar to be parsed as well-formed chunks speci-
fied by the grammar, with unparsable tokens possi-
bly interspersed. The correct parse is determined by
a fewest-chunk method.

Transfer converts source into a target f-structures
by non-deterministically applying all of the induced
transfer rules in parallel. Each fact in the German f-
structure must be transferred by exactly one trans-
fer rule. For robustness a default rule is included
that transfers any fact as itself. Similar to parsing,
transfer works on a chart. The chart has an edge for
each combination of facts that have been transferred.
When the chart is complete, the outputs of the trans-
fer rules are unified to make sure they are consistent
(for instance, that the transfer rules did not produce
two determiners for the same noun). Selection of
the most probable transfer output is done by beam-
decoding on the transfer chart.

LFG grammars can be used bidirectionally for
parsing and generation, thus the existing English
grammar used for parsing the training data can

also be used for generation of English translations.
For in-coverage examples, the grammar specifies c-
structures that differ in linear precedence of sub-
trees for a given f-structure, and realizes the termi-
nal yield according to morphological rules. In order
to guarantee non-empty output for the overall trans-
lation system, the generation component has to be
fault-tolerant in cases where the transfer system op-
erates on a fragmentary parse, or produces non-valid
f-structures from valid input f-structures. For gener-
ation from unknown predicates, a default morphol-
ogy is used to inflect the source stem correctly for
English. For generation from unknown structures, a
default grammar is used that allows any attribute to
be generated in any order as any category, with op-
timality marks set so as to prefer the standard gram-
mar over the default grammar.

4 Statistical Models and Training

The statistical components of our system are mod-
eled on the statistical components of the phrase-
based system Pharaoh, described in Koehn et al.
(2003) and Koehn (2004). Pharaoh integrates the
following 8 statistical models: relative frequency of
phrase translations in source-to-target and target-
to-source direction, lexical weighting in source-to-
target and target-to-source direction, phrase count,
language model probability, word count, and distor-
tion probability.

Correspondingly, our system computes the fol-
lowing statistics for each translation:

1. log-probability of source-to-target transfer
rules, where the probability r(e|f) of a rule
that transfers source snippet f into target snip-
pet e is estimated by the relative frequency

r(e|f) =
count(f ==> e)

∑

e′ count(f ==> e’)

2. log-probability of target-to-source rules

3. log-probability of lexical translations from
source to target snippets, estimated from
Viterbi alignments â between source word po-
sitions i = 1, . . . , n and target word positions
j = 1, . . . ,m for stems fi and ej in snippets
f and e with relative word translation frequen-

251

cies t(ej |fi):

l(e|f) =
∏

j

1

|{i|(i, j) ∈ â}|

∑

(i,j)∈â

t(ej |fi)

4. log-probability of lexical translations from tar-
get to source snippets

5. number of transfer rules

6. number of transfer rules with frequency 1

7. number of default transfer rules (translating
source features into themselves)

8. log-probability of strings of predicates from
root to frontier of target f-structure, estimated
from predicate trigrams in English f-structures

9. number of predicates in target f-structure

10. number of constituent movements during gen-
eration based on the original order of the head
predicates of the constituents (for example,
AP[2] BP[3] CP[1] counts as two move-
ments since the head predicate of CP moved
from the first position to the third position)

11. number of generation repairs

12. log-probability of target string as computed by
trigram language model

13. number of words in target string

These statistics are combined into a log-linear model
whose parameters are adjusted by minimum error
rate training (Och, 2003).

5 Experimental Evaluation

The setup for our experimental comparison is
German-to-English translation on the Europarl par-
allel data set3. For quick experimental turnaround
we restricted our attention to sentences with 5 to
15 words, resulting in a training set of 163,141 sen-
tences and a development set of 1967 sentences. Fi-
nal results are reported on the test set of 1,755 sen-
tences of length 5-15 that was used in Koehn et al.
(2003). To extract transfer rules, an improved bidi-
rectional word alignment was created for the train-
ing data from the word alignment of IBM model 4 as

3http://people.csail.mit.edu/koehn/publications/europarl/

implemented by GIZA++ (Och et al., 1999). Train-
ing sentences were parsed using German and En-
glish LFG grammars (Riezler et al., 2002; Butt et
al., 2002). The grammars obtain 100% coverage on
unseen data. 80% are parsed as full parses; 20% re-
ceive FRAGMENT parses. Around 700,000 transfer
rules were extracted from f-structures pairs chosen
according to a dependency similarity measure. For
language modeling, we used the trigram model of
Stolcke (2002).

When applied to translating unseen text, the sys-
tem operates on n-best lists of parses, transferred
f-structures, and generated strings. For minimum-
error-rate training on the development set, and for
translating the test set, we considered 1 German
parse for each source sentence, 10 transferred f-
structures for each source parse, and 1,000 gener-
ated strings for each transferred f-structure. Selec-
tion of most probable translations proceeds in two
steps: First, the most probable transferred f-structure
is computed by a beam search on the transfer chart
using the first 10 features described above. These
features include tests on source and target f-structure
snippets related via transfer rules (features 1-7) as
well as language model and distortion features on
the target c- and f-structures (features 8-10). In our
experiments, the beam size was set to 20 hypotheses.
The second step is based on features 11-13, which
are computed on the strings that were actually gen-
erated from the selected n-best f-structures.

We compared our system to IBM model 4 as pro-
duced by GIZA++ (Och et al., 1999) and a phrase-
based SMT model as provided by Pharaoh (2004).
The same improved word alignment matrix and the
same training data were used for phrase-extraction
for phrase-based SMT as well as for transfer-rule
extraction for LFG-based SMT. Minimum-error-rate
training was done using Koehn’s implementation of
Och’s (2003) minimum-error-rate model. To train
the weights for phrase-based SMT we used the first
500 sentences of the development set; the weights of
the LFG-based translator were adjusted on the 750
sentences that were in coverage of our grammars.

For automatic evaluation, we use the NIST metric
(Doddington, 2002) combined with the approximate
randomization test (Noreen, 1989), providing the de-
sired combination of a sensitive evaluation metric
and an accurate significance test (see Riezler and

252

Table 1: NIST scores on test set for IBM model 4 (M4),
phrase-based SMT (P), and the LFG-based SMT (LFG) on the
full test set and on in-coverage examples for LFG. Results in the
same row that are not statistically significant from each other are
marked with a ∗.

M4 LFG P
in-coverage 5.13 *5.82 *5.99
full test set *5.57 *5.62 6.40

Table 2: Preference ratings of two human judges for transla-
tions of phrase-based SMT (P) or LFG-based SMT (LFG) under
criteria of fluency/grammaticality and translational/semantic
adequacy on 500 in-coverage examples. Ratings by judge 1 are
shown in rows, for judge 2 in columns. Agreed-on examples are
shown in boldface in the diagonals.

adequacy grammaticality
j1\j2 P LFG equal P LFG equal

P 48 8 7 36 2 9
LFG 10 105 18 6 113 17
equal 53 60 192 51 44 223

Maxwell (2005)). In order to avoid a random as-
sessment of statistical significance in our three-fold
pairwise comparison, we reduce the per-comparison
significance level to 0.01 so as to achieve a standard
experimentwise significance level of 0.05 (see Co-
hen (1995)). Table 1 shows results for IBM model
4, phrase-based SMT, and LFG-based SMT, where
examples that are in coverage of the LFG-based sys-
tems are evaluated separately. Out of the 1,755 sen-
tences of the test set, 44% were in coverage of the
LFG-grammars; for 51% the system had to resort to
the FRAGMENT technique for parsing and/or repair
techniques in generation; in 5% of the cases our sys-
tem timed out. Since our grammars are not set up
with punctuation in mind, punctuation is ignored in
all evaluations reported below.

For in-coverage examples, the difference between
NIST scores for the LFG system and the phrase-
based system is statistically not significant. On the
full set of test examples, the suboptimal quality on
out-of-coverage examples overwhelms the quality
achieved on in-coverage examples, resulting in a sta-
tistically not significant result difference in NIST
scores between the LFG system and IBM model 4.

In order to discern the factors of grammaticality
and translational adequacy, we conducted a manual

evaluation on randomly selected 500 examples that
were in coverage of the grammar-based generator.
Two independent human judges were presented with
the source sentence, and the output of the phrase-
based and LFG-based systems in a blind test. This
was achieved by displaying the system outputs in
random order. The judges were asked to indicate a
preference for one system translation over the other,
or whether they thought them to be of equal quality.
These questions had to be answered separately un-
der the criteria of grammaticality/fluency and trans-
lational/semantic adequacy. As shown in Table 2,
both judges express a preference for the LFG system
over the phrase-based system for both adequacy and
grammaticality. If we just look at sentences where
judges agree, we see a net improvement on trans-
lational adequacy of 57 sentences, which is an im-
provement of 11.4% over the 500 sentences. If this
were part of a hybrid system, this would amount to a
5% overall improvement in translational adequacy.
Similarly we see a net improvement on grammat-
icality of 77 sentences, which is an improvement
of 15.4% over the 500 sentences or 6.7% overall
in a hybrid system. Result differences on agreed-
on ratings are statistically significant, where sig-
nificance was assessed by approximate randomiza-
tion via stratified shuffling of the preferences be-
tween the systems (Noreen, 1989). Examples from
the manual evaluation are shown in Fig. 2.

Along the same lines, a further manual evaluation
was conducted on 500 randomly selected examples
that were out of coverage of the LFG-based gram-
mars. Across the combined set of 1,000 in-coverage
and out-of-coverage sentences, this resulted in an
agreed-on preference for the phrase-based system
in 204 cases and for the LFG-based system in 158
cases under the measure of translational adequacy.
Under the grammaticality measure the phrase-based
system was preferred by both judges in 157 cases
and the LFG-based system in 136 cases.

6 Discussion

The above presented evaluation of the LFG-based
translator shows promising results for examples that
are in coverage of the employed LFG grammars.
However, a back-off to robustness techniques in
parsing and/or generation results in a considerable

253

(1) src: in diesem fall werde ich meine verantwortung wahrnehmen
ref: then i will exercise my responsibility
LFG: in this case i accept my responsibility
P: in this case i shall my responsibilities

(2) src: die politische stabilität hängt ab von der besserung der lebensbedingungen
ref: political stability depends upon the improvement of living conditions
LFG: the political stability hinges on the recovery the conditions
P: the political stability is rejects the recovery of the living conditions

(3) src: und schließlich muß dieser agentur eine kritische haltung gegenüber der kommission selbst erlaubt sein
ref: moreover the agency must be able to criticise the commission itself
LFG: and even to the commission a critical stance must finally be allowed this agency
P: finally this is a critical attitude towards the commission itself to be agency

(4) src: nach der ratifizierung werden co2 emissionen ihren preis haben
ref: after ratification co2 emission will have a price tag
LFG: carbon dioxide emissions have its price following the ratification
P: after the ratification co2 emissions are a price

(5) src: die lebensmittel müssen die sichere ernährung des menschen gewährleisten
ref: man’s food must be safe to eat
LFG: food must guarantee the safe nutrition of the people
P: the people of the nutrition safe food must guarantee

(6) src: was wir morgen beschließen werden ist letztlich material für das vermittlungsverfahren
ref: whatever we agree tomorrow will ultimately have to go into the conciliation procedure
LFG: one tomorrow we approved what is ultimately material for the conciliation procedure
P: what we decide tomorrow is ultimately material for the conciliation procedure

(7) src: die verwaltung muß künftig schneller reagieren können
ref: in future the administration must be able to react more quickly
LFG: more in future the administration must be able to react
P: the administration must be able to react more quickly

(8) src: das ist jetzt über 40 jahre her
ref: that was over 40 years ago
LFG: on 40 years ago it is now
P: that is now over 40 years ago

(9) src: das ist schon eine seltsame vorstellung von gleichheit
ref: a strange notion of equality
LFG: equality that is even a strange idea
P: this is already a strange idea of equality

(10) src: frau präsidentin ich beglückwünsche herrn nicholson zu seinem ausgezeichneten bericht
ref: madam president i congratulate mr nicholson on his excellent report
LFG: madam president i congratulate mister nicholson on his report excellented
P: madam president i congratulate mr nicholson for his excellent report

Figure 2: Examples from manual evaluation: Preference for LFG-based system (LFG) over phrase-based system (P) under both
adequacy and grammaticality (ex 1-5), preference of phrased-based system over LFG (6-10) , together with source (src) sentences
and human reference (ref) translations. All ratings are agreed on by both judges.

loss in translation quality. The high percentage of
examples that fall out of coverage of the LFG-
based system can partially be explained by the ac-
cumulation of errors in parsing the training data
where source and target language parser each pro-
duce FRAGMENT parses in 20% of the cases. To-
gether with errors in rule extraction, this results in
a large number ill-formed transfer rules that force
the generator to back-off to robustness techniques.
In applying the parse-transfer-generation pipeline to
translating unseen text, parsing errors can cause er-
roneous transfer, which can result in generation er-
rors. Similar effects can be observed for errors in

translating in-coverage examples. Here disambigua-
tion errors in parsing and transfer propagate through
the system, producing suboptimal translations. An
error analysis on 100 suboptimal in-coverage exam-
ples from the development set showed that 69 sub-
optimal translations were due to transfer errors, 10
of which were due to errors in parsing.

The discrepancy between NIST scores and man-
ual preference rankings can be explained on the one
hand by the suboptimal integration of transfer and
generation in our system, making it infeasible to
work with large n-best lists in training and applica-
tion. Moreover, despite our use of minimum-error-

254

rate training and n-gram language models, our sys-
tem cannot be adjusted to maximize n-gram scores
on reference translation in the same way as phrase-
based systems since statistical ordering models are
employed in our framework after grammar-based
generation, thus giving preference to grammatical-
ity over similarity to reference translations.

7 Conclusion

We presented an SMT model that marries phrase-
based SMT with traditional grammar-based MT
by incorporating a grammar-based generator into a
dependency-based SMT system. Under the NIST
measure, we achieve results in the range of the
state-of-the-art phrase-based system of Koehn et
al. (2003) for in-coverage examples of the LFG-
based system. A manual evaluation of a large set
of such examples shows that on in-coverage ex-
amples our system achieves significant improve-
ments in grammaticality and also translational ad-
equacy over the phrase-based system. Fortunately,
it is determinable when our system is in-coverage,
which opens the possibility for a hybrid system that
achieves improved grammaticality at state-of-the-art
translation quality. Future work thus will concen-
trate on improvements of in-coverage translations
e.g., by stochastic generation. Furthermore, we in-
tend to apply our system to other language pairs and
larger data sets.

Acknowledgements

We would like to thank Sabine Blum for her invalu-
able help with the manual evaluation.

References

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Ma-
suichi, and Christian Rohrer. 2002. The parallel grammar
project. COLING’02, Workshop on Grammar Engineering
and Evaluation.

Eugene Charniak, Kevin Knight, and Kenji Yamada. 2003.
Syntax-based language models for statistical machine trans-
lation. MT Summit IX.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. ACL’05.

Paul R. Cohen. 1995. Empirical Methods for Artificial Intelli-
gence. The MIT Press.

Michael Collins, Philipp Koehn, and Ivona Kucerova. 2005.
Clause restructuring for statistical machine translation.
ACL’05.

Yuan Ding and Martha Palmer. 2005. Machine translation
using probabilistic synchronous dependency insertion gram-
mars. ACL’05.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence statis-
tics. ARPA Workshop on Human Language Technology.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. HLT-NAACL’03.

Philipp Koehn. 2004. Pharaoh: A beam search decoder for
phrase-based statistical machine translation models. User
manual. Technical report, USC ISI.

Dekang Lin. 2004. A path-based transfer model for statistical
machine translation. COLING’04.

Arul Menezes and Stephen D. Richardson. 2001. A best-
first alignment algorithm for automatic extraction of transfer-
mappings from bilingual corpora. Workshop on Data-
Driven Machine Translation.

Eric W. Noreen. 1989. Computer Intensive Methods for Testing
Hypotheses. An Introduction. Wiley.

Franz Josef Och, Christoph Tillmann, and Hermann Ney. 1999.
Improved alignment models for statistical machine transla-
tion. EMNLP’99.

Franz Josef Och. 2003. Minimum error rate training in statisti-
cal machine translation. HLT-NAACL’03.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2001. Bleu: a method for automatic evaluation of ma-
chine translation. Technical Report IBM RC22176 (W0190-
022).

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed phrasal
SMT. ACL’05.

Stefan Riezler and John Maxwell. 2005. On some pitfalls in
automatic evaluation and significance testing for mt. ACL-
05 Workshop on Intrinsic and Extrinsic Evaluation Measures
for MT and/or Summarization.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell, and Mark Johnson. 2002. Parsing
the Wall Street Journal using a Lexical-Functional Grammar
and discriminative estimation techniques. ACL’02.

Stefan Riezler, Tracy H. King, Richard Crouch, and Annie Za-
enen. 2003. Statistical sentence condensation using am-
biguity packing and stochastic disambiguation methods for
lexical-functional grammar. HLT-NAACL’03.

Andreas Stolcke. 2002. SRILM - an extensible language mod-
eling toolkit. International Conference on Spoken Language
Processing.

Fei Xia and Michael McCord. 2004. Improving a statistical mt
system with automatically learned rewrite patterns. COL-
ING’04.

255

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 256–263,
New York, June 2006.c©2006 Association for Computational Linguistics

Synchronous Binarization for Machine Translation

Hao Zhang
Computer Science Department

University of Rochester
Rochester, NY 14627

zhanghao@cs.rochester.edu

Liang Huang
Dept. of Computer & Information Science

University of Pennsylvania
Philadelphia, PA 19104

lhuang3@cis.upenn.edu

Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

gildea@cs.rochester.edu

Kevin Knight
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292
knight@isi.edu

Abstract

Systems based on synchronous grammars
and tree transducers promise to improve
the quality of statistical machine transla-
tion output, but are often very computa-
tionally intensive. The complexity is ex-
ponential in the size of individual gram-
mar rules due to arbitrary re-orderings be-
tween the two languages, and rules ex-
tracted from parallel corpora can be quite
large. We devise a linear-time algorithm
for factoring syntactic re-orderings by bi-
narizing synchronous rules when possible
and show that the resulting rule set signif-
icantly improves the speed and accuracy
of a state-of-the-art syntax-based machine
translation system.

1 Introduction

Several recent syntax-based models for machine
translation (Chiang, 2005; Galley et al., 2004) can
be seen as instances of the general framework of
synchronous grammars and tree transducers. In this
framework, both alignment (synchronous parsing)
and decoding can be thought of as parsing problems,
whose complexity is in general exponential in the
number of nonterminals on the right hand side of a
grammar rule. To alleviate this problem, we investi-
gate bilingual binarization to factor the synchronous
grammar to a smaller branching factor, although it is
not guaranteed to be successful for any synchronous
rule with arbitrary permutation. In particular:

• We develop a technique called synchronous bi-
narization and devise a fast binarization algo-
rithm such that the resulting rule set allows ef-
ficient algorithms for both synchronous parsing
and decoding with integrated n-gram language
models.

• We examine the effect of this binarization
method on end-to-end machine translation
quality, compared to a more typical baseline
method.

• We examine cases of non-binarizable rules in a
large, empirically-derived rule set, and we in-
vestigate the effect on translation quality when
excluding such rules.

Melamed (2003) discusses binarization of multi-
text grammars on a theoretical level, showing the
importance and difficulty of binarization for efficient
synchronous parsing. One way around this diffi-
culty is to stipulate that all rules must be binary
from the outset, as in inversion-transduction gram-
mar (ITG) (Wu, 1997) and the binary synchronous
context-free grammar (SCFG) employed by the Hi-
ero system (Chiang, 2005) to model the hierarchical
phrases. In contrast, the rule extraction method of
Galley et al. (2004) aims to incorporate more syn-
tactic information by providing parse trees for the
target language and extracting tree transducer rules
that apply to the parses. This approach results in
rules with many nonterminals, making good bina-
rization techniques critical.

Suppose we have the following SCFG, where su-
perscripts indicate reorderings (formal definitions of

256

S

NP

Baoweier

PP

yu
Shalong

VP

juxing le
huitan

S

NP

Powell

VP

held
a meeting

PP

with
Sharon

Figure 1: A pair of synchronous parse trees in the
SCFG (1). The dashed curves indicate pairs of syn-
chronous nonterminals (and sub trees).

SCFGs can be found in Section 2):

(1)

S→ NP(1) VP(2) PP(3), NP(1) PP(3) VP(2)

NP→ Powell, Baoweier
VP→ held a meeting, juxing le huitan
PP→ with Sharon, yu Shalong

Decoding can be cast as a (monolingual) parsing
problem since we only need to parse the source-
language side of the SCFG, as if we were construct-
ing a CFG projected on Chinese out of the SCFG.
The only extra work we need to do for decoding
is to build corresponding target-language (English)
subtrees in parallel. In other words, we build syn-
chronous trees when parsing the source-language in-
put, as shown in Figure 1.

To efficiently decode with CKY, we need to bi-
narize the projected CFG grammar.1 Rules can be
binarized in different ways. For example, we could
binarize the first rule left to right or right to left:

S→ VNP-PP VP
VNP-PP→ NP PP or S→ NP VPP-VP

VPP-VP → PP VP

We call those intermediate symbols (e.g. VPP-VP) vir-
tual nonterminals and corresponding rules virtual
rules, whose probabilities are all set to 1.

These two binarizations are no different in the
translation-model-only decoding described above,
just as in monolingual parsing. However, in the
source-channel approach to machine translation, we
need to combine probabilities from the translation
model (an SCFG) with the language model (an n-
gram), which has been shown to be very impor-
tant for translation quality (Chiang, 2005). To do
bigram-integrated decoding, we need to augment
each chart item (X, i, j) with two target-language

1Other parsing strategies like the Earley algorithm use an
internal binary representation (e.g. dotted-rules) of the original
grammar to ensure cubic time complexity.

boundary words u and v to produce a bigram-item
like

(u ··· v
X

i j

)

, following the dynamic program-
ming algorithm of Wu (1996).

Now the two binarizations have very different ef-
fects. In the first case, we first combine NP with PP:

(

Powell ··· Powell
NP

1 2

)

: p

(

with ··· Sharon
PP

2 4

)

: q

(

Powell ··· Powell ··· with ··· Sharon
VNP-PP

1 4

)

: pq

where p and q are the scores of antecedent items.
This situation is unpleasant because in the target-

language NP and PP are not contiguous so we can-
not apply language model scoring when we build the
VNP-PP item. Instead, we have to maintain all four
boundary words (rather than two) and postpone the
language model scoring till the next step where VNP-PP

is combined with
(

held ··· meeting
VP

2 4

)

to form an S item.
We call this binarization method monolingual bina-
rization since it works only on the source-language
projection of the rule without respecting the con-
straints from the other side.

This scheme generalizes to the case where we
have n nonterminals in a SCFG rule, and the decoder
conservatively assumes nothing can be done on lan-
guage model scoring (because target-language spans
are non-contiguous in general) until the real nonter-
minal has been recognized. In other words, target-
language boundary words from each child nonter-
minal of the rule will be cached in all virtual non-
terminals derived from this rule. In the case of
m-gram integrated decoding, we have to maintain
2(m − 1) boundary words for each child nontermi-
nal, which leads to a prohibitive overall complex-
ity of O(|w|3+2n(m−1)), which is exponential in rule
size (Huang et al., 2005). Aggressive pruning must
be used to make it tractable in practice, which in
general introduces many search errors and adversely
affects translation quality.

In the second case, however:
(

with ··· Sharon
PP

2 4

)

: r

(

held ··· meeting
VP

4 7

)

: s

(

held ··· Sharon
VPP-VP

2 7

)

: rs · Pr(with | meeting)

Here since PP and VP are contiguous (but
swapped) in the target-language, we can include the

257

NP

NP

PP

VP

VP

PP
target (English)

source (Chinese)
VPP-VP

NP

PP
VP

Chinese indices

E
nglish

boundary
w

ords 1 2 4 7
Powell

Powell
held

meeting
with

Sharon
VPP-VP

Figure 2: The alignment pattern (left) and alignment
matrix (right) of the synchronous production.

language model score by adding Pr(with | meeting),
and the resulting item again has two boundary
words. Later we add Pr(held | Powell) when the
resulting item is combined with

(

Powell ··· Powell
NP

1 2

)

to
form an S item. As illustrated in Figure 2, VPP-VP has
contiguous spans on both source and target sides, so
that we can generate a binary-branching SCFG:

(2) S→ NP(1) VPP-VP
(2), NP(1) VPP-VP

(2)

VPP-VP → VP(1) PP(2), PP(2) VP(1)

In this case m-gram integrated decoding can be
done in O(|w|3+4(m−1)) time which is much lower-
order polynomial and no longer depends on rule size
(Wu, 1996), allowing the search to be much faster
and more accurate facing pruning, as is evidenced in
the Hiero system of Chiang (2005) where he restricts
the hierarchical phrases to be a binary SCFG. The
benefit of binary grammars also lies in synchronous
parsing (alignment). Wu (1997) shows that parsing
a binary SCFG is in O(|w|6) while parsing SCFG is
NP-hard in general (Satta and Peserico, 2005).

The same reasoning applies to tree transducer
rules. Suppose we have the following tree-to-string
rules, following Galley et al. (2004):

(3)

S(x0:NP, VP(x2:VP, x1:PP))→ x0 x1 x2

NP(NNP(Powell))→ Baoweier
VP(VBD(held), NP(DT(a) NPS(meeting)))

→ juxing le huitan
PP(TO(with), NP(NNP(Sharon)))→ yu Shalong

where the reorderings of nonterminals are denoted
by variables xi.

Notice that the first rule has a multi-level left-
hand side subtree. This system can model non-
isomorphic transformations on English parse trees
to “fit” another language, for example, learning that

the (S (V O)) structure in English should be trans-
formed into a (V S O) structure in Arabic, by look-
ing at two-level tree fragments (Knight and Graehl,
2005). From a synchronous rewriting point of view,
this is more akin to synchronous tree substitution
grammar (STSG) (Eisner, 2003). This larger locality
is linguistically motivated and leads to a better pa-
rameter estimation. By imagining the left-hand-side
trees as special nonterminals, we can virtually cre-
ate an SCFG with the same generative capacity. The
technical details will be explained in Section 3.2.

In general, if we are given an arbitrary syn-
chronous rule with many nonterminals, what are the
good decompositions that lead to a binary grammar?
Figure 2 suggests that a binarization is good if ev-
ery virtual nonterminal has contiguous spans on both
sides. We formalize this idea in the next section.

2 Synchronous Binarization

A synchronous CFG (SCFG) is a context-free
rewriting system for generating string pairs. Each
rule (synchronous production) rewrites a nontermi-
nal in two dimensions subject to the constraint that
the sequence of nonterminal children on one side is
a permutation of the nonterminal sequence on the
other side. Each co-indexed child nonterminal pair
will be further rewritten as a unit.2 We define the
language L(G) produced by an SCFG G as the pairs
of terminal strings produced by rewriting exhaus-
tively from the start symbol.

As shown in Section 3.2, terminals do not play
an important role in binarization. So we now write
rules in the following notation:

X → X
(1)
1 ...X(n)

n , X
(π(1))
π(1) ...X

(π(n))
π(n)

where each Xi is a variable which ranges over non-
terminals in the grammar and π is the permutation
of the rule. We also define an SCFG rule as n-ary
if its permutation is of n and call an SCFG n-ary if
its longest rule is n-ary. Our goal is to produce an
equivalent binary SCFG for an input n-ary SCFG.

2In making one nonterminal play dual roles, we follow the
definitions in (Aho and Ullman, 1972; Chiang, 2005), origi-
nally known as Syntax Directed Translation Schema (SDTS).
An alternative definition by Satta and Peserico (2005) allows
co-indexed nonterminals taking different symbols in two di-
mensions. Formally speaking, we can construct an equivalent
SDTS by creating a cross-product of nonterminals from two
sides. See (Satta and Peserico, 2005, Sec. 4) for other details.

258

(2,3,5,4)

(2,3)

2 3

(5,4)

5 4

(2,3,5,4)

2 (3,5,4)

3 (5,4)

5 4
(a) (b) (c)

Figure 3: (a) and (b): two binarization patterns
for (2, 3, 5, 4). (c): alignment matrix for the non-
binarizable permuted sequence (2, 4, 1, 3)

However, not every SCFG can be binarized. In
fact, the binarizability of an n-ary rule is determined
by the structure of its permutation, which can some-
times be resistant to factorization (Aho and Ullman,
1972). So we now start to rigorously define the bi-
narizability of permutations.

2.1 Binarizable Permutations

A permuted sequence is a permutation of consec-
utive integers. For example, (3, 5, 4) is a permuted
sequence while (2, 5) is not. As special cases, single
numbers are permuted sequences as well.

A sequence a is said to be binarizable if it is a
permuted sequence and either

1. a is a singleton, i.e. a = (a), or

2. a can be split into two sub sequences, i.e.
a = (b; c), where b and c are both binarizable
permuted sequences. We call such a division
(b; c) a binarizable split of a.

This is a recursive definition. Each binarizable
permuted sequence has at least one hierarchical bi-
narization pattern. For instance, the permuted se-
quence (2, 3, 5, 4) is binarizable (with two possible
binarization patterns) while (2, 4, 1, 3) is not (see
Figure 3).

2.2 Binarizable SCFG

An SCFG is said to be binarizable if the permu-
tation of each synchronous production is binariz-
able. We denote the class of binarizable SCFGs as
bSCFG. This set represents an important subclass
of SCFG that is easy to handle (parsable in O(|w|6))
and covers many interesting longer-than-two rules.3

3Although we factor the SCFG rules individually and de-
fine bSCFG accordingly, there are some grammars (the dashed

SCFG bSCFG SCFG-2

O(|w|6) parsable

Figure 4: Subclasses of SCFG. The thick arrow de-
notes the direction of synchronous binarization. For
clarity reasons, binary SCFG is coded as SCFG-2.

Theorem 1. For each grammar G in bSCFG, there
exists a binary SCFG G′, such that L(G′) = L(G).

Proof. Once we decompose the permutation of n

in the original rule into binary permutations, all
that remains is to decorate the skeleton binary parse
with nonterminal symbols and attach terminals to
the skeleton appropriately. We explain the technical
details in the next section.

3 Binarization Algorithms

We have reduced the problem of binarizing an SCFG
rule into the problem of binarizing its permutation.
This problem can be cast as an instance of syn-
chronous ITG parsing (Wu, 1997). Here the parallel
string pair that we are parsing is the integer sequence
(1...n) and its permutation (π(1)...π(n)). The goal
of the ITG parsing is to find a synchronous tree that
agrees with the alignment indicated by the permu-
tation. In fact, as demonstrated previously, some
permutations may have more than one binarization
patterns among which we only need one. Wu (1997,
Sec. 7) introduces a non-ambiguous ITG that prefers
left-heavy binary trees so that for each permutation
there is a unique synchronous derivation (binariza-
tion pattern).

However, this problem has more efficient solu-
tions. Shapiro and Stephens (1991, p. 277) infor-
mally present an iterative procedure where in each
pass it scans the permuted sequence from left to right
and combines two adjacent sub sequences whenever
possible. This procedure produces a left-heavy bi-
narization tree consistent with the unambiguous ITG
and runs in O(n2) time since we need n passes in the
worst case. We modify this procedure and improve
circle in Figure 4), which can be binarized only by analyzing
interactions between rules. Below is a simple example:

S→ X(1) X(2) X(3) X(4), X(2) X(4) X(1) X(3)

X→ a , a

259

iteration stack input action
1 5 3 4 2

1 5 3 4 2 shift
1 1 5 3 4 2 shift
2 1 5 3 4 2 shift
3 1 5 3 4 2 shift

1 5 3-4 2 reduce [3, 4]
1 3-5 2 reduce 〈5, [3, 4]〉

4 1 3-5 2 shift
1 2-5 reduce 〈2, 〈5, [3, 4]〉〉
1-5 reduce [1, 〈2, 〈5, [3, 4]〉〉]

Figure 5: Example of Algorithm 1 on the input
(1, 5, 3, 4, 2). The rightmost column shows the
binarization-trees generated at each reduction step.

it into a linear-time shift-reduce algorithm that only
needs one pass through the sequence.

3.1 The linear-time skeleton algorithm

The (unique) binarization tree bi(a) for a binariz-
able permuted sequence a is recursively defined as
follows:

• if a = (a), then bi(a) = a;

• otherwise let a = (b; c) to be the rightmost
binarizable split of a. then

bi(a) =

{

[bi(b), bi(c)] b1 < c1

〈bi(b), bi(c)〉 b1 > c1.

For example, the binarization tree for (2, 3, 5, 4)
is [[2, 3], 〈5, 4〉], which corresponds to the binariza-
tion pattern in Figure 3(a). We use [] and 〈〉 for
straight and inverted combinations respectively, fol-
lowing the ITG notation (Wu, 1997). The rightmost
split ensures left-heavy binary trees.

The skeleton binarization algorithm is an instance
of the widely used left-to-right shift-reduce algo-
rithm. It maintains a stack for contiguous subse-
quences discovered so far, like 2-5, 1. In each it-
eration, it shifts the next number from the input and
repeatedly tries to reduce the top two elements on
the stack if they are consecutive. See Algorithm 1
for details and Figure 5 for an example.
Theorem 2. Algorithm 1 succeeds if and only if the
input permuted sequence a is binarizable, and in
case of success, the binarization pattern recovered
is the binarization tree of a.

Proof. →: it is obvious that if the algorithm suc-
ceeds then a is binarizable using the binarization
pattern recovered.
←: by a complete induction on n, the length of a.
Base case: n = 1, trivial.
Assume it holds for all n′ < n.
If a is binarizable, then let a = (b; c) be its right-

most binarizable split. By the induction hypothesis,
the algorithm succeeds on the partial input b, reduc-
ing it to the single element s[0] on the stack and re-
covering its binarization tree bi(b).

Let c = (c1; c2). If c1 is binarizable and trig-
gers our binarizer to make a straight combination
of (b; c1), based on the property of permutations, it
must be true that (c1; c2) is a valid straight concate-
nation. We claim that c2 must be binarizable in this
situation. So, (b, c1; c2) is a binarizable split to the
right of the rightmost binarizable split (b; c), which
is a contradiction. A similar contradiction will arise
if b and c1 can make an inverted concatenation.

Therefore, the algorithm will scan through the
whole c as if from the empty stack. By the in-
duction hypothesis again, it will reduce c into s[1]
on the stack and recover its binarization tree bi(c).
Since b and c are combinable, the algorithm re-
duces s[0] and s[1] in the last step, forming the bi-
narization tree for a, which is either [bi(b), bi(c)] or
〈bi(b), bi(c)〉.

The running time of Algorithm 1 is linear in n, the
length of the input sequence. This is because there
are exactly n shifts and at most n−1 reductions, and
each shift or reduction takes O(1) time.

3.2 Binarizing tree-to-string transducers

Without loss of generality, we have discussed how
to binarize synchronous productions involving only
nonterminals through binarizing the corresponding
skeleton permutations. We still need to tackle a few
technical problems in the actual system.

First, we are dealing with tree-to-string trans-
ducer rules. We view each left-hand side subtree
as a monolithic nonterminal symbol and factor each
transducer rule into two SCFG rules: one from
the root nonterminal to the subtree, and the other
from the subtree to the leaves. In this way we can
uniquely reconstruct the tree-to-string derivation us-
ing the two-step SCFG derivation. For example,

260

Algorithm 1 The Linear-time Binarization Algorithm
1: function BINARIZABLE(a)
2: top← 0 . stack top pointer
3: PUSH(a1, a1) . initial shift
4: for i← 2 to |a| do . for each remaining element
5: PUSH(ai, ai) . shift
6: while top > 1 and CONSECUTIVE(s[top], s[top− 1]) do . keep reducing if possible
7: (p, q)← COMBINE(s[top], s[top− 1])
8: top← top− 2
9: PUSH(p, q)

10: return (top = 1) . if reduced to a single element then the input is binarizable, otherwise not
11: function CONSECUTIVE((a, b), (c, d))
12: return (b = c− 1) or (d = a− 1) . either straight or inverted
13: function COMBINE((a, b), (c, d))
14: return (min(a, c), max(b, d))

consider the following tree-to-string rule:

ADJP

x0:RB JJ

responsible

PP

IN

for

NP-C

NPB

DT

the

x2:NN

x1:PP

→ x0 fuze x1 de x2

We create a specific nonterminal, say, T859, which
is a unique identifier for the left-hand side subtree
and generate the following two SCFG rules:

ADJP → T859
(1), T859

(1)

T859 →
RB(1) resp. for the NN(2) PP(3),
RB(1) fuze PP(3) de NN(2)

Second, besides synchronous nonterminals, ter-
minals in the two languages can also be present, as
in the above example. It turns out we can attach the
terminals to the skeleton parse for the synchronous
nonterminal strings quite freely as long as we can
uniquely reconstruct the original rule from its binary
parse tree. In order to do so we need to keep track of
sub-alignments including both aligned nonterminals
and neighboring terminals.

When binarizing the second rule above, we first
run the skeleton algorithm to binarize the under-
lying permutation (1, 3, 2) to its binarization tree
[1, 〈3, 2〉]. Then we do a post-order traversal to the
skeleton tree, combining Chinese terminals (one at

a time) at the leaf nodes and merging English termi-
nals greedily at internal nodes:

[1, 〈3, 2〉]

1 〈3, 2〉

3 2

⇒

T859 [1,〈3,2〉]

V[RB, fuze]1

RB fuze

V〈V[PP, de], resp. for the NN〉〈3,2〉

V[PP, de]3

PP de

NN2

A pre-order traversal of the decorated binarization
tree gives us the following binary SCFG rules:

T859 → V1
(1) V2

(2), V1
(1) V2

(2)

V1 → RB(1), RB(1) fuze

V2 → resp. for the NN(1) V(2)
3 , V(2)

3 NN(1)

V3 → PP(1), PP(1) de

where the virtual nonterminals are:
V1: V[RB, fuze]
V2: V〈V[PP, de], resp. for the NN〉
V3: V[PP, de]

Analogous to the “dotted rules” in Earley pars-
ing for monolingual CFGs, the names we create
for the virtual nonterminals reflect the underlying
sub-alignments, ensuring intermediate states can be
shared across different tree-to-string rules without
causing ambiguity.

The whole binarization algorithm still runs in time
linear in the number of symbols in the rule (includ-
ing both terminals and nonterminals).

4 Experiments

In this section, we answer two empirical questions.

261

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 0 5 10 15 20 25 30 35 40
 0
 20
 40
 60
 80
 100

of

 r
ul

es

pe
rc

en
ta

ge
 (

%
)

length

Figure 6: The solid-line curve represents the distribution of all rules against permutation lengths. The
dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set while the dotted-line
denotes that percentage among all permutations.

4.1 How many rules are binarizable?

It has been shown by Shapiro and Stephens (1991)
and Wu (1997, Sec. 4) that the percentage of binariz-
able cases over all permutations of length n quickly
approaches 0 as n grows (see Figure 6). However,
for machine translation, it is more meaningful to
compute the ratio of binarizable rules extracted from
real text. Our rule set is obtained by first doing word
alignment using GIZA++ on a Chinese-English par-
allel corpus containing 50 million words in English,
then parsing the English sentences using a variant
of Collins parser, and finally extracting rules using
the graph-theoretic algorithm of Galley et al. (2004).
We did a “spectrum analysis” on the resulting rule
set with 50,879,242 rules. Figure 6 shows how the
rules are distributed against their lengths (number
of nonterminals). We can see that the percentage
of non-binarizable rules in each bucket of the same
length does not exceed 25%. Overall, 99.7% of
the rules are binarizable. Even for the 0.3% non-
binarizable rules, human evaluations show that the
majority of them are due to alignment errors. It is
also interesting to know that 86.8% of the rules have
monotonic permutations, i.e. either taking identical
or totally inverted order.

4.2 Does synchronous binarizer help decoding?

We did experiments on our CKY-based decoder with
two binarization methods. It is the responsibility of
the binarizer to instruct the decoder how to compute
the language model scores from children nontermi-
nals in each rule. The baseline method is mono-
lingual left-to-right binarization. As shown in Sec-
tion 1, decoding complexity with this method is ex-
ponential in the size of the longest rule and since we
postpone all the language model scorings, pruning
in this case is also biased.

system bleu
monolingual binarization 36.25
synchronous binarization 38.44
alignment-template system 37.00

Table 1: Syntax-based systems vs. ATS

To move on to synchronous binarization, we first
did an experiment using the above baseline system
without the 0.3% non-binarizable rules and did not
observe any difference in BLEU scores. So we
safely move a step further, focusing on the binariz-
able rules only.

The decoder now works on the binary translation
rules supplied by an external synchronous binarizer.
As shown in Section 1, this results in a simplified de-
coder with a polynomial time complexity, allowing
less aggressive and more effective pruning based on
both translation model and language model scores.

We compare the two binarization schemes in
terms of translation quality with various pruning
thresholds. The rule set is that of the previous sec-
tion. The test set has 116 Chinese sentences of no
longer than 15 words. Both systems use trigram as
the integrated language model. Figure 7 demon-
strates that decoding accuracy is significantly im-
proved after synchronous binarization. The number
of edges proposed during decoding is used as a mea-
sure of the size of search space, or time efficiency.
Our system is consistently faster and more accurate
than the baseline system.

We also compare the top result of our syn-
chronous binarization system with the state-of-the-
art alignment-template approach (ATS) (Och and
Ney, 2004). The results are shown in Table 1. Our
system has a promising improvement over the ATS

262

 33.5

 34.5

 35.5

 36.5

 37.5

 38.5

 3e+09 4e+09 5e+09 6e+09 7e+09

bl
eu

 s
co

re
s

of edges proposed during decoding

synchronous binarization
monolingual binarization

Figure 7: Comparing the two binarization methods
in terms of translation quality against search effort.

system which is trained on a larger data-set but tuned
independently.

5 Conclusion

Modeling reorderings between languages has been a
major challenge for machine translation. This work
shows that the majority of syntactic reorderings, at
least between languages like English and Chinese,
can be efficiently decomposed into hierarchical bi-
nary reorderings. From a modeling perspective, on
the other hand, it is beneficial to start with a richer
representation that has more transformational power
than ITG or binary SCFG. Our work shows how to
convert it back to a computationally friendly form
without harming much of its expressiveness. As a
result, decoding with n-gram models can be fast and
accurate, making it possible for our syntax-based
system to overtake a comparable phrase-based sys-
tem in BLEU score. We believe that extensions of
our technique to more powerful models such as syn-
chronous tree-adjoining grammar (Shieber and Sch-
abes, 1990) is an interesting area for further work.

Acknowledgments Much of this work was done
when H. Zhang and L. Huang were visiting
USC/ISI. The authors wish to thank Wei Wang,
Jonathan Graehl and Steven DeNeefe for help with
the experiments. We are also grateful to Daniel
Marcu, Giorgio Satta, and Aravind Joshi for discus-
sions. This work was partially supported by NSF
ITR IIS-09325646 and NSF ITR IIS-0428020.

References

Albert V. Aho and Jeffery D. Ullman. 1972. The The-
ory of Parsing, Translation, and Compiling, volume 1.
Prentice-Hall, Englewood Cliffs, NJ.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL-05, pages 263–270, Ann Arbor, Michigan.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proceedings of ACL-
03, companion volume, Sapporo, Japan.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Pro-
ceedings of HLT/NAACL-04.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005. Ma-
chine translation as lexicalized parsing with hooks. In
Proceedings of IWPT-05, Vancouver, BC.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLing). LNCS.

I. Dan Melamed. 2003. Multitext grammars and syn-
chronous parsers. In Proceedings of NAACL-03, Ed-
monton.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4).

Giorgio Satta and Enoch Peserico. 2005. Some computa-
tional complexity results for synchronous context-free
grammars. In Proceedings of HLT/EMNLP-05, pages
803–810, Vancouver, Canada, October.

L. Shapiro and A. B. Stephens. 1991. Bootstrap percola-
tion, the Schröder numbers, and the n-kings problem.
SIAM Journal on Discrete Mathematics, 4(2):275–
280.

Stuart Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. In COLING-90, volume III,
pages 253–258.

Dekai Wu. 1996. A polynomial-time algorithm for sta-
tistical machine translation. In 34th Annual Meeting
of the Association for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

263

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 264–271,
New York, June 2006.c©2006 Association for Computational Linguistics

Modelling User Satisfaction and Student Learning in a Spoken Dialogue
Tutoring System with Generic, Tutoring, and User Affect Parameters

Kate Forbes-Riley
Learning Research & Development Ctr

University of Pittsburgh
Pittsburgh, PA 15260

forbesk@cs.pitt.edu

Diane J. Litman
Learning Research & Development Ctr

Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
litman@cs.pitt.edu

Abstract

We investigate using the PARADISE
framework to develop predictive models
of system performance in our spoken di-
alogue tutoring system. We represent per-
formance with two metrics: user satis-
faction and student learning. We train
and test predictive models of these met-
rics in our tutoring system corpora. We
predict user satisfaction with 2 parameter
types: 1) system-generic, and 2) tutoring-
specific. To predict student learning, we
also use a third type: 3) user affect. Al-
hough generic parameters are useful pre-
dictors of user satisfaction in other PAR-
ADISE applications, overall our parame-
ters produce less useful user satisfaction
models in our system. However, generic
and tutoring-specific parameters do pro-
duce useful models of student learning in
our system. User affect parameters can in-
crease the usefulness of these models.

1 Introduction

In recent years the development of spoken dialogue
tutoring systems has become more prevalent, in an
attempt to close the performance gap between hu-
man and computer tutors (Mostow and Aist, 2001;
Pon-Barry et al., 2004; Litman et al., 2006). Student
learning is a primary metric for evaluating the per-
formance of these systems; it can be measured, e.g.,
by comparing student pretests taken prior to system
use with posttests taken after system use.

In other types of spoken dialogue systems, the
user’s subjective judgments about using the system
are often considered a primary system performance
metric; e.g., user satisfaction has been measured
via surveys which ask users to rate systems during
use along dimensions such as task ease, speech in-
put/output quality, user expectations and expertise,
and user future use (Möller, 2005b; Walker et al.,
2002; Bonneau-Maynard et al., 2000; Walker et al.,
2000; Shriberg et al., 1992). However, it is expen-
sive to run experiments over large numbers of users
to obtain reliable system performance measures.

The PARADISE model (Walker et al., 1997) pro-
poses instead to predict system performance, using
parameters representing interaction costs and bene-
fits between system and user, including task success,
dialogue efficiency, and dialogue quality. More for-
mally, a set of interaction parameters are measured
in a spoken dialogue system corpus, then used in
a multivariate linear regression to predict the target
performance variable. The resulting model is de-
scribed by the formula below, where there are n in-
teraction parameters, pi, each weighted by the anal-
ysis with a coefficient, wi, which will be negative
or positive, depending on whether the model treats
pi as a cost or benefit, respectively. The model can
then be used to estimate performance during system
design, with the design goals of minimizing costs
and maximizing benefits.

System Performance =
∑

n

i=1
wi * pi

We investigate using PARADISE to develop pre-
dictive models of performance in our spoken dia-
logue tutoring system. Although to our knowledge,

264

Corpus Date Voice #Dialogues #Students #with Survey #with Tests #with Affect
SYN03 2003 synthesized 100 20 0 20 20
PR05 2005 pre-recorded 140 28 28 28 17
SYN05 2005 synthesized 145 29 29 29 0

Table 1: Summary of our 3 ITSPOKE Corpora

prior PARADISE applications have only used user
satisfaction to represent performance, we hypothe-
size that other metrics may be more relevant when
PARADISE is applied to tasks that are not optimized
for user satisfaction, such as our spoken dialogue tu-
toring system. We thus use 2 metrics to represent
performance: 1) a generic metric of user satisfaction
computed via user survey, 2) a tutoring-specific met-
ric of student learning computed via student pretest
and posttest scores. We train and test predictive
models of these metrics on multiple system corpora.

To predict user satisfaction, we use 2 types of in-
teraction parameters: 1) system-generic parameters
such as used in other PARADISE applications, e.g.
speech recognition performance, and 2) tutoring-
specific parameters, e.g. student correctness. To
predict student learning, we also use a third type of
parameter: 3) manually annotated user affect. Al-
though prior PARADISE applications have tended to
use system-generic parameters, we hypothesize that
task-specific and user affect parameters may also
prove useful. We emphasize that user affect parame-
ters are still system-generic; user affect has been an-
notated and/or automatically predicted in other types
of spoken dialogue systems, e.g. as in (Lee et al.,
2002; Ang et al., 2002; Batliner et al., 2003).

Our results show that, although generic param-
eters were useful predictors of user satisfaction in
other PARADISE applications, overall our parame-
ters produce less useful user satisfaction models in
our tutoring system. However, generic and tutoring-
specific parameters do produce useful models of stu-
dent learning in our system. Generic user affect pa-
rameters increase the usefulness of these models.

2 Spoken Dialogue Tutoring Corpora

ITSPOKE (Intelligent Tutoring SPOKEn dialogue
system) (Litman et al., 2006) is a speech-enabled tu-
tor built on top of the text-based Why2-Atlas con-
ceptual physics tutor (VanLehn et al., 2002). In
ITSPOKE, a student first types an essay into a

web-based interface answering a qualitative physics
problem. ITSPOKE then analyzes the essay and en-
gages the student in spoken dialogue to correct mis-
conceptions and elicit more complete explanations.
Student speech is digitized from the microphone in-
put and sent to the Sphinx2 recognizer. Sphinx2’s
most probable “transcription” is then sent to Why2-
Atlas for syntactic, semantic and dialogue analy-
sis. Finally, the text response produced by Why2-
Atlas is converted to speech as described below, then
played in the student’s headphones and displayed on
the interface. After the dialogue, the student revises
the essay, thereby ending the tutoring or causing an-
other round of tutoring/essay revision.

For this study, we used 3 ITSPOKE corpora,
shown in Table 1.1 The SYN03 corpus was col-
lected in 2003 for an evaluation comparing learn-
ing in typed and spoken human and computer tu-
toring (Litman et al., 2006). ITSPOKE’s voice was
synthesized with the Cepstral text-to-speech system,
and its speech recognizer was trained from pilot IT-
SPOKE studies and Why2-Atlas evaluations. The
PR05 and SYN05 corpora were collected in 2005,
to evaluate the impact of tutor voice quality (Forbes-
Riley et al., 2006). For these 2 corpora, ITSPOKE
used an updated speech recognizer further trained
on the SYN03 corpus. For the SYN05 corpus, IT-
SPOKE used the synthesized tutor voice from the
SYN03 corpus; for the PR05 corpus, ITSPOKE
used a pre-recorded tutor voice from a paid voice
talent. Figure 1 gives an annotated (Section 3) PR05
excerpt (ASR shows what ITSPOKE heard).

The same experimental procedure was used to
collect all 3 ITSPOKE corpora: college students
who had taken no college physics: 1) read a
small document of background material, 2) took
a pretest measuring initial physics knowledge, 3)
work through a set of 5 problems (dialogues) with
ITSPOKE, 4) took a posttest similar to the pretest.

1The user populations of the 2005 corpora and 2003 corpus
are different, due to variation in year and recruitment method.

265

Subjects in the PR05 and SYN05 corpora also
completed a survey probing user satisfaction after
taking the posttest (SYN03 corpus subjects did not).
Our survey, shown in Figure 2, is essentially the
same as the one used in the DARPA Communicator
multi-site evaluation (Walker et al., 2002). Although
tailored lexically for a tutoring system, these state-
ments are generally applicable to spoken dialogue
systems. Students rated their degree of agreement
with each statement on a scale of 1 to 5.
PHYSICS PROBLEM: Suppose a lightweight car and a mas-
sive truck hit a patch of frictionless ice and have a head-on col-
lision. Upon which vehicle is the impact force greater? Which
vehicle undergoes the greater change in its motion? Defend
your answers.
ESSAY UNDER DISCUSSION: The truck exerts an equal and
opposite reaction force on the car. The car has a greater accel-
eration. The car will have a greater change in its motion.
. . . excerpt at 28.8 minutes into dialogue. . .
TUTOR60: So, when you add forces together, besides the mag-
nitudes of the forces, what must you also consider?
STUDENT57: direct- direction (ASR: the truck in direction)
[correct, uncertain, non-frustrated/angry]

TUTOR61: Yes. [...] The vector sum of the forces acting on
the body is also equal to the mass of the body multiplied by its
acceleration. What is another term for the vector sum of forces
acting on a body?
STUDENT58: net force (ASR: net force) [correct, neutral,
non-frustrated/angry]

TUTOR62: That’s super. Another term for the resultant force
is the net force. In this relationship, what is the direction of
the net force applied to a body and the direction of the body’s
acceleration?
STUDENT59: same same same (ASR: seems same type
seems) [correct, certain, frustrated/angry]

Figure 1: Annotated PR05 Corpus Excerpt
Task Ease: It was easy to learn from the tutor.
TTS Performance: It was easy to understand the tutor.
User Expertise: I knew what I could say or do at each point in
the conversations with the tutor.
Expected Behavior: The tutor worked the way I expected it to.
Future Use: Based on my experience using the tutor to learn
physics, I would like to use such a tutor regularly.

ALMOST ALWAYS (5), OFTEN (4), SOMETIMES (3),
RARELY (2), ALMOST NEVER (1)

Figure 2: ITSPOKE Survey Questionnaire

3 Interaction Parameters

3.1 Dialogue System-Generic Parameters

Prior PARADISE applications predicted user satis-
faction using a wide range of system-generic param-

eters, which include measures of speech recognition
quality (e.g. word error rate), measures of dialogue
communication and efficiency (e.g. total turns and
elapsed time), and measures of task completion (e.g.
a binary representation of whether the task was com-
pleted) (Möller, 2005a; Möller, 2005b; Walker et al.,
2002; Bonneau-Maynard et al., 2000; Walker et al.,
2000; Walker et al., 1997). In this prior work, each
dialogue between user and system represents a sin-
gle “task” (e.g., booking airline travel), thus these
measures are calculated on a per-dialogue basis.

In our work, the entire tutoring session represents
a single “task”, and every student in our corpora
completed this task. Thus we extract 13 system-
generic parameters on a per-student basis, i.e. over
the 5 dialogues for each user, yielding a single pa-
rameter value for each student in our 3 corpora.

First, we extracted 9 parameters representing dia-
logue communication and efficiency. Of these pa-
rameters, 7 were used in prior PARADISE appli-
cations: Time on Task, Total ITSPOKE Turns and
Words, Total User Turns and Words, Average IT-
SPOKE Words/Turn, and Average User Words/Turn.
Our 2 additional “communication-related” (Möller,
2005a) parameters measure system-user interactiv-
ity, but were not used in prior work (to our knowl-
edge): Ratio of User Words to ITSPOKE Words, Ra-
tio of User Turns to ITSPOKE Turns.

Second, we extracted 4 parameters representing
speech recognition quality, which have also been
used in prior work: Word Error Rate, Concept Ac-
curacy, Total Timeouts, Total Rejections2 .

3.2 Tutoring-Specific Parameters

Although prior PARADISE applications tend to
use system-generic parameters, we hypothesize that
task-specific parameters may also prove useful for
predicting performance. We extract 12 tutoring-
specific parameters over the 5 dialogues for each stu-
dent, yielding a single parameter value per student,
for each student in our 3 corpora. Although these pa-
rameters are specific to our tutoring system, similar
parameters are available in other tutoring systems.

First, we hypothesize that the correctness of the
students’ turns with respect to the tutoring topic

2A Timeout occurs when ITSPOKE does not hear speech
by a pre-specified time interval. A Rejection occurs when IT-
SPOKE’s confidence score for its ASR output is too low.

266

(physics, in our case) may play a role in predicting
system performance. Each of our student turns is
automatically labeled with 1 of 3 “Correctness” la-
bels by the ITSPOKE semantic understanding com-
ponent: Correct, Incorrect, Partially Correct. La-
beled examples are shown in Figure 1. From these
3 Correctness labels, we derive 9 parameters: a To-
tal and a Percent for each label, and a Ratio of each
label to every other label (e.g. Correct/Incorrect).

Second, students write and then may modify their
physics essay at least once during each dialogue with
ITSPOKE. We thus hypothesize that like “Correct-
ness”, the total number of essays per student may
play a role in predicting system performance.

Finally, although student test scores before/after
using ITSPOKE will be used as our student learning
metric, we hypothesize that these scores may also
play a role in predicting user satisfaction.

3.3 User Affect Parameters

We hypothesize that user affect plays a role in pre-
dicting user satisfaction and student learning. Al-
though affect parameters have not been used in other
PARADISE studies (to our knowledge), they are
generic; for example, in various spoken dialogue
systems, user affect has been annotated and automat-
ically predicted from e.g., acoustic-prosodic and lex-
ical features (Litman and Forbes-Riley, 2004b; Lee
et al., 2002; Ang et al., 2002; Batliner et al., 2003).

As part of a larger investigation into emotion
adaptation, we are manually annotating the stu-
dent turns in our corpora for affective state. Cur-
rently, we are labeling 1 of 4 states of “Certain-
ness”: certain, uncertain, neutral, mixed (certain
and uncertain), and we are separately labeling 1
of 2 states of “Frustration/Anger”: frustrated/angry,
non-frustrated/angry. These affective states3 were
found in pilot studies to be most prevalent in our tu-
toring dialogues4 , and are also of interest in other
dialogue research, e.g. tutoring (Bhatt et al., 2004;
Moore et al., 2004; Pon-Barry et al., 2004) and spo-
ken dialogue (Ang et al., 2002). Labeled examples
are shown in Figure 1.5 To date, one paid annotator

3We use “affect” and “affective state” loosely to cover stu-
dent emotions and attitudes believed to be relevant for tutoring.

4For a full list of affective states identified in these pilot stud-
ies, see (Litman and Forbes-Riley, 2004a).

5Annotations were performed from both audio and tran-

has labeled all student turns in our SYN03 corpus,
and all the turns of 17 students in our PR05 corpus.6

From these labels, we derived 25 User Affect pa-
rameters per student, over the 5 dialogues for that
student. First, for each Certainness label, we com-
puted a Total, a Percent, and a Ratio to each other la-
bel. We also computed a Total for each sequence of
identical Certainness labels (e.g. Certain:Certain),
hypothesizing that states maintained over multiple
turns may have more impact on performance than
single occurrences. Second, we computed the same
parameters for each Frustration/Anger label.

4 Prediction Models

In this section, we first investigate the usefulness of
our system-generic and tutoring-specific parameters
for training models of user satisfaction and student
learning in our tutoring corpora with the PARADISE
framework. We use the SPSS statistical package
with a stepwise multivariate linear regression pro-
cedure7 to automatically determine parameter inclu-
sion in the model. We then investigate how well
these models generalize across different user-system
configurations, by testing the models in different
corpora and corpus subsets. Finally, we investigate
whether generic user affect parameters increase the
usefulness of our student learning models.

4.1 Prediction Models of User Satisfaction

Only subjects in the PR05 and SYN05 corpora com-
pleted a user survey (Table 1). Each student’s re-
sponses were summed to yield a single user satis-
faction total per student, ranging from 9 to 24 across
corpora (the possible range is 5 to 25), with no dif-
ference between corpora (p = .46). This total was
used as our user satisfaction metric, as in (Möller,
2005b; Walker et al., 2002; Walker et al., 2000).8

scription within a speech processing tool.
6In a preliminary agreement study, a second annotator la-

beled the entire SYN03 corpus for uncertain versus other, yield-
ing 90% inter-annotator agreement (0.68 Kappa).

7At each step, the parameter with the highest partial correla-
tion with the target predicted variable, controlled for all previ-
ously entered parameters, is entered in the equation, until the re-
maining parameters do not increase R2 by a significant amount
or do not yield a significant model.

8Researchers have also used average score (Möller, 2005b;
Walker et al., 1997); single survey statements can also be
used (Walker et al., 1997). We tried these variations, and our
R2 results were similar, indicating robustness across variations.

267

Training Data R2 Predictors Testing Data R2

PR05 .274 INCORRECTS, ESSAYS SYN05 .001
SYN05 .068 TUT WDS/TRN PR05 .018
PR05:half1 .335 PARTCORS/INCORS PR05:half2 .137
PR05:half2 .443 STU TRNS PR05:half1 .079
SYN05:half1 .455 STU TRNS/TUT TRNS SYN05:half2 .051
SYN05:half2 .685 TUT WDS/TRN, STU WDS/TRN, CORRECTS SYN05:half1 .227

Table 2: Testing the Predictive Power of User Satisfaction Models

We trained a user satisfaction model on each cor-
pus, then tested it on the other corpus. In addition,
we split each corpus in half randomly, then trained
a user satisfaction model on each half, and tested
it on the other half. We hypothesized that despite
the decrease in the dataset size, models trained and
tested in the same corpus would have higher gen-
eralizability than models trained on one corpus and
tested on the other, due to the increased data homo-
geneity within each corpus, since each corpus used a
different ITSPOKE version. As predictors, we used
only the 13 system-generic and 12 tutoring-specific
parameters that were available for all subjects.

Results are shown in Table 2. The first and fourth
columns show the training and test data, respec-
tively. The second and fifth columns show the user
satisfaction variance accounted for by the trained
model in the training and test data, respectively. The
third column shows the parameters that were se-
lected as predictors of user satisfaction in the trained
model, ordered by degree of contribution9 .

For example, as shown in the first row, the model
trained on the PR05 corpus uses Total Incorrect stu-
dent turns as the strongest predictor of user satis-
faction, followed by Total Essays; these parameters
are not highly correlated10 . This model accounts for
27.4% of the user satisfaction variance in the PR05
corpus. When tested on the SYN05 corpus, it ac-
counts for 0.1% of the user satisfaction variance.

The low R2 values for both training and testing
in the first two rows show that neither corpus yields

9The ordering reflects the standardized coefficients (beta
weights), which are computed in SPSS based on scaling of
the input parameters, to enable an assessment of the predictive
power of each parameter relative to the others in a model.

10Hereafter, predictors in a model are not highly correlated
(R ≥ .70) unless noted. Linear regression does not assume that
predictors are independent, only that they are not highly corre-
lated. Because correlations above R =.70 can affect the coeffi-
cients, deletion of redundant predictors may be advisable.

a very powerful model of user satisfaction even in
the training corpus, and this model does not gener-
alize very well to the test corpus. As hypothesized,
training and testing in a single corpus yields higher
R2 values for testing, as shown in the last four rows,
although these models still account for less than a
quarter of the variance in the test data. The increased
R2 values for training here may indicate over-fitting.
Across all 6 experiments, there is almost no overlap
of parameters used to predict user satisfaction.

Overall, these results show that this method of
developing an ITSPOKE user satisfaction model
is very sensitive to changes in training data;
this was also found in other PARADISE applica-
tions (Möller, 2005b; Walker et al., 2000). Some
applications have also reported similarly low R2 val-
ues for testing both within a corpus (Möller, 2005b)
and also when a model trained on one system cor-
pus is tested on another system corpus (Walker et
al., 2000). However, most PARADISE applications
have yielded higher R2 values than ours for train-
ing (Möller, 2005b; Walker et al., 2002; Bonneau-
Maynard et al., 2000; Walker et al., 2000).

We hypothesize two reasons for why our exper-
iments did not yield more useful user satisfaction
models. First, in prior PARADISE applications,
users completed a survey after every dialogue with
the system. In our case, subjects completed only one
survey, at the end of the experiment (5 dialogues). It
may be that this “per-student” unit for user satisfac-
tion is too large to yield a very powerful model; i.e.,
this measure is not fine-grained enough. In addi-
tion, tutoring systems are not designed to maximize
user satisfaction, but rather, their design goal is to
maximize student learning. Moreover, prior tutor-
ing studies have shown that certain features corre-
lated with student learning do not have the same re-
lationship to user satisfaction (e.g. are not predictive

268

Training Data R2 Predictors Testing Data R2

PR05 .556 PRE, %CORRECT SYN05 .636
SYN05 .736 PRE, INCORS/CORS, STU WDS/TRN PR05 .472
PR05:half1 .840 PRE, PARTCORRECTS PR05:half2 .128
PR05:half2 .575 PARTCORS/INCORS, PRE PR05:half1 .485
SYN05:half1 .580 PRE, STU WDS/TRN SYN05:half2 .556
SYN05:half2 .855 PRE, TIMEOUTS SYN05:half1 .384
PR05+SYN03 .413 PRE, TIME SYN05 .586
PR05+SYN05 .621 PRE, INCORS/CORS SYN03 .237
SYN05+SYN03 .590 INCORS/CORS, PR05 .244

%INCORRECT, PRE, TIME

Table 3: Testing the Predictive Power of Student Learning Models with the Same Datasets

or have an opposite relationship) (Pon-Barry et al.,
2004). In fact, it may be that user satisfaction is not
a metric of primary relevance in our application.

4.2 Prediction Models of Student Learning

As in other tutoring research, e.g. (Chi et al., 2001;
Litman et al., 2006), we use posttest score (POST)
controlled for pretest score (PRE) as our target stu-
dent learning prediction metric, such that POST is
our target variable and PRE is always a parameter
in the final model, although it is not necessarily the
strongest predictor.11 In this way, we measure stu-
dent learning gains, not just final test score.

As shown in Table 1, all subjects in our 3 corpora
took the pretest and posttest. However, in order to
compare our student learning models with our user
satisfaction models, our first experiments predicting
student learning used the same training and testing
datasets that were used to predict user satisfaction in
Section 4.1 (i.e. we ran the same experiments except
we predicted POST controlled for PRE instead of
user satisfaction). Results are shown in the first 6
rows of Table 3.

As shown, these 6 models all account for more
than 50% of the POST variance in the training data.
Furthermore, most of them account for close to, or
more than, 50% of the POST variance in the test
data. Although again we hypothesized that training
and testing in one corpus would yield higher R2 val-
ues for testing, this is not consistently the case; two
of these models had the highest R2 values for train-

11In SPSS, we regress two independent variable blocks. The
first block contains PRE, which is regressed with POST using
the “enter” method, forcing inclusion of PRE in the final model.
The second block contains all remaining independent variables,
which are regressed using the stepwise method.

ing and the lowest R2 values for testing (PR05:half1
and SYN05:half2), suggesting over-fitting.

Overall, these results show that this is an effec-
tive method of developing a prediction model of stu-
dent learning for ITSPOKE, and is less sensitive to
changes in training data than it was for user satis-
faction. Moreover, there is more overlap in these
6 models of parameters that are useful for predict-
ing student learning (besides PRE); “Correctness”
parameters and dialogue communication and effi-
ciency parameters appear to be most useful overall.

Our next 3 experiments investigated how our stu-
dent learning models are impacted by including our
third SYN03 corpus. Using the same 25 parame-
ters, we trained a learning model on each set of two
combined corpora, then tested it on the other corpus.
Results are shown in the last 3 rows of Table 3.

As shown, these models still account for close
to, or more than, 50% of the student learning vari-
ance in the training data.12 The model trained
on PR05+SYN03 accounts for the most student
learning variance in the test data, showing that the
training data that is most similar to the test data
will yield the highest generalizability. That is,
the combined PR05+SYN03 corpora contains sub-
jects drawn from the same subject pool (2005) as
the SYN05 test data, and also contains subjects
who interacted with the same tutor voice (synthe-
sized) as this test data. In contrast, the combined
PR05+SYN05 corpora did not overlap in user pop-
ulation with the SYN03 test data, and the combined
SYN05+SYN03 corpora did not share a tutor voice
with the PR05 test data. “Correctness” parameters

12However, INCORS/CORS and %INCORRECT are highly
correlated in the SYN05+SYN03 model, showing redundancy.

269

Training Data R2 Predictors Testing Data R2

SYN03 (affect) .644 TIME, PRE, NEUTRAL PR05:17 .411
PR05:17 (affect) .835 PRE, NFA:NFA, STU WDS/TRN SYN03 .127
SYN03 .478 PRE, TIME PR05:17 .340
PR05:17 .609 PRE, STU TRNS/TUT TRNS SYN03 .164

Table 4: Testing the Predictive Power of Student Learning Models with User Affect Parameters

and dialogue communication and efficiency param-
eters are consistently used as predictors in all 9 of
these student learning models.

4.3 Adding User Affect Parameters

Our final experiments investigated whether our 25
user affect parameters impacted the usefulness of
the student learning models. As shown in Table 1,
all 20 subjects in our SYN03 corpus were annotated
for user affect, and 17 subjects in our PR05 corpus
were annotated for user affect. We trained a model
of student learning on each of these datasets, then
tested it on the other dataset.13 As predictors, we
included our 25 user affect parameters along with
the 13 system-generic and 12 tutoring-specific inter-
action parameters. These results are shown in the
first two rows of Table 4. We also reran these ex-
periments without user affect parameters, to gauge
the impact of the user affect parameters. These re-
sults are shown in the last two rows of Table 4. We
hypothesized that user affect parameters would pro-
duce more useful models, because prior tutoring re-
search has shown correlations between user affect
and student learning (e.g. (Craig et al., 2004)).

As shown in the first two rows, user affect predic-
tors appear in both models where these parameters
were included. The models trained on SYN03 use
pretest score and Total Time on Task as predictors;
when affect parameters are included, “Neutral Cer-
tainness” is added as a predictor, which increases the
R2 values for both training and testing. However,
the two models trained on PR05:17 show no predic-
tor overlap (besides PRE). Moreover, the PR05:17
model that includes an affect predictor (Total Se-
quence of 2 Non-Frustrated/Angry turns) has the
highest training R2, but the lowest testing R2 value.

13As only 17 subjects have both user affect annotation and
user surveys, there is not enough data currently to train and test
a user satisfaction model including user affect parameters.

5 Conclusions and Current Directions

Prior work in the tutoring community has focused on
correlations of single features with learning; our re-
sults suggest that PARADISE is an effective method
of extending these analyses. For the dialogue com-
munity, our results suggest that as spoken dialogue
systems move into new applications not optimized
for user satisfaction, such as tutoring systems, other
measures of performance may be more relevant, and
generic user affect parameters may be useful.

Our experiments used many of the same system-
generic parameters as prior studies, and some of
these parameters predicted user satisfaction both in
our models and in prior studies’ models (e.g., sys-
tem words/turn (Walker et al., 2002)). Nonetheless,
overall our user satisfaction models were not very
powerful even for training, were sensitive to training
data changes, showed little predictor overlap, and
did not generalize well to test data. Our user sat-
isfaction metric may not be fine-grained enough; in
other PARADISE studies, users took a survey after
every dialogue with the system. In addition, tutoring
systems are not designed to maximize user satisfac-
tion; their goal is to maximize student learning.

Our student learning models were much more
powerful and less sensitive to changes in training
data. Our best models explained over 50% of the stu-
dent learning variance for training and testing, and
both student “Correctness” parameters and dialogue
communication and efficiency parameters were of-
ten useful predictors. User affect parameters further
improved the predictive power of one student learn-
ing model for both training and testing.

Once our user affect annotations are complete,
we can further investigate their use to predict stu-
dent learning and user satisfaction. Unlike our
other parameters, these annotations are not currently
available, although they can be predicted automati-
cally (Litman and Forbes-Riley, 2004b), in our sys-

270

tem. However, as in (Batliner et al., 2003), our prior
work suggests that linguistic features reflective of af-
fective states can replace affect annotation (Forbes-
Riley and Litman, 2005). In future work we will use
such features in our prediction models. Finally, we
are also annotating tutor and student dialogue acts
and automating the tutor act annotations; when com-
plete we can investigate their usefulness in our pre-
diction models; dialogue acts have also been used in
prior PARADISE applications (Möller, 2005a).

Acknowledgements

NSF (0325034 & 0328431) supports this research.
We thank Pam Jordan and the NLP Group.

References

J. Ang, R. Dhillon, A. Krupski, E.Shriberg, and A. Stol-
cke. 2002. Prosody-based automatic detection of an-
noyance and frustration in human-computer dialog. In
Proc. Int. Conf. Spoken Language Processing (ICSLP).

A. Batliner, K. Fischer, R. Huber, J. Spilker, and E. Noth.
2003. How to find trouble in communication. Speech
Communication, 40:117–143.

K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged re-
sponses and expressions of affect in human/human and
human/computer tutorial interactions. In Proc. 26th
Annual Meeting of the Cognitive Science Society.

H. Bonneau-Maynard, L. Devillers, and S. Rosset. 2000.
Predictive performance of dialog systems. In Proc.
Language Resources and Evaluation Conf. (LREC)).

M. T. H. Chi, S. A. Siler, H. Jeong, T. Yamauchi, and
R. G. Hausmann. 2001. Learning from human tutor-
ing. Cognitive Science, 25:471–533.

S. Craig, A. Graesser, J. Sullins, and B. Gholson. 2004.
Affect and learning: An exploratory look into the role
of affect in learning. Journal of Educational Media,
29:241–250.

K. Forbes-Riley and D. Litman. 2005. Correlating stu-
dent acoustic-prosodic profiles with student learning in
spoken tutoring dialogues. In Proc. INTERSPEECH.

K. Forbes-Riley, D. Litman, S. Silliman, and J. Tetreault.
2006. Comparing synthesized versus pre-recorded tu-
tor speech in an intelligent tutoring spoken dialogue
system. In Proc. FLAIRS.

C.M. Lee, S. Narayanan, and R. Pieraccini. 2002. Com-
bining acoustic and language information for emotion
recognition. In Proc. ICSLP.

D. Litman and K. Forbes-Riley. 2004a. Annotating stu-
dent emotional states in spoken tutoring dialogues. In
Proc. SIGdial, pages 144–153.

D. Litman and K. Forbes-Riley. 2004b. Predicting stu-
dent emotions in computer-human tutoring dialogues.
In Proc. ACL, pages 352–359.

D. Litman, C. Rosé, K. Forbes-Riley, K. VanLehn,
D. Bhembe, and S. Silliman. 2006. Spoken versus
typed human and computer dialogue tutoring. Intnl
Jnl of Artificial Intelligence in Education, To Appear.

S. Möller. 2005a. Parameters for quantifying the inter-
actioin with spoken dialogue telephone services. In
Proc. SIGdial.

S. Möller. 2005b. Towards generic quality prediction
models for spoken dialogue systems - a case study. In
Proc. INTERSPEECH.

J. D. Moore, K. Porayska-Pomsta, S. Varges, and C. Zinn.
2004. Generating tutorial feedback with affect. In
Proc. FLAIRS.

J. Mostow and G. Aist. 2001. Evaluating tutors that lis-
ten: An overview of Project LISTEN. In K. Forbus
and P. Feltovich, editors, Smart Machines in Educa-
tion.

H. Pon-Barry, B. Clark, E. Owen Bratt, K. Schultz, and
S. Peters. 2004. Evaluating the effectiveness of SCoT:
a Spoken Conversational Tutor. In Proc. of ITS 2004
Workshop on Dialogue-based Intelligent Tutoring Sys-
tems: State of the Art and New Research Directions.

E. Shriberg, E. Wade, and P. Price. 1992. Human-
machine problem solving using spoken language sys-
tems (SLS): Factors affecting performance and user
satisfaction. In Proc. DARPA Speech and NL Work-
shop, pages 49–54.

K. VanLehn, P. W. Jordan, C. P. Rosé, D. Bhembe,
M. Böttner, A. Gaydos, M. Makatchev, U. Pap-
puswamy, M. Ringenberg, A. Roque, S. Siler, R. Sri-
vastava, and R. Wilson. 2002. The architecture of
Why2-Atlas: A coach for qualitative physics essay
writing. In Proc. Intelligent Tutoring Systems.

M. Walker, , D. Litman, C. Kamm, and A. Abella. 1997.
PARADISE: A framework for evaluating spoken dia-
logue agents. In Proc. ACL/EACL, pages 271–280.

M. Walker, C. Kamm, and D. Litman. 2000. Towards de-
veloping general models of usability with PARADISE.
Natural Language Engineering, 6:363–377.

M. Walker, A. Rudnicky, R. Prasad, J. Aberdeen, E. Bratt,
J. Garofolo, H. Hastie, A. Le, B. Pellom, A. Potami-
anos, R. Passonneau, S. Roukos, G. Sanders, S. Seneff,
and D. Stallard. 2002. DARPA communicator: Cross-
system results for the 2001 evaluation. In Proc. Inter-
nat. Conf. on Spoken Language Processing (ICSLP).

271

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 272–279,
New York, June 2006.c©2006 Association for Computational Linguistics

Comparing the Utility of State Features in Spoken Dialogue Using
Reinforcement Learning

Joel R. Tetreault
University of Pittsburgh

Learning Research and Development Center
Pittsburgh PA, 15260, USA
tetreaul@pitt.edu

Diane J. Litman
University of Pittsburgh

Department of Computer Science
Learning Research and Development Center

Pittsburgh PA, 15260, USA
litman@cs.pitt.edu

Abstract

Recent work in designing spoken dialogue
systems has focused on using Reinforce-
ment Learning to automatically learn the
best action for a system to take at any
point in the dialogue to maximize dia-
logue success. While policy development
is very important, choosing the best fea-
tures to model the user state is equally im-
portant since it impacts the actions a sys-
tem should make. In this paper, we com-
pare the relative utility of adding three fea-
tures to a model of user state in the do-
main of a spoken dialogue tutoring sys-
tem. In addition, we also look at the ef-
fects of these features on what type of a
question a tutoring system should ask at
any state and compare it with our previ-
ous work on using feedback as the system
action.

1 Introduction

A host of issues confront spoken dialogue system
designers, such as choosing the best system action to
perform given any user state, and also selecting the
right features to best represent the user state. While
recent work has focused on using Reinforcement
Learning (RL) to address the first issue (such as
(Walker, 2000), (Henderson et al., 2005), (Williams
et al., 2005a)), there has been very little empirical
work on the issue of feature selection in prior RL ap-
proaches to dialogue systems. In this paper, we use

a corpus of dialogues of humans interacting with a
spoken dialogue tutoring system to show the com-
parative utility of adding the three features of con-
cept repetition, frustration level, and student perfor-
mance. These features are not just unique to the tu-
toring domain but are important to dialogue systems
in general. Our empirical results show that these fea-
tures all lead to changes in what action the system
should take, with concept repetition and frustration
having the largest effects.

This paper extends our previous work (Tetreault
and Litman, 2006) which first presented a method-
ology for exploring whether adding more complex
features to a representation of student state will ben-
eficially alter tutor actions with respect to feedback.
Here we present an empirical method of comparing
the effects of each feature while also generalizing
our findings to a different action choice of what type
of follow-up question should a tutor ask the student
(as opposed to what type of feedback should the tu-
tor give). In complex domains such as tutoring, test-
ing different policies with real or simulated students
can be time consuming and costly so it is important
to properly choose the best features before testing,
which this work allows us to do. This in turn aids
our long-term goal of improving a spoken dialogue
system that can effectively adapt to a student to max-
imize their learning.

2 Background

We follow past lines of research (such as (Levin and
Pieraccini, 1997) and (Singh et al., 1999)) for de-
scribing a dialogue

�
as a trajectory within a Markov

Decision Process (MDP) (Sutton and Barto, 1998).

272

A MDP has four main components: 1: states � , 2:
actions

�
, 3: a policy � , which specifies what is the

best action to take in a state, and 4: a reward func-
tion � which specifies the worth of the entire pro-
cess. Dialogue management is easily described us-
ing a MDP because one can consider the actions as
actions made by the system, the state as the dialogue
context (which can be viewed as a vector of features,
such as ASR confidence or dialogue act), and a re-
ward which for many dialogue systems tends to be
task completion success or dialogue length.

Another advantage of using MDP’s to model a di-
alogue space, besides the fact that the primary MDP
parameters easily map to dialogue parameters, is the
notion of delayed reward. In a MDP, since rewards
are often not given until the final states, dynamic
programming is used to propagate the rewards back
to the internal states to weight the value of each state
(called the V-value), as well as to develop an optimal
policy � for each state of the MDP. This propaga-
tion of reward is done using the policy iteration al-
gorithm (Sutton and Barto, 1998) which iteratively
updates the V-value and best action for each state
based on the values of its neighboring states.

The V-value of each state is important for our pur-
poses not only because it describes the relative worth
of a state within the MDP, but as more data is added
when building the MDP, the V-values should stabi-
lize, and thus the policies stabilize as well. Since,
in this paper, we are comparing policies in a fixed
data set it is important to show that the policies are
indeed reliable, and not fluctuating.

For this study, we used the MDP infrastructure de-
signed in our previous work which allows the user
to easily set state, action, and reward parameters. It
then performs policy iteration to generate a policy
and V-values for each state. In the following sec-
tions, we discuss our corpus, methodology, and re-
sults.

3 Corpus

For our study, we used an annotated corpus of
20 human-computer spoken dialogue tutoring ses-
sions (for our work we use the ITSPOKE system
(Litman and Silliman, 2004) which uses the text-
based Why2-ATLAS dialogue tutoring system as its
“back-end” (VanLehn et al., 2002)). The content

State Feature Values
Certainty Certain (cer)

Uncertain (unc)
Neutral (neu)

Frustration Frustrated (F)
Neutral (N),

Correctness Correct (C)
Partially Correct (PC)
Incorrect (I)

Percent Correct 50-100% (H)igh
0-49% (L)ow

Concept Repetition Concept is new (0)
Concept is repeated (R)

Table 1: Potential Student State Features in MDP

of the system, and all possible dialogue paths, were
authored by physics experts. Each session consists
of an interaction with one student over 5 different
college-level physics problems, for a total of 100 di-
alogues. Before each session, the student is asked to
read physics material for 30 minutes and then take a
pretest based on that material. Each problem begins
with the student writing out a short essay response
to the question posed by the computer tutor. The
fully-automated system assesses the essay for poten-
tial flaws in the reasoning and then starts a dialogue
with the student, asking questions to help the stu-
dent understand the confused concepts. The tutor’s
response and next question is based only on the cor-
rectness of the student’s last answer. Informally, the
dialogue follows a question-answer format. Once
the student has successfully completed the dialogue
section, he is asked to correct the initial essay. Each
of the dialogues takes on average 20 minutes and 60
turns. Finally, the student is given a posttest simi-
lar to the pretest, from which we can calculate their
normalized learning gain: �����
	��������������������������������

���������������
.

Prior to our study, the corpus was annotated for
Tutor Moves, which can be viewed as Dialogue Acts
(Forbes-Riley et al., 2005) 1 and consisted of Tutor
Feedback, Question and State Acts. In this corpus, a
turn can consist of multiple utterances and thus can
be labeled with multiple moves. For example, a tutor
can give positive feedback and then ask a question in
the same turn. What type of question to ask will be
the action choice addressed in this paper.

As for features to include in the student state, we
annotated five features as shown in Table 1. Two

1The Dialogue Act annotation had a Kappa of 0.67.

273

Action Example Turn
SAQ “Good. What is the direction of that force relative to your fist?”
CAQ “What is the definition of Newton’s Second Law?”
Mix “Good. If it doesn’t hit the center of the pool what do you know about the magnitude of

its displacement from the center of the pool when it lands? Can it be zero? Can it be nonzero?”
NoQ “So you can compare it to my response...”

Table 2: Tutor Actions for MDP

emotion related features, certainty and frustration,
were annotated manually prior to this study (Forbes-
Riley and Litman, 2005) 2. Certainty describes
how confident a student seemed to be in his answer,
while frustration describes how frustrated the stu-
dent seemed to be when he responded. We include
three other automatically extracted features for the
Student state: (1) Correctness: whether the student
was correct or not; (2) Percent Correct: percentage
of correctly answered questions so far for the cur-
rent problem; (3) Concept Repetition: whether the
system is forced to cover a concept again which re-
flects an area of difficulty for the student.

4 Experimental Method

The goal of this study is to quantify the utility of
adding a feature to a baseline state space. We use
the following four step process: (1) establish an
action set and reward function to be used as con-
stants throughout the test since the state space is the
one MDP parameter that will be changed during the
tests; (2) establish a baseline state and policy, and
(3) add a new feature to that state and test if adding
the feature results in policy changes. Every time
we create a new state, we make sure that the gen-
erated V-values converge. Finally, (4), we evaluate
the effects of adding a new feature by using three
metrics: (1) number of policy changes (diffs), (2)
% policy change, and (3) Expected Cumulative Re-
ward. These three metrics are discussed in more de-
tail in Section 5.2. In this section we focus on the
first three steps of the methodology.

4.1 Establishing Actions and Rewards

We use questions as our system action
�

in our
MDP. The action size is 4 (tutor can ask a simple
answer question (SAQ), a complex answer question

2In a preliminary agreement study, a second annotator la-
beled the entire corpus for uncertain versus other, yielding 90%
inter-annotator agreement (0.68 Kappa).

(CAQ), or a combination of the two (Mix), or not
ask a question (NoQ)). Examples from our corpus
can be seen in Table 2. We selected this as the action
because what type of question a tutor should ask is
of great interest to the Intelligent Tutoring Systems
community, and it generalizes to dialogue systems
since asking users questions of varying complexity
can elicit different responses.

For the dialogue reward function � we did a me-
dian split on the 20 students based on their normal-
ized learning gain, which is a standard evaluation
metric in the Intelligent Tutoring Systems commu-
nity. So 10 students and their respective 5 dialogues
were assigned a positive reward of 100 (high learn-
ers), and the other 10 students and their respective
5 dialogues were assigned a negative reward of -100
(low learners). The final student turns in each di-
alogue were marked as either a positive final state
(for a high learner) or a negative final state (for a low
learner). The final states allow us to propagate the
reward back to the internal states. Since no action is
taken from the final states, their V-values remain the
same throughout policy iteration.

4.2 Establishing a Baseline State and Policy

Currently, our tutoring system’s response to a stu-
dent depends only on whether or not the student an-
swered the last question correctly, so we use correct-
ness as the sole feature in our baseline dialogue state.
A student can either be correct, partially correct, or
incorrect. Since partially correct responses occur in-
frequently compared to the other two, we reduced
the state size to two by combining Incorrect and Par-
tially Correct into one state (IPC) and keeping Cor-
rect (C).

With the actions, reward function, and baseline
state all established, we use our MDP tool to gener-
ate a policy for both states (see Table 3). The second
column shows the states, the third, the policy deter-
mined by our MDP toolkit (i.e. the optimal action to

274

take in that state with respect to the final reward) and
finally how many times the state occurs in our data
(state size). So if a student is correct, the best action
is to give something other than a question immedi-
ately, such as feedback. If the student is incorrect,
the best policy is to ask a combination of short and
complex answer questions.

State Policy State Size
1 C NoQ 1308
2 IPC Mix 872

Table 3: Baseline Policy

The next step in our experiment is to test whether
the policies generated are indeed reliable. Normally,
the best way to verify a policy is to conduct exper-
iments and see if the new policy leads to a higher
reward for new dialogues. In our context, this would
entail running more subjects with the augmented di-
alogue manager, which could take months. So, in-
stead we check if the polices and values for each
state are indeed converging as we add data to our
MDP model. The intuition here is that if both of
those parameters were varying between a corpus of
19 students versus one of 20 students, then we can’t
assume that our policy is stable, and hence is not re-
liable.

To test this out, we made 20 random orderings of
our students to prevent any one ordering from giving
a false convergence. Each ordering was then passed
to our MDP infrastructure such that we started with
a corpus of just the first student of the ordering and
then determined a MDP policy for that cut, then in-
crementally added one student at a time until we had
added all 20 students. So at the end, 20 random or-
derings with 20 cuts each provides 400 MDP trials.
Finally, we average each cut across the 20 random
orderings. The first graph in Figure 1 shows a plot of
the average V-values against a cut. The state with the
plusses is the positive final state, and the one at the
bottom is the negative final state. However, we are
most concerned with how the non-final states con-
verge. The plot shows that the V-values are fairly
stable after a few initial cuts, and we also verified
that the policies remained stable over the 20 students
as well (see our prior work (Tetreault and Litman,
2006) for details of this method). Thus we can be
sure that our baseline policy is indeed reliable for

our corpus.

5 Results

In this section, we investigate whether adding more
information to our student state will lead to inter-
esting policy changes. First, we add certainty to
our baseline of correctness because prior work (such
as (Bhatt et al., 2004), (Liscombe et al., 2005) and
(Forbes-Riley and Litman, 2005)) has shown the im-
portance of considering certainty in tutoring sys-
tems. We then compare this new baseline’s pol-
icy (henceforth Baseline 2) with the policies gener-
ated when frustration, concept repetition, and per-
cent correctness are included.

We’ll first discuss the new baseline state. There
are three types of certainty: certain (cer), uncertain
(unc), and neutral (neu). Adding these to our state
representation increases state size from 2 to 6. The
new policy is shown in Table 4. The second and
third columns show the original baseline states and
their policies. The next column shows the new pol-
icy when splitting the original state into the three
new states based on certainty (with the policies that
differ from the baseline shown in bold). The final
column shows the size of each new state. So the
first row indicates that if the student is correct and
certain, one should give a combination of a complex
and short answer question; if the student is correct
and neutral, just ask a SAQ; and else if the student is
correct and uncertain, give a Mix. The overall trend
of adding the certainty feature is that if the student
exhibits some emotion (either they are certain or un-
certain), the best response is Mix, but for neutral do
something else.

State Baseline Baseline 2 B2 State Size
1 C NoQ certain:C Mix 663

neutral:C SAQ 480
uncertain:C Mix 165

2 IPC Mix certain:IPC Mix 251
neutral:IPC NoQ 377
uncertain:IPC Mix 244

Table 4: Baseline 2 Policy

We assume that if a feature is important to include
in a state representation it should change the poli-
cies of the old states. For example, if certainty did
not impact how well students learned (as deemed by
the MDP) then the policies for certainty, uncertainty,

275

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

of students

V
−

va
lu

e

Correctness

0 2 4 6 8 10 12 14 16 18 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

of students

V
−

va
lu

e

Correctness and Certainty

Figure 1: Baseline 1 and 2 Convergence Plots

and neutral would be the same as the original policy
for Correct (C) or Incorrect (IPC). However, the fig-
ures show otherwise. When certainty is added to the
state, only two new states (incorrect while being cer-
tain or uncertain) retain the old policy of having the
tutor give a mix of SAQ and CAQ. The right graph
in Figure 1 shows that for Baseline 2, V-values tend
to converge around 10 cuts.

Next, we add Concept Repetition, Frustration,
and Percent Correct features individually to Base-
line 2. For each of the three features we repeated
the reliability check of plotting the V-value con-
vergence and found that the graphs showed conver-
gence around 15 students.

5.1 Feature Addition Results

Policies for the three new features are shown in Ta-
ble 5 with the policies that differ from Baseline 2’s
shown in bold. The numbers in parentheses refer to
the size of the new state (so for the first +Concept
state, there are 487 instances in the data of a student
being correct, certain after hearing a new concept).

Concept Repetition Feature As shown in col-
umn 4, the main trend of incorporating concept rep-
etition usually is to give a complex answer question
after a concept has been repeated, and especially if
the student is correct when addressing a question
about the repeated concept. This is intuitive be-
cause one would expect that if a concept has been
repeated, it signals that the student did not grasp the
concept initially and a clarification dialogue was ini-
tiated to help the student learn the concept. Once
the student answers the repeated concept correctly, it
signals that the student understands the concept and
that the tutor can once again ask more difficult ques-

tions to challenge the student. Given the amount of
differences in the new policy and the original policy
(10 out of 12 possible), including concept repetition
as a state feature has a significant impact on the pol-
icy generated.

Frustration Feature Our results show that
adding frustration changes the policies the most
when the student is frustrated, but when the student
isn’t frustrated (neutral) the policy stays the same
as the baseline with the exception of when the stu-
dent is Correct and Certain (state 1), and Incorrect
and Uncertain (state 6). It should be noted that for
states 2 through 6, that frustration occurs very in-
frequently so the policies generated (CAQ) may not
have enough data to be totally reliable. However in
state 1, the policy when the student is confident and
correct but also frustrated is to simply give a hint or
some other form of feedback. In short, adding the
frustration feature results in a change in 8 out of 12
policies.

Percent Correctness Feature Finally, the last
column, shows the new policy generated for incor-
porating a simple model of current student perfor-
mance within the dialog. The main trend is to give
a Mix of SAQ and CAQ’s. Since the original policy
was to give a lot of Mix’s in the first place, adding
this feature does not result in a large policy change,
only 4 differences.

5.2 Feature Comparison

To compare the utility of each of the features, we
use three metrics: (1) Diff’s (2) % Policy Change,
and (3) Expected Cumulative Reward. # of Diff’s
are the number of states whose policy differs from
the baseline policy, The second column of Table 6

276

State Baseline 2 +Concept +Frustration + % Correctness
1 certain:C Mix (663) 0: CAQ (487) N: SAQ (558) H: Mix (650)

R: CAQ (176) F: NoQ (105) L: Mix (13)
2 certain:IPC Mix (251) 0: SAQ (190) N: Mix (215) H: Mix (217)

R: NoQ (61) F: CAQ (36) L: Mix (34)
3 neutral:C SAQ (480) 0: CAQ (328) N: SAQ (466) H: Mix (468)

R: CAQ (152) F: CAQ (14) L: Mix (12)
4 neutral:IPC NoQ (377) 0: NoQ (289) N: NoQ (364) H: NoQ (320)

R: Mix (88) F: CAQ (13) L: Mix (57)
5 uncertain:C Mix (165) 0: Mix (127) N: Mix (151) H: Mix (156)

R: CAQ (38) F: CAQ (14) L: Mix (9)
6 uncertain:IPC Mix (244) 0: SAQ (179) N: CAQ (209) H: CAQ (182)

R: CAQ(65) F: CAQ (35) L: Mix (62)

Table 5: Question Policies

summarizes the amount of Diff’s for each new fea-
ture compared to Baseline 2. Concept Repetition has
the largest number of differences: 10, followed by
Frustration, and then Percent Correctness. However,
counting the number of differences does not com-
pletely describe the effect of the feature on the pol-
icy. For example, it is possible that a certain feature
may impact the policy for several states that occur
infrequently, resulting in a lot of differences but the
overall impact may actually be lower than a certain
feature that only impacts one state, since that state
occurs a majority of the time in the data. So we
weight each difference by the number of times that
state-action sequence actually occurs in the data and
then divide by the total number of state-action se-
quences. This weighting, % Policy Change (or %
P.C.), allows us to more accurately depict the impact
of adding the new feature. The third columns shows
the weighted figures of % Policy Change. As an
additional confirmation of the ranking, we use Ex-
pected Cumulative Reward (E.C.R.). One issue with
% Policy Change is that it is possible that frequently
occurring states have very low V-values so the ex-
pected utility from starting the dialogue could poten-
tially be lower than a state feature with low % Policy
Change. E.C.R. is calculated by normalizing the V-
value of each state by the number of times it occurs
as a start state in a dialogue and then summing over
all states. The upshot of both metrics is the ranking
of the three features remains the same with Concept
Repetition effecting the greatest change in what a
tutoring system should do; Percent Correctness has
the least effect.

We also added a random feature to Baseline 2

State Feature # Diff’s % P.C. E.C.R
Concept Repetition 10 80.2% 39.52
Frustration 8 66.4% 31.30
Percent Correctness 4 44.3% 28.17

Table 6: Question Act Results

State Feature # Diff’s % P.C. E.C.R
Concept Repetition 4 34.6% 43.43
Frustration 3 6.0% 25.80
Percent Correctness 3 10.3% 26.41

Table 7: Feedback Act Results

with one of two values (0 and 1) to serve as a base-
line for the # of Diff’s. In a MDP with a large
enough corpus to explore, a random variable would
not alter the policy, however with a smaller corpus
it is possible for such a variable to alter policies.
We found that by testing a random feature 40 times
and averaging the diffs from each test, resulted in an
average diff of 5.1. This means that Percent Cor-
rectness effects a smaller amount of change than
this random baseline and thus is fairly useless as a
feature to add since the random feature is probably
capturing some aspect of the data that is more use-
ful. However, the Concept Repetition and Frustra-
tion cause more change in the policies than the ran-
dom feature baseline so one can view them as fairly
useful still.

As a final test, we investigated the utility of each
feature by using a different tutor action - whether
or not the tutor should give simple feedback (Sim-
Feed), or a complex feedback response(ComFeed),
or a combination of the two (Mix) (Tetreault and Lit-
man, 2006). The policies and distributions for all
features from this previous work are shown in Ta-

277

State Baseline 2 +Concept +Frustration + % Correctness
1 certain:C ComFeed (663) 0: ComFeed (487) N: ComFeed (558) H: ComFeed (650)

R: SimFeed (176) F: SimFeed (105) L: ComFeed (13)
2 certain:IPC ComFeed (251) 0: Mix (190) N: ComFeed (215) H: ComFeed (217)

R: Mix (61) F: ComFeed (36) L: ComFeed (34)
3 neutral:C SimFeed (480) 0: Mix (328) N: SimFeed (466) H: SimFeed (468)

R: SimFeed (152) F: ComFeed (14) L: ComFeed (12)
4 neutral:IPC Mix (377) 0: Mix (289) N: Mix (364) H: Mix (320)

R: Mix (88) F: ComFeed (13) L: ComFeed (57)
5 uncertain:C ComFeed (165) 0: ComFeed (127) N: ComFeed (151) H: Mix (156)

R: ComFeed (38) F: ComFeed (14) L: ComFeed (9)
6 uncertain:IPC ComFeed (244) 0: ComFeed (179) N: ComFeed (209) H: ComFeed (182)

R: ComFeed (65) F: ComFeed (35) L: ComFeed (62)

Table 8: Feedback Policies (summarized from (Tetreault and Litman, 2006))

bles 7 and 8. Basically, we wanted to see if the rela-
tive rankings of the three features remained the same
for a different action set and whether different action
sets evoked different changes in policy. The result is
that although the amount of policy change is much
lower than when using Questions as the tutor action,
the relative ordering of the features is still about the
same with Concept Repetition still having the great-
est impact on the policy. Interestingly, while Frus-
tration and Percent Correctness have lower diffs, %
policy changes, and E.C.R. then their question coun-
terparts (which indicates that those features are less
important when considering what type of feedback
to give, as opposed to what type of question to give),
the E.C.R. for concept repetition with feedback is
actually higher than the question case.

6 Related Work

RL has been applied to improve dialogue systems in
past work but very few approaches have looked at
which features are important to include in the dia-
logue state. Paek and Chickering’s (2005) work on
testing the Markov Assumption for Dialogue Sys-
tems showed how the state space can be learned
from data along with the policy. One result is that a
state space can be constrained by only using features
that are relevant to receiving a reward. Henderson et
al.’s (2005) work focused on learning the best pol-
icy by using a combination of reinforcement and su-
pervised learning techniques but also addressed state
features by using linear function approximation to
deal with large state spaces. Singh et al. (1999)
and Frampton et al. (2005) both showed the ef-
fect of adding one discourse feature to the student

state (dialogue length and user’s last dialogue act,
respectively) whereas in our work we compare the
worth of multiple features. Although Williams et
al.’s (2005b) work did not focus on choosing the
best state features, they did show that in a noisy
environment, Partially-Observable MDP’s could be
used to build a better model of what state the user
is in, over traditional MDP and hand-crafted meth-
ods. One major difference between all this related
work and ours is that usually the work is focused
on how to best deal with ASR errors. Although this
is also important in the tutoring domain, our work
is novel because it focuses on more semantically-
oriented questions.

7 Discussion

In this paper we showed that incorporating more in-
formation into a representation of the student state
has an impact on what actions the tutor should
take. Specifically, we proposed three metrics to
determine the relative weight of the three features.
Our empirical results indicate that Concept Repeti-
tion and Frustration are the most compelling since
adding them to the baseline resulted in major pol-
icy changes. Percent Correctness had a negligible
effect since it resulted in only minute changes to the
baseline policy. In addition, we also showed that the
relative ranking of these features generalizes across
different action sets.

While these features may appear unique to tutor-
ing systems they also have analogs in other dialogue
systems as well. Repeating a concept (whether it be
a physics term or travel information) is important be-
cause it is an implicit signal that there might be some

278

confusion and a different action is needed when the
concept is repeated. Frustration can come from dif-
ficulty of questions or from the more frequent prob-
lem for any dialogue system, speech recognition er-
rors, so the manner in dealing with it will always
be important. Percent Correctness can be viewed
as a specific instance of tracking user performance
such as if they are continuously answering ques-
tions properly or are confused by what the system
requests.

With respect to future work, we are annotating
more human-computer dialogue data and will triple
the size of our test corpus allowing us to create more
complicated states since more states will have been
explored, and test out more complex tutor actions,
such as when to give Hints and Restatements. In
the short term, we are investigating whether other
metrics such as entropy and confidence bounds can
better indicate the usefulness of a feature. Finally,
it should be noted that the certainty and frustration
feature scores are based on a manual annotation. We
are investigating how well an automated certainty
and frustration detection algorithm will impact the
% Policy Change. Previous work such as (Liscombe
et al., 2005) has shown that certainty can be auto-
matically generated with accuracy as high as 79% in
comparable human-human dialogues. In our corpus,
we achieve an accuracy of 60% in automatically pre-
dicting certainty.

8 Acknowledgments

We would like to thank the ITSPOKE and Pitt NLP
groups, Pam Jordan, James Henderson, and the three
anonymous reviewers for their comments. Sup-
port for this research was provided by NSF grants
#0325054 and #0328431.

References

K. Bhatt, M. Evens, and S. Argamon. 2004. Hedged re-
sponses and expressions of affect in human/human and
human computer tutorial interactions. In Proc. Cogni-
tive Science.

K. Forbes-Riley and D. Litman. 2005. Using bigrams
to identify relationships between student certainness
states and tutor responses in a spoken dialogue corpus.
In SIGDial.

K. Forbes-Riley, D. Litman, A. Huettner, and A. Ward.
2005. Dialogue-learning correlations in spoken dia-
logue tutoring. In Artificial Intelligence in Education.

M. Frampton and O. Lemon. 2005. Reinforcement learn-
ing of dialogue strategies using the user’s last dialogue
act. In IJCAI Wkshp. on K&R in Practical Dialogue
Systems.

J. Henderson, O. Lemon, and K. Georgila. 2005. Hybrid
reinforcement/supervised learning for dialogue poli-
cies from communicator data. In IJCAI Wkshp. on
K&R in Practical Dialogue Systems.

E. Levin and R. Pieraccini. 1997. A stochastic model of
computer-human interaction for learning dialogues. In
Proc. of EUROSPEECH ’97.

J. Liscombe, J. Hirschberg, and J. Venditti. 2005. De-
tecting certainness in spoken tutorial dialogues. In In-
terspeech.

D. Litman and S. Silliman. 2004. Itspoke: An intelligent
tutoring spoken dialogue system. In HLT/NAACL.

T. Paek and D. Chickering. 2005. The markov assump-
tion in spoken dialogue management. In 6th SIGDial
Workshop on Discourse and Dialogue.

S. Singh, M. Kearns, D. Litman, and M. Walker. 1999.
Reinforcement learning for spoken dialogue systems.
In Proc. NIPS ’99.

R. Sutton and A. Barto. 1998. Reinforcement Learning.
The MIT Press.

J. Tetreault and D. Litman. 2006. Using reinforcement
learning to build a better model of dialogue state. In
EACL.

K. VanLehn, P. Jordan, C. Rosé, D. Bhembe, M. Bottner,
A. Gaydos, M Makatchev, U. Pappuswamy, M. Rin-
genberg, A. Roque, S. Siler, R. Srivastava, and R. Wil-
son. 2002. The archictecture of why2-atlas: A coach
for qualitative physics essay writing. In Intelligent Tu-
toring Systems.

M. Walker. 2000. An application of reinforcement learn-
ing to dialogue strategy selection in a spoken dialogue
system for email. JAIR, 12.

J. Williams, P. Poupart, and S. Young. 2005a. Fac-
tored partially observable markov decision processes
for dialogue management. In IJCAI Wkshp. on K&R
in Practical Dialogue Systems.

J. Williams, P. Poupart, and S. Young. 2005b. Partially
obervable markov decision processes with continuous
observations for dialogue management. In SIGDial.

279

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 280–287,
New York, June 2006.c©2006 Association for Computational Linguistics

Backoff Model Training using Partially Observed Data:
Application to Dialog Act Tagging

Gang Ji and Jeff Bilmes
Department of Electrical Engineering

University of Washington
Seattle, WA 98105-2500

{gang,bilmes}@ee.washington.edu

Abstract

Dialog act (DA) tags are useful for many
applications in natural language process-
ing and automatic speech recognition. In
this work, we introduce hidden backoff
models (HBMs) where a large generalized
backoff model is trained, using an embed-
ded expectation-maximization (EM) pro-
cedure, on data that is partially observed.
We use HBMs as word models condi-
tioned on both DAs and (hidden) DA-
segments. Experimental results on the
ICSI meeting recorder dialog act corpus
show that our procedure can strictly in-
crease likelihood on training data and can
effectively reduce errors on test data. In
the best case, test error can be reduced by
6.1% relative to our baseline, an improve-
ment on previously reported models that
also use prosody. We also compare with
our own prosody-based model, and show
that our HBM is competitive even without
the use of prosody. We have not yet suc-
ceeded, however, in combining the bene-
fits of both prosody and the HBM.

1 Introduction

Discourse patterns in natural conversations and
meetings are well known to provide interesting and
useful information about human conversational be-
havior. They thus attract research from many differ-
ent and beneficial perspectives. Dialog acts (DAs)

(Searle, 1969), which reflect the functions that ut-
terances serve in a discourse, are one type of such
patterns. Detecting and understanding dialog act
patterns can provide benefit to systems such as au-
tomatic speech recognition (ASR) (Stolcke et al.,
1998), machine dialog translation (Lee et al., 1998),
and general natural language processing (NLP) (Ju-
rafsky et al., 1997b; He and Young, 2003). DA pat-
tern recognition is an instance of “tagging.” Many
different techniques have been quite successful in
this endeavor, including hidden Markov models (Ju-
rafsky et al., 1997a; Stolcke et al., 1998), seman-
tic classification trees and polygrams (Mast et al.,
1996), maximum entropy models (Ang et al., 2005),
and other language models (Reithinger et al., 1996;
Reithinger and Klesen, 1997). Like other tagging
tasks, DA recognition can also be achieved using
conditional random fields (Lafferty et al., 2001; Sut-
ton et al., 2004) and general discriminative model-
ing on structured outputs (Bartlett et al., 2004). In
many sequential data analysis tasks (speech, lan-
guage, or DNA sequence analysis), standard dy-
namic Bayesian networks (DBNs) (Murphy, 2002)
have shown great flexibility and are widely used. In
(Ji and Bilmes, 2005), for example, an analysis of
DA tagging using DBNs is performed, where the
models avoid label bias by structural changes and
avoid data sparseness by using a generalized back-
off procedures (Bilmes and Kirchhoff, 2003).

Most DA classification procedures assume that
within a sentence of a particular fixed DA type,
there is a fixed word distribution over the entire sen-
tence. Similar to (Ma et al., 2000) (and see cita-
tions therein), we have found, however, that intra-

280

sentence discourse patterns are inherently dynamic.
Moreover, the patterns are specific to each type of
DA, meaning a sentence will go through a DA-
specific sequence of sub-DA phases or “states.” A
generative description of this phenomena is that a
DA is first chosen, and then words are generated
according to both the DA and to the relative posi-
tion of the word in that sentence. For example, a
“statement” (one type of DA) can consist of a sub-
ject (noun phrase), verb phrase, and object (noun
phrase). This particular sequence might be different
for a different DA (e.g., a “back-channel”). Our be-
lief is that explicitly modeling these internal states
can help a DA-classification system in conversa-
tional meetings or dialogs.

In this work, we describe an approach that is
motivated by several aspects of the typical DA-
classification procedure. First, it is rare to have sub-
DAs labeled in training data, and indeed this is true
of the corpus (Shriberg et al., 2004) that we use.
Therefore, some form of unsupervised clustering or
pre-shallow-parsing of sub-DAs must be performed.
In such a model, these sub-DAs are essentially un-
known hidden variables that ideally could be trained
with an expectation-maximization (EM) procedure.
Second, when training models of language, it is nec-
essary to employ some form of smoothing method-
ology since otherwise data-sparseness would render
standard maximum-likelihood trained models use-
less. Third, discrete conditional probability distri-
butions formed using backoff models that have been
smoothed (particularly using modified Kneser-Ney
(Chen and Goodman, 1998)) have been extremely
successful in many language modeling tasks. Train-
ing backoff models, however, requires that all data
is observed so that data counts can be formed. In-
deed, our DA-specific word models (implemented
via backoff) will also need to condition on the cur-
rent sub-DA, which at training time is unknown.
We therefore have developed a procedure that al-
lows us to train generalized backoff models (Bilmes
and Kirchhoff, 2003), even when some or all of the
variables involved in the model are hidden. We thus
call our models hidden backoff models (HBMs). Our
method is indeed a form of embedded EM training
(Morgan and Bourlard, 1990), and more generally
is a specific form of EM (Neal and Hinton, 1998).
Our approach is similar to (Ma et al., 2000), except

our underlying language models are backoff-based
and thus retain the benefits of advanced smoothing
methods, and we utilize both a normal and a backoff
EM step as will be seen. We moreover wrap up the
above ideas in the framework of dynamic Bayesian
networks, which are used to represent and train all
of our models.

We evaluate our methods on the ICSI meeting
recorder dialog act (MRDA) (Shriberg et al., 2004)
corpus, and find that our novel hidden backoff model
can significantly improve dialog tagging accuracy.
With a different number of hidden states for each
DA, a relative reduction in tagging error rate as
much as 6.1% can be achieved. Our best HBM result
shows an accuracy that improves on the best known
(to our knowledge) result on this corpora which is
one that uses acoustic prosody as a feature. We have
moreover developed our own prosody model and
while we have not been able to usefully employ both
prosody and the HBM technique together, our HBM
is competitive in this case as well. Furthermore, our
results show the effectiveness of our embedded EM
procedure, as we demonstrate that it increases train-
ing log likelihoods, while simultaneously reducing
error rate.

Section 2 briefly summarizes our baseline DBN-
based models for DA tagging tasks. In Section 3,
we introduce our HBMs. Section 4 contains experi-
mental evaluations on the MRDA corpus and finally
Section 5 concludes.

2 DBN-based Models for Tagging

Dynamic Bayesian networks (DBNs) (Murphy,
2002) are widely used in sequential data analysis
such as automatic speech recognition (ASR) and
DNA sequencing analysis (Durbin et al., 1999). A
hidden Markov model (HMM) for DA tagging as in
(Stolcke et al., 1998) is one such instance.

Figure 1 shows a generative DBN model that will
be taken as our baseline. This DBN shows a pro-
logue (the first time slice of the model), an epilogue
(the last slice), and a chunk that is repeated suffi-
ciently to fit the entire data stream. In this case,
the data stream consists of the words of a meet-
ing conversation, where individuals within the meet-
ing (hopefully) take turns speaking. In our model,
the entire meeting conversation, and all turns of all

281

sentence change

DA <s>

dialog act

word <s>

word

prologue chunk epilogue

Figure 1: Baseline generative DBN for DA tagging.

speakers, are strung together into a single stream
rather than treating each turn in the meeting indi-
vidually. This approach has the benefit that we are
able to integrate a temporal DA-to-DA model (such
as a DA bigram).

In all our models, to simplify we assume that the
sentence change information is known (as is com-
mon with this corpus (Shriberg et al., 2004)). We
next describe Figure 1 in detail. Normally, the sen-
tence change variable is not set, so that we are within
a sentence (or a particular DA). When a sentence
change does not occur, the DA stays the same from
slice to slice. During this time, we use a DA-specific
language model (implemented via a backoff strat-
egy) to score the words within the current DA.

When a sentence change event does occur, a new
DA is predicted based on the DA from the previous
sentence (using a DA bigram). At the beginning of
a sentence, rather than conditioning on the last word
of the previous sentence, we condition on the special
start of sentence <s> token, as shown in the figure
by having a special parent that is used only when
sentence change is true. Lastly, at the very beginning
of a meeting, a special start of DA token is used.

The joint probability under this baseline model is
written as follows:

P (W, D) =
∏

k

P (dk|dk−1)

·
∏

i

P (wk,i|wk,i−1, dk),
(1)

where W = {wk,i} is the word sequence, D = {dk}
is the DA sequence, dk is the DA of the k-th sen-
tence, and wk,i is the i-th word of the k-th sentence
in the meeting.

Because all variables are observed when training
our baseline, we use the SRILM toolkit (Stolcke,
2002), modified Kneser-Ney smoothing (Chen and
Goodman, 1998), and factored extensions (Bilmes
and Kirchhoff, 2003). In evaluations, the Viterbi al-
gorithm (Viterbi, 1967) can be used to find the best
DA sequence path from the words of the meeting
according to the joint distribution in Equation (1).

3 Hidden Backoff Models

When analyzing discourse patterns, it can be seen
that sentences with different DAs usually have dif-
ferent internal structures. Accordingly, in this work
we do not assume sentences for each dialog act have
the same hidden state patterns. For instance (and as
mentioned above), a statement can consist of a noun
followed by a verb phase.

A problem, however, is that sub-DAs are not an-
notated in our training corpus. While clustering and
annotation of these phrases is already a widely de-
veloped research topic (Pieraccini and Levin, 1991;
Lee et al., 1997; Gildea and Jurafsky, 2002), in our
approach we use an EM algorithm to learn these hid-
den sub-DAs in a data-driven fashion. Pictorially,
we add a layer of hidden states to our baseline DBN
as illustrated in Figure 2.

sentence change

DA <s>

dialog act

word <s>

word

prologue chunk epilogue

hidden state

Figure 2: Hidden backoff model for DA tagging.

Under this model, the joint probability is:

P (W, S, D) =
∏

k

P (dk|dk−1)

·
∏

i

[P (sk,i|sk,i−1, dk)

· P (wk,i|wk,i−1, sk,i, dk)] ,

(2)

282

where S = {sk,i} is the hidden state sequence, sk,i

is the hidden state at the i-th position of the k-th sen-
tence, and other variables are the same as before.

Similar to our baseline model, the DA bigram
P (dk|dk−1) can be modeled using a backoff bi-
gram. Moreover, if the states {sk,i} are known
during training, the word prediction probability
P (wk,i|wk,i−1, sk,i, dk) can also use backoff and be
trained accordingly. The hidden state sequence is
unknown, however, and thus cannot be used to pro-
duce a standard backoff model. What we desire is
an ability to utilize a backoff model (to mitigate data
sparseness effects) while simultaneously retaining
the state as a hidden (rather than an observed) vari-
able, and also have a procedure that trains the entire
model to improve overall model likelihood.

Expectation-maximization (EM) algorithms are
well-known to be able to train models with hidden
states. Furthermore, standard advanced smoothing
methods such as modified Kneser-Ney smoothing
(Chen and Goodman, 1998) utilize integer counts
(rather than fractional ones), and they moreover
need “meta” counts (or counts of counts). There-
fore, in order to train this model, we propose an
embedded training algorithm that cycles between a
standard EM training procedure (to train the hidden
state distribution), and a stage where the most likely
hidden states (and their counts and meta counts) are
used externally to train a backoff model. This pro-
cedure can be described in detail as follows:

Input : W — meeting word sequence
Input : D — DA sequence
Output : P (sk,i|sk,i−1) - state transition CPT
Output : P (wk,i|wk,i−1, sk,i, dk) - word model
randomly generate a sequence S;1

backoff train P (wk,i|wk,i−1, sk,i, dk);2

while not “converged” do3

EM train P (sk,i|sk,i−1);4

calculate best S̄ sequence by Viterbi;5

backoff train P (wk,i|wk,i−1, s̄k,i, dk);6

end7

Algorithm 1: Embedded training for HBMs

In the algorithm, the input contains words and
a DA for each sentence in the meeting. The out-
put is the corresponding conditional probability ta-
ble (CPT) for hidden state transitions, and a back-
off model for word prediction. Because we train the

backoff model when some of the variables are hid-
den, we call the result a hidden backoff model. While
we have seen embedded Viterbi training used in the
past for simultaneously training heterogeneous mod-
els (e.g., Markov chains and Neural Networks (Mor-
gan and Bourlard, 1990)), this is the first instance
of training backoff-models that involve hidden vari-
ables that we are aware of.

While embedded Viterbi estimation is not guar-
anteed to have the same convergence (or fixed-point
under convergence) as normal EM (Lember and
Koloydenko, 2004), we find empirically this to be
the case (see examples below). Moreover, our algo-
rithm can easily be modified so that instead of tak-
ing a Viterbi alignment in step 5, we instead use a
set of random samples generated under the current
model. In this case, it can be shown using a law-of-
large numbers argument that having sufficient sam-
ples guarantees the algorithm will converge (we will
investigate this modification in future work).

Of course, when decoding with such a model, a
conventional Viterbi algorithm can still be used to
calculate the best DA sequence.

4 Experimental Results

We evaluated our hidden backoff model on the
ICSI meeting recorder dialog act (MRDA) corpus
(Shriberg et al., 2004). MRDA is a rich data set that
contains 75 natural meetings on different topics with
each meeting involving about 6 participants. DA an-
notations from ICSI were based on a previous ap-
proach in (Jurafsky et al., 1997b) with some adapta-
tion for meetings in a number of ways described in
(Bhagat et al., 2003). Each DA contains a main tag,
several optional special tags and an optional “disrup-
tion” form. The total number of distinct DAs in the
corpus is as large as 1260. In order to make the prob-
lem comparable to other work (Ang et al., 2005), a
DA tag sub-set is used in our experiments that con-
tains back channels (b), place holders (h), questions
(q), statements (s), and disruptions (x). In our eval-
uations, among the entire 75 conversations, 51 are
used as the training set, 11 are used as the develop-
ment set, 11 are used as test set, and the remaining
3 are not used. For each experiment, we used a ge-
netic algorithm to search for the best factored lan-
guage model structure on the development set and

283

we report the best results.
Our baseline system is the generative model

shown in Figure 1 and uses a backoff implementa-
tion of the word model, and is optimized on the de-
velopment set. We use the SRILM toolkit with ex-
tensions (Bilmes and Kirchhoff, 2003) to train, and
use GMTK (Bilmes and Zweig, 2002) for decoding.
Our baseline system has an error rate of 19.7% on
the test set, which is comparable to other approaches
on the same task (Ang et al., 2005).

4.1 Same number of states for all DAs

To compare against our baseline, we use HBMs in
the model shown in Figure 2. To train, we followed
Algorithm 1 as described before and as is here de-
tailed in Figure 3.

 Initialization:

- randomize states

- train word FLM

 Convergence:

- llh change < 0.2%

- or 10 iterations

- find best state path

- train word FLM

Text Text
3-epoch

EM training

No

- find best state path

- train word FLM

Text Text
5-epoch

EM training

Yes

Figure 3: Embedded training: llh = log likelihood

In this implementation, an upper triangular ma-
trix (with self-transitions along the diagonal) is used
for the hidden state transition probability table so
that sub-DA states only propagate in one direction.
When initializing the hidden state sequence of a DA,
we expanded the states uniformly along the sen-
tence. This initial alignment is then used for HBM
training. In the word models used in our experi-
ments, the backoff path first drops previous words,
then does a parallel backoff to hidden state and DA
using a mean combination strategy.

The HBM thus obtained was then fed into the
main loop of our embedded EM algorithm. The
training was considered to have “converged” if ei-

ther it exceeded 10 iterations (which never hap-
pened) or the relative log likelihood change was less
than 0.2%. Within each embedded iteration, three
EM epochs were used. After each EM iteration,
a Viterbi alignment was performed thus obtaining
what we expect to be a better hidden state alignment.
This updated alignment, was then used to train a
new HBM. The newly generated model was then fed
back into the embedded training loop until it con-
verged. After the procedure met our convergence
criteria, an additional five EM epochs were carried
out in order to provide a good hidden state transi-
tion probability table. Finally, after Viterbi align-
ment and text generation was performed, the word
HBM was trained from the best state sequence.

To evaluate our hidden backoff model, the Viterbi
algorithm was used to find the best DA sequence ac-
cording to test data, and the tagging error rates were
calculated. In our first experiment, an equal num-
ber of hidden states for all DAs were used in each
model. The effect of this number on the accuracy of
DA tagging is shown in Table 1.

Table 1: HBMs, different numbers of hidden states.

states error improvement
baseline 19.7% –
2-state 18.7% 5.1%
3-state 19.5% 1.0%

For the baseline system, the backoff path first
drops dialog act, and for the HBMs, all backoff
paths drop hidden state first and drop DA sec-
ond. From Table 1 we see that with two hidden states
for every DA the system can reduce the tagging error
rate by more than 5% relative. As a comparison, in
(Ang et al., 2005), where conditional maximum en-
tropy models (which are conditionally trained) are
used, the error rate is 18.8% when using both word
and acoustic prosody features, and and 20.5% with-
out prosody. When the number of hidden states in-
creases to 3, the improvement decreases even though
it is still (very slightly) better than the baseline. We
believe the reasons are as follows: First, assuming
different DAs have the same number of hidden states
may not be appropriate. For example, back chan-
nels usually have shorter sentences and are constant
in discourse pattern over a DA. On the other hand,

284

questions and statements typically have longer, and
more complex, discourse structures. Second, even
under the same DA, the structure and inherent length
of sentence can vary. For example, “yes” can also be
a statement even though it has only one word. There-
fore, one-word statements need completely differ-
ent hidden state patterns than those in subject-verb-
object like statements — having one monolithic 3-
state model for statements might be inappropriate.
This issue is discussed further in Section 4.4.

4.2 Different states for different DAs

In order to mitigate the first problem described
above, we allow different numbers of hidden states
for each DA. This, however, leads to a combinato-
rial explosion of possibilities if done in a naı̈ve fash-
ion. Therefore, we attempted only a small number
of combinations based on the statistics of numbers
of words in each DA given in Table 2.

Table 2: Length statistics of different DAs.

DA mean median std p

(b) 1.0423 1 0.2361 0.4954
(h) 1.3145 1 0.7759 0.4660
(q) 6.5032 5 6.3323 0.3377
(s) 8.6011 7 7.8380 0.3013
(x) 1.7201 1 1.1308 0.4257

Table 2 shows the mean and median number of
words per sentence for each DA as well as the stan-
dard deviation. Also, the last column provides the p

value according to fitting the length histogram to a
geometric distribution (1 − p)np. As we expected,
back channels (b) and place holders (h) tend to have
shorter sentences while questions (q) and statements
(s) have longer ones. From this analysis, we use
fewer states for (b) and (h) and more states for (q)
and (s). For disruptions (x), the standard deviation of
number of words histogram is relatively high com-
pared with (b) and (h), so we also used more hidden
states in this case. In our experimental results below,
we used one state for (b) and (h), and various num-
bers of hidden states for other DAs. Tagging error
rates are shown in Table 3.

From Table 3, we see that using different num-
bers of hidden states for different DAs can produce
better models. Among all the experiments we per-

Table 3: Number of hidden states for different DAs.

b h q s x error improvement
1 1 4 4 1 18.9% 4.1%
1 1 3 3 2 18.9% 4.1%
1 1 2 2 2 18.7% 5.1%
1 1 3 2 2 18.6% 5.6%
1 1 3 2 2 18.5% 6.1%

formed, the best case is given by three states for (q),
two states for (s) and (x), and one state for (b) and
(h). This combination gives 6.1% relative reduction
of error rate from the baseline.

4.3 Effect of embedded EM training
Incorporating backoff smoothing procedures into
Bayesian networks (and hidden variable training in
particular) can show benefits for any data domain
where smoothing is necessary. To understand the
properties of our algorithm a bit better, after each
training iteration using a partially trained model, we
calculated both the log likelihood of the training set
and the tagging error rate of the test data. Figure 4
shows these results using the best configuration from
the previous section (three states for (q), two for
(s)/(x) and one for (b)/(h)). This example is typical
of the convergence we see of Algorithm 1, which
empirically suggests that our procedure may be sim-
ilar to a generalized EM (Neal and Hinton, 1998).

1 2 3 4 5 6 7
18

19

20

21

22

23

24

iterations

er
ro

r
ra

te
 (

%)

−1.2

−1.15

−1.1

−1.05
x 10

6

lo
g
 l

ik
el

ih
o
o
d

llh

baseline

error rate

Figure 4: Embedded EM training performance.

We find that the log likelihood after each EM
training is strictly increasing, suggesting that our
embedded EM algorithm for hidden backoff models

285

is improving the overall joint likelihood of the train-
ing data according to the model. This strict increase
of likelihood combined with the fact that Viterbi
training does not have the same theoretical conver-
gence guarantees as does normal EM indicates that
more detailed theoretical analysis of this algorithm
used with these particular models is desirable.

From the figure we also see that both the log
likelihood and tagging error rate “converge” af-
ter around four iterations of embedded training.
This quick convergence indicates that our embedded
training procedure is effective. The leveling of the
error rates after several iterations shows that model
over-fitting appears not to be an issue presumably
due to the smoothed embedded backoff models.

4.4 Discussion and Error Analysis

A large portion of our tagging errors are due to con-
fusing the DA of short sentences such as “yeah”, and
“right”. The sentence, “yeah” can either be a back
channel or an affirmative statement. There are also
cases where “yeah?” is a question. These types of
confusions are difficult to remove in the prosody-
less framework but there are several possibilities.
First, we can allow the use of a “fork and join” tran-
sition matrix, where we fork to each DA-specific
condition (e.g., short or long) and join thereafter.
Alternatively, hidden Markov chain structuring al-
gorithms or context (i.e., conditioning the number
of sub-DAs on the previous DA) might be helpful.

Finding a proper number of hidden states for each
DA is also challenging. In our preliminary work, we
simply explored different combinations using sim-
ple statistics of the data. A systematic procedure
would be more beneficial. In this work, we also
did not perform any hidden state tying within dif-
ferent DAs. In practice, some states in statements
should be able to be beneficially tied with other
states within questions. Our results show that having
three states for all DAs is not as good as two states
for all. But with tying, more states might be more
successfully used.

4.5 Influence of Prosody Cues

It has been shown that prosody cues provide use-
ful information in DA tagging tasks (Shriberg et
al., 1998; Ang et al., 2005). We also incorporated
prosody features in our models. We used ESPS

get f0 based on RAPT algorithm (Talkin, 1995) to
get F0 values. For each speaker, mean and variance
normalization is performed. For each word, a linear
regression is carried on the normalized F0 values.
We quantize the slope values into 20 bins and treat
those as prosody features associated with each word.
After adding the prosody features, the simple gener-
ative model as shown in Figure 5 gives 18.4% error
rate, which is 6.6% improvement over our baseline.
There is no statistical difference between the best
performance of this prosody model and the earlier
best HBM. This implies that the HBM can obtain
as good performance as a prosody-based model but
without using prosody.

sentence change

DA <s>

dialog act

word <s>

word

prologue chunk epilogue

prosody

Figure 5: Generative prosody model for DA tagging.

The next obvious step is to combine an HBM with
the prosody information. Strangely, even after ex-
perimenting with many different models (including
ones where prosody depends on DA; prosody de-
pends on DA and the hidden state; prosody depends
on DA, hidden state, and word; and many varia-
tions thereof), we were unsuccessful in obtaining
a complementary benefit when using both prosody
and an HBM. One hypothesis is that our prosody
features are at the word-level (rather than at the DA
level). Another problem might be the small size of
the MRDA corpus relative to the model complexity.
Yet a third hypothesis is that the errors corrected by
both methods are the same — indeed, we have ver-
ified that the corrected errors overlap by more than
50%. We plan further investigations in future work.

286

5 Conclusions

In this work, we introduced a training method for
hidden backoff models (HBMs) to solve a problem
in DA tagging where smoothed backoff models in-
volving training-time hidden variables are useful.
We tested this procedure in the context of dynamic
Bayesian networks. Different hidden states were
used to model different positions in a DA. According
to empirical evaluations, our embedded EM algo-
rithm effectively increases log likelihood on training
data and reduces DA tagging error rate on test data.
If different numbers of hidden states are used for dif-
ferent DAs, we find that our prosody-independent
HBM reduces the tagging error rate by 6.1% rela-
tive to the baseline, a result that improves upon pre-
viously reported work that uses prosody, and that is
comparable to our own new result that also incorpo-
rates prosody. We have not yet been able to combine
the benefits of both an HBM and prosody informa-
tion. This material is based upon work supported
by the National Science Foundation under Grant No.
IIS-0121396.

References
J. Ang et al. 2005. Automatic dialog act segmentation and

classification in multiparty meetings. In ICASSP.

P. Bartlett et al. 2004. Exponentiated gradient algorithms for
large-margin structured classification. In NIPS.

S. Bhagat et al. 2003. Labeling guide for dialog act tags in the
meeting recordering meetings. Technical Report 2, Interna-
tional Computer Science Insititute.

J. Bilmes and K. Kirchhoff. 2003. Factored language mod-
els and generalized parallel backoff. In Human Lang. Tech.,
North American Chapter of Asssoc. Comp. Ling., Edmonton,
Alberta, May/June.

J. Bilmes and G. Zweig. 2002. The Graphical Models Toolkit:
An open source software system for speech and time-series
processing. Proc. IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing.

S. Chen and J. Goodman. 1998. An empirical study of smooth-
ing techniques for language modeling. Technical report,
Computer Science Group, Harvard University.

R. Durbin et al. 1999. Biological Sequence Analysis: Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge
University Press.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3):245–288.

Y. He and S. Young. 2003. A data-driven spoken language un-
derstanding system. In Proc. IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 583–588.

G. Ji and J. Bilmes. 2005. Dialog act tagging using graphical
models. In Proc. IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing, Philadelphia, PA, March.

D. Jurafsky et al. 1997a. Automatic detection of discourse
structure for speech recognition and understanding. In Proc.
IEEE Workshop on Speech Recognition and Understanding.

D. Jurafsky et al. 1997b. Switchboard SWBD-
DAMSL shallow-discourse-function annotation coders man-
ual. Technical Report 97-02, Institute of Cognitive Science,
University of Colorado.

J. Lafferty et al. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML.

K. Lee et al. 1997. Restricted representation of phrase struc-
ture grammar for building a tree annotated corpus of Korean.
Natural Language Engineering, 3(2-3):215–230.

H. Lee et al. 1998. Speech act analysis model of Korean utter-
ances for automatic dialog translation. J. KISS(B) (Software
and Applications), 25(10):1443–1452.

J. Lember and A. Koloydenko. 2004. Adjusted viterbi training.
a proof of concept. In Submission.

K. Ma et al. 2000. Bi-modal sentence structure for language
modeling. Speech Communication, 31(1):51–67.

M. Mast et al. 1996. Automatic classification of dialog acts
with semantic classification trees and polygrams. Connec-
tionist, Statistical and Symbolic Approaches to Learning for
Natural Language Processing, pages 217–229.

N. Morgan and H. Bourlard. 1990. Continuous speech recogni-
tion using multilayer perceptrons with hidden Markov mod-
els. In ICASSP, pages 413–416.

K. Murphy. 2002. Dynamic Bayesian Networks, Represen-
tation, Inference, and Learning. Ph.D. thesis, MIT, Dept.
Computer Science.

R. Neal and G. Hinton. 1998. A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Learning
in Graphical Models, pages 355–368. Dordrecht: Kluwer
Academic Publishers.

R. Pieraccini and E. Levin. 1991. Stochastic representation of
semantic structure for speech understanding. In Eurospeech,
volume 2, pages 383–386.

N. Reithinger and M. Klesen. 1997. Dialogue act classification
using language models. In Eurospeech.

N. Reithinger et al. 1996. Predicting dialogue acts for a speech-
to-speech translation system. In ICLSP, pages 654–657.

J. Searle. 1969. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press.

E. Shriberg et al. 1998. Can prosody aid the automatic classi-
fication of dialog acts in conversational speech? Language
and Speech, 41(3–4):439–487.

E. Shriberg et al. 2004. The ICSI meeting recorder dialog act
(MRDA) corpus. In Proc. of the 5th SIGdial Workshop on
Discourse and Dialogue, pages 97–100.

A. Stolcke et al. 1998. Dialog act modeling for conversa-
tional speech. In Proc. AAAI Spring Symp. on Appl. Machine
Learning to Discourse Processing, pages 98–105.

A. Stolcke. 2002. SRILM – an extensible language modeling
toolkit. In ICLSP, volume 2, pages 901–904.

C. Sutton et al. 2004. Dynamic conditional random fields: fac-
torized probabilistic models for labeling and segmenting se-
quence data. In ICML.

D. Talkin. 1995. A robust algorithm for pitch tracking (rapt).
In W. B. Kleijn and K.K. Paliwal, editors, Speech Coding
and Synthesis, pages 495–518. Elsevier Science.

A. Viterbi. 1967. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Trans.
on Information Theory, 13(2):260–269.

287

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 288–295,
New York, June 2006.c©2006 Association for Computational Linguistics

Exploring Syntactic Features for Relation Extraction using
a Convolution Tree Kernel

Min ZHANG Jie ZHANG Jian SU
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
{mzhang, zhangjie, sujian}@i2r.a-star.edu.sg

Abstract

This paper proposes to use a convolution
kernel over parse trees to model syntactic
structure information for relation extrac-
tion. Our study reveals that the syntactic
structure features embedded in a parse
tree are very effective for relation extrac-
tion and these features can be well cap-
tured by the convolution tree kernel.
Evaluation on the ACE 2003 corpus
shows that the convolution kernel over
parse trees can achieve comparable per-
formance with the previous best-reported
feature-based methods on the 24 ACE re-
lation subtypes. It also shows that our
method significantly outperforms the pre-
vious two dependency tree kernels on the
5 ACE relation major types.

1 Introduction

Relation extraction is a subtask of information ex-
traction that finds various predefined semantic re-
lations, such as location, affiliation, rival, etc.,
between pairs of entities in text. For example, the
sentence “George Bush is the president of the
United States.” conveys the semantic relation
“President” between the entities “George Bush”
(PER) and “the United States” (GPE: a Geo-Political
Entity --- an entity with land and a government (ACE, 2004)).

Prior feature-based methods for this task
(Kambhatla 2004; Zhou et al., 2005) employed a
large amount of diverse linguistic features, varying
from lexical knowledge, entity mention informa-
tion to syntactic parse trees, dependency trees and
semantic features. Since a parse tree contains rich
syntactic structure information, in principle, the

features extracted from a parse tree should contrib-
ute much more to performance improvement for
relation extraction. However it is reported (Zhou et
al., 2005; Kambhatla, 2004) that hierarchical struc-
tured syntactic features contributes less to per-
formance improvement. This may be mainly due to
the fact that the syntactic structure information in a
parse tree is hard to explicitly describe by a vector
of linear features. As an alternative, kernel meth-
ods (Collins and Duffy, 2001) provide an elegant
solution to implicitly explore tree structure features
by directly computing the similarity between two
trees. But to our surprise, the sole two-reported
dependency tree kernels for relation extraction on
the ACE corpus (Bunescu and Mooney, 2005; Cu-
lotta and Sorensen, 2004) showed much lower per-
formance than the feature-based methods. One
may ask: are the syntactic tree features very useful
for relation extraction? Can tree kernel methods
effectively capture the syntactic tree features and
other various features that have been proven useful
in the feature-based methods?

In this paper, we demonstrate the effectiveness
of the syntactic tree features for relation extraction
and study how to capture such features via a con-
volution tree kernel. We also study how to select
the optimal feature space (e.g. the set of sub-trees
to represent relation instances) to optimize the sys-
tem performance. The experimental results show
that the convolution tree kernel plus entity features
achieves slightly better performance than the pre-
vious best-reported feature-based methods. It also
shows that our method significantly outperforms
the two dependency tree kernels (Bunescu and
Mooney, 2005; Culotta and Sorensen, 2004) on the
5 ACE relation types.

The rest of the paper is organized as follows. In
Section 2, we review the previous work. Section 3
discusses our tree kernel based learning algorithm.

288

Section 4 shows the experimental results and com-
pares our work with the related work. We conclude
our work in Section 5.

2 Related Work

The task of relation extraction was introduced as a
part of the Template Element task in MUC6 and
formulated as the Template Relation task in MUC7
(MUC, 1987-1998).

Miller et al. (2000) address the task of relation
extraction from the statistical parsing viewpoint.
They integrate various tasks such as POS tagging,
NE tagging, template extraction and relation ex-
traction into a generative model. Their results es-
sentially depend on the entire full parse tree.

 Kambhatla (2004) employs Maximum Entropy
models to combine diverse lexical, syntactic and
semantic features derived from the text for relation
extraction. Zhou et al. (2005) explore various fea-
tures in relation extraction using SVM. They con-
duct exhaustive experiments to investigate the
incorporation and the individual contribution of
diverse features. They report that chunking infor-
mation contributes to most of the performance im-
provement from the syntactic aspect.

The features used in Kambhatla (2004) and
Zhou et al. (2005) have to be selected and carefully
calibrated manually. Kambhatla (2004) use the
path of non-terminals connecting two mentions in
a parse tree as the parse tree features. Besides,
Zhou et al. (2005) introduce additional chunking
features to enhance the parse tree features. How-
ever, the hierarchical structured information in the
parse trees is not well preserved in their parse tree-
related features.

As an alternative to the feature-based methods,
kernel methods (Haussler, 1999) have been pro-
posed to implicitly explore features in a high di-
mensional space by employing a kernel function to
calculate the similarity between two objects di-
rectly. In particular, the kernel methods could be
very effective at reducing the burden of feature
engineering for structured objects in NLP research
(Culotta and Sorensen, 2004). This is because a
kernel can measure the similarity between two dis-
crete structured objects directly using the original
representation of the objects instead of explicitly
enumerating their features.

Zelenko et al. (2003) develop a tree kernel for
relation extraction. Their tree kernel is recursively

defined in a top-down manner, matching nodes
from roots to leaf nodes. For each pair of matching
nodes, a subsequence kernel on their child nodes is
invoked, which matches either contiguous or
sparse subsequences of node. Culotta and Sorensen
(2004) generalize this kernel to estimate similarity
between dependency trees. One may note that their
tree kernel requires the matchable nodes must be at
the same depth counting from the root node. This
is a strong constraint on the matching of syntax so
it is not surprising that the model has good preci-
sion but very low recall on the ACE corpus (Zhao
and Grishman, 2005). In addition, according to the
top-down node matching mechanism of the kernel,
once a node is not matchable with any node in the
same layer in another tree, all the sub-trees below
this node are discarded even if some of them are
matchable to their counterparts in another tree.

Bunescu and Mooney (2005) propose a shortest
path dependency kernel for relation extraction.
They argue that the information to model a rela-
tionship between entities is typically captured by
the shortest path between the two entities in the
dependency graph. Their kernel is very straight-
forward. It just sums up the number of common
word classes at each position in the two paths. We
notice that one issue of this kernel is that they limit
the two paths must have the same length, otherwise
the kernel similarity score is zero. Therefore, al-
though this kernel shows non-trivial performance
improvement than that of Culotta and Sorensen
(2004), the constraint makes the two dependency
kernels share the similar behavior: good precision
but much lower recall on the ACE corpus.

Zhao and Grishman (2005) define a feature-
based composite kernel to integrate diverse fea-
tures. Their kernel displays very good performance
on the 2004 version of ACE corpus. Since this is a
feature-based kernel, all the features used in the
kernel have to be explicitly enumerated. Similar
with the feature-based method, they also represent
the tree feature as a link path between two entities.
Therefore, we wonder whether their performance
improvement is mainly due to the explicitly incor-
poration of diverse linguistic features instead of the
kernel method itself.

The above discussion suggests that the syntactic
features in a parse tree may not be fully utilized in
the previous work, whether feature-based or ker-
nel-based. We believe that the syntactic tree fea-
tures could play a more important role than that

289

reported in the previous work. Since convolution
kernels aim to capture structural information in
terms of sub-structures, which providing a viable
alternative to flat features, in this paper, we pro-
pose to use a convolution tree kernel to explore
syntactic features for relation extraction. To our
knowledge, convolution kernels have not been ex-
plored for relation extraction1.

3 Tree Kernels for Relation Extraction

In this section, we discuss the convolution tree
kernel associated with different relation feature
spaces. In Subsection 3.1, we define seven differ-
ent relation feature spaces over parse trees. In Sub-
section 3.2, we introduce a convolution tree kernel
for relation extraction. Finally we compare our
method with the previous work in Subsection 3.3.

3.1 Relation Feature Spaces

In order to study which relation feature spaces (i.e.,
which portion of parse trees) are optimal for rela-
tion extraction, we define seven different relation
feature spaces as follows (as shown in Figure 1):

(1) Minimum Complete Tree (MCT):
It is the complete sub-tree rooted by the node of

the nearest common ancestor of the two entities
under consideration.

(2) Path-enclosed Tree (PT):
It is the smallest common sub-tree including the

two entities. In other words, the sub-tree is en-
closed by the shortest path linking the two entities
in the parse tree (this path is also typically used as
the path tree features in the feature-based meth-
ods).

(3) Chunking Tree (CT):
It is the base phrase list extracted from the PT.

We prune out all the internal structures of the PT
and only keep the root node and the base phrase
list for generating the chunking tree.

1 Convolution kernels were proposed as a concept of kernels
for a discrete structure by Haussler (1999) in machine learning
study. This framework defines a kernel between input objects
by applying convolution “sub-kernels” that are the kernels for
the decompositions (parts) of the objects. Convolution kernels
are abstract concepts, and the instances of them are deter-
mined by the definition of “sub-kernels”. The Tree Kernel
(Collins and Duffy, 2001), String Subsequence Kernel (SSK)
(Lodhi et al., 2002) and Graph Kernel (HDAG Kernel) (Su-
zuki et al., 2003) are examples of convolution kernels in-
stances in the NLP field.

(4) Context-Sensitive Path Tree (CPT):
It is the PT extending with the 1st left sibling of

the node of entity 1 and the 1st right sibling of the
node of entity 2. If the sibling is unavailable, then
we move to the parent of current node and repeat
the same process until the sibling is available or
the root is reached.
(5) Context-Sensitive Chunking Tree (CCT):

It is the CT extending with the 1st left sibling of
the node of entity 1 and the 1st right sibling of the
node of entity 2. If the sibling is unavailable, the
same process as generating the CPT is applied.
Then we do a further pruning process to guarantee
that the context structures of the CCT is still a list
of base phrases.
(6) Flattened PT (FPT):

We define two criteria to flatten the PT in order
to generate the Flattened Parse tree: if the in and
out arcs of a non-terminal node (except POS node)
are both single, the node is to be removed; if a
node has the same phrase type with its father node,
the node is also to be removed.
(7) Flattened CPT (FCPT):

We use the above two criteria to flatten the CPT
tree to generate the Flattened CPT.

Figure 1 in the next page illustrates the different
sub-tree structures for a relation instance in sen-
tence “Akyetsu testified he was powerless to stop
the merger of an estimated 2000 ethnic Tutsi's in
the district of Tawba.”. The relation instance is an
example excerpted from the ACE corpus, where an
ACE-defined relation “AT.LOCATED” exists be-
tween the entities “Tutsi's” (PER) and “district”
(GPE).

We use Charniak’s parser (Charniak, 2001) to
parse the example sentence. Due to space limita-
tion, we do not show the whole parse tree of the
entire sentence here. Tree T1 in Figure 1 is the
MCT of the relation instance example, where the
sub-structure circled by a dashed line is the PT.
For clarity, we re-draw the PT as in T2. The only
difference between the MCT and the PT lies in
that the MCT does not allow the partial production
rules. For instance, the most-left two-layer sub-tree
[NP [DT … E1-O-PER]] in T1 is broken apart in
T2. By comparing the performance of T1 and T2, we
can test whether the sub-structures with partial
production rules as in T2 will decrease perform-
ance. T3 is the CT. By comparing the performance
of T2 and T3, we want to study whether the chunk-
ing information or the parse tree is more effective

290

for relation extraction. T4 is the CPT, where the
two structures circled by dashed lines are the so-
called context structures. T5 is the CCT, where the
additional context structures are also circled by
dashed lines. We want to study if the limited con-
text information in the CPT and the CCT can help
boost performance. Moreover, we illustrate the
other two flattened trees in T6 and T7. The two cir-
cled nodes in T2 are removed in the flattened trees.
We want to study if the eliminated small structures
are noisy features for relation extraction.

3.2 The Convolution Tree Kernel

Given the relation instances defined in the previous
section, we use the same convolution tree kernel as
the parse tree kernel (Collins and Duffy, 2001) and
the semantic kernel (Moschitti, 2004). Generally,
we can represent a parse tree T by a vector of inte-
ger counts of each sub-tree type (regardless of its
ancestors):

()Tφ = (# of sub-trees of type 1, …, # of sub-
trees of type i, …, # of sub-trees of type n)

This results in a very high dimensionality since the
number of different sub-trees is exponential in its
size. Thus it is computational infeasible to directly
use the feature vector ()Tφ . To solve the compu-

T1): MCT
T2): PT

T3): CT T4):CPT

T5):CCT

T6):FPT

T7):FCPT

Figure 1. Relation Feature Spaces of the Example Sentence “…… to stop the merger of an estimated
2000 ethnic Tutsi's in the district of Tawba.”, where the phrase type “E1-O-PER” denotes
that the current phrase is the 1st entity, its entity type is “PERSON” and its mention level is
“NOMIAL”, and likewise for the other two phrase types “E2-O-GPE” and “E-N-GPE”.

291

tational issue, we introduce the tree kernel function
which is able to calculate the dot product between
the above high dimensional vectors efficiently. The
kernel function is defined as follows:

1 1 2 2

1 2 1 2 1 2

1 2

(,) (), () ()[], ()[]

() ()
i

i in N n N i

K T T T T T i T i

I n I n

φ φ φ φ

∈ ∈

=< >=

= ∗

∑
∑ ∑ ∑

where N1 and N2 are the sets of all nodes in trees T1
and T2, respectively, and Ii(n) is the indicator func-
tion that is 1 iff a sub-tree of type i occurs with
root at node n and zero otherwise. Collins and
Duffy (2002) show that 1 2(,)K T T is an instance of
convolution kernels over tree structures, and which
can be computed in 1 2(| | | |)O N N× by the follow-
ing recursive definitions (Let 1 2(,)n n∆ =

1 2() ()i ii
I n I n∗∑):

(1) if 1n and 2n do not have the same syntactic tag
or their children are different then 1 2(,) 0n n∆ = ;
(2) else if their children are leaves (POS tags), then

1 2(,) 1n n λ∆ = × ;

(3) else
1()

1 2 1 2
1

(,) (1 ((,), (,)))
nc n

j

n n ch n j ch n jλ
=

∆ = +∆∏ ,

where 1()nc n is the number of the children of 1n ,
(,)ch n j is the jth child of node n and

λ (0 1λ< <) is the decay factor in order to make
the kernel value less variable with respect to the
tree sizes.

3.3 Comparison with Previous Work

It would be interesting to review the differences
between our method and the feature-based meth-
ods. The basic difference between them lies in the
relation instance representation and the similarity
calculation mechanism. A relation instance in our
method is represented as a parse tree while it is
represented as a vector of features in the feature-
based methods. Our method estimates the similar-
ity between two relation instances by only count-
ing the number of sub-structures that are in
common while the feature methods calculate the
dot-product between the feature vectors directly.
The main difference between them is the different
feature spaces. By the kernel method, we implicitly
represent a parse tree by a vector of integer counts
of each sub-structure type. That is to say, we con-

sider the entire sub-structure types and their occur-
ring frequencies. In this way, on the one hand, the
parse tree-related features in the flat feature set2
are embedded in the feature space of our method:
“Base Phrase Chunking” and “Parse Tree” fea-
tures explicitly appear as substructures of a parse
tree. A few of entity-related features in the flat fea-
ture set are also captured by our feature space: “en-
tity type” and “mention level” explicitly appear as
phrase types in a parse tree. On the other hand, the
other features in the flat feature set, such as “word
features”, “bigram word features”, “overlap” and
“dependency tree” are not contained in our feature
space. From the syntactic viewpoint, the tree repre-
sentation in our feature space is more robust than
“Parse Tree Path” feature in the flat feature set
since the path feature is very sensitive to the small
changes of parse trees (Moschitti, 2004) and it also
does not maintain the hierarchical information of a
parse tree. Due to the extensive exploration of syn-
tactic features by kernel, our method is expected to
show better performance than the previous feature-
based methods.

It is also worth comparing our method with the
previous relation kernels. Since our method only
counts the occurrence of each sub-tree without
considering its ancestors, our method is not limited
by the constraints in Culotta and Sorensen (2004)
and that in Bunescu and Mooney (2005) as dis-
cussed in Section 2. Compared with Zhao and
Grishman’s kernel, our method directly uses the
original representation of a parse tree while they
flatten a parse tree into a link and a path. Given the
above improvements, our method is expected to
outperform the previous relation kernels.

4 Experiments

The aim of our experiment is to verify the effec-
tiveness of using richer syntactic structures and the
convolution tree kernel for relation extraction.

4.1 Experimental Setting

Corpus: we use the official ACE corpus for 2003
evaluation from LDC as our test corpus. The ACE
corpus is gathered from various newspaper, news-
wire and broadcasts. The same as previous work

2 For the convenience of discussion, without losing generality,
we call the features used in Zhou et al. (2005) and Kambhatla
(2004) flat feature set.

292

(Zhou et al., 2005), our experiments are carried out
on explicit relations due to the poor inter-annotator
agreement in annotation of implicit relations and
their limited numbers. The training set consists of
674 annotated text documents and 9683 relation
instances. The test set consists of 97 documents
and 1386 relation instances. The 2003 evaluation
defined 5 types of entities: Persons, Organizations,
Locations, Facilities and GPE. Each mention of an
entity is associated with a mention type: proper
name, nominal or pronoun. They further defined 5
major relation types and 24 subtypes: AT (Base-In,
Located…), NEAR (Relative-Location), PART
(Part-of, Subsidiary …), ROLE (Member, Owner
…) and SOCIAL (Associate, Parent…). As previ-
ous work, we explicitly model the argument order
of the two mentions involved. We thus model rela-
tion extraction as a multi-class classification prob-
lem with 10 classes on the major types (2 for each
relation major type and a “NONE” class for non-
relation (except 1 symmetric type)) and 43 classes
on the subtypes (2 for each relation subtype and a
“NONE” class for non-relation (except 6 symmet-
ric subtypes)). In this paper, we only measure the
performance of relation extraction models on
“true” mentions with “true” chaining of corefer-
ence (i.e. as annotated by LDC annotators).

Classifier: we select SVM as the classifier used in
this paper since SVM can naturally work with ker-
nel methods and it also represents the state-of-the-
art machine learning algorithm. We adopt the one
vs. others strategy and select the one with largest
margin as the final answer. The training parameters
are chosen using cross-validation (C=2.4 (SVM);
λ =0.4(tree kernel)). In our implementation, we
use the binary SVMLight developed by Joachims
(1998) and Tree Kernel Toolkits developed by
Moschitti (2004).

Kernel Normalization: since the size of a parse
tree is not constant, we normalize 1 2(,)K T T by divid-

ing it by 1 1 2 2(,) (,)K T T K T T• .

Evaluation Method: we parse the sentence using
Charniak parser and iterate over all pair of men-
tions occurring in the same sentence to generate
potential instances. We find the negative samples
are 10 times more than the positive samples. Thus
data imbalance and sparseness are potential prob-
lems. Recall (R), Precision (P) and F-measure (F)
are adopted as the performance measure.

4.2 Experimental Results

In order to study the impact of the sole syntactic
structure information embedded in parse trees on
relation extraction, we remove the entity informa-
tion from parse trees by replacing the entity-related
phrase type (“E1-O-PER”, etc., in Figure 1) with
“NP”. Then we carry out a couple of preliminary
experiments on the test set using parse trees re-
gardless of entity information.

Feature Spaces P R F
Minimum Complete Tree 77.45 38.39 51.34
Path-enclosed Tree (PT) 72.77 53.80 61.87
Chunking Tree (CT) 75.18 44.75 56.11
Context-Sensitive PT(CPT) 77.87 42.80 55.23
Context-Sensitive CT 78.33 40.84 53.69
Flattened PT 76.86 45.69 57.31
Flattened CPT 80.60 41.20 54.53

Table 1. Performance of seven relation feature
spaces over the 5 ACE major types using parse
tree information only

Table 1 reports the performance of our defined
seven relation feature spaces over the 5 ACE major
types using parse tree information regardless of
any entity information. This preliminary experi-
ments show that:

• Overall the tree kernel over different relation
feature spaces is effective for relation extraction
since we use the parse tree information only. We
will report the detailed performance comparison
results between our method and previous work
later in this section.

• Using the PTs achieves the best performance.
This means the portion of a parse tree enclosed
by the shortest path between entities can model
relations better than other sub-trees.

• Using the MCTs get the worst performance.
This is because the MCTs introduce too much
left and right context information, which may be
noisy features, as shown in Figure 1. It suggests
that only allowing complete (not partial) produc-
tion rules in the MCTs does harm performance.

• The performance of using CTs drops by 5 in F-
measure compared with that of using the PTs.
This suggests that the middle and high-level
structures beyond chunking is also very useful
for relation extraction.

293

• The context-sensitive trees show lower perform-
ance than the corresponding original PTs and
CTs. In some cases (e.g. in sentence “the merge
of company A and company B….”, “merge” is
the context word), the context information is
helpful. However the effective scope of context
is hard to determine.

• The two flattened trees perform worse than the
original trees, but better than the corresponding
context-sensitive trees. This suggests that the
removed structures by the flattened trees con-
tribute non-trivial performance improvement.

In the above experiments, the path-enclosed tree
displays the best performance among the seven
feature spaces when using the parse tree structural
information only. In the following incremental ex-
periments, we incorporate more features into the
path-enclosed parse trees and it shows significant
performance improvement.

Path-enclosed Tree (PT) P R F

Parse tree structure in-
formation only

72.77 53.80 61.87

+Entity information 76.14 62.85 68.86
+Semantic features 76.32 62.99 69.02

Table 2. Performance of Path-enclosed Trees
with different setups over the 5 ACE major types

Table 2 reports the performance over the 5 ACE
major types using Path-enclosed trees enhanced
with more features in nodes. The 1st row is the
baseline performance using structural information
only. We then integrate entity information, includ-
ing Entity type and Mention level features, into the
corresponding nodes as shown in Figure 1. The 2nd
row in Table 2 reports the performance of this
setup. Besides the entity information, we further
incorporate the semantic features used in Zhou et
al. (2005) into the corresponding leaf nodes. The
3rd row in Table 2 reports the performance of this
setup. Please note that in the 2nd and 3rd setups, we
still use the same tree kernel function with slight
modification on the rule (2) in calculating

1 2(,)n n∆ (see subsection 3.2) to make it consider
more features associated with each individual
node: 1 2(,) n n feature weight λ∆ = × . From Table
2, we can see that the basic feature of entity infor-
mation is quite useful, which largely boosts per-
formance by 7 in F-measure. The final

performance of our tree kernel method for relation
extraction is 76.32/62.99/69.02 in preci-
sion/recall/F-measure over the 5 ACE major types.

Methods P R F
Ours: convolution kernel
over parse trees

76.32
(64.6)

62.99
(50.76)

69.02
(56.83)

Kambhatla (2004):
feature-based ME

-
(63.5)

-
(45.2)

-
(52.8)

Zhou et al. (2005):
feature-based SVM

77.2
(63.1)

60.7
(49.5)

68.0
(55.5)

Culotta and Sorensen
(2004): dependency kernel

67.1
(-)

35.0
(-)

45.8
(-)

Bunescu and Mooney
(2005): shortest path de-
pendency kernel

65.5
(-)

43.8
(-)

52.5
(-)

Table 3. Performance comparison, the numbers in
parentheses report the performance over the 24
ACE subtypes while the numbers outside paren-
theses is for the 5 ACE major types

Table 3 compares the performance of different
methods on the ACE corpus3. It shows that our
method achieves the best-reported performance on
both the 24 ACE subtypes and the 5 ACE major
types. It also shows that our tree kernel method
significantly outperform the previous two depend-
ency kernel algorithms by 16 in F-measure on the
5 ACE relation types4. This may be due to two rea-
sons: one reason is that the dependency tree lacks
the hierarchical syntactic information, and another
reason is due to the two constraints of the two de-
pendency kernels as discussed in Section 2 and
Subsection 3.3. The performance improvement by
our method suggests that the convolution tree ker-
nel can explore the syntactic features (e.g. parse
tree structures and entity information) very effec-
tively and the syntactic features are also particu-

3 Zhao and Grishman (2005) also evaluated their algorithm on
the ACE corpus and got good performance. But their experi-
mental data is for 2004 evaluation, which defined 7 entity
types with 44 entity subtypes, and 7 relation major types with
27 subtypes, so we are not ready to compare with each other.
4 Bunescu and Mooney (2005) used the ACE 2002 corpus,
including 422 documents, which is known to have many in-
consistencies than the 2003 version. Culotta and Sorensen
(2004) used an ACE corpus including about 800 documents,
and they did not specify the corpus version. Since the testing
corpora are in different sizes and versions, strictly speaking, it
is not ready to compare these methods exactly and fairly. Thus
Table 3 is only for reference purpose. We just hope that we
can get a few clues from this table.

294

larly effective for the task of relation extraction. In
addition, we observe from Table 1 that the feature
space selection (the effective portion of a parse
tree) is also critical to relation extraction.

Error Type # of error instance
False Negative 414
False Positive 173
Cross Type 97

Table 4. Error Distribution

Finally, Table 4 reports the error distribution in
the case of the 3rd experiment in Table 2. It shows
that 85.9% (587/684) of the errors result from rela-
tion detection and only 14.1% (97/684) of the er-
rors result from relation characterization. This is
mainly due to the imbalance of the posi-
tive/negative instances and the sparseness of some
relation types on the ACE corpus.

5 Conclusion and Future Work

In this paper, we explore the syntactic features us-
ing convolution tree kernels for relation extraction.
We conclude that: 1) the relations between entities
can be well represented by parse trees with care-
fully calibrating effective portions of parse trees;
2) the syntactic features embedded in a parse tree
are particularly effective for relation extraction; 3)
the convolution tree kernel can effectively capture
the syntactic features for relation extraction.

The most immediate extension of our work is to
improve the accuracy of relation detection. We
may adopt a two-step method (Culotta and Soren-
sen, 2004) to separately model the relation detec-
tion and characterization issues. We may integrate
more features (such as head words or WordNet
semantics) into nodes of parse trees. We can also
benefit from the learning algorithm to study how to
solve the data imbalance and sparseness issues
from the learning algorithm viewpoint. In the fu-
ture, we would like to test our algorithm on the
other version of the ACE corpus and to develop
fast algorithm (Vishwanathan and Smola, 2002) to
speed up the training and testing process of convo-
lution kernels.

Acknowledgements: We would like to thank Dr.
Alessandro Moschitti for his great help in using his
Tree Kernel Toolkits and fine-tuning the system.
We also would like to thank the three anonymous
reviewers for their invaluable suggestions.

References
ACE. 2004. The Automatic Content Extraction (ACE)

Projects. http://www.ldc.upenn.edu/Projects/ACE/

Bunescu R. C. and Mooney R. J. 2005. A Shortest Path
Dependency Kernel for Relation Extraction.
EMNLP-2005

Charniak E. 2001. Immediate-head Parsing for Lan-
guage Models. ACL-2001

Collins M. and Duffy N. 2001. Convolution Kernels for
Natural Language. NIPS-2001

Culotta A. and Sorensen J. 2004. Dependency Tree Ker-
nel for Relation Extraction. ACL-2004

Haussler D. 1999. Convolution Kernels on Discrete
Structures. Technical Report UCS-CRL-99-10, Uni-
versity of California, Santa Cruz.

Joachims T. 1998. Text Categorization with Support
Vecor Machine: learning with many relevant fea-
tures. ECML-1998

Kambhatla Nanda. 2004. Combining lexical, syntactic
and semantic features with Maximum Entropy mod-
els for extracting relations. ACL-2004 (poster)

Lodhi H., Saunders C., Shawe-Taylor J., Cristianini N.
and Watkins C. 2002. Text classification using string
kernel. Journal of Machine Learning Research,
2002(2):419-444

Miller S., Fox H., Ramshaw L. and Weischedel R. 2000.
A novel use of statistical parsing to extract informa-
tion from text. NAACL-2000

Moschitti Alessandro. 2004. A Study on Convolution
Kernels for Shallow Semantic Parsing. ACL-2004

MUC. 1987-1998. The nist MUC website: http:
//www.itl.nist.gov/iaui/894.02/related_projects/muc/

Suzuki J., Hirao T., Sasaki Y. and Maeda E. 2003. Hi-
erarchical Directed Acyclic Graph Kernel: Methods
for Structured Natural Language Data. ACL-2003

Vishwanathan S.V.N. and Smola A.J. 2002. Fast ker-
nels for String and Tree Matching. NIPS-2002

Zelenko D., Aone C. and Richardella A. 2003. Kernel
Methods for Relation Extraction. Journal of Machine
Learning Research. 2003(2):1083-1106

Zhao Shubin and Grishman Ralph. 2005. Extracting
Relations with Integrated Information Using Kernel
Methods. ACL-2005

Zhou Guodong, Su Jian, Zhang Jie and Zhang Min.
2005. Exploring Various Knowledge in Relation Ex-
traction. ACL-2005

295

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 296–303,
New York, June 2006.c©2006 Association for Computational Linguistics

Integrating Probabilistic Extraction Models and Data Mining
to Discover Relations and Patterns in Text

Aron Culotta

University of Massachusetts

Amherst, MA 01003

culotta@cs.umass.edu

Andrew McCallum

University of Massachusetts

Amherst, MA 01003

mccallum@cs.umass.edu

Jonathan Betz

Google, Inc.

New York, NY 10018

jtb@google.com

Abstract

In order for relation extraction systems

to obtain human-level performance, they

must be able to incorporate relational pat-

terns inherent in the data (for example,

that one’s sister is likely one’s mother’s

daughter, or that children are likely to

attend the same college as their par-

ents). Hand-coding such knowledge can

be time-consuming and inadequate. Addi-

tionally, there may exist many interesting,

unknown relational patterns that both im-

prove extraction performance and provide

insight into text. We describe a probabilis-

tic extraction model that provides mutual

benefits to both “top-down” relational pat-

tern discovery and “bottom-up” relation

extraction.

1 Introduction

Consider these four sentences:

1. George W. Bush’s father is George H. W. Bush.

2. George H. W. Bush’s sister is Nancy Bush Ellis.

3. Nancy Bush Ellis’s son is John Prescott Ellis.

4. John Prescott Ellis analyzed George W. Bush’s

campaign.

We would like to build an automated system to

extract the set of relations shown in Figure 1.

cousin

Nancy Ellis Bush
sibling

George HW Bush

George W Bush

son

John Prescott Ellis

son

Figure 1: Bush family tree

State of the art extraction algorithms may be able

to detect the son and sibling relations from local lan-

guage clues. However, the cousin relation is only

implied by the text and requires additional knowl-

edge to be extracted. Specifically, the system re-

quires knowledge of familial relation patterns.

One could imagine a system that accepts such

rules as input (e.g. cousin = father’s sister’s son)

and applies them to extract implicit relations. How-

ever, exhaustively enumerating all possible rules can

be tedious and incomplete. More importantly, many

relational patterns unknown a priori may both im-

prove extraction accuracy and uncover informative

trends in the data (e.g. that children often adopt the

religion of their parents). Indeed, the goal of data

mining is to learn such patterns from database reg-

ularities. Since these patterns will not always hold,

we would like to handle them probabilistically.

We propose an integrated supervised machine

learning method that learns both contextual and re-

lational patterns to extract relations. In particular,

we construct a linear-chain conditional random field

(Lafferty et al., 2001; Sutton and McCallum, 2006)

to extract relations from biographical texts while si-

multaneously discovering interesting relational pat-

terns that improve extraction performance.

296

2 Related Work

This work can be viewed as a step toward the in-

tegration of information extraction and data mining

technology, a direction of growing interest. Nahm

and Mooney (2000) present a system that mines as-

sociation rules from a database constructed from au-

tomatically extracted data, then applies these learned

rules to improve data field recall without revisiting

the text. Our work attempts to more tightly inte-

grate the extraction and mining tasks by learning

relational patterns that can be included probabilis-

tically into extraction to improve its accuracy; also,

our work focuses on mining from relational graphs,

rather than single-table databases.

McCallum and Jensen (2003) argue the theoreti-

cal benefits of an integrated probabilistic model for

extraction and mining, but do not construct such a

system. Our work is a step in the direction of their

proposal, using an inference procedure based on a

closed-loop iteration between extraction and rela-

tional pattern discovery.

Most other work in this area mines raw text, rather

than a database automatically populated via extrac-

tion (Hearst, 1999; Craven et al., 1998).

This work can also be viewed as part of a trend

to perform joint inference across multiple language

processing tasks (Miller et al., 2000; Roth and tau

Yih, 2002; Sutton and McCallum, 2004).

Finally, using relational paths between entities is

also examined in (Richards and Mooney, 1992) to

escape local maxima in a first-order learning system.

3 Relation Extraction as Sequence

Labeling

Relation extraction is the task of discovering seman-

tic connections between entities. In text, this usu-

ally amounts to examining pairs of entities in a doc-

ument and determining (from local language cues)

whether a relation exists between them. Common

approaches to this problem include pattern match-

ing (Brin, 1998; Agichtein and Gravano, 2000),

kernel methods (Zelenko et al., 2003; Culotta and

Sorensen, 2004; Bunescu and Mooney, 2006), lo-

gistic regression (Kambhatla, 2004), and augmented

parsing (Miller et al., 2000).

The pairwise classification approach of kernel

methods and logistic regression is commonly a two-

phase method: first the entities in a document are

identified, then a relation type is predicted for each

pair of entities. This approach presents at least

two difficulties: (1) enumerating all pairs of enti-

ties, even when restricted to pairs within a sentence,

results in a low density of positive relation exam-

ples; and (2) errors in the entity recognition phase

can propagate to errors in the relation classification

stage. As an example of the latter difficulty, if a per-

son is mislabeled as a company, then the relation

classifier will be unsuccessful in finding a brother

relation, despite local evidence.

We avoid these difficulties by restricting our in-

vestigation to biographical texts, e.g. encyclopedia

articles. A biographical text mostly discusses one

entity, which we refer to as the principal entity. We

refer to other mentioned entities as secondary enti-

ties. For each secondary entity, our goal is to predict

what relation, if any, it has to the principal entity.

This formulation allows us to treat relation ex-

traction as a sequence labeling task such as named-

entity recognition or part-of-speech tagging, and we

can now apply models that have been successful on

those tasks. By anchoring one argument of relations

to be the principal entity, we alleviate the difficulty

of enumerating all pairs of entities in a document.

By converting to a sequence labeling task, we fold

the entity recognition step into the relation extrac-

tion task. There is no initial pass to label each entity

as a person or company. Instead, an entity’s label is

its relation to the principal entity. Below is an exam-

ple of a labeled article:

George W. Bush

George is the son of George H. W. Bush
︸ ︷︷ ︸

father
and Barbara Bush

︸ ︷︷ ︸

mother

.

Additionally, by using a sequence model we can

capture the dependence between adjacent labels. For

example, in our data it is common to see phrases

such as “son of the Republican president George H.

W. Bush” for which the labels politicalParty, jobTi-

tle, and father occur consecutively. Sequence mod-

els are specifically designed to handle these kinds

of dependencies. We now discuss the details of our

extraction model.

297

3.1 Conditional Random Fields

We build a model to extract relations using linear-

chain conditional random fields (CRFs) (Lafferty

et al., 2001; Sutton and McCallum, 2006). CRFs

are undirected graphical models (i.e. Markov net-

works) that are discriminatively-trained to maximize

the conditional probability of a set of output vari-

ables y given a set of input variables x. This condi-

tional distribution has the form

pΛ(y|x) =
1

Zx

∏

c∈C

φc(yc,xc; Λ) (1)

where φ are potential functions parameterized by Λ
and Zx =

∑

y

∏

c∈C φ(yc,xc) is a normalization

factor. Assuming φc factorizes as a log-linear com-

bination of arbitrary features computed over clique

c, then φc(yc,xc; Λ) = exp (
∑

k λkfk(yc,xc)),
where f is a set of arbitrary feature functions over

the input, each of which has an associate model

parameter λk. Parameters Λ = {λk} are a set

of real-valued weights typically estimated from la-

beled training data by maximizing the data likeli-

hood function using gradient ascent.

In these experiments, we make a first-order

Markov assumption on the dependencies among y,

resulting in a linear-chain CRF.

4 Relational Patterns

The modeling flexibility of CRFs permits the fea-

ture functions to be complex, overlapping features of

the input without requiring additional assumptions

on their inter-dependencies. In addition to common

language features (e.g. neighboring words and syn-

tactic information), in this work we explore features

that cull relational patterns from a database of enti-

ties.

As described in the introductory example (Figure

1), context alone is often insufficient to extract re-

lations. Even in simpler examples, it may be the

case that modeling relational patterns can improve

extraction accuracy.

To capture this evidence, we compute features

from a database to indicate relational connections

between entities, similar to the relational path-

finding performed in Richards and Mooney (1992).

Imagine that the four sentence example about the

Bush family is included in a training set, and the en-

cousin
father son

X Y

sibling

Figure 2: A feature template for the cousin relation.

tities are labeled with their correct relations. In this

case, the cousin relation in sentence 4 would also be

labeled. From this data, we can create a relational

database that contains the relations in Figure 1.

Assume sentence 4 comes from a biography about

John Ellis. We calculate a feature for the entity

George W. Bush that indicates the path from John

Ellis to George W. Bush in the database, annotat-

ing each edge in the path with its relation label; i.e.

father-sibling-son. By abstracting away the actual

entity names, we have created a cousin template fea-

ture, as shown in Figure 2.

By adding these relational paths as features to

the model, we can learn interesting relational pat-

terns that may have low precision (e.g. “people are

likely to be friends with their classmates”) without

hampering extraction performance. This is in con-

trast to the system described in Nahm and Mooney

(2000), in which patterns are induced from a noisy

database and then applied directly to extraction. In

our system, since each learned path has an associ-

ated weight, it is simply another piece of evidence

to help the extractor. Low precision patterns may

have lower weights than high precision patterns, but

they will still influence the extractor.

A nice property of this approach is that examin-

ing highly weighted patterns can provide insight into

regularities of the data.

4.1 Feature Induction

During CRF training, weights are learned for each

relational pattern. Patterns that increase extraction

performance will receive higher weights, while pat-

terns that have little effect on performance will re-

ceive low weights.

We can explore the space of possible conjunctions

of these patterns using feature induction for CRFs,

as described in McCallum (2003). Search through

the large space of possible conjunctions is guided

298

by adding features that are estimated to increase the

likelihood function most.

When feature induction is used with relational

patterns, we can view this as a type of data mining,

in which patterns are created based on their influ-

ence on an extraction model. This is similar to work

by Dehaspe (1997), where inductive logic program-

ming is embedded as a feature induction technique

for a maximum entropy classifier. Our work restricts

induced features to conjunctions of base features,

rather than using first-order clauses. However, the

patterns we learn are based on information extracted

from natural language.

4.2 Iterative Database Construction

The top-down knowledge provided by data min-

ing algorithms has the potential to improve the per-

formance of information extraction systems. Con-

versely, bottom-up knowledge generated by ex-

traction systems can be used to populate a large

database, from which more top-down knowledge

can be discovered. By carefully communicating the

uncertainty between these systems, we hope to iter-

atively expand a knowledge base, while minimizing

fallacious inferences.

In this work, the top-down knowledge consists of

relational patterns describing the database path be-

tween entities in text. The uncertainty of this knowl-

edge is handled by associating a real-valued CRF

weight with each pattern, which increases when the

pattern is predictive of other relations. Thus, the ex-

traction model can adapt to noise in these patterns.

Since we also desire to extract relations between

entities that appear in text but not in the database, we

first populate the database with relations extracted

by a CRF that does not use relational patterns. We

then do further extraction with a CRF that incorpo-

rates the relational patterns found in this automati-

cally generated database. In this manner, we create a

closed-loop system that alternates between bottom-

up extraction and top-down pattern discovery. This

approach can be viewed as a type of alternating opti-

mization, with analogies to formal methods such as

expectation-maximization.

The uncertainty in the bottom-up extraction step

is handled by estimating the confidence of each ex-

traction and pruning the database to remove en-

tries with low confidence. One of the benefits of

a probabilistic extraction model is that confidence

estimates can be straight-forwardly obtained. Cu-

lotta and McCallum (2004) describe the constrained

forward-backward algorithm to efficiently estimate

the conditional probability that a segment of text is

correctly extracted by a CRF.

Using this algorithm, we associate a confidence

value with each relation extracted by the CRF. This

confidence value is then used to limit the noise

introduced by incorrect extractions. This differs

from Nahm and Mooney (2000) and Mooney and

Bunescu (2005), in which standard decision tree rule

learners are applied to the unfiltered output of ex-

traction.

4.3 Extracting Implicit Relations

An implicit relation is one that does not have direct

contextual evidence, for example the cousin relation

in our initial example. Implicit relations generally

require some background knowledge to be detected,

such as relational patterns (e.g. rules about familial

relations). These are the sorts of relations on which

current extraction models perform most poorly.

Notably, these are exactly the sorts of relations

that are likely to have the biggest impact on informa-

tion access. A system that can accurately discover

knowledge that is only implied by the text will dra-

matically increase the amount of information a user

can uncover, effectively providing access to the im-

plications of a corpus.

We argue that integrating top-down and bottom-

up knowledge discovery algorithms discussed in

Section 4.2 can enable this technology. By per-

forming pattern discovery in conjunction with infor-

mation extraction, we can collate facts from multi-

ple sources to infer new relations. This is an ex-

ample of cross-document fusion or cross-document

information extraction, a growing area of research

transforming raw extractions into usable knowledge

bases (Mann and Yarowsky, 2005; Masterson and

Kushmerik, 2003).

5 Experiments

5.1 Data

We sampled 1127 paragraphs from 271 articles from

the online encyclopedia Wikipedia1 and labeled a to-

1http://www.wikipedia.org

299

George W. Bush

Dick Cheney

underling

Yale

education

Republican

partyPresident

jobTitle

George H. W. Bush

son

underlingHarken Energy

executive

education party

jobTitle

Prescott Bush

son

education

Bill Clinton

rival

Bob Dole

rival

education

Democrat

party

jobTitle

Hillary Clinton

husband

education

party

Halliburton

executiveeducation

Pres Medal of Freedom

awardparty

Nelson Rockefeller

award

Elizabeth Dole

wife

WWII

participant

awardparty

party

Martin Luther King, Jr.

award

Figure 3: An example of the connectivity of the entities in the data.

birthday birth year death day

death year nationality visited

birth place death place religion

job title member of cousin

friend discovered education

employer associate opus

participant influence award

brother wife supported idea

executive of political party supported person

founder son father

rival underling superior

role inventor husband

grandfather sister brother-in-law

nephew mother daughter

granddaughter grandson great-grandson

grandmother rival organization owner of

uncle descendant ancestor

great-grandfather aunt

Table 1: The set of labeled relations.

tal of 4701 relation instances. In addition to a large

set of person-to-person relations, we also included

links between people and organizations, as well as

biographical facts such as birthday and jobTitle. In

all, there are 53 labels in the training data (Table 1).

We sample articles that result in a high density

of interesting relations by choosing, for example, a

collection of related family members and associates.

Figure 3 shows a small example of the type of con-

nections in the data. We then split the data into train-

ing and testing sets (70-30 split), attempting to sep-

arate the entities into connected components. For

example, all Bush family members were placed in

the training set, while all Kennedy family members

were placed in the testing set. While there are still

occasional paths connecting entities in the training

set to those in the test set, we believe this method-

ology reflects a typical real-world scenario in which

we would like to extend an existing database to a

different, but slightly related, domain.

The structure of the Wikipedia articles somewhat

simplifies the extraction task, since important enti-

ties are hyper-linked within the text. This provides

an automated way to detect entities in the text, al-

though these entities are not classified by type. This

also allows us to easily construct database queries,

since we can reason at the entity level, rather than

the token level. (Although, see Sarawagi and Cohen

(2004) for extensions of CRFs that model the en-

tity length distribution.) The results we report here

are constrained to predict relations only for hyper-

linked entities. Note that despite this property, we

still desire to use a sequence model to capture the

dependencies between adjacent labels.

We use the MALLET CRF implementation (Mc-

Callum, 2002) with the default regularization pa-

rameters.

Based on initial experiments, we restrict relational

path features to length two or three. Paths of length

one will learn trivial paths and can lead to over-

fitting. Paths longer than three can increase compu-

tational costs without adding much new information.

In addition to the relational pattern features de-

scribed in Section 4, the list of local features in-

cludes context words (such as the token identity

within a 6 word window of the target token), lexi-

cons (such as whether a token appears in a list of

cities, people, or companies), regular expressions

(such as whether the token is capitalized or contains

digits or punctuation), part-of-speech (predicted by

a CRF that was trained separately for part of speech

tagging), prefix/suffix (such as whether a word ends

in -ed or begins with ch-), and offset conjunctions

(combinations of adjacent features within a window

of size six).

300

ME CRF0 CRFr CRFr0.9 CRFr0.5 CRFt CRFt0.5

F1 .5489 .5995 .6100 .6008 .6136 .6791 .6363

P .6475 .7019 .6799 .7177 .7095 .7553 .7343

R .4763 .5232 .5531 .5166 .5406 .6169 .5614

Table 2: Results comparing the relative benefits of using relational patterns in extraction.

5.2 Extraction Results

We evaluate performance by calculating the preci-

sion (P) and recall (R) of extracted relations, as well

as the F1 measure, which is the harmonic mean of

precision and recall.

CRF0 is the conditional random field constructed

without relational features. Results for CRF0 are

displayed in the second column of Table 2. ME is

a maximum entropy classifier trained on the same

feature set as CRF0. The difference between these

two models is that CRF0 models the dependence of

relations that appear consecutively in the text. The

superior performance of CRF0 suggests that this de-

pendence is important to capture.

The remaining models incorporate the relational

patterns described in Section 4. We compare three

different confidence thresholds for the construction

of the initial testing database, as described in Sec-

tion 4.2. CRFr uses no threshold, while CRFr0.9
and CRFr0.5 restrict the database to extractions with

confidence greater than 0.9 and 0.5, respectively.

As shown by comparing CRF0 and CRFr in Ta-

ble 2, the relational features constructed from the

database with no confidence threshold provides a

considerable boost in recall (reducing error by 7%),

at the cost of a decrease in precision. Here we see

the effect of making fallacious inferences on a noisy

database.

In column four, we see the opposite effect for

the overly conservative threshold of CRFr0.9. Here,

precision improves slightly over CRF0, and consid-

erably over CRFr (12% error reduction), but this is

accompanied by a drop in recall (8% reduction).

Finally, in column five, a confidence of 0.5 results

in the best F1 measure (a 3.5% error reduction over

CRF0). CRFr0.5 also obtains better recall and preci-

sion than CRF0, reducing recall error by 3.6%, pre-

cision error by 2.5%.

Comparing the performance on different relation

types, we find that the biggest increase from CRF0

to CRFr0.5 is on the memberOf relation, for which

the F1 score improves from 0.4211 to 0.6093. We

conjecture that the reason for this is that the patterns

most useful for the memberOf label contain relations

that are well-detected by the first-pass CRF. Also,

the local language context seems inadequate to prop-

erly extract this relation, given the low performance

of CRF0.

To better gauge how much relational pattern fea-

tures are affected by errors in the database, we run

two additional experiments for which the relational

features are fixed to be correct. That is, imagine that

we construct a database from the true labeling of the

testing data, and create the relational pattern features

from this database. Note that this does not trivialize

the problem, since there are no relational path fea-

tures of length one (e.g., if X is the wife of Y, there

will be no feature indicating this).

We construct two experiments under this scheme,

one where the entire test database is used (CRFt),

and another where only half the relations are in-

cluded in the test database, selected uniformly at

random (CRFt0.5).

Column six shows the improvements enabled by

using the complete testing database. More inter-

estingly, column seven shows that even with only

half the database accurately known, performance

improves considerably over both CRF and CRFr0.5.

A realistic scenario for CRFt0.5 is a semi-automated

system, in which a partially-filled database is used to

bootstrap extraction.

5.3 Mining Results

Comparing the impact of discovered patterns on ex-

traction is a way to objectively measure mining per-

formance. We now give a brief subjective evaluation

of the learned patterns. By examining relational pat-

terns with high weights for a particular label, we can

glean some regularities from our dataset. Examples

of such patterns are in Table 3.

301

Relation Relational Path Feature

mother father → wife

cousin mother → husband → nephew

friend education → student

education father → education

boss boss → son

memberOf grandfather → memberOf

rival politicalParty → member → rival

Table 3: Examples of highly weighted relational pat-

terns.

From the familial relations in our training data, we

are able to discover many equivalences for mothers,

cousins, grandfathers, and husbands. In addition to

these high precision patterns, the system also gener-

ates interesting, low precision patterns. Row 3-7 of

Table 3 can be summarized by the following gener-

alizations: friends tend to be classmates; children of

alumni often attend the same school as their parents;

a boss’ child often becomes the boss; grandchildren

are often members of the same organizations as their

grandparents; and rivals of a person from one polit-

ical party are often rivals of other members of the

same political party. While many of these patterns

reflect the high concentration of political entities and

familial relations in our training database, many will

have applicability across domains.

5.4 Implicit Relations

It is difficult to measure system performance on im-

plicit relations, since our labeled data does not dis-

tinguish between explicit and implicit relations. Ad-

ditionally, accurately labeling all implicit relations

is challenging even for a human annotator.

We perform a simple exploratory analysis to de-

termine how relational patterns can help discover

implicit relations. We construct a small set of syn-

thetic sentences for which CRF0 successfully ex-

tracts relations using contextual features. We then

add sentences with slightly more ambiguous lan-

guage and measure whether CRFr can overcome this

ambiguity using relational pattern features.

For example, we create an article about an en-

tity named “Bob Smith” that includes the sentences

“His brother, Bill Smith, was a biologist” and “His

companion, Bill Smith, was a biologist.” CRF0 suc-

cessfully returns the brother relation in the first sen-

tence, but not the second. After a fact is added to

the database that says Bob and Bill have a brother in

common named John, CRFr is able to correctly label

the second sentence in spite of the ambiguous word

“companion,” because CRF0 has a highly-weighted

relational pattern feature for brother.

Similar behavior is observed for low precision

patterns like “associates tend to win the same

awards.” A synthetic article for the entity “Tom

Jones” contains the sentences “He was awarded the

Pulitzer Prize in 1998” and “Tom got the Pulitzer

Prize in 1998.” Because CRF0 is highly-reliant on

the presence of the verb “awarded” or “won” to indi-

cate a prize fact, it fails to label the second sentence

correctly. After the database is augmented to include

the fact that Tom’s associate Jill received the Pulitzer

Prize, CRFr labels the second sentence correctly.

However, we also observed that CRFr still re-

quires some contextual clues to extract implicit re-

lations. For example, if the Tom Jones article in-

stead contains the sentence “The Pulitzer Prize was

awarded to him in 1998,” neither CRF labels the

prize fact correctly, since this passive construction

is rarely seen in the training data.

We conclude from this brief analysis that rela-

tional patterns used by CRFr can help extract im-

plicit relations when (1) the database contains ac-

curate relational information, and (2) the sentence

contains limited contextual clues. Since relational

patterns are treated only as additional features by

CRFr, they are generally not powerful enough to

overcome a complete absence of contextual clues.

From this perspective, relational patterns can be seen

as enhancing the signal from contextual clues. This

differs from deterministically applying learned rules

independent of context, which may boost recall at

the cost of precision.

6 Conclusions and Future Work

We have shown that integrating pattern discovery

with relation extraction can lead to improved per-

formance on each task.

In the future, we wish to explore extending this

methods to larger datasets, where we expect rela-

tional patterns to be even more interesting. Also,

we plan to improve upon iterative database construc-

tion by performing joint inference among distant

302

relations in an article. Inference in these highly-

connected models will likely require approximate

methods. Additionally, we wish to focus on extract-

ing implicit relations, dealing more formally with

the precision-recall trade-off inherent in applying

noisy rules to improve extraction.

7 Acknowledgments

Thanks to the Google internship program, and to Charles Sutton
for providing the CRF POS tagger. This work was supported in
part by the Center for Intelligent Information Retrieval, in part
by U.S. Government contract #NBCH040171 through a sub-
contract with BBNT Solutions LLC, in part by The Central In-
telligence Agency, the National Security Agency and National
Science Foundation under NSF grant #IIS-0326249, and in part
by the Defense Advanced Research Projects Agency (DARPA),
through the Department of the Interior, NBC, Acquisition Ser-
vices Division, under contract number NBCHD030010. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not necessarily
reflect those of the sponsor.

References

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extract-
ing relations from large plain-text collections. In Proceed-
ings of the Fifth ACM International Conference on Digital
Libraries.

Sergey Brin. 1998. Extracting patterns and relations from the
world wide web. In WebDB Workshop at 6th International
Conference on Extending Database Technology.

Razvan Bunescu and Raymond Mooney. 2006. Subsequence
kernels for relation extraction. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Pro-
cessing Systems 18. MIT Press, Cambridge, MA.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. Mc-
Callum, Tom M. Mitchell, Kamal Nigam, and Seán Slattery.
1998. Learning to extract symbolic knowledge from the
World Wide Web. In Proceedings of AAAI-98, 15th Confer-
ence of the American Association for Artificial Intelligence,
pages 509–516, Madison, US. AAAI Press, Menlo Park, US.

Aron Culotta and Andrew McCallum. 2004. Confidence es-
timation for information extraction. In Human Langauge
Technology Conference (HLT 2004), Boston, MA.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency tree
kernels for relation extraction. In ACL.

L. Dehaspe. 1997. Maximum entropy modeling with clausal
constraints. In Proceedings of the Seventh International
Workshop on Inductive Logic Programming, pages 109–125,
Prague, Czech Republic.

M. Hearst. 1999. Untangling text data mining. In 37th Annual
Meeting of the Association for Computational Linguistics.

Nanda Kambhatla. 2004. Combining lexical, syntactic, and se-
mantic features with maximum entropy models for extract-
ing relations. In ACL.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. 18th Interna-
tional Conf. on Machine Learning, pages 282–289. Morgan
Kaufmann, San Francisco, CA.

Gideon Mann and David Yarowsky. 2005. Multi-field informa-
tion extraction and cross-document fusion. In ACL.

D. Masterson and N. Kushmerik. 2003. Information extraction
from multi-document threads. In ECML-2003: Workshop on
Adaptive Text Extraction and Mining, pages 34–41.

Andrew McCallum and David Jensen. 2003. A note on the
unification of information extraction and data mining us-
ing conditional-probability, relational models. In IJCAI03
Workshop on Learning Statistical Models from Relational
Data.

Andrew McCallum. 2002. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

Andrew McCallum. 2003. Efficiently inducing features of con-
ditional random fields. In Nineteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI03).

Scott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph
Weischedel. 2000. A novel use of statistical parsing to ex-
tract information from text. In ANLP.

Raymond J. Mooney and Razvan Bunescu. 2005. Mining
knowledge from text using information extraction. SigKDD
Explorations on Text Mining and Natural Language Process-
ing.

Un Yong Nahm and Raymond J. Mooney. 2000. A mutually
beneficial integration of data mining and information extrac-
tion. In AAAI/IAAI.

Bradley L. Richards and Raymond J. Mooney. 1992. Learning
relations by pathfinding. In Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence (AAAI-92), pages
50–55, San Jose, CA.

Dan Roth and Wen tau Yih. 2002. Probabilistic reasoning for
entity and relation recognition. In COLING.

Sunita Sarawagi and William W. Cohen. 2004. Semi-markov
conditional random fields for information extraction. In
NIPS 04.

Charles Sutton and Andrew McCallum. 2004. Dynamic condi-
tional random fields: Factorized probabilistic models for la-
beling and segmenting sequence data. In Proceedings of the
Twenty-First International Conference on Machine Learning
(ICML).

Charles Sutton and Andrew McCallum. 2006. An introduction
to conditional random fields for relational learning. In Lise
Getoor and Ben Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press. To appear.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella.
2003. Kernel methods for relation extraction. Journal of
Machine Learning Research, 3:1083–1106.

303

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 304–311,
New York, June 2006.c©2006 Association for Computational Linguistics

Preemptive Information Extraction using Unrestricted Relation Discovery

Yusuke Shinyama Satoshi Sekine

New York University
715, Broadway, 7th Floor

New York, NY, 10003
{yusuke,sekine}@cs.nyu.edu

Abstract

We are trying to extend the boundary of
Information Extraction (IE) systems. Ex-
isting IE systems require a lot of time and
human effort to tune for a new scenario.
Preemptive Information Extraction is an
attempt to automatically create all feasible
IE systems in advance without human in-
tervention. We propose a technique called
Unrestricted Relation Discovery that dis-
covers all possible relations from texts and
presents them as tables. We present a pre-
liminary system that obtains reasonably
good results.

1 Background

Every day, a large number of news articles are cre-
ated and reported, many of which are unique. But
certain types of events, such as hurricanes or mur-
ders, are reported again and again throughout a year.
The goal of Information Extraction, or IE, is to re-
trieve a certain type of news event from past articles
and present the events as a table whose columns are
filled with a name of a person or company, accord-
ing to its role in the event. However, existing IE
techniques require a lot of human labor. First, you
have to specify the type of information you want and
collect articles that include this information. Then,
you have to analyze the articles and manually craft
a set of patterns to capture these events. Most exist-
ing IE research focuses on reducing this burden by
helping people create such patterns. But each time
you want to extract a different kind of information,
you need to repeat the whole process: specify arti-

cles and adjust its patterns, either manually or semi-
automatically. There is a bit of a dangerous pitfall
here. First, it is hard to estimate how good the sys-
tem can be after months of work. Furthermore, you
might not know if the task is even doable in the first
place. Knowing what kind of information is easily
obtained in advance would help reduce this risk.

An IE task can be defined as finding a relation
among several entities involved in a certain type of
event. For example, in the MUC-6 management
succession scenario, one seeks a relation between
COMPANY, PERSON and POST involved with hir-
ing/firing events. For each row of an extracted ta-
ble, you can always read it as “COMPANY hired
(or fired) PERSON for POST.” The relation between
these entities is retained throughout the table. There
are many existing works on obtaining extraction pat-
terns for pre-defined relations (Riloff, 1996; Yangar-
ber et al., 2000; Agichtein and Gravano, 2000; Sudo
et al., 2003).

Unrestricted Relation Discovery is a technique to
automatically discover such relations that repeatedly
appear in a corpus and present them as a table, with
absolutely no human intervention. Unlike most ex-
isting IE research, a user does not specify the type
of articles or information wanted. Instead, a system
tries to find all the kinds of relations that are reported
multiple times and can be reported in tabular form.
This technique will open up the possibility of try-
ing new IE scenarios. Furthermore, the system itself
can be used as an IE system, since an obtained re-
lation is already presented as a table. If this system
works to a certain extent, tuning an IE system be-
comes a search problem: all the tables are already
built “preemptively.” A user only needs to search
for a relevant table.

304

Article dump be-hit
2005-09-23 Katrina New Orleans
2005-10-02 Longwang Taiwan
2005-11-20 Gamma Florida

Keywords: storm, evacuate, coast, rain, hurricane

Table 1: Sample discovered relation.

We implemented a preliminary system for this
technique and obtained reasonably good perfor-
mance. Table 1 is a sample relation that was ex-
tracted as a table by our system. The columns of the
table show article dates, names of hurricanes and the
places they affected respectively. The headers of the
table and its keywords were also extracted automat-
ically.

2 Basic Idea

In Unrestricted Relation Discovery, the discovery
process (i.e. creating new tables) can be formulated
as a clustering task. The key idea is to cluster a set
of articles that contain entities bearing a similar rela-
tion to each other in such a way that we can construct
a table where the entities that play the same role are
placed in the same column.

Suppose that there are two articles A and B,
and both report hurricane-related news. Article A
contains two entities “Katrina” and “New Orleans”,
and article B contains “Longwang” and “Taiwan”.
These entities are recognized by a Named Entity
(NE) tagger. We want to discover a relation among
them. First, we introduce a notion called “basic
pattern” to form a relation. A basic pattern is a
part of the text that is syntactically connected to
an entity. Some examples are “X is hit” or “Y’s
residents”. Figure 1 shows several basic patterns
connected to the entities “Katrina” and “New Or-
leans” in article A. Similarly, we obtain the basic
patterns for article B. Now, in Figure 2, both enti-
ties “Katrina” and “Longwang” have the basic pat-
tern “headed” in common. In this case, we connect
these two entities to each other. Furthermore, there
is also a common basic pattern “was-hit” shared by
“New Orleans” and “Taiwan”. Now, we found two
sets of entities that can be placed in correspondence
at the same time. What does this mean? We can infer
that both entity sets (“Katrina”-“New Orleans” and
“Longwang”-“Taiwan”) represent a certain relation
that has something in common: a hurricane name

Katrina New Orleans

headed

threatened

is-category-5
...

was-hit

has-been-evacuated

-residents
...

Basic patterns
for entity "Katrina"

Basic patterns
for entity "New Orleans"article A

1. 2.
.

Figure 1: Obtaining basic patterns.

Katrina New Orleans

headed

threatened

is-category-5
...

was-hit

has-been-evacuated

-residents
...

article A

1. 2.
.

Longwang Taiwan

hit

headed

swirling
...

’s-coast

was-pounded

was-hit
...

article B

1. 2.
.

Common Pattern
"stroke"

Common Pattern
"was-hit"

article A Katrina New Orleans

article B Longwang Taiwan

Obtained
Table

Figure 2: Finding a similar relation from two articles.

and the place it affected. By finding multiple par-
allel correspondences between two articles, we can
estimate the similarity of their relations.

Generally, in a clustering task, one groups items
by finding similar pairs. After finding a pair of arti-
cles that have a similar relation, we can bring them
into the same cluster. In this case, we cluster articles
by using their basic patterns as features. However,
each basic pattern is still connected to its entity so
that we can extract the name from it. We can con-
sider a basic pattern to represent something like the
“role” of its entity. In this example, the entities that
had “headed” as a basic pattern are hurricanes, and
the entities that had “was-hit” as a basic pattern are
the places it affected. By using basic patterns, we
can align the entities into the corresponding column
that represents a certain role in the relation. From
this example, we create a two-by-two table, where
each column represents the roles of the entities, and
each row represents a different article, as shown in
the bottom of Figure 2.

We can extend this table by finding another article

305

in the same manner. In this way, we gradually extend
a table while retaining a relation among its columns.
In this example, the obtained table is just what an IE
system (whose task is to find a hurricane name and
the affected place) would create.

However, these articles might also include other
things, which could represent different relations. For
example, the governments might call for help or
some casualties might have been reported. To ob-
tain such relations, we need to choose different en-
tities from the articles. Several existing works have
tried to extract a certain type of relation by manu-
ally choosing different pairs of entities (Brin, 1998;
Ravichandran and Hovy, 2002). Hasegawa et al.
(2004) tried to extract multiple relations by choos-
ing entity types. We assume that we can find such
relations by trying all possible combinations from
a set of entities we have chosen in advance; some
combinations might represent a hurricane and gov-
ernment relation, and others might represent a place
and its casualties. To ensure that an article can have
several different relations, we let each article belong
to several different clusters.

In a real-world situation, only using basic patterns
sometimes gives undesired results. For example,
“(President) Bush flew to Texas” and “(Hurricane)
Katrina flew to New Orleans” both have a basic pat-
tern “flew to” in common, so “Bush” and “Kat-
rina” would be put into the same column. But we
want to separate them in different tables. To allevi-
ate this problem, we put an additional restriction on
clustering. We use a bag-of-words approach to dis-
criminate two articles: if the word-based similarity
between two articles is too small, we do not bring
them together into the same cluster (i.e. table). We
exclude names from the similarity calculation at this
stage because we want to link articles about the same
type of event, not the same instance. In addition, we
use the frequency of each basic pattern to compute
the similarity of relations, since basic patterns like
“say” or “have” appear in almost every article and it
is dangerous to rely on such expressions.

Increasing Basic Patterns
In the above explanation, we have assumed that we
can obtain enough basic patterns from an article.
However, the actual number of basic patterns that
one can find from a single article is usually not

enough, because the number of sentences is rather
small in comparison to the variation of expressions.
So having two articles that have multiple basic pat-
terns in common is very unlikely. We extend the
number of articles for obtaining basic patterns by
using a cluster of comparable articles that report the
same event instead of a single article. We call this
cluster of articles a “basic cluster.” Using basic clus-
ters instead of single articles also helps to increase
the redundancy of data. We can give more confi-
dence to repeated basic patterns.

Note that the notion of “basic cluster” is different
from the clusters used for creating tables explained
above. In the following sections, a cluster for creat-
ing a table is called a “metacluster,” because this is
a cluster of basic clusters. A basic cluster consists
of a set of articles that report the same event which
happens at a certain time, and a metacluster consists
of a set of events that contain the same relation over
a certain period.

We try to increase the number of articles in a basic
cluster by looking at multiple news sources simulta-
neously. We use a clustering algorithm that uses a
vector-space-model to obtain basic clusters. Then
we apply cross-document coreference resolution to
connect entities of different articles within a basic
cluster. This way, we can increase the number of ba-
sic patterns connected to each entity. Also, it allows
us to give a weight to entities. We calculate their
weights using the number of occurrences within a
cluster and their position within an article. These
entities are used to obtain basic patterns later.

We also use a parser and tree normalizer to gen-
erate basic patterns. The format of basic patterns
is crucial to performance. We think a basic pat-
tern should be somewhat specific, since each pat-
tern should capture an entity with some relevant con-
text. But at the same time a basic pattern should
be general enough to reduce data sparseness. We
choose a predicate-argument structure as a natural
solution for this problem. Compared to traditional
constituent trees, a predicate-argument structure is
a higher-level representation of sentences that has
gained wide acceptance from the natural language
community recently. In this paper we used a logical
feature structure called GLARF proposed by Mey-
ers et al. (2001a). A GLARF converter takes a syn-
tactic tree as an input and augments it with several

306

Katrina

hit

coast

SBJ OBJ

Louisiana

T-POS

’s

SUFFIX

Figure 3: GLARF structure of the sentence “Katrina
hit Louisiana’s coast.”

features. Figure 3 shows a sample GLARF structure
obtained from the sentence “Katrina hit Louisiana’s
coast.” We used GLARF for two reasons: first,
unlike traditional constituent parsers, GLARF has
an ability to regularize several linguistic phenom-
ena such as participial constructions and coordina-
tion. This allows us to handle this syntactic variety
in a uniform way. Second, an output structure can
be easily converted into a directed graph that rep-
resents the relationship between each word, without
losing significant information from the original sen-
tence. Compared to an ordinary constituent tree, it is
easier to extract syntactic relationships. In the next
section, we discuss how we used this structure to
generate basic patterns.

3 Implementation

The overall process to generate basic patterns and
discover relations from unannotated news articles is
shown in Figure 4. Theoretically this could be a
straight pipeline, but due to the nature of the im-
plementation we process some stages separately and
combine them in the later stage. In the following
subsection, we explain each component.

3.1 Web Crawling and Basic Clustering
First of all, we need a lot of news articles from mul-
tiple news sources. We created a simple web crawler
that extract the main texts from web pages. We ob-
served that the crawler can correctly take the main
texts from about 90% of the pages from each news
site. We ran the crawler every day on several news
sites. Then we applied a simple clustering algorithm
to the obtained articles in order to find a set of arti-

Web
Crawling

Basic
Clustering

Coreference
Resolution

Parsing

GLARFing

Basic Pattern
Generation

Metaclustering

Newspapers...

... Basic
Clusters

Basic Patterns

Metaclusters
(Tables)

Figure 4: System overview.

cles that talk about exactly the same news and form
a basic cluster.

We eliminate stop words and stem all the other
words, then compute the similarity between two ar-
ticles by using a bag-of-words approach. In news
articles, a sentence that appears in the beginning of
an article is usually more important than the others.
So we preserved the word order to take into account
the location of each sentence. First we computed a
word vector from each article:

Vw(A) = IDF(w)
∑

i∈POS(w,A)

exp(− i

avgwords
)

where Vw(A) is a vector element of word w in article
A, IDF (w) is the inverse document frequency of
word w, and POS(w,A) is a list of w’s positions
in the article. avgwords is the average number of
words for all articles. Then we calculated the cosine
value of each pair of vectors:

Sim(A1, A2) = cos(V (A1) · V (A2))

We computed the similarity of all possible pairs of
articles from the same day, and selected the pairs

307

whose similarity exceeded a certain threshold (0.65
in this experiment) to form a basic cluster.

3.2 Parsing and GLARFing

After getting a set of basic clusters, we pass them
to an existing statistical parser (Charniak, 2000) and
rule-based tree normalizer to obtain a GLARF struc-
ture for each sentence in every article. The current
implementation of a GLARF converter gives about
75% F-score using parser output. For the details of
GLARF representation and its conversion, see Mey-
ers et al. (2001b).

3.3 NE Tagging and Coreference Resolution

In parallel with parsing and GLARFing, we also ap-
ply NE tagging and coreference resolution for each
article in a basic cluster. We used an HMM-based
NE tagger whose performance is about 85% in F-
score. This NE tagger produces ACE-type Named
Entities 1: PERSON, ORGANIZATION, GPE, LO-
CATION and FACILITY 2. After applying single-
document coreference resolution for each article, we
connect the entities among different articles in the
same basic cluster to obtain cross-document coref-
erence entities with simple string matching.

3.4 Basic Pattern Generation

After getting a GLARF structure for each sentence
and a set of documents whose entities are tagged
and connected to each other, we merge the two out-
puts and create a big network of GLARF structures
whose nodes are interconnected across different sen-
tences/articles. Now we can generate basic patterns
for each entity. First, we compute the weight for
each cross-document entity E in a certain basic clus-
ter as follows:

WE =
∑
e∈E

mentions(e) · exp(−C · firstsent(e))

where e ∈ E is an entity within one article and
mentions(e) and firstsent(e) are the number of
mentions of entity e in a document and the position

1The ACE task description can be found at
http://www.itl.nist.gov/iad/894.01/tests/ace/ and the ACE
guidelines at http://www.ldc.upenn.edu/Projects/ACE/

2The hurricane names used in the examples were recognized
as PERSON.

Katrina

hit

coast

SBJ OBJ

Louisiana

T-POS

’s

SUFFIX

GPE+T-POS:coast

PER+SBJ:hit

PER+SBJ:hit-OBJ:coast

Figure 5: Basic patterns obtained from the sentence
“Katrina hit Louisiana’s coast.”

of the sentence where entity e first appeared, respec-
tively. C is a constant value which was 0.5 in this ex-
periment. To reduce combinatorial complexity, we
took only the five most highly weighted entities from
each basic cluster to generate basic patterns. We ob-
served these five entities can cover major relations
that are reported in a basic cluster.

Next, we obtain basic patterns from the GLARF
structures. We used only the first ten sentences
in each article for getting basic patterns, as most
important facts are usually written in the first few
sentences of a news article. Figure 5 shows all
the basic patterns obtained from the sentence “Ka-
trina hit Louisiana’s coast.” The shaded nodes
“Katrina” and “Louisiana” are entities from which
each basic pattern originates. We take a path
of GLARF nodes from each entity node until it
reaches any predicative node: noun, verb, or ad-
jective in this case. Since the nodes “hit” and
“coast” can be predicates in this example, we ob-
tain three unique paths “Louisiana+T-POS:coast
(Louisiana’s coast)”, “Katrina+SBJ:hit (Katrina
hit something)”, and “Katrina+SBJ:hit-OBJ:coast
(Katrina hit some coast)”.

To increase the specificity of patterns, we generate
extra basic patterns by adding a node that is imme-
diately connected to a predicative node. (From this
example, we generate two basic patterns: “hit” and
“hit-coast” from the “Katrina” node.)

Notice that in a GLARF structure, the type
of each argument such as subject or object is
preserved in an edge even if we extract a sin-
gle path of a graph. Now, we replace both
entities “Katrina” and “Louisiana” with variables

308

based on their NE tags and obtain parameter-
ized patterns: “GPE+T-POS:coast (Louisiana’s
coast)”, “PER+SBJ:hit (Katrina hit something)”,
and “PER+SBJ:hit-OBJ:coast (Katrina hit some
coast)”.

After taking all the basic patterns from every basic
cluster, we compute the Inverse Cluster Frequency
(ICF) of each unique basic pattern. ICF is similar
to the Inverse Document Frequency (IDF) of words,
which is used to calculate the weight of each basic
pattern for metaclustering.

3.5 Metaclustering
Finally, we can perform metaclustering to obtain ta-
bles. We compute the similarity between each basic
cluster pair, as seen in Figure 6. XA and XB are
the set of cross-document entities from basic clusters
cA and cB , respectively. We examine all possible
mappings of relations (parallel mappings of multi-
ple entities) from both basic clusters, and find all the
mappings M whose similarity score exceeds a cer-
tain threshold. wordsim(cA, cB) is the bag-of-words
similarity of two clusters. As a weighting function
we used ICF:

weight(p) = − log(
clusters that include p

all clusters
)

We then sort the similarities of all possible pairs
of basic clusters, and try to build a metacluster by
taking the most strongly connected pair first. Note
that in this process we may assign one basic clus-
ter to several different metaclusters. When a link is
found between two basic clusters that were already
assigned to a metacluster, we try to put them into
all the existing metaclusters it belongs to. However,
we allow a basic cluster to be added only if it can
fill all the columns in that table. In other words, the
first two basic clusters (i.e. an initial two-row table)
determines its columns and therefore define the re-
lation of that table.

4 Experiment and Evaluation

We used twelve newspapers published mainly in the
U.S. We collected their articles over two months
(from Sep. 21, 2005 - Nov. 27, 2005). We obtained
643,767 basic patterns and 7,990 unique types. Then
we applied metaclustering to these basic clusters

Source articles 28,009
Basic clusters 5,543
Basic patterns (token) 643,767
Basic patterns (type) 7,990
Metaclusters 302
Metaclusters (rows ≥ 3) 101

Table 2: Articles and obtained metaclusters.

and obtained 302 metaclusters (tables). We then re-
moved duplicated rows and took only the tables that
had 3 or more rows. Finally we had 101 tables. The
total number the of articles and clusters we used are
shown in Table 2.

4.1 Evaluation Method

We evaluated the obtained tables as follows. For
each row in a table, we added a summary of the
source articles that were used to extract the rela-
tion. Then for each table, an evaluator looks into
every row and its source article, and tries to come
up with a sentence that explains the relation among
its columns. The description should be as specific as
possible. If at least half of the rows can fit the ex-
planation, the table is considered “consistent.” For
each consistent table, the evaluator wrote down the
sentence using variable names ($1, $2, ...) to refer
to its columns. Finally, we counted the number of
consistent tables. We also counted how many rows
in each table can fit the explanation.

4.2 Results

We evaluated 48 randomly chosen tables. Among
these tables, we found that 36 tables were consis-
tent. We also counted the total number of rows that
fit each description, shown in Table 3. Table 4 shows
the descriptions of the selected tables. The largest
consistent table was about hurricanes (Table 5). Al-
though we cannot exactly measure the recall of each
table, we tried to estimate the recall by comparing
this hurricane table to a manually created one (Table
6). We found 6 out of 9 hurricanes 3. It is worth
noting that most of these hurricane names were au-
tomatically disambiguated although our NE tagger
didn’t distinguish a hurricane name from a person

3Hurricane Katrina and Longwang shown in the previous
examples are not included in this table. They appeared before
this period.

309

for each cluster pair (cA, cB) {
XA = cA.entities
XB = cB .entities
for each entity mapping M = [(xA1, xB1), ..., (xAn, xBn)] ∈ (2|XA| × 2|XB |) {

for each entity pair (xAi, xBi) {
Pi = xAi.patterns ∩ xBi.patterns
pairscorei =

∑
p∈Pi

weight(p)

}
mapscore =

∑
pairscorei

if T1 < |M | and T2 < mapscore and T3 < wordsim(cA.words, cB .words) {
link cA and cB with mapping M .

}
}

}

Figure 6: Computing similarity of basic clusters.

Tables:
Consistent tables 36 (75%)
Inconsistent tables 12
Total 48
Rows:
Rows that fit the description 118 (73%)
Rows not fitted 43
Total 161

Table 3: Evaluation results.

Description Rows
Storm $1(PER) probably affected $2(GPE). 8/16
Nominee $2(PER) must be confirmed by $1(ORG). 4/7
$1(PER) urges $2(GPE) to make changes. 4/6
$1(GPE) launched an attack in $2(GPE). 3/5
$1(PER) ran against $2(PER) in an election. 4/5
$2(PER) visited $1(GPE) on a diplomatic mission. 2/4
$2(PER) beat $1(PER) in golf. 4/4
$2(GPE) soldier(s) were killed in $1(GPE). 3/3
$2(PER) ran for governor of $1(GPE). 2/3
Boxer $1(PER) fought boxer $2(PER). 3/3

Table 4: Description of obtained tables and the num-
ber of fitted/total rows.

name. The second largest table (about nominations
of officials) is shown in Table 7.

We reviewed 10 incorrect rows from various ta-
bles and found 4 of them were due to coreference er-
rors and one error was due to a parse error. The other
4 errors were due to multiple basic patterns distant
from each other that happened to refer to a different
event reported in the same cluster. The causes of the
one remaining error was obscure. Most inconsistent
tables were a mixture of multiple relations and some
of their rows still looked consistent.

We have a couple of open questions. First, the
overall recall of our system might be lower than ex-

isting IE systems, as we are relying on a cluster of
comparable articles rather than a single document to
discover an event. We might be able to improve this
in the future by adjusting the basic clustering algo-
rithm or weighting schema of basic patterns. Sec-
ondly, some combinations of basic patterns looked
inherently vague. For example, we used the two ba-
sic patterns “pitched” and “’s-series” in the fol-
lowing sentence (the patterns are underlined):

Ervin Santana pitched 5 1-3 gutsy innings in his post-
season debut for the Angels, Adam Kennedy hit a go-
ahead triple that sent Yankees outfielders crashing to the
ground, and Los Angeles beat New York 5-3 Monday
night in the decisive Game 5 of their AL playoff series.

It is not clear whether this set of patterns can yield
any meaningful relation. We are not sure how much
this sort of table can affect overall IE performance.

5 Conclusion

In this paper we proposed Preemptive Information
Extraction as a new direction of IE research. As
its key technique, we presented Unrestricted Rela-
tion Discovery that tries to find parallel correspon-
dences between multiple entities in a document, and
perform clustering using basic patterns as features.
To increase the number of basic patterns, we used
a cluster of comparable articles instead of a single
document. We presented the implementation of our
preliminary system and its outputs. We obtained
dozens of usable tables.

310

Article 1:dump 2:coast
2005-09-21 (1) Rita Texas
2005-09-23 Rita New Orleans
2005-09-25 Bush Texas
2005-09-26 Damrey Hainan
2005-09-27 (2) Damrey Vietnam
2005-10-01 Rita Louisiana
2005-10-02 Otis Mexico
2005-10-04 Longwang China
2005-10-05 Stan Mexico
2005-10-06 Tammy Florida
2005-10-07 Tammy Georgia
2005-10-19 (3) Wilma Florida
2005-10-25 Wilma Cuba
2005-10-25 Wilma Massachusetts
2005-10-28 Beta Nicaragua
2005-11-20 Gamma Florida

1. More than 2,000 National Guard troops were put on
active-duty alert to assist as Rita slammed into the string
of islands and headed west, perhaps toward Texas. ...

2. Typhoon Damrey smashed into Vietnam on Tuesday af-
ter killing nine people in China, ...

3. Oil markets have been watching Wilma’s progress ner-
vously, ... but the threat to energy interests appears to
have eased as forecasters predict the storm will turn to-
ward Florida. ...

Table 5: Hurricane table (“Storm $1(PER) probably
affected $2(GPE).”) and the actual expressions we
used for extraction.

Hurricane Date (Affected Place) Articles
Philippe Sep 17-20 (?) 6
* Rita Sep 17-26 (Louisiana, Texas, etc.) 566
* Stan Oct 1-5 (Mexico, Nicaragua, etc.) 83
* Tammy Oct 5-? (Georgia, Alabama) 18
Vince Oct 8-11 (Portugal, Spain) 12
* Wilma Oct 15-25 (Cuba, Honduras, etc.) 368
Alpha Oct 22-24 (Haiti, Dominican Rep.) 80
* Beta Oct 26-31 (Nicaragua, Honduras) 55
* Gamma Nov 13-20 (Belize, etc.) 36

Table 6: Hurricanes in North America between mid-
Sep. and Nov. (from Wikipedia). Rows with a
star (*) were actually extracted. The number of the
source articles that contained a mention of the hurri-
cane is shown in the right column.

Article 1:confirm 2:be-confirmed
2005-09-21 Senate Roberts
2005-10-03 Supreme Court Miers
2005-10-20 Senate Bush
2005-10-26 Senate Sauerbrey
2005-10-31 Senate Mr. Alito
2005-11-04 Senate Alito
2005-11-17 Fed Bernanke

Table 7: Nomination table (“Nominee $2(PER)
must be confirmed by $1(ORG).”)

Acknowledgements
This research was supported by the National Science
Foundation under Grant IIS-00325657. This paper
does not necessarily reflect the position of the U.S.
Government. We would like to thank Prof. Ralph
Grishman who provided useful suggestions and dis-
cussions.

References
Eugene Agichtein and L. Gravano. 2000. Snowball: Ex-

tracting Relations from Large Plaintext Collections. In
Proceedings of the 5th ACM International Conference
on Digital Libraries (DL-00).

Sergey Brin. 1998. Extracting Patterns and Relations
from the World Wide Web. In WebDB Workshop at
EDBT ’98.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL-2000.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman.
2004. Discovering relations among named entities
from large corpora. In Proceedings of the Annual
Meeting of Association of Computational Linguistics
(ACL-04).

Adam Meyers, Ralph Grishman, Michiko Kosaka, and
Shubin Zhao. 2001a. Covering Treebanks with
GLARF. In ACL/EACL Workshop on Sharing Tools
and Resources for Research and Education.

Adam Meyers, Michiko Kosaka, Satoshi Sekine, Ralph
Grishman, and Shubin Zhao. 2001b. Parsing and
GLARFing. In Proceedings of RANLP-2001, Tzigov
Chark, Bulgaria.

Deepak Ravichandran and Eduard Hovy. 2002. Learning
surface text patterns for a question answering system.
In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Ellen Riloff. 1996. Automatically Generating Extrac-
tion Patterns from Untagged Text. In Proceedings of
the 13th National Conference on Artificial Intelligence
(AAAI-96).

Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman.
2003. An Improved Extraction Pattern Representa-
tion Model for Automatic IE Pattern Acquisition. In
Proceedings of the Annual Meeting of Association of
Computational Linguistics (ACL-03).

Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. 2000. Unsupervised Discovery
of Scenario-Level Patterns for Information Extraction.
In Proceedings of the 18th International Conference
on Computational Linguistics (COLING-00).

311

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 312–319,
New York, June 2006.c©2006 Association for Computational Linguistics

Probabilistic Context-Free Grammar Induction
Based on Structural Zeros

Mehryar Mohri
Courant Institute of Mathematical Sciences

and Google Research
251 Mercer Street

New York, NY 10012
mohri@cs.nyu.edu

Brian Roark
Center for Spoken Language Understanding
OGI at Oregon Health & Science University

20000 NW Walker Road
Beaverton, Oregon 97006
roark@cslu.ogi.edu

Abstract

We present a method for induction of con-
cise and accurate probabilistic context-
free grammars for efficient use in early
stages of a multi-stage parsing technique.
The method is based on the use of statis-
tical tests to determine if a non-terminal
combination is unobserved due to sparse
data or hard syntactic constraints. Ex-
perimental results show that, using this
method, high accuracies can be achieved
with a non-terminal set that is orders
of magnitude smaller than in typically
induced probabilistic context-free gram-
mars, leading to substantial speed-ups in
parsing. The approach is further used in
combination with an existing reranker to
provide competitive WSJ parsing results.

1 Introduction

There is a very severe speed vs. accuracy tradeoff
in stochastic context-free parsing, which can be ex-
plained by the grammar factor in the running-time
complexity of standard parsing algorithms such as
the CYK algorithm (Kasami, 1965; Younger, 1967).
That algorithm has complexityO(n3|P |), wheren is
the length in words of the sentence parsed, and|P | is
the number of grammar productions. Grammar non-
terminals can be split to encode richer dependen-
cies in a stochastic model and improve parsing ac-
curacy. For example, the parent of the left-hand side
(LHS) can be annotated onto the label of the LHS
category (Johnson, 1998), hence differentiating, for
instance, between expansions of a VP with parent S
and parent VP. Such annotations, however, tend to
substantially increase the number of grammar pro-
ductions as well as the ambiguity of the grammar,
thereby significantly slowing down the parsing algo-

rithm. In the case of bilexical grammars, where cat-
egories in binary grammars are annotated with their
lexical heads, the grammar factor contributes an ad-
ditionalO(n2|VD|3) complexity, leading to an over-
all O(n5|VD|3) parsing complexity, where|VD| is
the number of delexicalized non-terminals (Eisner,
1997). Even with special modifications to the ba-
sic CYK algorithm, such as those presented by Eis-
ner and Satta (1999), improvements to the stochastic
model are obtained at the expense of efficiency.

In addition to the significant cost in efficiency,
increasing the non-terminal set impacts parame-
ter estimation for the stochastic model. With
more productions, much fewer observations per
production are available and one is left with the
hope that a subsequent smoothing technique can
effectively deal with this problem, regardless of
the number of non-terminals created. Klein and
Manning (2003b) showed that, by making certain
linguistically-motivated node label annotations, but
avoiding certain other kinds of state splits (mainly
lexical annotations) models of relatively high accu-
racy can be built without resorting to smoothing.
The resulting grammars were small enough to al-
low for exhaustive CYK parsing; even so, parsing
speed was significantly impacted by the state splits:
the test-set parsing time reported was about 3s for
average length sentences, with a memory usage of
1GB.

This paper presents an automatic method for de-
ciding which state to split in order to create concise
and accurate unsmoothed probabilistic context-free
grammars (PCFGs) forefficientuse in early stages
of a multi-stage parsing technique. The method is
based on the use of statistical tests to determine if
a non-terminal combination is unobserved due to
the limited size of the sample (sampling zero) or
because it is grammatically impossible (structural
zero). This helps introduce a relatively small number
of new non-terminals with little additional parsing

312

NP

����
��@@ PPPP

DT JJ NN NNS

NP

��� HHH

DT NP:JJ+NN+NNS

�
��

H
HH

JJ NP:NN+NNS
�� HH

NN NNS

NP

��� HHH
DT NP:JJ+NN

�
��

H
HH

JJ NP:NN+NNS
�� HH

NN NNS

NP

�� HH
DT NP:JJ

�� HH
JJ NP:NN

�� HH
NN NNS

NP

�� HH
DT NP:

�� HH
JJ NP:

�� HH
NN NNS

(a) (b) (c) (d) (e)

Figure 1:Five representations of ann-ary production,n = 4. (a) Original production (b) Right-factored production (c) Right-
factored Markov order-2 (d) Right-factored Markov order-1 (e) Right-factored Markov order-0

overhead. Experimental results show that, using this
method, high accuracies can be achieved with orders
of magnitude fewer non-terminals than in typically
induced PCFGs, leading to substantial speed-ups in
parsing. The approach can further be used in combi-
nation with an existing reranker to provide competi-
tive WSJ parsing results.

The remainder of the paper is structured as fol-
lows. Section 2 gives a brief description of PCFG
induction from treebanks, including non-terminal
label-splitting, factorization, and relative frequency
estimation. Section 3 discusses the statistical criteria
that we explored to determine structural zeros and
thus select non-terminals for the factored PCFG. Fi-
nally, Section 4 reports the results of parsing experi-
ments using our exhaustivek-best CYK parser with
the concise PCFGs induced from the Penn WSJ tree-
bank (Marcus et al., 1993).

2 Grammar induction

A context-free grammarG = (V, T, S†, P), or CFG
in short, consists of a set of non-terminal symbolsV ,
a set of terminal symbolsT , a start symbolS† ∈ V ,
and a set of productionP of the form: A → α,
whereA ∈ V andα ∈ (V ∪ T)∗. A PCFG is a
CFG with a probability assigned to each production.
Thus, the probabilities of the productions expanding
a given non-terminal sum to one.

2.1 Smoothing and factorization

PCFGs induced from the Penn Treebank have many
productions with long sequences of non-terminals
on the RHS. Probability estimates of the RHS given
the LHS are often smoothed by making a Markov
assumption regarding the conditional independence
of a category on those more thank categories away

(Collins, 1997; Charniak, 2000):

P(X → Y1...Yn)= P(Y1|X)

nY
i=2

P(Yi|X,Y1 · · ·Yi−1)

≈ P(Y1|X)

nY
i=2

P(Yi|X,Yi−k · · ·Yi−1).

Making such a Markov assumption is closely re-
lated to grammar transformations required for cer-
tain efficient parsing algorithms. For example, the
CYK parsing algorithm takes as input a Chomsky
Normal Form PCFG, i.e., a grammar where all pro-
ductions are of the formX → Y Z or X → a,
whereX, Y , andZ are non-terminals anda a ter-
minal symbol.1. Binarized PCFGs are induced from
a treebank whose trees have been factored so that
n-ary productions withn>2 become sequences of
n−1 binary productions. Full right-factorization in-
volves concatenating the finaln−1 categories from
the RHS of ann-ary production to form a new com-
posite non-terminal. For example, the original pro-
duction NP→ DT JJ NN NNS shown in Figure 1(a)
is factored into three binary rules, as shown in Fig-
ure 1(b). Note that a PCFG induced from such right-
factored trees is weakly equivalent to a PCFG in-
duced from the original treebank, i.e., it describes
the same language.

From such a factorization, one can make a
Markov assumption for estimating the production
probabilities by simply recording only the labels of
the firstk children dominated by the composite fac-
tored label. Figure 1 (c), (d), and (e) show right-
factored trees of Markov orders 2, 1 and 0 respec-
tively.2 In addition to being used for smoothing

1Our implementation of the CYK algorithm has been ex-
tended to allow for unary productions with non-terminals on
the RHS in the PCFG.

2Note that these factorizations do not provide exactly the
stated Markov order for all dependencies in the productions,
because we are restricting factorization to only produce binary
productions. For example, in Figure 1(e), the probability of the

313

PCFG Time (s) Words/s |V | |P | LR LP F
Right-factored 4848 6.7 10105 23220 69.2 73.8 71.5
Right-factored, Markov order-2 1302 24.9 2492 11659 68.8 73.8 71.3
Right-factored, Markov order-1 445 72.7 564 6354 68.0 73.0 70.5
Right-factored, Markov order-0 206 157.1 99 3803 61.2 65.5 63.3
Parent-annotated, Right-factored, Markov order-2 7510 4.3 5876 22444 76.2 78.3 77.2

Table 1:Baseline results of exhaustive CYK parsing using different probabilistic context-free grammars. Grammars are trained
from sections 2-21 of the Penn WSJ Treebank and tested on all sentences of section 24 (no length limit), given weightedk-best
POS-tagger output. The second and third columns report the total parsing time in seconds and the number of words parsed per
second. The number of non-terminals,|V |, is indicated in the next column. The last three columns show the labeled recall (LR),
labeled precision (LP), and F-measure (F).

as mentioned above, these factorizations reduce the
size of the non-terminal set, which in turn improves
CYK efficiency. The efficiency benefit of making a
Markov assumption in factorization can be substan-
tial, given the reduction of both non-terminals and
productions, which improves the grammar constant.
With standard right-factorization, as in Figure 1(b),
the non-terminal set for the PCFG induced from sec-
tions 2-21 of the Penn WSJ Treebank grows from
its original size of 72 to 10105, with 23220 produc-
tions. With a Markov factorization of orders 2, 1 and
0 we get non-terminal sets of size 2492, 564, and 99,
and rule production sets of 11659, 6354, and 3803,
respectively.

These reductions in the size of the non-terminal
set from the original factored grammar result in an
order of magnitude reduction in complexity of the
CYK algorithm. One common strategy in statisti-
cal parsing is what can be termed an approximate
coarse-to-fine approach: a simple PCFG is used to
prune the search space to which richer and more
complex models are applied subsequently (Char-
niak, 2000; Charniak and Johnson, 2005). Produc-
ing a “coarse” chart as efficiently as possible is thus
crucial (Charniak et al., 1998; Blaheta and Charniak,
1999), making these factorizations particularly use-
ful.

2.2 CYK parser and baselines

To illustrate the importance of this reduction in non-
terminals for efficient parsing, we will present base-
line parsing results for a development set. For
these baseline trials, we trained a PCFG on sec-
tions 2-21 of the Penn WSJ Treebank (40k sen-
tences, 936k words), and evaluated on section 24
(1346 sentences, 32k words). The parser takes as
input the weightedk-best POS-tag sequences of a

final NNS depends on the preceding NN, despite the Markov
order-0 factorization. Because of our focus on efficient CYK,
we accept these higher order dependencies rather than produc-
ing unary productions. Only n-ary rulesn>2 are factored.

perceptron-trained tagger, using the tagger docu-
mented in Hollingshead et al. (2005). The number
of tagger candidatesk for all trials reported in this
paper was 0.2n, wheren is the length of the string.
From the weightedk-best list, we derive a condi-
tional probability of each tag at positioni by taking
the sum of the exponential of the weights of all can-
didates with that tag at positioni (softmax).

The parser is an exhaustive CYK parser that takes
advantage of the fact that, with the grammar fac-
torization method described, factored non-terminals
can only occur as the second child of a binary pro-
duction. Since the bulk of the non-terminals result
from factorization, this greatly reduces the number
of possible combinations given any two cells. When
parsing with a parent-annotated grammar, we use a
version of the parser that also takes advantage of the
partitioning of the non-terminal set, i.e., the fact that
any given non-terminal has already its parent indi-
cated in its label, precluding combination with any
non-terminal that does not have the same parent an-
notated.

Table 1 shows baseline results for standard right-
factorization and factorization with Markov orders
0-2. Training consists of applying a particular gram-
mar factorization to the treebank prior to inducing
a PCFG using maximum likelihood (relative fre-
quency) estimation. Testing consists of exhaustive
CYK parsing of all sentences in the development set
(no length limit) with the induced grammar, then de-
transforming the maximum likelihood parse back to
the original format for evaluation against the refer-
ence parse. Evaluation includes the standard PAR-
SEVAL measures labeled precision (LP) and labeled
recall (LR), plus the harmonic mean (F-measure) of
these two scores. We also present a result using
parent annotation (Johnson, 1998) with a 2nd-order
Markov assumption. Parent annotation occurs prior
to treebank factorization. This condition is roughly
equivalent to theh = 1, v = 2 in Klein and Manning

314

(2003b)3.
From these results, we can see the large efficiency

benefit of the Markov assumption, as the size of the
non-terminal and production sets shrink. However,
the efficiency gains come at a cost, with the Markov
order-0 factored grammar resulting in a loss of a full
8 percentage points of F-measure accuracy. Parent
annotation provides a significant accuracy improve-
ment over the other baselines, but at a substantial
efficiency cost.

Note that the efficiency impact is not a strict func-
tion of either the number of non-terminals or pro-
ductions. Rather, it has to do with the number of
competing non-terminals in cells of the chart. Some
grammars may be very large, but less ambiguous in
a way that reduces the number of cell entries, so that
only a very small fraction of the productions need to
be applied for any pair of cells. Parent annotation
does just the opposite – it increases the number of
cell entries for the same span, by creating entries for
the same constituent with different parents. Some
non-terminal annotations, e.g., splitting POS-tags by
annotating their lexical items, result in a large gram-
mar, but one where the number of productions that
will apply for any pair of cells is greatly reduced.

Ideally, one would obtain the efficiency benefit
of the small non-terminal set demonstrated with the
Markov order-0 results, while encoding key gram-
matical constraints whose absence results in an ac-
curacy loss. The method we present attempts to
achieve this by using a statistical test to determine
structural zerosand modifying the factorization to
remove the probability mass assigned to them.

3 Detecting Structural Zeros

The main idea behind our method for detecting
structural zeros is to search for events that are in-
dividually very frequent but that do not co-occur.
For example, consider the Markov order-0 bi-
nary rule production in Figure 2. The produc-
tion NP→NP NP: may be very frequent, as is the
NP:→CC NN production, but they never co-occur
together, because NP does not conjoin with NN
in the Penn Treebank. If the counts of two such
eventsa andb, e.g., NP→NP NP: and NP:→CC NN
are very large, but the count of their co-occurrence

3Their Markov order-2 factorization does not follow the lin-
ear order of the children, but rather includes the head-child plus
one other, whereas our factorization does not involve identifica-
tion of the head child.

NP

��� HHH

NP
�� PP
α

NP:
�� HH

CC NN

Figure 2:Markov order-0 local tree, with possible non-local
¡state-split information.

is zero, then the co-occurrence ofa and b can be
viewed as a candidate for the list of events that
are structurally inadmissible. The probability mass
for the co-occurrence ofa and b can be removed
by replacing the factored non-terminal NP: with
NP:CC:NN whenever there is a CC and an NN com-
bining to form a factored NP non-terminal.

The expansion of the factored non-terminals is not
the only event that we might consider. For exam-
ple, a frequent left-most child of the first child of the
production, or a common left-corner POS or lexi-
cal item, might never occur with certain productions.
For example, ‘SBAR→IN S’ and ‘IN→of’ are both
common productions, but they never co-occur. We
focus on left-most children and left-corners because
of the factorization that we have selected, but the
same idea could be applied to other possible state
splits.

Different statistical criteria can be used to com-
pare the counts of two events with that of their co-
occurrence. This section examines several possible
criteria that are presented, for ease of exposition,
with general sequences of events. For our specific
purpose, these sequences of events would be two
rule productions.

3.1 Notation

This section describes several statistical criteria to
determine if a sequence of two events should be
viewed as a structural zero. These tests can be gen-
eralized to longer and more complex sequences, and
to various types of events, e.g., word, word class, or
rule production sequences.

Given a corpusC, and a vocabularyΣ, we denote
by ca the number of occurrences ofa in C. Let n
be the total number of observations inC. We will
denote bȳa the set{b ∈ Σ : b 6= a}. Hencecā =
n− ca. Let P(a) = ca

n , and forb ∈ Σ, let P(a|b) =
cab
cb

. Note thatcāb = cb − cab.

315

3.2 Mutual information

The mutual information between two random vari-
ablesX andY is defined as

I(X;Y) =
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)
. (1)

For a particular event sequence of length twoab, this
suggests the following statistic:

I(ab) = log P(ab)− log P(a)− log P(b)
= log cab − log ca − log cb + log n

Unfortunately, forcab = 0, I(ab) is not finite. If we
assume, however, that all unobserved sequences are
given someε count, then whencab = 0,

I(ab) = K − log ca − log cb, (2)

whereK is a constant. Since we need these statistics
only for ranking purposes, we can ignore the con-
stant factor.

3.3 Log odds ratio

Another statistic that, like mutual information, is ill-
defined with zeros, is thelog odds ratio:

log(θ̂) = log cab + log cāb̄ − log cāb − log cab̄.

Here again, ifcab = 0, log(θ̂) is not finite. But, if we
assign to all unobserved pairs a small countε, when
cab = 0, cāb = cb, and the expression becomes

log(θ̂) = K + log cāb̄ − log cb − log ca. (3)

3.4 Pearson chi-squared

For anyi, j ∈ Σ, defineµ̂ij = cicj
n . The Pearson

chi-squared test of independence is then defined as
follows:

X 2 =
∑

i ∈ {a, ā}
j ∈

˘
b, b̄

¯
(cij−µ̂ij)2

µ̂ij
=

∑
i ∈ {a, ā}
j ∈

˘
b, b̄

¯
(ncij−cicj)2

ncicj
.

In the case of interest for us,cab = 0 and the statistic
simplifies to:

X 2 = cacb
n + c2acb

ncā
+ cac2b

ncb̄
+ c2ac

2
b

ncācb̄
= ncacb

cācb̄
. (4)

3.5 Log likelihood ratio

Pearson’s chi-squared statistic assumes a normal or
approximately normal distribution, but that assump-
tion typically does not hold for the occurrences of
rare events (Dunning, 1994). It is then preferable to
use the likelihood ratio statistic which allows us to
compare the null hypothesis, thatP(b) = P(b|a) =
P(b|ā) = cb

n , with the hypothesis thatP(b|a) = cab
ca

and P(b|ā) = cāb
cā

. In words, the null hypothesis
is that the context of eventa does not change the
probability of seeingb. These discrete conditional
probabilities follow a binomial distribution, hence
the likelihood ratio is

λ =
B[P(b), cab, ca] B[P(b), cāb, cā]

B[P(b|a), cab, ca] B[P(b|ā), cāb, cā]
, (5)

whereB[p, x, y] = px(1 − p)y−x(y
x

). In the spe-

cial case wherecab = 0, P(b|ā) = P(b), and this
expression can be simplified as follows:

λ =
(1− P(b))caP(b)cāb(1− P(b))cā−cāb

P(b|ā)cāb(1− P(b|ā))cā−cāb

= (1− P(b))ca . (6)

The log-likelihood ratio, denoted byG2, is known to
be asymptoticallyX 2-distributed. In this case,

G2 = −2ca log(1− P(b)), (7)

and with the binomial distribution, it has has one
degree of freedom, thus the distribution will have
asymptotically a mean of one and a standard devia-
tion of

√
2.

We experimented with all of these statistics.
While they measure different ratios, empirically they
seem to produce very similar rankings. For the
experiments reported in the next section, we used
the log-likelihood ratio because this statistic is well-
defined with zeros and is preferable to the Pearson
chi-squared when dealing with rare events.

4 Experimental results

We used the log-likelihood ratio statisticG2 to rank
unobserved eventsab, wherea ⊂ P andb ∈ V . Let
Vo be the original, unfactored non-terminal set, and
let α ∈ (Vo :)∗ be a sequence of zero or more non-
terminal/colon symbol pairs. Suppose we have a fre-
quent factored non-terminalX :αB for X,B ∈ Vo.
Then, if the set of productionsX → Y X :αA with

316

A ∈ Vo is also frequent, butX → Y X:αB is un-
observed, this is a candidate structural zero. Simi-
lar splits can be considered with non-factored non-
terminals.

There are two state split scenarios we consider in
this paper. Scenario 1 is for factored non-terminals,
which are always the second child of a binary pro-
duction. For use in Equation 7,

ca =
∑
A∈Vo

c(X → Y X:αA)

cb = c(X:αB) for B ∈ Vo
cab = c(X → Y X:αB)

P(b) =
c(X:αB)∑

A∈Vo c(X:αA)
.

Scenario 2 is for non-factored non-terminals, which
we will split using the leftmost child, the left-corner
POS-tag, and the left-corner lexical item, which are
easily incorporated into our grammar factorization
approach. In this scenario, the non-terminal to be
split can be either the left or right child in the binary
production. Here we show the counts for the left
child case for use in Equation 7:

ca =
∑
A

c(X → Y [αA]Z)

cb = c(Y[αB])
cab = c(X → Y [αB]Z)

P(b) =
c(Y [αB])∑
A c(Y [αA])

In this case, the possible splits are more compli-
cated than just non-terminals as used in factoring.
Here, the first possible split is the left child cat-
egory, along with an indication of whether it is
a unary production. One can further split by in-
cluding the left-corner tag, and even further by
including the left-corner word. For example, a
unary S category might be split as follows: first to
S[1:VP] if the single child of the S is a VP; next
to S[1:VP:VBD] if the left-corner POS-tag is VBD;
finally to S[1:VP:VBD:went] if the VBD verb was
‘went’.

Note that, once non-terminals are split by anno-
tating such information, the base non-terminals, e.g.,
S, implicitly encode contexts other than the ones that
were split.

Table 2 shows the unobserved rules with the
largestG2 score, along with the ten non-terminals

Unobserved production G2

(added NT(s) in bold) score
PP→ IN[that] NP 7153.1
SBAR→ IN[that] S[1:VP] 5712.1
SBAR→ IN[of] S 5270.5
SBAR→WHNP[1:WDT] S[1:VP:TO] 4299.9
VP→ AUX VP[MD] 3972.1
SBAR→ IN[in] S 3652.1
NP→ NP VP[VB] 3236.2
NP→ NN NP:CC:NP 2796.3
SBAR→WHNP S[1:VP:VBG] 2684.9

Table 2: Top ten non-terminals to add, and the unobserved
productions leading to their addition to the non-terminal set.

that these productions suggest for inclusion in
our non-terminal set. The highest scoring un-
observed production is PP→ IN[that] NP. It re-
ceives such a high score because the base production
(PP→ IN NP) is very frequent, and so is ‘IN→that’,
but they jointly never occur, since ‘IN→that’ is a
complementizer. This split non-terminal also shows
up in the second-highest ranked zero, an SBAR with
‘that’ complementizer and an S child that consists
of a unary VP. The unary S→VP production is very
common, but never with a ‘that’ complementizer in
an SBAR.

Note that the fourth-ranked production uses two
split non-terminals. The fifth ranked rule presum-
ably does not add much information to aid parsing
disambiguation, since the AUX MD tag sequence is
unlikely4. The eighth ranked production is the first
with a factored category, ruling out coordination be-
tween NN and NP.

Before presenting experimental results, we will
mention some practical issues related to the ap-
proach described. First, we independently parame-
terized the number of factored categories to select
and the number of non-factored categories to se-
lect. This was done to allow for finer control of the
amount of splitting of non-terminals of each type.
To choose 100 of each, every non-terminal was as-
signed the score of the highest scoring unobserved
production within which it occurred. Then the 100
highest scoring non-terminals of each type were
added to the base non-terminal list, which originally
consisted of the atomic treebank non-terminals and
Markov order-0 factored non-terminals.

Once the desired non-terminals are selected, the
training corpus is factored, and non-terminals are
split if they were among the selected set. Note, how-

4In fact, we do not consider splits when both siblings are
POS-tags, because these are unlikely to carry any syntactic dis-
ambiguation.

317

0 250 500 750 1000 1250 1500
60

65

70

75

80

85

90

Number of non−factored splits

F
−

m
ea

su
re

 a
cc

ur
ac

y

Figure 3:F-measure accuracy on development set versus the
number of non-factored splits for the given run. Points represent
different numbers of factored splits.

ever, that some of the information in a selected non-
terminal may not be fully available, requiring some
number of additional splits. Any non-terminal that is
required by a selected non-terminal will be selected
itself. For example, suppose that NP:CC:NP was
chosen as a factored non-terminal. Then the sec-
ond child of any local tree with that non-terminal
on the LHS must either be an NP or a factored
non-terminal with at least the first child identified
as an NP, i.e., NP:NP. If that factored non-terminal
was not selected to be in the set, it must be added.
The same situation occurs with left-corner tags and
words, which may be arbitrarily far below the cate-
gory.

After factoring and selective splitting of non-
terminals, the resulting treebank corpus is used to
train a PCFG. Recall that we use thek-best output of
a POS-tagger to parse. For each POS-tag and lexical
item pair from the output of the tagger, we reduce
the word to lower case and check to see if the com-
bination is in the set of split POS-tags, in which case
we split the tag, e.g., IN[that].

Figure 3 shows the F-measure accuracy for our
trials on the development set versus the number of
non-factored splits parameterized for the trial. From
this plot, we can see that 500 non-factored splits
provides the best F-measure accuracy on the dev
set. Presumably, as more than 500 splits are made,
sparse data becomes more problematic. Figure 4
shows the development set F-measure accuracy ver-
sus the number of words-per-second it takes to parse
the development set, for non-factored splits of 0 and
500, at a range of factored split parameterizations.
With 0 non-factored splits, efficiency is substantially
impacted by increasing the factored splits, whereas
it can be seen that with 500 non-factored splits, that
impact is much less, so that the best performance

0 20 40 60 80 100 120 140 160 180

60

65

70

75

80

85

90

Words per second

F
−

m
ea

su
re

 a
cc

ur
ac

y

non−fact. splits=0
non−fact. splits=500
Markov order−0
Markov order−1
Markov order−2
PA, Markov order−2

Figure 4: F-measure accuracy versus words-per-second for
(1) no non-factored splits (i.e., only factored categories se-
lected); (2) 500 non-factored splits, which was the best perform-
ing; and (3) four baseline results.

is reached with both relatively few factored non-
terminal splits, and a relatively small efficiency im-
pact. The non-factored splits provide substantial ac-
curacy improvements at relatively small efficiency
cost.

Table 3 shows the 1-best and reranked 50-best re-
sults for the baseline Markov order-2 model, and
the best-performing model using factored and non-
factored non-terminal splits. We present the effi-
ciency of the model in terms of words-per-second
over the entire dev set, including the longer strings
(maximum length 116 words)5. We used thek-best
decoding algorithm of Huang and Chiang (2005)
with our CYK parser, using on-demandk-best back-
pointer calculation. We then trained a MaxEnt
reranker on sections 2-21, using the approach out-
lined in Charniak and Johnson (2005), via the pub-
licly available reranking code from that paper.6 We
used the default features that come with that pack-
age. The processing time in the table includes the
time to parse and rerank. As can be seen from the
trials, there is some overhead to these processes, but
the time is still dominated by the base parsing.

We present thek-best results to demonstrate the
benefits of using a better model, such as the one we
have presented, for producing candidates for down-
stream processing. Even with severe pruning to only
the top 50 candidate parses per string, which re-
sults in low oracle and reranked accuracy for the
Markov order-2 model, the best-performing model
based on structural zeros achieves a relatively high
oracle accuracy, and reaches 88.0 and 87.5 percent
F-measure accuracy on the dev (f24) and eval (f23)
sets respectively. Note that the well-known Char-

5The parsing time with our model for average length sen-
tences (23-25 words) is 0.16 seconds per sentence.

6http://www.cog.brown.edu/˜mj/code .

318

No. of Development (f24) Eval (f23)
Technique Cands Time(s) Words/s Oracle F LR LP F LR LP F
Baseline, Markov order-2 1 1302 24.9 71.3 68.8 73.8 71.3 68.9 73.9 71.4

50 1665 19.4 86.2 79.7 83.3 81.5 80.5 84.0 82.2

NT splits: factored=200 1 491 65.9 83.7 83.1 84.3 83.7 82.4 83.4 82.9
non-factored=500 50 628 51.5 93.8 87.4 88.7 88.0 87.1 88.0 87.5

Table 3:Parsing results on the development set (f24) and the evaluation set (f23) for the baseline Markov order-2 model and the
best-performing structural zero model, with 200 factored and 500 non-factored non-terminal splits. 1-best results, plus reranking
using a trained version of an existing reranker with 50 candidates.

niak parser (Charniak, 2000; Charniak and Johnson,
2005) uses a Markov order-3 baseline PCFG in the
initial pass, with a best-first algorithm that is run
past the first parse to populate the chart for use by
the richer model. While we have demonstrated ex-
haustive parsing efficiency, our model could be used
with any of the efficient search best-first approaches
documented in the literature, from those used in the
Charniak parser (Charniak et al., 1998; Blaheta and
Charniak, 1999) to A∗ parsing (Klein and Manning,
2003a). By using a richer grammar of the sort we
present, far fewer edges would be required in the
chart to include sufficient quality candidates for the
richer model, leading to further downstream savings
of processing time.

5 Conclusion

We described a method for creating concise PCFGs
by detecting structural zeros. The resulting un-
smoothed PCFGs have far higher accuracy than sim-
ple induced PCFGs and yet are very efficient to use.
While we focused on a small number of simple non-
terminal splits that fit the factorization we had se-
lected, the technique presented is applicable to a
wider range of possible non-terminal annotations,
including head or parent annotations. More gener-
ally, the ideas and method for determining structural
zeros (vs. sampling zeros) can be used in other con-
texts for a variety of other learning tasks.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant IIS-
0447214. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the NSF. The first author’s work was
partially funded by the New York State Office of
Science Technology and Academic Research (NYS-
TAR).

References
D. Blaheta and E. Charniak. 1999. Automatic compensation

for parser figure-of-merit flaws. InProceedings of ACL,
pages 513–518.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best pars-
ing and MaxEnt discriminative reranking. InProceedings of
ACL, pages 173–188.

E. Charniak, S. Goldwater, and M. Johnson. 1998. Edge-based
best-first chart parsing. InProceedings of the 6th Workshop
on Very Large Corpora, pages 127–133.

E. Charniak. 2000. A maximum-entropy-inspired parser. In
Proceedings of NAACL, pages 132–139.

M.J. Collins. 1997. Three generative, lexicalised models for
statistical parsing. InProceedings of ACL, pages 16–23.

T. Dunning. 1994. Accurate Methods for the Statistics
of Surprise and Coincidence.Computational Linguistics,
19(1):61–74.

J. Eisner and G. Satta. 1999. Efficient parsing for bilexical
context-free grammars and head automaton grammars. In
Proceedings of ACL, pages 457–464.

J. Eisner. 1997. Bilexical grammars and a cubic-time proba-
bilistic parser. InProceedings of the International Workshop
on Parsing Technologies, pages 54–65.

K. Hollingshead, S. Fisher, and B. Roark. 2005. Comparing
and combining finite-state and context-free parsers. InPro-
ceedings of HLT-EMNLP, pages 787–794.

L. Huang and D. Chiang. 2005. Better k-best parsing. InPro-
ceedings of the 9th International Workshop on Parsing Tech-
nologies (IWPT), pages 53–64.

M. Johnson. 1998. PCFG models of linguistic tree representa-
tions. Computational Linguistics, 24(4):617–636.

T. Kasami. 1965. An efficient recognition and syntax analy-
sis algorithm for context-free languages. Technical Report,
AFCRL-65-758, Air Force Cambridge Research Lab., Bed-
ford, MA.

D. Klein and C. Manning. 2003a. A* parsing: Fast exact
Viterbi parse selection. InProceedings of HLT-NAACL.

D. Klein and C. Manning. 2003b. Accurate unlexicalized pars-
ing. In Proceedings of ACL.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank.Computational Linguistics, 19(2):313–330.

D.H. Younger. 1967. Recognition and parsing of context-free
languages in time n3. Information and Control, 10(2):189–
208.

319

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 320–327,
New York, June 2006.c©2006 Association for Computational Linguistics

Prototype-Driven Learning for Sequence Models

Aria Haghighi

Computer Science Division
University of California Berkeley
aria42@cs.berkeley.edu

Dan Klein

Computer Science Division
University of California Berkeley
klein@cs.berkeley.edu

Abstract

We investigate prototype-driven learning for pri-
marily unsupervised sequence modeling. Prior
knowledge is specified declaratively, by provid-
ing a few canonical examples of each target an-
notation label. This sparse prototype information
is then propagated across a corpus using distri-
butional similarity features in a log-linear gener-
ative model. On part-of-speech induction in En-
glish and Chinese, as well as an information extrac-
tion task, prototype features provide substantial er-
ror rate reductions over competitive baselines and
outperform previous work. For example, we can
achieve an English part-of-speech tagging accuracy
of 80.5% using only three examples of each tag
and no dictionary constraints. We also compare to
semi-supervised learning and discuss the system’s
error trends.

1 Introduction

Learning, broadly taken, involves choosing a good

model from a large space of possible models. In su-

pervised learning, model behavior is primarily de-

termined by labeled examples, whose production

requires a certain kind of expertise and, typically,

a substantial commitment of resources. In unsu-

pervised learning, model behavior is largely deter-

mined by the structure of the model. Designing

models to exhibit a certain target behavior requires

another, rare kind of expertise and effort. Unsuper-

vised learning, while minimizing the usage of la-

beled data, does not necessarily minimize total ef-

fort. We therefore consider here how to learn mod-

els with the least effort. In particular, we argue for a

certain kind of semi-supervised learning, which we

call prototype-driven learning.

In prototype-driven learning, we specify prototyp-

ical examples for each target label or label configu-

ration, but do not necessarily label any documents or

sentences. For example, when learning a model for

Penn treebank-style part-of-speech tagging in En-

glish, we may list the 45 target tags and a few exam-

ples of each tag (see figure 4 for a concrete prototype

list for this task). This manner of specifying prior

knowledge about the task has several advantages.

First, is it certainly compact (though it remains to

be proven that it is effective). Second, it is more or

less the minimum one would have to provide to a

human annotator in order to specify a new annota-

tion task and policy (compare, for example, with the

list in figure 2, which suggests an entirely different

task). Indeed, prototype lists have been used ped-

agogically to summarize tagsets to students (Man-

ning and Schütze, 1999). Finally, natural language

does exhibit proform and prototype effects (Radford,

1988), which suggests that learning by analogy to

prototypes may be effective for language tasks.

In this paper, we consider three sequence mod-

eling tasks: part-of-speech tagging in English and

Chinese and a classified ads information extraction

task. Our general approach is to use distributional

similarity to link any given word to similar pro-

totypes. For example, the word reported may be

linked to said, which is in turn a prototype for the

part-of-speech VBD. We then encode these pro-

totype links as features in a log-linear generative

model, which is trained to fit unlabeled data (see

section 4.1). Distributional prototype features pro-

vide substantial error rate reductions on all three

tasks. For example, on English part-of-speech tag-

ging with three prototypes per tag, adding prototype

features to the baseline raises per-position accuracy

from 41.3% to 80.5%.

2 Tasks and Related Work: Tagging

For our part-of-speech tagging experiments, we used

data from the English and Chinese Penn treebanks

(Marcus et al., 1994; Ircs, 2002). Example sentences

320

(a) DT VBN NNS RB MD VB NNS TO VB NNS IN NNS RBR CC RBR RB .

The proposed changes also would allow executives to report exercises of options later and less often .

(b) NR AD VV AS PU NN VV DER VV PU PN AD VV DER VV PU DEC NN VV PU

! " # $ % & ’ () * + , - . / 0 * + , 1 2 3 4 5 6 7

(c) FEAT FEAT FEAT FEAT NBRHD NBRHD NBRHD NBRHD NBRHD SIZE SIZE SIZE SIZE

Vine covered cottage , near Contra Costa Hills . 2 bedroom house ,

FEAT FEAT FEAT FEAT FEAT RESTR RESTR RESTR RESTR RENT RENT RENT RENT

modern kitchen and dishwasher . No pets allowed . 1050 / month$

Figure 1: Sequence tasks: (a) English POS, (b) Chinese POS, and (c) Classified ad segmentation

are shown in figure 1(a) and (b). A great deal of re-

search has investigated the unsupervised and semi-

supervised induction of part-of-speech models, es-

pecially in English, and there is unfortunately only

space to mention some highly related work here.

One approach to unsupervised learning of part-

of-speech models is to induce HMMs from un-

labeled data in a maximum-likelihood framework.

For example, Merialdo (1991) presents experiments

learning HMMs using EM. Merialdo’s results most

famously show that re-estimation degrades accu-

racy unless almost no examples are labeled. Less

famously, his results also demonstrate that re-

estimation can improve tagging accuracies to some

degree in the fully unsupervised case.

One recent and much more successful approach

to part-of-speech learning is contrastive estimation,

presented in Smith and Eisner (2005). They utilize

task-specific comparison neighborhoods for part-of-

speech tagging to alter their objective function.

Both of these works require specification of the

legal tags for each word. Such dictionaries are large

and embody a great deal of lexical knowledge. A

prototype list, in contrast, is extremely compact.

3 Tasks and Related Work: Extraction

Grenager et al. (2005) presents an unsupervised

approach to an information extraction task, called

CLASSIFIEDS here, which involves segmenting clas-

sified advertisements into topical sections (see fig-

ure 1(c)). Labels in this domain tend to be “sticky”

in that the correct annotation tends to consist of

multi-element fields of the same label. The over-

all approach of Grenager et al. (2005) typifies the

process involved in fully unsupervised learning on

new domain: they first alter the structure of their

HMM so that diagonal transitions are preferred, then

modify the transition structure to explicitly model

boundary tokens, and so on. Given enough refine-

Label Prototypes

ROOMATES roommate respectful drama

RESTRICTIONS pets smoking dog

UTILITIES utilities pays electricity

AVAILABLE immediately begin cheaper

SIZE 2 br sq

PHOTOS pictures image link

RENT $ month *number*15*1

CONTACT *phone* call *time*

FEATURES kitchen laundry parking

NEIGHBORHOOD close near shopping

ADDRESS address carlmont *ordinal*5

BOUNDARY ; . !

Figure 2: Prototype list derived from the develop-

ment set of the CLASSIFIEDS data. The BOUND-

ARY field is not present in the original annotation,

but added to model boundaries (see Section 5.3).

The starred tokens are the results of collapsing of

basic entities during pre-processing as is done in

(Grenager et al., 2005)

ments the model learns to segment with a reasonable

match to the target structure.

In section 5.3, we discuss an approach to this

task which does not require customization of model

structure, but rather centers on feature engineering.

4 Approach

In the present work, we consider the problem of

learning sequence models over text. For each doc-

ument x = [xi], we would like to predict a sequence

of labels y = [yi], where xi ∈ X and yi ∈ Y . We

construct a generative model, p(x, y|θ), where θ are

the model’s parameters, and choose parameters to

maximize the log-likelihood of our observed data D:

L(θ;D) =
∑

x∈D

log p(x|θ)

=
∑

x∈D

log
∑

y

p(x, y|θ)

321

yi−1

〈DT,NN〉

yi

〈NN,VBD〉

xi

reported

xi−1

witness

f(xi, yi) =

word = reported

suffix-2 = ed

proto = said

proto = had

∧ VBD

f(yi−1, yi) = DT ∧ NN ∧ VBD

Figure 3: Graphical model representation of trigram

tagger for English POS domain.

4.1 Markov Random Fields

We take our model family to be chain-structured

Markov random fields (MRFs), the undirected

equivalent of HMMs. Our joint probability model

over (x, y) is given by

p(x, y|θ) =
1

Z(θ)

n
∏

i=1

φ(xi, yi)φ(yi−1, yi)

where φ(c) is a potential over a clique c, taking the

form exp
{

θT f(c)
}

, and f(c) is the vector of fea-

tures active over c. In our sequence models, the

cliques are over the edges/transitions (yi−1, yi) and

nodes/emissions (xi, yi). See figure 3 for an exam-

ple from the English POS tagging domain.

Note that the only way an MRF differs from

a conditional random field (CRF) (Lafferty et al.,

2001) is that the partition function is no longer ob-

servation dependent; we are modeling the joint prob-

ability of x and y instead of y given x. As a result,

learning an MRF is slightly harder than learning a

CRF; we discuss this issue in section 4.4.

4.2 Prototype-Driven Learning

We assume prior knowledge about the target struc-

ture via a prototype list, which specifies the set of

target labels Y and, for each label y ∈ Y , a set of

prototypes words, py ∈ Py. See figures 2 and 4 for

examples of prototype lists.1

1Note that this setting differs from the standard semi-
supervised learning setup, where a small number of fully la-
beled examples are given and used in conjunction with a larger
amount of unlabeled data. In our prototype-driven approach, we
never provide a single fully labeled example sequence. See sec-
tion 5.3 for further comparison of this setting to semi-supervised
learning.

Broadly, we would like to learn sequence models

which both explain the observed data and meet our

prior expectations about target structure. A straight-

forward way to implement this is to constrain each

prototype word to take only its given label(s) at

training time. As we show in section 5, this does

not work well in practice because this constraint on

the model is very sparse.

In providing a prototype, however, we generally

mean something stronger than a constraint on that

word. In particular, we may intend that words which

are in some sense similar to a prototype generally be

given the same label(s) as that prototype.

4.3 Distributional Similarity

In syntactic distributional clustering, words are

grouped on the basis of the vectors of their pre-

ceeding and following words (Schütze, 1995; Clark,

2001). The underlying linguistic idea is that replac-

ing a word with another word of the same syntactic

category should preserve syntactic well-formedness

(Radford, 1988). We present more details in sec-

tion 5, but for now assume that a similarity function

over word types is given.

Suppose further that for each non-prototype word

type w, we have a subset of prototypes, Sw, which

are known to be distributionally similar to w (above

some threshold). We would like our model to relate

the tags of w to those of Sw.

One approach to enforcing the distributional as-

sumption in a sequence model is by supplementing

the training objective (here, data likelihood) with a

penalty term that encourages parameters for which

each w’s posterior distribution over tags is compati-

ble with it’s prototypes Sw. For example, we might

maximize,
∑

x∈D

log p(x|θ) −
∑

w

∑

z∈Sw

KL(t|z || t|w)

where t|w is the model’s distribution of tags for

word w. The disadvantage of a penalty-based ap-

proach is that it is difficult to construct the penalty

term in a way which produces exactly the desired

behavior.

Instead, we introduce distributional prototypes

into the learning process as features in our log-linear

model. Concretely, for each prototype z, we intro-

duce a predicate PROTO = z which becomes active

322

at each w for which z ∈ Sw (see figure 3). One ad-

vantage of this approach is that it allows the strength

of the distributional constraint to be calibrated along

with any other features; it was also more successful

in our experiments.

4.4 Parameter Estimation

So far we have ignored the issue of how we learn

model parameters θ which maximize L(θ;D). If our

model family were HMMs, we could use the EM al-

gorithm to perform a local search. Since we have

a log-linear formulation, we instead use a gradient-

based search. In particular, we use L-BFGS (Liu

and Nocedal, 1989), a standard numerical optimiza-

tion technique, which requires the ability to evaluate

L(θ;D) and its gradient at a given θ.

The density p(x|θ) is easily calculated up to the

global constant Z(θ) using the forward-backward

algorithm (Rabiner, 1989). The partition function

is given by

Z(θ) =
∑

x

∑

y

n
∏

i=1

φ(xi, yi)φ(yi−1, yi)

=
∑

x

∑

y

score(x, y)

Z(θ) can be computed exactly under certain as-

sumptions about the clique potentials, but can in all

cases be bounded by

Ẑ(θ) =

K
∑

`=1

Ẑ`(θ) =

K
∑

`=1

∑

x:|x|=`

score(x, y)

Where K is a suitably chosen large constant. We can

efficiently compute Ẑ`(θ) for fixed ` using a gener-

alization of the forward-backward algorithm to the

lattice of all observations x of length ` (see Smith

and Eisner (2005) for an exposition).

Similar to supervised maximum entropy prob-

lems, the partial derivative of L(θ;D) with respect

to each parameter θj (associated with feature fj) is

given by a difference in feature expectations:

∂L(θ;D)

∂θj

=
∑

x∈D

(

Ey|x,θfj − Ex,y|θfj

)

The first expectation is the expected count of the fea-

ture under the model’s p(y|x, θ) and is again eas-

ily computed with the forward-backward algorithm,

Num Tokens

Setting 48K 193K

BASE 42.2 41.3

PROTO 61.9 68.8

PROTO+SIM 79.1 80.5

Table 1: English POS results measured by per-

position accuracy

just as for CRFs or HMMs. The second expectation

is the expectation of the feature under the model’s

joint distribution over all x, y pairs, and is harder to

calculate. Again assuming that sentences beyond a

certain length have negligible mass, we calculate the

expectation of the feature for each fixed length ` and

take a (truncated) weighted sum:

Ex,y|θfj =

K
∑

`=1

p(|x| = `)Ex,y|`,θfj

For fixed `, we can calculate Ex,y|`,θfj using the lat-

tice of all inputs of length `. The quantity p(|x| = `)
is simply Ẑ`(θ)/Ẑ(θ).

As regularization, we use a diagonal Gaussian

prior with variance σ2 = 0.5, which gave relatively

good performance on all tasks.

5 Experiments

We experimented with prototype-driven learning in

three domains: English and Chinese part-of-speech

tagging and classified advertisement field segmenta-

tion. At inference time, we used maximum poste-

rior decoding,2 which we found to be uniformly but

slightly superior to Viterbi decoding.

5.1 English POS Tagging

For our English part-of-speech tagging experiments,

we used the WSJ portion of the English Penn tree-

bank (Marcus et al., 1994). We took our data to be

either the first 48K tokens (2000 sentences) or 193K

tokens (8000 sentences) starting from section 2. We

used a trigram tagger of the model form outlined in

section 4.1 with the same set of spelling features re-

ported in Smith and Eisner (2005): exact word type,

2At each position choosing the label which has the highest
posterior probability, obtained from the forward-backward al-
gorithm.

323

Label Prototype Label Prototype

NN % company year NNS years shares companies

JJ new other last VBG including being according

MD will would could -LRB- -LRB- -LCB-

VBP are ’re ’ve DT the a The

RB n’t also not WP$ whose

-RRB- -RRB- -RCB- FW bono del kanji

WRB when how where RP Up ON

IN of in for VBD said was had

SYM c b f $ $ US$ C$

CD million billion two # #

TO to To na : – : ;

VBN been based compared NNPS Philippines Angels Rights

RBR Earlier duller “ “ ‘ non-“

VBZ is has says VB be take provide

JJS least largest biggest RBS Worst

NNP Mr. U.S. Corp. , ,

POS ’S CC and or But

PRP$ its their his JJR smaller greater larger

PDT Quite WP who what What

WDT which Whatever whatever . . ? !

EX There PRP it he they

” ” UH Oh Well Yeah

Figure 4: English POS prototype list

Correct Tag Predicted Tag % of Errors

CD DT 6.2

NN JJ 5.3

JJ NN 5.2

VBD VBN 3.3

NNS NN 3.2

Figure 5: Most common English POS confusions for

PROTO+SIM on 193K tokens

character suffixes of length up to 3, initial-capital,

contains-hyphen, and contains-digit. Our only edge

features were tag trigrams.

With just these features (our baseline BASE) the

problem is symmetric in the 45 model labels. In

order to break initial symmetry we initialized our

potentials to be near one, with some random noise.

To evaluate in this setting, model labels must be

mapped to target labels. We followed the common

approach in the literature, greedily mapping each

model label to a target label in order to maximize

per-position accuracy on the dataset. The results of

BASE, reported in table 1, depend upon random ini-

tialization; averaging over 10 runs gave an average

per-position accuracy of 41.3% on the larger training

set.

We automatically extracted the prototype list by

taking our data and selecting for each annotated la-

bel the top three occurring word types which were

not given another label more often. This resulted

in 116 prototypes for the 193K token setting.3 For

comparison, there are 18,423 word types occurring

in this data.

Incorporating the prototype list in the simplest

possible way, we fixed prototype occurrences in the

data to their respective annotation labels. In this

case, the model is no longer symmetric, and we

no longer require random initialization or post-hoc

mapping of labels. Adding prototypes in this way

gave an accuracy of 68.8% on all tokens, but only

47.7% on non-prototype occurrences, which is only

a marginal improvement over BASE. It appears as

though the prototype information is not spreading to

non-prototype words.

In order to remedy this, we incorporated distri-

butional similarity features. Similar to (Schütze,

1995), we collect for each word type a context vector

of the counts of the most frequent 500 words, con-

joined with a direction and distance (e.g +1,-2). We

then performed an SVD on the matrix to obtain a re-

duced rank approximation. We used the dot product

between left singular vectors as a measure of distri-

butional similarity. For each word w, we find the set

of prototype words with similarity exceeding a fixed

threshold of 0.35. For each of these prototypes z,

we add a predicate PROTO = z to each occurrence of

w. For example, we might add PROTO = said to each

token of reported (as in figure 3).4

Each prototype word is also its own prototype

(since a word has maximum similarity to itself), so

when we lock the prototype to a label, we are also

pushing all the words distributionally similar to that

prototype towards that label.5

3To be clear: this method of constructing a prototype list
required statistics from the labeled data. However, we believe
it to be a fair and necessary approach for several reasons. First,
we wanted our results to be repeatable. Second, we did not want
to overly tune this list, though experiments below suggest that
tuning could greatly reduce the error rate. Finally, it allowed us
to run on Chinese, where the authors have no expertise.

4Details of distributional similarity features: To extract con-
text vectors, we used a window of size 2 in either direction and
use the first 250 singular vectors. We collected counts from
all the WSJ portion of the Penn Treebank as well as the entire
BLIPP corpus. We limited each word to have similarity features
for its top 5 most similar prototypes.

5Note that the presence of a prototype feature does not en-
sure every instance of that word type will be given its proto-
type’s label; pressure from “edge” features or other prototype
features can cause occurrences of a word type to be given differ-
ent labels. However, rare words with a single prototype feature
are almost always given that prototype’s label.

324

This setting, PROTO+SIM, brings the all-tokens

accuracy up to 80.5%, which is a 37.5% error re-

duction over PROTO. For non-prototypes, the accu-

racy increases to 67.8%, an error reduction of 38.4%

over PROTO. The overall error reduction from BASE

to PROTO+SIM on all-token accuracy is 66.7%.

Table 5 lists the most common confusions for

PROTO+SIM. The second, third, and fourth most

common confusions are characteristic of fully super-

vised taggers (though greater in number here) and

are difficult. For instance, both JJs and NNs tend to

occur after determiners and before nouns. The CD

and DT confusion is a result of our prototype list not

containing a contains-digit prototype for CD, so the

predicate fails to be linked to CDs. Of course in a

realistic, iterative design setting, we could have al-

tered the prototype list to include a contains-digit

prototype for CD and corrected this confusion.

Figure 6 shows the marginal posterior distribu-

tion over label pairs (roughly, the bigram transi-

tion matrix) according to the treebank labels and the

PROTO+SIM model run over the training set (using

a collapsed tag set for space). Note that the broad

structure is recovered to a reasonable degree.

It is difficult to compare our results to other sys-

tems which utilize a full or partial tagging dictio-

nary, since the amount of provided knowledge is

substantially different. The best comparison is to

Smith and Eisner (2005) who use a partial tagging

dictionary. In order to compare with their results,

we projected the tagset to the coarser set of 17 that

they used in their experiments. On 24K tokens, our

PROTO+SIM model scored 82.2%. When Smith and

Eisner (2005) limit their tagging dictionary to words

which occur at least twice, their best performing

neighborhood model achieves 79.5%. While these

numbers seem close, for comparison, their tagging

dictionary contained information about the allow-

able tags for 2,125 word types (out of 5,406 types)

and the their system must only choose, on average,

between 4.4 tags for a word. Our prototype list,

however, contains information about only 116 word

types and our tagger must on average choose be-

tween 16.9 tags, a much harder task. When Smith

and Eisner (2005) include tagging dictionary entries

for all words in the first half of their 24K tokens, giv-

ing tagging knowledge for 3,362 word types, they do

achieve a higher accuracy of 88.1%.

Setting Accuracy

BASE 46.4

PROTO 53.7

PROTO+SIM 71.5

PROTO+SIM+BOUND 74.1

Figure 7: Results on test set for ads data in

(Grenager et al., 2005).

5.2 Chinese POS Tagging

We also tested our POS induction system on the Chi-

nese POS data in the Chinese Treebank (Ircs, 2002).

The model is wholly unmodified from the English

version except that the suffix features are removed

since, in Chinese, suffixes are not a reliable indi-

cator of part-of-speech as in English (Tseng et al.,

2005). Since we did not have access to a large aux-

iliary unlabeled corpus that was segmented, our dis-

tributional model was built only from the treebank

text, and the distributional similarities are presum-

ably degraded relative to the English. On 60K word

tokens, BASE gave an accuracy of 34.4, PROTO gave

39.0, and PROTO+SIM gave 57.4, similar in order if

not magnitude to the English case.

We believe the performance for Chinese POS tag-

ging is not as high as English for two reasons: the

general difficulty of Chinese POS tagging (Tseng et

al., 2005) and the lack of a larger segmented corpus

from which to build distributional models. Nonethe-

less, the addition of distributional similarity features

does reduce the error rate by 35% from BASE.

5.3 Information Field Segmentation

We tested our framework on the CLASSIFIEDS data

described in Grenager et al. (2005) under conditions

similar to POS tagging. An important characteristic

of this domain (see figure 1(a)) is that the hidden la-

bels tend to be “sticky,” in that fields tend to consist

of runs of the same label, as in figure 1(c), in con-

trast with part-of-speech tagging, where we rarely

see adjacent tokens given the same label. Grenager

et al. (2005) report that in order to learn this “sticky”

structure, they had to alter the structure of their

HMM so that a fixed mass is placed on each diag-

onal transition. In this work, we learned this struc-

ture automatically though prototype similarity fea-

tures without manually constraining the model (see

325

INPUNC

PRT

TO

VBN

LPUNC

W

DET

ADV

V

POS

ENDPUNC

VBG

PREP

ADJ

RPUNC

N

CONJ

IN
P
U
N
C

P
R
T

T
O

V
B
N

L
P
U
N
C

W D
E
T

A
D
V

V P
O
S

E
N
D
P
U
N
C

V
B
G

P
R
E
P

A
D
J

R
P
U
N
C

N C
O
N
J

INPUNC

PRT

TO

VBN

LPUNC

W

DET

ADV

V

POS

ENDPUNC

VBG

PREP

ADJ

RPUNC

N

CONJ

IN
P
U
N
C

P
R
T

T
O

V
B
N

L
P
U
N
C

W D
E
T

A
D
V

V P
O
S

E
N
D
P
U
N
C

V
B
G

P
R
E
P

A
D
J

R
P
U
N
C

N C
O
N
J

(a) (b)

Figure 6: English coarse POS tag structure: a) corresponds to “correct” transition structure from labeled

data, b) corresponds to PROTO+SIM on 24K tokens

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

ROOMATES

UTILITIES

RESTRICTIONS

AVAILABLE

SIZE

PHOTOS

RENT

FEATURES

CONTACT

NEIGHBORHOOD

ADDRESS

(a) (b) (c)

Figure 8: Field segmentation observed transition structure: (a) labeled data, (b) BASE(c)

BASE+PROTO+SIM+BOUND (after post-processing)

figure 8), though we did change the similarity func-

tion (see below).

On the test set of (Grenager et al., 2005),

BASE scored an accuracy of 46.4%, comparable to

Grenager et al. (2005)’s unsupervised HMM base-

line. Adding the prototype list (see figure 2) without

distributional features yielded a slightly improved

accuracy of 53.7%. For this domain, we utilized

a slightly different notion of distributional similar-

ity: we are not interested in the syntactic behavior

of a word type, but its topical content. Therefore,

when we collect context vectors for word types in

this domain, we make no distinction by direction

or distance and collect counts from a wider win-

dow. This notion of distributional similarity is more

similar to latent semantic indexing (Deerwester et

al., 1990). A natural consequence of this definition

of distributional similarity is that many neighboring

words will share the same prototypes. Therefore

distributional prototype features will encourage la-

bels to persist, naturally giving the “sticky” effect

of the domain. Adding distributional similarity fea-

tures to our model (PROTO+SIM) improves accuracy

substantially, yielding 71.5%, a 38.4% error reduc-

tion over BASE.6

Another feature of this domain that Grenager et

al. (2005) take advantage of is that end of sen-

tence punctuation tends to indicate the end of a

field and the beginning of a new one. Grenager et

al. (2005) experiment with manually adding bound-

ary states and biasing transitions from these states

to not self-loop. We capture this “boundary” ef-

fect by simply adding a line to our protoype-list,

adding a new BOUNDARY state (see figure 2) with

a few (hand-chosen) prototypes. Since we uti-

lize a trigram tagger, we are able to naturally cap-

ture the effect that the BOUNDARY tokens typically

indicate transitions between the fields before and

after the boundary token. As a post-processing

step, when a token is tagged as a BOUNDARY

6Distributional similarity details: We collect for each word
a context vector consisting of the counts for words occurring
within three token occurrences of a word. We perform a SVD
onto the first 50 singular vectors.

326

Correct Tag Predicted Tag % of Errors

FEATURES SIZE 11.2

FEATURES NBRHD 9.0

SIZE FEATURES 7.7

NBRHD FEATURES 6.4

ADDRESS NBRHD 5.3

UTILITIES FEATURES 5.3

Figure 9: Most common classified ads confusions

token it is given the same label as the previous

non-BOUNDARY token, which reflects the annota-

tional convention that boundary tokens are given the

same label as the field they terminate. Adding the

BOUNDARY label yields significant improvements,

as indicated by the PROTO+SIM+BOUND setting in

Table 5.3, surpassing the best unsupervised result

of Grenager et al. (2005) which is 72.4%. Further-

more, our PROTO+SIM+BOUND model comes close

to the supervised HMM accuracy of 74.4% reported

in Grenager et al. (2005).

We also compared our method to the most ba-

sic semi-supervised setting, where fully labeled doc-

uments are provided along with unlabeled ones.

Roughly 25% of the data had to be labeled

in order to achieve an accuracy equal to our

PROTO+SIM+BOUND model, suggesting that the use

of prior knowledge in the prototype system is partic-

ularly efficient.

In table 5.3, we provide the top confusions made

by our PROTO+SIM+BOUND model. As can be seen,

many of our confusions involve the FEATURE field,

which serves as a general purpose background state,

which often differs subtly from other fields such as

SIZE. For instance, the parenthical comment: (mas-

ter has walk - in closet with vanity) is labeled as

a SIZE field in the data, but our model proposed

it as a FEATURE field. NEIGHBORHOOD and AD-

DRESS is another natural confusion resulting from

the fact that the two fields share much of the same

vocabulary (e.g [ADDRESS 2525 Telegraph Ave.] vs.

[NBRHD near Telegraph]).

Acknowledgments We would like to thank the

anonymous reviewers for their comments. This

work is supported by a Microsoft / CITRIS grant and

by an equipment donation from Intel.

6 Conclusions

We have shown that distributional prototype features

can allow one to specify a target labeling scheme

in a compact and declarative way. These features

give substantial error reduction on several induction

tasks by allowing one to link words to prototypes ac-

cording to distributional similarity. Another positive

property of this approach is that it tries to reconcile

the success of sequence-free distributional methods

in unsupervised word clustering with the success of

sequence models in supervised settings: the similar-

ity guides the learning of the sequence model.

References

Alexander Clark. 2001. The unsupervised induction of stochas-
tic context-free grammars using distributional clustering. In
CoNLL.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. 1990. In-
dexing by latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407.

Trond Grenager, Dan Klein, and Christopher Manning. 2005.
Unsupervised learning of field segmentation models for in-
formation extraction. In Proceedings of the 43rd Meeting of
the ACL.

Nianwen Xue Ircs. 2002. Building a large-scale annotated chi-
nese corpus.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In International Con-
ference on Machine Learning (ICML).

Dong C. Liu and Jorge Nocedal. 1989. On the limited mem-
ory bfgs method for large scale optimization. Mathematical
Programming.

Christopher D. Manning and Hinrich Schütze. 1999. Founda-
tions of Statistical Natural Language Processing. The MIT
Press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated corpus
of english: The penn treebank. Computational Linguistics,
19(2):313–330.

Bernard Merialdo. 1991. Tagging english text with a proba-
bilistic model. In ICASSP, pages 809–812.

L.R Rabiner. 1989. A tutorial on hidden markov models and
selected applications in speech recognition. In IEEE.

Andrew Radford. 1988. Transformational Grammar. Cam-
bridge University Press, Cambridge.

Hinrich Schütze. 1995. Distributional part-of-speech tagging.
In EACL.

Noah Smith and Jason Eisner. 2005. Contrastive estimation:
Training log-linear models on unlabeled data. In Proceed-
ings of the 43rd Meeting of the ACL.

Huihsin Tseng, Daniel Jurafsky, and Christopher Manning.
2005. Morphological features help pos tagging of unknown
words across language varieties. In Proceedings of the
Fourth SIGHAN Workshop on Chinese Language Process-
ing.

327

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 328–334,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning Morphological Disambiguation Rules for Turkish

Deniz Yuret
Dept. of Computer Engineering

Koç University
İstanbul, Turkey

dyuret@ku.edu.tr

Ferhan Türe
Dept. of Computer Engineering

Koç University
İstanbul, Turkey

fture@ku.edu.tr

Abstract

In this paper, we present a rule based
model for morphological disambiguation
of Turkish. The rules are generated by a
novel decision list learning algorithm us-
ing supervised training. Morphological
ambiguity (e.g. lives = live+s or life+s)
is a challenging problem for agglutinative
languages like Turkish where close to half
of the words in running text are morpho-
logically ambiguous. Furthermore, it is
possible for a word to take an unlimited
number of suffixes, therefore the number
of possible morphological tags is unlim-
ited. We attempted to cope with these
problems by training a separate model for
each of the 126 morphological features
recognized by the morphological analyzer.
The resulting decision lists independently
vote on each of the potential parses of a
word and the final parse is selected based
on our confidence on these votes. The
accuracy of our model (96%) is slightly
above the best previously reported results
which use statistical models. For compari-
son, when we train a single decision list on
full tags instead of using separate models
on each feature we get 91% accuracy.

1 Introduction

Morphological disambiguation is the task of select-
ing the correct morphological parse for a given word

in a given context. The possible parses of a word
are generated by a morphological analyzer. In Turk-
ish, close to half the words in running text are mor-
phologically ambiguous. Below is a typical word
“masalı” with three possible parses.

masal+Noun+A3sg+Pnon+Acc (= the story)
masal+Noun+A3sg+P3sg+Nom (= his story)
masa+Noun+A3sg+Pnon+NomˆDB+Adj+With

(= with tables)

Table 1: Three parses of the word “masalı”

The first two parses start with the same root,
masal (= story, fable), but the interpretation of the
following +ı suffix is the Accusative marker in one
case, and third person possessive agreement in the
other. The third parse starts with a different root,
masa (= table) followed by a derivational suffix +lı
(= with) which turns the noun into an adjective. The
symbol ˆDB represents a derivational boundary and
splits the parse into chunks called inflectional groups
(IGs).1

We will use the term feature to refer to individual
morphological features like +Acc and +With; the
term IG to refer to groups of features split by deriva-
tional boundaries (ˆDB), and the term tag to refer to
the sequence of IGs following the root.

Morphological disambiguation is a useful first
step for higher level analysis of any language but it
is especially critical for agglutinative languages like
Turkish, Czech, Hungarian, and Finnish. These lan-
guages have a relatively free constituent order, and

1See (Oflazer et al., 1999) for a detailed description of the
morphological features used in this paper.

328

syntactic relations are partly determined by morpho-
logical features. Many applications including syn-
tactic parsing, word sense disambiguation, text to
speech synthesis and spelling correction depend on
accurate analyses of words.

An important qualitative difference between part
of speech tagging in English and morphological dis-
ambiguation in an agglutinative language like Turk-
ish is the number of possible tags that can be as-
signed to a word. Typical English tag sets include
less than a hundred tag types representing syntac-
tic and morphological information. The number of
potential morphological tags in Turkish is theoret-
ically unlimited. We have observed more than ten
thousand tag types in our training corpus of a mil-
lion words. The high number of possible tags poses
a data sparseness challenge for the typical machine
learning approach, somewhat akin to what we ob-
serve in word sense disambiguation.

One way out of this dilemma could be to ignore
the detailed morphological structure of the word and
focus on determining only the major and minor parts
of speech. However (Oflazer et al., 1999) observes
that the modifier words in Turkish can have depen-
dencies to any one of the inflectional groups of a
derived word. For example, in “mavi masalı oda” (=
the room with a blue table) the adjective “mavi” (=
blue) modifies the noun root “masa” (= table) even
though the final part of speech of “masalı” is an ad-
jective. Therefore, the final part of speech and in-
flection of a word do not carry sufficient information
for the identification of the syntactic dependencies
it is involved in. One needs the full morphological
analysis.

Our approach to the data sparseness problem is
to consider each morphological feature separately.
Even though the number of potential tags is un-
limited, the number of morphological features is
small: The Turkish morphological analyzer we use
(Oflazer, 1994) produces tags that consist of 126
unique features. For each unique feature f , we take
the subset of the training data in which one of the
parses for each instance contain f . We then split this
subset into positive and negative examples depend-
ing on whether the correct parse contains the feature
f . These examples are used to learn rules using the
Greedy Prepend Algorithm (GPA), a novel decision
list learner.

To predict the tag of an unknown word, first the
morphological analyzer is used to generate all its
possible parses. The decision lists are then used to
predict the presence or absence of each of the fea-
tures contained in the candidate parses. The results
are probabilistically combined taking into account
the accuracy of each decision list to select the best
parse. The resulting tagging accuracy is 96% on a
hand tagged test set.

A more direct approach would be to train a single
decision list using the full tags as the target classifi-
cation. Given a word in context, such a decision list
assigns a complete morphological tag instead of pre-
dicting individual morphological features. As such,
it does not need the output of a morphological ana-
lyzer and should be considered a tagger rather than
a disambiguator. For comparison, such a decision
list was built, and its accuracy was determined to be
91% on the same test set.

The main reason we chose to work with decision
lists and the GPA algorithm is their robustness to ir-
relevant or redundant features. The input to the deci-
sion lists include the suffixes of all possible lengths
and character type information within a five word
window. Each instance ends up with 40 attributes on
average which are highly redundant and mostly irrel-
evant. GPA is able to sort out the relevant features
automatically and build a fairly accurate model. Our
experiments with Naive Bayes resulted in a signif-
icantly worse performance. Typical statistical ap-
proaches include the tags of the previous words as
inputs in the model. GPA was able to deliver good
performance without using the previous tags as in-
puts, because it was able to extract equivalent infor-
mation implicit in the surface attributes. Finally, un-
like most statistical approaches, the resulting models
of GPA are human readable and open to interpreta-
tion as Section 3.1 illustrates.

The next section will review related work. Sec-
tion 3 introduces decision lists and the GPA training
algorithm. Section 4 presents the experiments and
the results.

2 Related Work

There is a large body of work on morphological dis-
ambiguation and part of speech tagging using a va-
riety of rule-based and statistical approaches. In the

329

rule-based approach a large number of hand crafted
rules are used to select the correct morphological
parse or POS tag of a given word in a given context
(Karlsson et al., 1995; Oflazer and Tür, 1997). In
the statistical approach a hand tagged corpus is used
to train a probabilistic model which is then used to
select the best tags in unseen text (Church, 1988;
Hakkani-Tür et al., 2002). Examples of statisti-
cal and machine learning approaches that have been
used for tagging include transformation based learn-
ing (Brill, 1995), memory based learning (Daele-
mans et al., 1996), and maximum entropy models
(Ratnaparkhi, 1996). It is also possible to train sta-
tistical models using unlabeled data with the ex-
pectation maximization algorithm (Cutting et al.,
1992). Van Halteren (1999) gives a comprehensive
overview of syntactic word-class tagging.

Previous work on morphological disambiguation
of inflectional or agglutinative languages include
unsupervised learning for of Hebrew (Levinger
et al., 1995), maximum entropy modeling for Czech
(Hajič and Hladká, 1998), combination of statistical
and rule-based disambiguation methods for Basque
(Ezeiza et al., 1998), transformation based tagging
for Hungarian (Megyesi, 1999).

Early work on Turkish used a constraint-based ap-
proach with hand crafted rules (Oflazer and Kuruöz,
1994). A purely statistical morphological disam-
biguation model was recently introduced (Hakkani-
Tür et al., 2002). To counter the data sparseness
problem the morphological parses are split across
their derivational boundaries and certain indepen-
dence assumptions are made in the prediction of
each inflectional group.

A combination of three ideas makes our approach
unique in the field: (1) the use of decision lists and
a novel learning algorithm that combine the statis-
tical and rule based techniques, (2) the treatment of
each individual feature separately to address the data
sparseness problem, and (3) the lack of dependence
on previous tags and relying on surface attributes
alone.

3 Decision Lists

We introduce a new method for morphological dis-
ambiguation based on decision lists. A decision list
is an ordered list of rules where each rule consists

of a pattern and a classification (Rivest, 1987). In
our application the pattern specifies the surface at-
tributes of the words surrounding the target such as
suffixes and character types (e.g. upper vs. lower
case, use of punctuation, digits). The classification
indicates the presence or absence of a morphological
feature for the center word.

3.1 A Sample Decision List

We will explain the rules and their patterns using the
sample decision list in Table 2 trained to identify the
feature +Det (determiner).

Rule Class Pattern
1 1 W=˜çok R1=+DA
2 1 L1=˜pek
3 0 W=+AzI
4 0 W=˜çok
5 1 –

Table 2: A five rule decision list for +Det

The value in the class column is 1 if word W
should have a +Det feature and 0 otherwise. The
pattern column describes the required attributes of
the words surrounding the target word for the rule
to match. The last (default) rule has no pattern,
matches every instance, and assigns them +Det.
This default rule captures the behavior of the ma-
jority of the training instances which had +Det in
their correct parse. Rule 4 indicates a common
exception: the frequently used word “çok” (mean-
ing very) should not be assigned +Det by default:
“çok” can be also used as an adjective, an adverb,
or a postposition. Rule 1 introduces an exception to
rule 4: if the right neighbor R1 ends with the suffix
+DA (the locative suffix) then “çok” should receive
+Det. The meanings of various symbols in the pat-
terns are described below.

When the decision list is applied to a window of
words, the rules are tried in the order from the most
specific (rule 1) to the most general (rule 5). The first
rule that matches is used to predict the classification
of the center word. The last rule acts as a catch-all;
if none of the other rules have matched, this rule as-
signs the instance a default classification. For exam-
ple, the five rule decision list given above classifies
the middle word in “pek çok alanda” (matches rule

330

W target word A [ae]
L1, L2 left neighbors I [ıiuü]
R1, R2 right neighbors D [dt]
== exact match B [bp]
=˜ case insensitive match C [cç]
=+ is a suffix of K [kgğ]

Table 3: Symbols used in the rule patterns. Capital
letters on the right represent character groups useful
in identifying phonetic variations of certain suffixes,
e.g. the locative suffix +DA can surface as +de, +da,
+te, or +ta depending on the root word ending.

1) and “pek çok insan” (matches rule 2) as +Det,
but “insan çok daha” (matches rule 4) as not +Det.

One way to interpret a decision list is as a se-
quence of if-then-else constructs familiar from pro-
gramming languages. Another way is to see the last
rule as the default classification, the previous rule as
specifying a set of exceptions to the default, the rule
before that as specifying exceptions to these excep-
tions and so on.

3.2 The Greedy Prepend Algorithm (GPA)

To learn a decision list from a given set of training
examples the general approach is to start with a de-
fault rule or an empty decision list and keep adding
the best rule to cover the unclassified or misclassi-
fied examples. The new rules can be added to the
end of the list (Clark and Niblett, 1989), the front of
the list (Webb and Brkic, 1993), or other positions
(Newlands and Webb, 2004). Other design decisions
include the criteria used to select the “best rule” and
how to search for it.

The Greedy Prepend Algorithm (GPA) is a variant
of the PREPEND algorithm (Webb and Brkic, 1993).
It starts with a default rule that matches all instances
and classifies them using the most common class in
the training data. Then it keeps prepending the rule
with the maximum gain to the front of the grow-
ing decision list until no further improvement can be
made. The algorithm can be described as follows:

GPA(data)

1 dlist ← NIL

2 default -class ← MOST-COMMON-CLASS(data)
3 rule ← [if TRUE then default -class]
4 while GAIN(rule , dlist , data) > 0
5 do dlist ← prepend(rule , dlist)
6 rule ← MAX-GAIN-RULE(dlist , data)
7 return dlist

The gain of a candidate rule in GPA is defined
as the increase in the number of correctly classified
instances in the training set as a result of prepend-
ing the rule to the existing decision list. This is
in contrast with the original PREPEND algorithm
which uses the less direct Laplace preference func-
tion (Webb and Brkic, 1993; Clark and Boswell,
1991).

To find the next rule with the maximum gain, GPA
uses a heuristic search algorithm. Candidate rules
are generated by adding a single new attribute to the
pattern of each rule already in the decision list. The
candidate with the maximum gain is prepended to
the decision list and the process is repeated until no
more positive gain rules can be found. Note that if
the best possible rule has more than one extra at-
tribute compared to the existing rules in the decision
list, a suboptimal rule will be selected. The origi-
nal PREPEND uses an admissible search algorithm,
OPUS, which is guaranteed to find the best possible
candidate (Webb, 1995), but we found OPUS to be
too slow to be practical for a problem of this scale.

We picked GPA for the morphological disam-
biguation problem because we find it to be fast and
fairly robust to the existence of irrelevant or redun-
dant attributes. The average training instance has
40 attributes describing the suffixes of all possible
lengths and character type information in a five word
window. Most of this information is redundant or
irrelevant to the problem at hand. The number of
distinct attributes is on the order of the number of
distinct word-forms in the training set. Nevertheless
GPA is able to process a million training instances
for each of the 126 unique morphological features
and produce a model with state of the art accuracy
in about two hours on a regular desktop PC.2

2Pentium 4 CPU 2.40GHz

331

4 Experiments and Results

In this section we present the details of the data,
the training and testing procedures, the surface at-
tributes used, and the accuracy results.

4.1 Training Data

documents 2383
sentences 50673

tokens 948404
parses 1.76 per token

IGs 1.33 per parse
features 3.29 per IG

unique tokens 111467
unique tags 11084
unique IGs 2440

unique features 126
ambiguous tokens 399223 (42.1%)

Table 4: Statistics for the training data

Our training data consists of about 1 million
words of semi-automatically disambiguated Turkish
news text. For each one of the 126 unique morpho-
logical features, we used the subset of the training
data in which instances have the given feature in at
least one of their generated parses. We then split this
subset into positive and negative examples depend-
ing on whether the correct parse contains the given
feature. A decision list specific to that feature is cre-
ated using GPA based on these examples.

Some relevant statistics for the training data are
given in Table 4.

4.2 Input Attributes
Once the training data is selected for a particular
morphological feature, each instance is represented
by surface attributes of five words centered around
the target word. We have tried larger window sizes
but no significant improvement was observed. The
attributes computed for each word in the window
consist of the following:

1. The exact word string (e.g. W==Ali’nin)

2. The lowercase version (e.g. W=˜ali’nin) Note:
all digits are replaced by 0’s at this stage.

3. All suffixes of the lowercase version (e.g.
W=+n, W=+In, W=+nIn, W=+’nIn, etc.) Note:

certain characters are replaced with capital let-
ters representing character groups mentioned in
Table 3. These groups help the algorithm rec-
ognize different forms of a suffix created by the
phonetic rules of Turkish: for example the loca-
tive suffix +DA can surface as +de, +da, +te, or
+ta depending on the ending of the root word.

4. Attributes indicating the types of characters at
various positions of the word (e.g. Ali’nin
would be described with W=UPPER-FIRST,
W=LOWER-MID, W=APOS-MID, W=LOWER-
LAST)

Each training instance is represented by 40 at-
tributes on average. The GPA procedure is responsi-
ble for picking the attributes that are relevant to the
decision. No dictionary information is required or
used, therefore the models are fairly robust to un-
known words. One potentially useful source of at-
tributes is the tags assigned to previous words which
we plan to experiment with in future work.

4.3 The Decision Lists
At the conclusion of the training, 126 decision lists
are produced of the form given in Table 2. The num-
ber of rules in each decision list range from 1 to
6145. The longer decision lists are typically for part
of speech features, e.g. distinguishing nouns from
adjectives, and contain rules specific to lexical items.
The average number of rules is 266. To get an esti-
mate on the accuracy of each decision list, we split
the one million word data into training, validation,
and test portions using the ratio 4:1:1. The train-
ing set accuracy of the decision lists is consistently
above 98%. The test set accuracies of the 126 deci-
sion lists range from 80% to 100% with the average
at 95%. Table 5 gives the six worst features with test
set accuracy below 89%; these are the most difficult
to disambiguate.

4.4 Correct Tag Selection
To evaluate the candidate tags, we need to combine
the results of the decision lists. We assume that the
presence or absence of each feature is an indepen-
dent event with a probability determined by the test
set accuracy of the corresponding decision list. For
example, if the +P3pl decision list predicts YES,
we assume that the +P3pl feature is present with

332

87.89% +Acquire To acquire (noun)
86.18% +PCIns Postposition subcat.
85.11% +Fut Future tense
84.08% +P3pl 3. plural possessive
80.79% +Neces Must
79.81% +Become To become (noun)

Table 5: The six features with the worst test set ac-
curacy.

probability 0.8408 (See Table 5). If the +Fut deci-
sion list predicts NO, we assume the +Fut feature is
present with probability 1 − 0.8511 = 0.1489. To
avoid zero probabilities we cap the test set accura-
cies at 99%.

Each candidate tag indicates the presence of cer-
tain features and the absence of others. The prob-
ability of the tag being correct under our indepen-
dence assumption is the product of the probabilities
for the presence and absence of each of the 126 fea-
tures as determined by our decision lists. For effi-
ciency, one can neglect the features that are absent
from all the candidate tags because their contribu-
tion will not effect the comparison.

4.5 Results
The final evaluation of the model was performed on
a test data set of 958 instances. The possible parses
for each instance were generated by the morpholog-
ical analyzer and the correct one was picked manu-
ally. 40% of the instances were ambiguous, which
on the average had 3.9 parses. The disambiguation
accuracy of our model was 95.82%. The 95% confi-
dence interval for the accuracy is [0.9457, 0.9708].

An analysis of the mistakes in the test data show
that at least some of them are due to incorrect tags
in our training data. The training data was semi-
automatically generated and thus contained some er-
rors. Based on hand evaluation of the differences be-
tween the training data tags and the GPA generated
tags, we estimate the accuracy of the training data to
be below 95%. We ran two further experiments to
see if we could improve on the initial results.

In our first experiment we used our original model
to re-tag the training data. The re-tagged training
data was used to construct a new model. The result-
ing accuracy on the test set increased to 96.03%, not
a statistically significant improvement.

In our second experiment we used only unam-
biguous instances for training. Decision list training
requires negative examples, so we selected random
unambiguous instances for positive and negative ex-
amples for each feature. The accuracy of the result-
ing model on the test set was 82.57%. The problem
with selecting unambiguous instances is that certain
common disambiguation decisions are never repre-
sented during training. More careful selection of
negative examples and a sophisticated bootstrapping
mechanism may still make this approach workable.

Finally, we decided to see if our decision lists
could be used for tagging rather than disambigua-
tion, i.e. given a word in a context decide on the full
tag without the help of a morphological analyzer.
Even though the number of possible tags is unlim-
ited, the most frequent 1000 tags cover about 99%
of the instances. A single decision list trained with
the full tags was able to achieve 91.23% accuracy
using 10000 rules. This is a promising result and
will be explored further in future work.

5 Contributions

We have presented an automated approach to learn
morphological disambiguation rules for Turkish us-
ing a novel decision list induction algorithm, GPA.
The only input to the rules are the surface attributes
of a five word window. The approach can be gener-
alized to other agglutinative languages which share
the common challenge of a large number of poten-
tial tags. Our approach for resolving the data sparse-
ness problem caused by the large number of tags is
to generate a separate model for each morphologi-
cal feature. The predictions for individual features
are probabilistically combined based on the accu-
racy of each model to select the best tag. We were
able to achieve an accuracy around 96% using this
approach.

Acknowledgments

We would like to thank Kemal Oflazer of Sabancı
University for providing us with the Turkish mor-
phological analyzer, training and testing data for dis-
ambiguation, and valuable feedback.

333

References
Brill, E. (1995). Transformation-based error-driven

learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Church, K. W. (1988). A stochastic parts program and
noun phrase parser for unrestricted text. In Proceed-
ings of the Second Conference on Applied Natural
Language Processing, pages 136–143.

Clark, P. and Boswell, R. (1991). Rule induction with
CN2: Some recent improvements. In Kodratoff,
Y., editor, Machine Learning – Proceedings of the
Fifth European Conference (EWSL-91), pages 151–
163, Berlin. Springer-Verlag.

Clark, P. and Niblett, T. (1989). The CN2 induction al-
gorithm. Machine Learning, 3:261–283.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992).
A practical part-of-speech tagger. In Proceedings of
the 3rd Conference on Applied Language Processing,
pages 133–140.

Daelemans, W. et al. (1996). MBT: A memory-based
part of speech tagger-generator. In Ejerhead, E. and
Dagan, I., editors, Proceedings of the Fourth Workshop
on Very Large Corpora, pages 14–27.

Ezeiza, N. et al. (1998). Combining stochastic and rule-
based methods for disambiguation in agglutinative lan-
guages. In Proceedings of the 36th Annual Meeting of
the Association for Computational Linguistics (COL-
ING/ACL98), pages 379–384.

Hajič, J. and Hladká, B. (1998). Tagging inflective lan-
guages: Prediction of morphological categories for a
rich, structured tagset. In Proceedings of the 36th
Annual Meeting of the Association for Computational
Linguistics (COLING/ACL98), pages 483–490, Mon-
treal, Canada.

Hakkani-Tür, D. Z., Oflazer, K., and Tür, G. (2002).
Statistical morphological disambiguation for aggluti-
native languages. Computers and the Humanities,
36:381–410.

Karlsson, F., Voutialinen, A., Heikkilä, J., and Anttila, A.
(1995). Constraint Grammar - A Language Indepen-
dent System for Parsing Unrestricted Text. Mouton de
Gruyter.

Levinger, M., Ornan, U., and Itai, A. (1995). Learning
morpho-lexical probabilities from an untagged corpus
with an application to hebrew. Computational Lin-
guistics, 21(3):383–404.

Megyesi, B. (1999). Improving brill’s pos tagger for an
agglutinative language. In Pascale, F. and Joe, Z., ed-
itors, Proceedings of the Joing SIGDAT Conference

on Empirical Methods in Natural Language and Very
Large Corpora, pages 275–284, College Park, Mary-
land, USA.

Newlands, D. and Webb, G. I. (2004). Alternative strate-
gies for decision list construction. In Proceedings of
the Fourth Data Mining Conference (DM IV 03), pages
265–273.

Oflazer, K. (1994). Two-level description of turkish
morphology. Literary and Linguistic Computing,
9(2):137–148.

Oflazer, K., Hakkani-Tür, D. Z., and Tür, G. (1999).
Design for a turkish treebank. In Proceedings of
the Workshop on Linguistically Interpreted Corpora,
EACL 99, Bergen, Norway.

Oflazer, K. and Kuruöz, İ. (1994). Tagging and morpho-
logical disambiguation of turkish text. In Proceedings
of the 4th Applied Natural Language Processing Con-
ference, pages 144–149. ACL.

Oflazer, K. and Tür, G. (1997). Morphological disam-
biguation by voting constraints. In Proceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics (ACL97, EACL97), Madrid, Spain.

Ratnaparkhi, A. (1996). A maximum entropy model for
part-of-speech tagging. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

Rivest, R. L. (1987). Learning decision lists. Machine
Learning, 2:229–246.

van Halteren, H., editor (1999). Syntactic Wordclass Tag-
ging. Text, Speech and Language Technology. Kluwer
Academic Publishers.

Webb, G. I. (1995). Opus: An efficient admissible algo-
rithm for unordered search. JAIR, 3:431–465.

Webb, G. I. and Brkic, N. (1993). Learning decision lists
by prepending inferred rules. In Proceedings of the AI
93 Workshop on Machine Learning and Hybrid Sys-
tems, pages 6–10, Melbourne.

334

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 335–342,
New York, June 2006.c©2006 Association for Computational Linguistics

Cross-Entropy and Estimation of
Probabilistic Context-Free Grammars

Anna Corazza

Department of Physics

University “Federico II”

via Cinthia

I-80126 Napoli, Italy

corazza@na.infn.it

Giorgio Satta

Department of Information Engineering

University of Padua

via Gradenigo, 6/A

I-35131 Padova, Italy

satta@dei.unipd.it

Abstract

We investigate the problem of training

probabilistic context-free grammars on

the basis of a distribution defined over

an infinite set of trees, by minimizing

the cross-entropy. This problem can be

seen as a generalization of the well-known

maximum likelihood estimator on (finite)

tree banks. We prove an unexpected the-

oretical property of grammars that are

trained in this way, namely, we show

that the derivational entropy of the gram-

mar takes the same value as the cross-

entropy between the input distribution and

the grammar itself. We show that the re-

sult also holds for the widely applied max-

imum likelihood estimator on tree banks.

1 Introduction

Probabilistic context-free grammars are able to de-

scribe hierarchical, tree-shaped structures underly-

ing sentences, and are widely used in statistical nat-

ural language processing; see for instance (Collins,

2003) and references therein. Probabilistic context-

free grammars seem also more suitable than finite-

state devices for language modeling, and several

language models based on these grammars have

been recently proposed in the literature; see for in-

stance (Chelba and Jelinek, 1998), (Charniak, 2001)

and (Roark, 2001).

Empirical estimation of probabilistic context-free

grammars is usually carried out on tree banks, that

is, finite samples of parse trees, through the max-

imization of the likelihood of the sample itself. It

is well-known that this method also minimizes the

cross-entropy between the probability distribution

induced by the tree bank, also called the empirical

distribution, and the tree probability distribution in-

duced by the estimated grammar.

In this paper we generalize the maximum like-

lihood method, proposing an estimation technique

that works on any unrestricted tree distribution de-

fined over an infinite set of trees. This generalization

is theoretically appealing, and allows us to prove un-

expected properties of the already mentioned maxi-

mum likelihood estimator for tree banks, that were

not previously known in the literature on statistical

natural language parsing. More specifically, we in-

vestigate the following information theoretic quanti-

ties

• the cross-entropy between the unrestricted tree

distribution given as input and the tree distri-

bution induced by the estimated probabilistic

context-free grammar; and

• the derivational entropy of the estimated prob-

abilistic context-free grammar.

These two quantities are usually unrelated. We show

that these two quantities take the same value when

the probabilistic context-free grammar is trained us-

ing the minimal cross-entropy criterion. We then

translate back this property to the method of max-

imum likelihood estimation. Our general estima-

tion method also has practical applications in cases

one uses a probabilistic context-free grammar to ap-

proximate strictly more powerful rewriting systems,

335

as for instance probabilistic tree adjoining gram-

mars (Schabes, 1992).

Not much is found in the literature about the

estimation of probabilistic grammars from infinite

distributions. This line of research was started

in (Nederhof, 2005), investigating the problem of

training an input probabilistic finite automaton from

an infinite tree distribution specified by means of an

input probabilistic context-free grammar. The prob-

lem we consider in this paper can then be seen as

a generalization of the above problem, where the in-

put model to be trained is a probabilistic context-free

grammar and the input distribution is an unrestricted

tree distribution. In (Chi, 1999) an estimator that

maximizes the likelihood of a probability distribu-

tion defined over a finite set of trees is introduced,

as a generalization of the maximum likelihood es-

timator. Again, the problems we consider here can

be thought of as generalizations of such estimator to

the case of distributions over infinite sets of trees or

sentences.

The remainder of this paper is structured as fol-

lows. Section 2 introduces the basic notation and

definitions and Section 3 discusses our new esti-

mation method. Section 4 presents our main re-

sult, which is transferred in Section 5 to the method

of maximum likelihood estimation. Section 6 dis-

cusses some simple examples, and Section 7 closes

with some further discussion.

2 Preliminaries

Throughout this paper we use standard notation and

definitions from the literature on formal languages

and probabilistic grammars, which we briefly sum-

marize below. We refer the reader to (Hopcroft and

Ullman, 1979) and (Booth and Thompson, 1973) for

a more precise presentation.

A context-free grammar (CFG) is a tuple G =
(N,Σ,R, S), where N is a finite set of nonterminal

symbols, Σ is a finite set of terminal symbols dis-

joint from N , S ∈ N is the start symbol and R is a

finite set of rules. Each rule has the form A → α,

where A ∈ N and α ∈ (Σ ∪ N)∗. We denote by

L(G) and T (G) the set of all strings, resp., trees,

generated by G. For t ∈ T (G), the yield of t is

denoted by y(t).

For a nonterminal A and a string α, we write

f(A,α) to denote the number of occurrences of A

in α. For a rule (A → α) ∈ R and a tree t ∈ T (G),
f(A → α, t) denotes the number of occurrences of

A → α in t. We let f(A, t) =
∑

α f(A → α, t).

A probabilistic context-free grammar (PCFG) is

a pair G = (G, pG), with G a CFG and pG a func-

tion from R to the real numbers in the interval [0, 1].
A PCFG is proper if for every A ∈ N we have∑

α pG(A → α) = 1. The probability of t ∈ T (G)
is the product of the probabilities of all rules in t,

counted with their multiplicity, that is,

pG(t) =
∏

A→α

pG(A → α)f(A→α,t). (1)

The probability of w ∈ L(G) is the sum of the prob-

abilities of all the trees that generate w, that is,

pG(w) =
∑

y(t)=w

pG(t). (2)

A PCFG is consistent if
∑

t∈T (G) pG(t) = 1.

In this paper we write log for logarithms in base 2

and ln for logarithms in the natural base e. We also

assume 0 · log 0 = 0. We write Ep to denote the

expectation operator under distribution p. In case G
is proper and consistent, we can define the deriva-

tional entropy of G as the expectation of the infor-

mation of parse trees in T (G), computed under dis-

tribution pG, that is,

Hd(pG) = EpG
log

1

pG(t)

= −
∑

t∈T (G)

pG(t) · log pG(t). (3)

Similarly, for each A ∈ N we also define the non-

terminal entropy of A as

HA(pG) =

= EpG
log

1

pG(A → α)

= −
∑

α

pG(A → α) · log pG(A → α). (4)

3 Estimation based on cross-entropy

Let T be an infinite set of (finite) trees with inter-

nal nodes labeled by symbols in N , root nodes la-

beled by S ∈ N and leaf nodes labeled by symbols

336

in Σ. We assume that the set of rules that are ob-

served in the trees in T is drawn from some finite set

R. Let pT be a probability distribution defined over

T , that is, a function from T to set [0, 1] such that∑
t∈T pT (t) = 1.

The skeleton CFG underlying T is defined as

G = (N,Σ,R, S). Note that we have T ⊆ T (G)
and, in the general case, there might be trees in T (G)
that do not appear in T . We wish anyway to approx-

imate distribution pT the best we can, by turning

G into some proper PCFG G = (G, pG) and set-

ting parameters pG(A → α) appropriately, for each

(A → α) ∈ R.

One possible criterion is to choose pG in such a

way that the cross-entropy between pT and pG is

minimized, where we now view pG as a probability

distribution defined over T (G). The cross-entropy

between pT and pG is defined as the expectation un-

der distribution pT of the information, computed un-

der distribution pG, of the trees in T (G)

H(pT || pG) = EpT
log

1

pG(t)

= −
∑

t∈T

pT (t) · log pG(t). (5)

Since G should be proper, the minimization of (5) is

subject to the constraints
∑

α pG(A → α) = 1, for

each A ∈ N .

To solve the minimization problem above, we use

Lagrange multipliers λA for each A ∈ N and define

the form

∇ =
∑

A∈N

λA · (
∑

α

pG(A → α) − 1) +

−
∑

t∈T

pT (t) · log pG(t). (6)

We now view ∇ as a function of all the λA and the

pG(A → α), and consider all the partial derivatives

of ∇. For each A ∈ N we have

∂∇

∂λA

=
∑

α

pG(A → α) − 1.

For each (A → α) ∈ R we have

∂∇

∂pG(A → α)
=

= λA −
∂

∂pG(A → α)

∑

t∈T

pT (t) · log pG(t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)
log pG(t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)

log
∏

(B→β)∈R

pG(B → β)f(B→β,t)

= λA −
∑

t∈T

pT (t) ·
∂

∂pG(A → α)
∑

(B→β)∈R

f(B → β, t) · log pG(B → β)

= λA −
∑

t∈T

pT (t) ·
∑

(B→β)∈R

f(B → β, t) ·

∂

∂pG(A → α)
log pG(B → β)

= λA −
∑

t∈T

pT (t) · f(A → α, t) ·

·
1

ln(2)
·

1

pG(A → α)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·
∑

t∈T

pT (t) · f(A → α, t)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·EpT
f(A → α, t).

We now need to solve a system of |N |+ |R| equa-

tions obtained by setting to zero all of the above par-

tial derivatives. From each equation ∂∇
∂pG(A→α) = 0

we obtain

λA · ln(2) · pG(A → α) =

= EpT
f(A → α, t). (7)

We sum over all strings α such that (A → α) ∈ R

λA · ln(2) ·
∑

α

pG(A → α) =

=
∑

α

EpT
f(A → α, t)

=
∑

α

∑

t∈T

pT (t) · f(A → α, t)

=
∑

t∈T

pT (t) ·
∑

α

f(A → α, t)

=
∑

t∈T

pT (t) · f(A, t)

= EpT
f(A, t). (8)

337

From each equation ∂∇
∂λA

= 0 we obtain∑
α pG(A → α) = 1 for each A ∈ N (our origi-

nal constraints). Combining with (8) we obtain

λA · ln(2) = EpT
f(A, t). (9)

Replacing (9) into (7) we obtain, for every rule

(A → α) ∈ R,

pG(A → α) =
EpT

f(A → α, t)

EpT
f(A, t)

. (10)

The equations in (10) define the desired estimator

for our PCFG, assigning to each rule A → α a prob-

ability specified as the ratio between the expected

number of A → α and the expected number of A,

under the distribution pT . We remark here that the

minimization of the cross-entropy above is equiva-

lent to the minimization of the Kullback-Leibler dis-

tance between pT and pG, viewed as tree distribu-

tions. Also, note that the likelihood of an infinite set

of derivations would always be zero and therefore

cannot be considered here.

To be used in the next section, we now show that

the PCFG G obtained as above is consistent. The

line of our argument below follows a proof provided

in (Chi and Geman, 1998) for the maximum like-

lihood estimator based on finite tree distributions.

Without loss of generality, we assume that in G the

start symbol S is never used in the right-hand side

of a rule.

For each A ∈ N , let qA be the probability that a

derivation in G rooted in A fails to terminate. We

can then write

qA ≤
∑

B∈N

qB ·
∑

α

pG(A → α)f(B,α).(11)

The inequality follows from the fact that the events

considered in the right-hand side of (11) are not mu-

tually exclusive. Combining (10) and (11) we obtain

qA · EpT
f(A, t) ≤

≤
∑

B∈N

qB ·
∑

α

EpT
f(A → α, t)f(B,α).

Summing over all nonterminals we have
∑

A∈N

qA · EpT
f(A, t) ≤

≤
∑

B∈N

qB ·
∑

A∈N

∑

α

EpT
f(A → α, t)f(B,α)

=
∑

B∈N

qB · EpT
fc(B, t), (12)

where fc(B, t) indicates the number of times a node

labeled by nonterminal B appears in the derivation

tree t as a child of some other node.

From our assumptions on the start symbol S, we

have that S only appears at the root of the trees

in T (G). Then it is easy to see that, for every

A 6= S, we have EpT
fc(A, t) = EpT

f(A, t), while

EpT
fc(S, t) = 0 and EpT

f(S, t) = 1. Using these

relations in (12) we obtain

qS · EpT
f(S, T) ≤ qS · EpT

fc(S, T),

from which we conclude qS = 0, thus implying the

consistency of G.

4 Cross-entropy and derivational entropy

In this section we present the main result of the pa-

per. We show that, when G = (G, pG) is estimated

by minimizing the cross-entropy in (5), then such

cross-entropy takes the same value as the deriva-

tional entropy of G, defined in (3).

In (Nederhof and Satta, 2004) relations are de-

rived for the exact computation of Hd(pG). For later

use, we report these relations below, under the as-

sumption that G is consistent (see Section 3). We

have

Hd(pG) =
∑

A∈N

outG(A) · HA(pG). (13)

Quantities HA(pG), A ∈ N , have been defined

in (4). For each A ∈ N , quantity outG(A) is the sum

of the probabilities of all trees generated by G, hav-

ing root labeled by S and having a yield composed

of terminal symbols with an unexpanded occurrence

of nonterminal A. Again, we assume that symbol

S does not appear in any of the right-hand sides of

the rules in R. This means that S only appears at

the root of the trees in T (G). Under this condi-

tion, quantities outG(A) can be exactly computed

by solving the following system of linear equations

(see also (Nederhof, 2005))

outG(S) = 1; (14)

for each A 6= S

outG(A) =

=
∑

B→β

outG(B) · f(A, β) · pG(B → β).(15)

338

We can now prove the equality

Hd(pG) = H(pT || pG), (16)

where G is the PCFG estimated by minimizing the

cross-entropy in (5), as described in Section 3.

We start from the definition of cross-entropy

H(pT || pG) =

= −
∑

t∈T

pT (t) · log pG(t)

= −
∑

t∈T

pT (t) · log
∏

A→α

pG(A → α)f(A→α,t)

= −
∑

t∈T

pT (t) ·

·
∑

A→α

f(A → α, t) · log pG(A → α)

= −
∑

A→α

log pG(A → α) ·

·
∑

t∈T

pT (t) · f(A → α, t)

= −
∑

A→α

log pG(A → α) ·

·EpT
f(A → α, t). (17)

From our estimator in (10) we can write

EpT
f(A → α, t) =

= pG(A → α) · EpT
f(A, t). (18)

Replacing (18) into (17) gives

H(pT || pG) =

= −
∑

A→α

log pG(A → α) ·

·pG(A → α) · EpT
f(A, t)

= −
∑

A∈N

EpT
f(A, t) ·

·
∑

α

pG(A → α) · log pG(A → α)

=
∑

A∈N

EpT
f(A, t) · H(pG, A). (19)

Comparing (19) with (13) we see that, in order to

prove the equality in (16), we need to show relations

EpT
f(A, t) = outG(A), (20)

for every A ∈ N . We have already observed in Sec-

tion 3 that, under our assumption on the start symbol

S, we have

EpT
f(S, t) = 1. (21)

We now observe that, for any A ∈ N with A 6= S

and any t ∈ T (G), we have

f(A, t) =

=
∑

B→β

f(B → β, t) · f(A, β). (22)

For each A ∈ N with A 6= S we can then write

EpT
f(A, t) =

=
∑

t∈T

pT (t) · f(A, t)

=
∑

t∈T

pT (t) ·
∑

B→β

f(B → β, t) · f(A, β)

=
∑

B→β

∑

t∈T

pT (t) · f(B → β, t) · f(A, β)

=
∑

B→β

EpT
f(B → β, t) · f(A, β). (23)

Once more we use relation (18), which replaced

in (23) provides

EpT
f(A, t) =

=
∑

B→β

EpT
f(B, t) ·

·f(A, β) · pG(B → β). (24)

Notice that the linear system in (14) and (15) and the

linear system in (21) and (24) are the same. Thus we

conclude that quantities EpT
f(A, t) and outG(A)

are the same for each A ∈ N . This completes our

proof of the equality in (16). Some examples will be

discussed in Section 6.

Besides its theoretical significance, the equality

in (16) can also be exploited in the computation of

the cross-entropy in practical applications. In fact,

cross-entropy is used as a measure of tightness in

comparing different models. In case of estimation

from an infinite distribution pT , the definition of the

cross-entropy H(pT || pG) contains an infinite sum-

mation, which is problematic for the computation of

such quantity. In standard practice, this problem is

overcome by generating a finite sample T (n) of large

size n, through the distribution pT , and then comput-

ing the approximation (Manning and Schütze, 1999)

H(pT || pG) ∼ −
1

n

∑

t∈T

f(t, T (n)) · log pG(t),

339

where f(t, T (n)) indicates the multiplicity, that is,

the number of occurrences, of t in T (n). However, in

practical applications n must be very large in order

to have a small error. Based on the results in this

section, we can instead compute the exact value of

H(pT || pG) by computing the derivational entropy

Hd(pG), using relation (13) and solving the linear

system in (14) and (15), which takes cubic time in

the number of nonterminals of the grammar.

5 Estimation based on likelihood

In natural language processing applications, the es-

timation of a PCFG is usually carried out on the ba-

sis of a finite sample of trees, called tree bank. The

so-called maximum likelihood estimation (MLE)

method is exploited, which maximizes the likeli-

hood of the observed data. In this section we show

that the MLE method is a special case of the esti-

mation method presented in Section 3, and that the

results of Section 4 also hold for the MLE method.

Let T be a tree sample, and let T be the under-

lying set of trees. For t ∈ T , we let f(t, T) be the

multiplicity of t in T . We define

f(A → α, T) =

=
∑

t∈T

f(t, T) · f(A → α, t), (25)

and let f(A, T) =
∑

α f(A → α, T). We can in-

duce from T a probability distribution pT , defined

over T , by letting for each t ∈ T

pT (t) =
f(t, T)

|T |
. (26)

Note that
∑

t∈T pT (t) = 1. Distribution pT is called

the empirical distribution of T .

Assume that the trees in T have internal nodes

labeled by symbols in N , root nodes labeled by

S and leaf nodes labeled by symbols in Σ. Let

also R be the finite set of rules that are observed

in T . We define the skeleton CFG underlying T as

G = (N,Σ,R, S). In the MLE method we proba-

bilistically extend the skeleton CFG G by means of

a function pG that maximizes the likelihood of T ,

defined as

pG(T) =
∏

t∈T

pG(t)f(t,T), (27)

subject to the usual properness conditions on pG.

Such maximization provides the estimator (see for

instance (Chi and Geman, 1998))

pG(A → α) =
f(A → α, T)

f(A, T)
. (28)

Let us consider the estimator in (10). If we replace

distribution pT with our empirical distribution pT ,

we derive

pG(A → α) =

=
EpT f(A → α, t)

EpT f(A, t)

=

∑
t∈T

f(t,T)
|T | · f(A → α, t)

∑
t∈T

f(t,T)
|T | · f(A, t)

=

∑
t∈T f(t, T) · f(A → α, t)
∑

t∈T f(t, T) · f(A, t)

=
f(A → α, T)

f(A, T)
. (29)

This is precisely the estimator in (28).

From relation (29) we conclude that the MLE

method can be seen as a special case of the general

estimator in Section 3, with the input distribution de-

fined over a finite set of trees. We can also derive

the well-known fact that, in the finite case, the maxi-

mization of the likelihood pG(T) corresponds to the

minimization of the cross-entropy H(pT || pG).
Let now G = (G, pG) be a PCFG trained on T us-

ing the MLE method. Again from relation (29) and

Section 3 we have that G is consistent. This result

has been firstly shown in (Chaudhuri et al., 1983)

and later, with a different proof technique, in (Chi

and Geman, 1998). We can then transfer the results

of Section 4 to the supervised MLE method, show-

ing the equality

Hd(pG) = H(pT || pG). (30)

This result was not previously known in the litera-

ture on statistical parsing of natural language. Some

examples will be discussed in Section 6.

6 Some examples

In this section we discuss a simple example with the

aim of clarifying the theoretical results in the previ-

ous sections. For a real number q with 0 < q < 1,

340

Figure 1: Derivational entropy of Gq and cross-

entropies for three different corpora.

consider the CFG G defined by the two rules S →
aS and S → a, and let Gq = (G, pG,q) be the proba-

bilistic extension of G with pG,q(S → aS) = q and

pG,q(S → a) = 1 − q. This grammar is unambigu-

ous and consistent, and each tree t generated by G

has probability pG,q(t) = qi · (1 − q), where i ≥ 0
is the number of occurrences of rule S → aS in t.

We use below the following well-known relations

(0 < r < 1)

+∞
∑

i=0

ri =
1

1 − r
, (31)

+∞
∑

i=1

i · ri−1 =
1

(1 − r)2
. (32)

The derivational entropy of Gq can be directly

computed from its definition as

Hd(pG,q) = −
+∞
∑

i=0

qi · (1 − q) · log
(

qi · (1 − q)
)

= −(1 − q)
+∞
∑

i=0

qi log qi +

−(1 − q) · log(1 − q) ·
+∞
∑

i=0

qi

= −(1 − q) · log q ·
+∞
∑

i=0

i · qi − log(1 − q)

= −
q

1 − q
· log q − log(1 − q). (33)

See Figure 1 for a plot of Hd(pG,q) as a function

of q.

If a tree bank is given, composed of occurrences

of trees generated by G, the value of q can be es-

timated by applying the MLE or, equivalently, by

minimizing the cross-entropy. We consider here sev-

eral tree banks, to exemplify the behaviour of the

cross-entropy depending on the structure of the sam-

ple of trees. The first tree bank T contains a single

tree t with a single occurrence of rule S → aS and

a single occurrence of rule S → a. We then have

pT (t) = 1 and pG,q(t) = q · (1 − q). The cross-

entropy between distributions pT and pG,q is then

H(pT , pG,q) = − log q · (1 − q)

= − log q − log(1 − q). (34)

The cross-entropy H(pT , pG,q), viewed as a func-

tion of q, is a convex-∪ function and is plotted in

Figure 1 (line indicated by K
d

= 1, see below). We

can obtain its minimum by finding a zero for the first

derivative

d

dq
H(pT , pG,q) = −

1

q
+

1

1 − q

=
2q − 1

q · (1 − q)
= 0, (35)

which gives q = 0.5. Note from Figure 1 that

the minimum of H(pT , pG,q) crosses the line cor-

responding to the derivational entropy, as should be

expected from the result in Section 4.

More in general, for integers d > 0 and K > 0,

consider a tree sample Td,K consisting of d trees ti,

1 ≤ i ≤ d. Each ti contains ki ≥ 0 occurrences

of rule S → aS and one occurrence of rule S → a.

Thus we have pTd,K
(ti) = 1

d
and pG,q(ti) = qki ·

(1− q). We let
∑d

i=1 ki = K. The cross-entropy is

H(pTd,K
, pG,q) =

= −
d

∑

i=0

1

d
· log qki − log(1 − q)

= −
K

d
log q − log(1 − q). (36)

In Figure 1 we plot H(pTd,K
, pG,q) in the case K

d
=

0.5 and in the case K
d

= 1.5. Again, we have that

these curves intersect with the curve corresponding

to the derivational entropy Hd(pG,q) at the points

were they take their minimum values.

341

7 Conclusions

We have shown in this paper that, when a PCFG is

estimated from some tree distribution by minimiz-

ing the cross-entropy, then the cross-entropy takes

the same value as the derivational entropy of the

PCFG itself. As a special case, this result holds for

the maximum likelihood estimator, widely applied

in statistical natural language parsing. The result

also holds for the relative weighted frequency esti-

mator introduced in (Chi, 1999) as a generalization

of the maximum likelihood estimator, and for the es-

timator introduced in (Nederhof, 2005) already dis-

cussed in the introduction. In a journal version of the

present paper, which is under submission, we have

also extended the results of Section 4 to the unsuper-

vised estimation of a PCFG from a distribution de-

fined over an infinite set of (unannotated) sentences

and, as a particular case, to the well-knonw inside-

outside algorithm (Manning and Schütze, 1999).

In practical applications, the results of Section 4

can be exploited in the computation of model tight-

ness. In fact, cross-entropy indicates how much the

estimated model fits the observed data, and is com-

monly exploited in comparison of different models

on the same data set. We can then use the given

relation between cross-entropy and derivational en-

tropy to compute one of these two quantities from

the other. For instance, in the case of the MLE

method we can choose between the computation of

the derivational entropy and the cross-entropy, de-

pending basically on the instance of the problem at

hand. As already mentioned, the computation of the

derivational entropy requires cubic time in the num-

ber of nonterminals of the grammar. If this num-

ber is large, direct computation of (5) on the corpus

might be more efficient. On the other hand, if the

corpus at hand is very large, one might opt for direct

computation of (3).

Acknowledgements

Helpful comments from Zhiyi Chi, Alberto lavelli,

Mark-Jan Nederhof and Khalil Simaan are grate-

fully acknowledged.

References

T.L. Booth and R.A. Thompson. 1973. Applying prob-
abilistic measures to abstract languages. IEEE Trans-
actions on Computers, C-22(5):442–450, May.

E. Charniak. 2001. Immediate-head parsing for language
models. In 39th Annual Meeting and 10th Conference
of the European Chapter of the Association for Com-
putational Linguistics, Proceedings of the Conference,
pages 116–123, Toulouse, France, July.

R. Chaudhuri, S. Pham, and O. N. Garcia. 1983. Solution
of an open problem on probabilistic grammars. IEEE
Transactions on Computers, 32(8):748–750.

C. Chelba and F. Jelinek. 1998. Exploiting syntactic
structure for language modeling. In 36th Annual Meet-
ing of the Association for Computational Linguistics
and 17th International Conference on Computational
Linguistics, volume 1, pages 225–231, Montreal, Que-
bec, Canada, August.

Z. Chi and S. Geman. 1998. Estimation of probabilis-
tic context-free grammars. Computational Linguistics,
24(2):299–305.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

M. Collins. 2003. Head-driven statistical models for
natural language parsing. Computational Linguistics,
pages 589–638.

J.E. Hopcroft and J.D. Ullman. 1979. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley.

C.D. Manning and H. Schütze. 1999. Foundations
of Statistical Natural Language Processing. Mas-
sachusetts Institute of Technology.

M.-J. Nederhof and G. Satta. 2004. Kullback-Leibler
distance between probabilistic context-free grammars
and probabilistic finite automata. In Proc. of the 20th

COLING, volume 1, pages 71–77, Geneva, Switzer-
land.

M.-J. Nederhof. 2005. A general technique to train lan-
guage models on language models. Computational
Linguistics, 31(2):173–185.

B. Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining
grammars. In Proc. of the fifteenth International
Conference on Computational Linguistics, volume 2,
pages 426–432, Nantes, August.

342

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 343–350,
New York, June 2006.c©2006 Association for Computational Linguistics

Estimation of Consistent
Probabilistic Context-free Grammars

Mark-Jan Nederhof

Max Planck Institute

for Psycholinguistics

P.O. Box 310

NL-6500 AH Nijmegen

The Netherlands

MarkJan.Nederhof@mpi.nl

Giorgio Satta

Dept. of Information Engineering

University of Padua

via Gradenigo, 6/A

I-35131 Padova

Italy

satta@dei.unipd.it

Abstract

We consider several empirical estimators

for probabilistic context-free grammars,

and show that the estimated grammars

have the so-called consistency property,

under the most general conditions. Our

estimators include the widely applied ex-

pectation maximization method, used to

estimate probabilistic context-free gram-

mars on the basis of unannotated corpora.

This solves a problem left open in the lit-

erature, since for this method the consis-

tency property has been shown only under

restrictive assumptions on the rules of the

source grammar.

1 Introduction

Probabilistic context-free grammars are one of the

most widely used formalisms in current work in sta-

tistical natural language parsing and stochastic lan-

guage modeling. An important property for a proba-

bilistic context-free grammar is that it be consistent,

that is, the grammar should assign probability of one

to the set of all finite strings or parse trees that it

generates. In other words, the grammar should not

lose probability mass with strings or trees of infinite

length.

Several methods for the empirical estimation of

probabilistic context-free grammars have been pro-

posed in the literature, based on the optimization of

some function on the probabilities of the observed

data, such as the maximization of the likelihood of

a tree bank or a corpus of unannotated sentences. It

has been conjectured in (Wetherell, 1980) that these

methods always provide probabilistic context-free

grammars with the consistency property. A first re-

sult in this direction was presented in (Chaudhuri et

al., 1983), by showing that a probabilistic context-

free grammar estimated by maximizing the likeli-

hood of a sample of parse trees is always consistent.

In later work by (Sánchez and Benedı́, 1997)

and (Chi and Geman, 1998), the result was in-

dependently extended to expectation maximization,

which is an unsupervised method exploited to es-

timate probabilistic context-free grammars by find-

ing local maxima of the likelihood of a sample of

unannotated sentences. The proof in (Sánchez and

Benedı́, 1997) makes use of spectral analysis of ex-

pectation matrices, while the proof in (Chi and Ge-

man, 1998) is based on a simpler counting argument.

Both these proofs assume restrictions on the un-

derlying context-free grammars. More specifically,

in (Chi and Geman, 1998) empty rules and unary

rules are not allowed, thus excluding infinite ambi-

guity, that is, the possibility that some string in the

input sample has an infinite number of derivations in

the grammar. The treatment of general form context-

free grammars has been an open problem so far.

In this paper we consider several estimation meth-

ods for probabilistic context-free grammars, and we

show that the resulting grammars have the consis-

tency property. Our proofs are applicable under

the most general conditions, and our results also

include the expectation maximization method, thus

solving the open problem discussed above. We use

an alternative proof technique with respect to pre-

343

vious work, based on an already known renormal-

ization construction for probabilistic context-free

grammars, which has been used in the context of

language modeling.

The structure of this paper is as follows. We pro-

vide some preliminary definitions in Section 2, fol-

lowed in Section 3 by a brief overview of the esti-

mation methods we investigate in this paper. In Sec-

tion 4 we prove some properties of a renormaliza-

tion technique for probabilistic context-free gram-

mars, and use this property to show our main results

in Section 5. Section 6 closes with some concluding

remarks.

2 Preliminaries

In this paper we use mostly standard notation, as for

instance in (Hopcroft and Ullman, 1979) and (Booth

and Thompson, 1973), which we summarize below.

A context-free grammar (CFG) is a 4-tuple G =
(N,Σ, S,R) where N and Σ are finite disjoint sets

of nonterminal and terminal symbols, respectively,

S ∈ N is the start symbol and R is a finite set of

rules. Each rule has the form A → α, where A ∈ N

and α ∈ (Σ ∪ N)∗. We write V for set Σ ∪ N .

Each CFG G is associated with a left-most de-

rive relation ⇒, defined on triples consisting of two

strings γ, δ ∈ V ∗ and a rule π ∈ R. We write γ
π
⇒ δ

if and only if γ = uAγ′ and δ = uαγ′, for some

u ∈ Σ∗, γ′ ∈ V ∗, and π = (A → α). A left-

most derivation for G is a string d = π1 · · ·πm,

m ≥ 0, such that γ0
π1⇒ γ1

π2⇒ · · ·
πm⇒ γm, for

some γ0, . . . , γm ∈ V ∗; d = ε (where ε denotes

the empty string) is also a left-most derivation. In

the remainder of this paper, we will let the term

derivation always refer to left-most derivation. If

γ0
π1⇒ · · ·

πm⇒ γm for some γ0, . . . , γm ∈ V ∗, then

we say that d = π1 · · ·πm derives γm from γ0 and

we write γ0
d
⇒ γm; d = ε derives any γ0 ∈ V ∗ from

itself.

A (left-most) derivation d such that S
d
⇒ w,

w ∈ Σ∗, is called a complete derivation. If d is

a complete derivation, we write y(d) to denote the

(unique) string w ∈ Σ∗ such that S
d
⇒ w. We

define D(G) to be the set of all complete deriva-

tions for G. The language generated by G is the set

of all strings derived by complete derivations, i.e.,

L(G) = {y(d) | d ∈ D(G)}. It is well-known that

there is a one-to-one correspondence between com-

plete derivations and parse trees for strings in L(G).
For X ∈ V and α ∈ V ∗, we write f(X, α) to

denote the number of occurrences of X in α. For

(A → α) ∈ R and a derivation d, f(A → α, d)
denotes the number of occurrences of A → α in d.

We let f(A, d) =
∑

α f(A → α, d).
A probabilistic CFG (PCFG) is a pair G =

(G, pG), where G is a CFG and pG is a function

from R to real numbers in the interval [0, 1]. We

say that G is proper if, for every A ∈ N , we have

∑

A→α

pG(A → α) = 1. (1)

Function pG can be used to assign probabilities to

derivations of the underlying CFG G, in the follow-

ing way. For d = π1 · · ·πm ∈ R∗, m ≥ 0, we define

pG(d) =
m∏

i=1

pG(πi). (2)

Note that pG(ε) = 1. The probability of a string

w ∈ Σ∗ is defined as

pG(w) =
∑

y(d)=w

pG(d). (3)

A PCFG is consistent if

∑

w

pG(w) = 1. (4)

Consistency implies that the PCFG defines a proba-

bility distribution over both sets D(G) and L(G).
If a PCFG is proper, then consistency means that

no probability mass is lost in derivations of infinite

length. All PCFGs in this paper are implicitly as-

sumed to be proper, unless otherwise stated.

3 Estimation of PCFGs

In this section we give a brief overview of some esti-

mation methods for PCFGs. These methods will be

later investigated to show that they always provide

consistent PCFGs.

In natural language processing applications, esti-

mation of a PCFG is usually carried out on the ba-

sis of a tree bank, which in this paper we assume to

be a sample, that is, a finite multiset, of complete

derivations. Let D be such a sample, and let D be

344

the underlying set of derivations. For d ∈ D, we

let f(d,D) be the multiplicity of d in D, that is, the

number of occurrences of d in D. We define

f(A → α,D) =∑

d∈D

f(d,D) · f(A → α, d), (5)

and let f(A,D) =
∑

α f(A → α,D).
Consider a CFG G = (N,Σ,R, S) defined by

all and only the nonterminals, terminals and rules

observed in D. The criterion of maximum likeli-

hood estimation (MLE) prescribes the construction

of a PCFG G = (G, pG) such that pG maximizes the

likelihood of D, defined as

pG(D) =
∏

d∈D

pG(d)f(d,D), (6)

subject to the properness conditions
∑

α pG(A →
α) = 1 for each A ∈ N . The maximization problem

above has a unique solution, provided by the estima-

tor (see for instance (Chi and Geman, 1998))

pG(A → α) =
f(A → α,D)

f(A,D)
. (7)

We refer to this as the supervised MLE method.

In applications in which a tree bank is not avail-

able, one might still use the MLE criterion to train

a PCFG in an unsupervised way, on the basis of a

sample of unannotated sentences, also called a cor-

pus. Let us call C such a sample and C the underly-

ing set of sentences. For w ∈ C, we let f(w, C) be

the multiplicity of w in C.

Assume a CFG G = (N,Σ,R, S) that is able

to generate all of the sentences in C, and possibly

more. The MLE criterion prescribes the construc-

tion of a PCFG G = (G, pG) such that pG maxi-

mizes the likelihood of C, defined as

pG(C) =
∏

w∈C

pG(w)f(w,C), (8)

subject to the properness conditions as in the super-

vised case above. The above maximization prob-

lem provides a system of |R| nonlinear equations

(see (Chi and Geman, 1998))

pG(A → α) =
∑

w∈C f(w, C) · EpG(d |w) f(A → α, d)
∑

w∈C f(w, C) · EpG(d |w) f(A, d)
, (9)

where Ep denotes an expectation computed under

distribution p, and pG(d |w) is the probability of

derivation d conditioned by sentence w (so that

pG(d |w) > 0 only if y(d) = w). The solution to

the above system is not unique, because of the non-

linearity. Furthermore, each solution of (9) identi-

fies a point where the curve in (8) has partial deriva-

tives of zero, but this does not necessarily corre-

spond to a local maximum, let alone an absolute

maximum. (A point with partial derivatives of zero

that is not a local maximum could be a local min-

imum or even a so-called saddle point.) In prac-

tice, this system is typically solved by means of an

iterative algorithm called inside/outside (Charniak,

1993), which implements the expectation maximiza-

tion (EM) method (Dempster et al., 1977). Starting

with an initial function pG that probabilistically ex-

tends G, a so-called growth transformation is com-

puted, defined as

pG(A → α) =
∑

w∈C f(w, C)·
∑

y(d)=w
pG(d)
pG(w) ·f(A → α, d)

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A, d)

. (10)

Following (Baum, 1972), one can show that

pG(C) ≥ pG(C). Thus, by iterating the growth trans-

formation above, we are guaranteed to reach a local

maximum for (8), or possibly a saddle point. We

refer to this as the unsupervised MLE method.

We now discuss a third estimation method for

PCFGs, which was proposed in (Corazza and Satta,

2006). This method can be viewed as a general-

ization of the supervised MLE method to probabil-

ity distributions defined over infinite sets of com-

plete derivations. Let D be an infinite set of com-

plete derivations using nonterminal symbols in N ,

start symbol S ∈ N and terminal symbols in Σ.

We assume that the set of rules that are observed

in D is drawn from some finite set R. Let pD be

a probability distribution defined over D, that is,

a function from set D to interval [0, 1] such that∑
d∈D pD(d) = 1.

Consider the CFG G = (N,Σ,R, S). Note that

D ⊆ D(G). We wish to extend G to some PCFG

G = (G, pG) in such a way that pD is approxi-

mated by pG (viewed as a distribution over complete

derivations) as well as possible according to some

criterion. One possible criterion is minimization of

345

the cross-entropy between pD and pG, defined as

the expectation, under distribution pD, of the infor-

mation of the derivations in D computed under dis-

tribution pG, that is

H(pD || pG) = EpD
log

1

pG(d)

= −
∑

d∈D

pD(d) · log pG(d). (11)

We thus want to assign to the parameters pG(A →
α), A → α ∈ R, the values that minimize (11), sub-

ject to the conditions
∑

α pG(A → α) = 1 for each

A ∈ N . Note that minimization of the cross-entropy

above is equivalent to minimization of the Kullback-

Leibler distance between pD and pG. Also note that

the likelihood of an infinite set of derivations would

always be zero and therefore cannot be considered

here.

The solution to the above minimization problem

provides the estimator

pG(A → α) =
EpD

f(A → α, d)

EpD
f(A, d)

. (12)

A proof of this result appears in (Corazza and Satta,

2006), and is briefly summarized in Appendix A,

in order to make this paper self-contained. We call

the above estimator the cross-entropy minimization

method.

The cross-entropy minimization method can be

viewed as a generalization of the supervised MLE

method in (7), as shown in what follows. Let D and

D be defined as for the supervised MLE method. We

define a distribution over D as

pD(d) =
f(d,D)

|D|
. (13)

Distribution pD is usually called the empirical dis-

tribution associated with D. Applying the estimator

in (12) to pD, we obtain

pG(A → α) =

=

∑
d∈D pD(d) · f(A → α, d)
∑

d∈D pD(d) · f(A, d)

=

∑
d∈D

f(d,D)
|D| · f(A → α, d)

∑
d∈D

f(d,D)
|D| · f(A, d)

=

∑
d∈D f(d,D) · f(A → α, d)
∑

d∈D f(d,D) · f(A, d)
. (14)

This is the supervised MLE estimator in (7). This re-

minds us of the well-known fact that maximizing the

likelihood of a (finite) sample through a PCFG dis-

tribution amounts to minimizing the cross-entropy

between the empirical distribution of the sample and

the PCFG distribution itself.

4 Renormalization

In this section we recall a renormalization technique

for PCFGs that was used before in (Abney et al.,

1999), (Chi, 1999) and (Nederhof and Satta, 2003)

for different purposes, and is exploited in the next

section to prove our main results. In the remainder

of this section, we assume a fixed, not necessarily

proper PCFG G = (G, pG), with G = (N,Σ, S,R).
We define the renormalization of G as the PCFG

R(G) = (G, pR) with pR specified by

pR(A → α) =

pG(A → α) ·

∑
d,w pG(α

d
⇒ w)

∑
d,w pG(A

d
⇒ w)

. (15)

It is not difficult to see that R(G) is a proper PCFG.

We now show an important property of R(G), dis-

cussed before in (Nederhof and Satta, 2003) in the

context of so-called weighted context-free gram-

mars.

Lemma 1 For each derivation d with A
d
⇒ w, A ∈

N and w ∈ Σ∗, we have

pR(A
d
⇒ w) =

pG(A
d
⇒ w)

∑
d′,w′ pG(A

d′
⇒ w′)

. (16)

Proof. The proof is by induction on the length of d,

written |d|. If |d| = 1 we must have d = (A → w),
and thus pR(d) = pR(A → w). In this case, the

statement of the lemma directly follows from (15).

Assume now |d| > 1 and let π = (A → α)
be the first rule used in d. Note that there must

be at least one nonterminal symbol in α. We can

then write α as u0A1u1A2 · · ·uq−1Aquq, for q ≥ 1,

Ai ∈ N , 1 ≤ i ≤ q, and uj ∈ Σ∗, 0 ≤
j ≤ q. In words, A1, . . . , Aq are all of the occur-

rences of nonterminals in α, as they appear from

left to right. Consequently, we can write d in the

form d = π · d1 · · · dq for some derivations di,

1 ≤ i ≤ q, with Ai
di⇒ wi, |di| ≥ 1 and with

346

w = u0w1u1w2 · · ·uq−1wquq. Below we use the

fact that pR(uj
ε
⇒ uj) = pG(uj

ε
⇒ uj) = 1 for

each j with 0 ≤ j ≤ q, and further using the def-

inition of pR and the inductive hypothesis, we can

write

pR(A
d
⇒ w) =

= pR(A → α) ·
q∏

i=1

pR(Ai
di⇒ wi)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·
q∏

i=1

pR(Ai
di⇒ wi)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·
q∏

i=1

pG(Ai
di⇒ wi)

∑
d′,w′ pG(Ai

d′
⇒ w′)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·

∏q
i=1 pG(Ai

di⇒ wi)
∏q

i=1

∑
d′,w′ pG(Ai

d′
⇒ w′)

= pG(A → α) ·

∑
d′,w′ pG(α

d′
⇒ w′)

∑
d′,w′ pG(A

d′
⇒ w′)

·

·

∏q
i=1 pG(Ai

di⇒ wi)
∑

d′,w′ pG(α
d′
⇒ w′)

= pG(A → α) ·

∏q
i=1 pG(Ai

di⇒ wi)
∑

d′,w′ pG(A
d′
⇒ w′)

·

=
pG(A

d
⇒ w)

∑
d′,w′ pG(A

d′
⇒ w′)

. (17)

As an easy corollary of Lemma 1, we have that

R(G) is a consistent PCFG, as we can write

∑

d,w

pR(S
d
⇒ w) =

=
∑

d,w

pG(S
d
⇒ w)

∑
d′,w′ pG(S

d′
⇒ w′)

=

∑
d,w pG(S

d
⇒ w)

∑
d′,w′ pG(S

d′
⇒ w′)

= 1. (18)

5 Consistency

In this section we prove the main results of this

paper, namely that all of the estimation methods

discussed in Section 3 always provide consistent

PCFGs. We start with a technical lemma, central

to our results, showing that a PCFG that minimizes

the cross-entropy with a distribution over any set of

derivations must be consistent.

Lemma 2 Let G = (G, pG) be a proper PCFG

and let pD be a probability distribution defined over

some set D ⊆ D(G). If G minimizes function

H(pD || pG), then G is consistent.

Proof. Let G = (N,Σ, S,R), and assume that G is

not consistent. We establish a contradiction. Since G

is not consistent, we must have
∑

d,w pG(S
d
⇒ w) <

1. Let then R(G) = (G, pR) be the renormalization

of G, defined as in (15). For any derivation S
d
⇒ w,

w ∈ Σ∗, with d in D, we can use Lemma 1 and

write

pR(S
d
⇒ w) =

=
1

∑
d′,w′ pG(S

d′
⇒ w′)

· pG(S
d
⇒ w)

> pG(S
d
⇒ w). (19)

In words, every complete derivation d in D has a

probability in R(G) that is strictly greater than in

G. But this means H(pD || pR) < H(pD || pG),
against our hypothesis. Therefore, G is consistent

and pG is a probability distribution over set D(G).
Thus function H(pD || pG) can be interpreted as the

cross-entropy. (Observe that in the statement of the

lemma we have avoided the term ‘cross-entropy’,

since cross-entropies are only defined for probability

distributions.)

Lemma 2 directly implies that the cross-entropy

minimization method in (12) always provides a con-

sistent PCFG, since it minimizes cross-entropy for a

distribution defined over a subset of D(G). We have

already seen in Section 3 that the supervised MLE

method is a special case of the cross-entropy min-

imization method. Thus we can also conclude that

a PCFG trained with the supervised MLE method is

347

always consistent. This provides an alternative proof

of a property that was first shown in (Chaudhuri et

al., 1983), as discussed in Section 1.

We now prove the same result for the unsuper-

vised MLE method, without any restrictive assump-

tion on the rules of our CFGs. This solves a problem

that was left open in the literature (Chi and Geman,

1998); see again Section 1 for discussion. Let C and

C be defined as in Section 3. We define the empiri-

cal distribution of C as

pC(w) =
f(w, C)

|C|
. (20)

Let G = (N,Σ, S,R) be a CFG such that C ⊆
L(G). Let D(C) be the set of all complete deriva-

tions for G that generate sentences in C, that is,

D(C) = {d | d ∈ D(G), y(d) ∈ C}.

Further, assume some probabilistic extension G =
(G, pG) of G, such that pG(d) > 0 for every d ∈
D(C). We define a distribution over D(C) by

pD(C)(d) = pC(y(d)) ·
pG(d)

pG(y(d))
. (21)

It is not difficult to verify that
∑

d∈D(C)

pD(C)(d) = 1. (22)

We now apply to G the estimator in (12), in order

to obtain a new PCFG Ĝ = (G, p̂G) that minimizes

the cross-entropy between pD(C) and p̂G. According

to Lemma 2, we have that Ĝ is a consistent PCFG.

Distribution p̂G is specified by

p̂G(A → α) =

=

∑
d∈D(C) pD(C)(d)·f(A → α, d)
∑

d∈D(C) pD(C)(d)·f(A, d)

=

∑
d∈D(C)

f(y(d),C)
|C| · pG(d)

pG(y(d)) ·f(A → α, d)
∑

d∈D(C)
f(y(d),C)

|C| · pG(d)
pG(y(d)) ·f(A, d)

=

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A → α, d)

∑
w∈C f(w, C)·

∑
y(d)=w

pG(d)
pG(w) ·f(A, d)

=

∑
w∈C f(w, C)·EpG(d |w)f(A → α, d)
∑

w∈C f(w, C)·EpG(d |w)f(A, d)
. (23)

Since distribution pG was arbitrarily chosen, sub-

ject to the only restriction that pG(d) > 0 for ev-

ery d ∈ D(C), we have that (23) is the growth

estimator (10) already discussed in Section 3. In

fact, for each w ∈ L(G) and d ∈ D(G), we have

pG(d |w) = pG(d)
pG(w) . We conclude with the desired

result, namely that a general form PCFG obtained at

any iteration of the EM method for the unsupervised

MLE is always consistent.

6 Conclusions

In this paper we have investigated a number of

methods for the empirical estimation of probabilis-

tic context-free grammars, and have shown that the

resulting grammars have the so-called consistency

property. This property guarantees that all the prob-

ability mass of the grammar is used for the finite

strings it derives. Thus if the grammar is used in

combination with other probabilistic models, as for

instance in a speech processing system, consistency

allows us to combine or compare scores from differ-

ent modules in a sound way.

To obtain our results, we have used a novel proof

technique that exploits an already known construc-

tion for the renormalization of probabilistic context-

free grammars. Our proof technique seems more

intuitive than arguments previously used in the lit-

erature to prove the consistency property, based on

counting arguments or on spectral analysis. It is

not difficult to see that our proof technique can

also be used with probabilistic rewriting formalisms

whose underlying derivations can be characterized

by means of context-free rewriting. This is for

instance the case with probabilistic tree-adjoining

grammars (Schabes, 1992; Sarkar, 1998), for which

consistency results have not yet been shown in the

literature.

A Cross-entropy minimization

In order to make this paper self-contained, we sketch

a proof of the claim in Section 3 that the estimator

in (12) minimizes the cross entropy in (11). A full

proof appears in (Corazza and Satta, 2006).

Let D, pD and G = (N,Σ,R, S) be defined as

in Section 3. We want to find a proper PCFG G =
(G, pG) such that the cross-entropy H(pD || pG) is

minimal. We use Lagrange multipliers λA for each

A ∈ N and define the form

∇ =
∑

A∈N

λA · (
∑

α

pG(A → α) − 1) +

348

−
∑

d∈D

pD(d) · log pG(d). (24)

We now consider all the partial derivatives of ∇. For

each A ∈ N we have

∂∇

∂λA

=
∑

α

pG(A → α) − 1. (25)

For each (A → α) ∈ R we have

∂∇

∂pG(A → α)
=

= λA −
∂

∂pG(A → α)

∑

d∈D

pD(d) · log pG(d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)
log pG(d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)

log
∏

(B→β)∈R

pG(B → β)f(B→β,d)

= λA −
∑

d∈D

pD(d) ·
∂

∂pG(A → α)
∑

(B→β)∈R

f(B → β, d) · log pG(B → β)

= λA −
∑

d∈D

pD(d) ·
∑

(B→β)∈R

f(B → β, d) ·

∂

∂pG(A → α)
log pG(B → β)

= λA −
∑

d∈D

pD(d) · f(A → α, d) ·

·
1

ln(2)
·

1

pG(A → α)

= λA −
1

ln(2)
·

1

pG(A → α)
·

·
∑

d∈D

pD(d) · f(A → α, d)

= λA −
1

ln(2)
·

1

pG(A → α)
·

· EpD
f(A → α, d). (26)

By setting to zero all of the above partial derivatives,

we obtain a system of |N |+|R| equations, which we

must solve. From ∂∇
∂pG(A→α) = 0 we obtain

λA · ln(2) · pG(A → α) =

EpD
f(A → α, d). (27)

We sum over all strings α such that (A → α) ∈ R,

deriving

λA · ln(2) ·
∑

α

pG(A → α) =

=
∑

α

EpD
f(A → α, d)

=
∑

α

∑

d∈D

pD(d) · f(A → α, d)

=
∑

d∈D

pD(d) ·
∑

α

f(A → α, d)

=
∑

d∈D

pD(d) · f(A, d)

= EpD
f(A, d). (28)

From each equation ∂∇
∂λA

= 0 we obtain∑
α pG(A → α) = 1 for each A ∈ N (our original

constraints). Combining this with (28) we obtain

λA · ln(2) = EpD
f(A, d). (29)

Replacing (29) into (27) we obtain, for every rule

(A → α) ∈ R,

pG(A → α) =
EpD

f(A → α, d)

EpD
f(A, d)

. (30)

This is the estimator introduced in Section 3.

References

S. Abney, D. McAllester, and F. Pereira. 1999. Relating
probabilistic grammars and automata. In 37th Annual
Meeting of the Association for Computational Linguis-
tics, Proceedings of the Conference, pages 542–549,
Maryland, USA, June.

L. E. Baum. 1972. An inequality and associated max-
imization technique in statistical estimations of prob-
abilistic functions of Markov processes. Inequalities,
3:1–8.

T.L. Booth and R.A. Thompson. 1973. Applying prob-
abilistic measures to abstract languages. IEEE Trans-
actions on Computers, C-22(5):442–450, May.

E. Charniak. 1993. Statistical Language Learning. MIT
Press.

R. Chaudhuri, S. Pham, and O. N. Garcia. 1983. Solution
of an open problem on probabilistic grammars. IEEE
Transactions on Computers, 32(8):748–750.

Z. Chi and S. Geman. 1998. Estimation of probabilis-
tic context-free grammars. Computational Linguistics,
24(2):299–305.

349

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

A. Corazza and G. Satta. 2006. Cross-entropy and es-
timation of probabilistic context-free grammars. In
Proc. of HLT/NAACL 2006 Conference (this volume),
New York.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, B,
39:1–38.

J.E. Hopcroft and J.D. Ullman. 1979. Introduction
to Automata Theory, Languages, and Computation.
Addison-Wesley.

M.-J. Nederhof and G. Satta. 2003. Probabilistic pars-
ing as intersection. In 8th International Workshop on
Parsing Technologies, pages 137–148, LORIA, Nancy,
France, April.

J.-A. Sánchez and J.-M. Benedı́. 1997. Consistency
of stochastic context-free grammars from probabilis-
tic estimation based on growth transformations. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 19(9):1052–1055, September.

A. Sarkar. 1998. Conditions on consistency of proba-
bilistic tree adjoining grammars. In Proc. of the 36th

ACL, pages 1164–1170, Montreal, Canada.

Y. Schabes. 1992. Stochastic lexicalized tree-adjoining
grammars. In Proc. of the 14th COLING, pages 426–
432, Nantes, France.

C. S. Wetherell. 1980. Probabilistic languages: A re-
view and some open questions. Computing Surveys,
12(4):361–379.

350

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 351–358,
New York, June 2006.c©2006 Association for Computational Linguistics

A Better -Best List: Practical Determinization of Weighted Finite Tree
Automata

Jonathan May
Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292
jonmay@isi.edu

Kevin Knight
Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292
knight@isi.edu

Abstract

Ranked lists of output trees from syn-
tactic statistical NLP applications fre-
quently contain multiple repeated entries.
This redundancy leads to misrepresenta-
tion of tree weight and reduced informa-
tion for debugging and tuning purposes.
It is chiefly due to nondeterminism in the
weighted automata that produce the re-
sults. We introduce an algorithm that de-
terminizes such automata while preserv-
ing proper weights, returning the sum of
the weight of all multiply derived trees.
We also demonstrate our algorithm’s ef-
fectiveness on two large-scale tasks.

1 Introduction
A useful tool in natural language processing tasks
such as translation, speech recognition, parsing, etc.,
is the ranked list of results. Modern systems typ-
ically produce competing partial results internally
and return only the top-scoring complete result to
the user. They are, however, also capable of pro-
ducing lists of runners-up, and such lists have many
practical uses:

The lists may be inspected to determine
the quality of runners-up and motivate
model changes.
The lists may be re-ranked with extra
knowledge sources that are difficult to ap-
ply during the main search.
The lists may be used with annotation and
a tuning process, such as in (Collins and

Roark, 2004), to iteratively alter feature
weights and improve results.

Figure 1 shows the best 10 English translation
parse trees obtained from a syntax-based translation
system based on (Galley, et. al., 2004). Notice
that the same tree occurs multiple times in this list.
This repetition is quite characteristic of the output of
ranked lists. It occurs because many systems, such
as the ones proposed by (Bod, 1992), (Galley, et. al.,
2004), and (Langkilde and Knight, 1998) represent
their result space in terms of weighted partial results
of various sizes that may be assembled in multiple
ways. There is in general more than one way to as-
semble the partial results to derive the same com-
plete result. Thus, the -best list of results is really
an -best list of derivations.
When list-based tasks, such as the ones mentioned

above, take as input the top results for some con-
stant , the effect of repetition on these tasks is dele-
terious. A list with many repetitions suffers from a
lack of useful information, hampering diagnostics.
Repeated results prevent alternatives that would be
highly ranked in a secondary reranking system from
even being considered. And a list of fewer unique
trees than expected can cause overfitting when this
list is used to tune. Furthermore, the actual weight of
obtaining any particular tree is split among its repeti-
tions, distorting the actual relative weights between
trees.
(Mohri, 1997) encountered this problem in speech

recognition, and presented a solution to the prob-
lem of repetition in -best lists of strings that are
derived from finite-state automata. That work de-
scribed a way to use a powerset construction along

351

34.73: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.74: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.83: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.84: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.85: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

34.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
34.92: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

Figure 1: Ranked list of machine translation results with repeated trees. Scores shown are negative logs of
calculated weights, thus a lower score indicates a higher weight. The bulleted sentences indicate identical
trees.

with an innovative bookkeeping system to deter-
minize the automaton, resulting in an automaton that
preserves the language but provides a single, prop-
erly weighted derivation for each string in it. Put an-
other way, if the input automaton has the ability to
generate the same string with different weights, the
output automaton generates that string with weight
equal to the sum of all of the generations of that
string in the input automaton. In (Mohri and Riley,
2002) this technique was combined with a procedure
for efficiently obtaining -best ranked lists, yielding
a list of string results with no repetition.
In this paper we extend that work to deal with

grammars that produce trees. Regular tree gram-
mars (Brainerd, 1969), which subsume the tree sub-
stitution grammars developed in the NLP commu-
nity (Schabes, 1990), are of particular interest to
those wishing to work with additional levels of
structure that string grammars cannot provide. The
application to parsing is natural, and in machine
translation tree grammars can be used to model
syntactic transfer, control of function words, re-
ordering, and target-language well-formedness. In
the world of automata these grammars have as a nat-
ural dual the finite tree recognizer (Doner, 1970).
Like tree grammars and packed forests, they are
compact ways of representing very large sets of
trees. We will present an algorithm for determiniz-
ing weighted finite tree recognizers, and use a vari-
ant of the procedure found in (Huang and Chiang,
2005) to obtain -best lists of trees that are weighted
correctly and contain no repetition.
Section 2 describes related work. In Section 3, we

introduce the formalisms of tree automata, specifi-
cally the tree-to-weight transducer. In Section 4, we
present the algorithm. Finally, in Section 5 we show
the results of applying weighted determinization to

recognizers obtained from the packed forest output
of two natural language tasks.

2 Previous Work

The formalisms of tree automata are summarized
well in (Gecseg and Steinby, 1984). Bottom-up
tree recognizers are due to (Thatcher and Wright,
1968), (Doner, 1970), and (Magidor and Moran,
1969). Top-down tree recognizers are due to (Rabin,
1969) and (Magidor and Moran, 1969). (Comon, et.
al., 1997) show the determinization of unweighted
finite-state tree automata, and prove its correctness.
(Borchardt and Vogler, 2003) present determiniza-
tion of weighted finite-state tree automata with a dif-
ferent method than the one we present here. While
our method is applicable to finite tree sets, the previ-
ous method claims the ability to determinize some
classes of infinite tree sets. However, for the fi-
nite case the previous method produces an automa-
ton with size on the order of the number of deriva-
tions, so the technique is limited when applied to
real world data.

3 Grammars, Recognizers, and
Transducers

As described in (Gecseg and Steinby, 1984), tree au-
tomata may be broken into two classes, recognizers
and transducers. Recognizers read tree input and de-
cide whether the input is in the language represented
by the recognizer. Formally, a bottom-up tree recog-
nizer is defined by :1

is a finite set of states,
1Readers familiar with (Gecseg and Steinby, 1984) will no-

tice that we have introduced a start state, modified the notion of
initial assignment, and changed the arity of nullary symbols to
unary symbols. This is to make tree automata more palatable to
those accustomed to string automata and to allow for a useful
graphical interpretation.

352

Figure 2: Visualization of a bottom-up tree recog-
nizer

is a ranked alphabet,
is the initial state,
is a set of final states, and

is a finite set
of transitions from a vector of states to
one state that reads a -ary symbol.

Consider the following tree recognizer:

2

As with string automata, it is helpful to have a vi-
sualization to understand what the recognizer is rec-
ognizing. Figure 2 provides a visualization of the
recognizer above. Notice that some members of
are drawn as arcs with multiple (and ordered) tails.
This is the key difference in visualization between
string and tree automata – to capture the arity of the
symbol being read we must visualize the automata
as an ordered hypergraph.
The function of the members of in the hyper-

graph visualization leads us to refer to the vector of
states as an input vector of states, and the single

state as an output state. We will refer to as the
transition set of the recognizer.
In string automata, a path through a recognizer

consists of a sequence of edges that can be followed
from a start to an end state. The concatenation of la-
bels of the edges of a path, typically in a left-to-right
order, forms a string in the recognizer’s language.
In tree automata, however, a hyperpath through a
recognizer consists of a sequence of hyperedges that
can be followed, sometimes in parallel, from a start

2The number denotes the arity of the symbol.

Figure 3: Bottom-up tree-to-weight transducer

to an end state. We arrange the labels of the hy-
peredges to form a tree in the recognizer’s language
but must now consider proper order in two dimen-
sions. The proper vertical order is specified by the
order of application of transitions, i.e., the labels of
transitions followed earlier are placed lower in the
tree than the labels of transitions followed later. The
proper horizontal order within one level of the tree is
specified by the order of states in a transition’s input

vector. In the example recognizer, the trees

and are valid. Notice that may be

recognized in two different hyperpaths.
Like tree recognizers, tree transducers read tree

input and decide whether the input is in the lan-
guage, but they simultaneously produce some out-
put as well. Since we wish to associate a weight
with every acceptable tree in a language, we will
consider transducers that produce weights as their
output. Note that in transitioning from recognizers
to transducers we are following the convention es-
tablished in (Mohri, 1997) where a transducer with
weight outputs is used to represent a weighted rec-
ognizer. One may consider the determinization of
tree-to-weight transducers as equivalent to the de-
terminization of weighted tree recognizers.
Formally, a bottom-up tree-to-weight transducer
is defined by where ,
, , and are defined as for recognizers, and:

is a
finite set of transitions from a vector of
states to one state, reading a -ary symbol
and outputting some weight
is the initial weight function mapping

to
is the final weight function mapping

353

to .
We must also specify a convention for propagat-

ing the weight calculated in every transition. This
can be explicitly defined for each transition but we
will simplify matters by defining the propagation of
the weight to a destination state as the multiplication
of the weight at each source state with the weight of
the production.
We modify the previous example by adding

weights as follows: As an example, consider the fol-
lowing tree-to-weight transducer (, , , and are
as before):

Figure 3 shows the addition of weights onto the
automata, forming the above transducer. Notice the

tree yields the weight 0.036 (

), and yields the weight 0.012 (

) or 0.054 (), depending on
the hyperpath followed.
This transducer is an example of a nonsubsequen-

tial transducer. A tree transducer is subsequential if
for each vector v of states and each there
is at most one transition in with input vector v and
label . These restrictions ensure a subsequential
transducer yields a single output for each possible
input, that is, it is deterministic in its output.
Because we will reason about the destination state

of a transducer transition and the weight of a trans-
ducer transition separately, we make the following
definition. For a given v where
v is a vector of states, , , and

, let v and v . Equiva-
lent shorthand forms are and .

4 Determinization

The determinization algorithm is presented as Algo-
rithm 1. It takes as input a bottom-up tree-to-weight
transducer and returns as output a subsequential
bottom-up tree-to-weight transducer such that the
tree language recognized by is equivalent to that
of and the output weight given input tree on is
equal to the sum of all possible output weights given
on . Like the algorithm of (Mohri, 1997), this

Figure 4: a) Portion of a transducer before deter-
minization; b) The same portion after determiniza-
tion

algorithm will terminate for automata that recognize
finite tree languages. It may terminate on some au-
tomata that recognize infinite tree languages, but we
do not consider any of these cases in this work.
Determinizing a tree-to-weight transducer can be

thought of as a two-stage process. First, the structure
of the automata must be determined such that a sin-
gle hyperpath exists for each recognized input tree.
This is achieved by a classic powerset construction,
i.e., a state must be constructed in the output trans-
ducer that represents all the possible reachable desti-
nation states given an input and a label. Because we
are working with tree automata, our input is a vector
of states, not a single state. A comparable power-
set construction on unweighted tree automata and a
proof of correctness can be found in (Comon, et. al.,
1997).
The second consideration to weighted deter-

minization is proper propagation of weights. For this
we will use (Mohri, 1997)’s concept of the residual
weight. We represent in the construction of states
in the output transducer not only a subset of states
of the input transducer, but also a number associated
with each of these states, called the residual. Since
we want ’s hyperpath of a particular input tree to
have as its associated weight the sum of the weights
of the all of ’s hyperpaths of the input tree, we re-
place a set of hyperedges in that have the same
input state vector and label with a single hyperedge
in bearing the label and the sum of ’s hyper-
edge weights. The destination state of the hyper-
edge represents the states reachable by ’s applica-
ble hyperedges and for each state, the proportion of
the weight from the relevant transition.
Figure 4 shows the determinization of a portion

of the example transducer. Note that the hyperedge

354

Figure 5: Determinized bottom-up tree-to-weight
transducer

leading to state in the input transducer contributes
of the weight on the output transducer hyperedge

and the hyperedge leading to state in the input
transducer contributes the remaining . This is re-
flected in the state construction in the output trans-
ducer. The complete determinization of the example
transducer is shown in Figure 5.
To encapsulate the representation of states from

the input transducer and associated residual weights,
we define a state in the output transducer as a set of

tuples, where and . Since
the algorithm builds new states progressively, we
will need to represent a vector of states from the
output transducer, typically depicted as v. We may
construct the vector pair q w from v, where q is
a vector of states of the input transducer and w is
a vector of residual weights, by choosing a (state,
weight) pair from each output state in v. For ex-
ample, let . Then two possible out-
put transducer states could be and

. If we choose v then a
valid vector pair q w is q , w .
The sets v , v , and v are defined

as follows:
v q w from v
q .
v q w from v
q .
v q w from v
q .

.
v is the set of vector pairs q w con-

structed from v where each q is an input vector in
a transition with label . v is the set of
unique transitions paired with the appropriate pair
for each q w in v . v is the set of states
reachable from the transitions in v .

The consideration of vectors of states on the in-
cident edge of transitions effects two noticeable
changes on the algorithm as it is presented in
(Mohri, 1997). The first, relatively trivial, change
is the inclusion of the residual of multiple states in
the calculation of weights and residuals on lines 16
and 17. The second change is the production of
vectors for consideration. Whereas the string-based
algorithm considered newly-created states in turn,
we must consider newly-available vectors. For each
newly created state, newly available vectors can be
formed by using that state with the other states of
the output transducer. This operation is performed
on lines 7 and 22 of the algorithm.

5 Empirical Studies

We now turn to some empirical studies. We examine
the practical impact of the presented work by show-
ing:

That the multiple derivation problem is
pervasive in practice and determinization
is effective at removing duplicate trees.
That duplication causes misleading
weighting of individual trees and the
summing achieved from weighted deter-
minization corrects this error, leading to
re-ordering of the -best list.
That weighted determinization positively
affects end-to-end system performance.

We also compare our results to a commonly used
technique for estimation of -best lists, i.e., sum-
ming over the top derivations to get weight
estimates of the top unique elements.

5.1 Machine translation

We obtain packed-forest English outputs from 116
short Chinese sentences computed by a string-to-
tree machine translation system based on (Galley,
et. al., 2004). The system is trained on all Chinese-
English parallel data available from the Linguistic
Data Consortium. The decoder for this system is a
CKY algorithm that negotiates the space described
in (DeNeefe, et. al., 2005). No language model was
used in this experiment.
The forests contain a median of En-

glish parse trees each. We remove cycles from each

355

Algorithm 1: Weighted Determinization of Tree Automata
Input: BOTTOM-UP TREE-TO-WEIGHT TRANSDUCER .
Output: SUBSEQUENTIAL BOTTOM-UP TREE-TO-WEIGHT TRANSDUCER .
begin1

2
3

PRIORITY QUEUE4
5
6

ENQUEUE7
while do8

v head9
v10

for each v such that do11
if such that then12

s.t.13
14

for each such that v do15

v
v16

v
v

v
v s.t.17

v v v18
/* RANK returns the largest hyperedge size that can leave state .

COMBINATIONS returns all possible vectors of length
containing members of and at least one member of . */

if v is a new state then19
for each u COMBINATIONS v

v
RANK do

20
if u is a new vector then21

ENQUEUE u22

v23

DEQUEUE24

end25

forest,3 apply our determinization algorithm, and ex-
tract the -best trees using a variant of (Huang and
Chiang, 2005). The effects of weighted determiniza-
tion on an -best list are obvious to casual inspec-
tion. Figure 7 shows the improvement in quality of
the top 10 trees from our example translation after
the application of the determinization algorithm.
The improvement observed circumstantially

holds up to quantitative analysis as well. The
forests obtained by the determinized grammars have
between 1.39% and 50% of the number of trees of
their undeterminized counterparts. On average, the
determinized forests contain 13.7% of the original

3As in (Mohri, 1997), determinization may be applicable to
some automata that recognize infinite languages. In practice,
cycles in tree automata of MT results are almost never desired,
since these represent recursive insertion of words.

number of trees. Since a determinized forest con-
tains no repeated trees but contains exactly the same
unique trees as its undeterminized counterpart, this
indicates that an average of 86.3% of the trees in an
undeterminized MT output forest are duplicates.

Weighted determinization also causes a surpris-
ingly large amount of -best reordering. In 77.6%
of the translations, the tree regarded as “best” is
different after determinization. This means that in
a large majority of cases, the tree with the high-
est weight is not recognized as such in the undeter-
minized list because its weight is divided among its
multiple derivations. Determinization allows these
instances and their associated weights to combine
and puts the highest weighted tree, not the highest
weighted derivation, at the top of the list.

356

method Bleu
undeterminized 21.87

top-500 “crunching” 23.33
determinized 24.17

Figure 6: Bleu results from string-to-tree machine
translation of 116 short Chinese sentences with no
language model. The use of best derivation (unde-
terminized), estimate of best tree (top-500), and true
best tree (determinized) for selection of translation
is shown.

We can compare our method with the more com-
monly used methods of “crunching” -best lists,
where . The duplicate sentences in the
trees are combined, hopefully resulting in at least
unique members with an estimation of the true

tree weight for each unique tree. Our results indi-
cate this is a rather crude estimation. When the top
500 derivations of the translations of our test cor-
pus are summed, only 50.6% of them yield an esti-
mated highest-weighted tree that is the same as the
true highest-weighted tree.
As a measure of the effect weighted determiniza-

tion and its consequential re-ordering has on an ac-
tual end-to-end evaluation, we obtain Bleu scores
for our 1-best translations from determinization, and
compare them with the 1-best translations from the
undeterminized forest and the 1-best translations
from the top-500 “crunching” method. The results
are tabulated in Figure 6. Note that in 26.7% of
cases determinization did not terminate in a reason-
able amount of time. For these sentences we used
the best parse from top-500 estimation instead. It is
not surprising that determinization may occasionally
take a long time; even for a language of monadic
trees (i.e. strings) the determinization algorithm is
NP-complete, as implied by (Casacuberta and de la
Higuera, 2000) and, e.g. (Dijkstra, 1959).

5.2 Data-Oriented Parsing
Weighted determinization of tree automata is also
useful for parsing. Data-Oriented Parsing (DOP)’s
methodology is to calculate weighted derivations,
but as noted in (Bod, 2003), it is the highest ranking
parse, not derivation, that is desired. Since (Sima’an,
1996) showed that finding the highest ranking parse
is an NP-complete problem, it has been common to
estimate the highest ranking parse by the previously

method Recall Precision F-measure
undeterminized 80.23 80.18 80.20

top-500 “crunching” 80.48 80.29 80.39
determinized 81.09 79.72 80.40

Figure 8: Recall, precision, and F-measure results
on DOP-style parsing of section 23 of the Penn Tree-
bank. The use of best derivation (undeterminized),
estimate of best tree (top-500), and true best tree (de-
terminized) for selection of parse output is shown.

described “crunching” method.
We create a DOP-like parsing model4 by extract-

ing and weighting a subset of subtrees from sec-
tions 2-21 of the Penn Treebank and use a DOP-
style parser to generate packed forest representa-
tions of parses of the 2416 sentences of section 23.
The forests contain a median of parse
trees. We then remove cycles and apply weighted
determinization to the forests. The number of trees
in each determinized parse forest is reduced by a
factor of between 2.1 and . On aver-
age, the number of trees is reduced by a factor of
900,000, demonstrating a much larger number of du-
plicate parses prior to determinization than in the
machine translation experiment. The top-scoring
parse after determinization is different from the top-
scoring parse before determinization for 49.1% of
the forests, and when the determinization method
is “approximated” by crunching the top-500 parses
from the undeterminized list only 55.9% of the top-
scoring parses are the same, indicating the crunch-
ing method is not a very good approximation of
determinization. We use the standard F-measure
combination of recall and precision to score the
top-scoring parse in each method against reference
parses. The results are tabulated in Figure 8. Note
that in 16.9% of cases determinization did not ter-
minate. For those sentences we used the best parse
from top-500 estimation instead.

6 Conclusion

We have shown that weighted determinization is
useful for recovering -best unique trees from a
weighted forest. As summarized in Figure 9, the

4This parser acquires a small subset of subtrees, in contrast
with DOP, and the beam search for this problem has not been
optimized.

357

31.87: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.11: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(caused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.15: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(arouse) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.55: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(cause) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
32.60: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(attracted) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.16: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VB(provoke) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.27: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBG(causing) NP-C(NPB(DT(the) JJ(american) NNS(protests)))) .(.))
33.29: S(NP-C(NPB(DT(this) NN(case))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))
33.31: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(aroused) NP-C(NPB(DT(the) NN(protest)) PP(IN(of) NP-C(NPB(DT(the)
NNS(united states))))))) .(.))
33.33: S(NP-C(NPB(DT(this) NNS(cases))) VP(VBD(had) VP-C(VBN(incurred) NP-C(NPB(DT(the) JJ(american) NNS(protests))))) .(.))

Figure 7: Ranked list of machine translation results with no repeated trees.

experiment undeterminized determinized
machine translation

parsing

Figure 9: Median trees per sentence forest in ma-
chine translation and parsing experiments before and
after determinization is applied to the forests, re-
moving duplicate trees.

number of repeated trees prior to determinization
was typically very large, and thus determinization is
critical to recovering true tree weight. We have im-
proved evaluation scores by incorporating the pre-
sented algorithm into our MT work and we believe
that other NLP researchers working with trees can
similarly benefit from this algorithm.
Further advances in determinization will provide

additional benefit to the community. The transla-
tion system detailed here is a string-to-tree system,
and the determinization algorithm returns the -best
unique trees from a packed forest. Users of MT sys-
tems are generally interested in the string yield of
those trees, and not the trees per se. Thus, an algo-
rithm that can return the -best unique strings from
a packed forest would be a useful extension.
We plan for our weighted determinization algo-

rithm to be one component in a generally available
tree automata package for intersection, composition,
training, recognition, and generation of weighted
and unweighted tree automata for research tasks
such as the ones described above.

Acknowledgments

We thank Liang Huang for fruitful discussions
which aided in this work and David Chiang, Daniel
Marcu, and Steve DeNeefe for reading an early draft
and providing useful comments. This work was sup-
ported by NSF grant IIS-0428020.

References
Rens Bod. 1992. A Computational model of language perfor-
mance: data oriented parsing. In Proc. COLING

Rens Bod. 2003. An efficient implementation of a new DOP
model. In Proc. EACL,

Björn Borchardt and Heiko Vogler. 2003. Determinization of
finite state weighted tree automata. Journal of Automata,
Languages and Combinatorics, 8(3).

W. S. Brainerd. 1969. Tree generating regular systems. Infor-
mation and Control, 14.

F. Casacuberta and C. de la Higuera. 2000. Computa-
tional complexity of problems on probabilistic grammars
and transducers. In Proc. ICGI.

Michael Collins and Brian Roark. 2004. Incremental parsing
with the perceptron algorithm. In Proc. ACL.

H. Comon and M. Dauchet and R. Gilleron and F. Jacquemard
and D. Lugiez and S. Tison and M. Tommasi. 1997 Tree
Automata Techniques and Applications.

S. DeNeefe and K. Knight and H. Chan. 2005. Interactively
exploring a machine translation model. Poster in Proc. ACL.

Edsger W. Dijkstra 1959. A note on two problems in connexion
with graphs Numerische Mathematik, 1.

J. E. Doner 1970. Tree acceptors and some of their applications
J. Comput. System Sci., 4.

M. Galley and M. Hopkins and K. Knight and D. Marcu. 2004.
What’s in a translation rule? In Proc. HLT-NAACL.

Ferenc Gécseg and Magnus Steinby 1984. Tree Automata.
Akadémiai Kiadó, Budapest.

Liang Huang and David Chiang 2005. Better k-best parsing In
Proc. IWPT.

Irene Langkilde and Kevin Knight 1998 The Practical Value of
N-Grams in Generation In Proc. INLG.

M. Magidor and G. Moran. 1969. Finite automata over finite
trees Technical Report 30. Hebrew University, Jerusalem.

Mehryar Mohri. 1997. Finite-state transducers in language and
speech processing. Computational Linguistics, 23(2).

Mehryar Mohri and Michael Riley. 2002. An efficient algo-
rithm for the -best strings problem. In Proc. ICSLP.

M. O. Rabin. 1969. Decidability of second-order theories and
automata on infinite trees. Trans. Amer. Math. Soc., 141.

Yves Schabes. 1990. Mathematical and computational aspects
of lexicalized grammars. Ph.D. thesis. University of Penn-
sylvania, Philadelphia, PA.

Khalil Sima’an. 1996. Computational complexity of proba-
bilistic disambiguation by means of tree-grammars. In Proc.
COLING.

J. W. Thatcher and J. B. Wright. 1968. Generalized finite au-
tomata theory with an application to a decision problem of
second order logic. Mathematical Systems Theory, 2.

358

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 359–366,
New York, June 2006.c©2006 Association for Computational Linguistics

Aggregation via Set Partitioning for Natural Language Generation

Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
regina@csail.mit.edu

Mirella Lapata
School of Informatics

University of Edinburgh
mlap@inf.ed.ac.uk

Abstract

The role of aggregation in natural lan-
guage generation is to combine two or
more linguistic structures into a single
sentence. The task is crucial for generat-
ing concise and readable texts. We present
an efficient algorithm for automatically
learning aggregation rules from a text and
its related database. The algorithm treats
aggregation as a set partitioning problem
and uses a global inference procedure to
find an optimal solution. Our experiments
show that this approach yields substan-
tial improvements over a clustering-based
model which relies exclusively on local
information.

1 Introduction

Aggregation is an essential component of many nat-
ural language generation systems (Reiter and Dale,
2000). The task captures a mechanism for merg-
ing together two or more linguistic structures into
a single sentence. Aggregated texts tend to be more
concise, coherent, and more readable overall (Dalia-
nis, 1999; Cheng and Mellish, 2000). Compare,
for example, sentence (2) in Table 1 and its non-
aggregated counterpart in sentences (1a)–(1d). The
difference between the fluent aggregated sentence
and its abrupt and redundant alternative is striking.

The benefits of aggregation go beyond making
texts less stilted and repetitive. Researchers in psy-
cholinguistics have shown that by eliminating re-

(1) a. Holocomb had an incompletion in the
first quarter.

b. Holocomb had another incompletion in
the first quarter.

c. Davis was among four San Francisco
defenders.

d. Holocomb threw to Davis for a leaping
catch.

(2) After two incompletions in the first quar-
ter, Holcomb found Davis among four San
Francisco defenders for a leaping catch.

Table 1: Aggregation example (in boldface) from a
corpus of football summaries

dundancy, aggregation facilitates text comprehen-
sion and recall (see Yeung (1999) and the references
therein). Furthermore, Di Eugenio et al. (2005)
demonstrate that aggregation can improve learning
in the context of an intelligent tutoring application.

In existing generation systems, aggregation typi-
cally comprises two processes: semantic grouping
and sentence structuring (Wilkinson, 1995). The
first process involves partitioning semantic content
(usually the output of a content selection compo-
nent) into disjoint sets, each corresponding to a sin-
gle sentence. The second process is concerned with
syntactic or lexical decisions that affect the realiza-
tion of an aggregated sentence.

To date, this task has involved human analysis of a
domain-relevant corpus and manual development of
aggregation rules (Dalianis, 1999; Shaw, 1998). The
corpus analysis and knowledge engineering work in
such an approach is substantial, prohibitively so in

359

large domains. But since corpus data is already used
in building aggregation components, an appealing
alternative is to try and learn the rules of semantic
grouping directly from the data. Clearly, this would
greatly reduce the human effort involved and ease
porting generation systems to new domains.

In this paper, we present an automatic method for
performing the semantic grouping task. We address
the following problem: given an aligned parallel cor-
pus of sentences and their underlying semantic rep-
resentations, how can we learn grouping constraints
automatically? In our case the semantic content cor-
responds to entries from a database; however, our
algorithm could be also applied to other representa-
tions such as propositions or sentence plans.

We formalize semantic grouping as a set parti-
tioning problem, where each partition corresponds
to a sentence. The strength of our approach lies in
its ability to capture global partitioning constraints
by performing collective inference over local pair-
wise assignments. This design allows us to inte-
grate important constraints developed in symbolic
approaches into an automatic aggregation frame-
work. At a local level, pairwise constraints cap-
ture the semantic compatibility between pairs of
database entries. For example, if two entries share
multiple attributes, then they are likely to be aggre-
gated. Local constraints are learned using a binary
classifier that considers all pairwise combinations
attested in our corpus. At a global level, we search
for a semantic grouping that maximally agrees with
the pairwise preferences while simultaneously sat-
isfying constraints on the partitioning as a whole.
Global constraints, for instance, could prevent the
creation of overly long sentences, and, in general,
control the compression rate achieved during aggre-
gation. We encode the global inference task as an
integer linear program (ILP) that can be solved us-
ing standard optimization tools.

We evaluate our approach in a sports domain rep-
resented by large real-world databases containing
a wealth of interrelated facts. Our aggregation al-
gorithm model achieves an 11% F-score increase
on grouping entry pairs over a greedy clustering-
based model which does not utilize global informa-
tion for the partitioning task. Furthermore, these re-
sults demonstrate that aggregation is amenable to an
automatic treatment that does not require human in-

volvement.
In the following section, we provide an overview

of existing work on aggregation. Then, we define the
learning task and introduce our approach to content
grouping. Next, we present our experimental frame-
work and data. We conclude the paper by presenting
and discussing our results.

2 Related Work

Due to its importance in producing coherent and flu-
ent text, aggregation has been extensively studied in
the text generation community.1 Typically, semantic
grouping and sentence structuring are interleaved in
one step, thus enabling the aggregation component
to operate over a rich feature space. The common
assumption is that other parts of the generation sys-
tem are already in place during aggregation, and thus
the aggregation component has access to discourse,
syntactic, and lexical constraints.

The interplay of different constraints is usually
captured by a set of hand-crafted rules that guide
the aggregation process (Scott and de Souza, 1990;
Hovy, 1990; Dalianis, 1999; Shaw, 1998). Al-
ternatively, these rules can be learned from a cor-
pus. For instance, Walker et al. (2001) propose
an overgenerate-and-rank approach to aggregation
within the context of a spoken dialog application.
Their system relies on a preference function for se-
lecting an appropriate aggregation among multiple
alternatives and assumes access to a large feature
space expressing syntactic and pragmatic features of
the input representations. The preference function
is learned from a corpus of candidate aggregations
marked with human ratings. Another approach is put
forward by Cheng and Mellish (2000) who use a ge-
netic algorithm in combination with a hand-crafted
preference function to opportunistically find a text
that satisfies aggregation and planning constraints.

Our approach differs from previous work in two
important respects. First, our ultimate goal is a gen-
eration system which can be entirely induced from
a parallel corpus of sentences and their correspond-
ing database entries. This means that our generator
will operate over more impoverished representations
than are traditionally assumed. For example we do

1The approaches are too numerous to list; we refer the inter-
ested reader to Reiter and Dale (2000) and Reape and Mellish
(1999) for comprehensive overviews.

360

Passing
PLAYER CP/AT YDS AVG TD INT
Cundiff 22/37 237 6.4 1 1
Carter 23/47 237 5.0 1 4
.

Rushing
PLAYER REC YDS AVG LG TD
Hambrick 13 33 2.5 10 1
.

1 (Passing (Cundiff 22/37 237 6.4 1 1))
(Passing (Carter 23/47 237 5.0 1 4))

2 (Interception (Lindell 1 52 1))
(Kicking (Lindell 3/3 100 38 1/1 10))

3 (Passing (Bledsoe 17/34 104 3.1 0 0))
4 (Passing (Carter 15/32 116 3.6 1 0))
5 (Rushing (Hambrick 13 33 2.5 10 1))
6 (Fumbles (Bledsoe 2 2 0 0 0))

Table 2: Excerpt of database and (simplified) example of aggregated entries taken from a football domain.
This fragment will give rise to 6 sentences in the final text.

not presume to know all possible ways in which our
database entries can be lexicalized, nor do we pre-
sume to know which semantic or discourse relations
exist between different entries. In this framework,
aggregation is the task of grouping semantic content
without making any decisions about sentence struc-
ture or its surface realization. Second, we strive for
an approach to the aggregation problem which is as
domain- and representation-independent as possible.

3 Problem Formulation

We formulate aggregation as a supervised partition-
ing task, where the goal is to find a clustering of
input items that maximizes a global utility func-
tion. The input to the model consists of a set E

of database entries selected by a content planner.
The output of the model is a partition S = {Si} of
nonempty subsets such that each element of E ap-
pears in exactly one subset.2 In the context of aggre-
gation, each partition represents entries that should
be verbalized in the same sentence. An example of a
partitioning is illustrated in the right side of Table 2
where eight entries are partitioned into six clusters.

We assume access to a relational database where
each entry has a type and a set of attributes as-
sociated with it. Table 2 (left) shows an ex-
cerpt of the database we used for our experiments.
The aggregated text in Table 2 (right) contains en-
tries of five types: Passing, Interception,
Kicking, Rushing, and Fumbles. Entries of
type Passing have six attributes — PLAYER,

2By definition, a partitioning of a set defines an equivalence
relation which is reflexive, symmetric, and transitive.

CP/AT, YDS, AVG, TD, INT, entries of type
Interception have four attributes, and so on.
We assume the existence of a non-empty set of at-
tributes that we can use for meaningful comparison
between entities of different types. In the example
above, types Passing and Rushing share the at-
tributes PLAYER,AVG (short for average), TD (short
for touchdown) and YDS (short for yards). These are
indicated in boldface in Table 2. In Section 4.1, we
discuss how a set of shared attributes can be deter-
mined for a given database.

Our training data consists of entry sets with a
known partitioning. During testing, our task is to
infer a partitioning for an unseen set of entries.

4 Modeling

Our model is inspired by research on text aggre-
gation in the natural language generation commu-
nity (Cheng and Mellish, 2000; Shaw, 1998). A
common theme across different approaches is the
notion of similarity — content elements described
in the same sentence should be related to each other
in some meaningful way to achieve conciseness and
coherence. Consider for instance the first cluster in
Table 2. Here, we have two entries of the same type
(i.e., Passing). Furthermore, the entries share the
same values for the attributes YDS and TD (i.e., 237
and 1). On the other hand, clusters 5 and 6 have
no attributes in common. This observation moti-
vates modeling aggregation as a binary classification
task: given a pair of entries, predict their aggrega-
tion status based on the similarity of their attributes.
Assuming a perfect classifier, pairwise assignments

361

will be consistent with each other and will therefore
yield a valid partitioning.

In reality, however, this approach may produce
globally inconsistent decisions since it treats each
pair of entries in isolation. Moreover, a pairwise
classification model cannot express general con-
straints regarding the partitioning as a whole. For
example, we may want to constrain the size of the
generated partitions and the compression rate of the
document, or the complexity of the generated sen-
tences.

To address these requirements, our approach re-
lies on global inference. Given the pairwise predic-
tions of a local classifier, our model finds a glob-
ally optimal assignment that satisfies partitioning-
level constraints. The computational challenge lies
in the complexity of such a model: we need to find
an optimal partition in an exponentially large search
space. Our approach is based on an Integer Linear
Programming (ILP) formulation which can be effec-
tively solved using standard optimization tools. ILP
models have been successfully applied in several
natural language processing tasks, including relation
extraction (Roth and Yih, 2004), semantic role label-
ing (Punyakanok et al., 2004) and the generation of
route directions (Marciniak and Strube, 2005).

In the following section, we introduce our local
pairwise model and afterward we present our global
model for partitioning.

4.1 Learning Pairwise Similarity

Our goal is to determine whether two database en-
tries should be aggregated given the similarity of
their shared attributes. We generate the training data
by considering all pairs 〈ei, ej〉 ∈ E × E, where E

is the set of all entries attested in a given document.
An entry pair forms a positive instance if its mem-
bers belong to the same partition in the training data.
For example, we will generate 8×7

2
unordered entry

pairs for the eight entries from the document in Ta-
ble 2. From these, only two pairs constitute positive
instances, i.e., clusters 1 and 2. All other pairs form
negative instances.

The computation of pairwise similarity is based
on the attribute set A = {Ai} shared between the
two entries in the pair. As discussed in Section 3,
the same attributes can characterize multiple entry
types, and thus form a valid basis for entry compari-

son. The shared attribute set A could be identified in
many ways. For example, using domain knowledge
or by selecting attributes that appear across multiple
types. In our experiments, we follow the second ap-
proach: we order attributes by the number of entry
types in which they appear, and select the top five3.

A pair of entries is represented by a binary fea-
ture vector {xi} in which coordinate xi indicates
whether two entries have the same value for at-
tribute i. The feature vector is further expanded by
conjuctive features that explicitly represent overlap
in values of multiple attributes up to size k. The
parameter k controls the cardinality of the maximal
conjunctive set and is optimized on the development
set.

To illustrate our feature generation process, con-
sider the pair (Passing (Quincy Carter 15/32 116 3.6
1 0)) and (Rushing (Troy Hambrick 13 33 2.5 10 1))
from Table 2. Assuming A = {Player,Yds,TD}
and k = 2, the similarity between the two en-
tries will be expressed by six features, three rep-
resenting overlap in individual attributes and three
representing overlap when considering pairs of at-
tributes. The resulting feature vector has the form
〈0, 0, 1, 0, 0, 0〉.

Once we define a mapping from database entries
to features, we employ a machine learning algorithm
to induce a classifier on the feature vectors generated
from the training documents. In our experiments, we
used a publicly available maximum entropy classi-
fier4 for this task.

4.2 Partitioning with ILP

Given the pairwise predictions of the local classifier,
we wish to find a valid global partitioning for the
entries in a single document. We thus model the in-
teraction between all pairwise aggregation decisions
as an optimization problem.

Let c〈ei,ej〉 be the probability of seeing entry pair
〈ei, ej〉 aggregated (as computed by the pairwise
classifier). Our goal is to find an assignment that
maximizes the sum of pairwise scores and forms a
valid partitioning. We represent an assignment us-
ing a set of indicator variables x〈ei,ej〉 that are set

3Selecting a larger number of attributes for representing sim-
ilarity would result in considerably sparser feature vectors.

4The software can be downloaded from http://www.
isi.edu/˜hdaume/megam/index.html.

362

to 1 if 〈ei, ej〉 is aggregated, and 0 otherwise. The
score of a global assignment is the sum of its pair-
wise scores:

∑

〈ei,ej〉∈E×E

c〈ei,ej〉x〈ei,ej〉+(1−c〈ei,ej〉)(1−x〈ei,ej〉)

(1)
Our inference task is solved by maximizing the

overall score of pairs in a given document:

argmax
∑

〈ei,ej〉∈E×E

c〈ei,ej〉x〈ei,ej〉+(1−c〈ei,ej〉)(1−x〈ei ,ej〉)

(2)
subject to:

x〈ei,ej〉 ∈ {0, 1} ∀ ei, ej ∈ E ×E (3)

We augment this basic formulation with two types
of constraints. The first type of constraint ensures
that pairwise assignments lead to a consistent parti-
tioning, while the second type expresses global con-
straints on partitioning.

Transitivity Constraints We place constraints
that enforce transitivity in the label assignment: if
x〈ei,ej〉 = 1 and x〈ej ,ek〉 = 1, then x〈ei,ek〉 = 1.
A pairwise assignment that satisfies this constraint
defines an equivalence relation, and thus yields a
unique partitioning of input entries (Cormen et al.,
1992).

We implement transitivity constraints by intro-
ducing for every triple ei, ej , ek (i 6= j 6= k) an
inequality of the following form:

x〈ei,ek〉 ≥ x〈ei,ej〉 + x〈ej ,ek〉 − 1 (4)

If both x〈ei,ej〉 and x〈ej ,ek〉 are set to one, then
x〈ei,ek〉 also has to be one. Otherwise, x〈ei,ek〉 can
be either 1 or 0.

Global Constraints We also want to consider
global document properties that influence aggrega-
tion. For example, documents with many database
entries are likely to exhibit different compression
rates during aggregation when compared to docu-
ments that contain only a few.

Our first global constraint controls the number
of aggregated sentences in the document. This is
achieved by limiting the number of entry pairs with
positive labels for each document:

∑

〈ei,ej〉∈E×E

x〈ei,ej〉 ≤ m (5)

Notice that the number m is not known in ad-
vance. However, we can estimate this parameter
from our development data by considering docu-
ments of similar size (as measured by the number
of corresponding entry pairs.) For example, texts
with thousand entry pairs contain on average 70 pos-
itive labels, while documents with 200 pairs have
around 20 positive labels. Therefore, we set m sep-
arately for every document by taking the average
number of positive labels observed in the develop-
ment data for the document size in question.

The second set of constraints controls the length
of the generated sentences. We expect that there is
an upper limit on the number of pairs that can be
clustered together. This restriction can be expressed
in the following form:

∀ ei

∑

ej∈E

x〈ei,ej〉 ≤ k (6)

This constraint ensures that there can be at most k

positively labeled pairs for any entry ei. In our
corpus, for instance, at most nine entries can be
aggregated in a sentence. Again k is estimated
from the development data by taking into account
the average number of positively labeled pairs for
every entry type (see Table 2). We therefore
indirectly capture the fact that some entry types
(e.g., Passing) are more likely to be aggregated
than others (e.g., Kicking).

Solving the ILP In general, solving an integer lin-
ear program is NP-hard (Cormen et al., 1992). For-
tunately, there exist several strategies for solving
ILPs. In our study, we employed lp solve, an ef-
ficient Mixed Integer Programming solver5 which
implements the Branch-and-Bound algorithm. We
generate and solve an ILP for every document we
wish to aggregate. Documents of average size (ap-
proximately 350 entry pairs) take under 30 minutes
on a 450 MHz Pentium III machine.

5The software is available from http://www.
geocities.com/lpsolve/

363

5 Evaluation Set-up

The model presented in the previous section was
evaluated in the context of generating summary re-
ports for American football games. In this section
we describe the corpus used in our experiments, our
procedure for estimating the parameters of our mod-
els, and the baseline method used for comparison
with our approach.

Data For training and testing our algorithm, we
employed a corpus of football game summaries col-
lected by Barzilay and Lapata (2005). The corpus
contains 468 game summaries from the official site
of the American National Football League6 (NFL).
Each summary has an associated database contain-
ing statistics about individual players and events. In
total, the corpus contains 73,400 database entries,
7.1% of which are verbalized; each entry is charac-
terized by a type and a set of attributes (see Table 2).
Database entries are automatically aligned with their
corresponding sentences in the game summaries by
a procedure that considers anchor overlap between
entity attributes and sentence tokens. Although the
alignment procedure is relatively accurate, there is
unavoidably some noise in the data.

The distribution of database entries per sentence
is shown in Figure 1. As can be seen, most aggre-
gated sentences correspond to two or three database
entries. Each game summary contained 14.3 entries
and 9.1 sentences on average. The training and test
data were generated as described in Section 4.1. We
used 96,434 instances (300 summaries) for training,
59,082 instances (68 summaries) for testing, and
53,776 instances (100 summaries) for development
purposes.

Parameter Estimation As explained in Section 4,
we infer a partitioning over a set of database en-
tries in a two-stage process. We first determine how
likely all entry pairs are to be aggregated using a lo-
cal classifier, and then infer a valid global partition-
ing for all entries. The set of shared attributes A
consists of five features that capture overlap in play-
ers, time (measured by game quarters), action type,
outcome type, and number of yards. The maximum
cardinality of the set of conjunctive features is five.

6See http://www.nfl.com/scores.

Figure 1: Distribution of aggregated sentences in the
NFL corpus

Overall, our local classifier used 28 features, includ-
ing 23 conjunctive ones. The maximum entropy
classifier was trained for 100 iterations. The global
constraints for our ILP models are parametrized (see
equations (5) and (6)) by m and k which are esti-
mated separately for every test document. The val-
ues of m ranged from 2 to 130 and for k from 2 to 9.

Baseline Clustering is a natural baseline model for
our partitioning problem. In our experiments, we
a employ a single-link agglomerative clustering al-
gorithm that uses the scores returned by the maxi-
mum entropy classifier as a pairwise distance mea-
sure. Initially, the algorithm creates a separate clus-
ter for each sentence. During each iteration, the two
closest clusters are merged. Again, we do not know
in advance the appropriate number of clusters for a
given document. This number is estimated from the
training data by averaging the number of sentences
in documents of the same size.

Evaluation Measures We evaluate the perfor-
mance of the ILP and clustering models by mea-
suring F-score over pairwise label assignments. We
compute F-score individually for each document and
report the average. In addition, we compute partition
accuracy in order to determine how many sentence-
level aggregations our model predicts correctly.

364

Clustering Precision Recall F-score
Mean 57.7 66.9 58.4
Min 0.0 0.0 0.0
Max 100.0 100.0 100.0
StDev 28.2 23.9 23.1

ILP Model Precision Recall F-score
Mean 82.2 65.4 70.3
Min 37.5 28.6 40.0
Max 100.0 100.0 100.0
StDev 19.2 20.3 16.6

Table 3: Results on pairwise label assignment (pre-
cision, recall, and F-score are averaged over doc-
uments); comparison between clustering and ILP
models

6 Results

Our results are summarized in Table 3. As can
be seen, the ILP model outperforms the clustering
model by a wide margin (11.9% F-score). The two
methods yield comparable recall; however, the clus-
tering model lags considerably behind as far as pre-
cision is concerned (the difference is 24.5 %).7

Precision is more important than recall in the con-
text of our aggregation application. Incorrect aggre-
gations may have detrimental effects on the coher-
ence of the generated text. Choosing not to aggre-
gate may result in somewhat repetitive texts; how-
ever, the semantic content of the underlying text re-
mains intact. In the case of wrong aggregations, we
may group together facts that are not compatible,
and even introduce implications that are false.

We also consider how well our model performs
when evaluated on total partition accuracy. Here,
we are examining the partitioning as a whole and
ask the following question: how many clusters of
size 1, 2 . . . n did the algorithm get right? This eval-
uation measure is stricter than F-score which is com-

7Unfortunately we cannot apply standard statistical tests
such as the t-test on F-scores since they violate assumptions
about underlying normal distributions. It is not possible to use
an assumptions-free test like χ

2 either, since F-score is not a
frequency-based measure. We can, however, use χ

2 on pre-
cision and recall, since these measures are estimated from fre-
quency data. We thus find that the ILP model is significantly
better than the clustering model on precision (χ2 = 16.39,
p < 0.01); the two models are not significantly different in
terms of recall (χ2 = 0.02, p < 0.89).

Figure 2: Partition accuracy for sentences of differ-
ent size

puted over pairwise label assignments. The partition
accuracy for entry groups of varying size is shown in
Figure 2. As can be seen, in all cases the ILP outper-
forms the clustering baseline. Both models are fairly
accurate at identifying singletons, i.e., database en-
tries which are not aggregated. Performance is natu-
rally worse when considering larger clusters. Inter-
estingly, the difference between the two models be-
comes more pronounced for partition sizes 4 and 5
(see Figure 2). The ILP’s accuracy increases by 24%
for size 4 and 8% for size 5.

These results empirically validate the impor-
tance of global inference for the partitioning task.
Our formulation allows us to incorporate important
document-level constraints as well as consistency
constraints which cannot be easily represented in a
vanilla clustering model.

7 Conclusions and Future Work

In this paper we have presented a novel data-driven
method for aggregation in the context of natural lan-
guage generation. A key aspect of our approach is
the use of global inference for finding aggregations
that are maximally consistent and coherent. We have
formulated our inference problem as an integer lin-
ear program and shown experimentally that it out-
performs a baseline clustering model by a wide mar-
gin. Beyond generation, the approach holds promise
for other NLP tasks requiring the accurate partition-
ing of items into equivalence classes (e.g., corefer-
ence resolution).

365

Currently, semantic grouping is carried out in our
model sequentially. First, a local classifier learns
the similarity of entity pairs and then ILP is em-
ployed to infer a valid partitioning. Although such a
model has advantages in the face of sparse data (re-
call that we used a relatively small training corpus
of 300 documents) and delivers good performance,
it effectively decouples learning from inference. An
appealing future direction lies in integrating learning
and inference in a unified global framework. Such
a framework would allow us to incorporate global
constraints directly into the learning process.

Another important issue, not addressed in this
work, is the interaction of our aggregation method
with content selection and surface realization. Using
an ILP formulation may be an advantage here since
we could use feedback (in the form of constraints)
from other components and knowlegde sources (e.g.,
discourse relations) to improve aggregation or in-
deed the generation pipeline as a whole (Marciniak
and Strube, 2005).

Acknowledgments

The authors acknowledge the support of the National Science

Foundation (Barzilay; CAREER grant IIS-0448168 and grant

IIS-0415865) and EPSRC (Lapata; grant GR/T04540/01).

Thanks to Eli Barzilay, Michael Collins, David Karger, Frank

Keller, Yoong Keok Lee, Igor Malioutov, Johanna Moore,

Kevin Simler, Ben Snyder, Bonnie Webber and the anonymous

reviewers for helpful comments and suggestions. Any opinions,

findings, and conclusions or recommendations expressed above

are those of the authors and do not necessarily reflect the views

of the NSF or EPSRC.

References

R. Barzilay, M. Lapata. 2005. Collective content se-
lection for concept-to-text generation. In Proceedings
of the Human Language Technology Conference and
the Conference on Empirical Methods in Natural Lan-
guage Processing, 331–338, Vancouver.

H. Cheng, C. Mellish. 2000. Capturing the interaction
between aggregation and text planning in two genera-
tion systems. In Proceedings of the 1st International
Natural Language Generation Conference, 186–193,
Mitzpe Ramon, Israel.

T. H. Cormen, C. E. Leiserson, R. L. Rivest. 1992. Into-
duction to Algorithms. The MIT Press.

H. Dalianis. 1999. Aggregation in natural language gen-
eration. Computational Intelligence, 15(4):384–414.

B. Di Eugenio, D. Fossati, D. Yu. 2005. Aggregation im-
proves learning: Experiments in natural language gen-
eration for intelligent tutoring systems. In Proceed-
ings of the 43rd Annual Meeting of the Association for
Computational Linguistics, 50–57, Ann Arbor, MI.

E. H. Hovy. 1990. Unresolved issues in paragraph plan-
ning. In R. Dale, C. Mellish, M. Zock, eds., Cur-
rent Research in Natural Language Generation, 17–
41. Academic Press, New York.

T. Marciniak, M. Strube. 2005. Beyond the pipeline:
Discrete optimization in NLP. In Proceedings of the
Annual Conference on Computational Natural Lan-
guage Learning, 136–143, Ann Arbor, MI.

V. Punyakanok, D. Roth, W. Yih, D. Zimak. 2004. Se-
mantic role labeling via integer linear programming
inference. In Proceedings of the International Con-
ference on Computational Linguistics, 1346–1352,
Geneva, Switzerland.

M. Reape, C. Mellish. 1999. Just what is aggrega-
tion anyway? In Proceedings of the 7th European
Workshop on Natural Language Generation, 20–29,
Toulouse, France.

E. Reiter, R. Dale. 2000. Building Natural Language
Generation Systems. Cambridge University Press,
Cambridge.

D. Roth, W. Yih. 2004. A linear programming formula-
tion for global inference in natural language tasks. In
Proceedings of the Annual Conference on Computa-
tional Natural Language Learning, 1–8, Boston, MA.

D. Scott, C. S. de Souza. 1990. Getting the mes-
sage across in RST-based text generation. In R. Dale,
C. Mellish, M. Zock, eds., Current Research in Nat-
ural Language Generation, 47–73. Academic Press,
New York.

J. Shaw. 1998. Clause aggregation using linguis-
tic knowledge. In Proceedings of 9th International
Workshop on Natural Language Generation, 138–147,
Niagara-on-the-Lake, Ontario, Canada.

M. A. Walker, O. Rambow, M. Rogati. 2001. Spot:
A trainable sentence planner. In Proceedings of the
2nd Annual Meeting of the North American Chapter
of the Association for Computational Linguistics, 17–
24, Pittsburgh, PA.

J. Wilkinson. 1995. Aggregation in natural language
generation: Another look. Technical report, Computer
Science Department, University of Waterloo, 1995.

A. S. Yeung. 1999. Cognitive load and learner expertise:
Split-attention and redundancy effects in reading com-
prehension tasks with vocabulary definitions. Journal
of Experimental Education, 67(3):197–218.

366

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 367–374,
New York, June 2006.c©2006 Association for Computational Linguistics

Incorporating Speaker and Discourse Features into Speech
Summarization

Gabriel Murray, Steve Renals,
Jean Carletta, Johanna Moore

University of Edinburgh, School of Informatics
Edinburgh EH8 9LW, Scotland

gabriel.murray@ed.ac.uk, s.renals@ed.ac.uk,

jeanc@inf.ed.ac.uk, j.moore@ed.ac.uk

Abstract
We have explored the usefulness of incorporat-
ing speech and discourse features in an automatic
speech summarization system applied to meeting
recordings from the ICSI Meetings corpus. By an-
alyzing speaker activity, turn-taking and discourse
cues, we hypothesize that such a system can out-
perform solely text-based methods inherited from
the field of text summarization. The summariza-
tion methods are described, two evaluation meth-
ods are applied and compared, and the results
clearly show that utilizing such features is advanta-
geous and efficient. Even simple methods relying
on discourse cues and speaker activity can outper-
form text summarization approaches.

1. Introduction
The task of summarizing spontaneous spoken di-
alogue from meetings presents many challenges:
information is sparse; speech is disfluent and frag-
mented; automatic speech recognition is imper-
fect. However, there are numerous speech-specific
characteristics to be explored and taken advantage
of. Previous research on summarizing speech has
concentrated on utilizing prosodic features [1, 2].
We have examined the usefulness of additional
speech-specific characteristics such as discourse
cues, speaker activity, and listener feedback. This
speech features approach is contrasted with a sec-
ond summarization approach using only textual
features—a centroid method [3] using a latent se-
mantic representation of utterances. These indi-

vidual approaches are compared to a combined ap-
proach as well as random baseline summaries.

This paper also introduces a new evalua-
tion scheme for automatic summaries of meeting
recordings, using a weighted precision score based
on multiple human annotations of each meeting
transcript. This evaluation scheme is described
in detail below and is motivated by previous find-
ings [4] suggesting that n-gram based metrics like
ROUGE [5] do not correlate well in this domain.

2. Previous Work
In the field of speech summarization in general, re-
search investigating speech-specific characteristics
has focused largely on prosodic features such as F0
mean and standard deviation, pause information,
syllable duration and energy. Koumpis and Re-
nals [1] investigated prosodic features for summa-
rizing voicemail messages in order to send voice-
mail summaries to mobile devices. Hori et al. [6]
have developed an integrated speech summariza-
tion approach, based on finite state transducers, in
which the recognition and summarization compo-
nents are composed into a single finite state trans-
ducer, reporting results on a lecture summariza-
tion task. In the Broadcast News domain, Maskey
and Hirschberg [7] found that the best summariza-
tion results utilized prosodic, lexical, and structural
features, while Ohtake et al. [8] explored using
only prosodic features for summarization. Maskey
and Hirschberg similarly found that prosodic fea-
tures alone resulted in good quality summaries of

367

Broadcast News.
In the meetings domain (using the ICSI cor-

pus), Murray et al. [2] compared text summariza-
tion approaches with feature-based approaches us-
ing prosodic features, with human judges favoring
the feature-based approaches. Zechner [9] inves-
tigated summarizing several genres of speech, in-
cluding spontaneous meeting speech. Though rel-
evance detection in his work relied largely on tf.idf
scores, Zechner also explored cross-speaker infor-
mation linking and question/answer detection, so
that utterances could be extracted not only accord-
ing to high tf.idf scores, but also if they were linked
to other informative utterances.

Similarly, this work aims to detect important
utterances that may not be detectable according
to lexical features or prosodic prominence, but
are nonetheless linked to high speaker activity,
decision-making, or meeting structure.

3. Summarization Approaches
The following subsections give detailed descrip-
tions of our two summarization systems, one of
which focuses on speech and discourse features
while the other utilizes text summarization tech-
niques and latent semantic analysis.

3.1. Speech and Discourse Features

In previous summarization work on the ICSI cor-
pus [2, 4], Murray et al. explored multiple ways
of applying latent semantic analysis (LSA) to a
term/document matrix of weighted term frequen-
cies from a given meeting, a development of the
method in [10]. A central insight to the present
work is that additional features beyond simple term
frequencies can be included in the matrix before
singular value decomposition (SVD) is carried out.
We can use SVD to project this matrix of features
to a lower dimensionality space, subsequently ap-
plying the same methods as used in [2] for extract-
ing sentences.

The features used in these experiments in-
cluded features of speaker activity, discourse cues,
listener feedback, simple keyword spotting, meet-
ing location and dialogue act length (in words).

For each dialogue act, there are features indi-
cating which speaker spoke the dialogue act and
whether the same speaker spoke the preceding and
succeeding dialogue acts. Another set of features

indicates how many speakers are active on either
side of a given dialogue act: specifically, how
many speakers were active in the preceding and
succeeding five dialogue acts. To further gauge
speaker activity, we located areas of high speaker
interaction and indicated whether or not a given
dialogue act immediately preceded this region of
activity, with the motivation being that informa-
tive utterances are often provocative in eliciting re-
sponses and interaction. Additionally, we included
a feature indicating which speakers most often ut-
tered dialogue acts that preceded high levels of
speaker interaction, as one way of gauging speaker
status in the meeting. Another feature relating to
speaker activity gives each dialogue act a score ac-
cording to how active the speaker is in the meeting
as a whole, based on the intuition that the most ac-
tive speakers will tend to utter the most important
dialogue acts.

The features for discourse cues, listener feed-
back, and keyword spotting were deliberately su-
perficial, all based simply on detecting informative
words. The feature for discourse cues indicates the
presence or absence of words such as decide, dis-
cuss, conclude, agree, and fragments such as we
should indicating a planned course of action. Lis-
tener feedback was based on the presence or ab-
sence of positive feedback cues following a given
dialogue act; these include responses such as right,
exactly and yeah. Keyword spotting was based
on frequent words minus stopwords, indicating the
presence or absence of any of the top twenty non-
stopword frequent words. The discourse cues of
interest were derived from a manual corpus analy-
sis rather than being automatically detected.

A structural feature scored dialogue acts ac-
cording to their position in the meeting, with di-
alogue acts from the middle to later portion of the
meeting scoring higher and dialogue acts at the be-
ginning and very end scoring lower. This is a fea-
ture that is well-matched to the relatively unstruc-
tured ICSI meetings, as many meetings would be
expected to have informative proposals and agen-
das at the beginning and perhaps summary state-
ments and conclusions at the end.

Finally, we include a dialogue act length fea-
ture motivated by the fact that informative utter-
ances will tend to be longer than others.

The extraction method follows [11] by rank-
ing sentences using an LSA sentence score. The

368

matrix of features is decomposed as follows:

A = USV T

where U is an m×n matrix of left-singular vectors,
S is an n × n diagonal matrix of singular values,
and V is the n×n matrix of right-singular vectors.
Using sub-matrices S and V T , the LSA sentence
scores are obtained using:

ScLSA
i =

√

√

√

√

n
∑

k=1

v(i, k)2 ∗ σ(k)2 ,

where v(i, k) is the kth element of the ith sen-
tence vector and σ(k) is the corresponding singular
value.

Experiments on a development set of 55 ICSI
meetings showed that reduction to between 5–15
dimension was optimal. These development ex-
periments also showed that weighting some fea-
tures slightly higher than others resulted in much
improved results; specifically, the discourse cues
and listener feedback cues were weighted slightly
higher.

3.2. LSA Centroid

The second summarization method is a textual ap-
proach incorporating LSA into a centroid-based
system [3]. The centroid is a pseudo-document
representing the important aspects of the docu-
ment as a whole; in the work of [3], this pseudo-
document consists of keywords and their modi-
fied tf.idf scores. In the present research, we take
a different approach to constructing the centroid
and to representing sentences in the document.
First, tf.idf scores are calculated for all words in
the meeting. Using these scores, we find the top
twenty keywords and choose these as the basis for
our centroid. We then perform LSA on a very large
corpus of Broadcast News and ICSI data, using the
Infomap tool1. Infomap provides a query language
with which we can retrieve word vectors for our
twenty keywords, and the centroid is thus repre-
sented as the average of its constituent keyword
vectors [12] [13].

Dialogue acts from the meetings are repre-
sented in much the same fashion. For each dia-
logue act, the vectors of its constituent words are

1http://infomap.stanford.edu

retrieved, and the dialogue act as a whole is the av-
erage of its word vectors. Extraction then proceeds
by finding the dialogue act with the highest cosine
similarity with the centroid, adding this to the sum-
mary, then continuing until the desired summary
length is reached.

3.3. Combined

The third summarization method is simply a com-
bination of the first two. Each system produces a
ranking and a master ranking is derived from these
two rankings. The hypothesis is that the strength
of one system will differ from the other and that
the two will complement each other and produce
a good overall ranking. The first system would be
expected to locate areas of high activity, decision-
making, and planning, while the second would lo-
cate information-rich utterances. This exempli-
fies one of the challenges of summarizing meeting
recordings: namely, that utterances can be impor-
tant in much different ways. A comprehensive sys-
tem that relies on more than one idea of importance
is ideal.

4. Experimental Setup

All summaries were 350 words in length, much
shorter than the compression rate used in [2] (10%
of dialogue acts). The ICSI meetings themselves
average around 10,000 words in length. The rea-
sons for choosing a shorter length for summaries
are that shorter summaries are more likely to be
useful to a user wanting to quickly overview and
browse a meeting, they present a greater summa-
rization challenge in that the summarizer must be
more exact in pinpointing the important aspects of
the meeting, and shorter summaries make it more
feasible to enlist human evaluators to judge the nu-
merous summaries on various criteria in the future.

Summaries were created on both manual tran-
scripts and speech recognizer output. The unit of
extraction for these summaries was the dialogue
act, and these experiments used human segmented
and labeled dialogue acts rather than try to detect
them automatically. In future work, we intend to
incorporate dialogue act detection and labeling as
part of one complete automatic summarization sys-
tem.

369

4.1. Corpus Description

The ICSI Meetings corpus consists of 75 meetings,
lasting approximately one hour each. Our test set
consists of six meetings, each with multiple hu-
man annotations. Annotators were given access
to a graphical user interface (GUI) for browsing
an individual meeting that included earlier human
annotations: an orthographic transcription time-
synchronized with the audio, and a topic segmen-
tation based on a shallow hierarchical decompo-
sition with keyword-based text labels describing
each topic segment. The annotators were told to
construct a textual summary of the meeting aimed
at someone who is interested in the research being
carried out, such as a researcher who does similar
work elsewhere, using four headings:

• general abstract: “why are they meeting and
what do they talk about?”;

• decisions made by the group;

• progress and achievements;

• problems described

The annotators were given a 200 word limit for
each heading, and told that there must be text for
the general abstract, but that the other headings
may have null annotations for some meetings. An-
notators who were new to the data were encour-
aged to listen to a meeting straight through before
beginning to author the summary.

Immediately after authoring a textual sum-
mary, annotators were asked to create an extractive
summary, using a different GUI. This GUI showed
both their textual summary and the orthographic
transcription, without topic segmentation but with
one line per dialogue act based on the pre-existing
MRDA coding [14]. Annotators were told to ex-
tract dialogue acts that together would convey the
information in the textual summary, and could be
used to support the correctness of that summary.
They were given no specific instructions about the
number or percentage of acts to extract or about
redundant dialogue acts. For each dialogue act ex-
tracted, they were then required in a second pass
to choose the sentences from the textual summary
supported by the dialogue act, creating a many-
to-many mapping between the recording and the
textual summary. Although the expectation was

that each extracted dialogue act and each summary
sentence would be linked to something in the op-
posing resource, we told the annotators that under
some circumstances dialogue acts and summary
sentences could stand alone.

We created summaries using both manual tran-
scripts as well as automatic speech recognition
(ASR) output. The AMI-ASR system [15] is de-
scribed in more detail in [4] and the average word
error rate (WER) for the corpus is 29.5%.

4.2. Evaluation Frameworks

The many-to-many mapping of dialogue acts to
summary sentences described in the previous sec-
tion allows us to evaluate our extractive summaries
according to how often each annotator linked a
given extracted dialogue act to a summary sen-
tence. This is somewhat analogous to Pyramid
weighting [16], but with dialogue acts as the SCUs.
In fact, we can calculate weighted precision, recall
and f-score using these annotations, but because
the summaries created are so short, we focus on
weighted precision as our central metric. For each
dialogue act that the summarizer extracts, we count
the number of times that each annotator links that
dialogue act to a summary sentence. For a given
dialogue act, it may be that one annotator links it
0 times, one annotator links it 1 time, and the third
annotator links it two times, resulting in an aver-
age score of 1 for that dialogue act. The scores for
all of the summary dialogue acts can be calculated
and averaged to create an overall summary score.

ROUGE scores, based on n-gram overlap be-
tween human abstracts and automatic extracts,
were also calculated for comparison [5]. ROUGE-
2, based on bigram overlap, is considered the most
stable as far as correlating with human judgments,
and this was therefore our ROUGE metric of inter-
est. ROUGE-SU4, which evaluates bigrams with
intervening material between the two elements of
the bigram, has recently been shown in the con-
text of the Document Understanding Conference
(DUC)2 to bring no significant additional informa-
tion as compared with ROUGE-2. Results from
[4] and from DUC 2005 also show that ROUGE
does not always correlate well with human judg-
ments. It is therefore included in this research in
the hope of further determining how reliable the

2http://duc.nist.gov

370

ROUGE metric is for our domain of meeting sum-
marization.

5. Results
The experimental results are shown in figure 1
(weighted precision) and figure 2 (ROUGE-2) and
are discussed below.

5.1. Weighted Precision Results

For weighted precision, the speech features ap-
proach was easily the best and scored significantly
better than the centroid and random approaches
(ANOVA,p<0.05), attaining an averaged weighted
precision of 0.52. The combined approach did
not improve upon the speech features approach
but was not significantly worse either. The ran-
domly created summaries scored much lower than
all three systems.

The superior performance of the speech fea-
tures approach compared to the LSA centroid
method closely mirrors results on the ICSI devel-
opment set, where the centroid method scored 0.23
and the speech features approach scored 0.42. For
the speech features approach on the test set, the
best feature by far was dialogue act length. Re-
moving this feature resulted in the precision score
being nearly halved. This mirrors results from
Maskey and Hirschberg [7], who found that the
length of a sentence in seconds and its length in
words were the two best features for predicting
summary sentences. Both the simple keyword
spotting and the discourse cue detection features
caused a lesser decline in precision when removed,
while other features of speaker activity had a neg-
ligible impact on the test results.

Interestingly, the weighted precision scores on
ASR were not significantly worse for any of the
summarization approaches. In fact, the centroid
approach scored very slightly higher on ASR out-
put than on manual transcripts. In [17] and [2] it
was similarly found that summarizing with ASR
output did not cause great deterioration in the qual-
ity of the summaries. It is not especially surpris-
ing that the speech features approach performed
similarly on both manual and ASR transcripts, as
many of its features based on speaker exchanges
and speaker activity would be unaffected by ASR
errors. The speech features approach is still signif-
icantly better than the random and centroid sum-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

CombinedSpeechFeatsCentroidRandom
Summarization Approaches

PRECISION-MAN
PRECISION-ASR

Figure 1: Weighted Precision Results on Test Set

maries, and is not significantly better than the com-
bined approach on ASR.

5.2. ROUGE Results

The ROUGE results greatly differed from the
weighted precision results in several ways. First,
the centroid method was considered to be the best,
with a ROUGE-2 score of 0.047 compared with
0.041 for the speech features approach. Second,
there were not as great of differences between the
four systems according to ROUGE as there were
according to weighted precision. In fact, the ran-
dom summaries of manual transcripts are not sig-
nificantly worse than the other approaches, accord-
ing to ROUGE-2. Neither the combined approach
nor the speech features approach is significantly
worse than the centroid system, with the combined
approach generally scoring on par with the cen-
troid scores.

The third difference relates to summarization
on ASR output. ROUGE-2 has the random system
and the combined system showing sharp declines
when applied to ASR transcripts. The speech fea-
tures and centroid approaches do not show de-
clines. Random summaries are significantly worse
than both the centroid summaries (p<0.1) and
speech features summaries (p<0.05). Though the
combined approach declines on ASR output, it is
not significantly worse than the other systems.

To get an idea of a ROUGE-2 upper bound, for
each meeting in the test set we left one human ab-
stract out and compared it with the remaining ab-
stracts. The result was an average ROUGE-2 score
of .086.

371

 0.02

 0.04

 0.06

 0.08

 0.1

CombinedSpeechFeatsCentroidRandom
Summarization Approaches

ROUGE2-MAN
ROUGE2-ASR

UPPER BOUND

Figure 2: ROUGE-2 Results on Test Set

ROUGE-1 and ROUGE-SU4 show no signif-
icant differences between the centroid and speech
features approaches.

5.3. Correlations

There is no significant correlation between
macroaveraged ROUGE and weighted precision
scores across the meeting set, on both ASR and
manual transcripts. The Pearson correlation is
0.562 with a significance of p < 0.147. The Spear-
man correlation is 0.282 with a significance of p <

0.498. The correlation of scores across each test
meeting is worse yet, with a Pearson correlation
of 0.185 (p<0.208) and a Spearman correlation of
0.181 (p<0.271).

5.4. Sample Summary

The following is the text of a summary of meeting
Bed004 using the speech features approach:

-so its possible that we could do something like a summary

node of some sort that

-and then the question would be if if those are the things that you

care about uh can you make a relatively compact way of getting from

the various inputs to the things you care about

-this is sort of th the second version and i i i look at this maybe just

as a you know a a whatever uml diagram or you know as just a uh

screen shot not really as a bayes net as john johno said

-and um this is about as much as we can do if we dont w if we want

to avoid uh uh a huge combinatorial explosion where we specify ok if

its this and this but that is not the case and so forth it just gets really

really messy

-also it strikes me that we we m may want to approach the point

where we can sort of try to find a uh a specification for some interface

here that um takes the normal m three l looks at it

-so what youre trying to get out of this deep co cognitive linguistics is

the fact that w if you know about source source paths and goals and

nnn all this sort of stuff that a lot of this is the same for different tasks

-what youd really like of course is the same thing youd always like

which is that you have um a kind of intermediate representation

which looks the same o over a bunch of inputs and a bunch of outputs

-and pushing it one step further when you get to construction

grammar and stuff what youd like to be able to do is say you have

this parser which is much fancier than the parser that comes with uh

smartkom

-in independent of whether it about what is this or where is it or

something that you could tell from the construction you could pull

out deep semantic information which youre gonna use in a general

way

6. Discussion

Though the speech features approach was consid-
ered the best system, it is unclear why the com-
bined approach did not yield improvement. One
possibility relates to the extreme brevity of the
summaries: because the summaries are only 350
words in length, it is possible to have two sum-
maries of the same meeting which are equally
good but completely non-overlapping in content.
In other words, they both extract informative dia-
logue acts, but not the same ones. Combining the
rankings of two such systems might create a third
system which is comparable but not any better than
either of the first two systems alone. However, it
is still possible that the combined system will be
better in terms of balancing the two types of im-
portance discussed above: utterances that contain a
lot of informative content and keywords and utter-
ances that relate to decision-making and meeting
structure.

ROUGE did not correlate well with the
weighted precision scores, a result that adds to the
previous evidence that this metric may not be reli-
able in the domain of meeting summarization.

It is very encouraging that the summarization
approaches in general seem immune to the WER
of the ASR output. This confirms previous find-
ings such as [17] and [2], and the speech and
structural features used herein are particularly un-
affected by a moderately high WER. The reason
for the random summarizaton system not suffering

372

a sharp decline when applied to ASR may be due
to the fact that its scores were already so low that
it couldn’t deteriorate any further.

7. Future Work

The above results show that even a relatively small
set of speech, discourse, and structural features can
outperform a text summarization approach on this
data, and there are many additional features to be
explored. Of particular interest to us are features
relating to speaker status, i.e. features that help us
determine who is leading the meeting and who it is
that others are deferring to. We would also like to
more closely investigate the relationship between
areas of high speaker activity and informative ut-
terances.

In the immediate future, we will incorporate
these features into a machine-learning framework,
building support vector models trained on the ex-
tracted and non-extracted classes of the training
set.

Finally, we will apply these methods to the
AMI corpus [18] and create summaries of compa-
rable length for that meeting set. There are likely
to be differences regarding usefulness of certain
features due to the ICSI meetings being relatively
unstructured and informal and the AMI hub meet-
ings being more structured with a higher informa-
tion density.

8. Conclusion

The results presented above show that using fea-
tures related to speaker activity, listener feedback,
discourse cues and dialogue act length can outper-
form the lexical methods of text summarization ap-
proaches. More specifically, the fact that there are
multiple types of important utterances requires that
we use multiple methods of detecting importance.
Lexical methods and prosodic features are not nec-
essarily going to detect utterances that are relevant
to agreement, decision-making or speaker activity.
This research also provides further evidence that
ROUGE does not correlate well with human judg-
ments in this domain. Finally, it has been demon-
strated that high WER for ASR output does not
significantly decrease summarization quality.

9. Acknowledgements
Thanks to Thomas Hain and the AMI-ASR group
for speech recognition output. This work was
partly supported by the European Union 6th FWP
IST Integrated Project AMI (Augmented Multi-
party Interaction, FP6-506811, publication AMI-
150).

10. References
[1] K. Koumpis and S. Renals, “Automatic sum-

marization of voicemail messages using lex-
ical and prosodic features,” ACM Transac-
tions on Speech and Language Processing,
vol. 2, pp. 1–24, 2005.

[2] G. Murray, S. Renals, and J. Carletta, “Ex-
tractive summarization of meeting record-
ings,” in Proceedings of the 9th European
Conference on Speech Communication and
Technology, Lisbon, Portugal, September
2005.

[3] D. Radev, S. Blair-Goldensohn, and
Z. Zhang, “Experiments in single and multi-
document summarization using mead,” in
The Proceedings of the First Document
Understanding Conference, New Orleans,
LA, September 2001.

[4] G. Murray, S. Renals, J. Carletta, and
J. Moore, “Evaluating automatic summaries
of meeting recordings,” in Proceedings of
the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics, Work-
shop on Machine Translation and Summa-
rization Evaluation (MTSE), Ann Arbor, MI,
USA, June 2005.

[5] C.-Y. Lin and E. H. Hovy, “Automatic
evaluation of summaries using n-gram co-
occurrence statistics,” in Proceedings of
HLT-NAACL 2003, Edmonton, Calgary,
Canada, May 2003.

[6] T. Hori, C. Hori, and Y. Minami, “Speech
summarization using weighted finite-state
transducers,” in Proceedings of the 8th Eu-
ropean Conference on Speech Communica-
tion and Technology, Geneva, Switzerland,
September 2003.

373

[7] S. Maskey and J. Hirschberg, “Compar-
ing lexial, acoustic/prosodic, discourse and
structural features for speech summariza-
tion,” in Proceedings of the 9th European
Conference on Speech Communication and
Technology, Lisbon, Portugal, September
2005.

[8] K. Ohtake, K. Yamamoto, Y. Toma, S. Sado,
S. Masuyama, and S. Nakagawa, “Newscast
speech summarization via sentence shorten-
ing based on prosodic features,” in Proceed-
ings of the ISCA and IEEE Workshop on
Spontaneous Speech Processing and Recog-
nition, Tokyo, Japan, April 2003,.

[9] K. Zechner, “Automatic summarization of
open-domain multiparty dialogues in diverse
genres,” Computational Linguistics, vol. 28,
no. 4, pp. 447–485, 2002.

[10] Y. Gong and X. Liu, “Generic text sum-
marization using relevance measure and la-
tent semantic analysis,” in Proceedings of
the 24th Annual International ACM SI-
GIR Conference on Research and Develop-
ment in Information Retrieval, New Orleans,
Louisiana, USA, September 2001, pp. 19–25.

[11] J. Steinberger and K. Ježek, “Using latent
semantic analysis in text summarization and
summary evaluation,” in Proceedings of ISIM
2004, Roznov pod Radhostem, Czech Repub-
lic, April 2004, pp. 93–100.

[12] P. Foltz, W. Kintsch, and T. Landauer, “The
measurement of textual coherence with la-
tent semantic analysis,” Discourse Processes,
vol. 25, 1998.

[13] B. Hachey, G. Murray, and D. Reitter, “The
embra system at duc 2005: Query-oriented
multi-document summarization with a very
large latent semantic space,” in Proceedings
of the Document Understanding Conference
(DUC) 2005, Vancouver, BC, Canada, Octo-
ber 2005.

[14] E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, ,
and H. Carvey, “The ICSI meeting recorder
dialog act (MRDA) corpus,” in Proceedings
of the 5th SIGdial Workshop on Discourse

and Dialogue, Cambridge, MA, USA, April-
May 2004, pp. 97–100.

[15] T. Hain, J. Dines, G. Garau, M. Karafiat,
D. Moore, V. Wan, R. Ordelman,
I.Mc.Cowan, J.Vepa, and S.Renals, “An
investigation into transcription of conference
room meetings,” Proceedings of the 9th
European Conference on Speech Commu-
nication and Technology, Lisbon, Portugal,
September 2005.

[16] A. Nenkova and B. Passonneau, “Evaluat-
ing content selection in summarization: The
pyramid method,” in Proceedings of HLT-
NAACL 2004, Boston, MA, USA, May 2004.

[17] R. Valenza, T. Robinson, M. Hickey, and
R. Tucker, “Summarization of spoken audio
through information extraction,” in Proceed-
ings of the ESCA Workshop on Accessing In-
formation in Spoken Audio, Cambridge UK,
April 1999, pp. 111–116.

[18] J. Carletta, S. Ashby, S. Bourban, M. Flynn,
M. Guillemot, T. Hain, J. Kadlec,
V. Karaiskos, W. Kraaij, M. Kronen-
thal, G. Lathoud, M. Lincoln, A. Lisowska,
I. McCowan, W. Post, D. Reidsma, and
P. Wellner, “The AMI meeting corpus:
A pre-announcement,” in Proceedings of
MLMI 2005, Edinburgh, UK, June 2005.

374

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 375–382,
New York, June 2006.c©2006 Association for Computational Linguistics

Nuggeteer: Automatic Nugget-Based Evaluation
using Descriptions and Judgements

Gregory Marton Alexey Radul
Infolab Group, MIT CSAIL

Cambridge, MA 02139
{gremio,axch}@mit.edu

Abstract

The TREC Definition and Relationship
questions are evaluated on the basis of in-
formation nuggets that may be contained
in system responses. Human evalua-
tors provide informal descriptions of each
nugget, and judgements (assignments of
nuggets to responses) for each response
submitted by participants. While human
evaluation is the most accurate way to
compare systems, approximate automatic
evaluation becomes critical during system
development.

We present Nuggeteer, a new automatic
evaluation tool for nugget-based tasks.
Like the first such tool, Pourpre, Nugge-
teer uses words in common between can-
didate answer and answer key to approx-
imate human judgements. Unlike Pour-
pre, but like human assessors, Nuggeteer
creates a judgement for each candidate-
nugget pair, and can use existing judge-
ments instead of guessing. This cre-
ates a more readily interpretable aggregate
score, and allows developers to track in-
dividual nuggets through the variants of
their system. Nuggeteer is quantitatively
comparable in performance to Pourpre,
and provides qualitatively better feedback
to developers.

1 Introduction

The TREC Definition and Relationship questions
are evaluated on the basis of information nuggets,
abstract pieces of knowledge that, taken together,
comprise an answer. Nuggets are described infor-
mally, with abbreviations, misspellings, etc., and
each is associated with an importance judgement:
‘vital’ or ‘okay’.1 In some sense, nuggets are like
WordNet synsets, and their descriptions are like
glosses. Responses may contain more than one
nugget—when they contain more than one piece of
knowledge from the answer. The median scores of
today’s systems are frequently zero; most responses
contain no nuggets (Voorhees, 2005).

Human assessors decide what nuggets make up an
answer based on some initial research and on pools
of top system responses for each question. Answer
keys list, for each nugget, its id, importance, and
description; two example answer keys are shown
in Figures 1 and 2. Assessors make binary deci-
sions about each response, whether it contains each
nugget. When multiple responses contain a nugget,
the assessor gives credit only to the (subjectively)
best response.

Using the judgements of the assessors, the fi-
nal score combines the recall of the available vi-
tal nuggets, and the length (discounting whitespace)
of the system response as a proxy for precision.
Nuggets valued ‘okay’ contribute to precision by in-
creasing the length allowance, but do not contribute
to recall. The scoring formula is shown in Figure 3.

1Nuggeteer implements the pyramid scoring system from
(Lin and Demner-Fushman, 2006), designed to soften the dis-

375

Qid 87.8: ’other’ question for target Enrico Fermi

1 vital belived in partical’s existence and named it neutrino
2 vital Called the atomic Bomb an evil thing
3 okay Achieved the first controlled nuclear chain reaction
4 vital Designed and built the first nuclear reactor
5 okay Concluded that the atmosphere was in no real danger before Trinity test
6 okay co-developer of the atomic bomb
7 okay pointed out that the galaxy is 100,000 light years across

Figure 1: The “answer key” to an “other” question from 2005.

The analyst is looking for links between Colombian businessmen and paramilitary forces. Specif-
ically, the analyst would like to know of evidence that business interests in Colombia are still
funding the AUC paramilitary organization.

1 vital Commander of the national paramilitary umbrella organization claimed his group enjoys
growing support from local and international businesses

2 vital Columbia’s Chief prosecutor said he had a list of businessmen who supported right-wing
paramilitary squads and warned that financing outlawed groups is a criminal offense

3 okay some landowners support AUC for protections services
4 vital Rightist militias waging a dirty war against suspected leftists in Colombia enjoy growing

support from private businessmen
5 okay The AUC makes money by taxing Colombia’s drug trade
6 okay The ACU is estimated to have 6000 combatants and has links to government security forces.
7 okay Many ACU fighters are former government soldiers

Figure 2: The “answer key” to a relationship question.

Let

r # of vital nuggets returned in a response
a # of okay nuggets returned in a response
R # of vital nuggets in the answer key
l # of non-whitespace characters in the entire

answer string

Then
“recall” R = r/R

“allowance” α = 100× (r + a)

“precision” P =
{

1 if l < α
1− l−α

l otherwise

Finally, the F (β) = (β2 + 1)× P ×R
β2 × P +R

Figure 3: Official definition of F-measure.

Automatic evaluation of systems is highly desir-
able. Developers need to know whether one sys-
tem performs better or worse than another. Ideally,
they would like to know which nuggets were lost or
gained. Because there is no exhaustive list of snip-
pets from the document collection that contain each
nugget, an exact automatic solution is out of reach.
Manual evaluation of system responses is too time
consuming to be effective for a development cycle.

The Qaviar system first described an approximate
automatic evaluation technique using keywords, and
Pourpre was the first publicly available implemen-
tation for these nugget-based tasks. (Breck et al.,
2000; Lin and Demner-Fushman, 2005). Pourpre
calculates an idf - or count-based, stemmed, unigram
similarity between each nugget description and each

tinction between ‘vital’ and ‘okay’.

376

candidate system response. If this similarity passes a
threshold, then it uses this similarity to assign a par-
tial value for recall and a partial length allowance,
reflecting the uncertainty of the automatic judge-
ment. Importantly, it yields a ranking of systems
very similar to the official ranking (See Table 2).

Nuggeteer offers three important improvements:

• interpretability of the scores, as compared to
official scores,

• use of known judgements for exact information
about some responses, and

• information about individual nuggets, for de-
tailed error analysis.

Nuggeteer makes scores interpretable by making
binary decisions about each nugget and each system
response, just as assessors do, and then calculating
the final score in the usual way. We will show that
Nuggeteer’s absolute error is comparable to human
error, and that the 95% confidence intervals Nugge-
teer reports are correct around 95% of the time.

Nuggeteer assumes that if a system response was
ever judged by a human assessor to contain a partic-
ular nugget, then other identical responses also con-
tain that nugget. When this is not true among the hu-
man judgements, we claim it is due to annotator er-
ror. This assumption allows developers to add their
own judgements and have the responses they’ve ad-
judicated scored “exactly” by Nuggeteer.

These features empower developers to track not
only the numeric value of a change to their system,
but also its effect on retrieval of each nugget.

2 Approach

Nuggeteer builds one binary classifier per nugget for
each question, based on n-grams (up to trigrams)
in the description and optionally in any provided
judgement files. The classifiers use a weight for
each n-gram, an informativeness measure for each
n-gram, and a threshold for accepting a response as
bearing the nugget.

2.1 N -gram weight
The idf -based weight for an n-gram w1...wn is the
sum of unigram idf counts from the AQUAINT
corpus of English newspaper text, the corpus from

which responses for the TREC tasks are drawn. We
did not explore using n-gram idfs. A tf component
is not meaningful because the data are so sparse.

2.2 Informativeness
Let G be the set of nuggets for some question. Infor-
mativeness of an n-gram for a nugget g is calculated
based on how many other nuggets in that question
(∈ G) contain the n-gram. Let

i(g, w1...wn) =
{

1 if count(g, w1..wn) > 0
0 otherwise

(1)
where count(g, w1...wn) is the number of occur-
rences of the n-gram in responses containing the
nugget g.

Then informativeness is:

I(g, w1...wn) = 1−
∑

g′∈G i(g′, w1...wn)
|G| (2)

This captures the Bayesian intuition that the more
outcomes a piece of evidence is associated with, the
less confidence we can have in predicting the out-
come based on that evidence.

2.3 Judgement
Nuggeteer does not guess on responses which have
been judged by a human to contain a nugget, or those
which have unambiguously judged not to, but as-
signs the known judgement.2

For unseen responses, we determine the n-gram
recall for each nugget g and candidate response
w1...wl by breaking the candidate into n-grams and
finding the sum of scores:

Recall(g, w1...wl) = (3)
n−1∑
k=0

l−k∑
i=0

W (g, wi...wi+k) ∗ I(g, wi...wi+k)

The candidate is considered to contain all nuggets
whose recall exceeds some threshold. Put another

2If a response was submitted, and no response from the same
system was judged to contain a nugget, then the response is con-
sidered to not contain the nugget. We normalized whitespace
and case for matching previously seen responses.

377

way, we build an n-gram language model for each
nugget, and assign those nuggets whose predicted
likelihood exceeds a threshold.

When several responses contain a nugget, Nugge-
teer picks the first (instead of the best, as assessors
can) for purposes of scoring.

2.4 Parameter Estimation
We explored a number of parameters in the scor-
ing function: stemming, n-gram size, idf weights
vs. count weights, and the effect of removing stop-
words. We tested all 24 combinations, and for each
experiment, we cross-validated by leaving out one
submitted system, or where possible, one submitting
institution (to avoid training and testing on poten-
tially very similar systems).3

Each experiment was performed using a range
of thresholds for Equation 3 above, and we se-
lected the best performing threshold for each data
set.4 Because the threshold was selected after cross-
validation, it is exposed to overtraining. We used a
single global threshold to minimize this risk, but we
have no reason to think that the thresholds for differ-
ent nuggets are related.

Selecting thresholds as part of the training process
can maximize accuracy while eliminating overtrain-
ing. We therefore explored Bayesian models for au-
tomatic threshold selection. We model assignment
of nuggets to responses as caused by the scores ac-
cording to a noisy threshold function, with separate
false positive and false negative error rates. We var-
ied thresholds and error rates by entire dataset, by
question, or by individual nugget, evaluating them
using Bayesian model selection.

3 The Data

For our experiments, we used the definition ques-
tions from TREC2003, the ‘other’ questions from
TREC2004 and TREC2005, and the relation-
ship questions from TREC2005. (Voorhees, 2003;
Voorhees, 2004; Voorhees, 2005) The distribution
of nuggets and questions is shown for each data set
in Table 1. The number of nuggets by number of

3For TREC2003 and TREC2004, the run-tags indicate the
submitting institution. For TREC2005 we did not run the non-
anonymized data in time for this submission. In the TREC2005
Relationship task, RUN-1 was withdrawn.

4Thresholds for Pourpre were also selected this way.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 !30

D2003 / 54

O2004 / 63

O2005 / 72

R2005 / 10

Figure 4: Percents of nuggets, binned by the number
of systems that found each nugget.

system responses assigned that nugget (difficulty of
nuggets, in a sense) is shown in Figure 4. More than
a quarter of relationship nuggets were not found by
any system. Among all data sets, many nuggets were
found in none or just a few responses.

4 Results

We report correlation (R2), and Kendall’s τb, follow-
ing Lin and Demner-Fushman. Nuggeteer’s scores
are in the same range as real system scores, so we
also report average root mean squared error from the
official results. We ‘corrected’ the official judge-
ments by assigning a nugget to a response if that
response was judged to contain that nugget in any
assessment for any system.

4.1 Comparison with Pourpre
(Lin et al., 2005) report Pourpre and Rouge perfor-
mance with Pourpre optimal thresholds for TREC
definition questions, as reproduced in Table 2.
Nuggeteer’s results are shown in the last column.5

Table 3 shows a comparison of Pourpre and
Nuggeteer’s correlations with official scores. As ex-

5We report only micro-averaged results, because we wish to
emphasize the interpretability of Nuggeteer scores. While the
correlations of macro-averaged scores with official scores may
be higher (as seems to be the case for Pourpre), the actual val-
ues of the micro-averaged scores are more interpretable because
they include a variance.

378

#ques #vital #okay #n/q #sys #r/s #r/q/s
D 2003: 50 207 210 9.3± 1.0 54 526± 180 10.5± 1.2
O 2004: 64 234 346 10.1± .7 63 870± 335 13.6± 0.9
O 2005: 75 308 450 11.1± .6 72 1277± 260a 17.0± 0.6a

R 2005: 25 87 136 9.9± 1.6 10 379± 222b 15.2± 1.6b

a excluding RUN-135: 410,080 responses 5468± 5320
b excluding RUN-7: 6436 responses 257± 135

Table 1: For each data set (D=“definition”, O=“other”, R=“relationship”), the number of questions, the
numbers of vital and okay nuggets, the average total number of nuggets per question, the number of par-
ticipating systems, the average number of responses per system, and the average number of responses per
question over all systems.

POURPRE ROUGE NUGGETEER

Run micro, cnt macro, cnt micro, idf macro, idf default stop nostem, bigram,
micro, idf

D 2003 (β = 3) 0.846 0.886 0.848 0.876 0.780 0.816 0.879
D 2003 (β = 5) 0.890 0.878 0.859 0.875 0.807 0.843 0.849
O 2004 (β = 3) 0.785 0.833 0.806 0.812 0.780 0.786 0.898
O 2005 (β = 3) 0.598 0.709 0.679 0.698 0.662 0.670 0.858
R 2005 (β = 3) 0.697 1

Table 2: Kendall’s τ correlation between rankings generated by POURPRE/ROUGE/NUGGETEER and offi-
cial scores, for each data set (D=“definition”, O=“other”, R=“relationship”). τ=1 means same order, τ=-1
means reverse order. Pourpre and Rouge scores reproduced from (Lin and Demner-Fushman, 2005).

POURPRE NUGGETEER
Run R2 R2 √

mse

D 2003 (β = 3) 0.963 0.966 0.067
D 2003 (β = 5) 0.965 0.971 0.077
O 2004 (β = 3) 0.929 0.982 0.026
O 2005 (β = 3) 0.916 0.952 0.026
R 2005 (β = 3) 0.764 0.993 0.009

Table 3: Correlation (R2) and Root Mean Squared
Error (

√
mse) between scores generated by Pour-

pre/Nuggeteer and official scores, for the same set-
tings as the τ comparison above.

pected from the Kendall’s τ comparisons, Pourpre’s
correlation is about the same or higher in 2003, but
fares progressively worse in the subsequent tasks.

To ensure that Pourpre scores correlated suf-
ficiently with official scores, Lin and Demner-
Fushman used the difference in official score be-
tween runs whose ranks Pourpre had swapped, and
showed that the majority of swaps were between

runs whose official scores were less than the 0.1
apart, a threshold for assessor agreement reported
in (Voorhees, 2003).

Nuggeteer scores are not only correlated with,
but actually meant to approximate, the assessment
scores; thus we can use a stronger evaluation: root
mean squared error of Nuggeteer scores against of-
ficial scores. This estimates the average difference
between the Nuggeteer score and the official score,
and at 0.077, the estimate is below the 0.1 thresh-
old. This evaluation is meant to show that the
scores are “good enough” for experimental evalua-
tion, and in Section 4.4 we will substantiate Lin and
Demner-Fushman’s observation that higher correla-
tion scores may reflect overtraining rather than ac-
tual improvement.

Accordingly, rather than reporting the best
Nuggeteer scores (Kendall’s τ and R2) above, we
follow Pourpre’s lead in reporting a single variant
(no stemming, bigrams) that performs well across
the data sets. As with Pourpre’s evaluation, the par-

379

Figure 5: Scatter graph of official scores plot-
ted against Nuggeteer scores (idf term weighting,
no stemming, bigrams) for each data set (all F-
measures have β = 3), with the Nuggeteer 95%
confidence intervals on the score. Across the four
datasets, 6 systems (3%) have an official score out-
side Nuggeteer’s 95% confidence interval.

ticular thresholds for each year are experimentally
optimized. A scatter plot of Nuggeteer performance
on the definition tasks is shown in Figure 5.

4.2 N -gram size and stemming
A hypothesis advanced with Pourpre is that bigrams,
trigrams, and longer n-grams will primarily account
for the fluency of an answer, rather than its semantic
content, and thus not aid the scoring process. We
included the option to use longer n-grams within
Nuggeteer, and have found that using bigrams can
yield very slightly better results than using uni-
grams. From inspection, bigrams sometimes capture
named entity and grammatical order features.

Experiments with Pourpre showed that stemming
hurt slightly at peak performances. Nuggeteer has
the same tendency at all n-gram sizes.

Figure 6 compares Kendall’s τ over the possi-
ble thresholds, n-gram lengths, and stemming. The
choice of threshold matters by far the most.

4.3 Term weighting and stopwords
Removing stopwords or giving unit weight to all
terms rather than an idf -based weight made no sub-
stantial difference in Nuggeteer’s performance.

Figure 6: Fixed thresholds vs. Kendall’s τ for uni-
grams, bigrams, or trigrams averaged over the three
years of definition data using F (β = 3).

Model log10 P (Data|Model)
optimally biased coin -2780
global threshold -2239
per-question thresholds -1977
per-nugget thresholds -1546
per-nugget errors and thr. -1595

Table 4: The probabilities of the data given several
models: a baseline coin, three models of different
granularity with globally specified false positive and
negative error rates, and a model with too many pa-
rameters, where even the error rates have per-nugget
granularity. We select the most probable model, the
per-nugget threshold model.

4.4 Thresholds
We experimented with Bayesian models for auto-
matic threshold selection. In the models, a system
response contains or does not contain each nugget
as a function of the response’s Nuggeteer score plus
noise. Table 4 shows that, as expected, the best mod-
els do not make assumptions about thresholds be-
ing equal within a question or dataset. It is interest-
ing to note that Bayesian inference catches the over-
parametrization of the model where error rates vary
per-nugget as well. In essence, we do not need those
additional parameters to explain the variation in the
data.

The τ of the best selection of parameters on the
2003 data set using the model with one threshold per

380

nugget and global errors is 0.837 (
√

mse=0.037).
We have indeed overtrained the best threshold for
this dataset (compare τ=0.879,

√
mse=0.067 in Ta-

bles 2 and 3), suggesting that the numeric differ-
ences in Kendall’s Tau shown between the Nugge-
teer, Pourpre, and Rouge systems are not indicative
of true performance. The Bayesian model promises
settings free of overtraining, and thus more accurate
judgements in terms of

√
mse and individual nugget

classification accuracy.

4.5 Training on System Responses
Intuitively, if a fact is expressed by a system re-
sponse, then another response with similar n-grams
may also contain the same fact. To test this intuition,
we tried expanding our judgement method (Equa-
tion 3) to select the maximum judgement score from
among those of the nugget description and each of
the system responses judged to contain that nugget.

Unfortunately, the assessors did not mark which
portion of a response expresses a nugget, so we also
find spurious similarity, as shown in Figure 7. The fi-
nal results are not conclusively better or worse over-
all, and the process is far more expensive.

We are currently exploring the same extension for
multiple “nugget descriptions” generated by manu-
ally selecting the appropriate portions of system re-
sponses containing each nugget.

4.6 Judgment Precision and Recall
Because Nuggeteer makes a nugget classification
for each system response, we can report precision
and recall on the nugget assignments. Table 5
shows Nuggeteer’s agreement rate with assessors on
whether each response contains a nugget. 6

4.7 Novel Judgements
Approximate evaluation will tend to undervalue new
results, simply because they may not have keyword
overlap with existing nugget descriptions. We are
therefore creating tools to help developers manually
assess their system outputs.

As a proof of concept, we ran Nuggeteer on the
best 2005 “other” system (not giving Nuggeteer

6Unlike human assessors, Nuggeteer is not able to pick the
“best” response containing a nugget if multiple responses have
it, and will instead pick the first, so these values are artifactually
low. However, 2005 results may be high because these results
reflect anonymized runs.

Data set best F(β = 1) default F(β = 1)
2003 defn 0.68± .01 0.66± .02
2004 other 0.73± .01 0.70± .01
2005 other 0.87± .01 0.86± .01
2005 reln 0.75± .04 0.72± .05

Table 5: Nuggeteer agreement with official judge-
ments, under best settings for each year, and under
the default settings.

the official judgements), and manualy corrected its
guesses.7 Assessment took about 6 hours, and our
judgements had precision of 78% and recall of 90%,
for F-measure 0.803± 0.065 (compare Table 5). The
official score of .299 was still within the confidence
interval, but now on the high side rather than the
low (.257± .07), because we found the answers quite
good. In fact, we were often tempted to add new
nuggets! We later learned that it was a manual run,
produced by a student at the University of Maryland.

5 Discussion

Pourpre pioneered automatic nugget-based assess-
ment for definition questions, and thus enabled a
rapid experimental cycle of system development.
Nuggeteer improves on that functionality, and crit-
ically adds:

• an interpretable score, comparable to official
scores, with near-human error rates,

• a reliable confidence interval on the estimated
score,

• scoring known responses exactly,
• support for improving the accuracy of the score

through additional annotation, and
• a more robust training process

We have shown that Nuggeteer evaluates the def-
inition and relationship tasks with comparable rank
swap rates to Pourpre. We explored the effects of
stemming, term weighting, n-gram size, stopword
removal, and use of system responses for training,
all with little effect. We showed that previous meth-
ods of selecting a threshold overtrained, and have

7We used a low threshold to make the task mostly correcting
and less searching. This is clearly not how assessors should
work, but is expedient for developers.

381

question id 1901, response rank 2, response score 0.14
response text: best american classical music bears its stamp: witness

aaron copland, whose "american-sounding" music was composed by a
(the response was a sentence fragment)

assigned nugget description: born brooklyn ny 1900
bigram matches: “american classical”, “american-sounding music”, “best american”, “whose

american-sounding”, “witness aaron”, “copland whose”, “stamp witness”, ...

response containing the nugget: Even the best American classical music bears its stamp:

witness Aaron Copland, whose ‘‘American-sounding’’ music was composed by a

Brooklyn-born Jew of Russian lineage who studied in France and salted his

scores with jazz-derived syncopations, Mexican folk tunes and cowboy ballads.

NYT19981210.0106

Figure 7: This answer to the definition question on Aaron Copeland is assigned the nugget “born brooklyn
ny 1900” at a recall score well above that of the background, despite containing none of those words.

briefly described a promising way to select finer-
grained thresholds automatically.

Our experiences in using judgements of system
responses point to the need for a better annotation
of nugget content. It is possible to give Nuggeteer
multiple nugget descriptions for each nugget. Man-
ually extracting the relevant portions of correctly-
judged system responses may not be an overly ardu-
ous task, and may offer higher accuracy. It would be
ideal if the community—including the assessors—
were able to create and promulgate a gold-standard
set of nugget descriptions for previous years.

Nuggeteer currently supports evaluation for the
TREC definition, ‘other’, and relationship tasks, for
the AQUAINT opinion pilot 8, and is under devel-
opment for the DARPA GALE task 9.

6 Acknowledgements

We would like to thank Jimmy Lin and Dina
Demner-Fushman for valuable discussions, for Fig-
ure 3, and Table 2, and for creating Pourpre. Thanks
to Ozlem Uzuner and Sue Felshin for valuable com-
ments on earlier drafts of this paper and to Boris
Katz for his inspiration and support.

8http://www-24.nist.gov/projects/aquaint/opinion.html
9http://www.darpa.mil/ipto/programs/gale

References
Eric J. Breck, John D. Burger, Lisa Ferro, Lynette

Hirschman, David House, Marc Light, and Inderjeet
Mani. 2000. How to evaluate your question answer-
ing system every day ... and still get real work done.
In Proceedings of the second international conference
on Language Res ources and Evaluation (LREC2000).

Jimmy Lin and Dina Demner-Fushman. 2005. Automat-
ically evaluating answers to definition questions. In
Proceedings of HLT-EMNLP.

Jimmy Lin and Dina Demner-Fushman. 2006. Will pyra-
mids built of nuggets topple over? In Proceedings of
HLT-NAACL.

Jimmy Lin, Eileen Abels, Dina Demner-Fushman, Dou-
glas W. Oard, Philip Wu, and Yejun Wu. 2005. A
menagerie of tracks at maryland: HARD, Enterprise,
QA, and Genomics, oh my! In Proceedings of TREC.

Ellen Voorhees. 2003. Overview of the TREC 2003
question answering track.

Ellen Voorhees. 2004. Overview of the TREC 2004
question answering track.

Ellen Voorhees. 2005. Overview of the TREC 2005
question answering track.

382

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 383–390,
New York, June 2006.c©2006 Association for Computational Linguistics

Will Pyramids Built of Nuggets Topple Over?

Jimmy Lin1,2,3 and Dina Demner-Fushman2,3

1College of Information Studies
2Department of Computer Science

3Institute for Advanced Computer Studies

University of Maryland

College Park, MD 20742, USA

jimmylin@umd.edu, demner@cs.umd.edu

Abstract

The present methodology for evaluating

complex questions at TREC analyzes an-

swers in terms of facts called “nuggets”.

The official F-score metric represents the

harmonic mean between recall and pre-

cision at the nugget level. There is an

implicit assumption that some facts are

more important than others, which is im-

plemented in a binary split between “vi-

tal” and “okay” nuggets. This distinc-

tion holds important implications for the

TREC scoring model—essentially, sys-

tems only receive credit for retrieving vi-

tal nuggets—and is a source of evalua-

tion instability. The upshot is that for

many questions in the TREC testsets, the

median score across all submitted runs is

zero. In this work, we introduce a scor-

ing model based on judgments from mul-

tiple assessors that captures a more refined

notion of nugget importance. We demon-

strate on TREC 2003, 2004, and 2005 data

that our “nugget pyramids” address many

shortcomings of the present methodology,

while introducing only minimal additional

overhead on the evaluation flow.

1 Introduction

The field of question answering has been moving

away from simple “factoid” questions such as “Who

invented the paper clip?” to more complex informa-

tion needs such as “Who is Aaron Copland?” and

“How have South American drug cartels been using

banks in Liechtenstein to launder money?”, which

cannot be answered by simple named-entities. Over

the past few years, NIST through the TREC QA

tracks has implemented an evaluation methodology

based on the notion of “information nuggets” to as-

sess the quality of answers to such complex ques-

tions. This paradigm has gained widespread accep-

tance in the research community, and is currently be-

ing applied to evaluate answers to so-called “defini-

tion”, “relationship”, and “opinion” questions.

Since quantitative evaluation is arguably the sin-

gle biggest driver of advances in language technolo-

gies, it is important to closely examine the charac-

teristics of a scoring model to ensure its fairness, re-

liability, and stability. In this work, we identify a

potential source of instability in the nugget evalua-

tion paradigm, develop a new scoring method, and

demonstrate that our new model addresses some of

the shortcomings of the original method. It is our

hope that this more-refined evaluation model can

better guide the development of technology for an-

swering complex questions.

This paper is organized as follows: Section 2

provides a brief overview of the nugget evaluation

methodology. Section 3 draws attention to the vi-

tal/okay nugget distinction and the problems it cre-

ates. Section 4 outlines our proposal for building

“nugget pyramids”, a more-refined model of nugget

importance that combines judgments from multiple

assessors. Section 5 describes the methodology for

evaluating this new model, and Section 6 presents

our results. A discussion of related issues appears in

Section 7, and the paper concludes with Section 8.

383

2 Evaluation of Complex Questions

To date, NIST has conducted three large-scale eval-

uations of complex questions using a nugget-based

evaluation methodology: “definition” questions in

TREC 2003, “other” questions in TREC 2004 and

TREC 2005, and “relationship” questions in TREC

2005. Since relatively few teams participated in

the 2005 evaluation of “relationship” questions, this

work focuses on the three years’ worth of “defini-

tion/other” questions. The nugget-based paradigm

has been previously detailed in a number of pa-

pers (Voorhees, 2003; Hildebrandt et al., 2004; Lin

and Demner-Fushman, 2005a); here, we present

only a short summary.

System responses to complex questions consist of

an unordered set of passages. To evaluate answers,

NIST pools answer strings from all participants, re-

moves their association with the runs that produced

them, and presents them to a human assessor. Us-

ing these responses and research performed during

the original development of the question, the asses-

sor creates an “answer key” comprised of a list of

“nuggets”—essentially, facts about the target. Ac-

cording to TREC guidelines, a nugget is defined as

a fact for which the assessor could make a binary

decision as to whether a response contained that

nugget (Voorhees, 2003). As an example, relevant

nuggets for the target “AARP” are shown in Table 1.

In addition to creating the nuggets, the assessor also

manually classifies each as either “vital” or “okay”.

Vital nuggets represent concepts that must be in a

“good” definition; on the other hand, okay nuggets

contribute worthwhile information about the target

but are not essential. The distinction has important

implications, described below.

Once the answer key of vital/okay nuggets is cre-

ated, the assessor goes back and manually scores

each run. For each system response, he or she de-

cides whether or not each nugget is present. The

final F-score for an answer is computed in the man-

ner described in Figure 1, and the final score of a

system run is the mean of scores across all ques-

tions. The per-question F-score is a harmonic mean

between nugget precision and nugget recall, where

recall is heavily favored (controlled by the β param-

eter, set to five in 2003 and three in 2004 and 2005).

Nugget recall is computed solely on vital nuggets

vital 30+ million members

okay Spends heavily on research & education

vital Largest seniors organization

vital Largest dues paying organization

vital Membership eligibility is 50+

okay Abbreviated name to attract boomers

okay Most of its work done by volunteers

okay Receives millions for product endorsements

okay Receives millions from product endorsements

Table 1: Answer nuggets for the target “AARP”.

Let

r # of vital nuggets returned in a response
a # of okay nuggets returned in a response
R # of vital nuggets in the answer key
l # of non-whitespace characters in the entire

answer string

Then
recall (R) = r/R

allowance (α) = 100 × (r + a)

precision (P) =

{

1 if l < α
1 −

l−α

l
otherwise

Finally, the Fβ =
(β2 + 1) × P ×R

β2
× P + R

β = 5 in TREC 2003, β = 3 in TREC 2004, 2005.

Figure 1: Official definition of F-score.

(which means no credit is given for returning okay

nuggets), while nugget precision is approximated by

a length allowance based on the number of both vi-

tal and okay nuggets returned. Early in a pilot study,

researchers discovered that it was impossible for as-

sessors to enumerate the total set of nuggets con-

tained in a system response (Voorhees, 2003), which

corresponds to the denominator in the precision cal-

culation. Thus, a penalty for verbosity serves as a

surrogate for precision.

Note that while a question’s answer key only

needs to be created once, assessors must manually

determine if each nugget is present in a system’s re-

sponse. This human involvement has been identified

as a bottleneck in the evaluation process, although

we have recently developed an automatic scoring

metric called POURPRE that correlates well with hu-

man judgments (Lin and Demner-Fushman, 2005a).

384

Testset # q’s 1 vital 2 vital

TREC 2003 50 3 10

TREC 2004 64 2 15

TREC 2005 75 5 16

Table 2: Number of questions with few vital nuggets

in the different testsets.

3 What’s Vital? What’s Okay?

Previously, we have argued that the vital/okay dis-

tinction is a source of instability in the nugget-

based evaluation methodology, especially given the

manner in which F-score is calculated (Hildebrandt

et al., 2004; Lin and Demner-Fushman, 2005a).

Since only vital nuggets figure into the calculation

of nugget recall, there is a large “quantization ef-

fect” for system scores on topics that have few vital

nuggets. For example, on a question that has only

one vital nugget, a system cannot obtain a non-zero

score unless that vital nugget is retrieved. In reality,

whether or not a system returned a passage contain-

ing that single vital nugget is often a matter of luck,

which is compounded by assessor judgment errors.

Furthermore, there does not appear to be any reliable

indicators for predicting the importance of a nugget,

which makes the task of developing systems even

more challenging.

The polarizing effect of the vital/okay distinction

brings into question the stability of TREC evalua-

tions. Table 2 shows statistics about the number of

questions that have only one or two vital nuggets.

Compared to the size of the testset, these numbers

are relatively large. As a concrete example, “F16” is

the target for question 71.7 from TREC 2005. The

only vital nugget is “First F16s built in 1974”. The

practical effect of the vital/okay distinction in its

current form is the number of questions for which

the median system score across all submitted runs is

zero: 22 in TREC 2003, 41 in TREC 2004, and 44

in TREC 2005.

An evaluation in which the median score for many

questions is zero has many shortcomings. For one,

it is difficult to tell if a particular run is “better” than

another—even though they may be very different in

other salient properties such as length, for exam-

ple. The discriminative power of the present F-score

measure is called into question: are present systems

that bad, or is the current scoring model insufficient

to discriminate between different (poorly perform-

ing) systems?

Also, as pointed out by Voorhees (2005), a score

distribution heavily skewed towards zero makes

meta-analysis of evaluation stability hard to per-

form. Since such studies depend on variability in

scores, evaluations would appear more stable than

they really are.

While there are obviously shortcomings to the

current scheme of labeling nuggets as either “vital”

or “okay”, the distinction does start to capture the

intuition that “not all nuggets are created equal”.

Some nuggets are inherently more important than

others, and this should be reflected in the evaluation

methodology. The solution, we believe, is to solicit

judgments from multiple assessors and develop a

more refined sense of nugget importance. However,

given finite resources, it is important to balance the

amount of additional manual effort required with the

gains derived from those efforts. We present the idea

of building “nugget pyramids”, which addresses the

shortcomings noted here, and then assess the impli-

cations of this new scoring model against data from

TREC 2003, 2004, and 2005.

4 Building Nugget Pyramids

As previously pointed out (Lin and Demner-

Fushman, 2005b), the question answering and sum-

marization communities are converging on the task

of addressing complex information needs from com-

plementary perspectives; see, for example, the re-

cent DUC task of query-focused multi-document

summarization (Amigó et al., 2004; Dang, 2005).

From an evaluation point of view, this provides op-

portunities for cross-fertilization and exchange of

fresh ideas. As an example of this intellectual dis-

course, the recently-developed POURPRE metric for

automatically evaluating answers to complex ques-

tions (Lin and Demner-Fushman, 2005a) employs

n-gram overlap to compare system responses to ref-

erence output, an idea originally implemented in the

ROUGE metric for summarization evaluation (Lin

and Hovy, 2003). Drawing additional inspiration

from research on summarization evaluation, we

adapt the pyramid evaluation scheme (Nenkova and

Passonneau, 2004) to address the shortcomings of

385

the vital/okay distinction in the nugget-based evalu-

ation methodology.

The basic intuition behind the pyramid

scheme (Nenkova and Passonneau, 2004) is

simple: the importance of a fact is directly related

to the number of people that recognize it as such

(i.e., its popularity). The evaluation methodology

calls for assessors to annotate Semantic Content

Units (SCUs) found within model reference sum-

maries. The weight assigned to an SCU is equal

to the number of annotators that have marked the

particular unit. These SCUs can be arranged in a

pyramid, with the highest-scoring elements at the

top: a “good” summary should contain SCUs from a

higher tier in the pyramid before a lower tier, since

such elements are deemed “more vital”.

This pyramid scheme can be easily adapted for

question answering evaluation since a nugget is

roughly comparable to a Semantic Content Unit.

We propose to build nugget pyramids for answers

to complex questions by soliciting vital/okay judg-

ments from multiple assessors, i.e., take the original

reference nuggets and ask different humans to clas-

sify each as either “vital” or “okay”. The weight as-

signed to each nugget is simply equal to the number

of different assessors that deemed it vital. We then

normalize the nugget weights (per-question) so that

the maximum possible weight is one (by dividing

each nugget weight by the maximum weight of that

particular question). Therefore, a nugget assigned

“vital” by the most assessors (not necessarily all)

would receive a weight of one.1

The introduction of a more granular notion of

nugget importance should be reflected in the calcu-

lation of F-score. We propose that nugget recall be

modified to take into account nugget weight:

R =

∑

m∈A wm
∑

n∈V wn

Where A is the set of reference nuggets that are

matched within a system’s response and V is the set

of all reference nuggets; wm and wn are the weights

of nuggets m and n, respectively. Instead of a binary

distinction based solely on matching vital nuggets,

all nuggets now factor into the calculation of recall,

1Since there may be multiple nuggets with the highest score,
what we’re building is actually a frustum sometimes. :)

subjected to a weight. Note that this new scoring

model captures the existing binary vital/okay dis-

tinction in a straightforward way: vital nuggets get

a score of one, and okay nuggets zero.

We propose to leave the calculation of nugget pre-

cision as is: a system would receive a length al-

lowance of 100 non-whitespace characters for ev-

ery nugget it retrieved (regardless of importance).

Longer answers would be penalized for verbosity.

Having outlined our revisions to the standard

nugget-based scoring method, we will proceed to

describe our methodology for evaluating this new

model and demonstrate how it overcomes many of

the shortcomings of the existing paradigm.

5 Evaluation Methodology

We evaluate our methodology for building “nugget

pyramids” using runs submitted to the TREC 2003,

2004, and 2005 question answering tracks (2003

“definition” questions, 2004 and 2005 “other” ques-

tions). There were 50 questions in the 2003 testset,

64 in 2004, and 75 in 2005. In total, there were 54

runs submitted to TREC 2003, 63 to TREC 2004,

and 72 to TREC 2005. NIST assessors have man-

ually annotated nuggets found in a given system’s

response, and this allows us to calculate the final F-

score under different scoring models.

We recruited a total of nine different assessors for

this study. Assessors consisted of graduate students

in library and information science and computer sci-

ence at the University of Maryland as well as volun-

teers from the question answering community (ob-

tained via a posting to NIST’s TREC QA mailing

list). Each assessor was given the reference nuggets

along with the original questions and asked to clas-

sify each nugget as vital or okay. They were pur-

posely asked to make these judgments without refer-

ence to documents in the corpus in order to expedite

the assessment process—our goal is to propose a re-

finement to the current nugget evaluation methodol-

ogy that addresses shortcomings while minimizing

the amount of additional effort required. Combined

with the answer key created by the original NIST

assessors, we obtained a total of ten judgments for

every single nugget in the three testsets.2

2Raw data can be downloaded at the following URL:
http://www.umiacs.umd.edu/∼jimmylin

386

2003 2004 2005

Assessor Kendall’s τ zeros Kendall’s τ zeros Kendall’s τ zeros

0 1.00 22 1.00 41 1.00 44

1 0.908 20 0.933 36 0.888 43

2 0.896 21 0.916 43 0.900 41

3 0.903 21 0.917 38 0.897 39

4 0.912 20 0.914 42 0.879 56

5 0.873 23 0.926 40 0.841 53

6 0.889 29 0.908 32 0.894 39

7 0.900 22 0.930 37 0.890 54

8 0.909 18 0.932 29 0.891 35

9 0.879 26 0.908 49 0.877 58

average 0.896 22.2 0.920 38.7 0.884 46.2

Table 3: Kendall’s τ correlation between system scores generated using “official” vital/okay judgments and

each assessor’s judgments. (Assessor 0 represents the original NIST assessors.)

We measured the correlation between system

ranks generated by different scoring models using

Kendall’s τ , a commonly-used rank correlation mea-

sure in information retrieval for quantifying the sim-

ilarity between different scoring methods. Kendall’s

τ computes the “distance” between two rankings as

the minimum number of pairwise adjacent swaps

necessary to convert one ranking into the other. This

value is normalized by the number of items being

ranked such that two identical rankings produce a

correlation of 1.0; the correlation between a rank-

ing and its perfect inverse is −1.0; and the expected

correlation of two rankings chosen at random is

0.0. Typically, a value of greater than 0.8 is con-

sidered “good”, although 0.9 represents a threshold

researchers generally aim for.

We hypothesized that system ranks are relatively

unstable with respect to individual assessor’s judg-

ments. That is, how well a given system scores

is to a large extent dependent on which assessor’s

judgments one uses for evaluation. This stems from

an inescapable fact of such evaluations, well known

from studies of relevance in the information retrieval

literature (Voorhees, 1998). Humans have legitimate

differences in opinion regarding a nugget’s impor-

tance, and there is no such thing as “the correct an-

swer”. However, we hypothesized that these varia-

tions can be smoothed out by building “nugget pyra-

mids” in the manner we described. Nugget weights

reflect the combined judgments of many individual

assessors, and scores generated with weights taken

into account should correlate better with each indi-

vidual assessor’s opinion.

6 Results

To verify our hypothesis about the instability of us-

ing any individual assessor’s judgments, we calcu-

lated the Kendall’s τ correlation between system

scores generated using the “official” vital/okay judg-

ments (provide by NIST assessors) and each individ-

ual assessor’s judgments. This is shown in Table 3.

The original NIST judgments are listed as “assessor

0” (and not included in the averages). For all scoring

models discussed in this paper, we set β, the param-

eter that controls the relative importance of preci-

sion and recall, to three.3 Results show that although

official rankings generally correlate well with rank-

ings generated by our nine additional assessors, the

agreement is far from perfect. Yet, in reality, the

opinions of our nine assessors are not any less valid

than those of the NIST assessors—NIST does not

occupy a privileged position on what constitutes a

good “definition”. We can see that variations in hu-

man judgments do not appear to be adequately cap-

tured by the current scoring model.

Table 3 also shows the number of questions for

which systems’ median score was zero based on

each individual assessor’s judgments (out of 50

3Note that β = 5 in the official TREC 2003 evaluation.

387

2003 2004 2005

0 0.934 0.943 0.901

1 0.962 0.940 0.950

2 0.938 0.948 0.952

3 0.938 0.947 0.950

4 0.936 0.922 0.914

5 0.916 0.956 0.887

6 0.916 0.950 0.958

7 0.949 0.933 0.927

8 0.964 0.972 0.953

9 0.912 0.899 0.881

average 0.936 0.941 0.927

Table 4: Kendall’s τ correlation between system

rankings generated using the ten-assessor nugget

pyramid and those generated using each individual

assessor’s judgments. (Assessor 0 represents the

original NIST assessors.)

questions for TREC 2003, 64 for TREC 2004, and

75 for TREC 2005). These numbers are worrisome:

in TREC 2004, for example, over half the questions

(on average) have a median score of zero, and over

three quarters of questions, according to assessor 9.

This is problematic for the various reasons discussed

in Section 3.

To evaluate scoring models that combine the opin-

ions of multiple assessors, we built “nugget pyra-

mids” using all ten sets of judgments in the manner

outlined in Section 4. All runs submitted to each

of the TREC evaluations were then rescored using

the modified F-score formula, which takes into ac-

count a finer-grained notion of nugget importance.

Rankings generated by this model were then com-

pared against those generated by each individual as-

sessor’s judgments. Results are shown in Table 4.

As can be seen, the correlations observed are higher

than those in Table 3, meaning that a nugget pyramid

better captures the opinions of each individual asses-

sor. A two-tailed t-test reveals that the differences in

averages are statistically significant (p << 0.01 for

TREC 2003/2005, p < 0.05 for TREC 2004).

What is the effect of combining judgments from

different numbers of assessors? To answer this

question, we built ten different nugget pyramids

of varying “sizes”, i.e., combining judgments from

one through ten assessors. The Kendall’s τ corre-

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5 6 7 8 9 10

K
e

n
d

a
ll
's

 t
a

u

Number of assessors

TREC 2003

TREC 2004

TREC 2005

Figure 2: Average agreement (Kendall’s τ) between

individual assessors and nugget pyramids built from

different numbers of assessors.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 2 3 4 5 6 7 8 9 10

F
ra

c
ti
o

n
 o

f
q

u
e

s
ti
o

n
s
 w

h
o

s
e

 m
e

d
ia

n
 s

c
o

re
 i
s
 z

e
ro

Number of assessors

TREC 2003
TREC 2004
TREC 2005

Figure 3: Fraction of questions whose median score

is zero plotted against number of assessors whose

judgments contributed to the nugget pyramid.

lations between scores generated by each of these

and scores generated by each individual assessor’s

judgments were computed. For each pyramid, we

computed the average across all rank correlations,

which captures the extent to which that particular

pyramid represents the opinions of all ten assessors.

These results are shown in Figure 2. The increase

in Kendall’s τ that comes from adding a second as-

sessor is statistically significant, as revealed by a

two-tailed t-test (p << 0.01 for TREC 2003/2005,

p < 0.05 for TREC 2004), but ANOVA reveals no

statistically significant differences beyond two as-

sessors.

From these results, we can conclude that adding

a second assessor yields a scoring model that is sig-

nificantly better at capturing the variance in human

relevance judgments. In this respect, little is gained

beyond two assessors. If this is the only advantage

388

provided by nugget pyramids, then the boost in rank

correlations may not be sufficient to justify the ex-

tra manual effort involved in building them. As we

shall see, however, nugget pyramids offer other ben-

efits as well.

Evaluation by our nugget pyramids greatly re-

duces the number of questions whose median score

is zero. As previously discussed, a strict vital/okay

split translates into a score of zero for systems that

do not return any vital nuggets. However, nugget

pyramids reflect a more refined sense of nugget im-

portance, which results in fewer zero scores. Fig-

ure 3 shows the number of questions whose median

score is zero (normalized as a fraction of the en-

tire testset) by nugget pyramids built from varying

numbers of assessors. With four or more assessors,

the number of questions whose median is zero for

the TREC 2003 testset drops to 17; for TREC 2004,

23 for seven or more assessors; for TREC 2005, 27

for nine or more assessors. In other words, F-scores

generated using our methodology are far more dis-

criminative. The remaining questions with zero me-

dians, we believe, accurately reflect the state of the

art in question answering performance.

An example of a nugget pyramid that combines

the opinions of all ten assessors is shown in Table 5

for the target “AARP”. Judgments from the original

NIST assessors are also shown (cf. Table 1). Note

that there is a strong correlation between the original

vital/okay judgments and the refined nugget weights

based on the pyramid, indicating that (in this case,

at least) the intuition of the NIST assessor matches

that of the other assessors.

7 Discussion

In balancing the tradeoff between advantages pro-

vided by nugget pyramids and the additional man-

ual effort necessary to create them, what is the opti-

mal number of assessors to solicit judgments from?

Results shown in Figures 2 and 3 provide some an-

swers. In terms of better capturing different asses-

sors’ opinions, little appears to be gained from going

beyond two assessors. However, adding more judg-

ments does decrease the number of questions whose

median score is zero, resulting in a more discrim-

inative metric. Beyond five assessors, the number

of questions with a zero median score remains rela-

1.0 vital Largest seniors organization

0.9 vital Membership eligibility is 50+

0.8 vital 30+ million members

0.7 vital Largest dues paying organization

0.2 okay Most of its work done by volunteers

0.1 okay Spends heavily on research & education

0.1 okay Receives millions for product endorsements

0.1 okay Receives millions from product endorsements

0.0 okay Abbreviated name to attract boomers

Table 5: Answer nuggets for the target “AARP” with

weights derived from the nugget pyramid building

process.

tively stable. We believe that around five assessors

yield the smallest nugget pyramid that confers the

advantages of the methodology.

The idea of building “nugget pyramids” is an ex-

tension of a similarly-named evaluation scheme in

document summarization, although there are impor-

tant differences. Nenkova and Passonneau (2004)

call for multiple assessors to annotate SCUs, which

is much more involved than the methodology pre-

sented here, where the nuggets are fixed and asses-

sors only provide additional judgments about their

importance. This obviously has the advantage of

streamlining the assessment process, but has the po-

tential to miss other important nuggets that were not

identified in the first place. Our experimental results,

however, suggest that this is a worthwhile tradeoff.

The explicit goal of this work was to develop scor-

ing models for nugget-based evaluation that would

address shortcomings of the present approach, while

introducing minimal overhead in terms of additional

resource requirements. To this end, we have been

successful.

Nevertheless, there are a number of issues that

are worth mentioning. To speed up the assessment

process, assessors were instructed to provide “snap

judgments” given only the list of nuggets and the tar-

get. No additional context was provided, e.g., docu-

ments from the corpus or sample system responses.

It is also important to note that the reference nuggets

were never meant to be read by other people—NIST

makes no claim for them to be well-formed de-

scriptions of the facts themselves. These answer

389

keys were primarily note-taking devices to assist in

the assessment process. The important question,

however, is whether scoring variations caused by

poorly-phrased nuggets are smaller than the varia-

tions caused by legitimate inter-assessor disagree-

ment regarding nugget importance. Our experiments

appear to suggest that, overall, the nugget pyramid

scheme is sound and can adequately cope with these

difficulties.

8 Conclusion

The central importance that quantitative evaluation

plays in advancing the state of the art in language

technologies warrants close examination of evalua-

tion methodologies themselves to ensure that they

are measuring “the right thing”. In this work, we

have identified a shortcoming in the present nugget-

based paradigm for assessing answers to complex

questions. The vital/okay distinction was designed

to capture the intuition that some nuggets are more

important than others, but as we have shown, this

comes at a cost in stability and discriminative power

of the metric. We proposed a revised model that in-

corporates judgments from multiple assessors in the

form of a “nugget pyramid”, and demonstrated how

this addresses many of the previous shortcomings. It

is hoped that our work paves the way for more ac-

curate and refined evaluations of question answering

systems in the future.

9 Acknowledgments

This work has been supported in part by DARPA

contract HR0011-06-2-0001 (GALE), and has

greatly benefited from discussions with Ellen

Voorhees, Hoa Dang, and participants at TREC

2005. We are grateful for the nine assessors who

provided nugget judgments. The first author would

like to thank Esther and Kiri for their loving support.

References

Enrique Amigó, Julio Gonzalo, Victor Peinado, Anselmo
Peñas, and Felisa Verdejo. 2004. An empirical study
of information synthesis task. In Proceedings of the
42nd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2004).

Hoa Dang. 2005. Overview of DUC 2005. In Proceed-

ings of the 2005 Document Understanding Conference
(DUC 2005) at NLT/EMNLP 2005.

Wesley Hildebrandt, Boris Katz, and Jimmy Lin. 2004.
Answering definition questions with multiple knowl-
edge sources. In Proceedings of the 2004 Human Lan-
guage Technology Conference and the North American
Chapter of the Association for Computational Linguis-
tics Annual Meeting (HLT/NAACL 2004).

Jimmy Lin and Dina Demner-Fushman. 2005a. Auto-
matically evaluating answers to definition questions.
In Proceedings of the 2005 Human Language Technol-
ogy Conference and Conference on Empirical Methods
in Natural Language Processing (HLT/EMNLP 2005).

Jimmy Lin and Dina Demner-Fushman. 2005b. Evalu-
ating summaries and answers: Two sides of the same
coin? In Proceedings of the ACL 2005 Workshop on
Intrinsic and Extrinsic Evaluation Measures for MT
and/or Summarization.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference and the North American
Chapter of the Association for Computational Linguis-
tics Annual Meeting (HLT/NAACL 2003).

Ani Nenkova and Rebecca Passonneau. 2004. Evalu-
ating content selection in summarization: The pyra-
mid method. In Proceedings of the 2004 Human Lan-
guage Technology Conference and the North American
Chapter of the Association for Computational Linguis-
tics Annual Meeting (HLT/NAACL 2004).

Ellen M. Voorhees. 1998. Variations in relevance judg-
ments and the measurement of retrieval effectiveness.
In Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 1998).

Ellen M. Voorhees. 2003. Overview of the TREC
2003 question answering track. In Proceedings of the
Twelfth Text REtrieval Conference (TREC 2003).

Ellen M. Voorhees. 2005. Using question series to eval-
uate question answering system effectiveness. In Pro-
ceedings of the 2005 Human Language Technology
Conference and Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP 2005).

390

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 391–398,
New York, June 2006.c©2006 Association for Computational Linguistics

Creating a Test Collection for Citation-based IR Experiments

Anna Ritchie
University of Cambridge

Computer Laboratory
15 J J Thompson Avenue

Cambridge, CB3 0FD, U.K.
ar283@cl.cam.ac.uk

Simone Teufel
University of Cambridge

Computer Laboratory
15 J J Thompson Avenue

Cambridge, CB3 0FD, U.K.
sht25@cl.cam.ac.uk

Stephen Robertson
Microsoft Research Ltd
Roger Needham House
7 J J Thomson Avenue

Cambridge, CB3 0FB, U.K.
ser@microsoft.com

Abstract

We present an approach to building a test
collection of research papers. The ap-
proach is based on the Cranfield 2 tests but
uses as its vehicle a current conference;
research questions and relevance judge-
ments of all cited papers are elicited from
conference authors. The resultant test col-
lection is different from TREC’s in that
it comprises scientific articles rather than
newspaper text and, thus, allows for IR
experiments that include citation informa-
tion. The test collection currently con-
sists of 170 queries with relevance judge-
ments; the document collection is the ACL
Anthology. We describe properties of
our queries and relevance judgements, and
demonstrate the use of the test collection
in an experimental setup. One potentially
problematic property of our collection is
that queries have a low number of relevant
documents; we discuss ways of alleviating
this.

1 Introduction
We present a methodology for creating a test collec-
tion of scientific papers that is based on the Cran-
field 2 methodology but uses a current conference as
the main vehicle for eliciting relevance judgements
from users, i.e., the authors.

Building a test collection is a long and expensive
process but was necessary as no ready-made test col-
lection existed on which the kinds of experiments

with citation information that we envisage could be
run. We aim to improve term-based IR on scien-
tific articles with citation information, by using in-
dex terms from the citing article to additionally de-
scribe the cited document. Exactly how to do this is
the research question that our test collection should
help to address.

This paper is structured as follows: Section 2 mo-
tivates our proposed experiments and, thereby, our
test collection. Section 3 discusses the how test col-
lections are built and, in particular, our own. Sec-
tion 4 briefly describes the practicalities of compil-
ing the document collection and the processing we
perform to prepare the documents for our experi-
ments. In Section 5, we show that our test collection
can be used with standard IR tools. Finally, Sec-
tion 6 discusses the problem of the low number of
relevant documents judged so far and two ways of
alleviating this problem.

2 Motivation
The idea of using terms external to a document,
coming from a ‘citing’ document, has been bor-
rowed from web-based IR. When one paper cites
another, a link is made between them and this link
structure is analogous to that of the web: “hyper-
links ... provide semantic linkages between ob-
jects, much in the same manner that citations link
documents to other related documents” (Pitkow and
Pirolli, 1997). Link structure, particularly anchor
text, has been used to advantage in web-based IR.
While web pages are often poorly self-descriptive
(Brin and Page, 1998) anchor text is often a higher-
level description of the pointed-to page. (Davison,

391

2000) provides a good discussion of how well an-
chor text does this and provides experimental results
in support. Thus, beginning with (McBryan, 1994),
there is a trend of propagating anchor text along its
hyperlink to associate it with the linked page, as well
as the page in which it is found. Google, for ex-
ample, includes anchor text as index terms for the
linked page (Brin and Page, 1998). The TREC Web
tracks have also shown that using anchor text im-
proves retrieval effectiveness for some search tasks
(Hawking and Craswell, 2005).

This idea has already been applied to citations and
scientific articles (Bradshaw, 2003). In Bradshaw’s
experiment, scientific documents are indexed by the
text that refers to them in documents that cite them.
However, unlike in experiments with previous col-
lections, we need both the citing and the cited article
as full documents in our collection. The question of
how to identify citation ‘anchor text’ and its extent
is a matter for research; this requires the full text of
the citing article. Previous experiments and test col-
lections have had only limited access to the content
of the citing article: Bradshaw had access only to a
fixed window of text around the citation, as provided
by CiteSeer’s ‘citation context’; in the GIRT collec-
tions (Kluck, 2003), a dozen or so content-bearing
information fields (e.g., title, abstract, methodologi-
cal descriptors) represent each document and the full
text is not available. Additionally, in Bradshaw’s ex-
periment, no access is given to the text of the cited
article itself so that the influence of a term-based IR
model cannot be studied and so that documents can
only be indexed if they have been cited at least once.
A test collection containing full text for many cit-
ing and cited documents, thus, has advantages from
a methodological point of view.

2.1 Choosing a Genre
When choosing a scientific field to study, we looked
for one that is practicable for us to compile the doc-
ument collection (freely available machine-readable
documents; as few as possible document styles),
while still ensuring good coverage of research top-
ics in an entire field. Had we chosen the medical
field or bioinformatics, the prolific number of jour-
nals would have been a problem for the practical
document preparation.

We also looked for a relatively self-contained

field. As we aim to propagate referential text to cited
papers as index terms, references from documents
in the collection to other documents within the col-
lection will be most useful. We call these internal
references. While it is impossible to find or create
a collection of documents with only internal refer-
ences, we aim for as high a proportion of internal
references as possible.

We chose the ACL (Association for Computa-
tional Linguistics) Anthology1 , a freely available
digital archive of computational linguistics research
papers. Computational linguistics is a small, ho-
mogenous research field and the Anthology contains
the most prominent publications since the beginning
of the field in 1960, consists of only 2 journals, 7
conferences and 5 less important publications, such
as discontinued conferences and a series of work-
shops, resulting in only 7000 papers2.

With the ACL Anthology, we expect a high pro-
portion of internal references within a relatively
compact document collection. We empirically mea-
sured the proportion of collection-internal refer-
ences. We found a proportion of internal refer-
ences to all references of 0.33 (the in-factor). We
wanted to compare this number to a situation in
another, larger field (genetics) but no straightfor-
ward comparison is possible, as there are very many
genetics journals and quality of journals probably
plays a larger role in a bigger field. We tried to
simulate a similar collection to the 9 main jour-
nals+conferences in the Anthology, by considering
10 journals in genetics with a range of impact fac-
tors3, resulting in an in-factor of 0.17 (dropping to
0.14 if only 5 journals are considered). Thus, our
hypothesis that the Anthology is reasonably self-
contained, at least in comparison with other possible
collections, was confirmed.

The choice of computational linguistics has the
added benefit that we are familiar with the domain;
we can interpret the subject matter better than we
would be able to in the medical domain. This should
be of use to us in our eventual experiments.

1http://www.aclweb.org/anthology/
2This is our estimate, after substracting non-papers such as

letters to the editor, tables of contents etc. The Anthology is
growing by ∼500 papers per year.

3Journal impact factor is a measure of the frequency with
which its average article is cited and is a measure of the relative
importance of journals within a field (Garfield, 1972).

392

3 Building Test Collections
To turn our document collection into a test col-
lection, a parallel set of search queries and rele-
vance judgements is needed. There are a number
of alternative methods for building a test collec-
tion. For TREC, humans devise queries specifically
for a given set of documents and make relevance
judgements on pooled retrieved documents from that
set (Harman, 2005). Theirs is an extremely labour-
intensive and expensive process and an unrealistic
option in the context of our project.

The Cranfield 2 tests (Cleverdon et al., 1966) in-
troduced an alternative method for creating a test
collection, specifically for scientific texts. The
method was subject to criticism and has not been
employed much since. Nevertheless, we believe this
method to be worth revisiting for our current situa-
tion. In this section, we describe in turn the Cran-
field 2 method and our adapted method. We discuss
some of the original criticisms and their bearing on
our own work, then describe our returns thus far.

3.1 The Cranfield 2 Test Collection
The Cranfield 2 tests (Cleverdon et al., 1966) were
a comparative evaluation of indexing language de-
vices. From a base collection of 182 (high speed
aerodynamics and aircraft structures) papers, the
Cranfield test collection was built by asking the au-
thors to formulate the research question(s) behind
their work and to judge how relevant each reference
in their paper was to each of their research questions,
on a 5-point scale. Referenced documents were ob-
tained and added to the base set. Authors were also
asked to list additional relevant papers not cited in
their paper. The collection was further expanded
in a second stage, using bibliographic coupling to
search for similar papers to the referenced ones and
employing humans to search the collection for other
relevant papers. The resultant collection comprised
1400 documents and 221 queries (Cleverdon, 1997).

The principles behind the Cranfield technique are:

• Queries: Each paper has an underlying research
question or questions; these constitute valid
search queries.

• Relevant documents: A paper’s reference list is
a good starting point for finding papers relevant
to its research questions.

• Judges: The paper author is the person best
qualified to judge relevance.

3.2 Our Anthology Test Collection
We altered the Cranfield design to fit to a fixed,
existing document collection. We designed our
methodology around an upcoming conference and
approached the paper authors at around the time of
the conference, to maximize their willingness to par-
ticipate and to minimise possible changes in their
perception of relevance since they wrote the paper.
Due to the relatively high in-factor of the collection,
we expected a significant proportion of the relevance
judgements gathered in this way to be about Anthol-
ogy documents and, thus, useful as evaluation data.

Hence, the authors of accepted papers for ACL-
2005 and HLT-EMNLP-2005 were asked, by email,
for their research questions and relevance judge-
ments for their references. We defined a 4-point
relevance scale, c.f. Table 1, since we felt that the
distinctions between the Cranfield grades were not
clear enough to warrant 5. Our guidelines also in-
cluded examples of referencing situations that might
fit each category. Personalized materials for partic-
ipation were sent, including a reproduction of their
paper’s reference list in their response form. This
meant that invitations could only be sent once the
paper had been made available online.

We further deviated from the Cranfield methodol-
ogy by deciding not to ask the authors to try to list
additional references that could have been included
in their reference list. An author’s willingness to
name such references will differ more from author
to author than their naming of original references, as
referencing is part of a standardized writing process.
By asking for this data, the consistency of the data
across papers will be degraded and the status of any
additional references will be unclear. Furthermore,
feedback from an informal pilot study conducted on
ten paper authors confirmed that some authors found
this task particularly difficult.

Each co-author of the papers was invited individu-
ally to participate, rather than inviting the first author
alone. This increased the number of invitations that
needed to be prepared and sent (by a factor of around
2.5) but also increased the likelihood of getting a re-
turn for a given paper. Furthermore, data from mul-
tiple co-authors of the same paper can be used to

393

Grade Description
4 The reference is crucially relevant to the problem. Knowledge of the contents of the referred work will be fun-

damental to the reader’s understanding of your paper. Often, such relevant references are afforded a substantial
amount of text in a paper e.g., a thorough summary.

3 The reference is relevant to the problem. It may be helpful for the reader to know the contents of the referred work,
but not crucial. The reference could not have been substituted or dropped without making significant additions to
the text. A few sentences may be associated with the reference.

2 The reference is somewhat (perhaps indirectly) relevant to the problem. Following up the reference probably would
not improve the reader’s understanding of your paper. Alternative references may have been equally appropriate
(e.g., the reference was chosen as a representative example from a number of similar references or included in a
list of similar references). Or the reference could have been dropped without damaging the informativeness of your
paper. Minimal text will be associated with the reference.

1 The reference is irrelevant to this particular problem.

Table 1: Relevance Scale

measure co-author agreement on the relevance task.
This is an interesting research question, as it is not
at all clear how much even close collaborators would
agree on relevance, but we do not address this here.

We plan to expand the collection in a second
stage, in line with the Cranfield 2 design. We will
reapproach contributing authors after obtaining re-
trieval results on our collection (e.g., with a stan-
dard IR engine) and ask them to make additional rel-
evance judgements on these papers.

3.3 Criticisms of Cranfield 2
Both Cranfield 1 (Cleverdon, 1960) and 2 were sub-
ject to various criticisms; (Spärck Jones, 1981) gives
an excellent account of the tests and their criticisms.
The majority were criticisms of the test collection
paradigm itself and are not pertinent here. How-
ever, the source-document principle (i.e., the use of
queries created from documents in the collection) at-
tracted particular criticisms. The fundamental con-
cern was that the way in which the queries were cre-
ated led to “an unnaturally close relation” between
the terms in the queries and those used to index
the documents in the colection (Vickery, 1967); any
such relationship might have created a bias towards
a particular indexing language, distorting the com-
parisons that were the goal of the project.

In Cranfield 1, system success was measured
by retrieval of source documents alone, criticized
for being an over-simplification and a distortion of
‘real-life’ searching. The evaluation procedure was
changed for Cranfield 2 so that source documents
were excluded from searches and, instead, retrieval

of other relevant documents was used to measure
success. This removed the problem that, usually,
when a user searches, there is no source document
for their query. Despite this, Vickery notes that there
were “still verbal links between sought document
and question” in the new method: each query author
was asked to judge the relevance of the source doc-
ument’s references and “the questions ... were for-
mulated after the cited papers had been read and has
possibly influenced the wording of his question”.

While adapting the Cranfield 2 method to our
needs, we have tried to address some of the crit-
icisms, e.g., that authors’ relevance judgements
change over time. Nevertheless, we still have
source-document queries and must consider the as-
sociated criticisms. Firstly, our test collection is
not intended for comparisons of indexing languages.
Rather, we aim to compare the effect of adding ex-
tra index terms to a base indexing of the documents.
The source documents will have no influence on
the base indexing of a document above that of the
other documents. The additional index terms, com-
ing from citations to that document, will generally
be ‘chosen’ by someone other than the query author,
with no knowledge of the query terms4. Also, our
documents will be indexed fully automatically, fur-
ther diminishing the scope of any subconscious hu-
man influence.

Thus, we believe that the suspect relationship be-
tween queries and indexing is negligible in the con-

4The exception to this is self-citation. This (very indirectly)
allows the query author to influence the indexing but it seems
highly improbable that an author would be thinking about their
query whilst citing a previous work.

394

text of our work, as opposed to the Cranfield tests,
and that the source-document principle is sound.

3.4 Returns and Analysis
Out of around 500 invitations sent to conference au-
thors, 85 resulted in research questions with rele-
vance judgements being returned; 235 queries in to-
tal. Example queries are:

• Do standard probabilistic parsing techniques,
developed for English, fare well for French and
does lexicalistion help improve parsing results?

• Analyze the lexical differences between genders
engaging in telephone conversations.

Of the 235 queries, 18 were from authors whose
co-authors had also returned data and were dis-
carded (for retrieval purposes); we treat co-author
data on the same paper as ‘the same’ and keep
only the first authors’. 47 queries had no relevant
Anthology-internal references and were discarded.
Another 15 had only relevant Anthology references
not yet included in the archive5; we keep these for
the time being. This leaves 170 unique queries with
at least 1 relevant Anthology reference and an aver-
age of 3.8 relevant Anthology references each. The
average in-factor across queries is 0.42 (similar to
our previously estimated Anthology in-factor)6 .

Our average number of judged relevant docu-
ments per query is lower than for Cranfield, which
had an average of 7.2 (Spärck Jones et al., 2000).
However, this is the final number for the Cran-
field collection, arrived at after the second stage
of relevance judging, which we have not yet car-
ried out. Nevertheless, we must anticipate a po-
tentially low number of relevant documents per
query, particularly in comparison to, e.g., the TREC
ad hoc track (Voorhees and Harman, 1999), with
86.8 judged relevant documents per query.

4 Document Collection and Processing
The Anthology documents are distributed in PDF, a
format designed to visually render printable docu-
ments, not to preserve editable text. So the PDF col-
lection must be converted into a fully textual format.

5HLT-NAACL-2004 papers, e.g., are listed as ‘in process’.
6We cannot directly compare this to Cranfield’s in-factor as

we do not have access to the documents.

IXML XML XMLPDF XML
Structure
Presentational

Structure
Logical

Pre−Processsor
PTX

Template
PTX

List Parser
Reference

Processor
Citation

XML

+ Reference
List + Citations

OmniPage

Figure 1: Document Processing Pipeline

A pipeline of processing stages has been developed
in the framework of a wider project, illustrated in
Figure 1.

Firstly, OmniPage Pro 147, a commercial PDF
processing software package, scans the PDFs and
produces an XML encoding of character-level page
layout information. AI algorithms for heuristically
extracting character information (similar to OCR)
are necessary since many of the PDFs were created
from scanned paper-copies and others do not contain
character information in an accessible format.

The OmniPage output describes a paper as text
blocks with typesetting information such as font and
positional information. A pre-processor (Lewin et
al., 2005) filters and summarizes the OmniPage out-
put into Intermediate XML (IXML), as well as cor-
recting certain characteristic errors from that stage.
A journal-specific template converts the IXML to a
logical XML-based document structure (Teufel and
Elhadad, 2002), by exploiting low-level, presenta-
tional, journal-specific information such as font size
and positioning of text blocks.

Subsequent stages incrementally add more de-
tailed information to the logical representation. The
paper’s reference list is annotated in more detail,
marking up individual references, author names, ti-
tles and years of publication. Finally, a citation pro-
cessor identifies and marks up citations in the doc-
ument body and their constituent parts, e.g., author
names and years.

5 Preliminary Experimentation
We expect that our test collection, built for our cita-
tion experiments, will be of wider value and we in-
tend to make it publicly available. As a sanity check
on our data so far, we carried out some preliminary
experimentation, using standard IR tools: the Lemur
Toolkit8, specifically Indri (Strohman et al., 2005),

7http://www.scansoft.com/omnipage/
8http://www.lemurproject.org/

395

its integrated language-model based search engine,
and the TREC evaluation software, trec eval9.

5.1 Experimental Set-up

We indexed around 4200 Anthology documents.
This is the total number of documents that have, at
the time of writing, been processed by our pipeline
(24 years of CL journal, 25 years of ACL proceed-
ings, 14 years of assorted workshops), plus another
∼90 documents for which we have relevance judge-
ments that are not currently available through the
Anthology website but should be incorporated into
the archive in the future. The indexed documents do
not yet contain annotation of the reference list or ci-
tations in text. 19 of our 170 queries have no relevant
references in the indexed documents and were not
included in these experiments. Thus, Figure 2 shows
the distribution of queries over number of relevant
Anthology references, for a total of 151 queries.

Our Indri index was built using default parameters
with no optional processing, e.g., stopping or stem-
ming, resulting in a total of 20117410 terms, 218977
unique terms and 2263 ‘frequent’10 terms.

We then prepared an Indri-style query file from
the conference research questions. The Indri query
language is designed to handle highly complex
queries but, for our very basic purposes, we created
simple bag-of-words queries by stripping all punctu-
ation from the natural language questions and using
Indri’s #combine operator over all the terms. This
means Indri ranks documents in accordance with
query likelihood. Again, no stopping or stemming
was applied.

Next, the query file was run against the Anthology
index using IndriRunQuery with default parameters
and, thus, retrieving 1000 documents for each query.

Finally, for evaluation, we converted the Indri’s
ranked document lists to TREC-style top results file
and the conference relevance judgements compiled
into a TREC-style qrels file, including only judge-
ments corresponding to references within the in-
dexed documents. These files were then input to
trec eval, to calculate precision and recall metrics.

9http://trec.nist.gov/trec eval/trec eval.8.0.tar.gz
10Terms that occur in over 1000 documents.

2 3 4 5 6 7 8 9 10 11 12 13 14
Threshhold (# Relevant References in Index)

0

0.05

0.1

0.15

0.2

Pr
ec

isi
on

 a
t 5

 D
oc

um
en

ts

Figure 3: Effect of Thresholding on P at 5 Docs

5.2 Results and Discussion
Out of 489 relevant documents, 329 were retrieved
within 1000 (per query) documents. The mean av-
erage precision (MAP) was 0.1014 over the 151
queries. This is the precision calculated at each rele-
vant document retrieved (0.0, if that document is not
retrieved), averaged over all relevant documents for
all queries, i.e., non-interpolated. R-precision, the
precision after R (the number of relevant documents
for a query) documents are returned, was 0.0965.
The average precision at 5 documents was 0.0728.

We investigated the effect of excluding queries
with lower than a threshold number of judged rel-
evant documents. Figure 3 shows that precision at
5 documents increases as greater threshold values
are applied. Similar trends were observed with other
evaluation measures, e.g., MAP and R-precision in-
creased to 0.2018 and 0.1528, respectively, when
only queries with 13 or more relevant documents
were run, though such stringent thresholding does
result in very few queries. Nevertheless, these trends
do suggest that the present low number of relevant
documents has an adverse effect on retrieval results
and is a potential problem for our test collection.

We also investigated the effect of including only
authors’ main queries, as another potential way of
objectively constructing a ‘higher quality’ query set.
Although, this decreased the average in-factor of rel-
evant references, it did, in fact, increase the average
absolute number of relevant references in the index.
Thus, MAP increased to 0.1165, precision at 5 doc-
uments to 0.1016 and R-precision to 0.1201.

These numbers look poor in comparison to the
performance of IR systems at TREC but, impor-
tantly, they are not intended as performance results.
Their purpose is to demonstrate that such numbers
can be produced using the data we have collected,

396

(a) (b)

0 20 40 60 80 100 120 140
Query

0

10

20

30

Re

le
va

nt
 R

ef
er

en
ce

s

Total
Anthology Index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Relevant References in Index

0

10

20

30

Q

ue
rie

s

(a) (b)

Figure 2: (a) Relevant References Per Query and (b) Distribution of Queries over Number of Relevant References

rather than to evaluate the performance of some new
retrieval system or strategy.

A second point for consideration follows directly
from the first: our experiments were carried out
on a new test collection and “different test collec-
tions have different intrinsic difficulty” (Buckley
and Voorhees, 2004). Thus, it is meaningless to
compare statistics from this data (from a different
domain) to those from the TREC collections, where
queries and relevance judgements were collected in
a different way, and where there are very many rele-
vant documents.

Thirdly, our experiments used only the most basic
techniques and the results could undoubtedly be im-
proved by, e.g., applying a simple stop-list. Never-
theless, this notion of intrinsic difficulty means that
it may be the case that evaluations carried out on this
collection will produce characteristically low preci-
sion values.

Low numbers do not necessarily preclude our
data’s usefulness as a test collection, whose purpose
is to facilitate comparative evaluations. (Voorhees,
1998) states that “To be viable as a laboratory tool,
a [test] collection must reliably rank different re-
trieval variants according to their true effectiveness”
and defends the Cranfield paradigm (from criticisms
based on relevance subjectivity) by demonstrating
that the relative performance of retrieval runs is sta-
ble despite differences in relevance judgements. The
underlying principle is that it is not the absolute pre-
cision values that matter but the ability to compare
these values for different retrieval techniques or sys-
tems, to investigate their relative benefits. A test col-

lection with low precision values will still allow this.
It is known that all evaluation measures are un-

stable for very small numbers of relevant documents
(Buckley and Voorhees, 2000) and there are issues
arising from incomplete relevance information in a
test collection (Buckley and Voorhees, 2004). This
makes the second stage of our test collection com-
pilation even more indispensable (asking subjects to
judge retrieved documents), as this will increase the
number of judged relevant documents, as well as
bridging the completeness gap.

There are further possibilities of how the prob-
lem could be countered. We could exclude queries
with lower than a threshold number of relevant docu-
ments (after the second stage). Given the respectable
number of queries we have, we might be able to af-
ford this luxury. We could add relevant documents
from outside the Anthology to our collection. This
is least preferable methodologically: using the An-
thology has the advantage that it has a real identity
and was created for real reasons outside our experi-
ments. Furthermore, the collection ‘covers a field’,
i.e., it includes all important publications and only
those. By adding external documents to the collec-
tion, it would lose both these properties.

6 Conclusions and Future Work
We have presented an approach to building a test
collection from an existing collection of research pa-
pers and described the application of our method
to the ACL Anthology. We have collected 170
queries with relevance data, centered around the
ACL-2005 and HLT-EMNLP-2005 conferences. We

397

have sanity-checked the usability of our data by
running the queries through a retrieval system and
evaluating the results using standard software. The
collection currently has a low number of judged
relevant documents and further experimentation is
needed to determine if this poses a real problem.

We plan a second stage of collecting relevance
judgements, in line with the original Cranfield de-
sign, whereby authors who have contributed queries
will be asked to judge the relevance of documents in
retrieval rankings from standard IR models and, ide-
ally, from our eventual citation-based experiments.

Nevertheless, our test collection is likely to suffer
from incomplete relevance information. The bpref
measure (Buckley and Voorhees, 2004) gauges re-
trieval effectiveness solely on the basis of judged
documents and is more stable to differing levels
of completeness than measures such as MAP, R-
precision or precision at fixed document cutoffs.
Thus, bpref may offer a solution to the incomplete-
ness problem and we intend to investigate its poten-
tial use in our future evaluations.

When finished, we hope our test collection will
be a generally useful IR resource. In particular, we
expect the collection to be useful for experimenta-
tion with citation information, for which there is cur-
rently no existing test collection with the properties
that ours offers.

Acknowledgements Thanks to the reviewers for
their useful comments and to Karen Spärck Jones for
many instructive discussions.

References
Shannon Bradshaw. 2003. Reference directed indexing:

Redeeming relevance for subject search in citation in-
dexes. In Research and Advanced Technology for Dig-
ital Libraries (ECDL), pages 499–510.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1–7):107–117.

Chris Buckley and Ellen Voorhees. 2000. Evaluating
evaluation measure stability. In Research and Devel-
opment in Information Retrieval (SIGIR).

Chris Buckley and Ellen Voorhees. 2004. Retrieval eval-
uation with incomplete information. In Research and
development in information retrieval (SIGIR).

Cyril Cleverdon, Jack Mills, and Michael Keen. 1966.
Factors determining the performance of indexing
sytems, volume 1. design. Technical report, ASLIB
Cranfield Project.

Cyril Cleverdon. 1960. Report on the first stage of an in-
vestigation into the comparative efficiency of indexing
systems. Technical report, ASLIB Cranfield Project.

Cyril Cleverdon. 1997. The Cranfield tests on index lan-
guage devices. In Readings in information retrieval,
pages 47–59. Morgan Kaufmann Publishers Inc.

Brian D. Davison. 2000. Topical locality in the web.
In Research and Development in Information Retrieval
(SIGIR), pages 272–279.

Eugene Garfield. 1972. Citation analysis as a tool in
journal evaluation. Science, 178 (4060):471–479.

Donna Harman. 2005. The TREC test collections. In
Ellen Voorhees and Donna Harman, editors, TREC
Experiment and Evaluation in Information Retrieval,
chapter 2. MIT Press.

David Hawking and Nick Craswell. 2005. The very
large collection and web tracks. In Ellen Voorhees and
Donna Harman, editors, TREC: Experiment and Eval-
uation in Information Retrieval, chapter 9. MIT Press.

Michael Kluck. 2003. The GIRT data in the evaluation
of CLIR systems - from 1997 until 2003. In CLEF,
pages 376–390.

Ian Lewin, Bill Hollingsworth, and Dan Tidhar. 2005.
Retrieving hierarchical text structure from typeset sci-
entific articles - a prerequisite for e-science text min-
ing. In UK e-Science All Hands Meeting.

Oliver McBryan. 1994. GENVL and WWWW: Tools
for taming the web. In World Wide Web Conference.

James Pitkow and Peter Pirolli. 1997. Life, death, and
lawfulness on the electronic frontier. In Human Fac-
tors in Computing Systems.

Karen Spärck Jones, Steve Walker, and Stephen Robert-
son. 2000. A probabilistic model of information re-
trieval: development and comparative experiments -
parts 1 and 2. Information Processing and Manage-
ment, 36(6):779–840.

Karen Spärck Jones. 1981. The Cranfield tests. In
Karen Spärck Jones, editor, Information Retrieval Ex-
periment, chapter 13, pages 256–284. Butterworths.

Trevor Strohman, Donald Metzler, Howard Turtle, and
W. Bruce Croft. 2005. Indri: a language-model based
search engine for complex queries. Technical report,
University of Massachusetts.

Simone Teufel and Noemie Elhadad. 2002. Collection
and linguistic processing of a large-scale corpus of
medical articles. In Language Resources and Evalu-
ation Conference (LREC).

B. C. Vickery. 1967. Reviews of CLEVERDON, C. W.,
MILLS, J. and KEEN, E. M. the Cranfield 2 report.
Journal of Documentation, 22:247–249.

Ellen Voorhees and Donna Harman. 1999. Overview of
the eighth Text REtrieval Conference (TREC 8). In
Text REtrieval Conference (TREC).

Ellen Voorhees. 1998. Variations in relevance judgments
and the measurement of retrieval effectiveness. In Re-
search and Development in Information Retrieval (SI-
GIR), pages 315–323.

398

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 399–406,
New York, June 2006.c©2006 Association for Computational Linguistics

A Machine Learning based Approach to Evaluating Retrieval Systems

Huyen-Trang Vu and Patrick Gallinari
Laboratory of Computer Science (LIP6)

University of Pierre and Marie Curie
8 rue du capitaine Scott, 75015 Paris, France

{vu,gallinar}@poleia.lip6.fr

Abstract

Test collections are essential to evaluate
Information Retrieval (IR) systems. The
relevance assessment set has been recog-
nized as the key bottleneck in test col-
lection building, especially on very large
sized document collections. This paper
addresses the problem of efficiently se-
lecting documents to be included in the
assessment set. We will show how ma-
chine learning techniques can fit this task.
This leads to smaller pools than tradi-
tional round robin pooling, thus reduces
significantly the manual assessment work-
load. Experimental results on TREC col-
lections1 consistently demonstrate the ef-
fectiveness of our approach according to
different evaluation criteria.

1 Introduction

The effectiveness of retrieval systems is often justi-
fied by benchmark test collections. A standard test
collection consists of lots of documents, a set of in-
formation needs, called topics and human judgment
about the relevance status of each document for a
topic. Nowadays, it is relatively easy to gather huge
set of millions of documents and hundreds of topics.
The key obstacle for forming large sized test col-
lections lies therefore in the topic assessment pro-
cedure. Assessing the whole document sets is un-
feasible, even for small sized collection of 800,000
documents (Voorhees and Harman, 1999). In order
to keep the assessment process practical, one often

1http://trec.nist.gov

selects a certain number of documents for judgment.
This is called (document) pooling and the outcome
the pool or the qrels (query relevanceset). The col-
lected documents are then judged by humans, doc-
uments outside the pool are assumed non relevant.
A representative pool is therefore essential to the
whole evaluation process.

This paper proposes a method to form the assess-
ment set with the support of machine learning algo-
rithms. Based on relevance judgments of relatively
shallow pools, a ranking algorithm will attempt to
give priority for relevant documents so that the as-
sessment set can be fixed at a feasible size without
skewing the system evaluation result. The judgment
process is indeed kept as much subjective-free as
possible: the first relevance feeback step is designed
appropriately so that the assessor cannot give any
bias towards any particular rank or any system, the
learning process is completely transparent to the as-
sessors and parameters of the ranking function are
collection-tailored rather than exported from previ-
ous collections.

The method will then be evaluated on TREC
ad-hoc collections. Results from our comprehensive
experiment confirm that the qrels generated by our
method are much more representative than those of
the same size by the TREC method. The outcome
qrels is substantially smaller, so much cheaper to
produce than the official TREC qrels, yet their con-
clusions about system effectiveness are quite com-
patible.

The remaining of this paper is organized as fol-
lows. We review related work in Section 2. Sec-
tion 3 presents the general framework of apply-
ing machine learning techniques to forming test
collections. We also give a brief introduction

399

about RankBoost (Freund et al., 2003) and Rank-
ing SVM (Joachims, 2002b), the two learning algo-
rithms used in our experiment. Section 4 introduces
data sets and experimental setup. Section 5 is ded-
icated to present experimental results according to
different evaluation criteria. Precisely, Section 5.1
shows the capacity of small pools on identifying rel-
evant documents and Section 5.2 illustrates their im-
pact on system comparison; Section 5.3 presents sta-
tistical validation tests. We conclude and discuss
perspectives in Section 6.

2 Related work

2.1 TREC methodology

Since the seminal work of test collection forming
in 1975 (Sparck Jones and Van Rijsbergen, 1975),
pooling has been outlined as the main approach
to form the assessment set. The simple solution
of round robin pooling from different systems pro-
posed in that report has been adopted in most exist-
ing IR evaluation forums such as TREC, CLEF2 or
NTCIR3. For convenience, we will denote that strat-
egy as TREC-style pooling. To have the assessment
set, from submissions (restricted lengthL = 1000
for most TREC tracks), onlyn top documents per
submission are pooled. Despite different technical
tricks to control the final pool size such as gathering
only principal runs or reducing the value ofn, the
assessment procedure is still quite time-consuming.
In TREC 8 ad-hoc track, for example, despite lim-
iting the pool depthn at 100 and gathering only 71
of 129 submissions, each assessor has to work with
approximately 1737 documents per topic (precisely,
between 1046 and 2992 documents). Assuming that
it takes on average 30 seconds to read and judge a
document, the whole judgment procedure for this
topic set can therefore only terminate after a round-
the-clock month. Meanwhile, a simple analysis on
the ad-hoc collections from TREC-3 to TREC-8 re-
vealed that there are on average 94% documents
judged as non relevant. Since most of existing ef-
fectiveness measures do not take into account these
non relevant documents, it would be bettter to not
waste effort on judging non relevant documents pro-
vided that the quality of test collections is always

2http://www.clef-campaign.org/
3http://research.nii.ac.jp/ntcir/

conserved. Several advanced pool sampling meth-
ods have been proposed but due to some common
drawbacks, none of them has been used in practice.

2.2 Topic adaptive pooling

Zobel (Zobel, 1998) forms the shallow pools accord-
ing to the TREC methodology. When there are
enough judged documents (up to the set of 30 top
documents per run in his experiment), an extrapo-
lation function will then be estimated to predict the
number of unpooled relevant documents. The idea
is to judge more documents for topics that have high
potential to have relevant documents else. Carterette
and Allan (Carterette and Allan, 2005) have recently
replaced that extrapolation function by statistical
tests to distinguish runs. This method produced in-
teresting empirical outcomes on TREC ad-hoc col-
lections, lack however a sound theoretical basis and
is clearly of very high complexity due to iterative
statistical tests of every run pairs. Furthermore, this
incremental/online pooling approach raises a major
concern about the unbiasness requirement from the
human judgment as the assessors know well that
documents come later are of lower ranks, thus of
lower relevance possibility.

2.3 System adaptive pooling

Cormack et al. (Cormack et al., 1998) propose the
so-called Move-To-Front (MTF) heuristic to give
priority for documents based on the correspond-
ing system performance. In their experiment,
the latter factor has been simply the number of
non relevant documents this system has intro-
duced to the pool since the last relevant document.
Aslam et al. (Aslam et al., 2003) formulate this pri-
ority rule by adopting an online learning algorithm
called Hedged (Freund and Schapire, 1997).

Our method relies on this idea of pushing ahead
relevant documents by weighting retrieval systems.
There are however two major differences. Whilst
all aforementioned proposals favoronlineparadigm
with a series of human interaction rounds, our
method works in batch mode. We believe that the
latter is more suitable for this task since it elimi-
nates as much as possible the bias introduced by
human assessor towards any document. Moreover,
the batch mode enables us to exploit intuitively the
inter-topic relationship what is not the case of on-

400

line paradigm. The second difference lies in the way
of estimating the ranking function. It is widely ac-
cepted that machine learning techniques can deliver
more reliable model on previously unseen data given
much less training instances than any classical statis-
tical techniques or expert rules can.

2.4 Generatepseudo assessment set

Several evaluation methodologies, especially for
web search engines, have been proposed to evaluate
systemswithout relevance judgment. These propos-
als can be grouped into two main categories. The
first (Soboroff et al., 2001; Wu and Crestani, 2003;
Nuray and Can, 2006) exploitsinternal information
of submissions. The second (Can et al., 2004;
Joachims, 2002a; Beitzel et al., 2003) benefitsex-
ternal resources such as document and query con-
tent, or those of web environment. We skip the sec-
ond category since these resources are not available
in generic situations.

Soboroff et al. (Soboroff et al., 2001) sam-
ple documents of a shallow pool (top ten
documents returned by retrieval systems)
based on statistics from past qrels. Wu and
Crestani (Wu and Crestani, 2003), Nuray and Can
(Nuray and Can, 2006) adopt metasearch strategies
on document position. A certain number of top out-
come documents will then be considered as relevant
without any human verification. Different voting
schemes have been tried in the two aformentioned
papers. Their empirical experiment illustrated how
the quality of these pseudo-qrels is sensible to the
chosen voting scheme and to other parameters such
as the pool depth or the diversity of systems used
for fusion. They also confirm thatpseudo-qrels are
often unable to identify best systems.

In sum, the thorough literature review confirmed
the importance of relevance assessment sets in IR
evaluation yet the lack of an appropriate solution to
have a reliable set given a moderate amount of judg-
ment resource.

3 Machine learning based Pooling

3.1 General framework

Let M denote the topic set size available for the
training purpose,N the number of participating sys-
tems,k1 the pool depth to get the training data from

any participating system andK the final pool size.

The training process consists of two main steps.
Firstly, for each training topic,k1 first documents
of all N systems are gathered and the assessors are
asked to assess all of these documents. LetT denote
the outcome of this assessing step on allM topics.
From the information ofT , a functionf will then be
learned which assigns to each document a value cor-
responding to its relevance degree for a given query.

At the usage time, for each given topic, the whole
retrieved list ofN systems will be fused. These doc-
uments will then be sorted in the decreasing order of
their values according tof and theK top documents
will be sent to the assessor for judgment. This last
set of judgements will be the qrels used for the sys-
tem evaluation.

In the training framework, it is clear that the sec-
ond step plays the major role. An effective scoring
function can substantially save the workload at the
last assessment step. We will now focus on methods
for estimating such scoring function.

3.2 Document ranking principle

The scoring functionf can be estimated in differ-
ent ways as seen in the last section. In this study,
we adopt the learning-to-rank paradigm for estimat-
ing this scoring function. The principle of document
ranking will be sketched in this section. The next
sub-section will introduce the two specific ranking
algorithms used in our experiment.

A ranking algorithm aims at estimating a function
which describes correctly all partial orders inside a
set of elements. An ideal ranking in information re-
trieval must be able to place all relevant documents
above non relevant ones for a given topic. The prob-
lem can be described as follows. For each topic, the
document collection is decomposed into two disjoint
setsS+ andS− for relevant (non relevant respec-
tively) documents,RandNRare their cardinality. A
ranking functionH(d) assigns to each documentd
of the document collection a score value. We seek
for a function H(d) so that the document ranking
generated from the scores respect the relevance rela-
tionship, that is any relevant document has a higher
score than any non relevant one. Let “d ⊲ d′” sig-
nify that d is ranked higher thand′. The learning

401

objective can therefore be stated as follows.

d+ ⊲ d− ⇔ H(d+) > H(d−),∀(d+, d−) ∈ S+ × S−

There are different ways to measure the ranking
error of a scoring functionh. The natural criterion
might be the proportion of misordered pairs (a rele-
vant document is below a non relevant one) over the
total pair numberR.NR. This criterion is an estimate
of the probability of misordering a pairP(d− ⊲ d+).

RLoss(H) =
∑

d+∈S+
d−∈S−

D(d+, d−)
�

d− ⊲ d+
�

(1)

=
∑

∀(d+ ,d−)

D(d+, d−)
�

H(d−) > H(d+)
�

(2)

where~φ� is 1 if φ holds, 0 otherwise;D(d+, d−) de-
scribes the importance of the pair in consideration,
it will be uniform

(

1
R.NR

)

if the information is un-
known.

In practice, we have to average RLoss over the
training topic set. This can be done by eithermacro-
averaging at topic level ormicro-averaging at docu-
ment pair level. For presentation simplification, this
operation has been implicit.

3.3 Discriminative ranking algorithms

Since RLoss is neither continuous nor differentiable,
its direct use as a training criterion raises practical
difficulties. Also, in order to provide reliable predic-
tions on previously unseen data, the prediction error
of the learning function has to be bounded with a
significant confidence. For both practical and theo-
retical reasons, RLoss is then often approximated by
a smooth error function.

In this study, we will explore the per-
formance of two ranking algorithms, they
are RankBoost (Freund et al., 2003) and
Ranking SVM (Joachims, 2002b). As far as
we know, these algorithms are actually among a
few state-of-the-art ranking learning algorithms
whose convergence and generalization properties
have been theoretically proved (Freund et al., 2003;
Joachims, 2002b; Clémençon et al., 2005).

3.3.1 RankBoost

RankBoost (aka RBoost) (Freund et al., 2003) re-
turns a scoring function for each documentd by min-
imizing the following exponentialupper bound of

the ranking error RLoss (Eq. (2)):

ELoss(H) =
∑

(d+,d−)

D(d+, d−)e
H(d−)−H(d+) (3)

This is an iterative algorithm like all other boosting
methods (Freund and Schapire, 1997). The global
ranking function of a documentd is a linear combi-
nation of all base functionsH(d) =

∑T
t=1αtht(d). At

each iterationt, a new training data sample is gener-
ated by putting more weightD(., .) on difficult pairs
(d+, d−). A scoring functionht is proposed (it can
even be chosen among the features used to describe
documents) and the weightαt is estimated in order
to minimize the ELoss at that iteration.

RBoost has virtues particularly fitting the pool-
ing task. First, it can operate on relative values.
Second, it does not impose any independence as-
sumption between combined systems. Finally, in
the case of binary relevance judgment which usu-
ally occurs in IR, there is an efficient implementa-
tion of RBoost whose complexity is linear in terms
of the training instance number (cf: the original
text (Freund et al., 2003)).

3.3.2 Ranking SVM

Ranking SVM (Joachims, 2002b), rSVM for
short, is a straightforward adaptation of the max-
margin principle (Vapnik, 2000) to pairwise object
ranking. The score function is often assumed to be
linear in some feature space, that isH(d) = wT

Ψ(d)
wherew is the vector of weights to be estimated and
Ψ is a feature mapping. The max-margin approach
minimizes the following approximation of RLoss:

rSVMLoss(H) = max
{

1+
(

H(d−) − H(d+)
)

, 0
}

(4)
for all pairs (d+, d−) while at the same time control-
ling the complexity of function space described via
the norm of vectorw for generalization objective.

Notice that rSVM does not explicitly support rank
values as does RBoost. Nevertheless, we will see
later that the discriminative nature allows rSVM to
work quite well on features merely deduced from
rank values. Its behavior difference is in fact ignor-
able in comparison with RBoost.

4 Experimental setup

Our method is general enough to be applicable to
any ad-hoc retrieval information task where pooling

402

could be useful. In this paper, we will however fo-
cus on TREC traditional ad-hoc retrieval collections.
Experiments have been performed on the three cor-
pora TREC-6, TREC-7 and TREC-8. Statistics
about the number of runs, of judgments, of rele-
vant documents are shown in Tab. 1. Due to limit
of space, we will detail results on the TREC-8 case
and only mention the results on the two others.

#runs #judgments #rel. docs Depth-5
TREC 6 79 1445.4 92.2 144.3
TREC 7 103 1606.9 93.5 114.6
TREC 8 129 1736.6 94.6 143.4

Table 1: Information about three TREC ad-hoc col-
lections. The three last columns are averaged over
the topic set size (50 topics/collection).

Training data is gathered from the top five an-
swers of each run. The pool depth of five has been
arbitrarily chosen to have both sufficient training
data and to eliminate potential bias from assessors
towards a particular system or towards early iden-
tified answers while judging a shallow pool. Fur-
thermore, this training data set is large enough for
testing the ranking algorithm efficiency.

Each document is described by anN-dimensional
feature vector whereN is the number of participat-
ing systems. Thej th feature value for a document
is a function of its position in the retrieved list, ties
are arbitrary broken. A document at ranki is as-
signed a feature value of (L + 1 − i) whereL is the
TREC limit of submission run (L is usually set up at
1000). Documents outside submission runs receive
the zero feature value (i.e. it is assumed to be at rank
(L + 1)). For implementation speed, the input for
rSVM is further scaled down to the interval [0, 1].

Due to the small topic set size, we use aleave-
one-out training strategy: a model will be trained
for each topic by using judgments of all other top-
ics. The training data set size is presented in the last
column of Tab. 1. The workload for training dataset
does not exceed the effort for assessing 5 topics in
the full pool of TREC.

We employ SVMlight package4 for rSVM.
We adopt the efficient RBoost version for bi-
nary feedback and binary base functionsht

(cf. (Freund et al., 2003)), boosting is iterated 100

4http://svmlight.joachims.org

times and we impose positive weighting for all coef-
ficientsαt.

The non-interpolated average precision (MAP)
has been chosen to measure system perfor-
mance5. This metric has been shown to be
highly stable and reliable with both small
topic set size (Buckley and Voorhees, 2000)
and very large document collec-
tions (Hawking and Robertson, 2003).

RBoost and rSVM pools will be compared to the
TREC-style pools of the same size. We also include
“local MTF” (Cormack et al., 1998) in the experi-
ment. The “global MTF” has been shown to slightly
outperform the local version in the aforementioned
paper. However, we believe that the global mode
is merely for demonstration but unlikely practical
of online judgment since it insists that all queries
are judged simultaneously with a strict synchroni-
sation among all assessors. Hereafter, for simplic-
ity, the TREC-style pool of the firstn documents
retrieved by each submission will be denoted by
Depth-n, the equivalent pool (with the same aver-
age final pool sizemover the topic set) produced by
RBoost, rSVM or MTF will be RBoost-m, rSVM-m
or MTF-mrespectively. In all figures in the next sec-
tion, the abscissa denotes the pool sizemand values
of n will be present along the Depth-n curve.

5 Experimental results

This section will examine small pools produced ei-
ther by the TREC method or by RBoost/rSVM/MTF
from two angles: their pooling performance and
their influence on system comparison result.

5.1 Identify relevant documents

Fig. 1 shows the ratio of relevant documents re-
trieved by different pooling methods (i.e. the re-
call). The curves obtained by RBoost and rSVM are
quite similar and much higher than that by TREC
methodology. The curve of MTF is in the middle
of RBoost/rSVM and Depth-n at the beginning and
then catches that of RBoost at the pools of about 600
documents.

5http://trec.nist.gov/trec eval/

403

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

%
 re

l.
do

cs
 fo

un
d

#docs judged

recall: TREC8 ad-hoc, 129 runs

1

10
15

20 25
30

40

RBoost
rSVM
MTF

Depth-n

Figure 1: Along the incrementally enlarged pools:
relevant documents identified in comparison with
the full assessment set.

5.2 Correlation of system rankings

Once the pool is obtained by a given method, the
assessor will give relevance judgment for all docu-
ments of that pool, called qrels for the outcome. This
qrels will be used as the ground truth to measure ef-
fectiveness of a retrieval system.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

Ke
nd

al
l’s

 τ

qrels size

sys. ranking, MAP: TREC8 ad-hoc, 129 runs

1

2

7
10

15 20 25

RBoost
rSVM
MTF

Depth-n

Figure 2: Kendall’sτ correlation of system ranking
according to different qrels methods in comparison
with that produced by the full assessment set.

The simplest way to compare different sys-
tems is to sort them by the decreasing effective-
ness values. The correlation of each two sys-
tem rankings will then be quantified through a
correlation statistic. In this study, we follow
TREC convention (Buckley and Voorhees, 2004;
Carterette and Allan, 2005), that is taking the 0.9
value of Kendall’sτ as the sufficient threshold to
conclude that the difference of two system rankings
is ignorable. We compare here the system ranking
obtained by the official TREC qrels with those by
Depth-n wheren varies from 1 to 100. We then re-

place Depth-n by RBoost-m, rSVM-m and MTF-m.
The results are shown in Fig. 2 for TREC-8 and in
Tab. 2 for the 7 first pool depths. We observe from
the figure the similar order of pooling methods as
seen in the previous section. The MTF curve meets
those of RBoost and rSVM from qrels of more than
400 documents. The results obtained on the two col-
lections of TREC-6 and TREC-7 are in line with
those observed on TREC-8 (Tab. 2).

It is clear that system ranking correlation quan-
tified by any rank correlation statistics provides
necessary but not sufficient information about sys-
tem comparison. Ranking systems by their sam-
ple means is indeed the simplest way with at least
two implicit assumptions. First, runs havesimi-
lar variances, this usually does not hold in practice
even after discarding poorest runs. Second, all run
swaps have the same importance without taking into
account theirstatistically significant differenceand
their positions in the system ranking. In practice,
swap of adjacent systems does not make much sense
if they are not significantly different to each other
according to statstical tests. The next section will be
devoted to further statistical validations.

5.3 Statistical Validations

5.3.1 Significant difference detection

We register for a given qrels all system pairs
which are significantly different on the topic set. The
quality of a qrels can be measured by the similarity
of this significant difference detection in compari-
son with that obtained by the official TREC qrels.
We carry out the paired t-test for each pair of runs
with 95% significance level. The recall and the false
alarm rate of these detections are shown in Fig. 3. In
terms of recall, RBoost and rSVM qrels are much
more better than its TREC-style counterparts and
MTF is in the middle. In terms of false alarm rate,
there are some changes concerning rSVM and MTF.
Precisely, rSVM at small qrels of less than 100 doc-
uments is the best whilst that is MTF qrels of more
than 150 documents.

5.3.2 Tukey grouping

This multicomparison test6 aims to group runs
based on their statistical difference. We concentrate

6IR-STAT-PAK (Tague-Sutcliffe and Blustein, 1995)

404

TREC-6 (79 sys.) TREC-7 (103 sys.) TREC-8 (129 sys.)
n m D-n MTF SVM RBst m D-n MTF SVM RBst m D-n MTF SVM RBst
1 37 .835 .843 .888 .914 32 .788 .809 .888 .891 40 .733 .805 .927 .909
2 66 .875 .899 .925 .934 56 .831 .890 .920 .922 68 .829 .877 .939 .933
3 93 .892 .925 .939 .956 76 .851 .918 .931 .935 95 .864 .903 .948 .946
4 118 .903 .940 .949 .967 95 .876 .926 .935 .947 119 .877 .921 .951 .953
5 144 .907 .949 .958 .972 115 .884 .936 .942 .954 143 .896 .933 .959 .955
6 170 .915 .953 .961 .974 133 .894 .942 .951 .957 168 .898 .940 .963 .963
7 195 .925 .959 .967 .977 152 .903 .950 .956 .962 191 .901 .946 .967 .966

Table 2: Kendall’sτ obtained on small qrels. D-n: TREC-style Depth-n qrels, SVM: rSVM-m; RBst:
RBoost-m.

 65

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000

%

#docs judged

recall: TREC8 ad-hoc, 129 runs

1

2

10 15
20 25

RBoost
rSVM
MTF

Depth-n

 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000

%

#docs judged

fallout: TREC8 ad-hoc, 129 runs

1

10 15
20 25

RBoost
rSVM
MTF

Depth-n

Figure 3: Comparing qrels of RBoost-m, rSVM-m,
MTF-m and Depth-n in terms of pairs of signifi-
cantly different systems: recall (top) and false alarm
rate (bottom)

particularly onthe top group, called group A which
consists of runs on which there isnot enough evi-
denceto conclude that they are statistically signifi-
cantly worse thanthe top run. In practice, this fig-
ure will be meaningful if it is around 10 (one often
says about the top 10 runs). It will however become
meaningless if the group A is too large, for exam-
ple contains more than half of systems in consider-
ation. Note that Tukey test relies on the assump-
tion of Equality of Variances. This requirement can
not be completely satisfied in practice, even after

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000
ca

rd
. o

f g
ro

up
 A

#docs judged

sys. grouping, MAP: TREC8 ad-hoc, 129 runs

1
4

7 (57)

10
15

20
25

RBoost
rSVM
MTF

Depth-n

Figure 4: Cardinality of group A (95% confidence
level) after the arcsine-root data transformation.

some data transformation such as arcsine-root or us-
ing rank values.

The size of group A on TREC-8 collection is
shown in Fig. 4. We observe from that figure the
stability of the two curves of RBoost and rSVM, this
implies that the two qrels RBoost-35 and rSVM-35
which have both satisfied the 0.9 requirement of
Kendall’sτ can replace the official TREC qrels. The
effort saving is therefore a factor of 50 (if ignoring
the cost of training data set preparation) and of 10.5
otherwise. MTF needs qrels of at least 168 docu-
ments to produce comparable group A’s with that of
the official TREC qrels. The Depth-n pools how-
ever should not be recommended with less than 1000
documents in total (i.e. pooling more than 40 top
documents per run).

6 Conclusions and Discussion

This study has well illustrated that two algorithms of
RBoost and rSVM are quite suitable for qrels con-
struction task. The final qrels are not only small
enough to ask for human judgment but also result
in reliable conclusion about system effectiveness in

405

comparison with the counterpart of TREC method-
ology and that of MTF.

It is necessary to include other metasearch meth-
ods for further study. This will allow us to validate
not only the impact of the metasearch training prin-
ciple based on pairwise ranking error RLoss but also
the capacity of automatic feature selection of the two
ranking algorithms used in this paper.

This method needs to be further verified on chal-
lenging ad-hoc retrieval scenarios such as Terabyte,
Web Topic Distillation or Robust Tracks in TREC
context. The hardness of these scenarios involves
two main issues. First, the number of document
judged relevant varies largely across the whole topic
set. Second, some topics might even have no rele-
vant document in shallow pools. These matter any
statistical inference on shallow pools.

AcknowledgementThe authors thank M.-R. Amini,
B. Piwowarski, J. Zobel and the anonymous re-
viewers for their thorough comments. We ac-
knowledge NIST to make accessible the TREC
submissions. This work was supported in part
by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence,
IST-2002-506778. The publication only reflects the
authors’ views.

References
[Aslam et al.2003] J.A. Aslam, V. Pavlu, and R. Savell.

2003. A unified model for metasearch, pooling, and
system evaluation. InProc. CIKM’03.

[Beitzel et al.2003] S. M. Beitzel, E. C. Jensen,
A. Chowdhury, and D. Grossman. 2003. Using
titles and category names from editor-driven tax-
onomies for automatic evaluation. InProc. CIKM’03.

[Buckley and Voorhees2000] C. Buckley and E.M.
Voorhees. 2000. Evaluating evaluation measure
stability. InProc. SIGIR’00.

[Buckley and Voorhees2004] C. Buckley and E.M.
Voorhees. 2004. Retrieval evaluation with incomplete
information. InProc. SIGIR’04.

[Can et al.2004] F. Can, R. Nuray, and A. B. Sevdik.
2004. Automatic performance evaluation of web
search engines. Info. Process. Management,
40(3):495–514, May.

[Carterette and Allan2005] B. Carterette and J. Allan.
2005. Incremental Test Collections. InCIKM’05.

[Clémençon et al.2005] S. Clémençon, G. Lugosi, and
N. Vayatis. 2005. Ranking and scoring using empiri-
cal risk minimization. InProc. COLT’05.

[Cormack et al.1998] G.V. Cormack, Christopher R.
Palmer, and C.L.A. Clarke. 1998. Efficient construc-
tion of large test collections. InProc. SIGIR’98.

[Freund and Schapire1997] Y. Freund and R.E. Schapire.
1997. A decision-theoretic generalization of on-line
learning and an application to boosting.J. Compt. Sys.
Sci., 55(1):119–139, August.

[Freund et al.2003] Y. Freund, R. Iyer, R.E. Schapire, and
Y. Singer. 2003. An efficient boosting algorithm
for combining preferences.J. Mach. Learning Res.,
4:933–969, November.

[Hawking and Robertson2003] D. Hawking and
S. Robertson. 2003. On collection size and retrieval
effectiveness.Information Retrieval, 6(1):99–105.

[Joachims2002a] Th. Joachims. 2002a. Evaluating re-
trieval performance using clickthrough data. InProc.
SIGIR wshop on Math./Formal Methods in IR.

[Joachims2002b] Th. Joachims. 2002b. Optimizing
search engines using clickthrough data. InKDD’02.

[Nuray and Can2006] R. Nuray and F. Can. 2006. Au-
tomatic ranking of information retrieval systems using
data fusion. Info. Process. Management, 42(3):595–
614, May.

[Soboroff et al.2001] I. Soboroff, Ch. Nicholas, and P. Ca-
han. 2001. Ranking Retrieval Systems without Rele-
vance Judgments. InProc. SIGIR’01.

[Sparck Jones and Van Rijsbergen1975] K. Sparck Jones
and C. J. Van Rijsbergen. 1975. Report on the need for
and provision of an ideal information retrieval test col-
lection. Technical Report 5266, Computer Lab., Univ.
Cambridge.

[Tague-Sutcliffe and Blustein1995] J. Tague-Sutcliffe and
J. Blustein. 1995. A statistical analysis of the TREC-3
data. InProc. TREC-3.

[Vapnik2000] N. V. Vapnik. 2000.The Nature of Statisti-
cal Learning Theory. Springer-Verlag.

[Voorhees and Harman1999] E.M. Voorhees and D. Har-
man. 1999. Overview of the Eighth Text REtrieval
Conference (TREC-8). InProc. TREC 8.

[Wu and Crestani2003] Sh. Wu and F. Crestani. 2003.
Methods for Ranking Information Retrieval Systems
Without Relevance Judgements. InSAC’03.

[Zobel1998] J. Zobel. 1998. How reliable are the results
of large-scale information retrieval experiments? In
Proc. SIGIR’98.

406

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 407–414,
New York, June 2006.c©2006 Association for Computational Linguistics

Language Model Information Retrieval with Document Expansion

Tao Tao, Xuanhui Wang, Qiaozhu Mei, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana Champaign

Abstract

Language model information retrieval de-
pends on accurate estimation of document
models. In this paper, we propose a docu-
ment expansion technique to deal with the
problem of insufficient sampling of docu-
ments. We construct a probabilistic neigh-
borhood for each document, and expand
the document with its neighborhood infor-
mation. The expanded document provides
a more accurate estimation of the docu-
ment model, thus improves retrieval ac-
curacy. Moreover, since document expan-
sion and pseudo feedback exploit different
corpus structures, they can be combined to
further improve performance. The experi-
ment results on several different data sets
demonstrate the effectiveness of the pro-
posed document expansion method.

1 Introduction

Information retrieval with statistical language mod-
els (Lafferty and Zhai, 2003) has recently attracted
much more attention because of its solid theoreti-
cal background as well as its good empirical per-
formance. In this approach, queries and documents
are assumed to be sampled from hidden generative
models, and the similarity between a document and
a query is then calculated through the similarity be-
tween their underlying models.

Clearly, good retrieval performance relies on the
accurate estimation of the query and document mod-
els. Indeed, smoothing of document models has

been proved to be very critical (Chen and Good-
man, 1998; Kneser and Ney, 1995; Zhai and Laf-
ferty, 2001b). The need for smoothing originated
from the zero count problem: when a term does not
occur in a document, the maximum likelihood esti-
mator would give it a zero probability. This is un-
reasonable because the zero count is often due to in-
sufficient sampling, and a larger sample of the data
would likely contain the term. Smoothing is pro-
posed to address the problem.

While most smoothing methods utilize the global
collection information with a simple interpolation
(Ponte and Croft, 1998; Miller et al., 1999; Hiemstra
and Kraaij, 1998; Zhai and Lafferty, 2001b), sev-
eral recent studies (Liu and Croft, 2004; Kurland and
Lee, 2004) have shown that local corpus structures
can be exploited to improve retrieval performance.
In this paper, we further study the use of local cor-
pus structures for document model estimation and
propose to use document expansion to better exploit
local corpus structures for estimating document lan-
guage models.

According to statistical principles, the accuracy of
a statistical estimator is largely determined by the
sampling size of the observed data; a small data
set generally would result in large variances, thus
can not be trusted completely. Unfortunately, in re-
trieval, we often have to estimate a model based on a
single document. Since a document is a small sam-
ple, our estimate is unlikely to be very accurate.

A natural improvement is to enlarge the data sam-
ple, ideally in a document-specific way. Ideally, the
enlarged data sample should come from the same
original generative model. In reality, however, since

407

the underlying model is unknown to us, we would
not really be able to obtain such extra data. The
essence of this paper is to use document expansion
to obtain high quality extra data to enlarge the sam-
ple of a document so as to improve the accuracy
of the estimated document language model. Docu-
ment expansion was previously explored in (Sing-
hal and Pereira, 1999) in the context of the vec-
tor space retrieval model, mainly involving selecting
more terms from similar documents. Our work dif-
fers from this previous work in that we study doc-
ument expansion in the language modeling frame-
work and implement the idea quite differently.

Our main idea is to augment a document prob-
abilistically with potentially all other documents in
the collection that are similar to the document. The
probability associated with each neighbor document
reflects how likely the neighbor document is from
the underlying distribution of the original document,
thus we have a “probabilistic neighborhood”, which
can serve as “extra data” for the document for es-
timating the underlying language model. From the
viewpoint of smoothing, our method extends the ex-
isting work on using clusters for smoothing (Liu and
Croft, 2004) to allow each document to have its own
cluster for smoothing.

We evaluated our method using six representative
retrieval test sets. The experiment results show that
document expansion smoothing consistently outper-
forms the baseline smoothing methods in all the data
sets. It also outperforms a state-of-the-art cluster-
ing smoothing method. Analysis shows that the
improvement tends to be more significant for short
documents, indicating that the improvement indeed
comes from the improved estimation of the docu-
ment language model, since a short document pre-
sumably would benefit more from the neighborhood
smoothing. Moreover, since document expansion
and pseudo feedback exploit different corpus struc-
tures, they can be combined to further improve per-
formance. As document expansion can be done in
the indexing stage, it is scalable to large collections.

2 Document Expansion Retrieval Model

2.1 The KL-divergence retrieval model

We first briefly review the KL-divergence retrieval
model, on which we will develop the document

expansion technique. The KL-divergence model
is a representative state-of-the-art language model-
ing approach for retrieval. It covers the basic lan-
guage modeling approach (i.e., the query likelihood
method) as a special case and can support feedback
more naturally.

In this approach, a query and a document are as-
sumed to be generated from a unigram query lan-
guage model ΘQ and a unigram document language
model ΘD, respectively. Given a query and a docu-
ment, we would first compute an estimate of the cor-
responding query model (Θ̂Q) and document model
(Θ̂D), and then score the document w.r.t. the query
based on the KL-divergence of the two models (Laf-
ferty and Zhai, 2001):

D(Θ̂Q || Θ̂d) =
∑

w∈V

p(w|Θ̂Q) × log
p(w|Θ̂Q)

p(w|Θ̂d)
.

where V is the set of all the words in our vocabulary.
The documents can then be ranked according to the
ascending order of the KL-divergence values.

Clearly, the two fundamental problems in such a
model are to estimate the query model and the doc-
ument model, and the accuracy of our estimation of
these models would affect the retrieval performance
significantly. The estimation of the query model
can often be improved by exploiting the local cor-
pus structure in a way similar to pseudo-relevance
feedback (Lafferty and Zhai, 2001; Lavrenko and
Croft, 2001; Zhai and Lafferty, 2001a). The esti-
mation of the document model is most often done
through smoothing with the global collection lan-
guage model (Zhai and Lafferty, 2001b), though re-
cently there has been some work on using clusters
for smoothing (Liu and Croft, 2004). Our work is
mainly to extend the previous work on document
smoothing and improve the accuracy of estimation
by better exploiting the local corpus structure. We
now discuss all these in detail.

2.2 Smoothing of document models

Given a document d, the simplest way to estimate
the document language model is to treat the docu-
ment as a sample from the underlying multinomial
word distribution and use the maximum likelihood
estimator: P (w|Θ̂d) = c(w,d)

|d| , where c(w, d) is
the count of word w in document d, and |d| is the

408

length of d. However, as discussed in virtually all
the existing work on using language models for re-
trieval, such an estimate is problematic and inaccu-
rate; indeed, it would assign zero probability to any
word not present in document d, causing problems
in scoring a document with query likelihood or KL-
divergence (Zhai and Lafferty, 2001b). Intuitively,
such an estimate is inaccurate because the document
is a small sample.

To solve this problem, many different smoothing
techniques have been proposed and studied, usually
involving some kind of interpolation of the maxi-
mum likelihood estimate and a global collection lan-
guage model (Hiemstra and Kraaij, 1998; Miller et
al., 1999; Zhai and Lafferty, 2001b). For exam-
ple, Jelinek-Mercer(JM) and Dirichlet are two com-
monly used smoothing methods (Zhai and Lafferty,
2001b). JM smoothing uses a fixed parameter λ to
control the interpolation:

P (w|Θ̂d) = λ
c(w, d)

|d|
+ (1 − λ)P (w|ΘC),

while the Dirichlet smoothing uses a document-
dependent coefficient (parameterized with µ) to con-
trol the interpolation:

P (w|Θ̂d) =
c(w, d) + µP (w|ΘC)

|d| + µ
.

Here P (w|ΘC) is the probability of word w given by
the collection language model ΘC , which is usually
estimated using the whole collection of documents
C , e.g., P (w|ΘC) =

P

d∈C
c(d,w)

P

d∈C
|d| .

2.3 Cluster-based document model (CBDM)

Recently, the cluster structure of the corpus has been
exploited to improve language models for retrieval
(Kurland and Lee, 2004; Liu and Croft, 2004). In
particular, the cluster-based language model pro-
posed in (Liu and Croft, 2004) uses clustering infor-
mation to further smooth a document model. It di-
vides all documents into K different clusters (K =
1000 in their experiments). Both cluster informa-
tion and collection information are used to improve
the estimate of the document model:

P (w|Θ̂d) = λ
c(w, d)

|d|
+ (1 − λ)

×[βP (w|ΘLd
) + (1 − β)P (w|ΘC)],

where ΘLd
stands for document d’s cluster model

and λ and β are smoothing parameters. In this
clustering-based smoothing method, we first smooth
a cluster model with the collection model using
Dirichlet smoothing, and then use smoothed cluster
model as a new reference model to further smooth
the document model using JM smoothing; empirical
results show that the added cluster information in-
deed enhances retrieval performance (Liu and Croft,
2004).

2.4 Document expansion

From the viewpoint of data augmentation, the
clustering-based language model can be regarded as
“expanding” a document with more data from the
cluster that contains the document. This is intu-
itively better than simply expanding every document
with the same collection language model as in the
case of JM or Dirichlet smoothing. Looking at it
from this perspective, we see that, as the “extra data”
for smoothing a document model, the cluster con-
taining the document is often not optimal. Indeed,
the purpose of clustering is to group similar doc-
uments together, hence a cluster model represents
well the overall property of all the documents in the
cluster. However, such an average model is often not
accurate for smoothing each individual document.
We illustrate this problem in Figure 1(a), where we
show two documents d and a in cluster D. Clearly
the generative model of cluster D is more suitable
for smoothing document a than document d. In gen-
eral, the cluster model is more suitable for smooth-
ing documents close to the centroid, such as a, but is
inaccurate for smoothing a document at the bound-
ary, such as d.

To achieve optimal smoothing, each document
should ideally have its own cluster centered on the
document, as shown in Figure 1(b). This is pre-
cisely what we propose – expanding each document
with a probabilistic neighborhood around the doc-
ument and estimate the document model based on
such a virtual, expanded document. We can then ap-
ply any simple interpolation-based method (e.g., JM
or Dirichlet) to such a “virtual document” and treat
the word counts given by this “virtual document” as
if they were the original word counts.

The use of neighborhood information is worth
more discussion. First of all, neighborhood is not a

409

cluster D

d d

d’s neighbors

(a) (b)

a

Figure 1: Clusters, neighborhood, and document ex-
pansion

clearly defined concept. In the narrow sense, only
a few documents close to the original one should
be included in the neighborhood, while in the wide
sense, the whole collection can be potentially in-
cluded. It is thus a challenge to define the neighbor-
hood concept reasonably. Secondly, the assumption
that neighbor documents are sampled from the same
generative model as the original document is not
completely valid. We probably do not want to trust
them so much as the original one. We solve these
two problems by associating a confidence value with
every document in the collection, which reflects our
belief that the document is sampled from the same
underlying model as the original document. When a
document is close to the original one, we have high
confidence, but when it is farther apart, our confi-
dence would fade away. In this way, we construct
a probabilistic neighborhood which can potentially
include all the documents with different confidence
values. We call a language model based on such a
neighborhood document expansion language model
(DELM).

Technically, we are looking for a new enlarged
document d′ for each document d in a text collec-
tion, such that the new document d′ can be used
to estimate the hidden generative model of d more
accurately. Since a good d′ should presumably be
based on both the original document d and its neigh-
borhood N(d), we define a function φ:

d′ = φ(d,N(d)). (1)

The precise definition of the neighborhood con-
cept N(d) relies on the distance or similarity be-
tween each pair of documents. Here, we simply
choose the commonly used cosine similarity, though
other choices may also be possible. Given any two
document models X and Y , the cosine similarity is

d

Figure 2: Normal distribution of confidence values.

defined as:

sim(X,Y) =

∑

i xi × yi
√

∑

i(xi)2 ×
∑

i(yi)2
.

To model the uncertainty of neighborhood, we as-
sign a confidence value γd(b) to every document b in
the collection to indicate how strongly we believe b

is sampled from d’s hidden model. In general, γd(b)
can be set based on the similarity of b and d – the
more similar b and d are, the larger γd(b) would
be. With these confidence values, we construct a
probabilistic neighborhood with every document in
it, each with a different weight. The whole problem
is thus reduced to how to define γd(b) exactly.

Intuitively, an exponential decay curve can help
regularize the influence from remote documents. We
therefore want γd(b) to satisfy a normal distribution
centered around d. Figure 2 illustrates the shape
of this distribution. The black dots are neighbor-
hood documents centered around d. Their proba-
bility values are determined by their distances to the
center. We fortunately observe that the cosine sim-
ilarities, which we use to decide the neighborhood,
are roughly of this decay shape. We thus use them
directly without further transformation because that
would introduce unnecessary parameters. We set
γd(b) by normalizing the cosine similarity scores :

γd(b) =
sim(d, b)

∑

b′∈C−{d} sim(d, b′)
.

Function φ serves to balance the confidence be-
tween d and its neighborhood N(d) in the model es-
timation step. Intuitively, a shorter document is less
sufficient, hence needs more help from its neighbor-
hood. Conversely, a longer one can rely more on
itself. We use a parameter α to control this balance.
Thus finally, we obtain a pseudo document d′ with

410

the following pseudo term count:

c(w, d′) = αc(w, d) + (1 − α)

×
∑

b∈C−{d}

(γd(b) × c(w, b)),

We hypothesize that, in general, Θd can be estimated
more accurately from d′ rather than d itself because
d′ contains more complete information about Θd.
This hypothesis can be tested by by comparing the
retrieval results of applying any smoothing method
to d with those of applying the same method to d′.
In our experiments, we will test this hypothesis with
both JM smoothing and Dirichlet smoothing.

Note that the proposed document expansion tech-
nique is quite general. Indeed, since it transforms
the original document to a potentially better “ex-
panded document”, it can presumably be used to-
gether with any retrieval method, including the vec-
tor space model. In this paper, we focus on evalu-
ating this technique with the language modeling ap-
proach.

Because of the decay shape of the neighborhood
and for the sake of efficiency, we do not have to ac-
tually use all documents in C−{d}. Instead, we can
safely cut off the documents on the tail, and only use
the top M closest neighbors for each document. We
show in the experiment section that the performance
is not sensitive to the choice of M when M is suf-
ficiently large (for example 100). Also, since doc-
ument expansion can be done completely offline, it
can scale up to large collections.

3 Experiments

We evaluate the proposed method over six repre-
sentative TREC data sets (Voorhees and Harman,
2001): AP (Associated Press news 1988-90), LA
(LA Times), WSJ (Wall Street Journal 1987-92),
SJMN (San Jose Mercury News 1991), DOE (De-
partment of Energy), and TREC8 (the ad hoc data
used in TREC8). Table 1 shows the statistics of these
data.

We choose the first four TREC data sets for per-
formance comparison with (Liu and Croft, 2004).
To ensure that the comparison is meaningful, we use
identical sources (after all preprocessing). In addi-
tion, we use the large data set TREC8 to show that
our algorithm can scale up, and use DOE because its

#document queries #total qrel
AP 242918 51-150 21819

LA 131896 301-400 2350

WSJ 173252 51-100 and 151-200 10141

SJMN 90257 51-150 4881

TREC8 528155 401-450 4728

DOE 226087 DOE queries 2047

Table 1: Experiment data sets

documents are usually short, and our previous expe-
rience shows that it is a relatively difficult data set.

3.1 Neighborhood document expansion

Our model boils down to a standard query likelihood
model when no neighborhood document is used. We
therefore use two most commonly used smoothing
methods, JM and Dirichlet , as our baselines. The re-
sults are shown in Table 2, where we report both the
mean average precision (MAP) and precision at 10
documents. JM and Dirichlet indicate the standard
language models with JM smoothing and Dirichlet
smoothing respectively, and the other two are the
ones combined with our document expansion. For
both baselines, we tune the parameters (λ for JM,
and µ for Dirichlet) to be optimal. We then use the
same values of λ or µ without further tuning for the
document expansion runs, which means that the pa-
rameters may not necessarily optimal for the docu-
ment expansion runs. Despite this disadvantage, we
see that the document expansion runs significantly
outperform their corresponding baselines, with more
than 15% relative improvement on AP. The parame-
ters M and α were set to 100 and 0.5, respectively.

To understand the improvement in more detail, we
show the precision values at different levels of recall
for the AP data in Table 3. Here we see that our
method significantly outperforms the baseline at ev-
ery precision point.

In our model, we introduce two additional param-
eters: M and α. We first examine M here, and then
study α in Section 3.3. Figure 3 shows the perfor-
mance trend with respect to the values of M . The
x-axis is the values of M , and the y-axis is the non-
interpolated precision averaging over all 50 queries.
We draw two conclusions from this plot: (1) Neigh-
borhood information improves retrieval accuracy;
adding more documents leads to better retrieval re-
sults. (2) The performance becomes insensitive to

411

Data JM DELM+JM (impr. %) Dirichlet DELM + Diri.(impr. %)
AP AvgPrec 0.2058 0.2405 (16.8%***) 0.2168 0.2505 (15.5%***)

P@10 0.3990 0.4444 (11.4%***) 0.4323 0.4515 (4.4%**)
DOE AvgPrec 0.1759 0.1904 (8.3%***) 0.1804 0.1898 (5.2%**)

P@10 0.2629 0.2943 (11.9%*) 0.2600 0.2800 (7.7%*)
TREC8 AvgPrec 0.2392 0.2539 (6.01%**) 0.2567 0.2671 (4.05%*)

P@10 0.4300 0.4460 (3.7%) 0.4500 0.4740 (5.3%*)

Table 2: Comparisons with baselines. *,**,*** indicate that we accept the improvement hypothesis by
Wilcoxon test at significance level 0.1, 0.05, 0.01 respectively.

AP, TREC queries 51-150
Dirichlet DELM+Diri Improvement(%)

Rel. 21819 21819
Rel.Retr. 10126 10917 7.81% ***

Prec.
0.0 0.6404 0.6605 3.14% *
0.1 0.4333 0.4785 10.4% ***
0.2 0.3461 0.3983 15.1% ***
0.3 0.2960 0.3496 18.1% ***
0.4 0.2436 0.2962 21.6% ***
0.5 0.2060 0.2418 17.4% ***
0.6 0.1681 0.1975 17.5% ***
0.7 0.1290 0.1580 22.5% ***
0.8 0.0862 0.1095 27.0% **
0.9 0.0475 0.0695 46.3% **
1.0 0.0220 0.0257 16.8%
ave. 0.2168 0.2505 15.5% ***

Table 3: PR curve on AP data. *,**,*** indicate that
we accept the improvement hypothesis by Wilcoxon
test at significant level 0.1, 0.05, 0.01 respectively.

M when M is sufficiently large, namely 100. The
reason is twofold: First, since the neighborhood is
centered around the original document, when M is
large, the expansion may be evenly magnified on all
term dimensions. Second, the exponentially decay-
ing confidence values reduce the influence of remote
documents.

3.2 Comparison with CBDM

In this section, we compare the CBDM method us-
ing the model performing the best in (Liu and Croft,
2004)1. Furthermore, we also set Dirichlet prior pa-
rameter µ = 1000, as mentioned in (Liu and Croft,
2004), to rule out any potential influence of Dirichlet
smoothing.

Table 4 shows that our model outperforms CBDM
in MAP values on four data sets; the improvement

1We use the exact same data, queries, stemming and all
other preprocessing techniques. The baseline results in (Liu and
Croft, 2004) are confirmed.

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0 100 200 300 400 500 600 700 800

av
er

ag
e

pr
ec

es
io

n

M : the number of neighborhood documents

AP
DOE

TREC8

Figure 3: Performance change with respect to M

CBDM DELM+Diri. improvement(%)
AP 0.2326 0.2505 7.7%

LA 0.2590 0.2655 2.5%

WSJ 0.3006 0.3113 3.6%

SJMN 0.2171 0.2266 4.3%

Table 4: Comparisons with CBDM.

presumably comes from a more principled way of
exploiting corpus structures. Given that clustering
can at least capture the local structure to some ex-
tent, it should not be very surprising that the im-
provement of document expansion over CBDM is
much less than that over the baselines.

Note that we cannot fulfill Wilcoxon test because
of the lack of the individual query results of CBDM.

3.3 Impact on short documents

Document expansion is to solve the insufficient sam-
pling problem. Intuitively, a short document is less
sufficient than a longer one, hence would need more
“help” from its neighborhood. We design experi-
ments to test this hypothesis.

Specifically, we randomly shrink each document
in AP88-89 to a certain percentage of its original
length. For example, a shrinkage factor of 30%
means each term has 30% chance to stay, or 70%
chance to be filtered out. In this way, we reduce the
original data set to a new one with the same number

412

average doc length 30% 50% 70% 100%
baseline 0.1273 0.1672 0.1916 0.2168

document expansion 0.1794 0.2137 0.2307 0.2505
optimal α 0.2 0.3 0.3 0.4

improvement(%) 41% 28% 20% 16%

Table 5: Impact on short documents (in MAP)

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

av
er

ag
e

pr
ec

is
io

n

alpha

30%
50%
70%

100%

Figure 4: Performance change with respect to α

of documents but a shorter average document length.
Table 5 shows the experiment results over docu-

ment sets with different average document lengths.
The results indeed support our hypothesis that doc-
ument expansion does help short documents more
than longer ones. While we can manage to improve
41% on a 30%-length corpus, the same model only
gets 16% improvement on the full length corpus.

To understand how α affects the performance we
plot the sensitivity curves in Figure 4. The curves all
look similar, but the optimal points slightly migrate
when the average document length becomes shorter.
A 100% corpus gets optimal at α = 0.4, but 30%
corpus has to use α = 0.2 to obtain its optimum.
(All optimal α values are presented in the fourth row
of Table 5.)

3.4 Further improvement with pseudo
feedback

Query expansion has been proved to be an effec-
tive way of utilizing corpus information to improve
the query representation (Rocchio, 1971; Zhai and
Lafferty, 2001a). It is thus interesting to examine
whether our model can be combined with query ex-
pansion to further improve the retrieval accuracy.
We use the model-based feedback proposed in (Zhai
and Lafferty, 2001a) and take top 5 returned docu-
ments for feedback. There are two parameters in the
model-based pseudo feedback process: the noisy pa-

DELM pseudo DELM+pseudo Impr.(%)
AP 0.2505 0.2643 0.2726 3.14%*
LA 0.2655 0.2769 0.2901 4.77%

TREC8 0.2671 0.2716 0.2809 3.42%**
DOE 0.1898 0.1918 0.2046 6.67%***

Table 6: Combination with pseudo feed-
back.*,**,*** indicate that we accept the improve-
ment hypothesis by Wilcoxon test at significant
level 0.1, 0.05, 0.01 respectively.

pseu. inter. combined (%) z-score
AP 0.2643 0.2450 0.2660 (0.64%) -0.2888
LA 0.2769 0.2662 0.2636 (-0.48%) -1.0570

TREC8 0.2716 0.2702 0.2739 (0.84%) -1.6938

Table 7: Performance of the interpolation algorithm
combined with the pseudo feedback.

rameter ρ and the interpolation parameter σ2. We fix
ρ = 0.9 and tune σ to optimal, and use them directly
in the feedback process combined with our models.
(It again means that σ is probably not optimal in our
results.) The combination is conducted in the fol-
lowing way: (1) Retrieve documents by our DELM
method; (2) Choose top 5 document to do the model-
based feedback; (3) Use the expanded query model
to retrieve documents again with DELM method.

Table 6 shows the experiment results (MAP); in-
deed, by combining DELM with pseudo feedback,
we can obtain significant further improvement of
performance.

As another baseline, we also tested the algorithm
proposed in (Kurland and Lee, 2004). Since the al-
gorithm overlaps with pseudo feedback process, it is
not easy to further combine them. We implement its
best-performing algorithm, “interpolation” (labeled
as inter.), and show the results in Table 7. Here,
we use the same three data sets as used in (Kurland
and Lee, 2004). We tune the feedback parameters to
optimal in each experiment. The second last column
in Table 7 shows the performance of combination of
the “interpolation” model with the pseudo feedback
and its improvement percentage. The last column is
the z-scores of Wilcoxon test. The negative z-scores
indicate that none of the improvement is significant.

2 (Zhai and Lafferty, 2001a) uses different notations. We
change them because α has already been used in our own
model.

413

4 Conclusions

In this paper, we proposed a novel document expan-
sion method to enrich the document sample through
exploiting the local corpus structure. Unlike pre-
vious cluster-based models, we smooth each doc-
ument using a probabilistic neighborhood centered
around the document itself.

Experiment results show that (1) The proposed
document expansion method outperforms both the
“no expansion” baselines and the cluster-based mod-
els. (2) Our model is relatively insensitive to the set-
ting of parameter M as long as it is sufficiently large,
while the parameter α should be set according to the
document length; short documents need a smaller
α to obtain more help from its neighborhood. (3)
Document expansion can be combined with pseudo
feedback to further improve performance. Since any
retrieval model can be presumably applied on top of
the expanded documents, we believe that the pro-
posed technique can be potentially useful for any re-
trieval model.

5 Acknowledgments

This work is in part supported by the National Sci-
ence Foundation under award number IIS-0347933.
We thank Xiaoyong Liu for kindly providing us sev-
eral processed data sets for our performance com-
parison. We thank Jing Jiang and Azadeh Shakery
for helping improve the paper writing, and thank the
anonymous reviewers for their useful comments.

References

S. F. Chen and J. Goodman. 1998. An empirical study of
smoothing techniques for language modeling. Techni-
cal Report TR-10-98, Harvard University.

D. Hiemstra and W. Kraaij. 1998. Twenty-one at trec-7:
Ad-hoc and cross-language track. In Proc. of Seventh
Text REtrieval Conference (TREC-7).

R. Kneser and H. Ney. 1995. Improved smoothing for m-
gram languagemodeling. In Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal
Processing.

Oren Kurland and Lillian Lee. 2004. Corpus structure,
language models, and ad hoc information retrieval. In
SIGIR ’04: Proceedings of the 27th annual interna-
tional conference on Research and development in in-
formation retrieval, pages 194–201. ACM Press.

John Lafferty and Chengxiang Zhai. 2001. Document
language models, query models, and risk minimiza-
tion for information retrieval. In Proceedings of SI-
GIR’2001, pages 111–119, Sept.

John Lafferty and ChengXiang Zhai. 2003. Probabilistic
relevance models based on document and query gen-
eration.

Victor Lavrenko and Bruce Croft. 2001. Relevance-
based language models. In Proceedings of SI-
GIR’2001, Sept.

Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based
retrieval using language models. In SIGIR ’04: Pro-
ceedings of the 27th annual international conference
on Research and development in information retrieval,
pages 186–193. ACM Press.

D. H. Miller, T. Leek, and R. Schwartz. 1999. A hid-
den markov model information retrieval system. In
Proceedings of the 1999 ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 214–221.

J. Ponte and W. B. Croft. 1998. A language modeling
approach to information retrieval. In Proceedings of
the ACM SIGIR, pages 275–281.

J. Rocchio. 1971. Relevance feedback in information re-
trieval. In The SMART Retrieval System: Experiments
in Automatic Document Processing, pages 313–323.
Prentice-Hall Inc.

Amit Singhal and Fernando Pereira. 1999. Document
expansion for speech retrieval. In SIGIR ’99: Pro-
ceedings of the 22nd annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 34–41. ACM Press.

E. Voorhees and D. Harman, editors. 2001. Proceedings
of Text REtrieval Conference (TREC1-9). NIST Spe-
cial Publications. http://trec.nist.gov/pubs.html.

Chengxiang Zhai and John Lafferty. 2001a. Model-
based feedback in the KL-divergence retrieval model.
In Tenth International Conference on Information and
Knowledge Management (CIKM 2001), pages 403–
410.

Chengxiang Zhai and John Lafferty. 2001b. A study
of smoothing methods for language models applied to
ad hoc information retrieval. In Proceedings of SI-
GIR’2001, pages 334–342, Sept.

414

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 415–422,
New York, June 2006.c©2006 Association for Computational Linguistics

Towards Spoken-Document Retrieval for the Internet:
Lattice Indexing For Large-Scale Web-Search Architectures

Zheng-Yu Zhou∗, Peng Yu, Ciprian Chelba+, and Frank Seide
∗Chinese University of Hong Kong, Shatin, Hong Kong

Microsoft Research Asia, 5F Beijing Sigma Center, 49 Zhichun Road, 100080 Beijing
+Microsoft Research, One Microsoft Way, Redmond WA 98052

zyzhou@se.cuhk.edu.hk, {rogeryu,chelba,fseide }@microsoft.com

Abstract

Large-scale web-search engines are generally
designed for linear text. The linear text repre-
sentation is suboptimal for audio search, where
accuracy can be significantly improved if the
search includes alternate recognition candi-
dates, commonly represented as word lattices.
This paper proposes a method for indexing
word lattices that is suitable for large-scale
web-search engines, requiring only limited
code changes.
The proposed method, called Time-based
Merging for Indexing (TMI), first converts the
word lattice to a posterior-probability represen-
tation and then merges word hypotheses with
similar time boundaries to reduce the index
size. Four alternative approximations are pre-
sented, which differ in index size and the strict-
ness of the phrase-matching constraints.
Results are presented for three types of typi-
cal web audio content, podcasts, video clips,
and online lectures, for phrase spotting and rel-
evance ranking. Using TMI indexes that are
only five times larger than corresponding linear-
text indexes, phrase spotting was improved over
searching top-1 transcripts by 25-35%, and rel-
evance ranking by 14%, at only a small loss
compared to unindexed lattice search.

1 Introduction
Search engines have become the essential tool for find-
ing and accessing information on the Internet. The re-
cent runaway success of podcasting has created a need
for similar search capabilities to find audio on the web.
As more news video clips and even TV shows are offered
for on-demand viewing, and educational institutions like
MIT making lectures available online, a need for audio
search arises as well, because the most informative part

of many videos is its dialogue.
There is still a significant gap between current web au-

dio/video search engines and the relatively mature text
search engines, as most of today’s audio/video search en-
gines rely on the surrounding text and metadata of an au-
dio or video file, while ignoring the actual audio content.
This paper is concerned with technologies for searching
the audio content itself, in particular how to represent the
speech content in the index.

Several approaches have been reported in the litera-
ture for indexing spoken words in audio recordings. The
TREC (Text REtrieval Conference) Spoken-Document
Retrieval (SDR) track has fostered research on audio-
retrieval of broadcast-news clips. Most TREC bench-
marking systems use broadcast-news recognizers to gen-
erate approximate transcripts, and apply text-based infor-
mation retrieval to these. They achieve retrieval accuracy
similar to using human reference transcripts, and ad-hoc
retrieval for broadcast news is considered a “solved prob-
lem” (Garofolo, 2000). Noteworthy are the rather low
word-error rates (20%) in the TREC evaluations, and that
recognition errors did not lead to catastrophic failures due
to redundancy of news segments and queries. However, in
our scenario, unpredictable, highly variable acoustic con-
ditions, non-native and accented speaker, informal talk-
ing style, and unlimited-domain language cause word-
error rates to be much higher (40-60%). Directly search-
ing such inaccurate speech recognition transcripts suffers
from a poor recall.

A successful way for dealing with high word error rates
is the use of recognition alternates (lattices) (Saraclar,
2004; Yu, 2004; Chelba, 2005). For example, (Yu, 2004)
reports a 50% improvement of FOM (Figure Of Merit) for
a word-spotting task in voice-mails, and (Yu, HLT2005)
adopted the approach for searching personal audio collec-
tions, using a hybrid word/phoneme lattice search.

Web-search engines are complex systems involving
substantial investments. For extending web search to au-
dio search, the key problem is to find a (approximate)

415

representation of lattices that can be implemented in a
state-of-the-art web-search engine with as little changes
as possible to code and index store and without affecting
its general architecture and operating characteristics.

Prior work includes (Saraclar, 2004), which proposed
a direct inversion of raw lattices from the speech recog-
nizer. No information is lost, and accuracy is the same
as for directly searching the lattice. However, raw lattices
contain a large number of similar entries for the same spo-
ken word, conditioned on language-model (LM) state and
phonetic cross-word context, leading to inefficient usage
of storage space.

(Chelba, 2005) proposed a posterior-probability based
approximate representation in which word hypotheses are
merged w.r.t. word position, which is treated as a hidden
variable. It easily integrates with text search engines, as
the resulting index resembles a normal text index in most
aspects. However, it trades redundancy w.r.t. LM state
and context for uncertainty w.r.t. word position, and only
achieves a small reduction of index entries. Also, time
information for individual hypotheses is lost, which we
consider important for navigation and previewing.

(Mangu, 2000) presented a method to align a speech
lattice with its top-1 transcription, creating so-called
“confusion networks” or “sausages.” Sausages are a par-
simonious approximation of lattices, but due to the pres-
ence of null links, they do not lend themselves naturally
for matching phrases. Nevertheless, the method was a key
inspiration for the present paper.

This paper is organized as follows. The next section
states the requirements for our indexing method and de-
scribes the overall system architecture. Section 3 intro-
duces our method, and Section 4 the results. Section 5
briefly describes a real prototype built using the approach.

2 Indexing Speech Lattices, Internet Scale
Substantial investments are necessary to create and oper-
ate a web search engine, in software development and op-
timization, infrastructure, as well as operation and main-
tainance processes. This poses constraints on what can
practically be done when integrating speech-indexing ca-
pabilities to such an engine.

2.1 Requirements
We have identified the following special requirements for
speech indexing:

• realize best possible accuracy – speech alternates
must be indexed, with scores;

• provide time information for individual hits – to fa-
cilitate easy audio preview and navigation in the UI;

• encode necessary information for phrase matching –
phrase matching is a basic function of a search en-
gine and an important feature for document ranking.

This is non-trivial because boundaries of recognition
alternates are generally not aligned.

None of these capabilities are provided by text search
engines. To add these capabilities to an existing web en-
gine, we are facing practical constraints. First, the struc-
ture of the index store cannot be changed fundamentally.
But we can reinterpret existing fields. We also assume
that the index attaches a few auxiliary bits to each word
hit. E.g., this is done in (early) Google (Brin, 1998) and
MSN Search. These can be used for additional data that
needs to be stored.

Secondly, computation and disk access should remain
of similar order of magnitude as for text search. Extra
CPU cycles for phrase-matching loops are possible as
long as disk access remains the dominating factor. The
index size cannot be excessively larger than for indexing
text. This precludes direct inversion of lattices (and un-
fortunately also the use of phonetic lattices).

Last, while local code changes are possible, the over-
all architecture and dataflow cannot be changed. E.g.,
this forbids the use of a two-stage method as in (Yu,
HLT2005).

2.2 Approach
We take a three-step approach. First, following (Chelba,
2005), we use a posterior-probability representation, as
posteriors are resilient to approximations and can be
quantized with only a few bits. Second, we reduce the in-
herent redundancy of speech lattices by merging word hy-
potheses with same word identity and similar time bound-
aries, hence the name “Time-based Merging for Indexing”
(TMI). Third, the resulting hypothesis set is represented
in the index by reinterpreting existing data fields and re-
purposing auxiliary bits.

2.3 System Architecture
Fig. 1 shows the overall architecture of a search engine
for audio/video search. At indexing time, a media de-
coder first extracts the raw audio data from different for-
mats of audio found on the Internet. A music detector
prevents music from being indexed. The speech is then
fed into a large-vocabulary continuous-speech recognizer
(LVCSR), which outputs word lattices. The lattice in-
dexer converts the lattices into the TMI representation,
which is then merged into the inverted index. Available
textual metadata is also indexed.

At search time, all query terms are looked up in the in-
dex. For each document containing all query terms (deter-
mined by intersection), individual hit lists of each query
term are retrieved and fed into a phrase matcher to iden-
tify full and partial phrase hits. Using this information,
the ranker computes relevance scores. To achieve accept-
able response times, a full-scale web engine would split
this process up for parallel execution on multiple servers.
Finally the result presentation module will create snippets

416

media

decoder

speech

stream

speech

recognizer

index

lookup

result

page

query

audio

stream

result

presentation

indexing

search
inverted

index

wave

stream lattice

indexer

speech

lattice

TMI

representation

meta

data

text

indexer

ranker

time

information

doc

list

phrase

match

hit

information

hit

list

music

detector

Figure 1: System Architecture.

for the returned documents and compose the result page.
In audio search, snippets would contain time information
for individual word hits to allow easy navigation and pre-
view.

3 Time-based Merging for Indexing
Our previous work (Yu, IEEE2005) has shown that in a
word spotting task, ranking by phrase posteriors is in the-
ory optimal if (1) a search hit is considered relevant if the
query phrase was indeed said there, and (2) the user ex-
pects a ranked list of results such that the accumulative
relevance of the top-n entries of the list, averaged over
a range ofn, is maximized. In the following, we will
first recapitulate the lattice notation and how phrase pos-
teriors are calculated from the lattice. We then introduce
time-based merging, which leads to an approximate rep-
resentation of the original lattice. We will describe two
strategies of merging, one by directly clustering word hy-
potheses (arc-based merging) and one by grouping lattice
nodes (node-based merging).

3.1 Posterior Lattice Representation
A lattice L = (N ,A, nstart, nend) is a directed acyclic
graph (DAG) withN being the set of nodes,A is the
set of arcs, andnstart, nend ∈ N being the unique ini-
tial and unique final node, respectively. Nodes represent
times and possibly context conditions, while arcs repre-
sent word or phoneme hypotheses.1

Each noden ∈ N has an associated timet[n] and
possibly an acoustic or language-model context condi-
tion. Arcs are 4-tuplesa = (S[a], E[a], I[a], w[a]). S[a],
E[a] ∈ N denote the start and end node of the arc.I[a]
is the word identity. Last,w[a] shall be a weight as-
signed to the arc by the recognizer. Specifically,w[a] =
pac(a)1/λ · PLM(a) with acoustic likelihoodpac(a), LM
probabilityPLM, and LM weightλ.

1Alternative definitions of lattices are possible, e.g. nodes
representing words and arcs representing word transitions.

In addition, we definepaths π = (a1, · · · , aK) as
sequencesof connected arcs. We use the symbolsS,
E, I, and w for paths as well to represent the respec-
tive properties for entire paths, i.e. the path start node
S[π] = S[a1], path end nodeE[π] = E[aK], path la-
bel sequenceI[π] = (I[a1], · · · , I[aK]), and total path
weightw[π] =

∏K
k=1 w[ak].

Based on this, we definearc posteriorsParc[a] and
node posteriorsPnode[n] as

Parc[a] =
αS[a] · w[a] · βE[a]

αnend

; Pnode[n] =
αn · βn

αnend

,

with forward-backward probabilitiesαn, βn defined as:

αn =
∑

π:S[π]=nstart∧E[π]=n

w[π] ; βn =
∑

π:S[π]=n∧E[π]=nend

w[π]

αn andβn can be conveniently computed using the well-
known forward-backward recursion, e.g. (Wessel, 2000).

With this, an alternative equivalent representation is
possible by using word posteriors as arc weights. The
posterior lattice representation stores four fields with
each edge:S[a], E[a], I[a], andParc[a], and two fields
with each node:t[n], andPnode[a].

With the posterior lattice representation, the phrase
posterior of query stringQ is computed as

P (∗, ts, Q, te, ∗|O)

=
∑

π=(a1,··· ,aK):
t[S[π]]=ts∧t[E[π]]=te∧I[π]=Q

Parc[a1] · · ·Parc[aK]
Pnode[S[a2]] · · ·Pnode[S[aK]]

. (1)

This posterior representation is lossless. Its advantage is
that posteriors are much more resiliant to approximations
than acoustic likelihoods. This paves the way for lossy
approximations aiming at reducing lattice size.

3.2 Time-based Merging for Indexing
First, (Yu, HLT2005) has shown that node posteriors can
be replaced by a constant, with no negative effect on

417

search accuracy. This approximation simplifies the de-
nominator in Eq. 1 topK−1

node .
We now merge all nodes associated with the same time

points. As a result, the connection condition for two arcs
depends only on the boundary time point. This operation
gave the name Time-based Merging for Indexing.

TMI stores arcs with start and end time, while dis-
carding the original node information that encoded de-
pendency on LM state and phonetic context. This form
is used, e.g., by (Wessel, 2000). Lattices are viewed as
sets ofitemsh = (ts[h], dur[h], I[h], P [h]), with ts[h]
being the start time,dur[h] the time duration,I[h] the
word identity, andP [h] the posterior probability. Arcs
with same word identity and time boundaries but differ-
ent start/end nodes are merged together, their posteriors
being summed up.

These item sets can be organized in an inverted index,
similar to a text index, for efficient search. A text search
engine stores at least two fields with each word hit: word
position and document identity. For TMI, two more fields
need to be stored: duration and posterior. Start times can
be stored by repurposing the word-position information.
Posterior and duration go into auxiliary bits. If the index
has the ability to store side information for documents,
bits can be saved in the main index by recording all time
points in a look-up table, and storing start times and du-
rations as table indices instead of absolute times. This
works because the actual time values are only needed for
result presentation. Note that the TMI index is really an
extension of a linear-text index, and the same code base
can easily accomodate indexing both speech content and
textual metadata.

With this, multi-word phrase matches are defined as
a sequence of itemsh1...hK matching the query string
(Q = (I[h1], · · · , I[hK])) with matching boundaries
(ts[hi] + dur[hi] = ts[hi+1]). The phrase posterior is
calculated (using the approximate denominator) as

P (∗, ts, Q, te, ∗|O) ≈
∑ P [h1] · · ·P [hK]

pK−1
node

, (2)

summing over all item sequences withts = ts[h1] and
te = ts[hK] + dur[hK].

Regular text search engines can not directly support
this, but the code modification and additional CPU cost
is small. The major factor is disk access, which is still
linear with the index size.

We call this index representation “TMI-base.” It pro-
vides a substantial reduction of number of index entries
compared to the original lattices. However, it is obviously
an approximative representation. In particular, there are
now conditions under which two word hypotheses can be
matched as part of a phrase that were not connected in
the original lattice. This approximation seems sensible,
though, as the words involved are still required to have

Table 1: Test corpus summary.
test set dura- #seg- #keywords WER

tion ments (#multi-word) [%]
podcasts 1.5h 367 3223 (1709) 45.8
videos 1.3h 341 2611 (1308) 50.8
lectures 169.6h 66102 96 (74) 54.8

precisely matching word boundaries. In fact it has been
shown that this representation can be used for direct word-
error minimization during decoding (Wessel, 2000).

For further reduction of the index size, we are now re-
laxing the merging condition. The next two sections will
introduce two alternate ways of merging.

3.3 Arc-Based Merging
A straightforward way is to allow tolerance of time
boundaries. Practically, this is done by the following
bottom-up clustering procedure:

• collect arcs with same word identity;
• find the arca∗ with the best posterior, set the result-

ing item time boundary same asa∗;
• merge all overlapping arcsa satisfying t[S[a∗]] −
41 ≤ t[S[a]] ≤ t[S[a∗]] +41 andt[E[a∗]]−41 ≤
t[E[a]] ≤ t[E[a∗]] +41;

• repeat with remaining arcs.

We call this method “TMI-arc” to denote its origin from
direct clustering of arcs.

Note that the resulting structure can generally not be
directly represented as a lattice anymore, as formally con-
nected hypotheses now may have slightly mismatching
time boundaries. To compensate for this, the item connec-
tion condition in phrase matching needs to be relaxed as
well: ts[hi+1]−41 ≤ ts[hi]+dur[hi] ≤ ts[hi+1]+41.

The storage cost for each TMI-arc item is same as for
TMI-base, while thenumberof items will be reduced.

3.4 Node-Based Merging
An alternative way is to group ranges of time points,
and then merge hypotheses whose time boundaries got
grouped together.

The simplest possibility is to quantize time points into
fixed intervals, such as 250 ms. Hypotheses are merged
if their quantized time boundaries are identical. This
method we call “TMI-timequant.”

Besides reducing index size by allowing more item
merging, TMI-timequant has another important property:
since start times and duration are heavily quantized, the
number of bits used for storing the information with the
items in the index can be significantly reduced.

The disadvantage of this method is that loops are fre-
quently being generated this way (quantized duration of
0), providing sub-optimal phrase matching constraints.

To alleviate for this problem, we modify the merging
by forbidding loops to be created: Two time points can be

418

Table 2: Lattice search accuracy on different dataset.
setup best path raw lattice
keywords all sing. mult. all sing. mult.

Phrase spotting, FOM[%]
podcasts 55.0 59.9 50.1 69.5 74.7 64.2
videos 47.0 50.6 43.0 64.4 67.4 61.1
lectures 65.5 69.5 47.1 77.0 80.8 58.8

Relevance ranking, mAP[%]
lectures 52.6 52.7 52.6 61.6 66.4 60.2

grouped together if (1) their difference is below a thresh-
old (like 250 ms); and (2) if there is no word hypothesis
starting and ending in the same group. As a refinement,
the second point is relaxed by a pruning threshold in that
hypotheses with posteriors below the threshold will not
block nodes merging.

Amongst the manifold of groupings that satisfy these
two conditions, the one leading to the smallest number of
groups is considered the optimal solution. It can be found
using dynamic programming:

• line up all existing time boundaries in ascending or-
der,ti < ti+1, i = 1, · · · , N ;

• for each time pointti, find out the furthest time point
that it can be grouped with given the constraints, de-
noting its index asT [ti];

• set group countC[t0] = 1; C[ti] = ∞, i > 0;
• set backpointerB[t0] = −1; B[ti] = ti, i > 0;
• for i = 1, · · · , N :

– for j = i+1, · · · , T [ti]: if C[tj+1] > C[ti]+1:
∗ C[tj+1] = C[ti] + 1;
∗ B[tj+1] = ti;

• trace back and merge nodes:
– setk = N , repeat untilk = −1:

∗ group time points fromB[tk] to tk−1;
∗ k = B[tk].

This method can be applied to the TMI-base represen-
tation, or alternatively directly to the posterior lattice. In
this case, the above algorithm needs to be adapted to op-
erate on nodes rather than time points. The above method
is called “TMI-node.”

If, as mentioned before, times and durations are stored
as indexes into a look-up table, TMI-node is highly space
efficient. In most cases, the index difference between end
and start point is 1, and in practical terms, the index dif-
ference can be capped by a small number below 10.

4 Results
4.1 Setup
We have evaluated our system on three different corpora,
in an attempt to represent popular types of audio currently
found on the Internet:
• podcasts: short clips ranging from mainstream me-

dia like ABC and CNN to non-professionally pro-
duced edge content;

• video clips, acquired from MSN Video;
• online lectures: a subset of the MIT iCampus lecture

collection (Glass, 2004).

In relation to our goal of web-scale indexing, the pod-
cast and video sets are miniscule in size (about 1.5 hours
each). Nevertheless they are suitable for investigating the
effectiveness of the TMI method w.r.t. phrase spotting
accuracy. Experiments on relevance ranking were con-
ducted only on the much larger lecture set (170 hours).

For the iCampus lecture corpus, the same set of queries
was used as in (Chelba, 2005), which was collected from
a group of users. Example keywords arecomputer science
andcontext free grammar. On the other two sets, an au-
tomatic procedure described in (Seide, 2004) was used to
select keywords. Example keywords areplayoffs, beach
Florida, andAmerican Express financial services.

A standard speaker-independent trigram LVCSR sys-
tem was used to generate raw speech lattices. For video
and podcasts, models were trained on a combination of
telephone conversations (Switchboard), broadcast news,
and meetings, downsampled to 8 kHz, to accomodate for
a wide range of audio types and speaking styles. For lec-
tures, an older setup was used, based on a dictation engine
without adaptation to the lecture task. Due to the larger
corpus size, lattices for lectures were pruned much more
sharply. Word error rates (WER) and corpus setups are
listed in Table 1. It should be noted that the word-error
rates vary greatly within the podcast and video corpora,
ranging from 30% (clean broadcast news) to over 80%
(accented reverberated speech with a cheering crowd).

Each indexing method is evaluated by a phrase spotting
task and a document retrieval task.

4.1.1 Phrase Spotting

We use the “Figure Of Merit” (FOM) metric defined by
NIST for word-spotting evaluations. In its original form,
FOM is the detection/false-alarm curve averaged over the
range of [0..10] false alarms per hour per keyword. We
generalized this metric to spotting of phrases, which can
be multi-word or single-word. A multi-word phrase is
matched if all of its words match in order.

Since automatic word alignment can be troublesome
for long audio files in the presence of errors in the ref-
erence transcript, we reduced the time resolution of the
FOM metric and used the sentence as the basic time unit.
A phrase hit is considered correct if an actual occurence
of the phrase is found in the same sentence. Multiple hits
of the same phrase within one sentence are counted as a
single hit, their posterior probabilities being summed up
for ranking.

The segmentation of the audio files is based on the ref-
erence transcript. Segments are on average about 10 sec-
onds long. In a real system, sentence boundaries are of
course unknown, but previous experiments have shown

419

Table 3: Comparison of different indexing methods. Only results for multi-words queries are shown, because results
for single-word queries are identical across lattice-indexing methods (approximately identical in the case of pruning.)

dataset podcasts videos lectures
FOM [%] size FOM [%] size FOM [%] mAP [%] size

bestpath 50.1 1.1 43.0 1.0 47.1 52.6 1.0
raw lattice 64.2 527.6 61.1 881.7 58.8 60.2 23.3
Pnode = const 64.3 527.6 61.1 881.7 58.8 60.3 23.3

no pruning
TMI-base 65.3 55.2 62.6 78.8 58.8 60.2 7.7
TMI-arc 62.9 16.1 58.5 20.7 57.9 60.1 4.4
TMI-timequant 66.7 15.4 64.2 19.5 58.8 60.3 4.5
TMI-node 66.5 20.7 63.4 27.6 58.7 59.7 4.4
PSPL 68.9 182.0 66.2 212.0 58.7 61.0 21.2

pruned to about 5 entries per spoken word
TMI-base 62.1 5.6 54.1 5.1 57.0 60.3 4.5
TMI-arc 60.7 4.6 53.6 5.0 57.9 60.1 4.4
TMI-timequant 63.1 4.7 57.1 5.1 58.8 60.3 4.5
TMI-node 63.7 4.6 57.7 5.1 58.7 59.7 4.4
PSPL 57.3 6.0 49.8 5.8 53.6 61.0 4.4

that the actual segmentation does not have significant im-
pact on the results.

4.1.2 Relevance Ranking
The choice and optimization of a relevance ranking for-

mula is a difficult problem that is beyond the scope of this
paper. We chose a simple document ranking method as
described in (Chelba, 2005):

Given queryQ = (q1, · · · , qL), for each document
D, expected term frequencies (ETF) of all sub-strings
Q[i,j] = (qi, · · · , qj) are calculated:

ETF(Q[i,j]|D)=
∑
ts,te

P (∗, ts, Q[i,j], te, ∗|O, D) (3)

A document is returned if all query words are present. The
relevance score is calculated as

S(D, Q)=
L∑

i=1

L∑

j=i

wj−i log[1+ETF(Q[i,j]|D)] (4)

where the weightsw` have the purpose to give higher
weight to longer sub-strings. They were chosen asw` =
1 + 1000 · `, no further optimization was performed.

Only the lecture set is used for document retrieval eval-
uation. The whole set consists of 169 documents, with an
average of 391 segments in each document. The eval-
uation metric is the mean average precision (mAP) as
computed by the standardtrec_eval package used by
the TREC evaluations (NIST, 2005). Since actual rele-
vance judgements were not available for this corpus, we
use the output of a state-of-the-art text retrieval engine on
the ground truth transcripts as the reference. The idea is
that if human judgements are not available, the next best
thing to do is to assess how close our spoken-document
retrieval system gets to a text engine applied to reference

transcripts. Although one should take the absolute mAP
scores with a pinch of salt, we believe that comparing the
relative changes of these mAP scores is meaningful.

4.2 Lattice Search and Best Path Baseline
Table 2 lists the word spotting and document retrieval re-
sult of direct search in the original raw lattice, as well
as for searching the top-1 path. Results are listed sepa-
rately for single- and multi-word queries. For the phrase-
spotting task, a consistent about 15% improvement is
observed on all sets, re-emphasizing the importance of
searching alternates. For document retrieval, the accuracy
(mAP) is also significantly improved from 53% to 62%.

4.2.1 Comparing Indexing Methods
Table 3 compares different indexing methods with re-

spect to search accuracy and index size. We only show
results for multi-words queries results, as it can be shown
that results for single-word queries must be identical. The
index size is measured as index entries per spoken word,
i.e. it does not reflect that different indexing methods may
require different numbers of bits in the actual index store.

In addition to four types of TMI methods, we include
an alternative posterior-lattice indexing method in our
comparison called PSPL (position-specific posterior lat-
tices) (Chelba, 2005). A PSPL index is constructed by
enumerating all paths through a lattice, representing each
path as a linear text, and adding each text to the index,
each time starting over from word position 1. Each word
hypothesis on each path is assigned the posterior proba-
bility of the entire path. Instances of the same word oc-
curing at the same text position are merged, accumulating
their posterior probabilities. This way, each index entry
represents the posterior probability that a word occurs at
a particular position in the actual spoken word sequence.
PSPL is an attractive alternative to the work presented in

420

0

2

4

6

8

10

12

14

16

18

20

48 53 58 63 68

Phrase Spotting Accuracy (Figure Of Merit [%])
(a) podcasts

in
d

ex
 e

n
tr

ie
s

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

42 47 52 57 62

Phrase Spotting Accuracy (Figure Of Merit [%])
(b) videos

in
d

ex
 e

n
tr

ie
s

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

40 45 50 55 60

Phrase Spotting Accuracy (Figure Of Merit [%])
(c) lectures

in
d

ex
 e

n
tr

ie
s

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

0

2

4

6

8

10

12

14

16

18

20

52 54 56 58 60 62 64
Relevance Ranking Accuracy (mAP [%])

(d) lectures

in
d

ex
 e

n
tr

ie
s

/ s
p

o
ke

n
 w

o
rd bestpath

baseline

PSPL

TMI-base

TMI-arc

TMI-tq

TMI-node

Figure 2: Index size vs. accuracy for different pruning thresholds for word-spotting on (a) podcasts, (b) videos, (c)
lectures, and (d) relevance ranking for lectures.

this paper because it continues to use the notion of a word
position instead of time, with the advantage that exist-
ing implementations of phrase-matching conditions apply
without modification.

The results show that, comparing with the direct raw-
lattice search, all indexing methods have only slight im-
pact on both word spotting and document retrieval accu-
racies. Against our expectation, in many casesimproved
accuracies are observed. These are caused by creating ad-
ditonal paths compared to the original lattice, improving
recall. It is not yet clear how to exploit this in a systematic
manner.

W.r.t. storage efficiency, the TMI merging methods
have about 5 times less index entries than the original lat-
tice for lectures (and an order of magnitude less for pod-
casts and videos that were recognized with rather waste-
ful pruning thresholds). This can be further improved by
pruning.

4.2.2 Pruning
Index size and accuracy can be balanced by pruning

low-scoring index entries. Experiments have shown that
the optimal pruning strategy differs slightly from method
to method. For the TMI set, the index is pruned by remov-
ing all entries with posterior probabilities below a certain
fixed threshold. In addition, for TMI-node we enforce
that the best path is not pruned. For PSPL, an index entry
at a particular word position is removed if its posterior is
worse by a fixed factor compared to the best index entry
for thesameword position. This also guarantees that the
best path is never pruned.

Fig. 2 depicts the trade-off of size and accuracy for
different indexing methods. TMI-node provides the best
trade-off. The last block of Table 3 shows results for all
indexing methods when pruned with the respective prun-
ing thresholds adjusted such that the number of index en-
tries is approximately five times that for the top-1 tran-
script. We chose this size because reducing the index size
still has limited impact on accuracy (0.5-points for pod-
casts, 3.5 for videos, and none for lectures) while keeping
operating characteristics (storage size, CPU, disk) within
an order of magnitude from text search.

5 The System
The presented technique was implemented in a research
prototype shown in Fig. 3. About 780 hours of audio doc-
uments, including video clips from MSN Video and audio
files from most popular podcasts, were indexed. The in-
dex is disk-based, its size is 830 MB, using a somewhat
wasteful XML representation for research convenience.
Typically, searches are executed within 0.5 seconds.

The user interface resembles a typical text search en-
gine. A media player is embedded for immediate within-
page playback. Snippets are generated for previewing the
search results. Each word in a snippet has its original
time point associated, and a click on it positions the me-
dia player to the corresponding time in the document.

6 Conclusion
We targeted the paper to the task of searching audio con-
tent from the Internet. Aiming at maximizing reuse of
existing web-search engines, we investigated how best to

421

Figure 3: Screenshot of the video/audio-search prototype. For each document, in addition to the title and description
text from meta-data, the system displays recognition-transcript snippets around the audio hits, e.g. “...bird flu has
been a ...” in the first document. Clicking on a word in a snippet starts playing back the video at that position using
the embedded video player.

represent important lattice properties – recognition alter-
nates with scores, time boundaries, and phrase-matching
constraints – in a form suitable for large-scale web-search
engines, while requiring only limited code changes.

The proposed method, Time-based Merging for Index-
ing (TMI), first converts the word lattice to a posterior-
probability representation and then merges word hypothe-
ses with similar time boundaries to reduce the index size.
Four approximations were presented, which differ in size
and the strictness of phrase-matching constraints.

Results were presented for three typical types of web
audio content – podcasts, video clips, and online lectures
– for phrase spotting and relevance ranking. Using TMI
indexes that are only five times larger than corresponding
linear-text indexes, accuracy was improved over search-
ing top-1 transcripts by 25-35% for word spotting and
14% for relevance ranking, very close to what is gained
by a direct search of unindexed lattices.

Practical feasibility has been demonstrated by a re-
search prototype with 780 hours indexed audio, which
completes searches within 0.5 seconds.

To our knowledge, this is also the first paper to report
speech recognition results for podcasts.

7 Acknowledgements
The authors wish to thank Jim Glass and T. J. Hazen at
MIT for providing the iCampus data.

References
S. Brin and L. Page, The anatomy of a large-scale hypertextual

Web search engine.Computer Networks and ISDN Systems,

30(1-7):107-117.
C. Chelba and A. Acero, Position specific posterior lattices for

indexing speech.Proc. ACL’2005, Ann Arbor, 2005.
J. Garofolo, TREC-9 Spoken Document Retrieval Track.

National Institute of Standards and Technology,http://
trec.nist.gov/pubs/trec9/sdrt9_slides/
sld001.htm .

J. Glass, T. J. Hazen, L. Hetherington, C. Wang, Analysis and
Processing of Lecture Audio data: Preliminary investiga-
tion. Proc. HLT-NAACL’2004 Workshop: Interdisciplinary
Approaches to Speech Indexing and Retrieval, Boston, 2004.

L. Mangu, E. Brill, A. Stolcke, Finding Consensus in Speech
Recognition: Word Error Minimization and Other Applica-
tions of Confusion Networks.Computer, Speech and Lan-
guage, 14(4):373-400.

MSN Video.http:// video.msn.com .
The TREC evaluation package.http:// www - lpir . nist

. gov / projects / trecvid / trecvid . tools /
trec_eval .

M. Saraclar, R. Sproat, Lattice-based search for spoken utter-
ance retrieval.Proc. HLT’2004, Boston, 2004.

F. Seide, P. Yu,et al., Vocabulary-independent search in sponta-
neous speech.Proc. ICASSP’2004, Montreal, 2004.

F. Wessel, R. Schlüter, and H. Ney, Using posterior word proba-
bilities for improved speech recognition.Proc. ICASSP’2000,
Istanbul, 2000.

P. Yu, K. J. .Chen, L. Lu, F. Seide, Searching the Audio
Notebook: Keyword Search in Recorded Conversations.
Proc. HLT’2005, Vancouver, 2005.

P. Yu, K. J. Chen, C. Y. Ma, F. Seide, Vocabulary-Independent
Indexing of Spontaneous Speech, IEEE transaction on
Speech and Audio Processing, Vol.13, No.5, Special Issue
on Data Mining of Speech, Audio and Dialog.

P. Yu, F. Seide, A hybrid word / phoneme-based approach
for improved vocabulary-independent search in spontaneous
speech.Proc. ICLSP’04, Jeju, 2004.

422

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 423–430,
New York, June 2006.c©2006 Association for Computational Linguistics

A fast finite-state relaxation method for enforcing
global constraints on sequence decoding

Roy W. Tromble and Jason Eisner
Department of Computer Science and Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218

{royt,jason }@cs.jhu.edu

Abstract
We describe finite-state constraint relaxation, a method for ap-
plying global constraints, expressed as automata, to sequence
model decoding. We present algorithms for both hard con-
straints and binary soft constraints. On the CoNLL-2004 se-
mantic role labeling task, we report a speedup of at least 16x
over a previous method that used integer linear programming.

1 Introduction

Many tasks in natural language processing involve
sequence labeling. If one models long-distance or
global properties of labeled sequences, it can be-
come intractable to find (“decode”) the best labeling
of an unlabeled sequence.

Nonetheless, such global properties can improve
the accuracy of a model, so recent NLP papers
have considered practical techniques for decod-
ing with them. Such techniques include Gibbs
sampling (Finkel et al., 2005), a general-purpose
Monte Carlo method, and integer linear program-
ming (ILP), (Roth and Yih, 2005), a general-purpose
exact framework for NP-complete problems.

Under generative models such as hidden Markov
models, the probability of a labeled sequence de-
pends only on its local properties. The situation
improves with discriminatively trained models, such
as conditional random fields (Lafferty et al., 2001),
which do efficiently allow features that are functions
of the entireobservationsequence. However, these
features can still only look locally at thelabel se-
quence. That is a significant shortcoming, because
in many domains, hard or soft global constraints on
the label sequence are motivated by common sense:

• For named entity recognition, a phrase that
appears multiple times should tend to get the
same label each time (Finkel et al., 2005).

• In bibliography entries (Peng and McCallum,
2004), a given field (author, title, etc.) should

be filled by at most one substring of the in-
put, and there are strong preferences on the co-
occurrence and order of certain fields.

• In seminar announcements, a given field
(speaker, start time, etc.) should appear with
at most one value in each announcement, al-
though the field and value may be repeated
(Finkel et al., 2005).

• For semantic role labeling, each argument
should be instantiated only once for a given
verb. There are several other constraints that
we will describe later (Roth and Yih, 2005).

A popular approximate technique is to hypothe-
size a list of possible answers by decoding without
any global constraints, and thenrerank (or prune)
this n-best list using the full model with all con-
straints. Reranking relies on the local model being
“good enough” that the globally best answer appears
in its n-best list. Otherwise, reranking can’t find it.

In this paper, we propose “constraint relaxation,”
a simple exact alternative to reranking. As in rerank-
ing, we start with a weighted lattice of hypotheses
proposed by the local model. But rather than restrict
to then best of these according to the local model,
we aim to directly extract theonebest according to
theglobal model. As in reranking, we hope that the
local constraints alone will work well, but if they do
not, the penalty is not incorrect decoding, but longer
runtime as we gradually fold the global constraints
into the lattice. Constraint relaxation can be used
whenever the global constraints can be expressed as
regular languages over the label sequence.

In the worst case, our runtime may be exponential
in the number of constraints, since we are consider-
ing an intractable class of problems. However, we
show that in practice, the method is quite effective
at rapid decoding under global hard constraints.

423

0

O

1?

O
?

Figure 1: An automaton expressing the constraint that the label
sequence cannot beO∗. Here? matches any symbol exceptO.

The remainder of the paper is organized as fol-
lows: In §2 we describe how finite-state automata
can be used to apply global constraints. We then
give a brute-force decoding algorithm (§3). In §4,
we present a more efficient algorithm for the case of
hard constraints. We report results for the semantic
role labeling task in§5. §6 treats soft constraints.

2 Finite-state constraints

Previous approaches to global sequence labeling—
Gibbs sampling, ILP, and reranking—seem moti-
vated by the idea that standard sequence methods are
incapable of considering global constraints at all.

In fact, finite-state automata (FSAs) are powerful
enough to express many long-distance constraints.
Since all finite languages are regular,anyconstraint
over label sequences of bounded length is finite-
state. FSAs are more powerful thann-gram mod-
els. For example, the regular expressionΣ∗XΣ∗YΣ∗

matches only sequences of labels that contain anX
before aY. Similarly, the regular expression¬(O∗)
requires at least one non-O label; it compiles into the
FSA of Figure 1.

Note that this FSA is in one or the other of its two
states according to whether it has encountered a non-
O label yet. In general, the current state of an FSA
records properties of the label sequence prefix read
so far. The FSA needs enough states to keep track of
whether the label sequence as a whole satisfies the
global constraint in question.

FSAs are a flexible approach to constraints be-
cause they are closed under logical operations such
as disjunction (union) and conjunction (intersec-
tion). They may be specified by regular expressions
(Karttunen et al., 1996), in a logical language (Vail-
lette, 2004), or directly as FSAs. They may also be
weighted to express soft constraints.

Formally, we pose the decoding problem in terms
of an observation sequencex ∈ X ∗ and possible la-

bel sequencesy ∈ Y∗. In many NLP tasks,X is the
set of words, andY the tags. A latticeL: Y∗ 7→ R
maps label sequences to weights, and is encoded as a
weighted FSA. Constraints are formally the same—
any functionC: Y∗ 7→ R is a constraint, includ-
ing weighted features from a classifier or probabilis-
tic model. In this paper we will consider only con-
straints that are weighted in particular ways.

Given a latticeL and constraintsC, we seek

y∗ def= argmax
y

(
L(y) +

∑
C∈C

C(y)

)
. (1)

We assume the latticeL is generated by a model
M : X ∗ 7→ (Y∗ 7→ R). For a given observation se-
quencex, we putL = M(x). One possible model
is a finite-state transducer, whereM(x) is an FSA
found by composing the transducer withx. Another
is a CRF, whereM(x) is a lattice with sums of log-
potentials for arc weights.1

3 A brute-force finite-state decoder

To find the best constrained labeling in a lattice,y∗,
according to (1), we could simply intersect the lat-
tice with all the constraints, then extract the best
path.

Weighted FSA intersection is a generalization of
ordinary unweighted FSA intersection (Mohri et al.,
1996). It is customary in NLP to use the so-called
tropical semiring, where weights are represented by
their natural logarithms and summed rather than
multiplied. Then the intersected automatonL ∩ C
computes

(L ∩ C)(y) def= L(y) + C(y) (2)

To find y∗, one would extract the best path in
L ∩ C1 ∩ C2 ∩ · · · using the Viterbi algorithm, or
Dijkstra’s algorithm if the lattice is cyclic. This step
is fast if the intersected automaton is small.

The problem is that the multiple intersections in
L ∩ C1 ∩ C2 ∩ · · · can quickly lead to an FSA with
an intractable number of states. The intersection
of two finite-state automata produces an automaton

1For example, ifM is a simple linear-chain CRF,L(y) =Pn
i=1 f(yi−1, yi) + g(xi, yi). We buildL = M(x) as an

acyclic FSA whose state set isY × {1, 2, . . . n}, with transi-
tions(y′, i− 1)→ (y, i) of weightf(y′, y) + g(xi, y).

424

with the cross product state set. That is, ifF hasm
states andG hasn states, thenF ∩G has up tomn
states (fewer if some of themn possible states do
not lie on any accepting path).

Intersection of many such constraints, even if they
have only a few states each, quickly leads to a com-
binatorial explosion. In the worst case, the size, in
states, of the resulting lattice is exponential in the
number of constraints. To deal with this, we present
a constraint relaxation algorithm.

4 Hard constraints

The simplest kind of constraint is the hard con-
straint. Hard constraints are necessarily binary—
either the labeling satisfies the constraint, or it vi-
olates it. Violation is fatal—the labeling produced
by decoding must satisfy each hard constraint.

Formally, a hard constraint is a mappingC: Y∗ 7→
{0,−∞}, encoded as an unweighted FSA. If a string
satisfies the constraint, recognition of the string will
lead to an accepting state. If it violates the con-
straint, recognition will end in a non-accepting state.

Here we give an algorithm for decoding with a set
of such constraints. Later (§6), we discuss the case
of binary soft constraints. In what follows, we will
assume that there is always at least one path in the
lattice that satisfies all of the constraints.

4.1 Decoding by constraint relaxation

Our decoding algorithm first relaxes the global con-
straints and solves a simpler problem. In particular,
we find the best labeling according to the model,

y∗0
def= argmax

y
L(y) (3)

ignoringall the constraints inC.
Next, we check whethery∗0 satisifies the con-

straints. If so, then we are done—y∗0 is alsoy∗. If
not, then we reintroduce the constraints. However,
rather than include all at once, we introduce them
only as they are violated by successive solutions to
the relaxed problems:y∗0, y∗1, etc. We define

y∗1
def= argmax

y
(L(y) + C(y)) (4)

for some constraintC that y∗0 violates. Similarly,
y∗2 satisfies an additional constraint thaty∗1 violates,

HARD-CONSTRAIN-LATTICE(L, C):
1. y := Best-Path(L)
2. while ∃C ∈ C such thatC(y) = −∞:
3. L := L ∩ C
4. C := C − {C}
5. y := Best-Path(L)
6. return y

Figure 2: Hard constraints decoding algorithm.

and so on. Eventually, we find somek for whichy∗k
satisfies all constraints, and this path is returned.

To determine whether a labelingy satisfies a con-
straintC, we representy as a straight-line automa-
ton and intersect withC, checking the result for non-
emptiness. This is equivalent to string recognition.

Our hope is that, although intractable in the worst
case, the constraint relaxation algorithm will operate
efficiently in practice. The success of traditional se-
quence models on NLP tasks suggests that, for nat-
ural language, much of the correct analysis can be
recovered from local features and constraints alone.
We suspect that, as a result, global constraints will
often be easy to satisfy.

Pseudocode for the algorithm appears in Figure 2.
Note that line 2 doesnot specify how to choose
C from among multiple violated constraints. This
is discussed in§7. Our algorithm resembles the
method of Koskenniemi (1990) and later work. The
difference is that there lattices are unweighted and
may not contain a path that satisfies all constraints,
so that the order of constraint intersection matters.

5 Semantic role labeling

The semantic role labeling task (Carreras and
Màrques, 2004) involves choosing instantiations of
verb arguments from a sentence for a given verb.
The verb and its arguments form aproposition. We
use data from the CoNLL-2004 shared task—the
PropBank (Palmer et al., 2005) annotations of the
Penn Treebank (Marcus et al., 1993), with sections
15–18 as the training set and section 20 as the de-
velopment set. Unless otherwise specified, all mea-
surements are made on the development set.

We follow Roth and Yih (2005) exactly, in order
to compare system runtimes. They, in turn, follow
Hacioglu et al. (2004) and others in labeling only
the heads of syntactic chunks rather than all words.
We label only the core arguments (A0–A5), treating

425

(a)
0

?

1A0

A0

2?

?

(b)

0 1

O

A0

A1

A2
A3

A4

A5

2O

(verb position)

A1
A2
A3
A4
A5

O
A0

(c)
0

O
A0
A1
A2
A3

Figure 4: Automata expressing NO DUPLICATE A0 (? matches
anything butA0), KNOWN VERB POSITION[2], and DISALLOW
ARGUMENTS[A4,A5].

adjuncts and references asO.
Figure 3 shows an example sentence from the

shared task. It is marked with an IOB phrase chunk-
ing, the heads of the phrases, and the correct seman-
tic role labeling. Heads are taken to be the rightmost
words of chunks. On average, there are 18.8 phrases
per proposition, vs. 23.5 words per sentence. Sen-
tences may contain multiple propositions. There are
4305 propositions in section 20.

5.1 Constraints

Roth and Yih use five global constraints on label se-
quences for the semantic role labeling task. We ex-
press these constraints as FSAs. The first two are
general, and the seven automata encoding them can
be constructed offline:

• NO DUPLICATE ARGUMENT LABELS

(Fig. 4(a)) requires that each verb have at
most one argument of each type in a given
sentence. We separate this into six individual
constraints, one for each core argument type.
Thus, we have constraints called NO DUPLI-
CATE A0, NO DUPLICATE A1, etc. Each of
these is represented as a three-state FSA.

• AT LEAST ONE ARGUMENT(Fig. 1) simply re-
quires that the label sequence is notO∗. This is
a two-state automaton as described in§2.

The last three constraints require information
about the example, and the automata must be con-
structed on a per-example basis:

• ARGUMENT CANDIDATES (Fig. 5) encodes a
set of position spans each of which must re-
ceive only a single label type. These spans were
proposed using a high-recall heuristic (Xue and
Palmer, 2004).

• KNOWN VERB POSITION (Fig. 4(b)) simply
encodes the position of the verb in question,
which must be labeledO.

• DISALLOW ARGUMENTS (Fig. 4(c)) specifies
argument types that are compatible with the
verb in question, according to PropBank.

5.2 Experiments

We implemented our hard constraint relaxation al-
gorithm, using the FSA toolkit (Kanthak and Ney,
2004) for finite-state operations. FSA is an open-
source C++ library providing a useful set of algo-
rithms on weighted finite-state acceptors and trans-
ducers. For each example we decoded, we chose a
random order in which to apply the constraints.

Lattices are generated from what amounts to a
unigram model—the voted perceptron classifier of
Roth and Yih. The features used are a subset of those
commonly applied to the task.

Our system produces output identical to that of
Roth and Yih. Table 1 shows F-measure on the core
arguments. Table 2 shows a runtime comparison.
The ILP runtime was provided by the authors (per-
sonal communication). Because the systems were
run under different conditions, the times are not di-
rectly comparable. However, constraint relaxation is
more than sixteen times faster than ILP despite run-
ning on a slower platform.

5.2.1 Comparison to an ILP solver

Roth and Yih’s linear program has two kinds of
numeric constraints. Some encode the shortest path
problem structure; the others encode the global con-
straints of§5.1. The ILP solver works by relaxing
to a (real-valued) linear program, which may obtain
a fractional solution that represents a path mixture
instead of a path. It then uses branch-and-bound to
seek the optimal rounding of this fractional solution
to an integer solution (Gúeret et al., 2002) that repre-
sents a single path satisfying the global constraints.

Our method avoids fractional solutions: a relaxed
solution is always a true single path, which either

426

Mr. Turner said the test will be shipped in 45 days to hospitals and clinical laboratories .
B-NP I-NP B-VP B-NP I-NP B-VP I-VP I-VP B-PP B-NP I-NP B-PP B-NP O B-NP I-NP O

Turner said test shipped in days to hospitals and laboratories .
A0 O A1 A1 A1 A1 A1 A1 A1 A1 O

Figure 3: Example sentence, with phrase tags and heads, and core argument labels. TheA1 argument of “said” is a long clause.

0 1

O

A0

A1

A2
A3

A4

A5

2

A2

A3

A4

A5

O

A0

A1

4

O

10
A0

16
A1

22A2

28

A3

34

A4

40

A5

5O

11A0

17A1

23A2

29A3

35A4

41A5 42A5 43A5 44A5 45A5

3

A5

46

O

A0

A1

A2
A3

A4

A5

O
A0
A1
A2
A3
A4
A5

36A4 37A4 38A4 39A4

A430A3 31A3 32A3 33A3

A3
24A2 25A2 26A2 27A2 A2

18A1 19A1 20A1
21

A1
A1

12A0 13A0 14A0
15

A0

A0

6O 7O 8O
9

O

O

Figure 5: An automaton expressing ARGUMENT CANDIDATES.

Argument Count F-measure
A0 2849 79.27
A1 4029 75.59
A2 943 55.68
A3 149 46.41
A4 147 81.82
A5 4 25.00
All 8121 74.51

Table 1: F-measure on core arguments.

satisfies or violates each global constraint. In effect,
we are using two kinds of domain knowledge. First,
we recognize that this is a graph problem, and insist
on true paths so we can use Viterbi decoding. Sec-
ond, we choose to relax only domain-specific con-
straints that are likely to be satisfied anyway (in our
domain), in contrast to the meta-constraint of inte-
grality relaxed by ILP. Thus it is cheaper on aver-
age for us to repair a relaxed solution. (Our repair
strategy—finite-state intersection in place of branch-
and-bound search—remains expensive in the worst
case, as the problem is NP-hard.)

5.2.2 Constraint violations

The y∗0s, generated with onlylocal information,
satisfy most of the global constraints most of the
time. Table 3 shows the violations by type.

The majority of best labelings according to the
local model don’t violateany global constraints—
a fact especially remarkable because there areno
label sequence features in Roth and Yih’s unigram

Constraint Violations Fraction
ARGUMENT CANDIDATES 1619 0.376
NO DUPLICATE A1 899 0.209
NO DUPLICATE A0 348 0.081
NO DUPLICATE A2 151 0.035
AT LEAST ONE ARGUMENT 108 0.025
DISALLOW ARGUMENTS 48 0.011
NO DUPLICATE A3 13 0.003
NO DUPLICATE A4 3 0.001
NO DUPLICATE A5 1 0.000
KNOWN VERB POSITION 0 0.000

Table 3: Violations of constraints byy∗0 .

model. This confirms our intuition that natural lan-
guage structure is largely apparent locally. Table 4
shows the breakdown. The majority of examples are
very efficient to decode, because they don’t require
intersection of the lattice with any constraints—y∗0
is extracted and is good enough. Those examples
where constraintsareviolated are still relatively effi-
cient because they only require a small number of in-
tersections. In total, the average number of intersec-
tions needed, even with the naive randomized con-
straint ordering, was only 0.65. The order doesn’t
matter very much, since 75% of examples have one
violation or fewer.

5.2.3 Effects on lattice size

Figure 6 shows the effect of intersection with vi-
olated constraints on the average size of lattices,
measured in arcs. The vertical bars atk = 0,
k = 1, . . . show the number of examples where con-

427

Method Total Time Per Example Platform
Brute Force Finite-State 37m25.290s 0.522s Pentium III, 1.0 GHz
ILP 11m39.220s 0.162s Xeon, 3.x GHz
Constraint Relaxation 39.700s 0.009s Pentium III, 1.0 GHz

Table 2: A comparison of runtimes for constrained decoding with ILP and FSA.

Violations Labelings Fraction Cumulative
0 2368 0.550 0.550
1 863 0.200 0.750
2 907 0.211 0.961
3 156 0.036 0.997
4 10 0.002 0.999
5 1 0.000 1.000
6–10 0 0.000 1.000

Table 4: Number ofy∗0 with each violation count.

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5

Verbs
Mean Arcs with Relaxation

Mean Arcs with Brute Force

Figure 6: Mean lattice size (measured in arcs) throughout de-
coding. Vertical bars show the number of examples over which
each mean is computed.

straint relaxation had to intersectk contraints (i.e.,
y∗ ≡ y∗k). The trajectory ending at (for example)
k = 3 shows how the average lattice size for that
subset of examples evolved over the3 intersections.
TheXatk = 3 shows the final size of the brute-force
lattice on thesamesubset of examples.

For the most part, our lattices do stay much
smaller than those produced by the brute-force algo-
rithm. (The uppermost curve,k = 5, is an obvious
exception; however, that curve describes only the
seven hardest examples.) Note that plotting only the
final size of the brute-force lattice obscures the long
trajectory of its construction, which involves 10 in-
tersections and, like the trajectories shown, includes
larger intermediate automata.2 This explains the far

2The final brute-force lattice is especially shrunk by its in-

Constraint Violations Fraction
ARGUMENT CANDIDATES 90 0.0209
AT LEAST ONE ARGUMENT 27 0.0063
NO DUPLICATE A2 3 0.0007
NO DUPLICATE A0 2 0.0005
NO DUPLICATE A1 2 0.0005
NO DUPLICATE A3 1 0.0002
NO DUPLICATE A4 1 0.0002

Table 5: Violations of constraints bŷy, measured over the de-
velopment set.

longer runtime of the brute-force method (Table 2).
Harder examples (corresponding to longer trajec-

tories) have larger lattices, on average. This is partly
just because it is disproportionately the longer sen-
tences that are hard: they have more opportunities
for a relaxed decoding to violate global constraints.

Hard examples are rare. The left three columns,
requiring only 0–2 intersections, constitute 96% of
examples. The vast majority can be decoded without
much more than doubling the local-lattice size.

6 Soft constraints

The gold standard labelŝy occasionally violate the
hard global constraints that we are using. Counts
for the development set appear in Table 5. Counts
for violations of NO DUPLICATE A· do not include
discontinous arguments, of which there are 104 in-
stances, since we ignore them.

Because of the infrequency, the hard constraints
still help most of the time. However, on a small sub-
set of the examples, they preclude us from inferring
the correct labeling.

We can apply these constraints with weights,
rather than making them inviolable. This constitutes
a transition from hard to soft constraints. Formally,
a soft constraintC: Y∗ 7→ R− is a mapping from a
label sequence to a non-positive penalty.

Soft constraints present new difficulty for decod-

clusion of, for example, DISALLOW ARGUMENTS, which can
only remove arcs. That constraint is rarely included in the re-
laxation lattices because it is rarely violated (see Table 3).

428

SOFT-CONSTRAIN-LATTICE(L, C):
1. (y∗,Score(y∗)) := (empty,−∞)
2. branches := [(L, C, 0)]
3. while (L, C, penalty) := Dequeue(branches):
4. L := Prune(L,Score(y∗)− penalty)
5. unlessEmpty(L):
6. y := Best-Path(L)
7. for C ∈ C:
8. if C(y) < 0: (* so C(y) = wC *)
9. C := C − {C}
10. Enqueue(branches, (L ∩ C, C, penalty))
11. penalty := penalty + C(y)
12. if Score(y∗) < L(y) + penalty:
13. (y∗,Score(y∗)) := (y, L(y) + penalty)
14. return y∗

Figure 7: Soft constraints decoding algorithm

ing, because instead of eliminating paths ofL from
contention, they just reweight them.

In what follows, we consider only binary soft
constraints—they are either satisfied or violated, and
the same penalty is assessed whenever a violation
occurs. That is,∀C ∈ C,∃wC < 0 such that
∀y, C(y) ∈ {0, wC}.

6.1 Soft constraint relaxation

The decoding algorithm for soft constraints is a gen-
eralization of that for hard constraints. The differ-
ence is that, whereas with hard constraints a vio-
lation meant disqualification, here violation simply
means a penalty. We therefore must find and com-
pare two labelings: the best that satisfies the con-
straint, and the best that violates it.

We present a branch-and-bound algorithm
(Lawler and Wood, 1966), with pseudocode in
Figure 7. At line 9, we process and eliminate a
currently violated constraintC ∈ C by considering
two cases. On the first branch, we insist thatC be
satisfied, enqueuingL ∩ C for later exploration. On
the second branch, we assumeC is violated by all
paths, and so continue consideringL unmodified,
but accept a penalty for doing so; we immediately
explore the second branch by returning to the start
of thefor loop.3

Not every branch needs to be completely ex-
plored. Bounding is handled by the PRUNE func-
tion at line 4, which shrinksL by removing some

3It is possible that a future best path on the second branch
will notactually violateC, in which case we have overpenalized
it, but in that case we will also find it with correct penalty on the
first branch.

or all paths that cannot score better than Score(y∗),
the score of the best path found on any branch so
far. Our experiments used almost the simplest possi-
ble PRUNE: replaceL by the empty lattice if the best
path falls below the bound, else leaveL unchanged.4

A similar bounding would be possible in the im-
plicit branches. If, during thefor loop, we find that
the test at line 12 would fail, we can quit thefor
loop and immediately move to the next branch in
the queue at line 3.

There are two factors in this algorithm that con-
tribute to avoiding consideration ofall of the expo-
nential number of leaves corresponding to the power
set of constraints. First, bounding stops evaluation
of subtrees. Second, onlyviolated constraints re-
quire branching. If a lattice’s best path satisifies a
constraint, then the best path that violates it can be
no better since, by assumption,∀y, C(y) ≤ 0.

6.2 Runtime experiments

Using the ten constraints from§5.1, weighted
naively by their log odds of violation, the soft con-
straint relaxation algorithm runs in a time of 58.40
seconds. It is, as expected, slower than hard con-
straint relaxation, but only by a factor of about two.

As a side note, softening these particular con-
straints in this particular way did not improve de-
coding quality in this case. It might help to jointly
train the relative weights of these constraints and
the local model—e.g., using a perceptron algorithm
(Freund and Schapire, 1998), which repeatedly ex-
tracts the best global path (using our algorithm),
compares it to the gold standard, and adjusts the con-
straint weights. An obvious alternative is maximum-
entropy training, but the partition function would
have to be computed using the large brute-force lat-
tices, or else approximated by a sampling method.

7 Future work

For a given task, we may be able to obtain further
speedups by carefully choosing the order in which
to test and apply the constraints. We might treat this
as a reinforcement learning problem (Sutton, 1988),

4Partial pruning is also possible: by running the Viterbi ver-
sion of the forward-backward algorithm, one can discover for
each edge the weight of the best path on which it appears. One
can then remove all edges that do not appear on any sufficiently
good path.

429

where an agent will obtain rewards by findingy∗

quickly. In the hard-constraint algorithm, for ex-
ample, the agent’s possible moves are to test some
constraint for violation by the current best path, or
to intersect some constraint with the current lattice.
Several features can help the agent choose the next
move. How large is the current lattice, which con-
straints does it already incorporate, and which re-
maining constraints are already known to be satis-
fied or violated by its best path? And what were the
answers to those questions at previous stages?

Our constraint relaxation method should be tested
on problems other than semantic role labeling. For
example, information extraction from bibliography
entries, as discussed in§1, has about 13 fields to ex-
tract, and interesting hard and soft global constraints
on co-occurrence, order, and adjacency. The method
should also be evaluated on a task with longer se-
quences: though the finite-state operations we use
do scale up linearly with the sequence length, longer
sequences have more chance of violating a global
constraint somewhere in the sequence, requiring us
to apply that constraint explicitly.

8 Conclusion

Roth and Yih (2005) showed that global constraints
can improve the output of sequence labeling models
for semantic role labeling. In general, decoding un-
der such constraints is NP-complete. We exhibited
a practical approach, finite-state constraint relax-
ation, that greatly sped up decoding on this NLP task
by using familiar finite-state operations—weighted
FSA intersection and best-path extraction—rather
than integer linear programming.

We have also given a constraint relaxation algo-
rithm for binary soft constraints. This allows incor-
poration of constraints akin to reranking features, in
addition to inviolable constraints.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant No.
0347822. We thank Scott Yih for kindly providing
both the voted-perceptron classifier and runtime re-
sults for decoding with ILP, and the reviewers for
helpful comments.

References
Xavier Carreras and Lluı́s Màrques. 2004. Introduction to the

CoNLL-2004 shared task: Semantic role labeling. InProc.
of CoNLL, pp. 89–97.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning.
2005. Incorporating non-local information into information
extraction systems by Gibbs sampling. InProc. of ACL, pp.
363–370.

Yoav Freund and Robert E. Schapire. 1998. Large margin clas-
sification using the perceptron algorithm. InProc. of COLT,
pp. 209–217, New York. ACM Press.

Christelle Gúeret, Christian Prins, and Marc Sevaux. 2002.Ap-
plications of optimization with Xpress-MP. Dash Optimiza-
tion. Translated and revised by Susanne Heipcke.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H. Mar-
tin, and Daniel Jurafsky. 2004. Semantic role labeling by
tagging syntactic chunks. InProc. of CoNLL, pp. 110–113.

Stephan Kanthak and Hermann Ney. 2004. FSA: An efficient
and flexible C++ toolkit for finite state automata using on-
demand computation. InProc. of ACL, pp. 510–517.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette,
and Anne Schiller. 1996. Regular expressions for lan-
guage engineering.Journal of Natural Language Engineer-
ing, 2(4):305–328.

Kimmo Koskenniemi. 1990. Finite-state parsing and disam-
biguation. InProc. of COLING, pp. 229–232.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProc. of ICML, pp.
282–289.

Eugene L. Lawler and David E. Wood. 1966. Branch-and-
bound methods: A survey.Operations Research, 14(4):699–
719.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Linguistics,
19:313–330.

Mehryar Mohri, Fernando Pereira, and Michael Riley. 1996.
Weighted automata in text and speech processing. In A. Ko-
rnai, editor,Proc. of the ECAI 96 Workshop, pp. 46–50.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The
Proposition Bank: An annotated corpus of semantic roles.
Computational Linguistics, 31(1):71–106.

Fuchun Peng and Andrew McCallum. 2004. Accurate informa-
tion extraction from research papers using conditional ran-
dom fields. InProc. of HLT-NAACL, pp. 329–336.

Dan Roth and Wen-tau Yih. 2005. Integer linear programming
inference for conditional random fields. InProc. of ICML,
pp. 737–744.

Richard S. Sutton. 1988. Learning to predict by the methods of
temporal differences.Machine Learning, 3(1):9–44.

Nathan Vaillette. 2004.Logical Specification of Finite-State
Transductions for Natural Language Processing. Ph.D. the-
sis, Ohio State University.

Nianwen Xue and Martha Palmer. 2004. Calibrating features
for semantic role labeling. InProc. of EMNLP, pp. 88–94.

430

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 431–438,
New York, June 2006.c©2006 Association for Computational Linguistics

Semantic Role Labeling of Nominalized Predicates in Chinese

Nianwen Xue
Center for Research in Spoken Language

University of Colorado
Boulder, CO, 80309

Nianwen.Xue@colorado.edu

Abstract

Recent work on semantic role labeling
(SRL) has focused almost exclusively on
the analysis of the predicate-argument
structure of verbs, largely due to the lack
of human-annotated resources for other
types of predicates that can serve as train-
ing and test data for the semantic role
labeling systems. However, it is well-
known that verbs are not the only type
of predicates that can take arguments.
Most notably, nouns that are nominalized
forms of verbs and relational nouns gen-
erally are also considered to have their
own predicate-argument structure. In this
paper we report results of SRL experi-
ments on nominalized predicates in Chi-
nese, using a newly completed corpus,
the Chinese Nombank. We also dis-
cuss the impact of using publicly avail-
able manually annotated verb data to im-
prove the SRL accuracy of nouns, exploit-
ing a widely-held assumption that verbs
and their nominalizations share the same
predicate-argument structure. Finally, we
discuss the results of applying reranking
techniques to improve SRL accuracy for
nominalized predicates, which showed in-
significant improvement.

1 Introduction

Detecting and classifying the arguments of predi-
cates has been an active area of research in recent

years, driven by the availability of large-scale se-
mantically annotated corpora such as the FrameNet
(Baker et al., 1998) and the Propbank (Palmer et
al., 2005). It is generally formulated as a seman-
tic role labeling (SRL) task, where each argument
of the predicate is assigned a label that represents
the semantic role it plays with regard to its pred-
icate (Gildea and Jurafsky, 2002; Hacioglu et al.,
2003; Pradhan et al., 2004b; Xue and Palmer, 2004;
Toutanova et al., 2005; Koomen et al., 2005). It
has been the shared task for the CoNLL competition
for two consecutive years (Carreras and Màrquez,
2004b; Carreras and Màrquez, 2005). This line of
research has also expanded from English to other
languages (Sun and Jurafsky, 2004; Xue and Palmer,
2005). So far, however, most of the research efforts
have focused on analyzing the predicate-argument
structure of verbs, largely due to absence of an-
notated data for other predicate types. In this pa-
per, we report SRL experiments performed on nom-
inalized predicates in Chinese, taking advantage of
a newly completed corpus, the Chinese Nombank
(Xue, 2006), which we describe in greater detail in
Section 2. The rest of the paper is organized as fol-
lows. Section 3 describes the architecture of our sys-
tem as well as the features we used in our experi-
ments. In Section 4 we describe the experimental
setups and report our experimental results. We first
present experiments that use hand-crafted parses as
input, providing a measurement of how well the
Nombank annotation can be bootstrapped from the
syntactic structure in the treebank. We then describe
a more realistic experimental setup in which an au-
tomatic parser is first used to parse unsegmented raw

431

text and its output is then fed into our SRL system.
We also discuss whether verb data can be used to im-
prove the SRL accuracy of nominalized predicates.
Finally we describe a preliminary experiment that
uses reranking techniques to improve the SRL ac-
curacy on hand-crafted parses. Section 5 attempts to
put our results in perspective in the context of related
work. Section 6 concludes our paper.

2 The Chinese Nombank

The Chinese Nombank extends the general anno-
tation framework of the English Proposition Bank
(Palmer et al., 2005) and the English Nombank
(Meyers et al., 2004) to the annotation of nomi-
nalized predicates in Chinese. Like the English
Nombank project, the Chinese Nombank adds a
layer of semantic annotation to the Chinese Tree-
Bank (CTB), a syntactically annotated corpus of 500
thousand words. The Chinese Nombank annotates
two types of elements that are associated with the
nominalized predicate: argument-like elements that
are expected of this predicate, and adjunct-like el-
ements that modify this predicate. Arguments are
assigned numbered labels (prefixed byARG, e.g.,
ARG0...ARGn) while adjuncts receive a functional
tag (e.g., TMP for temporal, LOC for locative, MNR
for manner) prefixed byARGM. A predicate gen-
erally has no more than six numbered arguments
and the complete list of functional tags for adjuncts
and their descriptions can be found in the annotation
guidelines of this project.

The Chinese Nombank also adds a coarse-grained
sense tag to the predicate. The senses of a predicate,
formally calledframesets, are motivated by the ar-
gument structure of this predicate and are thus an
integral part of the predicate-argument structure an-
notation. Sense disambiguation is performed only
when different senses of a predicate require different
sets of arguments. These senses are the same senses
defined for the corresponding verbs in the Chinese
Proposition Bank, but typically only a subset of the
verb senses are realized in their nominalized forms.
The example in 1 illustrates the Chinese Nombank
annotations, which are the labels in bold in the parse
tree. TakeuÐ(”development”) as an example,f1
is the frameset identifier. Of the four expected argu-
ments for this frameset,ARG0 the cause or agent,

ARG1 the theme,ARG2 the initial state andARG3
the end state or goal, only ARG1 is realized and it
is üW'X(”cross-Strait relations”). The predi-
cate also has a modifier labeledARGM-TMP, 8

�(”hereafter”).
Typically the arguments and adjuncts of a nomi-

nalized predicate are realized inside the noun phrase
headed by the nominalized predicate, as is the case
for uÐ(“development”) in Example 1. A main
exception is when the noun phrase headed by the
nominalized predicate is an object of a support verb,
in which case the arguments of this predicate can
occur outside the noun phrase. This is illustrated
by 5y(“planning”) in Example 1, where the noun
phrase of which it is the head is the object of a sup-
port verb?1(“conduct”), which has little mean-
ing of its own. Both arguments of this predicate,
° b ü W(“the two sides of the Taiwan Strait”)
and 8 � ü W ' X � u Ð(“the development of
the cross-Strait relations”), are realized outside the
noun phrase. There are also a few other general ten-
dencies about the arguments of nominalized predi-
cates that are worth pointing out. The distribution of
their arguments is much less predictable than verbs
whose arguments typically occupy prominent syn-
tactic positions like the subject and object. There
also tend to be fewer arguments that are actually
realized for nominalized predicates. Nominalized
predicates also tend to take fewer types of adjuncts
(ARGMs) than their verbal counterpart and they
also tend to be less polysemous, having only a subset
of the senses of their verb counterpart.

The goal of the semantic role labeling task de-
scribed in this paper is to identify the arguments
and adjuncts of nominalized predicates and assign
appropriate semantic role labels to them. For the
purposes of our experiments, the sense information
of the predicates are ignored and left for future re-
search.

3 System description

The predominant approach to the semantic role la-
beling task is to formulate it as a classification prob-
lem that can be solved with machine-learning tech-
niques. Argument detection is generally formulated
as a binary classification task that separates con-
stituents that are arguments or adjuncts to a pred-

432

IP

NP-SBJ VP

ARG0/REL2 VV VP

°büW

the two sides
of the Straits

�

can
PP-DIR VP

ARG1/REL2 VV NN

P NP SUP/REL2 REL2

é

regarding
NP DNP NP ?1

conduct
f1

ARGM-TMP/REL1 NP DEG NN 5y

plan

8�

hereafter
NP � REL1

ARG1/REL1 f1

üW'X

Cross-Strait
relations

uÐ

development

The two sides of the Taiwan Straits can plan the development of the cross-Strait relations hereafter.

Table 1: A nominalized predicate annotated with semantic roles

icate from those that are not related to the pred-
icate in question. Argument classification, which
classifies the constituents into a category that cor-
responds to one of the argument or adjunct la-
bels is a natural multi-category classification prob-
lem. Many classification techniques, SVM (Pradhan
et al., 2004b), perceptrons (Carreras and Màrquez,
2004a), Maximum Entropy (Xue and Palmer, 2004),
etc. have been successfully used to solve SRL prob-
lems. For our purposes here, we use a Maximum En-
tropy classifier with a tunable Gaussian prior in the
Mallet Toolkit1. The Maximum Entropy classifier
does multi-category classification and thus can be

1http://mallet.cs.umass.edu

straightforwardly applied to the problem here. The
classifier can be tuned to minimize overfitting by ad-
justing the Gaussian prior.

3.1 A three-stage architecture

Like verbal predicates, the arguments and adjuncts
of a nominalized predicate are related to the pred-
icate itself in linguistically well-understood struc-
tural configurations. As we pointed out in Section
2, most of the arguments for nominalized predicates
are inside the NP headed by the predicate unless the
NP is the object of a support verb, in which case its
arguments can occur outside the NP. Typically the
subject of the support verb is also an argument of the
nominalized predicate, as illustrated in Example 1.

433

The majority of the constituents are not related to the
predicate in question, especially since the sentences
in the treebank tend to be very long. This is clearly
a lingustic observation that can be exploited for the
purpose of argument detection. There are two com-
mon approaches to argument detection in the SRL
literature. One is to apply a binary classifier directly
to all the constituents in the parse tree to separate
the arguments from non-arguments, and let the ma-
chine learning algorithm do the work. This can be
done with high accuracy when the machine-learning
algorithm is powerful and is provided with appro-
priate features (Hacioglu et al., 2003; Pradhan et
al., 2004b). The alternative approach is to combine
heuristic and machine-learning approaches (Xue and
Palmer, 2004). Some negative samples are first fil-
tered out with heuristics that exploit the syntactic
structures represented in a parse tree before a binary
classifier is applied to further separate the positive
samples from the negative samples. It turns out the
heuristics that are first proposed in Xue and Palmer
(2004) to prune out non-arguments for verbal pred-
icates can be easily adapted to detect arguments for
the nominalized predicates as well, so in our exper-
iments we adopt the latter approach. The algorithm
starts from the predicate that anchors the annotation,
and first collects all the sisters of this predicate. It
then iteratively moves one level up to the parent of
the current node to collect its sisters till it reaches the
appropriate top-level node. At each level, the sys-
tem has a procedure to determine whether that level
is a coordination structure or a modification struc-
ture. The system only considers a constituent to be
a potential candidate if it is an adjunct to the current
node. Punctuation marks at all levels are skipped.
After this initial procedure, a binary classifier is ap-
plied to distinguish the positive samples from the
negative samples. A lower threshold is used for pos-
itive samples than negative samples to maximize the
recall so that we can pass along as many positive
samples as possible to the next stage, which is the
multi-category classification.

3.2 Features

SRL differs from low-level NLP tasks such as POS
tagging in that it has a fairly large feature space and
as a result linguistic knowledge is crucial in design-
ing effective features for this task. A wide range of

features have been shown to be useful in previous
work on semantic role labeling for verbal predicates
(Gildea and Jurafsky, 2002; Pradhan et al., 2004b;
Xue and Palmer, 2004) and our experiments show
most of them are also effective for SRL of nominal-
ized predicates. The features for our multicategory
classifier are listed below:

• Predicate: The nominalized predicate itself.

• Position: The position is defined in relation to
the predicate and the values arebeforeandaf-
ter. Since most of the arguments for nominal-
ized predicates in Chinese are before the predi-
cates, this feature is not as effective as when it
is used for verbal predicates.

• path: The path between the constituent being
classified and the predicate.

• path+ dominating verb. The path feature com-
bined with the dominating verb. This feature is
only invoked when there is an intervening dom-
inating verb between the constituent being clas-
sified and the predicate. It is used to capture
the observation that only a closed set of verbs
can be support verbs for nominalized predicates
and they are good indicators of whether or not
the constituent is an argument of this predicate
and the semantic role of the argument.

• Head word and its part of speech: The head
word and its part-of-speech have proved to be
a good indicator of the semantic role label of
a constituent for verbal predicates in previous
work. It proves to be a good feature for nominal
predicates as well.

• Phrase type: The syntactic category of the con-
stituent being classified.

• First and last word of the constituent being
classified

• sisterhood with predicate: A binary feature that
indicates whether the constituent being classi-
fied is a sister to the nominalized predicate.

• Combination features: predicate-head word
combination, predicate-phrase type combina-
tion.

434

• class features. Features that replace the pred-
icate with its class. The class features are in-
duced from frame files through a procedure first
introduced in (Xue and Palmer, 2005).

Not all the features used for multicategory clas-
sification are equally effective for binary classifica-
tion, which only determines whether or not a con-
stituent is an argument or adjunct to the nominal-
ized predicate. Therefore, the features for the binary
classifier are a subset of the features used for multi-
category classification. These are path, path plus
dominating verb, head word and its part-of-speech
and sisterhood.

4 Experiments

4.1 Data

Our system is trained and tested on a pre-release
version of the Chinese Nombank. This version of
the Chinese Nombank consists of standoff annota-
tion on the first 760 articles (chtb_001.fid to
chtb_931.fid) of the Penn Chinese Treebank2.
This chunk of data has 250K words and 10,364 sen-
tences. It has 1,227 nominalized predicate types and
10,497 nominalized predicate instances. In com-
parison, there are 4,854 verb predicate types and
37,183 verb predicate instances in the same chunk
of data. By instance, the size of the Nombank is be-
tween a quarter and one third of the Chinese Propo-
sition Bank. Following the convention of the se-
mantic role labeling experiments in previous work,
we divide the training and test data by the num-
ber of articles, not by the predicate instances. This
pretty much guarantees that there will be unseen
predicates in the test data. For all our experiments,
688 files are used as training data and the other
72 files (chtb_001.fid to chtb_040.fid and
chtb_900.fid tochtb_931.fid) are held out
as test data. The test data is selected from the
double-annotated files in the Chinese Treebank and
the complete list of double-annotated files can be
found in the documentation for the Chinese Tree-
bank 5.1. Our parser is trained and tested with the
same data partition as our semantic role labeling sys-
tem.

2The most current version (CTB5.1) of the Penn Chinese
Treebank has 507K words, 825K Chinese characters, 18,716
sentences and 890 articles.

4.2 Semantic role tagging with hand-crafted
parses

In this section we present experimental results us-
ing Gold Standard parses in the Chinese Treebank
as input. To be used in real-world natural language
applications, a semantic role tagger has to use au-
tomatically produced constituent boundaries either
from a parser or by some other means, but experi-
ments with Gold Standard input will help us evaluate
how much of a challenge it is to map a syntactic rep-
resentation to a semantic representation, which may
very well vary from language to language. There
are two experimental setups. In the first experiment,
we assume that the constituents that are arguments
or adjuncts are known. We only need to assign the
correct argument or adjunct labels. In the second
experiment, we assume that all the constituents in a
parse tree are possible arguments. The system first
filters out consituents that are highly unlikely to be
an argument for the predicate, using the heuristics
described in Section 3. A binary classifier is then
applied to the remaining constituents to do further
separation. Finally the multicategory classifier is
applied to the candidates that the binary classifier
passes along. The results of these two experiments
are presented in Table 2.

experiments
all core

p (%) r(%) f(%) f(%)
constituents known n/a n/a 86.6 86.9
constituents unknown 69.7 73.7 71.6 72.0

Table 2: Results for hand-crafted parses

Compared with the 93.9% reported by Xue and
Palmer (2005) for verbal predicates on the same
data, the 86.9% the system achieved when the con-
situents are given is considerably lower, suggest-
ing that SRL for nominalized predicates is a much
more challenging task. The difference between the
SRL accuracy for verbal and nominalized predicates
is even greater when the constituents are not given
and the system has to identify the arguments to be
classified. Xue and Palmer reported an f-score of
91.4% for verbal predicates under similar experi-
mental conditions, in contrast with the 71.6% our
system achieved for nominalized predicates. Care-
ful error analysis shows that one important cause for

435

this degradation in performance is the fact that there
is insufficient training data for the system to reliably
separate support verbs from other verbs and deter-
mine whether the constituents outside the NP headed
by the nominalized predicate are related to the pred-
icate or not.

4.3 Using automatic parses

We also conducted an experiment that assumes a
more realistic scenario in which the input is raw un-
segmented text. We use a fully automatic parser
that integrates segmentation, POS tagging and pars-
ing. Our parser is similar to (Luo, 2003) and is
trained and tested on the same data partition as the
semantic role labeling system. Tested on the held-
out test data, the labeled precision and recall are
83.06% and 80.15% respectively for all sentences.
The results are comparable with those reported in
Luo (Luo, 2003), but they cannot be directly com-
pared with most of the results reported in the litera-
ture, where correct segmentation is assumed. In ad-
dition, in order to account for the differences in seg-
mentation, each character has to be treated as a leaf
of the parse tree. This is in contrast with word-based
parsers where words are terminals. Since semantic
role tagging is performed on the output of the parser,
only constituents in the parse tree are candidates. If
there is no constituent in the parse tree that shares
the same text span with an argument in the manual
annotation, the system cannot possibly get a correct
annotation. In other words, the best the system can
do is to correctly label all arguments that have a con-
stituent with the same text span in the parse tree.

all core
p (%) r(%) f(%) f(%)
49.7 53.1 51.3 48.3

Table 3: Results for automatic parses

The results show a similar performance degrada-
tion compared with the results reported for verbs on
the same data in previous work, which is not unex-
pected. Xue and Palmer (2005) reported an f-score
of 61.3% when a parser is used to preprocess the
data.

4.4 Using verb data to improve noun SRL
accuracy

Since verbs and their nominalized counterparts are
generally considered to share the same argument
structure and in fact the Chinese Nombank is an-
notated based on the same set of lexical guide-
lines (calledframe files) as the Chinese PropBank,
it seems reasonable to expect that adding the verb
data to the training set will improve the SRL accu-
racy of the nominal predicates, especially when the
training set is relatively small. Given that verbs and
their nominalized counterpart share the same mor-
phological form in Chinese, adding the verb data to
the training set is particularly straightforward. In
our experiments, we extracted verb instances from
the CPB that have nominalized forms in the portion
of the Chinese Treebank on which our SRL exper-
iments are performed and added them to the train-
ing set. Our experiments show, however, that sim-
ply adding the verb data to the training set and in-
discriminately extracting the same features from the
verb and noun instances will hurt the overall perfor-
mance instead of improving it. This result is hardly
surprising upon closer examination: the values of
certain features are vastly different for verbal and
nominal predicates. Most notably, the path from the
predicate to the constituent being classified, an im-
portant feature for semantic role labeling systems,
differ greatly from nominal and verbal predicates.
When they are thrown in the same training data mix,
they effectively create noise and neutralize the dis-
criminative effect of this feature. Other features,
such as the head words and their POS tags, are the
same and adding these features does indeed improve
the SRL accuracy of nominal predicates, although
the improvement is not statistically significant.

4.5 Reranking

In a recent paper on the SRL on verbal predicates
for English, (Toutanova et al., 2005) pointed out that
one potential flaw in a SRL system where each ar-
gument is considered on its own is that it does not
take advantage of the fact that the arguments (not the
adjuncts) of a predicate are subject to the hard con-
straint that they do not have the same label3. They

3For certain symmetrical predicates, arguments can have the
same label, although these cases are rare.

436

show that by performing joint learning of all the ar-
guments in the same proposition (for the same predi-
cate), the SRL accuracy is improved. To test the effi-
cacy of joint-learning for nominalized predicates in
Chinese, we conducted a similar experiment, using
a perceptron reranker described in Shen and Joshi
(2004). Arguments and adjuncts of the same predi-
cate instance (proposition) are chained together with
their joint probability being the product of the indi-
vidual arguments and the top K propositions are se-
lected as the reranking candidates. When the argu-
ments are given and the input is hand-crafted gold-
standard parses in the treebank, selecting the top 10
propositions yields an oracle score of 97%. This ini-
tial promise does not pan out, however. Performing
reranking on the top 10 propositions did not lead
to significant improvement, using the five feature
classes described in (Haghighi et al., 2005). These
are features that are hard to implement for individual
arguments:core argument label sequence, flattened
core argument label sequence, core argument labels
and phrase type sequence, repeated core argument
labels with phrase types, repeated core argument la-
bels with phrase types and adjacency information.
We speculate that the lack of improvement is due
to the fact that the constraint that core (numbered)
arguments should not have the same semantic role
label for Chinese nominalized predicates is not as
rigid as it is for English verbs. However further error
analysis is needed to substantiate this speculation.

5 Related Work

Compared with large body of work on the SRL
of verbal predicates, there has been relatively lit-
tle work done in analyzing the predicate-argument
structure of nominalized predicates. There are even
less work done for the nominalized predicates for
Chinese. (Hull and Comez, 1996) implemented a
rule-based system for identifying the arguments for
nominal predicates and (Lapata, 2002) has a system
that interprets the relation between the head of noun
compound and its head, but no meaningful compar-
ison can be made between our work and theirs. Per-
haps the closest work to that of ours is that of (Prad-
han et al., 2004a), where they reported preliminary
work for analyzing the predicate-argument structure
of Chinese nominalizations, using a small data set of

630 proposition for 22 nominalizations taken from
the Chinese Treebank. Since different data sets are
used, the results cannot be meaningfully compared.

The results reported here for nominalized pred-
icates are consistent with what Xue and Palmer
(2005) reported for the SRL of Chinese verbs with
regard to the role of the parser in their semantic
role labeling system: there is a substantial perfor-
mance drop when the automatic parser is used. At
present, improvement in Chinese parsing is hindered
by insufficient training material. Although the Chi-
nese Treebank has a decent size of 500K words, it
is evenly divided into two portions of very differ-
ent sources, Xinhua newswire from mainland China
and Sinorama magazines from Taiwan. Due to their
very different styles, training on one portion of the
data does not help or even hurt the parsing accuracy
of the other portion. The lack of sufficient train-
ing material is compounded by inherent properties
of the Chinese language that makes Chinese pars-
ing particularly difficult. Chinese segmentation is
a much more difficult problem than tokenization of
English text and Chinese words do not have mor-
phological clues that can help parsing decisions. We
believe further improvement in SRL accuracy will
be to a large extent contingent on the parsing accu-
racy, which requires more training material.

6 Conclusion and future work

We reported first results on the semantic role label-
ing of nominalized predicates in Chinese, using a
sizable annotated corpus, the Chinese Nombank, as
training and test data. Compared with that of ver-
bal predicates, SRL of nominalized predicates gen-
erally presents a more challenging problem, for all
experimental conditions. While the smaller train-
ing set compared with that of verbal predicates may
provide partial explanation for the degradation in
performance, we believe another important reason
is that the arguments for nominalized predicates do
not occupy prominent syntactic positions such as the
subject and object, as arguments of verbal predicates
often do. As a result, the syntactic structure repre-
sented in the parse tree does not provide as much of a
clue for their detection and classification. However,
this makes SRL of nominalized predicates a more
pressing issue to solve, as they represent a substan-

437

tial proportion of the predicates in the corpus. Our
results also show that the k-best propositions pro-
duced by the local classifier have a very high ora-
cle score, which perhaps indicates a promising path
that deserves further exploration, based on careful
analysis of the errors. We intend to continue to ex-
periment with new features and parameters for the
reranking algorithm.

7 Acknowledgement

I would like to thank Martha Palmer for her unwa-
vering support for this line of research. This work
is funded by the NSF ITR via grant 130-1303-4-
541984-XXXX-2000-1070.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. InPro-
ceedings of COLING/ACL, pages 86–90, Montreal,
Canada.

Xavier Carreras and Lluı́s Màrquez. 2004a. Hierarchi-
cal Recognition of Propositional Arguments with Per-
ceptrons. InProceedings of the Eighth Conference on
Natural Language Learning, Boston, Massachusetts.

Xavier Carreras and Lluı́s Màrquez. 2004b. Introduction
to the CoNLL-2004 Shared Task: Semantic Role La-
beling. In Proceedings of the Eighth Conference on
Natural Language Learning, Boston, Massachusetts.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction
to the CoNLL-2005 Shared Task: Semantic Role La-
beling. In Proceedings of the Nineth Conference on
Natural Language Learning, Ann Arbor, Michigan.

D. Gildea and D. Jurafsky. 2002. Automatic label-
ing for semantic roles. Computational Linguistics,
28(3):245–288.

Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H.
Martin, and Daniel Jurafsky. 2003. Shallow Seman-
tic Parsing Using Support Vector Machines. Technical
Report CSLR-2003-1, Center for Spoken Language
Research at the University of Colorado.

Aria Haghighi, Kristina Toutanova, and Christopher
Manning. 2005. A Joint Model for Semantic Role
Labeling. InProceedings of the Nineth Conference on
Natural Language Learning, Ann Arbor, Michigan.

Richard D. Hull and Fernando Comez. 1996. Semantic
interpretation of nominalizations. InThe AAAI Con-
ference, pages 1062–1068, Oregon.

Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen
tau Yih. 2005. Generalized Inference with Multiple
Semantic Role Labeling Systems. InProceedings of
the Nineth Conference on Natural Language Learning,
Ann Arbor, Michigan.

Maria Lapata. 2002. The disambiguation of nominaliza-
tions. Computational Linguistics, 28(3):357–388.

Xiaoqiang Luo. 2003. A Maximum Entropy Chinese
Character-Based Parser. InProceedings of the 2003
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2003), Sapporo, Japan.

A. Meyers, R. Reeves, C. Macleod, R. Szekely, V. Zielin-
ska, B. Young, and R. Grishman. 2004. The Nom-
Bank Project: An Interim Report. InProceedings of
the NAACL/HLT Workshop on Frontiers in Corpus An-
notation, Boston, Massachusetts.

Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005.
The Proposition Bank: An Annotated Corpus of Se-
mantic Roles.Computational Linguistics, 31(1).

Sameer Pradhan, Honglin Sun, Wayne Ward, James H.
Martin, and Daniel Jurafsky. 2004a. Parsing Argu-
ments of Nominalizations in English and Chinese. In
Proceedings of NAACL-HLT 2004, Boston, Mass.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James H.
Martin, and Daniel Jurafsky. 2004b. Shallow Seman-
tic Parsing Using Support Vector Machines. InPro-
ceedings of NAACL-HLT 2004, Boston, Mass.

Libin Shen and Aravind K. Joshi. 2004. Flexible Margin
Selection for Reranking with Full Pairwise Samples.
In Proceedings of IJCNLP-2004, pages 446–455.

Honglin Sun and Daniel Jurafsky. 2004. Shallow Se-
mantic Parsing of Chinese. InProceedings of NAACL
2004, Boston, USA.

Kristina Toutanova, Aria Haghighi, and Christopher
Manning. 2005. Joint Learning Improves Semantic
Role Labeling. InProceedings of ACL-2005.

Nianwen Xue and Martha Palmer. 2004. Calibrating
features for Semantic Role Labeling. InProceedings
of 2004 Conference on Empirical Methods in Natural
Language Processing, Barcelona, Spain.

Nianwen Xue and Martha Palmer. 2005. Automatic Se-
mantic Role Labeling for Chinese verbs. InProceed-
ings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland.

Nianwen Xue. 2006. Annotating the predicate-argument
structure of Chinese nominalizations. InProceedings
of the fifth international conference on Language Re-
sources and Evaluation, Genoa, Italy.

438

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 439–446,
New York, June 2006.c©2006 Association for Computational Linguistics

Learning for Semantic Parsing with Statistical Machine Translation

Yuk Wah Wong and Raymond J. Mooney

Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

{ywwong,mooney}@cs.utexas.edu

Abstract

We present a novel statistical approach to

semantic parsing, WASP, for construct-

ing a complete, formal meaning represen-

tation of a sentence. A semantic parser

is learned given a set of sentences anno-

tated with their correct meaning represen-

tations. The main innovation of WASP

is its use of state-of-the-art statistical ma-

chine translation techniques. A word

alignment model is used for lexical acqui-

sition, and the parsing model itself can be

seen as a syntax-based translation model.

We show that WASP performs favorably

in terms of both accuracy and coverage

compared to existing learning methods re-

quiring similar amount of supervision, and

shows better robustness to variations in

task complexity and word order.

1 Introduction

Recent work on natural language understanding has

mainly focused on shallow semantic analysis, such

as semantic role labeling and word-sense disam-

biguation. This paper considers a more ambi-

tious task of semantic parsing, which is the con-

struction of a complete, formal, symbolic, mean-

ing representation (MR) of a sentence. Seman-

tic parsing has found its way in practical applica-

tions such as natural-language (NL) interfaces to

databases (Androutsopoulos et al., 1995) and ad-

vice taking (Kuhlmann et al., 2004). Figure 1 shows

a sample MR written in a meaning-representation

language (MRL) called CLANG, which is used for

((bowner our {4})

(do our {6} (pos (left (half our)))))

If our player 4 has the ball, then our player 6 should

stay in the left side of our half.

Figure 1: A meaning representation in CLANG

encoding coach advice given to simulated soccer-

playing agents (Kuhlmann et al., 2004).

Prior research in semantic parsing has mainly fo-

cused on relatively simple domains such as ATIS

(Air Travel Information Service) (Miller et al., 1996;

Papineni et al., 1997; Macherey et al., 2001), in

which a typcial MR is only a single semantic frame.

Learning methods have been devised that can gen-

erate MRs with a complex, nested structure (cf.

Figure 1). However, these methods are mostly

based on deterministic parsing (Zelle and Mooney,

1996; Kate et al., 2005), which lack the robustness

that characterizes recent advances in statistical NLP.

Other learning methods involve the use of fully-

annotated augmented parse trees (Ge and Mooney,

2005) or prior knowledge of the NL syntax (Zettle-

moyer and Collins, 2005) in training, and hence re-

quire extensive human efforts when porting to a new

domain or language.

In this paper, we present a novel statistical ap-

proach to semantic parsing which can handle MRs

with a nested structure, based on previous work on

semantic parsing using transformation rules (Kate et

al., 2005). The algorithm learns a semantic parser

given a set of NL sentences annotated with their

correct MRs. It requires no prior knowledge of

the NL syntax, although it assumes that an unam-

biguous, context-free grammar (CFG) of the target

MRL is available. The main innovation of this al-

439

answer(count(city(loc 2(countryid(usa)))))

How many cities are there in the US?

Figure 2: A meaning representation in GEOQUERY

gorithm is its integration with state-of-the-art statis-

tical machine translation techniques. More specif-

ically, a statistical word alignment model (Brown

et al., 1993) is used to acquire a bilingual lexi-

con consisting of NL substrings coupled with their

translations in the target MRL. Complete MRs are

then formed by combining these NL substrings and

their translations under a parsing framework called

the synchronous CFG (Aho and Ullman, 1972),

which forms the basis of most existing statisti-

cal syntax-based translation models (Yamada and

Knight, 2001; Chiang, 2005). Our algorithm is

called WASP, short for Word Alignment-based Se-

mantic Parsing. In initial evaluation on several

real-world data sets, we show that WASP performs

favorably in terms of both accuracy and coverage

compared to existing learning methods requiring the

same amount of supervision, and shows better ro-

bustness to variations in task complexity and word

order.

Section 2 provides a brief overview of the do-

mains being considered. In Section 3, we present

the semantic parsing model of WASP. Section 4 out-

lines the algorithm for acquiring a bilingual lexicon

through the use of word alignments. Section 5 de-

scribes a probabilistic model for semantic parsing.

Finally, we report on experiments that show the ro-

bustness of WASP in Section 6, followed by the con-

clusion in Section 7.

2 Application Domains

In this paper, we consider two domains. The first do-

main is ROBOCUP. ROBOCUP (www.robocup.org)

is an AI research initiative using robotic soccer as its

primary domain. In the ROBOCUP Coach Competi-

tion, teams of agents compete on a simulated soccer

field and receive coach advice written in a formal

language called CLANG (Chen et al., 2003). Fig-

ure 1 shows a sample MR in CLANG.

The second domain is GEOQUERY, where a func-

tional, variable-free query language is used for

querying a small database on U.S. geography (Zelle

and Mooney, 1996; Kate et al., 2005). Figure 2

shows a sample query in this language. Note that

both domains involve the use of MRs with a com-

plex, nested structure.

3 The Semantic Parsing Model

To describe the semantic parsing model of WASP,

it is best to start with an example. Consider the

task of translating the sentence in Figure 1 into its

MR in CLANG. To achieve this task, we may first

analyze the syntactic structure of the sentence us-

ing a semantic grammar (Allen, 1995), whose non-

terminals are the ones in the CLANG grammar. The

meaning of the sentence is then obtained by com-

bining the meanings of its sub-parts according to

the semantic parse. Figure 3(a) shows a possible

partial semantic parse of the sample sentence based

on CLANG non-terminals (UNUM stands for uni-

form number). Figure 3(b) shows the corresponding

CLANG parse from which the MR is constructed.

This process can be formalized as an instance of

synchronous parsing (Aho and Ullman, 1972), orig-

inally developed as a theory of compilers in which

syntax analysis and code generation are combined

into a single phase. Synchronous parsing has seen a

surge of interest recently in the machine translation

community as a way of formalizing syntax-based

translation models (Melamed, 2004; Chiang, 2005).

According to this theory, a semantic parser defines a

translation, a set of pairs of strings in which each

pair is an NL sentence coupled with its MR. To

finitely specify a potentially infinite translation, we

use a synchronous context-free grammar (SCFG) for

generating the pairs in a translation. Analogous to

an ordinary CFG, each SCFG rule consists of a sin-

gle non-terminal on the left-hand side (LHS). The

right-hand side (RHS) of an SCFG rule is a pair of

strings, 〈α, β〉, where the non-terminals in β are a

permutation of the non-terminals in α. Below are

some SCFG rules that can be used for generating the

parse trees in Figure 3:

RULE → 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2)〉

CONDITION → 〈TEAM 1 player UNUM 2 has the ball ,

(bowner TEAM 1 {UNUM 2 })〉

TEAM → 〈our , our〉
UNUM → 〈4 , 4〉

440

RULE

If CONDITION

TEAM

our

player UNUM

4

has the ball

...

(a) English

RULE

(CONDITION

(bowner TEAM

our

{ UNUM

4

})

...)

(b) CLANG

Figure 3: Partial parse trees for the CLANG statement and its English gloss shown in Figure 1

Each SCFG rule X → 〈α, β〉 is a combination of a

production of the NL semantic grammar, X → α,

and a production of the MRL grammar, X → β.

Each rule corresponds to a transformation rule in

Kate et al. (2005). Following their terminology,

we call the string α a pattern, and the string β a

template. Non-terminals are indexed to show their

association between a pattern and a template. All

derivations start with a pair of associated start sym-

bols, 〈S 1 , S 1 〉. Each step of a derivation involves

the rewriting of a pair of associated non-terminals

in both of the NL and MRL streams. Below is a

derivation that would generate the sample sentence

and its MR simultaneously: (Note that RULE is the

start symbol for CLANG)

〈RULE 1 , RULE 1 〉

⇒ 〈if CONDITION 1 , DIRECTIVE 2 . ,

(CONDITION 1 DIRECTIVE 2)〉

⇒ 〈if TEAM 1 player UNUM 2 has the ball, DIR 3 . ,

((bowner TEAM 1 {UNUM 2 }) DIR 3)〉

⇒ 〈if our player UNUM 1 has the ball, DIR 2 . ,

((bowner our {UNUM 1 }) DIR 2)〉

⇒ 〈if our player 4 has the ball, DIRECTIVE 1 . ,

((bowner our {4}) DIRECTIVE 1)〉

⇒ ...

⇒ 〈if our player 4 has the ball, then our player 6

should stay in the left side of our half. ,

((bowner our {4})

(do our {6} (pos (left (half our)))))〉

Here the MR string is said to be a translation of the

NL string. Given an input sentence, e, the task of

semantic parsing is to find a derivation that yields

〈e, f〉, so that f is a translation of e. Since there may

be multiple derivations that yield e (and thus mul-

tiple possible translations of e), a mechanism must

be devised for discriminating the correct derivation

from the incorrect ones.

The semantic parsing model of WASP thus con-

sists of an SCFG, G, and a probabilistic model, pa-

rameterized by λ, that takes a possible derivation, d,

and returns its likelihood of being correct given an

input sentence, e. The output translation, f
⋆, for a

sentence, e, is defined as:

f
⋆ = m

(

arg max
d∈D(G|e)

Prλ(d|e)

)

(1)

where m(d) is the MR string that a derivation d

yields, and D(G|e) is the set of all possible deriva-

tions of G that yield e. In other words, the output

MR is the yield of the most probable derivation that

yields e in the NL stream.

The learning task is to induce a set of SCFG rules,

which we call a lexicon, and a probabilistic model

for derivations. A lexicon defines the set of deriva-

tions that are possible, so the induction of a proba-

bilistic model first requires a lexicon. Therefore, the

learning task can be separated into two sub-tasks:

(1) the induction of a lexicon, followed by (2) the

induction of a probabilistic model. Both sub-tasks

require a training set, {〈ei, fi〉}, where each training

example 〈ei, fi〉 is an NL sentence, ei, paired with

its correct MR, fi. Lexical induction also requires

an unambiguous CFG of the MRL. Since there is no

lexicon to begin with, it is not possible to include

correct derivations in the training data. This is un-

like most recent work on syntactic parsing based on

gold-standard treebanks. Therefore, the induction of

a probabilistic model for derivations is done in an

unsupervised manner.

4 Lexical Acquisition

In this section, we focus on lexical learning, which

is done by finding optimal word alignments between

441

RULE → (CONDITION DIRECTIVE)

TEAM → our

UNUM → 4

If

our

player

4

has

the

ball

CONDITION → (bowner TEAM {UNUM})

Figure 4: Partial word alignment for the CLANG statement and its English gloss shown in Figure 1

NL sentences and their MRs in the training set. By

defining a mapping of words from one language to

another, word alignments define a bilingual lexicon.

Using word alignments to induce a lexicon is not a

new idea (Och and Ney, 2003). Indeed, attempts

have been made to directly apply machine transla-

tion systems to the problem of semantic parsing (Pa-

pineni et al., 1997; Macherey et al., 2001). However,

these systems make no use of the MRL grammar,

thus allocating probability mass to MR translations

that are not even syntactically well-formed. Here we

present a lexical induction algorithm that guarantees

syntactic well-formedness of MR translations by us-

ing the MRL grammar.

The basic idea is to train a statistical word align-

ment model on the training set, and then form a

lexicon by extracting transformation rules from the

K = 10 most probable word alignments between

the training sentences and their MRs. While NL

words could be directly aligned with MR tokens,

this is a bad approach for two reasons. First, not all

MR tokens carry specific meanings. For example, in

CLANG, parentheses and braces are delimiters that

are semantically vacuous. Such tokens are not sup-

posed to be aligned with any words, and inclusion of

these tokens in the training data is likely to confuse

the word alignment model. Second, MR tokens may

exhibit polysemy. For instance, the CLANG pred-

icate pt has three meanings based on the types of

arguments it is given: it specifies the xy-coordinates

(e.g. (pt 0 0)), the current position of the ball (i.e.

(pt ball)), or the current position of a player (e.g.

(pt our 4)). Judging from the pt token alone, the

word alignment model would not be able to identify

its exact meaning.

A simple, principled way to avoid these diffi-

culties is to represent an MR using a sequence of

productions used to generate it. Specifically, the

sequence corresponds to the top-down, left-most

derivation of an MR. Figure 4 shows a partial word

alignment between the sample sentence and the lin-

earized parse of its MR. Here the second produc-

tion, CONDITION → (bowner TEAM {UNUM}), is

the one that rewrites the CONDITION non-terminal

in the first production, RULE → (CONDITION DI-

RECTIVE), and so on. Note that the structure of a

parse tree is preserved through linearization, and for

each MR there is a unique linearized parse, since the

MRL grammar is unambiguous. Such alignments

can be obtained through the use of any off-the-shelf

word alignment model. In this work, we use the

GIZA++ implementation (Och and Ney, 2003) of

IBM Model 5 (Brown et al., 1993).

Assuming that each NL word is linked to at most

one MRL production, transformation rules are ex-

tracted in a bottom-up manner. The process starts

with productions whose RHS is all terminals, e.g.

TEAM → our and UNUM → 4. For each of these

productions, X → β, a rule X → 〈α, β〉 is ex-

tracted such that α consists of the words to which

the production is linked, e.g. TEAM → 〈our, our〉,
UNUM → 〈4, 4〉. Then we consider productions

whose RHS contains non-terminals, i.e. predicates

with arguments. In this case, an extracted pattern

consists of the words to which the production is

linked, as well as non-terminals showing where the

arguments are realized. For example, for the bowner

predicate, the extracted rule would be CONDITION

→ 〈TEAM 1 player UNUM 2 has (1) ball, (bowner

TEAM 1 {UNUM 2 })〉, where (1) denotes a word

gap of size 1, due to the unaligned word the that

comes between has and ball. A word gap, (g), can

be seen as a non-terminal that expands to at most

g words in the NL stream, which allows for some

flexibility in pattern matching. Rule extraction thus

proceeds backward from the end of a linearized MR

442

our

left

penalty

area

REGION → (left REGION)

REGION → (penalty-area TEAM)

TEAM → our

Figure 5: A word alignment from which no rules can be extracted for the penalty-area predicate

parse (so that a predicate is processed only after its

arguments have all been processed), until rules are

extracted for all productions.

There are two cases where the above algorithm

would not extract any rules for a production r. First

is when no descendants of r in the MR parse are

linked to any words. Second is when there is a

link from a word w, covered by the pattern for r,

to a production r′ outside the sub-parse rooted at

r. Rule extraction is forbidden in this case be-

cause it would destroy the link between w and r′.

The first case arises when a component of an MR

is not realized, e.g. assumed in context. The sec-

ond case arises when a predicate and its arguments

are not realized close enough. Figure 5 shows an

example of this, where no rules can be extracted

for the penalty-area predicate. Both cases can be

solved by merging nodes in the MR parse tree, com-

bining several productions into one. For example,

since no rules can be extracted for penalty-area,

it is combined with its parent to form REGION →
(left (penalty-area TEAM)), for which the pat-

tern TEAM left penalty area is extracted.

The above algorithm is effective only when words

linked to an MR predicate and its arguments stay

close to each other, a property that we call phrasal

coherence. Any links that destroy this property

would lead to excessive node merging, a major cause

of overfitting. Since building a model that strictly

observes phrasal coherence often requires rules that

model the reordering of tree nodes, our goal is to

bootstrap the learning process by using a simpler,

word-based alignment model that produces a gen-

erally coherent alignment, and then remove links

that would cause excessive node merging before rule

extraction takes place. Given an alignment, a, we

count the number of links that would prevent a rule

from being extracted for each production in the MR

parse. Then the total sum for all productions is ob-

tained, denoted by v(a). A greedy procedure is em-

ployed that repeatedly removes a link a ∈ a that

would maximize v(a) − v(a\{a}) > 0, until v(a)
cannot be further reduced. A link w ↔ r is never

removed if the translation probability, Pr(r|w), is

greater than a certain threshold (0.9). To replenish

the removed links, links from the most probable re-

verse alignment, ã (obtained by treating the source

language as target, and vice versa), are added to a, as

long as a remains n-to-1, and v(a) is not increased.

5 Parameter Estimation

Once a lexicon is acquired, the next task is to learn a

probabilistic model for the semantic parser. We pro-

pose a maximum-entropy model that defines a con-

ditional probability distribution over derivations (d)

given the observed NL string (e):

Prλ(d|e) =
1

Zλ(e)
exp

∑

i

λifi(d) (2)

where fi is a feature function, and Zλ(e) is a nor-

malizing factor. For each rule r in the lexicon there

is a feature function that returns the number of times

r is used in a derivation. Also for each word w there

is a feature function that returns the number of times

w is generated from word gaps. Generation of un-

seen words is modeled using an extra feature whose

value is the total number of words generated from

word gaps. The number of features is quite modest

(less than 3,000 in our experiments). A similar fea-

ture set is used by Zettlemoyer and Collins (2005).

Decoding of the model can be done in cubic time

with respect to sentence length using the Viterbi al-

gorithm. An Earley chart is used for keeping track

of all derivations that are consistent with the in-

put (Stolcke, 1995). The maximum conditional like-

lihood criterion is used for estimating the model pa-

rameters, λi. A Gaussian prior (σ2 = 1) is used for

regularizing the model (Chen and Rosenfeld, 1999).

Since gold-standard derivations are not available in

the training data, correct derivations must be treated

as hidden variables. Here we use a version of im-

443

proved iterative scaling (IIS) coupled with EM (Rie-

zler et al., 2000) for finding an optimal set of param-

eters.1 Unlike the fully-supervised case, the condi-

tional likelihood is not concave with respect to λ,

so the estimation algorithm is sensitive to initial pa-

rameters. To assume as little as possible, λ is initial-

ized to 0. The estimation algorithm requires statis-

tics that depend on all possible derivations for a sen-

tence or a sentence-MR pair. While it is not fea-

sible to enumerate all derivations, a variant of the

Inside-Outside algorithm can be used for efficiently

collecting the required statistics (Miyao and Tsujii,

2002). Following Zettlemoyer and Collins (2005),

only rules that are used in the best parses for the

training set are retained in the final lexicon. All

other rules are discarded. This heuristic, commonly

known as Viterbi approximation, is used to improve

accuracy, assuming that rules used in the best parses

are the most accurate.

6 Experiments

We evaluated WASP in the ROBOCUP and GEO-

QUERY domains (see Section 2). To build a cor-

pus for ROBOCUP, 300 pieces of coach advice were

randomly selected from the log files of the 2003

ROBOCUP Coach Competition, which were manu-

ally translated into English (Kuhlmann et al., 2004).

The average sentence length is 22.52. To build a

corpus for GEOQUERY, 880 English questions were

gathered from various sources, which were manu-

ally translated into the functional GEOQUERY lan-

guage (Tang and Mooney, 2001). The average sen-

tence length is 7.48, much shorter than ROBOCUP.

250 of the queries were also translated into Spanish,

Japanese and Turkish, resulting in a smaller, multi-

lingual data set.

For each domain, there was a minimal set of ini-

tial rules representing knowledge needed for trans-

lating basic domain entities. These rules were al-

ways included in a lexicon. For example, in GEO-

QUERY, the initial rules were: NUM → 〈x, x〉, for

all x ∈ R; CITY → 〈c, cityid(’c’,)〉, for all

city names c (e.g. new york); and similar rules for

other types of names (e.g. rivers). Name transla-

tions were provided for the multilingual data set (e.g.

1We also implemented limited-memory BFGS (Nocedal,
1980). Preliminary experiments showed that it typically reduces
training time by more than half with similar accuracy.

CITY → 〈nyuu yooku, cityid(’new york’,)〉 for

Japanese).

Standard 10-fold cross validation was used in our

experiments. A semantic parser was learned from

the training set. Then the learned parser was used

to translate the test sentences into MRs. Translation

failed when there were constructs that the parser did

not cover. We counted the number of sentences that

were translated into an MR, and the number of trans-

lations that were correct. For ROBOCUP, a trans-

lation was correct if it exactly matched the correct

MR. For GEOQUERY, a translation was correct if it

retrieved the same answer as the correct query. Us-

ing these counts, we measured the performance of

the parser in terms of precision (percentage of trans-

lations that were correct) and recall (percentage of

test sentences that were correctly translated). For

ROBOCUP, it took 47 minutes to learn a parser us-

ing IIS. For GEOQUERY, it took 83 minutes.

Figure 6 shows the performance of WASP com-

pared to four other algorithms: SILT (Kate et al.,

2005), COCKTAIL (Tang and Mooney, 2001), SCIS-

SOR (Ge and Mooney, 2005) and Zettlemoyer and

Collins (2005). Experimental results clearly show

the advantage of extra supervision in SCISSOR and

Zettlemoyer and Collins’s parser (see Section 1).

However, WASP performs quite favorably compared

to SILT and COCKTAIL, which use the same train-

ing data. In particular, COCKTAIL, a determinis-

tic shift-reduce parser based on inductive logic pro-

gramming, fails to scale up to the ROBOCUP do-

main where sentences are much longer, and crashes

on larger training sets due to memory overflow.

WASP also outperforms SILT in terms of recall,

where lexical learning is done by a local bottom-up

search, which is much less effective than the word-

alignment-based algorithm in WASP.

Figure 7 shows the performance of WASP on

the multilingual GEOQUERY data set. The lan-

guages being considered differ in terms of word or-

der: Subject-Verb-Object for English and Spanish,

and Subject-Object-Verb for Japanese and Turkish.

WASP’s performance is consistent across these lan-

guages despite some slight differences, most proba-

bly due to factors other than word order (e.g. lower

recall for Turkish due to a much larger vocabulary).

Details can be found in a longer version of this pa-

per (Wong, 2005).

444

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
re

c
is

io
n

 (
%

)

Number of training examples

WASP
SILT

COCKTAIL
SCISSOR

(a) Precision for ROBOCUP

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

R
e

c
a

ll
(%

)

Number of training examples

WASP
SILT

COCKTAIL
SCISSOR

(b) Recall for ROBOCUP

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
re

c
is

io
n

 (
%

)

Number of training examples

WASP
SILT

COCKTAIL
SCISSOR

Zettlemoyer et al. (2005)

(c) Precision for GEOQUERY

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

R
e

c
a

ll
(%

)

Number of training examples

WASP
SILT

COCKTAIL
SCISSOR

Zettlemoyer et al. (2005)

(d) Recall for GEOQUERY

Figure 6: Precision and recall learning curves comparing various semantic parsers

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
re

c
is

io
n

 (
%

)

Number of training examples

English
Spanish

Japanese
Turkish

(a) Precision for GEOQUERY

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

R
e

c
a

ll
(%

)

Number of training examples

English
Spanish

Japanese
Turkish

(b) Recall for GEOQUERY

Figure 7: Precision and recall learning curves comparing various natural languages

7 Conclusion

We have presented a novel statistical approach to

semantic parsing in which a word-based alignment

model is used for lexical learning, and the parsing

model itself can be seen as a syntax-based trans-

lation model. Our method is like many phrase-

based translation models, which require a simpler,

word-based alignment model for the acquisition of a

phrasal lexicon (Och and Ney, 2003). It is also sim-

ilar to the hierarchical phrase-based model of Chi-

ang (2005), in which hierarchical phrase pairs, es-

sentially SCFG rules, are learned through the use of

a simpler, phrase-based alignment model. Our work

shows that ideas from compiler theory (SCFG) and

machine translation (word alignment models) can be

successfully applied to semantic parsing, a closely-

related task whose goal is to translate a natural lan-

guage into a formal language.

Lexical learning requires word alignments that are

phrasally coherent. We presented a simple greedy

algorithm for removing links that destroy phrasal co-

herence. Although it is shown to be quite effective in

the current domains, it is preferable to have a more

principled way of promoting phrasal coherence. The

problem is that, by treating MRL productions as

atomic units, current word-based alignment models

have no knowledge about the tree structure hidden

in a linearized MR parse. In the future, we would

like to develop a word-based alignment model that

445

is aware of the MRL syntax, so that better lexicons

can be learned.

Acknowledgments

This research was supported by Defense Advanced

Research Projects Agency under grant HR0011-04-

1-0007.

References

A. V. Aho and J. D. Ullman. 1972. The Theory of Pars-
ing, Translation, and Compiling. Prentice Hall, Engle-
wood Cliffs, NJ.

J. F. Allen. 1995. Natural Language Understanding (2nd
Ed.). Benjamin/Cummings, Menlo Park, CA.

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
1995. Natural language interfaces to databases: An
introduction. Journal of Natural Language Engineer-
ing, 1(1):29–81.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263–312, June.

S. Chen and R. Rosenfeld. 1999. A Gaussian prior for
smoothing maximum entropy models. Technical re-
port, Carnegie Mellon University, Pittsburgh, PA.

M. Chen et al. 2003. Users manual: RoboCup soc-
cer server manual for soccer server version 7.07 and
later. Available at http://sourceforge.net/
projects/sserver/.

D. Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proc. of ACL-05,
pages 263–270, Ann Arbor, MI, June.

R. Ge and R. J. Mooney. 2005. A statistical semantic
parser that integrates syntax and semantics. In Proc.
of CoNLL-05, pages 9–16, Ann Arbor, MI, July.

R. J. Kate, Y. W. Wong, and R. J. Mooney. 2005. Learn-
ing to transform natural to formal languages. In Proc.
of AAAI-05, pages 1062–1068, Pittsburgh, PA, July.

G. Kuhlmann, P. Stone, R. J. Mooney, and J. W. Shavlik.
2004. Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer. In
Proc. of the AAAI-04 Workshop on Supervisory Con-
trol of Learning and Adaptive Systems, San Jose, CA,
July.

K. Macherey, F. J. Och, and H. Ney. 2001. Natural lan-
guage understanding using statistical machine transla-
tion. In Proc. of EuroSpeech-01, pages 2205–2208,
Aalborg, Denmark.

I. D. Melamed. 2004. Statistical machine translation
by parsing. In Proc. of ACL-04, pages 653–660,
Barcelona, Spain.

S. Miller, D. Stallard, R. Bobrow, and R. Schwartz. 1996.
A fully statistical approach to natural language inter-
faces. In Proc. of ACL-96, pages 55–61, Santa Cruz,
CA.

Y. Miyao and J. Tsujii. 2002. Maximum entropy estima-
tion for feature forests. In Proc. of HLT-02, San Diego,
CA, March.

J. Nocedal. 1980. Updating quasi-Newton matrices
with limited storage. Mathematics of Computation,
35(151):773–782, July.

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1):19–51.

K. A. Papineni, S. Roukos, and R. T. Ward. 1997.
Feature-based language understanding. In Proc. of
EuroSpeech-97, pages 1435–1438, Rhodes, Greece.

S. Riezler, D. Prescher, J. Kuhn, and M. Johnson. 2000.
Lexicalized stochastic modeling of constraint-based
grammars using log-linear measures and EM training.
In Proc. of ACL-00, pages 480–487, Hong Kong.

A. Stolcke. 1995. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Computational Linguistics, 21(2):165–201.

L. R. Tang and R. J. Mooney. 2001. Using multiple
clause constructors in inductive logic programming for
semantic parsing. In Proc. of ECML-01, pages 466–
477, Freiburg, Germany.

Y. W. Wong. 2005. Learning for semantic parsing us-
ing statistical machine translation techniques. Techni-
cal Report UT-AI-05-323, Artificial Intelligence Lab,
University of Texas at Austin, Austin, TX, October.

K. Yamada and K. Knight. 2001. A syntax-based sta-
tistical translation model. In Proc. of ACL-01, pages
523–530, Toulouse, France.

J. M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic programming.
In Proc. of AAAI-96, pages 1050–1055, Portland, OR,
August.

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Proc.
of UAI-05, Edinburgh, Scotland, July.

446

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 447–454,
New York, June 2006.c©2006 Association for Computational Linguistics

ParaEval: Using Paraphrases to Evaluate Summaries Automatically

Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu, and Eduard Hovy
University of Southern California

Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292-6695
{liangz, cyl, dragos, hovy} @isi.edu

Abstract

ParaEval is an automated evaluation

method for comparing reference and peer

summaries. It facilitates a tiered-

comparison strategy where recall-oriented

global optimal and local greedy searches

for paraphrase matching are enabled in

the top tiers. We utilize a domain-

independent paraphrase table extracted

from a large bilingual parallel corpus us-

ing methods from Machine Translation

(MT). We show that the quality of ParaE-

val’s evaluations, measured by correlating

with human judgments, closely resembles

that of ROUGE’s.

1 Introduction

Content coverage is commonly measured in sum-

mary comparison to assess how much information

from the reference summary is included in a peer

summary. Both manual and automatic methodolo-

gies have been used. Naturally, there is a great

amount of confidence in manual evaluation since

humans can infer, paraphrase, and use world

knowledge to relate text units with similar mean-

ings, but which are worded differently. Human

efforts are preferred if the evaluation task is easily

conducted and managed, and does not need to be

performed repeatedly. However, when resources

are limited, automated evaluation methods become

more desirable.

For years, the summarization community has

been actively seeking an automatic evaluation

methodology that can be readily applied to various

summarization tasks. ROUGE (Lin and Hovy,

2003) has gained popularity due to its simplicity

and high correlation with human judgments. Even

though validated by high correlations with human

judgments gathered from previous Document Un-

derstanding Conference (DUC) experiments, cur-

rent automatic procedures (Lin and Hovy, 2003;

Hovy et al., 2005) only employ lexical n-gram

matching. The lack of support for word or phrase

matching that stretches beyond strict lexical

matches has limited the expressiveness and utility

of these methods. We need a mechanism that sup-

plements literal matching—i.e. paraphrase and

synonym—and approximates semantic closeness.

In this paper we present ParaEval, an automatic

summarization evaluation method, which facili-

tates paraphrase matching in an overall three-level

comparison strategy. At the top level, favoring

higher coverage in reference, we perform an opti-

mal search via dynamic programming to find

multi-word to multi-word paraphrase matches be-

tween phrases in the reference summary (usually

human-written) and those in the peer summary

(system-generated). The non-matching fragments

from the previous level are then searched by a

greedy algorithm to find single-word para-

phrase/synonym matches. At the third and the low-

est level, we perform literal lexical unigram

matching on the remaining texts. This tiered design

for summary comparison guarantees at least a

ROUGE-1 level of summary content matching if

no paraphrases are found.

The first two levels employ a paraphrase table.

Since manually created multi-word paraphrases-

—phrases determined by humans to be paraphrases

of one another—are not available in sufficient

quantities, we automatically build a paraphrase

447

table using methods from the Machine Translation

(MT) field. The assumption made in creating this

table is that if two English phrases are translated

into the same foreign phrase with high probability

(shown in the alignment results from a statistically

trained alignment algorithm), then the two English

phrases are paraphrases of each other.

This paper is organized in the following way:

Section 2 introduces previous work in summariza-

tion evaluation; Section 3 describes the motivation

behind this work; paraphrase acquisition is dis-

cussed in Section 4; Section 5 explains in detail

our summary comparison mechanism; Section 6

validates ParaEval with human summary judg-

ments; and we conclude and discuss future work in

Section 7.

2 Previous Work

There has been considerable work in both manual

and automatic summarization evaluations. Three

most noticeable efforts in manual evaluation are

SEE (Lin and Hovy, 2001), Factoid (Van Halteren

and Teufel, 2003), and the Pyramid method

(Nenkova and Passonneau, 2004).

SEE provides a user-friendly environment in

which human assessors evaluate the quality of

system-produced peer summary by comparing it to

a reference summary. Summaries are represented

by a list of summary units (sentences, clauses,

etc.). Assessors can assign full or partial content

coverage score to peer summary units in compari-

son to the corresponding reference summary units.

Grammaticality can also be graded unit-wise.

The goal of the Factoid work is to compare the

information content of different summaries of the

same text and determine the minimum number of

summaries, which was shown through experimen-

tation to be 20-30, needed to achieve stable con-

sensus among 50 human-written summaries.

The Pyramid method uses identified consen-

sus—a pyramid of phrases created by annota-

tors—from multiple reference summaries as the

gold-standard reference summary. Summary com-

parisons are performed on Summarization Content

Units (SCUs) that are approximately of clause

length.

To facilitate fast summarization system design-

evaluation cycles, ROUGE was created (Lin and

Hovy, 2003). It is an automatic evaluation package

that measures a number of n-gram co-occurrence

statistics between peer and reference summary

pairs. ROUGE was inspired by BLEU (Papineni et

al., 2001) which was adopted by the machine

translation (MT) community for automatic MT

evaluation. A problem with ROUGE is that the

summary units used in automatic comparison are

of fixed length. A more desirable design is to have

summary units of variable size. This idea was im-

plemented in the Basic Elements (BE) framework

(Hovy et al., 2005) which has not been completed

due to its lack of support for paraphrase matching.

Both ROUGE and BE have been shown to corre-

late well with past DUC human summary judg-

ments, despite incorporating only lexical matching

on summary units (Lin and Hovy, 2003; Hovy et

al., 2005).

3 Motivation

3.1 Paraphrase Matching

An important difference that separates current

manual evaluation methods from their automatic

counterparts is that semantic matching of content

units is performed by human summary assessors.

An essential part of the semantic matching in-

volves paraphrase matching—determining whether

phrases worded differently carry the same semantic

information. This paraphrase matching process is

observed in the Pyramid annotation procedure

shown in (Nenkova and Passonneau, 2004) over

three summary sets (10 summaries each). In the

example shown in Figure 1 (reproduced from

Pyramid results), each of the 10 phrases (numbered

1 to 10) extracted from summary sentences carries

the same semantic content as the overall summary

content unit labeled SCU1 does. Each extracted

phrase is identified as a summary content unit

(SCU). In our work in building an automatic

evaluation procedure that enables paraphrase

SCU1: the crime in question was the Lockerbie {Scotland} bombing
1 [for the Lockerbie bombing]
2 [for blowing up] [over Lockerbie, Scotland]
3 [of bombing] [over Lockerbie, Scotland]
4 [was blown up over Lockerbie, Scotland,]
5 [the bombing of Pan Am Flight 103]
6 [bombing over Lockerbie, Scotland,]
7 [for Lockerbie bombing]
8 [bombing of Pan Am flight 103 over Lockerbie.]
9 [linked to the Lockerbie bombing]
10 [in the Lockerbie bombing case.]

Figure 1. Paraphrases created by Pyramid annotation.

448

matching, we aim to automatically identify these

10 phrases as paraphrases of one another.

3.2 Synonymy Relations

Synonym matching and paraphrase matching are

often mentioned in the same context in discussions

of extending current automated summarization

evaluation methods to incorporate the matching of

semantic units. While evaluating automatically

extracted paraphrases via WordNet (Miller et al.,

1990), Barzilay and McKeown (2001) quantita-

tively validated that synonymy is not the only

source of paraphrasing. We envisage that this

claim is also valid for summary comparisons.

From an in-depth analysis on the manually cre-

ated SCUs of the DUC2003 summary set D30042

(Nenkova and Passonneau, 2004), we find that

54.48% of 1746 cases where a non-stop word from

one SCU did not match with its supposedly hu-

man-aligned pairing SCUs are in need of some

level of paraphrase matching support. For example,

in the first two extracted SCUs (labeled as 1 and 2)

in Figure 1—“for the Lockerbie bombing” and “for

blowing up … over Lockerbie, Scotland”—no

non-stop word other than the word “Lockerbie”

occurs in both phrases. But these two phrases were

judged to carry the same semantic meaning be-

cause human annotators think the word “bombing”

and the phrase “blowing up” refer to the same ac-

tion, namely the one associated with “explosion.”

However, “bombing” and “blowing up” cannot be

matched through synonymy relations by using

WordNet, since one is a noun and the other is a

verb phrase (if tagged within context). Even when

the search is extended to finding synonyms and

hypernyms for their categorical variants and/or

using other parts of speech (verb for “bombing”

and noun phrase for “blowing up”), a match still

cannot be found.

To include paraphrase matching in summary

evaluation, a collection of less-strict paraphrases

must be created and a matching strategy needs to

be investigated.

4 Paraphrase Acquisition

Paraphrases are alternative verbalizations for con-

veying the same information and are required by

many Natural Language Processing (NLP) appli-

cations. In particular, summary creation and

evaluation methods need to recognize paraphrases

and their semantic equivalence. Unfortunately, we

have yet to incorporate into the evaluation frame-

work previous findings in paraphrase identification

and extraction (Barzilay and McKeown, 2001;

Pang et al., 2003; Bannard and Callison-Burch,

2005).

4.1 Related Work on Paraphrasing

Three major approaches in paraphrase collection

are manual collection (domain-specific), collection

utilizing existing lexical resources (i.e. WordNet),

and derivation from corpora. Hermjakob et al.

(2002) view paraphrase recognition as

reformulation by pattern recognition. Pang et al.

(2003) use word lattices as paraphrase representa-

tions from semantically equivalent translations

sets. Using parallel corpora, Barzilay and McKe-

own (2001) identify paraphrases from multiple

translations of classical novels, where as Bannard

and Callison-Burch (2005) develop a probabilistic

representation for paraphrases extracted from large

Machine Translation (MT) data sets.

4.2 Extracting Paraphrases

Our method to automatically construct a large do-

main-independent paraphrase collection is based

on the assumption that two different English

phrases of the same meaning may have the same

translation in a foreign language.

Phrase-based Statistical Machine Translation

(SMT) systems analyze large quantities of bilin-

gual parallel texts in order to learn translational

alignments between pairs of words and phrases in

two languages (Och and Ney, 2004). The sentence-

based translation model makes word/phrase align-

ment decisions probabilistically by computing the

optimal model parameters with application of the

statistical estimation theory. This alignment proc-

ess results in a corpus of word/phrase-aligned par-

allel sentences from which we can extract phrase

pairs that are translations of each other. We ran the

alignment algorithm from (Och and Ney, 2003) on

a Chinese-English parallel corpus of 218 million

English words. Phrase pairs are extracted by fol-

lowing the method described in (Och and Ney,

2004) where all contiguous phrase pairs having

consistent alignments are extraction candidates.

The resulting phrase table is of high quality; both

the alignment models and phrase extraction meth-

449

ods have been shown to produce very good results

for SMT. Using these pairs we build paraphrase

sets by joining together all English phrases with

the same Chinese translation. Figure 2 shows an

example word/phrase alignment for two parallel

sentence pairs from our corpus where the phrases

“blowing up” and “bombing” have the same Chi-

nese translation. On the right side of the figure we

show the paraphrase set which contains these two

phrases, which is typical in our collection of ex-

tracted paraphrases.

5 Summary Comparison in ParaEval

This section describes the process of comparing a

peer summary against a reference summary and the

summary grading mechanism.

5.1 Description

We adopt a three-tier matching strategy for sum-

mary comparison. The score received by a peer

summary is the ratio of the number of reference

words matched to the total number of words in the

reference summary. The total number of matched

reference words is the sum of matched words in

reference throughout all three tiers. At the top

level, favoring high recall coverage, we perform an

optimal search to find multi-word paraphrase

matches between phrases in the reference summary

and those in the peer. Then a greedy search is per-

formed to find single-word paraphrase/synonym

matches among the remaining text. Operations

conducted in these two top levels are marked as

linked rounded rectangles in Figure 3. At the bot-

tom level, we find lexical identity matches, as

marked in rectangles in the example. If no para-

phrases are found, this last level provides a guar-

antee of lexical comparison that is equivalent to

what other automated systems give. In our system,

the bottom level currently performs unigram

matching. Thus, we are ensured with at least a

ROUGE-1 type of summary comparison. Alterna-

tively, equivalence of other ROUGE configura-

tions can replace the ROUGE-1 implementation.

There is no theoretical reason why the first two

levels should not merge. But due to high computa-

tional cost in modeling an optimal search, the sepa-

ration is needed. We explain this in detail below.

5.2 Multi-Word Paraphrase Matching

In this section we describe the algorithm that per-

forms the multi-word paraphrase matching be-

tween phrases from reference and peer summaries.

Using the example in Figure 3, this algorithm cre-

ates the phrases shown in the rounded rectangles

and establishes the appropriate links indicating

corresponding paraphrase matches.

Problem Description

Measuring content coverage of a peer summary

using a single reference summary requires com-

puting the recall score of how much information

from the reference summary is included in the

peer. A summary unit, either from reference or

peer, cannot be matched for more than once. For

Figure 2. An example of paraphrase extraction.

Figure 3. Comparison of summaries.

450

example, the phrase “imposed sanctions on Libya”

(r1) in Figure 3’s reference summary was matched

with the peer summary’s “voted sanctions against

Libya” (p1). If later in the peer summary there is

another phrase p2 that is also a paraphrase of r1, the

match of r1 cannot be counted twice. Conversely,

double counting is not permissible for

phrase/words in the peer summary, either.

We conceptualize the comparison of peer

against reference as a task that is to complete over

several time intervals. If the reference summary

contains n sentences, there will be n time intervals,

where at time ti, phrases from a particular sentence

i of the reference summary are being considered

with all possible phrases from the peer summary

for paraphrase matches. A decision needs to be

made at each time interval:

• Do we employ a local greedy match algo-

rithm that is recall generous (preferring more

matched words from reference) towards only the

reference sentence currently being analyzed,

• Or do we need to explore globally, in-

specting all reference sentences and find the best

overall matching combinations?

Consider the scenario in Figure 4:
1) at t0: L(p1 = r2) > L(p2 = r1) and r2 contains r1.

A local search algorithm leads to match(p1, r2). L() indi-

cates the number of words in reference matched by the

peer phrase through paraphrase matching and match()

indicates a paraphrase match has occurred (more in the

figure).

2) at t1: L(p1 = r3) > L(p1 = r2). A global algo-

rithm reverses the decision match(p1, r2) made at t0 and

concludes match(p1, r3) and match(p2, r1) . A local

search algorithm would have returned no match.

Clearly, the global search algorithm achieves

higher overall recall (in words). The matching of

paraphrases between a reference and its peer be-

comes a global optimization problem, maximizing

the content coverage of the peer compared in refer-

ence.

Solution Model

We use dynamic programming to derive the solu-

tion of finding the best paraphrase-matching com-

binations. The optimization problem is as follows:

Sentences from a reference summary and a peer

summary can be broken into phrases of various

lengths. A paraphrase lookup table is used to find

whether a reference phrase and a peer phrase are

paraphrases of each other. What is the optimal

paraphrase matching combination of phrases from

reference and peer that gives the highest recall

score (in number of matched reference words) for

this given peer? The solution should be recall ori-

ented (favoring a peer phrase that matches more

reference words than those match less).

Following (Trick, 1997), the solution can be

characterized as:

1) This problem can be divided into n stages

corresponding to the n sentences of the reference

summary. At each stage, a decision is required to

determine the best combination of matched para-

phrases between the reference sentence and the

entire peer summary that results in no double

counting of phrases on the peer side. There is no

double counting of reference phrases across stages

since we are processing one reference sentence at a

time and are finding the best paraphrase matches

using the entire peer summary. As long as there is

no double counting in peers, we are guaranteed to

have none in reference, either.

2) At each stage, we define a number of pos-

sible states as follows. If, out of all possible

phrases of any length extracted from the reference

sentence, m phrases were found to have matching

paraphrases in the peer summary, then a state is

any subset of the m phrases.

3) Since no double counting in matched

phrases/words is allowed in either the reference

summary or the peer summary, the decision of

which phrases (leftover text segments in reference

Pj and ri represent phrases chosen for paraphrase
matching from peer and reference respectively.

Pj = ri indicates that the phrase Pj from peer is
found to be a paraphrase to the phrase ri from
reference.

L(Pj = ri) indicates the number of words matched
by Pj in ri when they are found to be paraphrases of
each other.

L(Pj = ri) and L(Pj = ri+1) may not be equal if the
number of words in ri, indicated by L(ri), does not
equal to the number of words in ri+1, indicated by
L(ri+1).

Figure 4. Local vs. global paraphrase matching.

451

and in peer) are allowed to match for the next stage

is made in the current stage.

4) Principle of optimality: at a given state, it

is not necessary to know what matches occurred at

previous stages, only on the accumulated recall

score (matched reference words) from previous

stages and what text segments (phrases) in peer

have not been taken/matched in previous stages.

5) There exists a recursive relationship that

identifies the optimal decision for stage s (out of n

total stages), given that stage s+1 has already been

solved.

6) The final stage, n (last sentence in refer-

ence), is solved by choosing the state that has the

highest accumulated recall score and yet resulted

no double counting in any phrase/word in peer the

summary.

Figure 5 demonstrates the optimal solution (12

reference words matched) for the example shown

in Figure 4. We can express the calculations in the

following formulas:

where fy(xb) denotes the optimal recall coverage

(number of words in the reference summary

matched by the phrases from the peer summary) at

state xb in stage y. r(xb) is the recall coverage given

state xb. And c(xb) records the phrases matched in

peer with no double counting, given state xb.

5.3 Synonym Matching

All paraphrases whose pairings do not involve

multi-word to multi-word matching are called

synonyms in our experiment. Since these phrases

have either a n-to-1 or 1-to-n matching ratio (such

as the phrases “blowing up” and “bombing”), a

greedy algorithm favoring higher recall coverage

reduces the state creation and stage comparison

costs associated with the optimal procedure

(O(m
6
): O(m

3
) for state creation, and for 2 stages at

any time)). The paraphrase table described in Sec-

tion 4 is used.

 Synonym matching is performed only on parts

of the reference and peer summaries that were not

matched from the multi-word paraphrase-matching

phase.

5.4 Lexical Matching

This matching phase performs straightforward

lexical matching, as exemplified by the text frag-

ments marked in rectangles in Figure 3. Unigrams

are used as the units for counting matches in ac-

cordance with the previous two matching phases.

 During all three matching phases, we employed

a ROUGE-1 style of counting. Other alternatives,

such as ROUGE-2, ROUGE-SU4, etc., can easily

be adapted to each phase.

6 Evaluation of ParaEval

To evaluate and validate the effectiveness of an

automatic evaluation metric, it is necessary to

show that automatic evaluations correlate with

human assessments highly, positively, and consis-

tently (Lin and Hovy, 2003). In other words, an

automatic evaluation procedure should be able to

distinguish good and bad summarization systems

by assigning scores with close resemblance to hu-

mans’ assessments.

6.1 Document Understanding Conference

The Document Understanding Conference has

provided large-scale evaluations on both human-

created and system-generated summaries annually.

Research teams are invited to participate in solving

summarization problems with their systems. Sys-

tem-generated summaries are then assessed by

humans and/or automatic evaluation procedures.

The collection of human judgments on systems and

their summaries has provided a test-bed for devel-

oping and validating automated summary grading

methods (Lin and Hovy, 2003; Hovy et al., 2005).

The correlations reported by ROUGE and BE

show that the evaluation correlations between these

two systems and DUC human evaluations are

much higher on single-document summarization

tasks. One possible explanation is that when sum-

Figure 5. Solution for the example in Figure 4.

452

marizing from only one source (text), both human-

and system-generated summaries are mostly ex-

tractive. The reason for humans to take phrases (or

maybe even sentences) verbatim is that there is less

motivation to abstract when the input is not highly

redundant, in contrast to input for multi-document

summarization tasks, which we speculate allows

more abstracting. ROUGE and BE both facilitate

lexical n-gram matching, hence, achieving amaz-

ing correlations. Since our baseline matching strat-

egy is lexically based when paraphrase matching is

not activated, validation on single-doc summariza-

tion results is not repeated in our experiment.

6.2 Validation and Discussion

We use summary judgments from DUC2003’s

multi-document summarization (MDS) task to

evaluate ParaEval. During DUC2003, participating

systems created short summaries (~100 words) for

30 document sets. For each set, one assessor-

written summary was used as the reference to

compare peer summaries created by 18 automatic

systems (including baselines) and 3 other human-

written summaries. A system ranking was pro-

duced by taking the averaged performance on all

summaries created by systems. This evaluation

process is replicated in our validation setup for

ParaEval. In all, 630 summary pairs were com-

pared. Pearson’s correlation coefficient is com-

puted for the validation tests, using DUC2003

assessors’ results as the gold standard.

Table 1 illustrates the correlation figures from

the DUC2003 test set. ParaEval-para_only shows

the correlation result when using only paraphrase

and synonym matching, without the baseline uni-

gram matching. ParaEval-2 uses multi-word para-

phrase matching and unigram matching, omitting

the greedy synonym-matching phrase. ParaEval-3

incorporates matching at all three granularity lev-

els.

We see that the current implementation of

ParaEval closely resembles the way ROUGE-1

differentiates system-generated summaries. We

believe this is due to the identical calculations of

recall scores. The score that a peer summary re-

ceives from ParaEval depends on the number of

words matched in the reference summary from its

paraphrase, synonym, and unigram matches. The

counting of individual words in reference indicates

a ROUGE-1 design in grading. However, a de-

tailed examination on individual reference-peer

comparisons shows that paraphrase and synonym

comparisons and matches, in addition to lexical n-

gram matching, do measure a higher level of con-

tent coverage. This is demonstrated in Figure 6a

and b. Strict unigram matching reflects the content

retained by a peer summary mostly in the 0.2-0.4

ranges in recall, shown as dark-colored dots in the

graphs. Allowing paraphrase and synonym match-

ing increases the detection of peer coverage to the

range of 0.3-0.5, shown as light-colored dots.

We conducted a manual evaluation to further

examine the paraphrases being matched. Using 10

summaries from the Pyramid data, we asked three

human subjects to judge the validity of 128 (ran-

domly selected) paraphrase pairs extracted and

identified by ParaEval. Each pair of paraphrases

was coupled with its respective sentences as con-

texts. All paraphrases judged were multi-word.

ParaEval received an average precision of 68.0%.

The complete agreement between judges is 0.582

according to the Kappa coefficient (Cohen, 1960).

In Figure 7, we show two examples that the human

judges consider to be good paraphrases produced

and matched by ParaEval. Judges voiced difficul-

DUC-2003 Pearson

ROUGE-1 0.622

ParaEval-para_only 0.41

ParaEval-2 0.651

ParaEval-3 0.657

Table 1. Correlation with DUC 2003 MDS results.

Human Summaries: ParaEval vs. ROUGE-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DUC2003 Summary Writers

R
e
c
a
ll
 (

%
 w

o
r
d

 m
a
tc

h
)

ROUGE-1 Scores

ParaEval-3 Scores

System Summaries: ParaEval vs. ROUGE-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DUC2003 Systems

R
e
c
a
ll
 (

%
 w

o
r
d

 m
a
tc

h
)

ROUGE-1 Scores

ParaEval-3 Scores

a).
Human-

written

summaries.

b).
System-

generated

summaries.

Figure 6. A detailed look at the scores assigned by

lexical and paraphrase/synonym comparisons.

453

Figure 7. Paraphrases matched by ParaEval.

ties in determining “semantic equivalence.” There

were cases where paraphrases would be generally

interchangeable but could not be matched because

of non-semantic equivalence in their contexts. And

there were paraphrases that were determined as

matches, but if taken out of context, would not be

direct replacements of each other. These two situa-

tions are where the judges mostly disagreed.

7 Conclusion and Future Work

In this paper, we have described an automatic

summarization evaluation method, ParaEval, that

facilitates paraphrase matching using a large do-

main-independent paraphrase table extracted from

a bilingual parallel corpus. The three-layer match-

ing strategy guarantees a ROUGE-like baseline

comparison if paraphrase matching fails.

The paraphrase extraction module from the cur-

rent implementation of ParaEval does not dis-

criminate among the phrases that are found to be

paraphrases of one another. We wish to incorporate

the probabilistic paraphrase extraction model from

(Bannard and Callison-Burch, 2005) to better ap-

proximate the relations between paraphrases. This

adaptation will also lead to a stochastic model for

the low-level lexical matching and scoring.

We chose English-Chinese MT parallel data be-

cause they are news-oriented which coincides with

the task genre from DUC. However, it is unknown

how large a parallel corpus is sufficient in provid-

ing a paraphrase collection good enough to help

the evaluation process. The quality of the para-

phrase table is also affected by changes in the do-

main and language pair of the MT parallel data.

We plan to use ParaEval to investigate the impact

of these changes on paraphrase quality under the

assumption that better paraphrase collections lead

to better summary evaluation results.

The immediate impact and continuation of the

described work would be to incorporate paraphrase

matching and extraction into the summary creation

process. And with ParaEval, it is possible for us to

evaluate systems that do incorporate some level of

abstraction, especially paraphrasing.

References

Bannard, C. and C. Callison-Burch. 2005. Paraphrasing with bilingual

parallel corpora. Proceedings of ACL-2005.

Barzilay, R. and K. McKeown. 2001. Extracting paraphrases from a

parallel corpus. Proceedings of ACL/EACL-2001.

Brown, P. F., S. A. Della Pietra, V. J. Della Pietra, R. L. Mercer.

1993. The mathematics of machine translation: Parameter estima-

tion. Computational Linguistics, 19(2): 263—311, 1993.

Cohen, J. 1960. A coefficient of agreement for nominal scales. Edu-

cation and Psychological Measurement, 43(6):37—46.

Diab, M. and P. Resnik. 2002. An unsupervised method for word

sense tagging using parallel corpora. Proceedings of ACL-2002.

DUC. 2001—2005. Document Understanding Conferences.

Hermjakob, U., A. Echihabi, and D. Marcu. 2002. Natural language

based reformulation resource and web exploitation for question

answering. Proceedings of TREC-2002.

Hovy, E, C.Y. Lin, and L. Zhou. 2005. Evaluating DUC 2005 using

basic elements. Proceedings of DUC-2005.

Hovy, E., C.Y. Lin, L. Zhou, and J. Fukumoto. 2005a. Basic Ele-

ments. http://www.isi.edu/~cyl/BE.

Lin, C.Y. 2001. http://www.isi.edu/~cyl/SEE.

Lin, C.Y. and E. Hovy. 2003. Automatic evaluation of summaries

using n-gram co-occurrence statistics. Proceedings of the HLT-

2003.

Miller, G.A., R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller.

1990. Introduction to WordNet: An on-line lexical database. Inter-

national Journal of Lexicography, 3(4): 235—245.

Nenkova, A. and R. Passonneau. 2004. Evaluating content selection in

summarization: the pyramid method. Proceedings of the HLT-

NAACL 2004.

Och, F. J. and H. Ney. 2003. A systematic comparison of various

statistical alignment models. Computational Linguistics, 29(1): 19-

—51, 2003.

Och, F. J. and H. Ney. 2004. The alignment template approach to

statistical machine translation. Computational Linguistics, 30(4),

2004.

Pang, B. , K. Knight and D. Marcu. 2003. Syntax-based alignment of

multiple translations: extracting paraphrases and generating new

sentences. Proceedings of HLT/NAACL-2003.

Papineni, K., S. Roukos, T. Ward, and W. J. Zhu. IBM research report

Bleu: a method for automatic evaluation of machine translation

IBM Research Division Technical Report, RC22176, 2001.

Trick, M. A. 1997. A tutorial on dynamic program-

ming.http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html.

Van Halteren, H. and S. Teufel. 2003. Examining the consensus be-

tween human summaries: initial experiments with factoid analysis.

Proceedings of HLT-2003.

454

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 455–462,
New York, June 2006.c©2006 Association for Computational Linguistics

Paraphrasing for Automatic Evaluation

David Kauchak
Department of Computer Science

University of California, San Diego
dkauchak@cs.ucsd.edu

Regina Barzilay
CSAIL

Massachusetts Institute of Technology
regina@csail.mit.edu

Abstract

This paper studies the impact of para-
phrases on the accuracy of automatic eval-
uation. Given a reference sentence and a
machine-generated sentence, we seek to
find a paraphrase of the reference sen-
tence that is closer in wording to the ma-
chine output than the original reference.
We apply our paraphrasing method in the
context of machine translation evaluation.
Our experiments show that the use of
a paraphrased synthetic reference refines
the accuracy of automatic evaluation. We
also found a strong connection between
the quality of automatic paraphrases as
judged by humans and their contribution
to automatic evaluation.

1 Introduction

The use of automatic methods for evaluating
machine-generated text is quickly becoming main-
stream in natural language processing. The most
notable examples in this category include measures
such as BLEU and ROUGE which drive research
in the machine translation and text summarization
communities. These methods assess the quality of
a machine-generated output by considering its simi-
larity to a reference text written by a human. Ideally,
the similarity would reflect the semantic proximity
between the two. In practice, this comparison breaks
down to n-gram overlap between the reference and
the machine output.

1a. However, Israel’s reply failed to completely
clear the U.S. suspicions.
1b. However, Israeli answer unable to fully
remove the doubts.

Table 1: A reference sentence and corresponding
machine translation from the NIST 2004 MT eval-
uation.

Consider the human-written translation and the
machine translation of the same Chinese sentence
shown in Table 1. While the two translations con-
vey the same meaning, they share only auxiliary
words. Clearly, any measure based on word over-
lap will penalize a system for generating such a sen-
tence. The question is whether such cases are com-
mon phenomena or infrequent exceptions. Empiri-
cal evidence supports the former. Analyzing 10,728
reference translation pairs1 used in the NIST 2004
machine translation evaluation, we found that only
21 (less than 0.2%) of them are identical. Moreover,
60% of the pairs differ in at least 11 words. These
statistics suggest that without accounting for para-
phrases, automatic evaluation measures may never
reach the accuracy of human evaluation.

As a solution to this problem, researchers use
multiple references to refine automatic evaluation.
Papineni et al. (2002) shows that expanding the
number of references reduces the gap between au-
tomatic and human evaluation. However, very few
human annotated sets are augmented with multiple
references and those that are available are relatively

1Each pair included different translations of the same sen-
tence, produced by two human translators.

455

small in size. Moreover, access to several references
does not guarantee that the references will include
the same words that appear in machine-generated
sentences.

In this paper, we explore the use of paraphras-
ing methods for refinement of automatic evalua-
tion techniques. Given a reference sentence and a
machine-generated sentence, we seek to find a para-
phrase of the reference sentence that is closer in
wording to the machine output than the original ref-
erence. For instance, given the pair of sentences in
Table 1, we automatically transform the reference
sentence (1a.) into

However, Israel’s answer failed to com-
pletely remove the U.S. suspicions.

Thus, among many possible paraphrases of the
reference, we are interested only in those that use
words appearing in the system output. Our para-
phrasing algorithm is based on the substitute in con-
text strategy. First, the algorithm identifies pairs of
words from the reference and the system output that
could potentially form paraphrases. We select these
candidates using existing lexico-semantic resources
such as WordNet. Next, the algorithm tests whether
the candidate paraphrase is admissible in the con-
text of the reference sentence. Since even synonyms
cannot be substituted in any context (Edmonds and
Hirst, 2002), this filtering step is necessary. We pre-
dict whether a word is appropriate in a new context
by analyzing its distributional properties in a large
body of text. Finally, paraphrases that pass the filter-
ing stage are used to rewrite the reference sentence.

We apply our paraphrasing method in the context
of machine translation evaluation. Using this strat-
egy, we generate a new sentence for every pair of
human and machine translated sentences. This syn-
thetic reference then replaces the original human ref-
erence in automatic evaluation.

The key findings of our work are as follows:
(1) Automatically generated paraphrases im-
prove the accuracy of the automatic evaluation
methods. Our experiments show that evaluation
based on paraphrased references gives a better ap-
proximation of human judgments than evaluation
that uses original references.

(2) The quality of automatic paraphrases de-
termines their contribution to automatic evalua-

tion. By analyzing several paraphrasing resources,
we found that the accuracy and coverage of a para-
phrasing method correlate with its utility for auto-
matic MT evaluation.

Our results suggest that researchers may find it
useful to augment standard measures such as BLEU
and ROUGE with paraphrasing information thereby
taking more semantic knowledge into account.

In the following section, we provide an overview
of existing work on automatic paraphrasing. We
then describe our paraphrasing algorithm and ex-
plain how it can be used in an automatic evaluation
setting. Next, we present our experimental frame-
work and data and conclude by presenting and dis-
cussing our results.

2 Related Work

Automatic Paraphrasing and Entailment Our
work is closely related to research in automatic para-
phrasing, in particular, to sentence level paraphras-
ing (Barzilay and Lee, 2003; Pang et al., 2003; Quirk
et al., 2004). Most of these approaches learn para-
phrases from a parallel or comparable monolingual
corpora. Instances of such corpora include multiple
English translations of the same source text writ-
ten in a foreign language, and different news arti-
cles about the same event. For example, Pang et
al. (2003) expand a set of reference translations us-
ing syntactic alignment, and generate new reference
sentences that could be used in automatic evaluation.

Our approach differs from traditional work on au-
tomatic paraphrasing in goal and methodology. Un-
like previous approaches, we are not aiming to pro-
duce any paraphrase of a given sentence since para-
phrases induced from a parallel corpus do not nec-
essarily produce a rewriting that makes a reference
closer to the system output. Thus, we focus on
words that appear in the system output and aim to
determine whether they can be used to rewrite a ref-
erence sentence.

Our work also has interesting connections with
research on automatic textual entailment (Dagan et
al., 2005), where the goal is to determine whether
a given sentence can be inferred from text. While
we are not assessing an inference relation between
a reference and a system output, the two tasks
face similar challenges. Methods for entailment

456

recognition extensively rely on lexico-semantic re-
sources (Haghighi et al., 2005; Harabagiu et al.,
2001), and we believe that our method for contex-
tual substitution can be beneficial in that context.

Automatic Evaluation Measures A variety of au-
tomatic evaluation methods have been recently pro-
posed in the machine translation community (NIST,
2002; Melamed et al., 2003; Papineni et al., 2002).
All these metrics compute n-gram overlap between
a reference and a system output, but measure the
overlap in different ways. Our method for reference
paraphrasing can be combined with any of these
metrics. In this paper, we report experiments with
BLEU due to its wide use in the machine translation
community.

Recently, researchers have explored additional
knowledge sources that could enhance automatic
evaluation. Examples of such knowledge sources in-
clude stemming and TF-IDF weighting (Babych and
Hartley, 2004; Banerjee and Lavie, 2005). Our work
complements these approaches: we focus on the im-
pact of paraphrases, and study their contribution to
the accuracy of automatic evaluation.

3 Methods

The input to our method consists of a reference sen-
tence R = r1 . . . rm and a system-generated sen-
tence W = w1 . . . wp whose words form the sets R
and W respectively. The output of the model is a
synthetic reference sentence SRW that preserves the
meaning of R and has maximal word overlap with
W . We generate such a sentence by substituting
words from R with contextually equivalent words
from W .

Our algorithm first selects pairs of candidate word
paraphrases, and then checks the likelihood of their
substitution in the context of the reference sentence.

Candidate Selection We assume that words from
the reference sentence that already occur in the sys-
tem generated sentence should not be considered
for substitution. Therefore, we focus on unmatched
pairs of the form {(r, w)|r ∈ R−W, w ∈ W−R}.
From this pool, we select candidate pairs whose
members exhibit high semantic proximity. In our
experiments we compute semantic similarity us-
ing WordNet, a large-scale lexico-semantic resource
employed in many NLP applications for similar pur-

2a. It is hard to believe that such tremendous
changes have taken place for those people and
lands that I have never stopped missing while
living abroad.
2b. For someone born here but has been
sentimentally attached to a foreign country
far from home, it is difficult to believe
this kind of changes.

Table 2: A reference sentence and a corresponding
machine translation. Candidate paraphrases are in
bold.

poses. We consider a pair as a substitution candidate
if its members are synonyms in WordNet.

Applying this step to the two sentences in Table 2,
we obtain two candidate pairs (home, place) and
(difficult, hard).

Contextual Substitution The next step is to de-
termine for each candidate pair (ri, wj) whether
wj is a valid substitution for ri in the context of
r1 . . . ri−12ri+1 . . . rm. This filtering step is essen-
tial because synonyms are not universally substi-
tutable2 . Consider the candidate pair (home, place)
from our example (see Table 2). Words home and
place are paraphrases in the sense of “habitat”, but
in the reference sentence “place” occurs in a differ-
ent sense, being part of the collocation “take place”.
In this case, the pair (home, place) cannot be used
to rewrite the reference sentence.

We formulate contextual substitution as a
binary classification task: given a context
r1 . . . ri−12ri+1 . . . rm, we aim to predict whether
wj can occur in this context at position i. For
each candidate word wj we train a classifier that
models contextual preferences of wj . To train such
a classifier, we collect a large corpus of sentences
that contain the word wj and an equal number of
randomly extracted sentences that do not contain
this word. The former category forms positive
instances, while the latter represents the negative.
For the negative examples, a random position in
a sentence is selected for extracting the context.
This corpus is acquired automatically, and does not
require any manual annotations.

2This can explain why previous attempts to use WordNet for
generating sentence-level paraphrases (Barzilay and Lee, 2003;
Quirk et al., 2004) were unsuccessful.

457

We represent context by n-grams and local col-
locations, features typically used in supervised
word sense disambiguation. Both n-grams and
collocations exclude the word wj . An n-gram
is a sequence of n adjacent words appearing in
r1 . . . ri−12ri+1 . . . rm. A local collocation also
takes into account the position of an n-gram with
respect to the target word. To compute local colloca-
tions for a word at position i, we extract all n-grams
(n = 1 . . . 4) beginning at position i− 2 and ending
at position i + 2. To make these position dependent,
we prepend each of them with the length and starting
position.

Once the classifier3 for wj is trained, we ap-
ply it to the context r1 . . . ri−12ri+1 . . . rm. For
positive predictions, we rewrite the string as
r1 . . . ri−1wjri+1 . . . rm. In this formulation, all
substitutions are tested independently.

For the example from Table 2, only the pair
(difficult, hard) passes this filter, and thus the sys-
tem produces the following synthetic reference:

For someone born here but has been senti-
mentally attached to a foreign country far
from home, it is hard to believe this kind
of changes.

The synthetic reference keeps the meaning of the
original reference, but has a higher word overlap
with the system output.

One of the implications of this design is the need
to develop a large number of classifiers to test con-
textual substitutions. For each word to be inserted
into a reference sentence, we need to train a sepa-
rate classifier. In practice, this requirement is not a
significant burden. The training is done off-line and
only once, and testing for contextual substitution is
instantaneous. Moreover, the first filtering step ef-
fectively reduces the number of potential candidates.
For example, to apply this approach to the 71,520
sentence pairs from the MT evaluation set (described
in Section 4.1.2), we had to train 2,380 classifiers.

We also discovered that the key to the success of
this approach is the size of the corpus used for train-
ing contextual classifiers. We derived training cor-
pora from the English Gigaword corpus, and the av-
erage size of a corpus for one classifier is 255,000

3In our experiments, we used the publicly available BoosT-
exter classifier (Schapire and Singer, 2000) for this task.

sentences. We do not attempt to substitute any words
that have less that 10,000 appearances in the Giga-
word corpus.

4 Experiments

Our primary goal is to investigate the impact of
machine-generated paraphrases on the accuracy of
automatic evaluation. We focus on automatic evalu-
ation of machine translation due to the availability of
human annotated data in that domain. The hypoth-
esis is that by using a synthetic reference transla-
tion, automatic measures approximate better human
evaluation. In section 4.2, we test this hypothesis
by comparing the performance of BLEU scores with
and without synthetic references.

Our secondary goal is to study the relationship
between the quality of paraphrases and their con-
tribution to the performance of automatic machine
translation evaluation. In section 4.3, we present a
manual evaluation of several paraphrasing methods
and show a close connection between intrinsic and
extrinsic assessments of these methods.

4.1 Experimental Set-Up

We begin by describing relevant background infor-
mation, including the BLEU evaluation method, the
test data set, and the alternative paraphrasing meth-
ods considered in our experiments.

4.1.1 BLEU
BLEU is the basic evaluation measure that we use

in our experiments. It is the geometric average of
the n-gram precisions of candidate sentences with
respect to the corresponding reference sentences,
times a brevity penalty. The BLEU score is com-
puted as follows:

BLEU = BP · 4

√

√

√

√

4
∏

n=1

pn

BP = min(1, e1−r/c),

where pn is the n-gram precision, c is the cardinality
of the set of candidate sentences and r is the size of
the smallest set of reference sentences.

To augment BLEU evaluation with paraphrasing
information, we substitute each reference with the
corresponding synthetic reference.

458

4.1.2 Data
We use the Chinese portion of the 2004 NIST

MT dataset. This portion contains 200 Chinese doc-
uments, subdivided into a total of 1788 segments.
Each segment is translated by ten machine transla-
tion systems and by four human translators. A quar-
ter of the machine-translated segments are scored by
human evaluators on a one-to-five scale along two
dimensions: adequacy and fluency. We use only ad-
equacy scores, which measure how well content is
preserved in the translation.

4.1.3 Alternative Paraphrasing Techniques
To investigate the effect of paraphrase quality on

automatic evaluation, we consider two alternative
paraphrasing resources: Latent Semantic Analysis
(LSA), and Brown clustering (Brown et al., 1992).
These techniques are widely used in NLP applica-
tions, including language modeling, information ex-
traction, and dialogue processing (Haghighi et al.,
2005; Serafin and Eugenio, 2004; Miller et al.,
2004). Both techniques are based on distributional
similarity. The Brown clustering is computed by
considering mutual information between adjacent
words. LSA is a dimensionality reduction technique
that projects a word co-occurrence matrix to lower
dimensions. This lower dimensional representation
is then used with standard similarity measures to
cluster the data. Two words are considered to be a
paraphrase pair if they appear in the same cluster.

We construct 1000 clusters employing the Brown
method on 112 million words from the North Amer-
ican New York Times corpus. We keep the top 20
most frequent words for each cluster as paraphrases.
To generate LSA paraphrases, we used the Infomap
software4 on a 34 million word collection of arti-
cles from the American News Text corpus. We used
the default parameter settings: a 20,000 word vocab-
ulary, the 1000 most frequent words (minus a stop-
list) for features, a 15 word context window on either
side of a word, a 100 feature reduced representation,
and the 20 most similar words as paraphrases.

While we experimented with several parameter
settings for LSA and Brown methods, we do not
claim that the selected settings are necessarily opti-
mal. However, these methods present sensible com-

4http://infomap-nlp.sourceforge.net

Method 1 reference 2 references
BLEU 0.9657 0.9743
WordNet 0.9674 0.9763
ContextWN 0.9677 0.9764
LSA 0.9652 0.9736
Brown 0.9662 0.9744

Table 4: Pearson adequacy correlation scores for
rewriting using one and two references, averaged
over ten runs.

Method vs. BLEU vs. ContextWN
WordNet // 44

ContextWN // -
LSA X 44

Brown // 4

Table 5: Paired t-test significance for all methods
compared to BLEU as well as our method for one
reference. Two triangles indicates significant at the
99% confidence level, one triangle at the 95% con-
fidence level and X not significant. Triangles point
towards the better method.

parison points for understanding the relationship be-
tween paraphrase quality and its impact on auto-
matic evaluation.

Table 3 shows synthetic references produced by
the different paraphrasing methods.

4.2 Impact of Paraphrases on Machine
Translation Evaluation

The standard way to analyze the performance of an
evaluation metric in machine translation is to com-
pute the Pearson correlation between the automatic
metric and human scores (Papineni et al., 2002;
Koehn, 2004; Lin and Och, 2004; Stent et al., 2005).
Pearson correlation estimates how linearly depen-
dent two sets of values are. The Pearson correlation
values range from 1, when the scores are perfectly
linearly correlated, to -1, in the case of inversely cor-
related scores.

To calculate the Pearson correlation, we create
a document by concatenating 300 segments. This
strategy is commonly used in MT evaluation, be-
cause of BLEU’s well-known problems with docu-
ments of small size (Papineni et al., 2002; Koehn,
2004). For each of the ten MT system translations,

459

Reference: The monthly magazine “Choices” has won the deep trust of the residents. The current
Internet edition of “Choices” will give full play to its functions and will help
consumers get quick access to market information.

System: The public has a lot of faith in the “Choice” monthly magazine and the Council is now
working on a web version. This will enhance the magazine’s function and help consumer
to acquire more up-to-date market information.

WordNet The monthly magazine “Choices” has won the deep faith of the residents. The current
Internet version of “Choices” will give full play to its functions and will help
consumers acquire quick access to market information.

ContextWN The monthly magazine “Choices” has won the deep trust of the residents. The current
Internet version of “Choices” will give full play to its functions and will help
consumers acquire quick access to market information.

LSA The monthly magazine “Choice” has won the deep trust of the residents. The current
web edition of “Choice” will give full play to its functions and will help
consumer get quick access to market information.

Brown The monthly magazine “Choices” has won the deep trust of the residents. The current
Internet version of “Choices” will give full play to its functions and will help
consumers get quick access to market information.

Table 3: Sample of paraphrasings produced by each method based on the corresponding system translation.
Paraphrased words are in bold and filtered words underlined.

the evaluation metric score is calculated on the docu-
ment and the corresponding human adequacy score
is calculated as the average human score over the
segments. The Pearson correlation is calculated over
these ten pairs (Papineni et al., 2002; Stent et al.,
2005). This process is repeated for ten different
documents created by the same process. Finally, a
paired t-test is calculated over these ten different cor-
relation scores to compute statistical significance.

Table 4 shows Pearson correlation scores for
BLEU and the four paraphrased augmentations,
averaged over ten runs.5 In all ten tests, our
method based on contextual rewriting (ContextWN)
improves the correlation with human scores over
BLEU. Moreover, in nine out of ten tests Contex-
tWN outperforms the method based on WordNet.
The results of statistical significance testing are sum-
marized in Table 5. All the paraphrasing methods
except LSA, exhibit higher correlation with human
scores than plain BLEU. Our method significantly
outperforms BLEU, and all the other paraphrase-
based metrics. This consistent improvement con-
firms the importance of contextual filtering.

5Depending on the experimental setup, correlation values
can vary widely. Our scores fall within the range of previous
researchers (Papineni et al., 2002; Lin and Och, 2004).

The third column in Table 4 shows that auto-
matic paraphrasing continues to improve correlation
scores even when two human references are para-
phrased using our method.

4.3 Evaluation of Paraphrase Quality

In the last section, we saw significant variations
in MT evaluation performance when different para-
phrasing methods were used to generate a synthetic
reference. In this section, we examine the correla-
tion between the quality of automatically generated
paraphrases and their contribution to automatic eval-
uation. We analyze how the substitution frequency
and the accuracy of those substitutions contributes
to a method’s performance.

We compute the substitution frequency of an au-
tomatic paraphrasing method by counting the num-
ber of words it rewrites in a set of reference sen-
tences. Table 6 shows the substitution frequency and
the corresponding BLEU score. The substitution
frequency varies greatly across different methods —
LSA is by far the most prolific rewriter, while Brown
produces very few substitutions. As expected, the
more paraphrases identified, the higher the BLEU
score for the method. However, this increase does

460

Method Score Substitutions
BLEU 0.0913 -
WordNet 0.0969 994
ContextWN 0.0962 742
LSA 0.992 2080
Brown 0.921 117

Table 6: Scores and the number of substitutions
made for all 1788 segments, averaged over the dif-
ferent MT system translations

Method Judge 1 Judge 2 Kappa
accuracy accuracy

WordNet 63.5% 62.5% 0.74
ContextWN 75% 76.0% 0.69
LSA 30% 31.5% 0.73
Brown 56% 56% 0.72

Table 7: Accuracy scores by two human judges as
well as the Kappa coefficient of agreement.

not translate into better evaluation performance. For
instance, our contextual filtering method removes
approximately a quarter of the paraphrases sug-
gested by WordNet and yields a better evaluation
measure. These results suggest that the substitu-
tion frequency cannot predict the utility value of the
paraphrasing method.

Accuracy measures the correctness of the pro-
posed substitutions in the context of a reference sen-
tence. To evaluate the accuracy of different para-
phrasing methods, we randomly extracted 200 para-
phrasing examples from each method. A paraphrase
example consists of a reference sentence, a refer-
ence word to be paraphrased and a proposed para-
phrase of that reference (that actually occurred in a
corresponding system translation). The judge was
instructed to mark a substitution as correct only if
the substitution was both semantically and grammat-
ically correct in the context of the original reference
sentence.

Paraphrases produced by the four methods were
judged by two native English speakers. The pairs
were presented in random order, and the judges were
not told which system produced a given pair. We
employ a commonly used measure, Kappa, to as-
sess agreement between the judges. We found that

negative positive
filtered 40 27
non-filtered 33 100

Table 8: Confusion matrix for the context filtering
method on a random sample of 200 examples la-
beled by the first judge.

on all the four sets the Kappa value was around 0.7,
which corresponds to substantial agreement (Landis
and Koch, 1977).

As Table 7 shows, the ranking between the ac-
curacy of the different paraphrasing methods mir-
rors the ranking of the corresponding MT evalua-
tion methods shown in Table 4. The paraphrasing
method with the highest accuracy, ContextWN, con-
tributes most significantly to the evaluation perfor-
mance of BLEU. Interestingly, even methods with
moderate accuracy, i.e. 63% for WordNet, have a
positive influence on the BLEU metric. At the same
time, poor paraphrasing accuracy, such as LSA with
30%, does hurt the performance of automatic evalu-
ation.

To further understand the contribution of contex-
tual filtering, we compare the substitutions made by
WordNet and ContextWN on the same set of sen-
tences. Among the 200 paraphrases proposed by
WordNet, 73 (36.5%) were identified as incorrect by
human judges. As the confusion matrix in Table 8
shows, 40 (54.5%) were eliminated during the filter-
ing step. At the same time, the filtering erroneously
eliminates 27 positive examples (21%). Even at this
level of false negatives, the filtering has an overall
positive effect.

5 Conclusion and Future Work

This paper presents a comprehensive study of the
impact of paraphrases on the accuracy of automatic
evaluation. We found a strong connection between
the quality of automatic paraphrases as judged by
humans and their contribution to automatic evalua-
tion. These results have two important implications:
(1) refining standard measures such as BLEU with
paraphrase information moves the automatic evalu-
ation closer to human evaluation and (2) applying
paraphrases to MT evaluation provides a task-based
assessment for paraphrasing accuracy.

461

We also introduce a novel paraphrasing method
based on contextual substitution. By posing the
paraphrasing problem as a discriminative task, we
can incorporate a wide range of features that im-
prove the paraphrasing accuracy. Our experiments
show improvement of the accuracy of WordNet
paraphrasing and we believe that this method can
similarly benefit other approaches that use lexico-
semantic resources to obtain paraphrases.

Our ultimate goal is to develop a contextual filter-
ing method that does not require candidate selection
based on a lexico-semantic resource. One source of
possible improvement lies in exploring more power-
ful learning frameworks and more sophisticated lin-
guistic representations. Incorporating syntactic de-
pendencies and class-based features into the context
representation could also increase the accuracy and
the coverage of the method. Our current method
only implements rewriting at the word level. In the
future, we would like to incorporate substitutions at
the level of phrases and syntactic trees.

Acknowledgments

The authors acknowledge the support of the Na-
tional Science Foundation (Barzilay; CAREER
grant IIS-0448168) and DARPA (Kauchak; grant
HR0011-06-C-0023). Thanks to Michael Collins,
Charles Elkan, Yoong Keok Lee, Philip Koehn, Igor
Malioutov, Ben Snyder and the anonymous review-
ers for helpful comments and suggestions. Any
opinions, findings and conclusions expressed in this
material are those of the author(s) and do not neces-
sarily reflect the views of DARPA or NSF.

References
B. Babych, A. Hartley. 2004. Extending the BLEU

evaluation method with frequency weightings. In Pro-
ceedings of the ACL, 621–628.

S. Banerjee, A. Lavie. 2005. METEOR: An automatic
metric for MT evaluation with improved correlation
with human judgments. In Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for MT and/or Summarization, 65–72.

R. Barzilay, L. Lee. 2003. Learning to paraphrase: An
unsupervised approach using multiple-sequence align-
ment. In Proceedings of NAACL-HLT, 16–23.

P. F. Brown, P. V. deSouza, R. L. Mercer. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18:467–479.

I. Dagan, O. Glickman, B. Magnini, eds. 2005. The PAS-
CAL recognizing textual entailment challenge, 2005.

P. Edmonds, G. Hirst. 2002. Near synonymy and lexical
choice. Computational Linguistics, 28(2):105–144.

A. Haghighi, A. Ng, C. Manning. 2005. Robust tex-
tual inference via graph matching. In Proceedings of
NAACL-HLT, 387–394.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihal-
cea, M. Surdeanu, R. Bunescu, R. Girju, V. Rus,
P. Morarescu. 2001. The role of lexico-semantic feed-
back in open-domain textual question-answering. In
Proceedings of ACL, 274–291.

P. Koehn. 2004. Statistical significance tests for machine
translation evaluation. In Proceedings of EMNLP,
388–395.

J. R. Landis, G. G. Koch. 1977. The measurement of
observer agreement for categorical data. Biometrics,
33:159–174.

C. Lin, F. Och. 2004. ORANGE: a method for evaluating
automatic evaluation metrics for machine translation.
In Proceedings of COLING, 501–507.

I. D. Melamed, R. Green, J. P. Turian. 2003. Precision
and recall of machine translation. In Proceedings of
NAACL-HLT, 61–63.

S. Miller, J. Guinness, A. Zamanian. 2004. Name tag-
ging with word clusters and discriminative training. In
Proceedings of HLT-NAACL, 337–342.

NIST. 2002. Automatic evaluation of machine trans-
lation quality using n-gram co-occurrence statistics,
2002.

B. Pang, K. Knight, D. Marcu. 2003. Syntax-based
alignment of multiple translations: Extracting para-
phrases and generating new sentences. In Proceedings
of NAACL-HLT, 102–209.

K. Papineni, S. Roukos, T. Ward, W. Zhu. 2002. BLEU:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the ACL, 311–318.

C. Quirk, C. Brockett, W. Dolan. 2004. Monolingual
machine translation for paraphrase generation. In Pro-
ceedings of EMNLP, 142–149.

R. E. Schapire, Y. Singer. 2000. Boostexter: A boosting-
based system for text categorization. Machine Learn-
ing, 39(2/3):135–168.

R. Serafin, B. D. Eugenio. 2004. FLSA: Extending la-
tent semantic analysis with features for dialogue act
classification. In Proceedings of the ACL, 692–699.

A. Stent, M. Marge, M. Singhai. 2005. Evaluating eval-
uation methods for generation in the presense of vari-
ation. In Proceedings of CICLING, 341–351.

462

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 463–470,
New York, June 2006.c©2006 Association for Computational Linguistics

���������	
���������
��������	���
��

��
��	
�����	��	
�����������	�����

�
������������

�
�����������	�

��!�	�������	�

"
��	�#�!�	������$��

�

�

�������	
�����
�������	
	�	
�
�

��
���
	��������	�������
����
��

���
�������������������

����

����
�
 ���

��
���
	!������	�!��
"
�

���	�!�����������

#���$�
��
%�
�� ����	��� ���

�
������	����&���	
��
'
�

(���
������	�)���

��������)���*�+��

����

,�$����
������	 �����

�%�
�	�
�

��	
�� ���	��� 	��� ��� ��� �������� ���-

��
�	�������&�	�.�������	
����	�����

	��	� ������ .� ��
��� �&&�
�� 	�� ��&-

&��	����	�	���-������� ����&��	� ��� ��	�-

��	
�� 	/	� ������
0�	
��� ���	�� � ��� 	�
��

&�&��� 1�
�	������ ���
������	
��-

	���	
���&&������ 	����	���	
�� �����	
���

���������
��.�������	��2���-��������

�
��$��� ��� �
�	�
.�	
���� .	1�� ���

��	���	
�� �������� ���� �� �	� ��� ������

������
� � ������ ���
��	�� ��� 	�� �&-

&������ ��� ����� ����
���� ���� ���&��� �

3�� ����	��
��
��	�	��	� 2�� �
��$��-

.���� �����	
��� �	���� ���
��� ���&�-

��.��&��������� 1
	�� 	�� ������� ��	�-

��	
�������	
����	�����(�45�
���
�$��

������	�� ������
0�	
��� 	��67� 1�
��

���
��� .		�� &��������� 	���� �(�45�

�����	
&��������	�������
0�	
���	��6 �

&� ��
��#��
����

���	�&��
������	���	
�������	
����	�����
��

������
0�	
��� ��� ��-��������� �	�	
�	
��� 89
��

���� :���� ���;<� 	�� ������ 	�� ���	�	� �����&�

.	1�������	���	
�����������������	�������-

��� ������
� � ����$� 	���� �(�45� 89
��

���=<�����.������.��	���������������
0�	
���

�����	
��� ��������� >�����	� �����	���
�$�

�������
?
� 8>��<�� �&������� .�� @��3� �
���

���? � ���	�	� ���� A���
	�� ��� �� �������� ��� 	��

	1�� ��
�� ��&�	�� ��� ������
0�	
��� �������
��

	�� &��	� >��� � ��
�$� �� ������� �����	
���
�	�-

�� �������������������
?�B�����C��		&CDD��� �
�	 $�����������
������	
�� �

���� ������ �55
�
�� @��3� ��������� ���&���� 	��

���	�	������&�.	1�������	����������������

���������������������
$����������$������

	��
��
��	� 	�� /	�	� ��� 	�� �����&�.	1�� ���-

	�� ���� ������ ������
� �3�� ������� ���	��

���	�	� �����$� ����� 1��� 	��� 	�� ����$� ���

�����$��������������	����	�	�	�&
�� �@��3���-

������������,��$��	��A���
	�������&����������

.�����1�
�$����	����A���
	���������	�A��	
����

���	��	��$�����	
���
	�����������������$��
0�-

	
��������������	��������� �:�1����1������

�����������	���	
�������	
���������	�	������$�

�� 	�
�� &�&�� ���� �
�� �	� �	�.�
��
�$� �� �	�	
�	
����

����1��6�	��	�����&�������	����	����$�������	��

�����	� �	�	-��-	�-��	� ��	���	
�� ������
0�	
���

�����	
����	��������������(�45 �

)� �	��	� 1
	�� ��.�
������
&	
���������� �	�	
�	
����

��������$���	
��������������1�	���	
��	�
	��

&����	���
�� 	�� �/	� ��	
�� �)� 	��� ����
.�

/&�
��	��� �	�&�� ���� ��
	�
��� ��� �������
��

��	
��� ; � 3�� ����	�� ��� 	�� /&�
��	�� ���

���1�� ���� �����0��
�� ��	
��� = �)� �
������ �-

��	�� 1��6� ���� ���	� ��������
�� �	�	
�	
���� ���-

$��$� ������ ����
������	
��� �	�
����
�� ��	
���

+ � E
������� 1� �������� ���� ��$$�	� ��	��� �
��-

	
����
����	
���F �

'� ����	��(
���� ��	��	
����)����� ���

����	
���������
���*�	������

4
������	����������	����G�#��������H����%
;
����

G� ?� 	�� ��� 1� ������ 	��� /
�	�� �� � &��.�.
�
�	
��

�
�	�
.�	
��� 1
	�� &����	��� �&�
�
�� .�� ��
� 	��	�

$���	��������������
�������� �3��	��6����

������
0�	
���
��	���	
��	���
 ��
�
�������1���-

�� �������������������
���55�����.���1��������	C��		&CDD111
�
 ��DI���D�55 �
;���G�?��������
�$��������	�������
0�	
���	��67���J�?�������

���	
-������	�������
0�	
���	��6 �

463

���� ���� ���	�� ��������
�� $���	�� ����� ��

&��.�.
�
�	
���
�	�
.�	
���1
	��&����	����&�
�
��

.�� �	
 �3���������$����������
0�������������

	���	
���������	����

�����	��&�����������������

�����	
���������.��
1�������	��6�����	
��	
�$�

	���
�	����.	1���	
������

 ��

E��� /��&���
��1����K���.��6-9
.��� 8
�<� �
-

��$��� ��� 	�� �
�	���� ����	
���� 	��� 	�� ���-

����� �����	
��� 	��6� ������ .� �
1�� ��� �
��
�$�

	��
�� �
��$��� .	1�� �	
� ���� ��

 � :�1����

�� �
��$���
�� ���&�
�
�� 1��� �� �����
�� �-

�
���
�� ��
� .�	���	�
�� �	

� 89
��?��?��>�$���	� �� �

?���< �������������	�
�$�����	��.��&&�
��	����-

����� 	�
�� �
��
�$� ��	�� &��.��� 8����� 1����
��

	�
�����< �

���	��� &��.���
�� 	��	�
�� �
��$���
�� ��	�

����	�
���
 �
�8�� LL�	 < �
�88�	 LL�� < �� /�&	�

1����� � �	
 �3�
��
������	�-
�	�
	
��
�������&&�
-

��	
��������
� �)�	���������$����
0��2�-

��-�������� 8�<� �
��$��� &��&���� .�� 9
��

8?��?< � 3�� �� �
��$��� ���� .� 1�
		�� ��� ���-

��1�C�

�

�� 8�?� �� ��� �� < �

� � � ��
��?

�

�
�
��

	

�
� � �� 8�� <

��?

�

� �

�� 8?<�

1��� �� �
�� �� &��.�.
�
	�� �
�	�
.�	
��� 1
	�� 1
$�	�

� �
�� � � � ?

��?

�

� �� ���� � 8< �
�� �������� �	��&� �

E��� � � ����A����1
$�	��1�����	�������1
�$C�

�

�?D� 8�? � �� < �

?

�

�? ��$
�?

?

�
�? �

?

�
��

�

�

�
�
�

	

�
�
�
�

�� ��$
��

?

�
�? �

?

�
��

�

�

�
�
�

	

�
�
�

�

�

�
�
�
�
�
�
�
��

	

�
�
�
�
�
�
�
��

��

�

� 8�<�

�
���	��2���-���������
��$���
�����
�	����

�������1�	�6�
	���$�	
�������	��
��
��	�	��

�
�
���
	��.	1��	1���
�	�
.�	
������������1�C��

�
�����������

� 8	 L � < � ��?D� 8�8�	 L 	 < � �8�� L � << ��8;<�

5A��	
���8;<���$$�	��	��	�	��&��.��������������

�����	
���������.����	�������6
�$����	�������-

�
�� ������
�$� 	�� 	�
�� �$�	
�� 2���-��������

�
��$���1
	�� ��&�	� 	�� 	�� �	
��	��&��	�
���

�
�	�
.�	
��� ��� ������ ������
� � 3�� A��	
���

��1�
����1�	���	
��	�	����
�	�
.�	
��� ��

'+&� ��
��	
�������,��
������	�#�,������-��

�������	�-�.��
��%�
�����

�	�
�� �	
��	�� �
�� ��/
���� �� ���������� 8��B<�

��C��

<L8��/��$ 		

��

	 �
	

��
�

� �

M�� M���N� ����� 	�� &��	�
��� &��.�.
�
	�� ��� �	
�

$
��� 	
�� �8�	 L 	 <������.�1�
		����C�

� �8�	 L 	 < �
�8	 L�	 <�8�	 <

�8	 <
��� 8=<�

�����
�$� �� ���	
���
��� $���	
��� �����

8O���$�0�� 	� �� � ���;<� ���� ���� ��������� &����-

	�
0��.�C�

�	 � 8�	�?��	�� � ��	�� <�P��?Q� � �	�� � ?
��?

�

� �

�	 ��
�
�� 	��&����	�����$���	
�$�1���� ��
�� ���-

�����	�������
��	��	�	������.�����1�����
��	��

����.����� � �����
�$� �� .�$-��-1����� ��
$����

������ 	�����	���������� �
6�
���������.�/-

&�������������1�C�

�8	 L�	 < � ���
8�	�� <

��

��?

�

� ��� 8+<�

1��� �� �
�� 	�� ���.�� ��� 1���� �� ������
�$�
��

��������	���� � ����?

�

� ���������

�
��������	��	���C�

���
�

�8�� �?<

�8�� �?<
��?

�

�
��

1��� � �
�� 	�� $����� ����	
����
 �

�8� � ?< � ��8�< �� �8�< � ? ����
�����
�	$������ � � � �

��� ����B��	
��	��1��������� ������ 	�� ������

 �����
�	�
.�	
������	��$���	
����
�	�
.�	
���������

&�
�� �������������1���������>
�
���	�&�
����
�-

	�
.�	
��� 8	�� ���,�$�	� �
�	�
.�	
��� ��� 	�� ���	
-

���
����
�	�
.�	
��<���������1�C�

�8�	 < � ���

R 8�	�� <
� � �?

��?

�

� ������������������8F<�

1��� ���
�� ��&�&����	�� ���	�� 	�� 1���� ���

�� � � ���?

�

� ��� � � � ���������

R �
�C�

���

R �
�8�� <

�8� � <��?

�

�
 �

M�� 	�� 	����� ��� 	�	��� &��.�.
�
	��� 	�� ���	��

��������&��.�.
�
	������.����&�	����������1�C�

�

�8	 < � �8	 L�	 <�8�	 <��	��
� ���

���

R 8�	�� <
�� �� � �?��	��?

�

�
��

� ���
���

R
�8�� �� � <��?

�

�
�8�� ��� <

� 8S<�

464

��.�	
	�	
�$�8+<�� 8F<������8S<�
�	��8=<��1����� 	��

&��	�
����
�	�
.�	
��� �8�	 L 	 < ����.��1C�

�8�	 L 	 <

�
�8	 L�	 <�8�	 <

�8	 <

�
�8�� ��� <

�8�� �� � <��?

�

�
8�	�� <

�� �� � �?

��?

�

�

� ��� ���

R 8�	�� <
�� �� � �?

��?

�

�

����8*<�

)���1�	����	���
�������
����	�1��������	
��	-

�$� �	��
� ���� � �

���� 	�
��
�&�
��	
�����������
.��

.��O���$�0��	��� �8���;< �

������
�$� 	�� 5A��	
��� 8*<�� 	�� &��	�
��� �
�	�
.�-

	
������ �	
�$
��� 	

���������>
�
���	��
�	�
.�	
�� �

�	�� ��/
���� &��	�
��� �	
��	
��� ���� 	�� �����1-

�$������84�����	��� ����;<C�

� �	��

�� �
�� �� � �?

�� �� � � �
�� 8�<�

����	��&��	�
����
�	�
.�	
���8*<�����.�1�
		����C�

�8�	 L 	 < � �8�	

�� L 	 < � ��� ���

R 8�	��

�� <�� ��� �?
��?

�

� ���8?�<�

��� 1� �	� � � � ?�� 	��� �	��
� ���� ��	��&��� ��� � �

��

 �����&���
.���	 R� �����A����&�
�� ����	�
�������

A��	
���8�<�.�����	����/
�����
6�
������-

	
��	
�����������1�C�

�	��

�� �
��

��

� 8??<�

����	��&��	�
����
�	�
.�	
���8*<�����.�1�
		����C�

�8�	 L 	 < � �8�	

�� L 	 < � ��� ��
R 8�	��

�� <��
��?

�

� ���������8?�<�

3��&��.���1
	����
�$���/
�����
6�
������	
-

��	
���
�� 1��� �� � A���� 	�� 0�� � ��� 0��� �����-

���� ��&&��� ���� 1���� ��� 	���
	�� ��/
����

�
6�
������	
��	
���� �	��

�� ��1�����.� 0��� ���� 	��

1���� &��	�
��� �
�	�
.�	
��� 1����� .� 0�� � 3��

	��6�� 	�
�� &��.���� 1� ��� 	�� ��
�	�
.�	� ����

&��.�.
�
	������� 	�� 0������������ ��	�������-

���1������	� �3��&��������� ��
�	�
.�	
���
��

������ �����!�� �
�� 	�� ���$��$� ����
�$� �
	��-

	��� � E��� ���
�-�&	�� �
�����
��� ��� 	�
�� 	�&
���

&��������������4�������8?��F< �

M�� �����
�$� �
����	� ����� ���� � �
�� 1� ������ �-

�
�� �
����	� ����	�
�$� �	����� ��� �
�������
��

O���$�0��	��� �8���;< �E���/��&���1��������-

	
��	� � �
���
�$� 	�&
�������	
��� ��A�����.���	-

	
�$� � � � ��8"� L# <�?�� 1��� � �
�� �� ����
�$� ���	���

���� �8"� L# < �
�� 	��&��.�.
�
	�����1���� ��������
�$�

��	�&
��# �3�
��
��������M���-����	�
�$���������

.�� ����
�� ���$��$� ����
�$� ����
������	
���

�	�
���� 8O��
� ���� 9����	�� ���=< � 3�� M���-

����	�
�$�����.�1�
		����C�

�	��

$ �
�� � ��8"� L# <

�� � �
� 8?;<�

��
�$�5A��	
���8?;<��5A��	
���8*<�.����C�

�8�	 L 	 < � �8�	

$ L 	 < � ��� ����
R 8�	��

$ <�� �� �8"� L# <
��?

�

� �8?=<�

)� ��1� 	���� 	�� �	
��	
�$� 	�� &��	�
��� �
�	�
.�-

	
��������
�$
������������������� �

 �

'+'� ��
��	
���� ��� /��������� ����	�-�

.��
��%�
�����

4
��� �� ������ �������� �
�� 1� ������ �	
-

��	�&��	�
����
�	�
.�	
�����
�
��	������1���	��	�

1��	
��	�&��	�
����
�	�
.�	
����	
���������1�C�

�8�� L � < �
�8� L�� <�8�� <

�8� <

� ��� ���

R 8���� <
�� �� � �?�

��?

�

�

��8?+<�

1��� ��
��	�����.�����������������1���� ��
��

�������������� �
 �

4
��� ���	��� ������ �������� �

R ��
 �� 1���

���	
&�� ������ ������
�� ��� ���
��.��� 	��

&��	�
����
�	�
.�	
�������.��&��	����
�$�M���-

���
��������������1�C�

�8�� L � � �

R <

�
�8�� ��

R L � <

�8�

R L � <

�
�8�

R L�� �� <�8�� L � <

�8�

R L � <

�
�8�

R L�� <�8�� L � <

�8�

R <

�
�

��
R 8���� <

��
R

��?

�

�� ���� ���

R 8���� <
�� �� � �?

��?

�

�� �
�

��
R ��� ���

R
�8��

R � �� �� � <��?

�

�
�8��

R � �� ��� <

�
�8��

R � �� ��� <

�8��

R � �� �� � <��?

�

�
8�# �� <

��
R ��� �� � �?

��?

�

�

� �
��

R ��� ���

R 8���� <
��

R ��� �� � �?�
��?

�

�

��8?F<�

1��� �8�� L � < �
�� 	�� &��	�
��� �
�	�
.�	
��� �����

A��	
���8?+<�� �

R �
��
��&���	����� �
������ �8�

R < �

�����&�	����
�$�A��	
���8S<�.�	�1
	��	��&��	-

�
����
�	�
.�	
��� �8�� L � < ����&�
�� � ���������$�-

���������$
������	
&��8�<� ������������
���

�
� �?������

�� 	�� &��	�
��� �
�	�
.�	
��� ��� ��
� ������

465

.� 1�
		�� ��� �����1�� .�� �&�	� �&&�
��	
��� ���

M���
���
������1
	��A��	
���8?F<C�

�

�8�� L ��?������ < � �
�� � ��� �

��?

�

�

R 8���� <
�� �?� �� � �

��?

�

�
�

��?

�

� ��8?S<�

1��� ��� �
��	�����.�����������������1������
��

�������������� �� �
������

��� � � ��� �
���

�

� � 8?*<�

5A��	
���8?*<�
�� 	�� 	�	������.�����1�����
����-

������������ �� �
 �3��	�	������.�����1�����
��

	��	�&
�������	
���������.����&�	����������1�C�

��� �

��?

�

� � ��� �
��?

�

�
��?

�

� � 8?�<�

5A��	
���8?S<�
��
��	��	��	��	
��	
������&��	�
���

�
�	�
.�	
���$
������	
&�� ������
��
�� 	�� ����

����	
��	
������&��	�
����
�	�
.�	
���$
������
�-

$�� �������� 	��	� ���	�
��� ���� 	�� ������ ���-

���
� �3�
��
��������.���
���1���������.�$-

��-1���� ��
$���� �
6�
����� ����� ���� $���	
�$�

������
�
=
 ��	������.����1���1
	��	����������-

��
�	�� ������� ������
0�	
��� �����	
��� �&-

&������� &��&���� .�� ���� :��	��� ���� 3����

8���;<�����@�6��������B���������8���=< �)
	��

A��	
����8*<�����8?S<�� 	���������������������-

	����������� 	
������.����&�	����
�$�2���-

���������
��$��������A��	
���8;<���������1�C�

�
�����������

� 8	 L �

?�� < � ��?D� 8�8�	 L 	 < � �8�� L �

?�� <<� �8��<�

1����

?��
��������	���������
�
��?������

 ��

0� �1�������
	����
���

)�������	�������>��������?��-1�����
�$��

���� ���	
-������	� 	��6�� ��� ���� 	�	
�$� ���&�� �

>����������	��
�������+�� 	�&
���	� �5���� 	�&
��

�	� ���	�
��� �.��	� ?�� �1�� ��	
��� &�	�
�
�$� 	��

�����1��	�&
�������/��&���	�&
��>�F?�
���.��	�

T����������%�&'���U �31��������1�
		�������-

�
��&��	�&
�����&���
������������������
� �

?=� �	�� ��� ���	�� ������
�� ���� ?� �
�&�� ����

.���
�� �������� ���
������� ���� 	�� �
�$��

������	� ������
0�	
��� 	��6� 8	�	��� ?+� ����<7�

1�
��*��	��������	��������
���?�����.���
���

���� ?� ��	�	� �1�� .���
�� ���
������� ���� 	��

���	
-������	�������
0�	
���	��6�8	�	���?������< �

�� �������������������
=�B��������	��A��	
���8+< �

���� ������
�� ��� �.��	� ?��� 1����
+
 � ���������

�����	
��� ����	��
�� ����$� �����$
F
� ������ ���

�����
�������
��	��>����������	���	 �

3�����������������
	�
������������� 	������-

�	������	���	
�������	
����	����
�� 	�����&�	�

	��������	
���.	1��	�����6
�$�������	�����-

����
�$�	�����������
$�������������	�����6
�$�

������
�$� 	�� ��	���	
�� ������ 8B�&
��
� 	� �� �

����7� 9
�� V� :���� ���;< �)� �����1�� 	�� ����

�����	
��� ���� ���&�	�� B�����N�� &�����	� ��-

��	� ������	
��� ����
�
�	� ���� �&�����N�� ���6�

������	
�������
�
�	����
��
��	������������� �

M�
��� �����	
�$� 	�� &��������� ��� 	�� ��	�-

��	
�� �����	
��� ������ .���� ��� 2���-

�������� 8�<� �
��$��� ��� ��
���
�� A��	
���

8�<�� 1� ����� ���&����
	� 1
	�� ������� .���� ���

�-�
��$��� ���� �
�&�� ��$� �
6�
���� �3�� �-

��	���� ����	�
�$����� 	���
�����������
�$��
�-

$�� ���� ���	
&�� ������ ������
�� 1�� �����

���	
$�	� �3��/��
��	�����	������
�$����$��

�-$����� 8�� J� ?<�� 1� ��������� .�$-��-.
$���� ����

.�$-��-	�
$����������.���
�&����&������
$�����

�� 	�� ����� &��&����
�� ��	
��� �� 1
	�� .
$�����

���� 	�
$����� ���� 	��	� 	��� ��� ��
$���� � 9����

	���6
	� ���
��� = �
S
� 1��� ���� 	�� �	
��	� ������

1
	�� ���
�
��	
��� 	�� �&��&� ���&�	�	
��� ��� .
-

$���� ���� 	�
$���� ����� �)� ����� ���� �	�������

�(�45��? + +�1
	���(�45?�	��=����.���
�� �

����/&�
��	��1������1
	���������1�����/-

����������B��	���	�����&&�
� �)�������
0�

	���/&�
��	��
��	�������1
�$���	
��� �

0+&� !��������	�����.����������2!�.3�

)� ��� A��	
��� 8��<� 	�� ���&�	� ��������

����� ���� �&&��� ��/
���� �
6�
����� �	
��	
���

8��� <����	��&����	���������
�$�	��A��	
���8??< �

��
�$�����
$��������������
�$�����������-

������1��1�
	�A��	
���8��<���������1�C�

�� �������������������
+�3���1�������?�-��+�-���������-1������������	��6��
��

>�����������	
-������	�������
0�	
��������	
�� �:�1-

����1����������	����	�����?��-1����������
0�	
�����.-

	��6�����	�
��/&�
��	 �
F������$�
����1
$�	���������	�
�������
�$�	�������&�

������	�	�.	1�������	�������������������������-

���� �E���/��&���
��=����	�����
���������
	��85>���

������?��*<�
�������	����������&��	
�������	���5>���
����

�����������������	�	���*�5>����	���
	�������$������
��

�"=D* ���
��	����	
�����	��&��	
�����	�� ���
����W��=�W��

F�W��*�W�����?��W�
��>������� ����
�$�����������
$���

	����	
����
�$�������������� �3���	���������1�����	�

����
��	��������������	
�� �
S�3��9����&��,�	C��		&CDD111 ����&��,�	 ��$ ��

466

�����������
�� 8	 L �

?�?< �

�
?

�

�8��

�� L 	 <��$
�8��

�� L 	 <

?

�
�8��

�� L 	 < �
?

�
�8��

�� L �

?�?<

�

�

�
�
�

	

�
�
�
�

�8��

�� L �

?�?< ��$
�8��

�� L �

?�?<

?

�
�8��

�� L 	 < �
?

�
�8��

�� L �

?�?<

�

�

�
�
�

	

�
�
�

�

�

�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�

��
��

�

1��� �8��

�� L 	 < � ���� �8��

�� L �

?�?< � ��� �	
��	�� ���

�����1�C�

�8��

�� L 	 < �
�	��

�	��

�
(8"� �	 <

(8"� �	 <
"�

�
�

�

�8��

�� L �

?�?< �
����

����

�
(8"� ��

?�?<

(8"� ��

?�?<
"�

�

�

(8"� �	 < �����(8"� ��

?�?< ����	������	�����1����"��
��

���	�� �������� 	
� ���� ������ �������� �

?�? �

��&�	
��� �)��� ���	
&�� ������ ������
��

�������� �8��

�� L �

?�� < �
���	
��	����������1�C�

�8��

�� L �

?�� < �
����

?��

����

?��

�

(8"� ����

� � � <
�

�
(8"� ����

� � � <
�

�
"�

�

�

0+'� !��������	����� .���������� ��
��

����
�����2!�.�3�

3�� /��
�� 	�� ���	� ��� ����	�
�$� 1��� 1�

���&�	� �������� ����� ��
�$� A��	
��� 8��<�� 1�

�&&���M���-����	�
�$�������1��
��A��	
���8?+< �

��
�$�����
$��������������
�$�����������-

������1��1�
	�A��	
���8��<���������1�C�

�����������
�� 8	 L �

?�?< �

�
?

�

�8��

$ L 	 < ��$
�8��

$ L 	 <

?

�
�8��

$ L 	 < �
?

�
�8��

$ L �

?�?<

�

�

�
�
�

	

�
�
�
�

�8��

$ L �

?�?<��$
�8��

$ L �

?�?<

?

�
�8��

$ L 	 < �
?

�
�8��

$ L �

?�?<

�

�

�
�
�

	

�
�
�

�

�

�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�

��
$

�

�

1��� �8��

$ L 	 < � ���� �8��

$ L �

?�?< � ��� �	
��	�� ���

�����1�C�

�8��

$ L 	 < �
�	�� � ��8"� L(<

�	�� � �

�
(8"� �	 < � ��8"� L(<

(8"� �	 <
"�

�
�

�
�

	

� � �

�

�

�

�8��

$ L �

?�?< �
���� � ��8"� L(<

���� � �

�
(8"� ��

?�?< � ��8"� L(<

(8"� ��

?�?<
"�

�
�

�
�

	

� � �

�

(8"� �	 < �����(8"� ��

?�?< ����	������	�����1����"��
��

���	�� �������� 	
� ���� ������ �������� �

?�? �

��&�	
��� � 3�� M���-����	�
�$� &��.�.
�
	�� ���

M���
���&�
��� �8"� L(< �
���	
��	���������$�����

5�$�
������&���
��	������	��	�&
�������	
������1�

����
.��
�� ��	
��� � ? � ��� ���� /&�
��	��� 1�

���� 3�5�� �B**-��� �����	
��� 	��	� ���	�
���

���� 	���� �������� �1�� ��	
��� �)��� ���	
&��

������ ������
�� ��� ����� �8�
�

$ L
�

?�� < �
�� �	
-

��	����������1�C�

�8��

$ L �

?�� < �
����

?�� � ��8"� L(<

����

?�� � �

�

(8"� ����

� � � <
�

�
�

��
	

�
� ��8"� L(<

(8"� ����

� � � <
�

�
"�

�
�

�
�

	

� � �

�

3�� ����� ��� � � ������ .� �	��
��� �&
�
����� �

��� 	�
�� /&�
��	� 1� �	� � � 	�� ������ �����1
�$�

O��
�����9����	��8���=< �

0+0� 4���%	�5����%���� .���������� ��
��

����
�����24�.�3�

3�����&��� 	��&��������� ��� ��� �������

����
�$� �	����� 1
	�� �	��� ��	���	
�� �
�	����

������� 1� ����� ���&�	� �������� ������ ��
�$�

���
��$���1
	��M���-����	�
�$���������1�C�

�����������

� 8	 L �

?�� < � � �8��

$ L 	 <��$
�8��

$ L 	 <

�8��

$ L �

?�� <

�

��
	

���
$

� �

3��M���-����	�
�$����	��� �
��������	�	��������

���� ��

$

�� �	
��	�� .�� 	�� ���� 1��� 	��	� 1�

���&�	��� �

467

0+6� ������5������#���
������
�����2���3�

�����.���
���������1���������&�	�	����$�

�
6�
������������������	���	
����������$
�����

��������������������	����������������
��

��������1�C�

�����������
�� 8	 L �

?�� < � ��$ �8��

$ L �

?�� <
��?

L	 L

� ��

1���))�
��	����$	�����	���� �8��

$ L �

?�� < �
���-

	
��	�����.��� �

6� /����
��

3�.��?����1��	������	������������� �������
�$�

	��3�.��?����	���	
�������	
���������.�������

2���-�������� >
��$��� 1
	���	� M���-

����	�
�$� 8��<� &������� 	�� .�	� ����$� ����

������ � ����$� 	���� ��� ���� 	�� .�$-��-

��
$������������
���	��.�	�����	��
��	���
�-

$�� ������	� ������
0�	
��� 	��6� 8B-�>-��C�

� �S�� �-�>-��C� � �?<7� 1�
�� 	�� .�$-��-.
$����

����� ���
��� 	�� .�	� ����	��
�� 	�� ���	
&��

������	� ������
0�	
��� 	��6� 8B-�>-��C� � �F��

�-�>-��C� � �=< � ��	���$�� 	�� .�$-��-.
$����

����� �
�� ��	� &������ ��� 1��� ��� 	�� .�$-��-

��
$���������
��	���
�$��������	�������
0�-

	
���	��6��
	��B������8�>-��C�� �=<������&������

8�>-��C� � ��<� ������	
��� ������ 1�� �	
��� ����

��W� �$������� ��� �
�$�� ��� ���	
&�� �������

1����� ���

)� ����� �.����� 	��	� ��
�$� ���	
&�� �������

��	&������� ��
�$� ����� �
�$�� ����� � 3�
��
��

������.���
���1�/&�	�	���	
��	�������.	-

	��1�������������������
��������
��.� ��

����	��� ������� �
�� ��	� &������ 1�� �3�
��
��

��	� �� ���&�
����� 	�� 	����	������ ������
0�	
���

�����	
�� � ��	�
	
����������
������	
���&���	��

�����	������������������
���������.����-

�
�������������	
�� �

3�� ��-.���� ������ 1��� ����� ���&���� ��-

����.��� 	�� �(�45�
�� 	�� ���	
&�� ������	�

������
0�	
��� 	��6� ��� ���1��
�� 3�.�� � � ��� &��-

	
�������	�����.��������������.�$-��-.
$����

����� ��
�$� ���	
&�� ������� ���
��� �����

.		�� ����	��
�� .�	�� B�����N�� ���� �&�����N��

������	
����	�����������
��������(�45 �E����
�-

$�� ������	� ������
0�	
��� 	��6�� 	�� ��-.����

������ �	
��� ���
��� �
$�� ������	
���� 8��W�<�

	���$��
	�1�����	�����
$������(�45���;������= ��

7� /��	
�#�8��5�

3�� �&&������ ����
.��
�� 	�
�� &�&��
�� ���	�

�
�
���� 	�� 	�� M���
��� /	��
���
��
������	
���

�	�
���� 8��<� 1��6� .�� O���$�0�� 	� �� � 8���;< � ���

	�
�� 1��6�� A���� �
6�
����� ����� 1��� &���	��

��� M���
���
����� � (��� ���
�� ���$��$�

����
�$� 8�������� ����<� 1��6�
��
������	
���

�	�
����� �&�
����� 	��
��� ��� ����
�$� �� ����-

��	� ��
�$� .�$-��-1���� ��
$���� ������ �����
�-

�&
��	�
��1��6�8M�$������9����	��?�����9����	��

����O��
����?�

�	�	
�	
���� ���$��$���������������������	����-

$��$� ����� 8B��	� ���� ����	� ?��*�� O��
� ����

9����	�� ���=<�� ������-.���� ���$��$� ������

89����6����������	����?<�������&�����-.����

���$��$� ������ 84���	� �� � ���=<����� .�� �&-

&�
�� ������������
��
������	
��� �	�
��� � �	� ����

����� .�� �&&�
�� 	�� 	�&
�� �	�	
��� ���� 	���6
�$�

89����6�� 	� �� � ������ 9��6�� 	� �� � ���=< � 5/-

� � � � � � � �

�� ���� ���� ���� ���� ���� ���� 	���
 ����

	� ���� ���� ���� ���� ���� ���� 	���� ����

�� ��
� ��
� ��

 ���
 ���
 ���
 ���� ����

	� ��

 ��
� ���� ���� ���� ���� ��
� ����

� � � � � � � �

�� ���� ���� ���
 ���� ���� ���� 	���� ����

	� ��� ���� ���
 ���� ���� ���� 	���� ����

�� ���� ��

 	���� 	���� ���� ���
 ���� ����

	� ���� ��� ���� ���� ���� ���� ���� ����

� � � � � � � �

�� ���� ���� ���� ��

 ���� ���� 	���� ����

	� ��� ���� ���� ���� ���� ���� 	���� ����

�� ��
� ��
� 	���� 	���� 	���� 	���� ���� ���

	� ���� ��
� 	���� 	���� 	���� 	���� ���
 ���

���� ���� ���

��

	�

������
��� ���� ���� ���

�������
���

��

	�

�������
���

	�

���� ���� ���

��

3�.�� ? � >��� ����� �
�$�� 8�><� ���� ���	
-

������	� ������
0�	
��� 8�><� 	��6�N� B�����R��

8B<� �����&�����R�� 8�<� ������	
������� ��	���	
��

������� 8���� ����
���� ���� ��<� ��
�$�

�
�$�� 8��<� ��� ���	
&�� 8��<� ������

������
� � 8��
$���C� .�$-��-��
$���� ������

M
$���C�.�$-��-.
$��������������3�
$���C�.�$-

��-	�
$��������<�

� � � � � � � �

�� ���� ���
 ���� ���� ���� ���� ���� ����

	� ���� ���� ���� ���
 ���� ��
� ���� ����

�����

	�

�����
����� � ����� � ����� �

3�.�� � � >��� ����� �
�$�� 8�><� ���� ���	
-

������	� 8�><� ������
0�	
��� 	��6�N� B��-

���R�� 8B<� ���� �&�����R�� 8�<� ������	
���� ���

��	���	
�� ������� 8�(�45?-=<� ��
�$� ���-

	
&��8��<�������������
� �

468

	���� ������ ����� ���� .�� ����&�� 	�� ����

1
	�� ����.������ �
���	��� ���� A���� /&���
���

&��.���� 8M�$�� ���� 9����	�� ?����� :�������

?�����9����	������O��
����?< �:�1����
	�������	�

.�� �&&�
��
����	���	
�������	
������ ������
-

0�	
�� � :��
� 	� �� � 8���=<� ����� ����
���� ��
�$�

T&��	�
��� &��.�.
�
	�U� ��
��� ����� ���������

����$� ������ ������
�� ��� 1
$�	
�$� ���	��� 	��

�&���������	
��������&���������
0�	
�� �M�	�

	�
����	
������T&��	�
���&��.�.
�
	�U�1�����	�	���

&��.�.
�
	�� ���� 1��� ��	� &���	�� ��� ���
�	$����

&��	� ��� 	�� M���
���
������ ����1��6� ��� 1�

��������
.��
��	�
��&�&� �

9� ������������	�#�:�
����8��5�

3���������&��&����
��	�
��&�&���
����	�&��-

�
�
�$� �� &
��	� �	���� ��� �&&��
�$�
������	
��-

	���	
�� �������
�� ��	���	
�� �����	
��� ���

������
� �)
	�� 	��
�
	
��� ������� ��� 	�
�� �	�����

1�1����� �
6� 	�C� 8?<���
��� 	������	��1
	���	���

�	������	�������/��&���>������;���	���8�<�	���

	��M���
�������	�
�$�&����	��*�	�����	���/-

��
�� 	�� ���	� ��� ����	�
�$�� 8;<� ����&� .		��

���	�	�$���	
������������8=<�����������������

&���&����� ��	��
�$� ��&�.
�
	��
�� 	�� ��	�� � 3��

�������8;<������/��&���1�1������
6�	��/&����

��	����
������	
��-.���� �&������ ���$��$�

����
�$����&��&����.��4���	��� �8���=< ��

E��� 8=<�� ������� �����	
��� �	����� ���	��� &��-

&���� �&���	��� .�� ���� :��	��� ���� 3����

8���;<��	�����	�
���	���������@�6��������B��-

�������8���=<�� 	��&����
���	�����	�
��	��	�6�

�����	�$� ��� 	�� ���
��.
�
	�� ��� ���	
&�� ���-

��� �M�	���	�����������	��	� 	������
�&��-

	��	� �� &
�� ���
������	
���
��� 	�� ���� ������

������
��
	� �&&����
� �3���������������	
���

�	����� ����
��	
��� ����	
�� A�
����	� � E���

/��&��� �� �������� ���	�	� ��
	� 8���<� T3��

�
�������1���&�����.����6��&�
���
*
U����	��

��� ��
���
�� @�6���� ���� B��������� 8���=<�

�����	�������1
�$���������	�
.�	
�$��������8?��X�

�<C��

? � ��	���
	
�����&���
�$�	����	
&��P�"���!����!��

���������"��!�+�,��Q?������1��1�
	
�$�
��
��

	��.�
��
�$�����������������1���	��

	�
���.���	�
��1
	����.�����0���������$-

������ �

�� �������������������
*�5/��&��
��	�6����������	
�
�$����������
0�	
���5�����-

	
������+�8��5���+<��	�&
�����.��;;��; ��

� � :�1������	���
	
��1��	
&&����������

P�"���!����!�����������"��!�+�,��Q�?. �

; � 3����
�$�
���	������������������	�	��

�
����
���>����P�"���!����!�����������

"��!�"���!&���� &���Q�?�������1�
	������	����.-

.����1���&������	��$	��1���
�����&�.��	�

��1��	��3������
�� �

= � P#!�����������!���'�����"������"��!� &����

���&����Q�?� �

���	�
.�	���� 8?��X��<� �����=�������������
��

	�� 	�� ���� ��� �����
�� � 3�� ������� &����
��

�	��������
��	
��� 	�������	
��A�
����	� � �	�

���.�
����	��	���	���	
�������	
����	��������-

�$� ��� �	�
�	� �-$���� ��� �/
���� ��	��
�$� 1�����

����� �
��� 	1�� ��	� ��� ����� &���
.�� ��	�����
 �

T�"���!����!�����������"��!�+�,��U������8?�<�����

8?.<� 1�
�� ���� T�"���!��� �!�� ��������� "��!�

"���!&���� &���U�8?�<�����T#!�����������!���'����

�"������"��!� &�������&����U�8?�<�����	��� ���-

��1
�$� ���� ��������� ����� ��� +�,���� "���!&����

 &��������� &�������&����� 	����	����
$�	���&��.�	�

��1�	����A�
��	���A�
����	��������1�	�����
$��

�&&��&�
�	� 1
$�	�� 	�� ����	� 	�
�� ��.	�� �
���-

���� ���
�� �&�� A��	
��� � 3�� �
��� ����	
��

A�
����	�� ��	���	
������� 1� 1����� �
6� 	�� 	���

A���� /&���
��� 	���
A��� 8:������� ?�����

9����	������O��
����?��M�
�	��� ����+������	��� �

���+<��������������
�� �� �B��&��A����/&��-

�
��� .���	�� ��� ���	�� &�������� �)� ���&�	�

	��	� 	��� 	���
A��� 1����� ��&� �� �
		�� .�	� 1�

&��.�.���1��������	������&������.		��&���-

&����� /&���
��� ���� ��	��
�$� 	���
A��� 	�� ��

�
$�
�
���	�.���	�
���������&�������� �

;� ��5�����#�����
�

B��	����	�
��1��6�1���������	��1�
��	���
��	���-

	���� �
�
	�� �
������	� ������� ��
�� 8����<�
��

	��������������+ �:�1������
6�	��	���6��
�$�

O�����:�
��-)���:���������	����	������	������

���� &���
�
�$� ��� /����	� ������� ��
�����	�

����/�
	
�$�
�	���	����/����$�����
�$��
���
�
	 �

/���������

M�
��2
�$��>�1
����$��B	��M��0���2
��-Y���@
������

4�
���$� ��� � ���+ � Z���� 5/&���
��� ��
�$� 3���

���	
����
&��
�� 9��$��$� ������ ���� �������	
���

�	�
��� � ��������� �� �+� -�����������&� (��+�������

���-�+�������������
��"&�� ������ ������.(-
�/�

�001 � (�	�.�� ;?� X� @���.�� +�� ���+�� M�����

4����� �

469

M�$��� ����� ���� 2���� 9���	�� � ?��� � -�+���������

������2�&� ��� ���������&� #����&����� � B����
�$�� ���

���-��4��� ?��� � ��$��	� ?+-?��� ?����� M�6����

������� �

�����4�
���$��2
��-Y���@
������2
�$�M�
 ����+ � ��	-

$��	
�$�)���� ���	
����
&��
�	�� 9��$��$� ����� �

��������� �� �+� -%-�� �001 � ��$��	� ?+-?��� ���+��

����������M��0
� �

������	���������2������4������ �?��F ����5�&
�
-

���� �	���� ��� ����	�
�$� 3���
A��� ���� 9��$��$�

����
�$ � ��������� �� �+� 34
�!
� 	����&� ������ � ���

	�����������+���(�����������&���� ���������&�$�;?�-

;?*��2����;-�*�����	�����0�����
����
������ �

>�$���� ����� 9
��
��� 9�� ���� E������ � � @ � B�
�� �

?��� � �
�
���
	�-M���� ������ ���)���� �������-

���� B��.�.
�
	� � ���!���� ������� � [��� ;=�� &�$�

=;-F���?��� �

4����2
����$��2
��-Y���@
��4���$�����)�������4�
-

���$� ��� � ���= � >&����� 9��$��$� ����� ����

�������	
��� �	�
��� � ��������� �� �+� -%-�� �004 �

2�����+-�������=������
�����K �

4������ ����1�� 2���� M � ����
��� :��� � � �	���� ����

>������M ���.
� ����; �$�������������	��&���� ��
��

�

5�
	
�� ����&����V�:���D��� �

:��������3����� �?��� �B��.�.
�
�	
��9�	�	�����	
��

���/
�$ ���������� ���+�	(��-%-���555 ���$��	�

?+-?���?�����M�6����������� �

:��
����
��
��3��	����:
���������:
�6
����0�6
 ����= �

5�����	
��������������
��
�$���	��������	-

��	
���������	���	
��������
0�	
���.����	������

)���� 5/	���	
�� ���������� �� �+�6��,�!��� ���#�7��

������8������$����!���9�� � 2�����+�����=��M���-

�������&�
� �

K���
,��)����� ���	
,�� �&
		���� ���� ���	
�� ���� ���

:
,�� � ���? � ���.
�
�$� �� �
/	��� 9��$��$�

����� ���� @�\�� M���� ���� ���	
->�����	� ���-

���
��	
�� ���������� ���+��:(��00� �

9����	��� 2���� ������
��$/
��$� O��
 � ���? �>�����	�

9��$��$��������Z����������������
�6��
�
�
-

0�	
��� ���� �������	
��� �	�
��� � ��������� �� �+�

	(��-%-�� �00� � �&	�.�� �-?;�� ���?�� @1� (�-

������9������ �

9��6���9���� ��E��$���$�E�$�����$��	�������������

[
�	��� 9�����6� � ���= � 9��$��$-�&�
�
�� ������

�� ���	
�
�$���� 3�&
�� 3���6
�$ � ��������� �� �+�

	(��-%-���004 �2�����+-�������= �����
�����K �

9����6��� [
�	���� 2���� ������� 5�1���� >4�0�����

>��
��9�E������[���B�������� �����	&���3��-

��� � ���� � ������� ������ ���� 3�&
�� >	�	
���

����3���6
�$ ���������� ���+���#��00� ��������=-

�S������������>
$���������� �

9����6���[
�	�������) �M��������	 ����? �������-

M���� 9��$��$� ����� � ��������� �� �+� 	(��

-%-�� �00� � �&	�.�� �-?;�� ���?�� @1� (�������

9������ �

9
��� ��
�-Y1� ���� 5������ :��� � ���; � ��	���	
��

5�����	
��� ��� ������
�� ��
�$� @-$���� ��-

��������� �	�	
�	
�� � ��������� �� �+� ��#�;		(��

�003 ������S-2���?�����;��5����	���������� �

9
��� ��
�-Y1 � ���= � �(�45C� �� B��6�$� ���� ��	�-

��	
�� 5�����	
��� ��� ������
� � ��������� �� �+�

6��,�!������#�7�� ������8�������004 � 2�����?-�F��

���=��M����������&�
� �

9
���2
����� �?��? �>
��$����������M�������	��

��������5�	��&� �-<<<�#���������������-�+���������

#!������;S8?<��&�$�?=+-?+?��?��? �

@�6�������
������.����B�������� ����= �5�����	-

�$����	�	����	
���
��������
0�	
��C�	��B����
��

�	��� ���������� ���+�;		(����#��004 ������-

S�����=��M��	����������� �

B�&
��
��K
���������
�����6����3����)���������)
-

2
�$� O�� � ���� � M95�C� �� �	���� ���� ��	���	
��

5�����	
��� ��� ����
�� 3������	
�� � ��� ��������� ��

�+� �!�� 40
�!
� 	����&� ������ � �+� �!�� 	����������� +���

(�����������&���� ��������.	(���00�/��B�
����&�
���

�����2����������&�$�;??-;?* �

B��	�� 2��� � � ����) � M���� ����	 � ?��* � �� ���$��$�

����
�$��&&������	��
������	
����	�
��� ���������

�� ���+�	(��-%-���55=��&�$���S+-�*? ���$��	��=-

�*��?��*����.���������	���
� �

��������� ������ � ���� � 31�� >����� ��� �	�	
�	
����

9��$��$� ����
�$C�)��� ���)� 4�� ����� :�]�

��������� ���+�-<<< �

[���:��	����:���������
����3��� ����; �5/��
�-

�$� 	�� ��������� .	1�� :����� ������
�C� ��
-

	
���5/&�
��	��1
	��E��	�
��������
� ���������� ��

�+�6��,�!������#�7��������8�������003 ������S-

2���?�����;��5����	���������� �

O���$�0��� :�$��� >,���� :
��	���� ���� �
����� 3
&-

&
�$ � ���; � M���
��� 5/	��
��� 	�� 	�� 9��$��$�

����� ���� ��� :��� �������	
��� �	�
��� ���������

�� �� �+� 	(��-%-�� �003 � 2���� �*-��$��	� ?�� ���;��

3����	��������� �

O��
�����$/
��$�����2����9����	� ����= ����	�������

����	�
�$��	���������9��$��$��������&&�
��	��

�������	
��� �	�
��� � 	(�� #������������ ��� -�+���

������� �������� [��� ���� @� � ��� �&�
�� ���=�� &�$��

?S�-�?= �

470

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 471–478,
New York, June 2006.c©2006 Association for Computational Linguistics

Cross Linguistic Name Matching in English and Arabic: A “One to
Many Mapping” Extension of the Levenshtein Edit Distance Algorithm

Dr. Andrew T. Freeman, Dr. Sherri L. Condon and
Christopher M. Ackerman

The Mitre Corporation
7525 Colshire Dr

McLean, Va 22102-7505
{afreeman, scondon, cackerman}@mitre.org

Abstract

This paper presents a solution to the prob-
lem of matching personal names in Eng-
lish to the same names represented in
Arabic script. Standard string comparison
measures perform poorly on this task due
to varying transliteration conventions in
both languages and the fact that Arabic
script does not usually represent short
vowels. Significant improvement is
achieved by augmenting the classic
Levenshtein edit-distance algorithm with
character equivalency classes.

1 Introduction to the problem

Personal names are problematic for all language
technology that processes linguistic content, espe-
cially in applications such as information retrieval,
document clustering, entity extraction, and transla-
tion. Name matching is not a trivial problem even
within a language because names have more than
one part, including titles, nicknames, and qualifiers
such as Jr. or II. Across documents, instances of
the name might not include the same name parts,
and within documents, the second or third mention
of a name will often have only one salient part. In
multilingual applications, the problem is compli-
cated by the fact that when a name is represented
in a script different from its native script, there
may be several alternative representations for each
phoneme, leading to large number of potential
variants for multi-part names.

A good example of the problem is the name of
the current leader of Libya. In Arabic, there is
only one way to write the consonants and long

vowels of any person’s name, and the current
leader of Libya’s name in un-vocalized Arabic text
can only be written as معمر القذافي. In English,
his name has many common representations. Ta-
ble 1 documents the top five hits returned from a
web search at www.google.com, using various
English spellings of the name.

 Version Occurrences
Muammar Gaddafi 43,500
Muammar Qaddafi 35,900
Moammar Gadhafi 34,100
Muammar Qadhafi 15,000
Muammar al Qadhafi 11,500

Table 1. Qadhafy’s names in English

Part of this variation is due to the lack of an
English phoneme corresponding to the Standard
Arabic phoneme /q/. The problem is further com-
pounded by the fact that in many dialects spoken in
the Arabic-speaking world, including Libya, this
phoneme is pronounced as [g].

The engineering problem is how one reliably
matches all versions of a particular name in lan-
guage A to all possible versions of the same name
in language B. Most solutions employ standard
string similarity measures, which require the
names to be represented in a common character
set. The solution presented here exploits translit-
eration conventions in normalization procedures
and equivalence mappings for the standard Leven-
shtein distance measure.

2 Fuzzy string matching

The term fuzzy matching is used to describe
methods that match strings based on similarity
rather than identity. Common fuzzy matching
techniques include edit distance, n-gram matching,
and normalization procedures such as Soundex.

471

This section surveys methods and tools currently
used for fuzzy matching.

2.1 Soundex

 Patented in 1918 by Odell and Russell the
Soundex algorithm was designed to find spelling
variations of names. Soundex represents classes of
sounds that can be lumped together. The precise
classes and algorithm are shown below in figures 1
and 2.

Code: 0 1 2 3 4 5 6
Letters: aeiouy bp cgjkq dt l mn r
 hw fv sxz

Figure 1: Soundex phonetic codes

1. Replace all but the first letter of the string by its

phonetic code.
2. Eliminate any adjacent repetitions of codes.
3. Eliminate all occurrences of code 0, i.e. eliminate

all vowels.
4. Return the first four characters of the resulting

string.
5. Examples: Patrick = P362, Peter = P36, Peterson =

P3625
Figure 2: The Soundex algorithm

The examples in figure 2 demonstrate that

many different names can appear to match each
other when using the Soundex algorithm.

2.2 Levenshtein Edit Distance

The Levenshtein algorithm is a string edit-
distance algorithm. A very comprehensive and
accessible explanation of the Levenshtein algo-
rithm is available on the web at
http://www.merriampark.com/ld.htm.

The Levenshtein algorithm measures the edit
distance where edit distance is defined as the num-
ber of insertions, deletions or substitutions required
to make the two strings match. A score of zero
represents a perfect match.

With two strings, string s of size m and string t
of size n, the algorithm has O(nm) time and space
complexity. A matrix is constructed with n rows
and m columns. The function e(si,tj) where si is a
character in the string s, and tj is a character in
string t returns a 0 if the two characters are equal
and a 1 otherwise. The algorithm can be repre-
sented compactly with the recurrence relation
shown in figure 3.

Figure 3. Recurrence relation for Levenshtein edit distance

A simple “fuzzy-match” algorithm can be cre-

ated by dividing the Levenshtein edit distance
score by the length of the shortest (or longest)
string, subtracting this number from one, and set-
ting a threshold score that must be achieved in or-
der for the strings to be considered a match. In this
simple approach, longer pairs of strings are more
likely to be matched than shorter pairs of strings
with the same number of different characters.

2.3 Editex

The Editex algorithm is described by Zobel and
Dart (1996). It combines a Soundex style algo-
rithm with Levenshtein by replacing the e(si,tj)
function of Levenshtein with a function r(si,tj).
The function r(si,tj) returns 0 if the two letters are
identical, 1 if they belong to the same letter group
and 2 otherwise. The full algorithm with the letter
groups is shown in figures 4 and 5. The Editex
algorithm neutralizes the h and w. This shows up
in the algorithm description as d(si-1,si). It is the
same as r(si,tj), with two exceptions. It compares
letters of the same string rather than letters from
the different strings. The other difference is that if
si-1 is h or w, and si-1≠si, then d(si-1,si) is one.

Figure 4: Recurrence relation for Editex edit distance

 0 1 2 3 4 5 6 7 8 9

for each i from 0 to |s|
 for each j from 0 to |t|

levenshtein(0; 0) = 0
levenshtein(i; 0) = i
levenshtein(0;j) = j
levenshtein (i;j) =

 min[levenshtein (i − 1; j) + 1;
levenshtein(i; j − 1) + 1;
levenshtein(i − 1; j − 1) +
e(si; tj)]

for each i from 0 to |s|
 for each j from 0 to |t|

editex(0; 0) = 0
editex(i; 0) = editex(i − 1; 0) + d(si−1; si)
editex(0; j) = editex(0; j − 1) + d(tj−1; tj)
editex(i; j) = min[editex (i − 1; j) +

d(si−1; si);
ediext(i; j − 1) + d(tj−1; tj);
editex(i − 1; j − 1) + r(si; tj)]

472

aeiouy bp ckq dt lr mn gj fpv sxz csz

Figure 5: Editex letter groups

Zobel and Dart (1996) discuss several en-
hancements to the Soundex and Levenshtein string
matching algorithms. One enhancement is what
they call “tapering.” Tapering involves weighting
mismatches at the beginning of the word with a
higher score than mismatches towards the end of
the word. The other enhancement is what they call
phonometric methods, in which the input strings
are mapped to pronunciation based phonemic rep-
resentations. The edit distance algorithm is then
applied to the phonemic representations of the
strings.

Zobel and Dart report that the Editex algorithm
performed significantly better than alternatives
they tested, including Soundex, Levenshtein edit
distance, algorithms based on counting common n-
gram sequences, and about ten permutations of
tapering and phoneme based enhancements to as-
sorted combinations of Soundex, n-gram counting
and Levenshtein.

2.4 SecondString

SecondString, described by Cohen, Ravikumar
and Fienberg (2003) is an open-source library of
string-matching algorithms implemented in Java.
It is freely available at the web site
http://secondstring.sourceforge.net.

The SecondString library offers a wide assort-
ment of string matching algorithms, both those
based on the “edit distance” algorithm, and those
based on other string matching algorithms. Sec-
ondString also provides tools for combining
matching algorithms to produce hybrid-matching
algorithms, tools for training on string matching
metrics and tools for matching on tokens within
strings for multi-token strings.

3 Baseline task

An initial set of identical names in English and
Arabic script were obtained from 106 Arabic texts
and 105 English texts in a corpus of newswire arti-
cles. We extracted 408 names from the English
language articles and 255 names from the Arabic
language articles. Manual cross-script matching
identified 29 names common to both lists.

For a baseline measure, we matched the entire
list of names from the Arabic language texts

against the entire list of English language names
using algorithms from the SecondString toolkit.
The Arabic names were transliterated using the
computer program Artrans produced by Basis
(2004).

For each of these string matching metrics, the
matching threshold was empirically set to a value
that would return some matches, but minimized
false matches. The Levenshtein “edit-distance”
algorithm returns a simple integer indicating the
number of edits required to make the two strings
match. We normalized this number by using the

formula

+
−

ts
tsnLevenshtei),(1 , where any pair

of strings with a fuzzy match score less than 0.875
was not considered to be a match. The intent of
dividing by the length of both names is to mini-
mize the weight of a mismatched character in
longer strings.

For the purposes of defining recall and preci-
sion, we ignored all issues dealing with the fact
that many English names correctly matched more
than one Arabic name, and that many Arabic
names correctly matched more than one English
name. The number of correct matches is the num-
ber of correct matches for each Arabic name,
summed across all Arabic names having one or
more matches. Recall R is defined as the number
of correctly matched English names divided by the
number of available correct English matches in the
test set. Precision P is defined as the total number
of correct names returned by the algorithm divided
by the total number of names returned. The F-

score is
()

RP
PR
+

⋅2 .

Figure 5 shows the results obtained from the
four algorithms that were tested. Smith-Waterman
is based on Levenshtein edit-distance algorithm,
with some parameterization of the gap score.
SLIM is an iterative statistical learning algorithm
based on a variety of estimation-maximization in
which a Levenshtein edit-distance matrix is itera-
tively processed to find the statistical probabilities
of the overlap between two strings. Jaro is a type
n-gram algorithm which measures the number and
the order of the common characters between two
strings. Needleman-Wunsch from Cohen et al.’s
(2003) SecondString Java code library is the Java
implementation referred to as “Levenshtein edit

473

distance” in this report. The Levenshtein algo-
rithms clearly out performed the other metrics.

Algorithm Recall Precision F-score
Smith Waterman 14/29 14/18 0.5957
SLIM 3/29 3/8 0.1622
Jaro 8/29 8/11 0.4
NeedlemanWunsch 19/29 19/23 0.7308

Figure 5: Comparison of string similarity metrics

4 Motivation of enhancements

One insight is that each letter in an Arabic
name has more than one possible letter in its Eng-
lish representation. For instance, the first letter of
former Egyptian president Gamal Abd Al-Nasser’s
first name is written with the Arabic letter جـ,
which in most other dialects of Arabic is pro-
nounced either as [δΖ] or [Ζ], most closely resem-
bling the English pronunciation of the letter “j”.
As previously noted, قـ has the received pronun-
ciation of [q], but in many dialects it is pronounced
as [g], just like the Egyptian pronunciation of Nas-
ser’s first name Gamal. The conclusion is that
there is no principled way to predict a single repre-
sentation in English for an Arabic letter.

Similarly, Arabic representations of non-native
names are not entirely predictable. Accented syl-
lables will be given a long vowel, but in longer
names, different writers will place the long vowels
showing the accented syllables in different places.
We observed six different ways to represent the
name Milosevic in Arabic.

The full set of insights and “real-world” knowl-
edge of the craft for representing foreign names in
Arabic and English is summarized in figure 6.
These rules are based on first author Dr. Andrew
Freeman’s1 experience with reading and translating
Arabic language texts for more than 16 years.

1) The hamza (ء) and the ‘ayn (ع) will
often appear in English language texts
as an apostrophe or as the vowel that
follows.

2) Names not native to Arabic will have a
long vowel or diphthong for accented
syllables represented by “w,” “y” or “A.

3) The high front un-rounded diphthong
(“i,” “ay”, “igh”) found in non-Arabic
names will often be represented with an
alif-yaa (ايـ) sequence in the Arabic

1 Dr. Freeman’s PhD dissertation was on Arabic dialectology.

script.
4) The back rounded diphthongs, (ow, au,

oo) will be represented with a single
“waw” in Arabic.

5) The Roman scripts letters “p” and “v”
are represented by “b” and “f” in Arabic.
The English letter “x” will appear as the
sequence “ks” in Arabic

6) Silent letters, such as final “e” and in-
ternal “gh” in English names will not
appear in the Arabic script.

7) Doubled English letters will not be rep-
resented in the Arabic script.

8) Many Arabic names will not have any
short vowels represented.

9) The “ch” in the English name “Richard”
will be represented with the two charac-
ter sequence “t” (ت) and “sh” (ش). The
name “Buchanan” will be represented in
Arabic with the letter “k” (ك).

Figure 6: Rules for Arabic and English representations

5 Implementation of the enhancements

5.1 Character Equivalence Classes (CEQ):

The implementation of the enhancements has
six parts. We replaced the comparison for the
character match in the Levenshtein algorithm with
a function Ar(si, tj) that returns zero if the character
tj from the English string is in the match set for the
Arabic character si;, otherwise it returns a one.

Figure 7: Cross linguistic Levenshtein

String similarity measures require the strings to

have the same character set, and we chose to use
transliterated Arabic so that investigators who
could not read Arabic script could still view and
understand the results. The full set of transliterated
Arabic equivalence classes is shown in Figure 8.
The set was intentionally designed to handle Ara-
bic text transliterated into either the Buckwalter

for each i from 0 to |s|
for each j from 0 to |t|

levenshtein(0; 0) = 0
levenshtein(i; 0) = i
levenshtein(0;j) = j
levenshtein (i;j) =
min
 [levenshtein (i − 1; j) + 1;
 levenshtein(i; j − 1) + 1;
 levenshtein(i − 1; j − 1) + Ar(si; tj)]

474

transliteration (Buckwalter, 2002) or the default
setting of the transliteration software developed by
Basis Technology (Basis, 2004).

5.2 Normalizing the Arabic string

The settings used with the Basis Artrans trans-
literation tool transforms certain Arabic letters into
English digraphs with the appropriate two charac-
ters from the following set: (kh, sh, th, dh). The
Buckwalter transliteration method requires a one-
to-one and recoverable mapping from the Arabic
script to the transliterated script. We transformed
these characters into the Basis representation with
regular expressions. These regular expressions are
shown in figure 9 as perl script.

Translit-
eration

English equivalence class Arabic
letter

' ',a ,A,e,E,i,I,o,O,u,U ء
| ',a ,A,e ,E,i ,I,o ,O,u ,U آ
> ',a ,A,e ,E,i ,I,o ,O,u ,U أ
& ',a ,A,e ,E,i ,I,o ,O,u ,U ؤ
< ',a ,A,e ,E,i ,I,o ,O,u ,U إ
} ',a ,A,e ,E,i ,I,o ,O,u ,U ئ
A ',a ,A,e ,E,i ,I,o ,O,u ,U ا
b b ,B,p ,P,v,V ب
p a ,e ة
+ a ,e ة
t t,T ت
v t ,T ث
j j,J,g,G جـ
H h, H حـ
x k, K خـ
d d, D د
* d, D ذ
r r, R ر
z z, Z ز
s s, S,c, C س
$ s, S ش
S s, S ص
D d, D ض
T t, T ط
Z z, Z,d, D ظ
E ',`,c,a,A,e,E,i,I,o,O,u,U ع
` ',`,c,a,A,e,E,i,I,o,O,u,U ع
g g, G غ
f f, F,v, V ف
q q, Q, g, G,k, K ق
k k, K,c, C,S, s ك
l l, L ل
m m, M م
n n, N ن
h h, H هـ
w w, W,u, u,o, O, 0 و
y y, Y, i, I, e, E, ,j, J ي
Y a, A,e, E,i, I, o,O,u, U ى
a a, e َـ

i i, e ِـ
u u, o ُـ

Figure 8: Arabic to English character equivalence sets

Figure 9. Normalizing the Arabic

5.3 Normalizing the English string

Normalization enhancements were aimed at
making the English string more closely match the
transliterated form of the Arabic string. These cor-
respond to points 2 through 7 of the list in Figure
6. The perl code that implemented these transfor-
mations is shown in figure 10.

Figure 10. Normalizing the English

5.4 Normalizing the vowel representations

Normalization of the vowel representations is
based on two observations that correspond to
points 2 and 8 of Figure 6. Figure 11 shows some
English names represented in Arabic transliterated
using the Buckwalter transliteration method.

Name in English Name in Arabic Arabic
transliteration

Bill Clinton بيل كلينتون byl klyntwn

Colin Powell كولين باول kwlyn bAwl

$s2 =~ s/(a|e|i|A|E|I)(e|i|y)/y/g;
hi dipthongs go to y in Arabic

$s2 =~ s/(e|a|o)(u|w|o)/w/g;
 # lo dipthongs go to w in Arabic
$s2 =~ s/(P|p)h/f/g; # ph -> f in Arabic
$s2 =~ s/(S|s)ch/sh/g; # sch is sh
$s2 =~ s/(C|c)h/tsh/g; # ch is tsh or k ,

we catch the "k" on the pass
$s2 =~ s/-//g; # eliminate all hyphens
$s2 =~ s/x/ks/g; # x->ks in Arabic
$s2 =~ s/e(|$)/$1/g; # the silent final e
$s2 =~ s/(\S)\1/$1/g; # eliminate duplicates
$s2 =~ s/(\S)gh/$1/g; # eliminate silent gh
$s2 =~ s/\s//g; # eliminate white space
$s2 =~ s/(\.|,|;)//g; # eliminate punctuation

$s1 =~ s/\$/sh/g; # normalize Buckwalter
$s1 =~ s/v/th/g; # normalize Buckwalter
$s1 =~ s/*/dh/g; # normalize Buckwalter
$s1 =~ s/x/kh/g; # normalize Buckwalter
$s1 =~ s/(F|K|N|o|~)//g; # remove case vowels,

the shadda and the sukuun
$s1 =~ s/\'aa/\|/g; # normalize basis w/

Buckwalter madda
$s1 =~ s/(U|W|I|A)/A/g; # normalize hamza
$s1 =~ s/_//; # eliminate underscores
$s1 =~ s/\s//g; # eliminate white space

475

Richard Cheney ريتشارد تشيني rytshArd
tshyny

Figure 11. English names as represented in Arabic

All full, accented vowels are represented in the
Arabic as a long vowel or diphthong. This vowel
or diphthong will appear in the transliterated un-
vocalized text as either a “w,” “y” or “A.” Unac-
cented short vowels such as the “e” found in the
second syllable of “Powell” are not represented in
Arabic. Contrast figure 11 with the data in figure
12.

Name in
Arabic

Arabic
transliteration

Name in English

مصطفى
 الشيخ ديب

mSTfY Alshykh
dyb

Mustafa al Sheikh
Deeb

 mHmd EATf Muhammad Atef محمد عاطف
 Hsny mbArk Hosni Mubarak حسني مبارك

Figure 12. Arabic names as represented in English

The Arabic only has the lengtheners “y”, “w”,
or “A” where there are lexically determined long
vowels or diphthongs in Arabic. The English rep-
resentation of these names must contain a vowel
for every syllable. The edit-distance score for
matching “Muhammad” with “mHmd” will fail
since only 4 out of 7 characters match. Lowering
the match threshold will raise the recall score while
lowering the precision score. Stripping all vowels
from both strings will raise the precision on the
matches for Arabic names in English, but will
lower the precision for English names in Arabic.

 Figure 13. Algorithm for retaining matching vowels

The algorithm presented in figure 13 retains

only those vowels that are represented in both

strings. The algorithm is a variant of a sorted file
merge.

5.5 Normalizing “ch” representations with a
separate pass

This enhancement requires a separate pass. The
name “Buchanan” is represented in Arabic as “by-
wkAnAn” and “Richard” is “rytshArd.” Thus,
whichever choice the software makes for the cor-
rect value of the English substring “ch,” it will
choose incorrectly some significant number of
times. In one pass, every “ch” in the English string
gets mapped to “tsh.” In a separate pass, every
“ch” in the English string is transformed into a “k.”

5.6 Light Stemming

The light stemming performed here was to re-
move the first letter of the transliterated Arabic
name if it matched the prefixes “b,” “l” or “w” and
run the algorithm another time if the match score
was below the match threshold but above another
lower threshold. The first two items are preposi-
tions that attach to any noun. The third is a con-
junction that attaches to any word. Full stemming
for Arabic is a separate and non-trivial problem.

6 Results

The algorithm with all enhancements was im-
plemented in perl and in Java. Figure 14 presents
the results of the enhanced algorithm on the origi-
nal baseline as compared with the baseline algo-
rithm. The enhancements improved the F-score by
22%.

Algorithm Recall Precision F-score
Baseline 19/29 19/23 0.7308
Enhancements 29/29 29/32 0.9508

Figure 14. Enhanced edit distance on original data set

6.1 Results with a larger data set

After trying the algorithm out on a couple more
“toy” data sets with similar results, we used a more
realistic data set, which I will call the TDT data
set. This data set was composed of 577 Arabic
names and 968 English names that had been manu-
ally extracted from approximately 250 Arabic and
English news articles on common topics in a NIST
TDT corpus. There are 272 common names. The
number of strings on the English side that correctly

For each i from 0 to min(|Estring|, |Astring|),
each j from 0 to min(|Estring|, |Astring|)
if Astringi equals Estringj
 Outstringi = Estringi increment i and j
if vowel(Astringi) and vowel(Estringj)
 Outstringi = Estringi increment i and j
if not vowel(Astringi) and vowel(Estringj)
 increment j but not i
 if j < |Estring|
 Outstringi = Estring; increment i and j
otherwise
 Outstringi = Estringi; increment i and j

Finally if there is anything left of Estring,
strip all vowels from what is left
append Estring to end of Outstring

476

match an Arabic language string is 591. The actual
number of matches in the set is 641, since many
Arabic strings match to the same set of English
names. For instance, “Edmond Pope” has nine
variants in English and six variants in Arabic. This
gives 36 correct matches for the six Arabic spell-
ings of Edmond Pope.

We varied the match threshold for various
combinations of the described enhancements. The
plots of the F-score, precision and recall from these
experiments using the TDT data set are shown in
figures 15, 16, and 17.

7 Discussion

Figure 15 shows that simply adding the “char-
acter equivalency classes” (CEQ) to the baseline
algorithm boosts the F-score from around 48% to
around 72%. Adding all other enhancements to the
baseline algorithm, without adding CEQ only im-
proves the f-score marginally. Combining these
same enhancements with the CEQ raises the f-
score by roughly 7% to almost 80%.

When including CEQ, the algorithm has a peak
performance with a threshold near 85%. When
CEQ is not included, the algorithm has a peak per-
formance when the match threshold is around 70%.
The baseline algorithm will declare that the strings
match at a cutoff of 70%. Because we are normal-
izing by dividing by the lengths of both strings,
this allows strings to match when half of their let-
ters do not match. The CEQ forces a structure
onto which characters are an allowable mismatch
before the threshold is applied. This apparently
leads to a reduction in the number allowable mis-
matches when the match threshold is tested.

The time and space complexity of the baseline
Levenshtein algorithm is a function of the length of
the two input strings, being |s| * |t|. This makes the
time complexity (N2) where N is the size of the
average input string. The enhancements described
here add to the time complexity. The increase is
an average two or three extra compares per charac-
ter and thus can be factored out of any equation.
The new time complexity is K(|s|*|t|) where K >=
3.

What we do here is the opposite of the approach
taken by the Soundex and Editex algorithms. They
try to reduce the complexity by collapsing groups
of characters into a single super-class of characters.
The algorithm here does some of that with the

steps that normalize the strings. However, the
largest boost in performance is with CEQ, which
expands the number of allowable cross-language
matches for many characters.

One could expect that increasing the allowable
number of matches would over-generate, raising
the recall while lowering the precision.

Referring to Figure 8, we see that’s ome Arabic
graphemes map to overlapping sets of characters in
the English language strings.

Arabic جـ can be realized, as either [j] or [g],

and one of the reflexes in English for Arabic ق can
be [g] as well. How do we differentiate the one
from the other? Quite simply, the Arabic input is
not random data. Those dialects that produce ق as
a [g] will as a rule not produce جـ as [g] and vice
versa. The Arabic pronunciation of the string de-
termines the correct alternation of the two charac-
ters for us as it is written in English. On a string-
by-string basis, it is very unlikely that the two rep-
resentations will conflict. The numbers show that
by adding CEQ, the baseline algorithm’s recall at
threshold of 72.5%, goes from 57% to around 67%
at a threshold of 85% for Arabic to English cross-
linguistic name matching. Combining all of the
enhancements raises the recall at a threshold of
85%, to 82%. As previously noted, augmenting
the baseline algorithm with all enhancements ex-
cept CEQ, does improve the performance dramati-
cally. CEQ combines well with the other
enhancements.

It is true that there is room for a lot improve-
ment with an f-score of 80%. However, anyone
doing cross-linguistic name matches would proba-
bly benefit by implementing some form of the
character equivalence classes detailed here.

477

Figure 15: F-score by match threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7

Threshold

F-score

F all enh F str norm

F vowel dance F String Norm & Vowel Dance

F all No Eq Class F baseline

F Eq Class only F EC StrN VowD

Figure 16: Recall by threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7

Threshold

R

R baseline R StrNrm & Vow elD R eq class only

R EC StrN Vow D R all

Figure 17: Precision by threshold

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7

Threshold

P

P eq class only P all P baseline P all No Eq Class

References

Basis Technology. 2004. Arabic Transliteration Mod-
ule. Artrans documentation. (The documentation is
available for download at
http://www.basistech.com/arabic-editor.)

Bilenko, Mikael, Mooney, Ray, Cohen, William W.,
Ravikumar, Pradeep and Fienberg, Steve. 2003.
Adaptive Name-Matching. in Information Integration
in IEEE Intelligent Systems, 18(5): 16-23.

Buckwalter, Tim. 2002. Arabic Transliteration.
http://www.qamus.org/transliteration.htm.

Cohen, William W., Ravikumar, Pradeep and Fienberg,
Steve. 2003. A Comparison of String Distance Met-
rics for Name-Matching Tasks. IIWeb 2003: 73-78.

Jackson, Peter and Moulinier, Isabelle. 2002 . Natural
Language Processing for Online Applications: Text
Retrieval, Extraction, and Categorization (Natural
Language Processing, 5). John Benjamins Publish-
ing.

Jurafsky, Daniel, and James H. Martin. 2000. Speech
and Language Processing: An Introduction to Natu-
ral Language Processing, Speech Recognition, and
Computational Linguistics. Prentice-Hall.

Knuth, Donald E. 1973. The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching. . Addi-
son-Wesley Publishing Company,

Ukonnen, E. 1992. Approximate string-matching with
q-grams and maximal matches. Theoretical Com-
puter Science, 92: 191-211.

Wright, W. 1967. A Grammar of the Arabic Language.
Cambridge. Cambridge University Press.

Zobel, Justin and Dart, Philip. 1996. Phonetic string
matching: Lessons from information retrieval.in
Proceedings of the Eighteenth ACM SIGIR Interna-
tional Conference on Research and Development in
Information Retrieval, Zurich, Switzerland, August
1996, pp. 166-173.

478

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 479–486,
New York, June 2006.c©2006 Association for Computational Linguistics

Language Model-Based Document Clustering Using Random Walks

Güneş Erkan
Department of EECS

University of Michigan
Ann Arbor, MI 48109-2121

gerkan@umich.edu

Abstract

We propose a new document vector represen-
tation specifically designed for the document
clustering task. Instead of the traditional term-
based vectors, a document is represented as an�-dimensional vector, where� is the number of
documents in the cluster. The value at each di-
mension of the vector is closely related to the
generation probability based on the language
model of the corresponding document. In-
spired by the recent graph-based NLP methods,
we reinforce the generation probabilities by it-
erating random walks on the underlying graph
representation. Experiments with k-means and
hierarchical clustering algorithms show signif-
icant improvements over the alternative

�� ����
vector representation.

1 Introduction

Document clustering is one of the oldest and most studied
problems of information retrieval (van Rijsbergen, 1979).
Almost all document clustering approaches to date have
represented documents as vectors in abag-of-words vec-
tor space model, where each dimension of a document
vector corresponds to a term in the corpus (Salton and
McGill, 1983). General clustering algorithms are then
applied to these vectors to cluster the given corpus. There
have been attempts to use bigrams or even higher-order n-
grams to represent documents in text categorization, the
supervised counterpart of document clustering, with little
success (Caropreso et al., 2001; Tan et al., 2002).

Clustering can be viewed as partitioning a set of data
objects into groups such that the similarities between the
objects in a same group is high while inter-group simi-
larities are weaker. The fundamental assumption in this
work is thatthe documents that are likely to have been
generated from similar language models are likely to be

in the same cluster. Under this assumption, we propose a
new representation for document vectors specifically de-
signed for clustering purposes.

Given a corpus, we are interested in the generation
probabilities of a document based on the language models
induced by other documents in the corpus. Using these
probabilities, we propose a vector representation where
each dimension of a document vector corresponds to a
document in the corpus instead of a term in the classical
representation. In other words, our document vectors are�-dimensional, where� is the number of documents in
the corpus to be clustered. For the vector� �� of docu-
ment

�	
, the
 th element of� � � is closely related to the

generation probability of
�	

based on the language model
induced by document

�
. The main steps of our method

are as follows:� For each ordered document pair��	 � � �
in a given

corpus, we compute the generation probability of�	
from the language model induced by

�
mak-

ing use of language-model approaches in informa-
tion retrieval (Ponte and Croft, 1998).� We represent each document by a vector of its gen-
eration probabilities based on other documents’ lan-
guage models. At this point, these vectors can be
used in any clustering algorithm instead of the tradi-
tional term-based document vectors.� Following (Kurland and Lee, 2005), our new doc-
ument vectors are used to construct the underlying
generation graph; the directed graph where docu-
ments are the nodes and link weights are propor-
tional to the generation probabilities.� We userestricted random walkprobabilities to rein-
force the generation probabilities and discover hid-
den relationships in the graph that are not obvious
by the generation links. Our random walk model
is similar to the one proposed by Harel and Kohen

479

(2001) for general spatial data represented as undi-
rected graphs. We have extended their model to the
directed graph case. We use new probabilities de-
rived from random walks as the vector representa-
tion of the documents.

2 Generation Probabilities as Document
Vectors

2.1 Language Models

The language modeling approach to information retrieval
was first introduced by Ponte and Croft (1998) as an al-
ternative (or an improvement) to the traditional

�� � ���
relevance models. In the language modeling framework,
each document in the database defines a language model.
The relevance of a document to a given query is ranked
according to the generation probability of the query based
on the underlying language model of the document. To
induce a (unigram) language model from a document, we
start with the maximum likelihood (ML) estimation of
the term probabilities. For each term� that occurs in a
document� , the ML estimation of� with respect to�
is defined as� � � �� �� � � �� �� � � �� � � �� �� �� � � �
where�� �� � � �

is the number of occurences of term� in
document� . This estimation is often smoothed based on
the following general formula:� �� �� � � !� � � �� �� � " �# $! �� � � �� �% &'� ()�
where� � � �� �% &'� ()�

is the ML estimation of� over
an entire corpus which usually� is a member of.

!
is the

general smoothing parameter that takes different forms
in various smoothing methods. Smoothing has two im-
portant roles (Zhai and Lafferty, 2004). First, it accounts
for terms unseen in the document preventing zero prob-
abilities. This is similar to the smoothing effect in NLP
problems such as parsing. Second, smoothing has an

���
-

like effect that accounts for the generation probabilities of
the common terms in the corpus. A common smoothing
technique is to use Bayesian smoothing with the Dirichlet
prior (Zhai and Lafferty, 2004; Liu and Croft, 2004):! � � � � ��

tf �� � � �� � � ��
tf �� � � � " *

Here,
*

is the smoothing parameter. Higher values of
*

mean more aggressive smoothing.
Assuming the terms in a text are independent from

each other, the generation probability of a text sequence+
given the document� is the product of the generation

probabilities of the terms of
+

:� �+ �� � � ,� �- � �� �� �
(1)

In the context of information retrieval,
+

is a query
usually composed of few terms. In this work, we are
interested in the generation probabilities of entire docu-
ments that usually have in the order of hundreds of unique
terms. If we use Equation 1, we end up having unnatural
probabilities which are irrepresentably small and cause
floating point underflow. More importantly, longer docu-
ments tend to have much smaller generation probabilities
no matter how closely related they are to the generating
language model. However, as we are interested in the
generation probabilities between all pairs of documents,
we want to be able to compare two different generation
probabilities from a fixed language model regardless of
the target document sizes. This is not a problem in the
classical document retrieval setting since the given query
is fixed, and generation probabilities for different queries
are not compared against each other. To address these
problems, following (Lavrenko et al., 2002; Kurland and
Lee, 2005), we “flatten” the probabilities by normalizing
them with respect to the document size:�

flat�+ �� � � � �+ �� � ./0 /
(2)

where �+ � is the number of terms in
+

. �
flat provides

us with meaningful values which are comparable among
documents of different sizes.

2.2 Using Generation Probabilities as Document
Representations

Equation 2 suggests a representation of the relation-
ship of a document with the other documents in a
corpus. Given a corpus of� documents to cluster,
we form an �-dimensionalgeneration vector1 �� ��2 �� 3 � 2 ��4 � 5 5 5 � 2 ��6 �

for each document
�	

where

2 �� � 7 8 if
� �
 ��

flat��	 �� �
otherwise

(3)

We can use these generation vectors in any clustering
algorithm we prefer instead of the classical term-based�� � ���

vectors. The intuition behind this idea becomes
clearer when we consider the underlying directed graph
representation, where each document is a node and the
weight of the link from

�	
to

�
is equal to�

flat��	 �� �
.

An appropriate analogy here is the citation graph of sci-
entific papers. The generation graph can be viewed as a
model where documentscite each other. However, un-
like real citations, the generation links are weighted and
automatically induced from the content.

The similarity function used in a clustering algorithm
over the generation vectors becomes a measure of struc-
tural similarity of two nodes in the generation graph.
Work on bibliometrics uses various similarity metrics to
assess the relatedness of scientific papers by looking at
the citation vectors (Boyack et al., 2005). Graph-based

480

similarity metrics are also used to detect semantic simi-
larity of two documents on the Web (Maguitman et al.,
2005). Cosine, also the standard metric used in

�� � ���
based document clustering, is one of these metrics. In-
tuitively, the cosine of the citation vectors (i.e. vector of
outgoing link weights) of two nodes is high when they
link to similar sets of nodes with similar link weights.
Hence, the cosine of two generation vectors is a measure
of how likely two documents are generated from the same
documents’ language models.

The generation probability in Equation 2 with a
smoothed language model is never zero. This creates two
potential problems if we want to use the vector of Equa-
tion 3 directly in a clustering algorithm. First, we only
want strong generation links to contribute in the similar-
ity function since a low generation probability is not an
evidence for semantic relatedness. This intuition is sim-
ilar to throwing out the stopwords from the documents
before constructing the

�� � ���
vectors to avoid coinci-

dental similarities between documents. Second, having
a dense vector with lots of non-zero elements will cause
efficiency problems. Vector length is assumed to be a
constant factor in analyzing the complexity of the clus-
tering algorithms. However, our generation vectors are�-dimensional, where� is the number of documents. In
other words, vector size is not a constant factor anymore,
which causes a problem of scalability to large data sets.
To address these problems, we use what Kurland and Lee
(2005) define astop generators: Given a document

�	
,

we consider only9 documents that yield the largest gen-
eration probabilities and discard others. The resultant�-
dimensional vector, denoted1 :�� , has at most9 non-zero
elements, which are the largest9 elements of1 �� . For a
given constant9, with a sparse vector representation, cer-
tain operations (e.g. cosine) on such vectors can be done
in constant time independent of�.

2.3 Reinforcing Links with Random Walks

Generation probabilities are only an approximation of se-
mantic relatedness. Using the underlying directed graph
interpretation of the generation probabilities, we aim to
get better approximations by accumulating the generation
link information in the graph. We start with some defini-
tions. We denote a (directed) graph as; �< � � �

where< is the set of nodes and� = < > < ? @ is the link
weight function. We formally define a generation graph
as follows:

Definition 1 Given a corpusA � B� 3 � �4 � 5 5 5 � �6 C with� documents, and a constant9, thegeneration graphof A
is a directed graph; : �A � � �

, where� ��	 � � � � 2 :�� .

Definition 2 A
�
-step random walkon a graph; �< � � �

that starts at nodeDE F < is a sequence of nodesDE � D 3 � 5 5 5 � DG F < where� �D	 � D 	H 3 � I 8 for all 8 J

� K �
. Theprobabilityof a

�
-step random walk is defined

as L G M3	NE OP� P�Q. where

OP� P�Q . � � �D	 � D 	H 3 �� R �S � �D	 � (�
ORP is called thetransition probabilityfrom node(to
nodeD .

For example, for a generation graph; :, there are at most9 1-step random walks that start at a given node with
probabilities proportional to the weights of the outgoing
generation links of that node.

Suppose there are three documentsT , U , and
%

in a
generation graph. Suppose also that there are “strong”
generation links fromT to U and U to

%
, but no link

from T to
%

. The intuition says thatT must be semanti-
cally related to

%
to a certain degree although there is no

generation link between them depending on
%

’s language
model. We approximate this relation by considering the
probabilities of 2-step (or longer) random walks fromT
to

%
although there is no 1-step random walk fromT to%

.
Let O GRP denote the probability that an

�
-step random

walk starts at(and ends atD . An interesting property
of random walks is that for a given nodeD , O VRP does not
depend on(. In other words, the probability of a random
walk ending up atD “in the long run” does not depend
on its starting point (Seneta, 1981). This limiting prob-
ability distribution of an infinite random walk over the
nodes is called thestationary distributionof the graph.
The stationary distribution is uninteresting to us for clus-
tering purposes since it gives an information related to the
global structure of the graph. It is often used as a measure
to rank the structural importance of the nodes in a graph
(Brin and Page, 1998). For clustering, we are more inter-
ested in the local similarities inside a “cluster” of nodes
that separate them from the rest of the graph. Further-
more, the generation probabilities lose their significance
during long random walks since they get multiplied at
each step. Therefore, we computeO G for small values of�
. Finally, we define the following:

Definition 3 The
�
-step generation probabilityof docu-

ment
�	

from the language model of
�

:

gen
G ��	 �� � � � GWN 3 O W���X�

1 YZ G�� � �genG ��	 �� 3 � �
genG �� 	 ��4 � � 5 5 5 �

genG ��	 ��6 ��
is

the
�
-step generation vectorof document

�	
. We will often

write 1 YZG omitting the document name when we are not
talking about the vector of a specific document.

genG �� 	 � � �
is a measure of how likely a random walk

that starts at
�	

will visit
�

in
�

or fewer steps. It helps
us to discover “hidden” similarities between documents

481

that are not immediately obvious from 1-step generation
links. Note that when

� � #, 1 YZ 3�� is nothing but1 :��
normalized such that the sum of the elements of the vec-
tor is 1. The two are practically the same representations
since we compute the cosine of the vectors during clus-
tering.

3 Related Work

Our work is inspired by three main areas of research.
First, the success of language modeling approaches to
information retrieval (Ponte and Croft, 1998) is encour-
aging for a similar twist to document representation for
clustering purposes. Second, graph-based inference tech-
niques to discover “hidden” textual relationships like the
one we explored in our random walk model have been
successfully applied to other NLP problems such as sum-
marization (Erkan and Radev, 2004; Mihalcea and Ta-
rau, 2004; Zha, 2002), prepositional phrase attachment
(Toutanova et al., 2004), and word sense disambiguation
(Mihalcea, 2005). Unlike our approach, these methods
try to exploit the global structure of a graph torank the
nodes of the graph. For example, Erkan and Radev (2004)
find the stationary distribution of the random walk on a
graph of sentences to rank the salience scores of the sen-
tences for extractive summarization. Their link weight
function is based on cosine similarity. Our graph con-
struction based on generation probabilities is inherited
from (Kurland and Lee, 2005), where authors used a sim-
ilar generation graph to rerank the documents returned
by a retrieval system based on the stationary distribu-
tion of the graph. Finally, previous research on clustering
graphs with restricted random walks inspired us to clus-
ter the generation graph using a similar approach. Our�
-step random walk approach is similar to the one pro-

posed by Harel and Koren (2001). However, their algo-
rithm is proposed for “spatial data” where the nodes of
the graph are connected by undirected links that are de-
termined by a (symmetric) similarity function. Our con-
tribution in this paper is to use their approach on textual
data by using generation links, and extend the method to
directed graphs.

There is an extensive amount of research on document
clustering or clustering algorithms in general that we can
not possibly review here. After all, we do not present a
new clustering algorithm, but rather a new representation
of textual data. We explain some popular clustering algo-
rithms and evaluate our representation using them in Sec-
tion 4. Few methods have been proposed to cluster doc-
uments using a representation other than the traditional�� ����

vector space (or similar term-based vectors). Us-
ing a bipartite graph of terms and documents and then
clustering this graph based on spectral methods is one of
them (Dhillon, 2001; Zha et al., 2001). There are also
general spectral methods that start with

�� � ���
vectors,

then map them to a new space with fewer dimensions be-
fore initiating the clustering algorithm (Ng et al., 2001).

The information-theoreticclustering algorithms are
relevant to our framework in the sense that they involve
probability distributions over words just like the language
models. However, instead of looking at the word distri-
butions at the individual document level, they make use
of the joint distribution of words and documents. For ex-
ample, given the set of documents[and the set of words\

in the document collection, Slonim and Tishby (2000)
first try to find a word clustering]\ such that the mutual
information ^ �\ �]\ �

is minimized (for good compres-
sion) while maximizing thê �]\ � [�

(for preserving the
original information). Then the same procedure is used
for clustering documents using the word clusters from the
first step. Dhillon et. al. (2003) propose aco-clustering
version of this information-theoretic method where they
cluster the words and the documents concurrently.

4 Evaluation

We evaluated our new vector representation by compar-
ing it against the traditional

�� � ���
vector space repre-

sentation. We ran k-means, single-link, average-link, and
complete-link clustering algorithms on various data sets
using both representations. These algorithms are among
the most popular ones that are used in document cluster-
ing.

4.1 General Experimental Setting

Given a corpus, we stemmed all the documents, removed
the stopwords and constructed the

�� ����
vector for each

document by using thebow toolkit (McCallum, 1996).
We computed the

���
of each term using the following

formula:

idf �� � � _&2 4 ` �
df�� � a

where� is the total number of documents and df�� �
is

the number of documents that the term� appears in.
We computed flattened generation probabilities (Equa-

tion 2) for all ordered pairs of documents in a corpus,
and then constructed the corresponding generation graph
(Definition 1). We used Dirichlet-smoothed language
models with the smoothing parameter

* � #888, which
can be considered as a typical value used in information
retrieval. While computing the generation link vectors,
we did not perform extensive parameter tuning at any
stage of our method. However, we observed the follow-
ing:� When 9 (number of outgoing links per document)

was very small (less than 10), our methods per-
formed poorly. This is expected with such a sparse
vector representation for documents. However, the
performance got rapidly and almost monotonically

482

better as we increased9 until around9 � b8, where
the performance stabilized and dropped after around9 � #88. We conclude that using bounded num-
ber of outgoing links per document is not only more
efficient but also necessary as we motivated in Sec-
tion 2.2.� We got the best results when the random walk pa-
rameter

� � c
. When

� I c
, the random walk goes

“out of the cluster” and1 YZG vectors become very
dense. In other words, almost all of the graph is
reachable from a given node with 4-step or longer
random walks (assuming9 is around 80), which is
an indication of a “small world” effect in generation
graphs (Watts and Strogatz, 1998).

Under these observations, we will only report results us-
ing vectors1 YZ 3, 1YZ4 and1 YZ d with 9 � b8 regardless
of the data set and the clustering algorithm.

4.2 Experiments with k-means

4.2.1 Algorithm

k-means is a clustering algorithm popular for its sim-
plicity and efficiency. It requirese, the number of clus-
ters, as input, and partitions the data set into exactlye
clusters. We used a version of k-means that uses cosine
similarity to compute the distance between the vectors.
The algorithm can be summarized as follows:

1. randomly selecte document vectors as the initial
cluster centroids;

2. assign each document to the cluster whose centroid
yields the highest cosine similarity;

3. recompute the centroid of each cluster. (centroid
vector of a cluster is the average of the vectors in
that cluster);

4. stop if none of the centroid vectors has changed at
step 3. otherwise go to step 2.

4.2.2 Data

k-means is known to work better on data sets in which
the documents are nearly evenly distributed among dif-
ferent clusters. For this reason, we tried to pick such
corpora for this experiment to be able to get a fair com-
parison between different document representations. The
first corpus we used isclassic3,1 which is a collection
of technical paper abstracts in three different areas. We
used two corpora,bbc andbbcsport, that are composed

1ftp://ftp.cs.cornell.edu/pub/smart

of BBC news articles in general and sports news, respec-
tively. 2 Both corpora have 5 news classes each.20news3

is a corpus of newsgroup articles composed of 20 classes.
Table 1 summarizes the corpora we used together with
the sizes of the smallest and largest class in each of them.

Corpus Documents Classes Smallest Largest
classic3 3891 3 1033 1460
bbcsport 737 5 100 265
bbc 2225 5 386 511
20news 18846 20 628 999

Table 1:The corpora used in the k-means experiments.

4.2.3 Results
We used two different metrics to evaluate the results

of the k-means algorithm; accuracy and mutual informa-
tion. Let

_	
be the label assigned to

�	
by the clustering

algorithm, andf 	
be

�	
’s actual label in the corpus. Then,

Accuracy
� � 6	N 3 g �map�_	 � � f 	 ��

whereg �h � i �
equals 1 ifh � i

and equals zero other-
wise. map�_	 �

is the function that maps the output la-
bel set of the k-means algorithm to the actual label set
of the corpus. Given the confusion matrix of the output,
best such mapping function can be efficiently found by
Munkres’s algorithm (Munkres, 1957).

Mutual information is a metric that does not require
a mapping function. Letj � B_3 � _4 � 5 5 5 � _k C be the
output label set of the k-means algorithm, andT �Bf 3 � f 4 � 5 5 5 � f k C be the actual label set of the corpus
with the underlying assignments of documents to these
sets. Mutual information (MI) of these two labelings is
defined as:

MI �j � T � � lm� �� noX �p q �_	 � f � �
log4 q �_	 � f �q �_	 � � q �f �

whereq �_	 �
andq �f �

are the probabilities that a docu-
ment is labeled as

_	
andf

by the algorithm and in the
actual corpus, respectively;q �_	 � f �

is the probability
that these two events occur at the same time. These val-
ues can be derived from the confusion matrix. We map
the MI metric to ther8 � #s interval by normalizing it with
the maximum possible MI that can be achieved with the
corpus. Normalized MI is defined ast

MI
� MI �j � T �

MI �T � T �
2http://www.cs.tcd.ie/Derek.Greene/

research/datasets.html BBC corpora came in
preprocessed format so that we did not perform the processing
with thebow toolkit mentioned in Section 4.1

3http://people.csail.mit.edu/jrennie/
20Newsgroups

483

One disadvantage of k-means is that its performance
is very dependent on the initial selection of cluster cen-
troids. Two approaches are usually used when reporting
the performance of k-means. The algorithm is run mul-
tiple times; then either the average performance of these
runs or the best performance achieved is reported. Re-
porting the best performance is not very realistic since
we would not be clustering a corpus if we already knew
the class labels. Reporting the average may not be very
informative since the variance of multiple runs is usually
large. We adopt an approach that is somewhere in be-
tween. We use “true seeds” to initialize k-means, that is,
we randomlyselecte document vectorsthat belong to
each of the true classesas the initial centroids. This is
not an unrealistic assumption since we initially know the
number of classes,e, in the corpus, and the cost of find-
ing one example document from each class is not usually
high. This way, we also aim to reduce the variance of the
performance of different runs for a better analysis.

Table 2 shows the results of k-means algorithm us-
ing

�� ����
vectors versus generation vectors1YZ 3 (plain

flattened generation probabilities),1 YZ 4 (2-step random
walks), 1YZ d (3-step random walks). Taking advantage
of the relatively larger size and number of classes of
20newscorpus, we randomly divided it into disjoint par-
titions with 4, 5, and 10 classes which provided us with
5, 4, and 2 new corpora, respectively. We named them
4news-1, 4news-2,

5 5 5
, 10news-2for clarity. We ran k-

means with 30 distinct initial seed sets for each corpus.
The first observation we draw from Table 2 is that even1 YZ 3 vectors perform better than the

������
model. This is

particularly surprising given that1 YZ 3 vectors are sparser
than the

�� ����
representation for most documents.4 All1 YZ G vectors clearly outperform

�� � ���
model often by

a wide margin. The performance also gets better (not al-
ways significantly though) in almost all data sets as we in-
crease the random walk length, which indicates that ran-
dom walks are useful in reinforcing generation links and
inducing new relationships. Another interesting observa-
tion is that the confidence intervals are also narrower for
generation vectors, and tend to get even narrower as we
increase

�
.

4.3 Experiments with Hierarchical Clustering

4.3.1 Algorithms

Hierarchical clustering algorithms start with the triv-
ial clustering of the corpus where each document de-
fines a separate cluster by itself. At each iteration, two
“most similar” separate clusters are merged. The algo-
rithm stops after� $ # iterations when all the documents

4Remember that we setu v wx in our experiments which
means that there can be a maximum of 80 non-zero elements
in yz{ |. Most documents have more than 80 unique terms in
them.

are merged into a single cluster.
Hierarchical clustering algorithms differ in how they

define the similarity between two clusters at each merg-
ing step. We experimented with three of the most popular
algorithms using cosine as the similarity metric between
two vectors. Single-link clusteringmerges two clusters
whose most similar members have the highest similarity.
Complete-link clusteringmerges two clusters whose least
similar members have the highest similarity.Average-link
clusteringmerges two clusters that yield the highest av-
erage similarity between all pairs of documents.

4.3.2 Data

Corpus Documents Classes Smallest Largest
Reuters 8646 57 2 3735
TDT2 10160 87 2 1843

Table 3:The corpora used in the hierarchical clustering exper-
iments.

Although hierarchical algorithms are not very efficient,
they are useful when the documents are not evenly dis-
tributed among the classes in the corpus and some classes
exhibit a “hierarchical” nature; that is, some classes in the
data might be semantically overlapping or they might be
in a subset/superset relation with each other. We picked
two corpora that may exhibit such nature to a certain ex-
tent. Reuters-215785 is a collection of news articles from
Reuters. TDT26 is a similar corpus of news articles col-
lected from six news agencies in 1998. They contain doc-
uments labeled with zero, one or more class labels. For
each corpus, we used only the documents with exactly
one label. We also eliminated classes with only one doc-
ument since clustering such classes is trivial. We ended
up with two collections summarized in Table 3.

4.3.3 Results

The output of a hierarchical clustering algorithm is a
treewhere leaves are the documents and each node in the
tree shows a cluster merging operation. Therefore each
subtree represents a cluster. We assume that each class of
documents in the corpus form a cluster subtree at some
point during the construction of the tree. To evaluate the
cluster tree, we use F-measure proposed in (Larsen and
Aone, 1999). F-measure for a class9	

in the corpus and a
subtree)

is defined as} �9	 �) � � ~ � � �9	 �) � � q �9	 �) �� �9	 �) � " q �9	 �) �
5http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html
6http://www.nist.gov/speech/tests/tdt/

tdt98/index.htm

484

Accuracy (�3EE) Normalized Mutual Information (�3EE)
Corpus k G� �	�� ��� . ���� ���� G� �	�� ��� . ���� ����
classic3 3 �� ��� � 3 �4� �� ��4 � E ��� �� ��E � E �3� �� ��� � � ��� �� ��� � 4 ��E �3 �3� � 3��E �d �d� � E ��� �� ��� � � ���
4news-1 4 �4 �d4 � 4 ��E �4 ��� � 3��� �� ��� � 3 �dE �� ��� � � ��� �� ��� � d �d� �� ��� � 3��� �� ��4 � E ��� �� ��� � � ���
4news-2 4 �d ��4 � 4 ��d �� �dd � 4 �3� �E ��� � 3 ��4 �� ��� � � ��� d� �E4 � 4 ��� �� ��� � 3��E �� ��E � 3 ��� �� ��� � ��� �
4news-3 4 �4 �d� � 4 ��3 �� ��� � d �d� �� ��E � d ��� �� ��� � � ��� dd ��� � 4 ��� �3 ��� � d ��d �� �3� � d �E� �� ��� � � ���
4news-4 4 �d �3� � 4 �E� �3 �d� � 3��� �d ��� � 3 ��E �� ��� � � ��� �� �4� � 4 ��� �� ��� � 3�4� �� ��� � E ��E �� �� � � � ���
4news-5 4 �� ��d � d ��� �� �E� � 4 �dd �� ��� � � ��� �E �E� � 3 ��� �4 ��� � d ��E �� ��� � d �4� �3 ��� � 4 ��� �� ��� � � ���
5news-1 5 �� �EE � 4 ��d �d ��3 � 4 �dE �� �d� � 4 ��� �� ��� � � ��� d� ��d � 4 ��� �� ��� � d �3� �E ��� � 4 ��� � � ��� � � ���
5news-2 5 �� ��� � 4 ��� �� �d4 � 4 �3� �4 ��� � 3 ��� �� ��� � � ��� dE ��� � 4 ��� �� �EE � 4 �3� �4 ��� � 3 ��4 �� ��� � ����
5news-3 5 �3 �E� � 4 �d� �d ��� � 4 �3� �� �3� � 4 �3� �� ��� � � ��� �� ��� � 4 ��� �� �E� � 4 �34 �3 �3d � 3 ��� �� ��� � ����
5news-4 5 �E �E� � 4 ��� �E �4E � 3��� �4 ��3 � 3 ��� �� ��� � � ��� �E �E� � 4 ��4 �d ��� � 3��d �� ��� � 3 �d4 �� ��� � ����

bbc 5 �E ��d � 4 ��E �� ��� � 4 ��d �� ��� � 4 ��� �� ��� � � ��� �d �d� � d �4d �� �3� � 4 ��d �� �4E � 4 ��d �� ��� � � ���
bbcsport 5 �� �4� � 4 ��� �� �4� � E ��� �� ��� � E ��4 �� ��� � � ��� �d ��� � d �4� �� ��� � 3�d� �� ��4 � E ��3 �� ��� � � ���

10news-1 10 �E �33 � 4 �dE �� �4E � 4 �34 �� �3� � 3 ��d �� ��� � � ��� d� ��� � 3 ��� �� �43 � 3��� �� ��� � 3 �3� �� ��� � � ���
10news-2 10 �� �34 � 3 ��� �E �E3 � 4 �EE �d �� 3 � 3 ��� �� ��� � � ��� �4 ��� � 3 ��� �E ��� � 3��E �� �4E � 3 �33 �� �� � � ����

20news 20 �3 ��� � 3 �Ed �� ��� � 3�4� �� ��� � 3 �4� �� ��� � � ��� d� �4� � E ��d �4 ��� � E ��� �� �d� � E ��3 �� ��� � � ���
Table 2:Performances of different vector representations using k-means (average of 30 runs� ��� confidence interval).

TDT2 Reuters-21578
Algorithm �� ¡¢� yz{ | yz{ £ yz {¤ �� ¡¢� yz{ | yz {£ yz{ ¤
single-link 65.25 82.96 84.22 83.92 59.35 59.37 65.70 66.15

average-link 90.78 93.53 94.04 94.13 78.25 79.17 77.24 81.37
complete-link 29.07 25.04 27.19 34.67 43.66 42.79 45.91 48.36

Table 4:Performances (F-measure¥¦xx) of different vector representations using hierarchical algorithms on two corpora.

where
� �9	 �) �

and q �9	 �) �
is the recall and the pre-

cision of)
considering the class9	

. Let
+

be the set
of subtrees in the output cluster tree, and

%
be the set

of classes. F-measure of the entire tree is the weighted
average of the maximum F-measures of all the classes:} �% � + � � l:�§ � :� ¨ ©ªW�- } �9 �)�
where� : is the number of documents that belong to class9.

We ran all three algorithms for both corpora. Unlike k-
means, hierarchical algorithms we used are deterministic.
Table 4 summarizes our results. An immediate observa-
tion is that average-link clustering performs much bet-
ter than other two algorithms independent of the data set
or the document representation, which is consistent with
earlier research (Zhao and Karypis, 2002). The high-
est result (shown boldface) for each algorithm and cor-
pus was achieved by using generation vectors. However,
unlike in the k-means experiments,

�� � ���
was able to

outperform1 YZ 3 and 1 YZ4 in one or two cases.1YZ 4
yielded the best result instead of1 YZ d in one of the six
cases.

5 Conclusion

We have presented a language model inspired approach
to document clustering. Our results show that even the
simplest version of our approach with nearly no parame-
ter tuning can outperform traditional

�� ����
models by a

wide margin. Random walk iterations on our graph-based
model have improved our results even more. Based on the
success of our model, we will investigate various graph-
based relationships for explaining semantic structure of
text collections in the future. Possible applications in-
clude information retrieval, text clustering/classification
and summarization.

Acknowledgments

I would like to thank Dragomir Radev for his useful com-
ments. This work was partially supported by the U.S.
National Science Foundation under the following two
grants: 0329043 “Probabilistic and link-based Methods
for Exploiting Very Large Textual Repositories” admin-
istered through the IDM program and 0308024 “Collab-
orative Research: Semantic Entity and Relation Extrac-
tion from Web-Scale Text Document Collections” admin-
istered by the HLT program. All opinions, findings, con-
clusions, and recommendations in this paper are made by
the authors and do not necessarily reflect the views of the
National Science Foundation.

References
Kevin W. Boyack, Richard Klavans, and Katy Börner.

2005. Mapping the backbone of science.Scientometrics,
64(3):351–374.

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-
scale hypertextual web search engine. InProceedings of the

485

7th International World Wide Web Conference, pages 107–
117.

Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebas-
tiani. 2001. A learner-independent evaluation of the use-
fulness of statistical phrases for automated text categoriza-
tion. In Amita G. Chin, editor,Text Databases and Docu-
ment Management: Theory and Practice, pages 78–102. Idea
Group Publishing, Hershey, US.

Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S.
Modha. 2003. Information-theoretic co-clustering. In Pe-
dro Domingos, Christos Faloutsos, Ted SEnator, Hillol Kar-
gupta, and Lise Getoor, editors,Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-03), pages 89–98, New York,
August 24–27. ACM Press.

Inderjit S. Dhillon. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. InProceedings of
the Seventh ACM SIGKDD Conference, pages 269–274.

Güneş Erkan and Dragomir R. Radev. 2004. Lexrank: Graph-
based lexical centrality as salience in text summarization.
Journal of Artificial Intelligence Research, 22:457–479.

David Harel and Yehuda Koren. 2001. Clustering spatial data
using random walks. InProceedings of the Seventh ACM
SIGKDD Conference, pages 281–286, New York, NY, USA.
ACM Press.

Oren Kurland and Lillian Lee. 2005. PageRank without hyper-
links: Structural re-ranking using links induced by language
models. InProceedings of SIGIR.

Bjornar Larsen and Chinatsu Aone. 1999. Fast and effective
text mining using linear-time document clustering. InKDD
’99: Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
16–22, New York, NY, USA. ACM Press.

Victor Lavrenko, James Allan, Edward DeGuzman, Daniel
LaFlamme, Veera Pollard, and Stephen Thomas. 2002. Rel-
evance models for topic detection and tracking. InProceed-
ings of HLT, pages 104–110.

Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based re-
trieval using language models. InProceedings of SIGIR,
pages 186–193.

Ana G. Maguitman, Filippo Menczer, Heather Roinestad, and
Alessandro Vespignani. 2005. Algorithmic detection of se-
mantic similarity. InWWW ’05: Proceedings of the 14th in-
ternational conference on World Wide Web, pages 107–116,
New York, NY, USA. ACM Press.

Andrew Kachites McCallum. 1996. Bow: A toolkit for sta-
tistical language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ mccallum/bow.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing or-
der into texts. In Dekang Lin and Dekai Wu, editors,Pro-
ceedings of EMNLP 2004, pages 404–411, Barcelona, Spain,
July. Association for Computational Linguistics.

Rada Mihalcea. 2005. Unsupervised large-vocabulary word
sense disambiguation with graph-based algorithms for se-
quence data labeling. InProceedings of Human Language
Technology Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pages 411–418, Van-
couver, British Columbia, Canada, October. Association for
Computational Linguistics.

James Munkres. 1957. Algorithms for the assignment and
transportation problems.Journal of the Society for Indus-
trial and Applied Mathematics, 5(1):32–38, March.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On
spectral clustering: Analysis and an algorithm. InNIPS,
pages 849–856.

Jay M. Ponte and W. Bruce Croft. 1998. A language modeling
approach to information retrieval. InProceedings of SIGIR,
pages 275–281.

G. Salton and M. J. McGill. 1983.Introduction to Modern
Information Retrieval. McGraw Hill.

E. Seneta. 1981.Non-negative matrices and markov chains.
Springer-Verlag, New York.

Noam Slonim and Naftali Tishby. 2000. Document clustering
using word clusters via the information bottleneck method.
In SIGIR, pages 208–215.

Chade-Meng Tan, Yuan-Fang Wang, and Chan-Do Lee. 2002.
The use of bigrams to enhance text categorization.Inf. Pro-
cess. Manage, 38(4):529–546.

Kristina Toutanova, Christopher D. Manning, and Andrew Y.
Ng. 2004. Learning random walk models for inducing word
dependency distributions. InICML ’04: Proceedings of the
twenty-first international conference on Machine learning,
page 103, New York, NY, USA. ACM Press.

Cornelis J. van Rijsbergen. 1979.Information Retrieval. But-
terworths.

Duncan J. Watts and Steven H. Strogatz. 1998. Collective dy-
namics of small-world networks.Nature, 393(6684):440–
442, June 4.

Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and
Horst D. Simon. 2001. Bipartite graph partitioning and data
clustering. InProceedings of CIKM, pages 25–32.

Hongyuan Zha. 2002. Generic Summarization and Key Phrase
Extraction Using Mutual Reinforcement Principle and Sen-
tence Clustering. Tampere, Finland.

Chengxiang Zhai and John Lafferty. 2004. A study of smooth-
ing methods for language models applied to information re-
trieval. ACM Trans. Inf. Syst. (TOIS), 22(2):179–214.

Ying Zhao and George Karypis. 2002. Evaluation of hierarchi-
cal clustering algorithms for document datasets. InCIKM
’02: Proceedings of the eleventh international conference
on Information and knowledge management, pages 515–524,
New York, NY, USA. ACM Press.

486

Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL, pages 487–494,
New York, June 2006.c©2006 Association for Computational Linguistics

Unlimited vocabulary speech recognition for agglutinative languages

Mikko Kurimo 1, Antti Puurula 1, Ebru Arisoy 2, Vesa Siivola1,
Teemu Hirsimäki1, Janne Pylkkönen1, Tanel Alumäe3, Murat Saraclar 2

1 Adaptive Informatics Research Centre, Helsinki University of Technology
P.O.Box 5400, FIN-02015 HUT, Finland

{Mikko.Kurimo,Antti.Puurula,Vesa.Siivola}@tkk.fi
2 Bogazici University, Electrical and Electronics Eng. Dept.

34342 Bebek, Istanbul, Turkey
{arisoyeb,murat.saraclar}@boun.edu.tr

3 Laboratory of Phonetics and Speech Technology,
Institute of Cybernetics, Tallinn Technical University, Estonia

tanel.alumae@phon.ioc.ee

Abstract

It is practically impossible to build a
word-based lexicon for speech recogni-
tion in agglutinative languages that would
cover all the relevant words. The prob-
lem is that words are generally built by
concatenating several prefixes and suffixes
to the word roots. Together with com-
pounding and inflections this leads to mil-
lions of different, but still frequent word
forms. Due to inflections, ambiguity and
other phenomena, it is also not trivial to
automatically split the words into mean-
ingful parts. Rule-based morphological
analyzers can perform this splitting, but
due to the handcrafted rules, they also suf-
fer from an out-of-vocabulary problem. In
this paper we apply a recently proposed
fully automatic and rather language and
vocabulary independent way to build sub-
word lexica for three different agglutina-
tive languages. We demonstrate the lan-
guage portability as well by building a
successful large vocabulary speech recog-
nizer for each language and show superior
recognition performance compared to the
corresponding word-based reference sys-
tems.

1 Introduction

Speech recognition for dictation or prepared radio
and television broadcasts has had huge advances

during the last decades. For example, broadcast
news (BN) in English can now be recognized with
about ten percent word error rate (WER) (NIST,
2000) which results in mostly quite understandable
text. Some rare and new words may be missing but
the result has proven to be sufficient for many im-
portant applications, such as browsing and retrieval
of recorded speech and information retrieval from
the speech (Garofolo et al., 2000). However, besides
the development of powerful computers and new al-
gorithms, a crucial factor in this development is the
vast amount of transcribed speech and suitable text
data that has been collected for training the mod-
els. The problem faced in porting the BN recogni-
tion systems to conversational speech or to other lan-
guages is that almost as much new speech and text
data have to be collected again for the new task.

The reason for the need for a vast amount of train-
ing texts is that the state-of-the-art statistical lan-
guage models contain a huge amount of parameters
to be estimated in order to provide a proper probabil-
ity for any possible word sequence. The main reason
for the huge model size is that for an acceptable cov-
erage in an English BN task, the vocabulary must
be very large, at least 50,000 words, or more. For
languages with a higher degree of word inflections
than English, even larger vocabularies are required.
This paper focuses on the agglutinative languages in
which words are frequently formed by concatenat-
ing one or more stems, prefixes, and suffixes. For
these languages in which the words are often highly
inflected as well as formed from several morphemes,
even a vocabulary of 100,000 most common words
would not give sufficient coverage (Kneissler and

487

Klakow, 2001; Hirsimäki et al., 2005). Thus, the
solution to the language modeling clearly has to in-
volve splitting of words into smaller modeling units
that could then be adequately modeled.

This paper focuses on solving the vocabulary
problem for several languages in which the speech
and text database resources are much smaller than
for the world’s main languages. A common fea-
ture for the agglutinative languages, such as Finnish,
Estonian, Hungarian and Turkish is that the large
vocabulary continuous speech recognition (LVCSR)
attempts so far have not resulted comparable perfor-
mance to the English systems. The reason for this
is not only the language modeling difficulties, but,
of course, the lack of suitable speech and text train-
ing data resources. In (Geutner et al., 1998; Sii-
vola et al., 2001) the systems aim at reducing the
active vocabulary and language models to a feasi-
ble size by clustering and focusing. In (Szarvas and
Furui, 2003; Alumäe, 2005; Hacioglu et al., 2003)
the words are split into morphemes by language-
dependent hand-crafted morphological rules. In
(Kneissler and Klakow, 2001; Arisoy and Arslan,
2005) different combinations of words, grammati-
cal morphemes and endings are utilized to decrease
the OOV rate and optimize the speech recognition
accuracy. However, constant large improvements
over the conventional word-based language models
in LVCSR have been rare.

The approach presented in this paper relies on a
data-driven algorithm called Morfessor (Creutz and
Lagus, 2002; Creutz and Lagus, 2005) which is a
language independent unsupervised machine learn-
ing method to find morpheme-like units (called sta-
tistical morphs) from a large text corpus. This
method has several advantages over the rule-based
grammatical morphemes, e.g. that no hand-crafted
rules are needed and all words can be processed,
even the foreign ones. Even if good grammatical
morphemes are available, the language modeling re-
sults by the statistical morphs seem to be at least as
good, if not better (Hirsimäki et al., 2005). In this
paper we evaluate the statistical morphs for three
agglutinative languages and describe three different
speech recognition systems that successfully utilize
the n-gram language models trained for these units
in the corresponding LVCSR tasks.

2 Building the lexicon and language
models

2.1 Unsupervised discovery of morph units

Naturally, there are many ways to split the words
into smaller units to reduce a lexicon to a tractable
size. However, for a subword lexicon suitable
for language modeling applications such as speech
recognition, several properties are desirable:

1. The size of the lexicon should be small enough
that the n-gram modeling becomes more feasi-
ble than the conventional word based modeling.

2. The coverage of the target language by words
that can be built by concatenating the units
should be high enough to avoid the out-of-
vocabulary problem.

3. The units should be somehow meaningful, so
that the previously observed units can help in
predicting the next one.

4. In speech recognition one should be able to de-
termine the pronunciation for each unit.

A common approach to find the subword units
is to program the language-dependent grammatical
rules into a morphological analyzer and utilize that
to then split the text corpus into morphemes as in
e.g. (Hirsimäki et al., 2005; Alumäe, 2005; Ha-
cioglu et al., 2003). There are some problems re-
lated to ambiguous splits and pronunciations of very
short inflection-type units, but also the coverage in,
e.g., news texts may be poor because of many names
and foreign words.

In this paper we have adopted a similar approach
as (Hirsimäki et al., 2005). We use unsupervised
learning to find the best units according to some cost
function. In the Morfessor algorithm the minimized
cost is the coding length of the lexicon and the words
in the corpus represented by the units of the lexicon.
This minimum description length based cost func-
tion is especially appealing, because it tends to give
units that are both as frequent and as long as possi-
ble to suit well for both training the language models
and also decoding of the speech. Full coverage of
the language is also guaranteed by splitting the rare
words into very short units, even to single phonemes
if necessary. For language models utilized in speech

488

recognition, the lexicon of the statistical morphs can
be further reduced by omitting the rare words from
the input of the Morfessor algorithm. This operation
does not reduce the coverage of the lexicon, because
it just splits the rare words then into smaller units,
but the smaller lexicon may offer a remarkable speed
up of the recognition.

The pronunciation of, especially, the short units
may be ambiguous and may cause severe problems
in languages like English, in which the pronuncia-
tions can not be adequately determined from the or-
thography. In most agglutinative languages, such as
Finnish, Estonian and Turkish, rather simple letter-
to-phoneme rules are, however, sufficient for most
cases.

2.2 Building the lexicon for open vocabulary

The whole training text corpus is first passed through
a word splitting transformation as in Figure 1. Based
on the learned subword unit lexicon, the best split
for each word is determined by performing a Viterbi
search with the unigram probabilities of the units. At
this point the word break symbols are added between
each word in order to incorporate that information in
the statistical language models, as well. Then the n-
gram models are trained similarly as if the language
units were words including word and sentence break
symbols as additional units.

2.3 Building the n-gram model over morphs

Even though the required morph lexicon is much
smaller than the lexicon for the corresponding word
n-gram estimation, the data sparsity problem is still
important. Interpolated Kneser-Ney smoothing is
utilized to tune the language model probabilities in
the same way as found best for the word n-grams.
The n-grams that are not very useful for modeling
the language can be discarded from the model in
order to keep the model size down. For Turkish,
we used the entropy based pruning (Stolcke, 1998),
where the n-grams, that change the model entropy
less than a given treshold, are discarded from the
model. For Finnish and Estonian, we used n-gram
growing (Siivola and Pellom, 2005). The n-grams
that increase the training set likelihood enough with
respect to the corresponding increase in the model
size are accepted into the model (as in the minimum
description length principle). After the growing pro-

Morph lexicon
+ probabilities

word forms
Distinct

Text with words
segmented into

morphs

model
Language

Text corpus

segmentation
Viterbi

segmentation
MorphExtract

vocabulary

Train
n−grams

Figure 1: The steps in the process of estimating a
language model based on statistical morphs from a
text corpus (Hirsimäki et al., 2005).

cess the model is further pruned with entropy based
pruning. The method allows us to train models with
higher order n-grams, since the memory consump-
tion is lower and also gives somewhat better mod-
els. Both methods can also be viewed as choosing
the correct model complexity for the training data to
avoid over-learning.

3 Statistical properties of Finnish,
Estonian and Turkish

Before presenting the speech recognition results,
some statistical properties are presented for the three
agglutinative languages studied. If we consider
choosing a vocabulary of the 50k-70k most common
words, as usual in English broadcast news LVCSR
systems, the out-of-vocabulary (OOV) rate in En-
glish is typically smaller than 1%. Using the lan-
guage model training data the following OOV rates
can be found for a vocabulary including only the
most common words: 15% OOV for 69k in Finnish
(Hirsimäki et al., 2005), 10% for 60k in Estonian
and 9% for 50k in Turkish. As shown in (Hacioglu et
al., 2003) this does not only mean the same amount
of extra speech recognition errors, but even more,
because the recognizer tends to lose track when un-
known words get mapped to those that are in the vo-
cabulary. Even doubling the vocabulary is not a suf-

489

0 1 2 3

x 10
6

0

2

4

6

8
x 10

5

Number of sentences

N
um

be
r

of
 d

is
tin

ct
 u

ni
ts

0 1 2 3

x 10
6

2.6

2.8

3

3.2

3.4

3.6
x 10

4

Number of sentences

N
um

be
r

of
 d

is
tin

ct
 m

or
ph

s

Morphs

Words Morphs

Figure 2: Vocabulary growth of words and morphs
for Turkish language

ficient solution, because a vocabulary twice as large
(120k) would only reduce the OOV rate to 6% in
Estonian and 5% in Turkish. In Finnish even a 400k
vocabulary of the most common words still gives 5%
OOV in the language model training material.

Figure 2 illustrates the vocabulary explosion en-
countered when using words and how using morphs
avoids this problem for Turkish. The figure on the
left shows the vocabulary growth for both words and
morphs. The figure on the right shows the graph
for morphs in more detail. As seen in the figure,
the number of new words encountered continues to
increase as the corpus size gets larger whereas the
number of new morphs encountered levels off.

4 Speech recognition experiments

4.1 About selection of the recognition tasks

In this work the morph-based language models have
been applied in speech recognition for three differ-
ent agglutinative languages, Finnish, Estonian and
Turkish. The recognition tasks are speaker depen-
dent and independent fluent dictation of sentences
taken from newspapers and books, which typically
require very large vocabulary language models.

4.2 Finnish

Finnish is a highly inflected language, in which
words are formed mainly by agglutination and com-
pounding. Finnish is also the language for which the
algorithm for the unsupervised morpheme discovery
(Creutz and Lagus, 2002) was originally developed.
The units of the morph lexicon for the experiments
in this paper were learned from a joint corpus con-
taining newspapers, books and newswire stories of

totally about 150 million words (CSC, 2001). We
obtained a lexicon of 25k morphs by feeding the
learning algorithm with the word list containing the
160k most common words. For language model
training we used the same text corpus and the re-
cently developed growing n-gram training algorithm
(Siivola and Pellom, 2005). The amount of resulted
n-grams are listed in Table 4. The average length
of a morph is such that a word corresponds to 2.52
morphs including a word break symbol.

The speech recognition task consisted of a book
read aloud by one female speaker as in (Hirsimäki et
al., 2005). Speaker dependent cross-word triphone
models were trained using the first 12 hours of data
and evaluated by the last 27 minutes. The models
included tied state hidden Markov models (HMMs)
of totally 1500 different states, 8 Gaussian mixtures
(GMMs) per state, short-time mel-cepstral features
(MFCCs), maximum likelihood linear transforma-
tion (MLLT) and explicit phone duration models
(Pylkkönen and Kurimo, 2004). The real-time fac-
tor of recognition speed was less than 10 xRT with
a 2.2 GHz CPU. However, with the efficient LVCSR
decoder utilized (Pylkkönen, 2005) it seems that by
making an even smaller morph lexicon, such as 10k,
the decoding speed could be optimized to only a few
times real-time without an excessive trade-off with
recognition performance.

4.3 Estonian

Estonian is closely related to Finnish and a similar
language modeling approach was directly applied
to the Estonian recognition task. The text corpus
used to learn the morph units and train the statis-
tical language model consisted of newspapers and
books, altogether about 55 million words (Segakor-
pus, 2005). At first, 45k morph units were obtained
as the best subword unit set from the list of the 470k
most common words in the corpora. For speed-
ing up the recognition, the morph lexicon was after-
wards reduced to 37k by splitting the rarest morphs
(occurring in only one or two words) further into
smaller ones. Corresponding growing n-gram lan-
guage models as in Finnish were trained from the
Estonian corpora resulting the n-grams in Table 4.

The speech recognition task in Estonian consisted
of long sentences read by 50 randomly picked held-
out test speakers, 7 sentences each (a part of (Meister

490

et al., 2002)). Unlike the Finnish and Turkish micro-
phone data, this data was recorded from telephone,
i.e. 8 kHz sampling rate and narrow band data in-
stead of 16 kHz and normal (full) bandwidth. The
phoneme models were trained for speaker indepen-
dent recognition using windowed cepstral mean sub-
traction and significantly more data (over 200 hours
and 1300 speakers) than for the Finnish task. The
speaker independence, together with the telephone
quality and occasional background noises, made this
task still a considerably more difficult one. Other-
wise the acoustic models were similar cross-word
triphone GMM-HMMs with MFCC features, MLLT
transformation and the explicit phone duration mod-
eling, except larger: 5100 different states and 16
GMMs per state. Thus, the recognition speed is
also slower than in Finnish, about 20 xRT (2.2GHz
CPU).

4.4 Turkish

Turkish is another a highly-inflected and agglutina-
tive language with relatively free word order. The
same Morfessor tool (Creutz and Lagus, 2005) as in
Finnish and Estonian was applied to Turkish texts
as well. Using the 360k most common words from
the training corpus, 34k morph units were obtained.
The training corpus consists of approximately 27M
words taken from literature, law, politics, social
sciences, popular science, information technology,
medicine, newspapers, magazines and sports news.
N-gram language models for different orders with
interpolated Kneser-Ney smoothing as well as en-
tropy based pruning were built for this morph lexi-
con using the SRILM toolkit (Stolcke, 2002). The
number of n-grams for the highest order we tried (6-
grams without entropy-based pruning) are reported
in Table 4. In average, there are 2.37 morphs per
word including the word break symbol.

The recognition task in Turkish consisted of ap-
proximately one hour of newspaper sentences read
by one female speaker. We used decision-tree state
clustered cross-word triphone models with approx-
imately 5000 HMM states. Instead of using letter
to phoneme rules, the acoustic models were based
directly on letters. Each state of the speaker inde-
pendent HMMs had a GMM with 6 mixture compo-
nents. The HTK frontend (Young et al., 2002) was
used to get the MFCC based acoustic features. The

explicit phone duration models were not applied.
The training data contained 17 hours of speech from
over 250 speakers. Instead of the LVCSR decoder
used in Finnish and Estonian (Pylkkönen, 2005), the
Turkish evaluation was performed using another de-
coder (AT&T, 2003), Using a 3.6GHz CPU, the real-
time factor was around one.

5 Results

The recognition results for the three different tasks:
Finnish, Estonian and Turkish, are provided in Ta-
bles 1 – 3. In each task the word error rate (WER)
and letter error rate (LER) statistics for the morph-
based system is compared to a corresponding word-
based system. The resulting morpheme strings are
glued to words according to the word break symbols
included in the language model (see Section 2.2) and
the WER is computed as the sum of substituted, in-
serted and deleted words divided by the correct num-
ber of words. LER is included here as well, because
although WER is a more common measure, it is not
comparable between languages. For example, in ag-
glutinative languages the words are long and contain
a variable amount of morphemes. Thus, any incor-
rect prefix or suffix would make the whole word in-
correct. The n-gram language model statistics are
given in Table 4.

Finnish lexicon WER LER
Words 400k 8.5 1.20
Morphs 25k 7.0 0.95

Table 1: The LVCSR performance for the speaker-
dependent Finnish task consisting of book-reading
(see Section 4.2). For a reference (word-based) lan-
guage model a 400k lexicon was chosen.

Estonian lexicon WER LER
Words 60k 56.3 22.4
Morphs 37k 47.6 18.9

Table 2: The LVCSR performance for the speaker-
independent Estonian task consisting of read sen-
tences recorded via telephone (see Section 4.3). For
a reference (word-based) language model a 60k lex-
icon was used here.

491

Turkish lexicon WER LER
Words
3-gram 50k 38.8 15.2
Morphs
3-gram 34k 39.2 14.8
4-gram 34k 35.0 13.1
5-gram 34k 33.9 12.4
Morphs, rescored by morph 6-gram
3-gram 34k 33.8 12.4
4-gram 34k 33.2 12.3
5-gram 34k 33.3 12.2

Table 3: The LVCSR performance for the speaker-
independent Turkish task consisting of read news-
paper sentences (see Section 4.4). For the refer-
ence 50k (word-based) language model the accuracy
given by 4 and 5-grams did not improve from that of
3-grams.

In the Turkish recognizer the memory constraints
during network optimization (Allauzen et al., 2004)
allowed the use of language models only up to 5-
grams. The language model pruning thresholds were
optimized over a range of values and the best re-
sults are shown in Table 3. We also tried the same
experiments with two-pass recognition. In the first
pass, instead of the best path, lattice output was gen-
erated with the same language models with prun-
ing. Then these lattices were rescored using the non-
pruned 6-gram language models (see Table 4) and
the best path was taken as the recognition output.
For the word-based reference model, the two-pass
recognition gave no improvements. It is likely that
the language model training corpus was too small to
train proper 6-gram word models. However, for the
morph-based model, we obtained a slight improve-
ment (0.7 % absolute) by two-pass recognition.

6 Discussion

The key result of this paper is that we can success-
fully apply the unsupervised statistical morphs in
large vocabulary language models in all the three ex-
perimented agglutinative languages. Furthermore,
the results show that in all the different LVCSR
tasks, the morph-based language models perform
very well and constantly dominate the reference lan-
guage model based on words. The way that the lexi-

morph-based models
ngrams Finnish Estonian Turkish
1grams 24,833 37,061 34,332
2grams 2,188,476 1,050,127 655,621
3grams 17,064,072 7,133,902 1,936,263
4grams 25,200,308 8,201,543 3,824,362
5grams 7,167,021 3,298,429 4,857,125
6grams 624,832 691,899 5,523,922
7grams 23,851 55,363 -
8grams 0 1045 -
Sum 52,293,393 20,469,369 16,831,625

Table 4: The amount of different n-grams in each
language model based on statistical morphs. Note
that the Turkish language model was not prepared
by the growing n-gram algorithm as the others and
the model was limited to 6-grams.

con is built from the word fragments allows the con-
struction of statistical language models, in practice,
for almost an unlimited vocabulary by a lexicon that
still has a convenient size.

The recognition was here restricted to agglutina-
tive languages and tasks in which the language used
is both rather general and matches fairly well with
the available training texts. Significant performance
variation in different languages can be observed
here, because of the different tasks and the fact that
comparable recognition conditions and training re-
sources have not been possible to arrange. However,
we believe that the tasks are still both difficult and
realistic enough to illustrate the difference of per-
formance when using language models based on a
lexicon of morphs vs. words in each task. There are
no directly comparable previous LVCSR results on
the same tasks and data, but the closest ones which
can be found are slightly over 20% WER for the
Finnish task (Hirsimäki et al., 2005), slightly over
40 % WER for the Estonian task (Alumäe, 2005)
and slightly over 30 % WER for the Turkish task
(Erdogan et al., 2005).

Naturally, it is also possible to prepare a huge lex-
icon and still succeed in recognition fairly well (Sar-
aclar et al., 2002; McTait and Adda-Decker, 2003;
Hirsimäki et al., 2005), but this is not a very con-
venient approach because of the resulting huge lan-
guage models or the heavy pruning required to keep

492

them still tractable. The word-based language mod-
els that were constructed in this paper as reference
models were trained as much as possible in the same
way as the corresponding morph language models.
For Finnish and Estonian the growing n-grams (Sii-
vola and Pellom, 2005) were used including the op-
tion of constructing the OOV words from phonemes
as in (Hirsimäki et al., 2005). For Turkish a con-
ventional n-gram was built by SRILM similarly as
for the morphs. The recognition approach taken for
Turkish involves a static decoding network construc-
tion and optimization resulting in near real time de-
coding. However, the memory requirements of net-
work optimization becomes prohibitive for large lex-
icon and language models as presented in this paper.

In this paper the recognition speed was not a ma-
jor concern, but from the application point of view
that is a very important factor to be taken into a ac-
count in the comparison. It seems that the major fac-
tors that make the recognition slower are short lexi-
cal units, large lexicon and language models and the
amount of Gaussian mixtures in the acoustic model.

7 Conclusions

This work presents statistical language models
trained on different agglutinative languages utilizing
a lexicon based on the recently proposed unsuper-
vised statistical morphs. To our knowledge this is
the first work in which similarly developed subword
unit lexica are developed and successfully evaluated
in three different LVCSR systems in different lan-
guages. In each case the morph-based approach con-
stantly shows a significant improvement over a con-
ventional word-based LVCSR language models. Fu-
ture work will be the further development of also
the grammatical morph-based language models and
comparison of that to the current approach, as well
as extending this evaluation work to new languages.

8 Acknowledgments

We thank the Finnish Federation of the Visually Im-
paired for providing the Finnish speech data and the
Finnish news agency (STT) and the Finnish IT cen-
ter for science (CSC) for the text data. Our work was
supported by the Academy of Finland in the projects
New information processing principles, Adaptive In-
formaticsandNew adaptive and learning methods in

speech recognition. This work was supported in part
by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-
2002-506778. The authors would like to thank Sa-
banci and ODTU universities for the Turkish acous-
tic and text data and AT&T Labs – Research for
the software. This research is partially supported
by SIMILAR Network of Excellence and TUBITAK
BDP (Unified Doctorate Program of the Scientific
and Technological Research Council of Turkey).

References

Cyril Allauzen, Mehryar Mohri, Michael Riley, and Brian
Roark. 2004. A generalized construction of integrated
speech recognition transducers. InProceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Montreal, Canada.

Tanel Alumäe. 2005. Phonological and morphologi-
cal modeling in large vocabulary continuous Estonian
speech recognition system. InProceedings of Second
Baltic Conference on Human Language Technologies,
pages 89–94.

Mehryar Mohri and Michael D. Riley. DCD Library –
Speech Recognition Decoder Library. AT&T Labs –
Research. http://www.research.att.com/
sw/tools/dcd/.

Ebru Arisoy and Levent Arslan. 2005. Turkish dictation
system for broadcast news applications. In13th Euro-
pean Signal Processing Conference - EUSIPCO 2005,
Antalya, Turkey, September.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. InProceedings of the Work-
shop on Morphological and Phonological Learning of
ACL-02, pages 21–30.

Mathias Creutz and Krista Lagus. 2005. Unsuper-
vised morpheme segmentation and morphology in-
duction from text corpora using Morfessor. Techni-
cal Report A81, Publications in Computer and Infor-
mation Science, Helsinki University of Technology.
URL: http://www.cis.hut.fi/projects/
morpho/.

J. Garofolo, G. Auzanne, and E. Voorhees. 2000. The
TREC spoken document retrieval track: A success
story. In Proceedings of Content Based Multimedia
Information Access Conference, April 12-14.

P. Geutner, M. Finke, and P. Scheytt. 1998. Adap-
tive vocabularies for transcribing multilingual broad-
cast news. InProceedings of the IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Seattle, WA, USA, May.

493

H. Erdogan, O. Buyuk, K. Oflazer. 2005. Incorporating
language constraints in sub-word based speech recog-
nition. IEEE Automatic Speech Recognition and Un-
derstanding Workshop, Cancun, Mexico.

Kadri Hacioglu, Brian Pellom, Tolga Ciloglu, Ozlem Oz-
turk, Mikko Kurimo, and Mathias Creutz. 2003. On
lexicon creation for Turkish LVCSR. InProceedings
of 8th European Conference on Speech Communica-
tion and Technology, pages 1165–1168.

Teemu Hirsimäki, Mathias Creutz, Vesa Siivola, Mikko
Kurimo, Sami Virpioja, and Janne Pylkkönen. 2005.
Unlimited vocabulary speech recognition with morph
language models applied to Finnish.Computer Speech
and Language. (accepted for publication).

Jan Kneissler and Dietrich Klakow. 2001. Speech recog-
nition for huge vocabularies by using optimized sub-
word units. InProceedings of the 7th European Con-
ference on Speech Communication and Technology
(Eurospeech), pages 69–72, Aalborg, Denmark.

CSC Tieteellinen laskenta Oy. 2001. Finnish Lan-
guage Text Bank: Corpora Books, Newspapers,
Magazines and Other. http://www.csc.fi/
kielipankki/.

Kevin McTait and Martine Adda-Decker. 2003. The
300k LIMSI German Broadcast News Transcription
System. InProceedings of 8th European Conference
on Speech Communication and Technology.

Einar Meister, Jürgen Lasn, and Lya Meister. 2002. Esto-
nian SpeechDat: a project in progress. InProceedings
of the Fonetiikan Päivät – Phonetics Symposium 2002
in Finland, pages 21–26.

NIST. 2000.Proceedings of DARPA workshop on Auto-
matic Transcription of Broadcast News. NIST, Wash-
ington DC, May.

Janne Pylkkönen. 2005. New pruning criteria for effi-
cient decoding. InProceedings of 9th European Con-
ference on Speech Communication and Technology.

Janne Pylkkönen and Mikko Kurimo. 2004. Duration
modeling techniques for continuous speech recogni-
tion. In Proceedings of the International Conference
on Spoken Language Processing.

Murat Saraclar, Michael Riley, Enrico Bocchieri, and
Vincent Goffin. 2002. Towards automatic closed cap-
tioning: Low latency real time broadcast news tran-
scription. InProceedings of the International Confer-
ence on Spoken Language Processing (ICSLP), Den-
ver, CO, USA.

Segakorpus – Mixed Corpus of Estonian. Tartu Uni-
versity. http://test.cl.ut.ee/korpused/
segakorpus/.

Vesa Siivola and Bryan Pellom. 2005. Growing an n-
gram language model. InProceedings of 9th European
Conference on Speech Communication and Technol-
ogy.

Vesa Siivola, Mikko Kurimo, and Krista Lagus. 2001.
Large vocabulary statistical language modeling for
continuous speech recognition. InProceedings of 7th
European Conference on Speech Communication and
Technology, pages 737–747, Aalborg, Copenhagen.

Andreas Stolcke. 1998. Entropy-based pruning of back-
off language models. InProc. DARPA Broadcast News
Transcription and Understanding Workshop, pages
270–274.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. InProceedings of the Inter-
national Conference on Spoken Language Processing,
pages 901–904.

Mate Szarvas and Sadaoki Furui. 2003. Evaluation of the
stochastic morphosyntactic language model on a one
million word Hungarian task. InProceedings of the
8th European Conference on Speech Communication
and Technology (Eurospeech), pages 2297–2300.

S. Young, D. Ollason, V. Valtchev, and P. Woodland.
2002. The HTK book (for HTK version 3.2.), March.

494

Author Index

Ackerman, Christopher,471
Alume, Tanel,487
Arisoy, Ebru,487
Aue, Anthony,160
Austerweil, Joseph,168
Ayan, Necip Fazil,96

Barzilay, Regina,359, 455
Bejar, Isaac,216
Betz, Jonathan,296
Bilmes, Jeff,280
Black, Alan W,232

Callison-Burch, Chris,17
Cao, Guihong,463
Carletta, Jean,367
Cer, Daniel,41
Charniak, Eugene,152, 168
Chelba, Ciprian,415
Chen, Jinying,120
Clark, Stephen,144
Condon, Sherri,471
Corazza, Anna,335
Corston-Oliver, Simon,160
Culotta, Aron,296
Curran, James,144

de Marneffe, Marie-Catherine,41
Demner-Fushman, Dina,383
Dorr, Bonnie J.,96
Duh, Kevin,160

Eisner, Jason,423
Ellis, David,168
Elsner, Micha,168
Erk, Katrin,128
Erkan, Gunes,479

Feng, Donghui,208

Forbes-Riley, Kate,264
Foster, George,25
Freeman, Andrew,471

Gabbard, Ryan,184
Gallinari, Patrick,399
Gao, Jianfeng,463
Gates, Donna,136
Gildea, Daniel,256
Grenager, Trond,41

Haghighi, Aria,320
Han, Benjamin,136
Haxton, Isaac,168
Hill, Catherine,168
Hirsimki, Teemu,487
Hovy, Eduard,200, 208, 447
Huang, Bryant,240
Huang, Liang,256

Ji, Gang,280
Jiang, Jing,74
Joanis, Eric,25
Johnson, Howard,25
Johnson, Mark,152, 168
Jordan, Michael I.,112

Kauchak, David,455
Kawahara, Daisuke,176
Kim, Jihie,208
Kim, Soo-Min,200
Klein, Dan,104, 112, 320
Klementiev, Alexandre,82
Knight, Kevin,1, 240, 256, 351
Koehn, Philipp,17
Kominek, John,232
Kuhn, Roland,25
Kulick, Seth,184
Kurimo, Mikko, 487

495

Kurohashi, Sadao,176

Lacoste-Julien, Simon,112
Lapata, Mirella,359
Levin, Lori, 136
Levow, Gina-Anne,224
Liang, Percy,104
Lin, Chin-Yew,447, 463
Lin, Jimmy,383
Litman, Diane,264, 272

MacCartney, Bill,41
Manning, Christopher D.,41
Marcu, Daniel,1
Marcus, Mitchell,184
Marton, Gregory,375
Maxwell III, John T.,248
May, Jonathan,351
McCallum, Andrew,89, 296
McClosky, David,152
Mei, Qiaozhu,407
Menezes, Arul,9, 33
Mohri, Mehryar,312
Mooney, Raymond,439
Moore, Jeremy,168
Moore, Johanna,367
Munteanu, Dragos Stefan,447
Murray, Gabriel,367

Nederhof, Mark-Jan,343
Nie, Jian-Yun,463

Osborne, Miles,17

Palmer, Martha,120
Paul, Patrick,25
Pekar, Viktor,49
Ponzetto, Simone Paolo,192
Pozar, Michael,168
Puurula, Antti,487
Pylkknen, Janne,487

Quirk, Chris,9

Radul, Alexey,375
Renals, Steve,367
Riezler, Stefan,248
Ringger, Eric,160

Ritchie, Anna,391
Roark, Brian,312
Robertson, Stephen,391
Roth, Dan,82

Saraclar, Murat,487
Satta, Giorgio,335, 343
Schein, Andrew,120
Seide, Frank,415
Sekine, Satoshi,304
Shaw, Erin,208
Shinyama, Yusuke,304
Shrivaths, R.,168
Sibanda, Tawanda,65
Siivola, Vesa,487
Simard, Michel,25
Sindelar, Michael,89
Snow, Rion,33
Strube, Michael,192
Su, Jian,288
Sutton, Charles,89

Tao, Tao,407
Taskar, Ben,104, 112
Tetreault, Joel,272
Teufel, Simone,391
Torisawa, Kentaro,57
Tromble, Roy,423
Ture, Ferhan,328

Ungar, Lyle,120
Uzuner, Ozlem,65

Vanderwende, Lucy,33
Vu, Huyen-Trang,399
Vu, Theresa,168

Wang, Wei,1
Wang, Xuanhui,407
Wong, Yuk Wah,439

Xue, Nianwen,431

Yu, Peng,415
Yuen, Denis,25
Yuret, Deniz,328

Zechner, Klaus,216

496

Zhai, ChengXiang,74, 407
Zhang, Hao,256
Zhang, Jie,288
Zhang, Min,288
Zhou, Liang,447
Zhou, Zheng-Yu,415

497

	Program
	Capitalizing Machine Translation
	Do we need phrases? Challenging the conventional wisdom in Statistical Machine Translation
	Improved Statistical Machine Translation Using Paraphrases
	Segment Choice Models: Feature-Rich Models for Global Distortion in Statistical Machine Translation
	Effectively Using Syntax for Recognizing False Entailment
	Learning to recognize features of valid textual entailments
	Acquisition of Verb Entailment from Text
	Acquiring Inference Rules with Temporal Constraints by Using Japanese Coordinated Sentences and Noun-Verb Co-occurrences
	Role of Local Context in Automatic Deidentification of Ungrammatical, Fragmented Text
	Exploiting Domain Structure for Named Entity Recognition
	Named Entity Transliteration and Discovery from Multilingual Comparable Corpora
	Reducing Weight Undertraining in Structured Discriminative Learning
	A Maximum Entropy Approach to Combining Word Alignments
	Alignment by Agreement
	Word Alignment via Quadratic Assignment
	An Empirical Study of the Behavior of Active Learning for Word Sense Disambiguation
	Unknown word sense detection as outlier detection
	Understanding Temporal Expressions in Emails
	Partial Training for a Lexicalized-Grammar Parser
	Effective Self-Training for Parsing
	Multilingual Dependency Parsing using Bayes Point Machines
	Multilevel Coarse-to-Fine PCFG Parsing
	A Fully-Lexicalized Probabilistic Model for Japanese Syntactic and Case Structure Analysis
	Fully Parsing the Penn Treebank
	Exploiting Semantic Role Labeling, WordNet and Wikipedia for Coreference Resolution
	Identifying and Analyzing Judgment Opinions
	Learning to Detect Conversation Focus of Threaded Discussions
	Towards Automatic Scoring of Non-Native Spontaneous Speech
	Unsupervised and Semi-supervised Learning of Tone and Pitch Accent
	Learning Pronunciation Dictionaries: Language Complexity and Word Selection Strategies
	Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality
	Grammatical Machine Translation
	Synchronous Binarization for Machine Translation
	Modelling User Satisfaction and Student Learning in a Spoken Dialogue Tutoring System with Generic, Tutoring, and User Affect Parameters
	Comparing the Utility of State Features in Spoken Dialogue Using Reinforcement Learning
	Backoff Model Training using Partially Observed Data: Application to Dialog Act Tagging
	Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
	Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text
	Preemptive Information Extraction using Unrestricted Relation Discovery
	Probabilistic Context-Free Grammar Induction Based on Structural Zeros
	Prototype-Driven Learning for Sequence Models
	Learning Morphological Disambiguation Rules for Turkish
	Cross-Entropy and Estimation of Probabilistic Context-Free Grammars
	Estimation of Consistent Probabilistic Context-free Grammars
	A Better N-Best List: Practical Determinization of Weighted Finite Tree Automata
	Aggregation via Set Partitioning for Natural Language Generation
	Incorporating Speaker and Discourse Features into Speech Summarization
	Nuggeteer: Automatic Nugget-Based Evaluation using Descriptions and Judgements
	Will Pyramids Built of Nuggets Topple Over?
	Creating a Test Collection for Citation-based IR Experiments
	A Machine Learning based Approach to Evaluating Retrieval Systems
	Language Model Information Retrieval with Document Expansion
	Towards Spoken-Document Retrieval for the Internet: Lattice Indexing For Large-Scale Web-Search Architectures
	A fast finite-state relaxation method for enforcing global constraints on sequence decoding
	Semantic role labeling of nominalized predicates in Chinese
	Learning for Semantic Parsing with Statistical Machine Translation
	ParaEval: Using Paraphrases to Evaluate Summaries Automatically
	Paraphrasing for Automatic Evaluation
	An Information-Theoretic Approach to Automatic Evaluation of Summaries
	Cross Linguistic Name Matching in English and Arabic
	Language Model-Based Document Clustering Using Random Walks
	Unlimited vocabulary speech recognition for agglutinative languages

