
Identifying Chemical Names in Biomedical Text: 

An Investigation of the Substring Co-occurrence Based Approaches

Abstract 

We investigate various strategies for finding 
chemicals in biomedical text using substring 
co-occurrence information.  The goal is to 
build a system from readily available data 
with minimal human involvement.  Our 
models are trained from a dictionary of 
chemical names and general biomedical text. 
We investigated several strategies including 
Naïve Bayes classifiers and several types of 
N-gram models.  We introduced a new way of 
interpolating N-grams that does not require 
tuning any parameters.  We also found the 
task to be similar to Language Identification. 

1 Introduction 

Chemical names recognition is one of the first tasks 
needed for building an information extraction system in 
the biomedical domain. Chemicals, especially organic 
chemicals, are one of the main agents in many processes 
and relationships such a system would need to find.  In 
this work, we investigate a number of approaches to the 
problem of chemical names identification.  We focus on 
approaches that use string internal information for 
classification, those based on the character co-
occurrence statistics within the strings that we would 
like to classify.  We would also like not to spend much 
time and effort to do manual annotation, and hence use 
readily publicly available data for training all the 
models.  Because of that, we would be satisfied with 
only moderate results. In the course of this 
investigation, we have found that N-gram methods work 
best given these restrictions on the models.   

Work has been done on a related task of named 
entity recognition (Bikel et al., 1999, Riloff, 1996, 
Cucerzan, 1999, and others).  The aim of the named 

entity task is usually set to find names of people, 
organizations, and some other similar entities in text.  
Adding features based on the internal substring patterns 
has been found useful by Cucerzan et al., 1999.  For 
finding chemicals, internal substring patterns are even 
more important source of information.  Many substrings 
of chemical names are very characteristic.  For example, 
seeing "methyl" as a substring of a word is a strong 
indicator of a chemical name.  The systematic chemical 
names are constructed from substrings like that, but 
even the generic names follow certain conventions, and 
have many characteristic substrings.   

In this work, character co-occurrence patterns are 
extracted from available lists of chemicals that have 
been compiled for other purposes.  We built models 
based on the difference between strings occurring in 
chemical names and strings that occur in other words.  
The use of only string internal information prevents us 
from disambiguating different word senses, but we 
accept this source of errors as a minor one. 

Classification based solely on string internal 
information makes the chemical names recognition task 
similar to language identification. In the language 
identification task, these patterns are used to detect 
strings from a different language embedded into text.  
Because chemicals are so different, we can view them 
as a different language, and borrow some of the 
Language Identification techniques.  Danning, 1994 was 
able to achieve good results using character N-gram 
models on language identification even on short strings 
(20 symbols long).  This suggests that his approach 
might be successful in chemical names identification 
setting. 

N-gram based methods were previously used for 
chemicals recognition. Wilbur et al., 1999 used all 
substrings of a fixed length N, but they combined the 
training counts in a Bayesian framework, ignoring non-
independence of overlapping substring.  They claimed 
good performance for their data, but this approach 
showed significantly lower performance than 
alternatives on our data.  See the results section for 
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more details.  The difference is that their data is 
carefully constructed to contain only chemicals and 
chemicals of all types in the test data, i.e. their training 
and testing data is in a very close correspondence. 

We on the other hand tried to use readily available 
chemical lists without putting much manual labor into 
their construction.  Most of our training data comes 
from a single source - National Cancer Institute website 
- and hence represents only a very specific domain of 
chemicals, while testing data is coming from a random 
sample from MEDLINE.  In addition, these lists were 
designed for use by human, and hence contain many 
comments and descriptions that are not easily separable 
for the chemical names themselves.  Several attempts on 
cleaning these out have been made. Most aggressive 
attempts deleted about half the text from the list.  While 
deleting many useful names, this improved the results 
significantly. 

While we found that N-grams worked best amoung 
the approaches we have tried, other approaches are also 
possible.  We did not explore the possibility of using 
substring as features to a generic classification 
algorithm, such as, for example, support  vector 
machines (Burges, 1998). 

2 Available Data 

In order to train a statistical model for recognizing 
chemicals a list of about 240 thousands entries have 
been download from National Cancer Institute website 
(freely available at dtp.nci.nih.gov).  Entries are unique 
names of about 45 thousands unique chemicals.  Each 
entry includes a name of a chemical possibly followed 
by alternative references and some comments.  This 
additional information had to be deleted in order to 
compute statistics from chemical names only.  While 
there were no clean separators between chemical names 
and the additional materials, several patterns were 
designed to clean up the list. Applying those patterns 
shrunk each entry on average by half.  This cleaning 
step has not produced perfect results in both leaving 
some unusable material in and deleting some useful 
strings, yet it improved the performance of all methods 
dramatically.  Cleaning the list by hand might have 
produced better results, but it would require more 
expertise and take a lot of time and would contradict the 
goal of building the system from readily available data. 

We used text from MEDLINE abstracts to model 
general biomedical language.  These were available as a 
part of the MEDLINE database of bibliographical 
records for papers in biomedical domain.  Records that 
had non-empty abstracts have been extracted.  From 
those 'title' and 'abstract' fields were taken and cleaned 
off from remaining XML tags. 

Both the list of chemical names (LCN) and the text 
corpus obtained from the MED LINE database (MED) 

were tokenized by splitting on the white spaces.  White 
space tokenization was used over other possible 
approaches, as the problem of tokenization is very hard 
for chemical names, because they contain a lot of 
internal punctuation.  We also wanted to avoid splitting 
chemical names into tokens that are too small, as they 
would contain very little internal information to work 
with.  The counts of occurrences of tokens in LCN and 
MD were used in all experiments to build models of 
chemical names and general biomedical text. 

 In addition, 15 abstracts containing chemical names 
were selected from the parts of MEDLINE corpus not 
used for the creation of the above list.  These abstracts 
have been annotated by hand and used as development 
and test sets. 

3 Classification Using Substring 
Importance Criteria 

3.1 Classification Approach 

Most obvious approach to this problem is to try to 
match the chemicals in the list against the text and label 
only the matches, i.e. chemicals that are known from the 
list.  This approach is similar to the memory-based 
baseline described by Palmer et al., 1997, where instead 
of using precompiled list they memorized all the entries 
that occurred in a training text. 

A natural extension of matching is a decision list.  
Each classification rule in the list checks if a substring is 
present in a token.  Matching can be viewed as just an 
extreme of this approach, where the strings selected into 
the decision list are the complete tokens from the LCN 
(including token boundary information).  Using other 
substrings increases recall, as non-exact matches are 
detected, and it also improves precision, as it decreases 
the number of error coming from noise in LCN. 

While decision list performs better than matching, its 
performance is still unsatisfactory.  Selecting only 
highly indicative substrings results in high precision, but 
very low recall.  Lowering the thresholds and taking 
more substrings decreases the precision without 
improving the recall much until the precision gets very 
low. 

The decision list approach makes each decision 
based on a single substring.  This forces us to select 
only substrings that are extreemly rare outside the 
chemical names. This in turn results in extremely low 
recall. An alternative would be to combine the 
information from multiple substrings into a single 
decision using Naive Bayes framework.  This would 
keep precision from dropping as dramatically when we 
increase the number of strings used in classification.  

We would like to estimate the probability of a token 
being a part of a chemical name given the token (string) 



p(c|s) .  Representing each string as a set of its substrings 
we need to estimate p(c|s1...sn).  Using Bayes Rule, we 
get 

)...ss|c)p(c)/p(...sp(s)...sp(c|s n1n1n1 =  (1) 

Assuming independence of substrings s1...sn and 
conditional independence of substrings s1...sn given c, 
we can rewrite: 
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Now notice that for most applications we would like 
to be able to vary precision/recall tradeoff by setting 
some threshold t and classifying each string s a s  a 
chemical only if 
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This allows us to avoid estimation of p(c) 
(estimating p(c) is hard without any labeled text). We 
can estimate p(si|c) and p(si) from the LCN and MED 
respectively as 

tokens)(/#) containg tokens(#)( ii ssp =  (5) 

3.2 Substring Selection 

For this approach, we need to decide what set of 
substring {si} of s to use to represent s.  We would like 
to select a set of non-overlapping substrings to make the 
independence assumption more grounded (while it is 
clear that even non-overlapping substrings are not 
independent, assuming independence of overlapping 
substrings clearly causes major problems).  In order to 
do this we need some measure of usefulness of 
substrings.  We would like to select substrings that are 
both informative and reliable as features, i.e. the 
substrings fraction of which in LCN is different from 
the fraction of them in MED and which occur often 
enough in LCN.  Once this measure is defined, we can 
use dynamic programming algorithm similar to Viterbi 
decoding to select the set of non-overlapping substrings 
with maximum value. 

Kullback-Leibler divergence based measure  

If we view the substring frequencies as a distribution, 
we can ask the question which substrings account for 
the biggest contribution to Kullback-Leibler divergence 
(Cover et al, 1991) between distribution given by LCN 
and that given by MED.  From this view it is reasonable 
to take p(si|c)*log(p(si|c)/p(si)) as a measure of value of 
a substring.  Therefore, the selection criterion would be 

tspcspcsp iii >))(/)|(log()|(   (6) 

where t is some threshold value.  Notice that this 
measure combines frequency of a substring in chemicals 
and the difference between frequencies of occurrences 
of the substring in chemicals and non-chemicals. 

A problem with this approach arises when either 
p(si|c) or p(si) is equal to zero.  In this case, this 
selection criterion cannot be computed, yet some of the 
most valuable strings could have p(si) equal to zero.  
Therefore, we need to smooth probabilities of the 
strings to avoid zero values.  One possibility is to 
include all strings si, such that p(si)=0 and p(si|c)>t', 
where t'<t is some new threshold needed to avoid 
selecting very rare strings.  It would be nice though not 
to introduce an additional parameter.  An alternative 
would be to reassign probabilities to all substrings and 
keep the selection criterion the same.  It could be done, 
for example, using Good-Turing smoothing (Good 
1953). 

Selection by significance testing 

A different way of viewing this is to say that we want to 
select all the substrings in which we are confident.  It 
can be observed that tokens might contain certain 
substrings that are strong indicators of them being 
chemicals.  Useful substrings are the ones that predict 
significantly different from the prior probability of 
being a chemical.  I.e. if the frequency of chemicals 
among all tokens is f(c), then s is a useful substring if 
the frequency of chemicals among tokens containing s 
f(c|s)  is significantly different from f(c).  We test the 
significance by assuming that f(c) is a good estimate for 
the prior probability of a token being a chemical p(c), 
and trying to reject the null hypothesis, that actual 
probability of chemicals among tokens that contain s is 
also p(c).  If the number of tokens containing s is n(s) 
and the number of chemicals containing s is c(s) , then 
the selection criterion becomes 
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This formula is obtained by viewing occurrences of s 
as Bernoulli trials with probability p(c)  of the 
occurrence being a chemical and probability (1-p(c))  of 
the occurrence being non-chemical.  Distribution 
obtained by n(s) such trials can be approximated with 
the normal distribution with mean n(s)p(c) and variance 
n(s)p(c)(1-p(c)). 

4 Classification Using N-gram Models 

W e  can estimate probability of a string given class 
(chemical or non-chemical) as the probability of letters 
of the string based on a finite history.  
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where  S is the string to be classified and si are the 
letters of S. 

The N-gram approach has been a successful 
modeling technique in many other applications.  It has a 
number of advantages over the Bayesian approach.  In 
this framework we can use information from all 
substrings of a token, and not only sets of non-
overlapping ones.  There is no (incorrect) independence 
assumption, so we get a more sound probability model.  
As a practical issue, there has been a lot of work done 
on smoothing techniques for N-gram models (Chen et 
al., 1998), so it is easier to use them. 

4.1 Investigating Usefulness of Different N-gram 
Lengths 

As the first task in investigating N-gram models, we 
investigated usefulness of N-grams of different length.  
For each n, we constructed a model based on the 
substrings of this length only using Laplacian 
smoothing to avoid zero probability. 
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where N is the length of the N-grams, ni
i-N+1 and nc

i
i-N+1 

are the number of occurrences of N-gram sisi-1...si-N-1 in 
MEDLINE and chemical list respectively, δ  is the 
smoothing parameter, and B is the number of different 
N-grams of length N. 

The smoothing parameter was tuned for each n 
individually using the development data (hand 
annotated MEDLINE abstracts).  The results of these 
experiments showed that 3-grams and 4-grams are most 
useful.  While poor performance by longer N-grams was 
somewhat surprising, results indicated that overtraining 
might be an issue for longer N-grams, as the model they 
produce models the training data more precisely.  While 
unexpected, the result is similar to the conclusion in 
Dunning '94 for language identification task. 

4.2 Interpolated N-gram Models 

In many different tasks that use N-gram models, 
interpolated or back-off models have been proven 
useful.  The idea here is to use shorter N-grams for 
smoothing longer ones. 
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where λj's are the interpolation coefficients, m and mc 
are the total number of letters in MEDLINE and 
chemical list respectively.  λj can generally depend on 
si-1...si-N+1 , with the only constraint that all λ j 
coefficients sum up to one.  One of the main question 
for interpolated models is learning the values for λ's.  
Estimating N different λ's for each context si-1...si-N+1 is 
a hard learning task by itself that requires a lot of 
development data.  There are two fundamentally 
different ways for dealing with this problem.  Often 
grouping different coefficients together and providing 
single value for each group, or imposing some other 
constraints on the coefficients is used to decrease the 
number of parameters.  The other approach is providing 
a theory for values of λ's without tuning them on the 
development data (This is similar in spirit to Minimal 
Description Length approach).  We have investigated 
several different possibilities in both of these two 
approaches. 

4.3 Computing Interpolation Coefficients: Fixed 
Coefficients 

Equation (10) can be rewritten in a slightly different 
form:  
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This form states more explicitly that each N-gram 
model is smoothed by all lower models.  An extreme of 
the grouping approach is then to make all λj's equal, 
and tune this single parameter on the development data. 

4.4 Computing Interpolation Coefficients: 
Context Independent Coefficients 

Relaxing this constraint and going back to the original 
form of equation (10), we can make all λj's independent 
of their context, so we get only N parameters to tune.  
When N is small, this can be done even with relatively 



small development set.  We can do this by exploring all 
possible settings of these parameters in an N 
dimensional grid with small increment.  For larger N  we 
have to introduce an additional constraint that λ j's 
should lie on some function of j with a smaller number 
of parameters.  We have used a quadratic function (2 
parameters, as one of them is fixed by the constraint that 
all λj's have to sum up to 1).  Using higher order of the 
function gives more flexibility, but introduces more 
parameters, which would require more development 
data to tune well.  The quadratic function seems to be a 
good trade off that provides enough flexibility, but does 
not introduce too many parameters. 

4.5 Computing Interpolation Coefficients: 
Confidence Based Coefficients 

The intuition for using interpolated models is that higher 
level N-grams give more information when they are 
reliable, but lower level N-grams are usually more 
reliable, as they normally occur more frequently.  We 
can formalize this intuition by computing the 
confidence of higher level N-grams and weight them 
proportionally.  We are trying to estimate p(si|si-1...si-

N+1) with the ratio ni
i-N+1 /ni-1

i-N+1.  We can say that our 
observation in the training data was generated by ni-1

i-

N+1 Bernoulli trials with outcomes either si or any other 
letter.  We consider si to be a positive outcome and any 
other letter would be a negative outcome.  Given this 
model we have ni

i-N+1 positive outcomes in ni-1
i-N+1 

Bernoulli trials with probability of positive outcome 
p(si|si-1...si-N+1).  This means that the estimate given by 
ni

i-N+1 /ni-1
i-N+1 has the confidence interval of binomial 

distribution approximated by normal given by 
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where c = ni-1
i-N+1 . 

Since the true probability is within I of the estimate, 
the lower level models should not change the estimate 
given by the highest-level model by more than I.  This 
means that λN-1 in the equation (11) should be equal to 
I.  By recursing the argument we get 
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where cj = ni-1
i-j+2  for j > 1 , and c1 = m. 

5 Evaluation and Results 

We performed cross validation experiments on 15 hand-
annotated MEDLINE abstracts described in section 
"Available Data".  Experiments were done by holding 
out each abstract, tuning model parameters on 14 
remaining abstracts, and testing on the held out one.  

Fifteen such experiments were performed.  The results 
of these experiments were combined by taking weighed 
geometric mean of precision results at each recall level.  
The results were weighted according to the number of 
positive examples in each file to ensure equal 
contribution from each example.  Figure 1 shows the 
resulting precision/recall curves. 

As we can see, the  N-gram approaches perform 
better than the other ones.  The interpolated model with 
quadratic coefficients needs a lot of development data, 
so it does not produce good results in our case.  Simple 
Laplacian smoothing needs less development data and 
produces much better results.  The model with 
confidence based coefficients works best.  The graph 
also shows the model introduced by Wilbur et al., 1999.  
It does not perform nearly as well on our data, even 
though it produces very good results on clean data they 
have used.  This (as well as some experiments we 
performed that have not been included into this work) 
suggests that quality of the training data has very strong 
effect on the model results. 

6 Conclusions and Future Work 

We have investigated a number of different approaches 
to chemical identification using string internal 
information.  We used readily available training data, 
and a small amount of human annotated text that was 
used primarily for testing.  We were able to achieve 
good performance on general biomedical text taken 
from MEDLINE abstracts.  N-gram models showed the 
best performance.  The specific details of parameter 
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tuning for these models produced small variations in the 
results.  We have also introduced a method for 
computing interpolated N-gram model parameters 
without any tuning on development data.  The results 
produced by this method were slightly better than those 
of other approaches.  We believe this approach 
performed better because only one parameter - the 
length of N-grams - needed to be tuned on the 
development data.  This is a big advantage when little 
development data is available.  In general, we 
discovered many similarities with previous work on 
language identification, which suggests that other 
techniques introduced for language identification may 
carry over well into chemicals identification. 

As a short term goal we would like to determine N-
gram interpolation coeficients by usefulness of the 
corresponding context for discrimination.  This would 
incorporate the same techinque as we used for Naive 
Bayes system, hopefully combining the advantage of 
both approaches  

There are other alternatives for learning a 
classification rule.  Recently using support vector 
machines (Burges 1998) have been a popular approach.  
More traditionally decision trees (Breiman et al, 1984) 
have been used for simmilar tasks.  It would be 
interesting to try these aproaches for our task and 
compare them with Naive Bayes and N-gram 
approaches discussed here. 

One limitation of the current system is that it does 
not find the boundaries of chemicals, but only classifies 
predetermind tokens as being part of a chemical name 
or not.  The system can be improved by removing prior 
tokenization requirment, and attempting to identify 
chemical name boundaries based on the learned 
information. 

 In this work we explored just one dimention of 
possible features usefull for finding chemical names. 
We intent to incorporate other types of features 
including context based features with this work. 
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