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Abstract
We examine the utility of multiple types of
turn-level and contextual linguistic features for
automatically predicting student emotions in
human-human spoken tutoring dialogues. We
first annotate student turns in our corpus for
negative, neutral and positive emotions. We
then automatically extract features represent-
ing acoustic-prosodic and other linguistic in-
formation from the speech signal and associ-
ated transcriptions. We compare the results of
machine learning experiments using different
feature sets to predict the annotated emotions.
Our best performing feature set contains both
acoustic-prosodic and other types of linguistic
features, extracted from both the current turn
and a context of previous student turns, and
yields a prediction accuracy of 84.75%, which
is a 44% relative improvement in error reduc-
tion over a baseline. Our results suggest that
the intelligent tutoring spoken dialogue system
we are developing can be enhanced to automat-
ically predict and adapt to student emotions.

1 Introduction
This paper investigates the automatic classification of
student emotional states using acoustic-prosodic, non-
acoustic-prosodic, and contextual information, in a cor-
pus of human-human spoken tutoring dialogues. Motiva-
tion for this work comes from the discrepancy between
the performance of human tutors and current machine
tutors. In recent years, the development of computa-
tional tutorial dialogue systems has become more preva-
lent (Aleven and Rose, 2003), as one method of attempt-
ing to close the performance gap between human and
computer tutors. It has been hypothesized that the suc-
cess of such computer dialogue tutors could be further
increased by modeling and adapting to student emotion;

for example (Aist et al., 2002) have shown that adding
human-provided emotional scaffolding to an automated
reading tutor increases student persistence. We are build-
ing an intelligent tutoring spoken dialogue system with
the goal of using spoken and natural language processing
capabilities to automatically predict and adapt to student
emotions. Here we present results of an empirical study
demonstrating the feasibility of modeling student emo-
tion in a corresponding corpus of human-human spoken
tutoring dialogues.

Research in emotional speech has already shown that
acoustic and prosodic features can be extracted from the
speech signal and used to develop predictive models of
emotion. Much of this research has used databases of
speech read by actors or native speakers as training data
(often with semantically neutral content) (Oudeyer, 2002;
Polzin and Waibel, 1998; Liscombe et al., 2003). How-
ever, such prototypical emotional speech does not neces-
sarily reflect natural speech (Batliner et al., 2003), such
as found in tutoring dialogues. When actors are asked
to read the same sentence with different emotions, they
are restricted to conveying emotion using only acoustic
and prosodic features. In natural interactions, however,
speakers can convey emotions using other types of fea-
tures, and can also combine acoustic-prosodic and other
feature types. As a result of this mismatch, recent work
motivated by spoken dialogue applications has started to
use naturally-occurring speech to train emotion predic-
tors (Litman et al., 2001; Lee et al., 2001; Ang et al.,
2002; Lee et al., 2002; Batliner et al., 2003; Devillers et
al., 2003; Shafran et al., 2003), but often predicts emo-
tions using only acoustic-prosodic features that would be
automatically available to a dialogue system in real-time.
With noisier data and fewer features, it is not surpris-
ing that acoustic-prosodic features alone have been found
to be of less predictive utility in these studies, leading
spoken dialogue researchers to supplement such features
with features based on other sources of information (e.g.,
lexical, syntactic, discourse).



Our methodology builds on and generalizes the results
of this prior work in spoken dialogue emotion predic-
tion, by introducing new linguistic and contextual fea-
tures, and exploring emotion prediction in the domain
of naturally occurring tutoring dialogues. We first an-
notate student turns in our human-human tutoring cor-
pus for emotion. We then automatically extract acoustic-
prosodic and other types of linguistic features from the
student utterances in our corpus, and from their local and
global dialogue contexts. We perform a variety of ma-
chine learning experiments using different feature com-
binations to predict our emotion categorizations. Our ex-
periments show that 1) by using either acoustic-prosodic
or other types of features alone, prediction accuracy is
significantly improved compared to a baseline classifier
for emotion prediction, 2) the addition of features identi-
fying specific subjects and tutoring sessions only some-
times improves performance, and 3) prediction accuracy
can typically be improved by combining features across
multiple knowledge sources, and/or by adding contextual
information. Our best learned model achieves a predic-
tion accuracy of 84.75%, which is a relative improvement
of 44% over the baseline error. Our results provide an
empirical basis for enhancing the corresponding spoken
dialogue tutoring system we are developing to automat-
ically predict and ultimately to adapt to a student model
that includes emotional states.

2 The Dialogue System and Corpus
We are currently building a spoken dialogue tutorial sys-
tem called ITSPOKE (Intelligent Tutoring SPOKEn dia-
logue system) (Litman and Silliman, 2004), with the goal
of automatically predicting and adapting to student emo-
tions. ITSPOKE uses as its “back-end” the text-based
Why2-Atlas dialogue tutoring system (VanLehn et al.,
2002). In ITSPOKE, a student types an essay answering
a qualitative physics problem. ITSPOKE then engages
the student in spoken dialogue to correct misconceptions
and elicit more complete explanations, after which the
student revises the essay, thereby ending the tutoring or
causing another round of tutoring/essay revision. Student
speech is digitized from microphone input and sent to the
Sphinx2 recognizer. The most probable “transcription”
output by Sphinx2 is then sent to the Why2-Atlas natural
language back-end for syntactic, semantic and dialogue
analysis. Finally, the text response produced by the back-
end is sent to the Cepstral text-to-speech system, then
played to the student through a headphone. ITSPOKE
has been pilot-tested and a formal evaluation with stu-
dents is in progress.

Our human-human corpus contains spoken dialogues
collected via a web interface supplemented with an au-
dio link, where a human tutor performs the same task
as ITSPOKE. Our subjects are university students who

have taken no college physics and are native speakers
of American English. Our experimental procedure, tak-
ing roughly 7 hours/student over 1-2 sessions, is as fol-
lows: students 1) take a pretest measuring their physics
knowledge, 2) read a small document of background ma-
terial, 3) use the web and voice interface to work through
up to 10 problems with the human tutor (via essay revi-
sion as described above), and 4) take a post-test similar
to the pretest.1 Our corpus contains 149 dialogues from
17 students. An average dialogue contains 45.3 student
turns (242.2 words) and 44.1 tutor turns (1096.2 words).
A corpus example is shown in Figure 1, containing the
problem, the student’s original essay, and an annotated
(Section 3) excerpt from the subsequent spoken dialogue
(some punctuation is added for clarity).

PROBLEM (TYPED): If a car is able to accelerate at 2
m/s

�
, what acceleration can it attain if it is towing another

car of equal mass?
ESSAY (TYPED): The maximum acceleration a car can
reach when towing a car behind it of equal mass will
be halved. Therefore, the maximum acceleration will be
1m/s

�
.

DIALOGUE (SPOKEN): . . . 9.1 min. into session . . .
TUTOR � : Uh let us talk of one car first.
STUDENT � : ok. (EMOTION = NEUTRAL)

TUTOR � : If there is a car, what is it that exerts force on
the car such that it accelerates forward?

STUDENT � : The engine (EMOTION = POSITIVE)
TUTOR � : Uh well engine is part of the car, so how can
it exert force on itself?
STUDENT � : um... (EMOTION = NEGATIVE)

Figure 1: Excerpt from Human-Human Spoken Corpus

3 Annotating Student Emotion
In our spoken dialogue tutoring corpus, student emotional
states can only be identified indirectly – via what is said
and/or how it is said. We have developed an annotation
scheme for hand labeling the student turns in our corpus
with respect to three types of perceived emotions (Litman
and Forbes-Riley, 2004):

Negative: a strong expression of emotion such as con-
fused, bored, frustrated, uncertain. Because a syntactic
question by definition expresses uncertainty, a turn con-
taining only a question is by default labeled negative. An
example negative turn is student � in Figure 1. Evidence
of a negative emotion comes from the lexical item “um”,

1The human-human corpus corresponds to the human-
computer corpus that will result from ITSPOKE’s evaluation,
in that both corpora are collected using the same experimental
method, student pool, pre- and post-test, and physics problems.



as well as acoustic and prosodic features, e.g., prior and
post-utterance pausing and low pitch, energy and tempo.

Positive: a strong expression of emotion such as confi-
dent, interested, encouraged. An example is student � in
Figure 1, with its lexical expression of certainty, “The
engine”, and acoustic and prosodic features of louder
speech and faster tempo.

Neutral: no strong expression of emotion, including
weak (negative or positive) or contrasting (negative and
positive) expressions, as well as no expression. Because
groundings serve mainly to encourage another speaker
to continue speaking, a student turn containing only a
grounding is by default labeled neutral. An example is
student � in Figure 1. In this case, acoustic and prosodic
features such as moderate loudness and tempo give evi-
dence for the neutral label (rather than overriding it).

The features mentioned in the examples above were
elicited during post-annotation discussion, for expository
use in this paper. To avoid influencing the annotator’s in-
tuitive understanding of emotion expression, and because
such features are not used consistently or unambiguously
across speakers, our manual contains examples of labeled
dialogue excerpts (as in Figure 1) with links to corre-
sponding audio files, rather than a description of particu-
lar features associated with particular labels.

Our work differs from prior emotion annotations of
spontaneous spoken dialogues in several ways. Al-
though much past work predicts only two classes (e.g.,
negative/non-negative) (Batliner et al., 2003; Ang et al.,
2002; Lee et al., 2001), our experiments produced the
best predictions using our three-way distinction. In con-
trast to (Lee et al., 2001), our classifications are context-
relative (relative to other turns in the dialogue), and task-
relative (relative to tutoring), because like (Ang et al.,
2002), we are interested in detecting emotional changes
across our dialogues. Although (Batliner et al., 2003)
also employ a relative classification, they explicitly as-
sociate specific features with emotional utterances.

To analyze the reliability of our annotation scheme,
we randomly selected 10 transcribed dialogues from our
human-human tutoring corpus, yielding a dataset of 453
student turns. (Turn boundaries were manually anno-
tated prior to emotion annotation by a paid transcriber.)
The 453 turns were separately annotated by two differ-
ent annotators as negative, neutral or positive, follow-
ing the emotion annotation instructions described above.
The two annotators agreed on the annotations of 385/453
turns, achieving 84.99% agreement, with Kappa = 0.68.2

This inter-annotator agreement exceeds that of prior stud-
ies of emotion annotation in naturally occurring speech

2 �������	��
������������������ ��������� (Carletta, 1996). P(A) is the pro-
portion of times the annotators agree, and P(E) is the proportion
of agreement expected by chance.

(e.g., agreement of 71% and Kappa of 0.47 in (Ang et
al., 2002), and Kappa ranging between 0.32 and 0.42
in (Shafran et al., 2003)). As in (Lee et al., 2001), the
machine learning experiments described below use only
those 385 student turns where the two annotators agreed
on an emotion label. Of these turns, 90 were negative,
280 were neutral, and 15 were positive.

4 Feature Extraction
For each of the 385 agreed student turns described above,
we next extracted the set of features itemized in Figure 2.
These features are used in our machine learning experi-
ments (Section 5), and were motivated by previous stud-
ies of emotion prediction as well as by our own intuitions.

Acoustic-Prosodic Features
� 4 normalized fundamental frequency (f0) features:

maximum, minimum, mean, standard deviation

� 4 normalized energy (RMS) features: maximum,
minimum, mean, standard deviation

� 4 normalized temporal features: total turn dura-
tion, duration of pause prior to turn, speaking rate,
amount of silence in turn

Non-Acoustic-Prosodic Features

� lexical items in turn

� 6 automatic features: turn begin time, turn end time,
isTemporalBarge-in, isTemporalOverlap, #words in
turn, #syllables in turn

� 6 manual features: #false starts in turn, isPri-
orTutorQuestion, isQuestion, isSemanticBarge-in,
#canonical expressions in turn, isGrounding

Identifier Features: subject, subject gender, problem

Figure 2: Features Per Student Turn

Following other studies of spontaneous dialogues (Ang
et al., 2002; Lee et al., 2001; Batliner et al., 2003; Shafran
et al., 2003), our acoustic-prosodic features represent
knowledge of pitch, energy, duration, tempo and paus-
ing. F0 and RMS values, representing measures of pitch
and loudness, respectively, are computed using Entropic
Research Laboratory’s pitch tracker, get f0, with no post-
correction. Turn Duration and Prior Pause Duration are
calculated via the turn boundaries added during the tran-
scription process. Speaking Rate is calculated as sylla-
bles (from an online dictionary) per second in the turn,
and Amount of Silence is approximated as the proportion
of zero f0 frames for the turn, i.e., the proportion of time
the student was silent. In a pilot study of our corpus, we
extracted raw values of these acoustic-prosodic features,



then normalized (divided) each feature by the same fea-
ture’s value for the first student turn in the dialogue, and
by the value for the immediately prior student turn. We
found that features normalized by first turn were the best
predictors of emotion (Litman and Forbes, 2003).

While acoustic-prosodic features address how some-
thing is said, features representing what is said are
also important. Lexical information has been shown to
improve speech-based emotion prediction in other do-
mains (Litman et al., 2001; Lee et al., 2002; Ang et
al., 2002; Batliner et al., 2003; Devillers et al., 2003;
Shafran et al., 2003), so our first non-acoustic-prosodic
feature represents the transcription3 of each student turn
as a word occurrence vector (indicating the lexical items
that are present in the turn).

The next set of non-acoustic-prosodic features are also
automatically derivable from the transcribed dialogue.
Turn begin and end times4 are retrieved from turn bound-
aries, as are the decisions as to whether a turn is a tem-
poral barge-in (i.e., the turn began before the prior tutor
turn ended) or a temporal overlap (i.e., the turn began and
ended within a tutor turn). These features were motivated
by the use of turn position as a feature for emotion pre-
diction in (Ang et al., 2002), and the fact that measures of
dialogue interactivity have been shown to correlate with
learning gains in tutoring (Core et al., 2003). The number
of words and syllables in a turn provide alternative ways
to quantify turn duration (Litman et al., 2001).

The last set of 6 non-acoustic-prosodic features rep-
resent additional syntactic, semantic, and dialogue infor-
mation that had already been manually annotated in our
transcriptions, and thus was available for use as predic-
tors; as future research progresses, this information might
one day be computed automatically. Our transcriber la-
bels false starts (e.g., I do-don’t), syntactic questions, and
semantic barge-ins. Semantic barge-ins occur when a stu-
dent turn interrupts a tutor turn at a word or pause bound-
ary. Unlike temporal barge-ins, semantic barge-ins do
not overlap temporally with tutor turns. Our transcriber
also labels certain canonical expressions that occur fre-
quently in our tutoring dialogues and function as hedges
or groundings. Examples include “uh”, “mm-hm”, “ok”,
etc. (Evens, 2002) have argued that hedges can indi-
cate emotional speech (e.g., “uncertainty”). However,
many of the same expressions also function as ground-
ings, which generally correspond to neutral turns in our
dialogues. We distinguish groundings as turns that con-
sist only of a labeled canonical expression and are not

3In our human-computer data, all features computed from
transcriptions will be computed from ITSPOKE’s logs (e.g., the
best speech recognition hypothesis).

4These are computed relative to the beginning of the dia-
logue, e.g., the begin time of tutor � in Figure 1 is 9.1 minutes.

preceded by (i.e., not answering) a tutor question.5

Finally, we recorded 3 “identifier” features for each
turn. Prior studies (Oudeyer, 2002; Lee et al., 2002) have
shown that “subject” and “gender” can play an important
role in emotion recognition, because different genders
and/or speakers can convey emotions differently. “sub-
ject” and “problem” are uniquely important in our tu-
toring domain, because in contrast to e.g., call centers,
where every caller is distinct, students will use our system
repeatedly, and problems are repeated across students.

5 Emotion Prediction using Learning
We next performed machine learning experiments us-
ing the feature sets in Figure 3, to study the effects that
various feature combinations had on predicting emotion.
We compare our normalized acoustic-prosodic feature set
(speech) with 3 non-acoustic-prosodic feature sets, which
we will refer to as “text-based” sets: one containing only
the lexical items in the turn (lexical), another containing
the lexical items and the automatic features (autotext),
and a third containing all 13 features (alltext). We further
compare each of these 4 feature sets with an identical set
supplemented with our 3 identifier features (+ident sets).

� speech: 12 normalized acoustic-prosodic features

� lexical: lexical items in turn

� autotext: lexical + 6 automatic features

� alltext: lexical + 6 automatic + 6 manual features

� +ident: each of the above sets + 3 identifier features

Figure 3: Feature Sets for Machine Learning
We use the Weka machine learning software (Witten

and Frank, 1999) to automatically learn our emotion pre-
diction models. In earlier work (Litman and Forbes,
2003), we used Weka to compare a nearest-neighbor
classifier, a decision tree learner, and a “boosting” al-
gorithm. We found that the boosting algorithm, called
“AdaBoost” (Freund and Schapire, 1996), consistently
yielded the most robust performance across feature sets
and evaluation metrics; in this paper we thus focus on
AdaBoost’s performance. Boosting algorithms generally
enable the accuracy of a “weak” learning algorithm to be
improved by repeatedly applying it to different distribu-
tions of training examples (Freund and Schapire, 1996).
Following (Oudeyer, 2002), we select the decision tree
learner as AdaBoost’s weak learning algorithm.

To investigate how well our emotion data can be
learned with only speech-based or text-based features,
Table 1 shows the mean accuracy (percent correct) and

5This definition is consistent but incomplete, e.g., repeats
can also function as groundings, but are not currently included.



standard error (SE)6 of AdaBoost on the 8 feature sets
from Figure 3, computed across 10 runs of 10-fold cross-
validation.7 Although not shown in this and later ta-
bles, all of the feature sets examined in this paper pre-
dict emotion significantly better than a standard majority
class baseline algorithm (always predict “neutral”, which
yields an accuracy of 72.74%). For Table 1, AdaBoost’s
improvement for each feature set, relative to this baseline
error of 27.26%, averages 24.40%, and ranges between
12.69% (“speech-ident”) and 43.87% (“alltext+ident”).8

Feature Set -ident SE +ident SE
speech 76.20 0.55 77.41 0.52
lexical 78.31 0.44 79.55 0.27
autotext 80.38 0.43 81.19 0.35
alltext 83.19 0.30 84.70 0.20

Table 1: %Correct on Speech vs. Text (cross-val.)

As shown in Table 1, the best accuracy of 84.70%
is achieved on the “alltext+ident” feature set. This ac-
curacy is significantly better than the accuracy of the
seven other feature sets,9 although the difference be-
tween the “+/-ident” versions was not significant for any
other pair besides “alltext”. In addition, the results of
five of the six text-based feature sets are significantly
better than the results of both acoustic-prosodic feature
sets (“speech +/- ident”). Only the text-only feature set
(“lexical-ident”) did not perform statistically better than
“speech+ident” (although it did perform statistically bet-
ter than “speech-ident”). These results show that while
acoustic-prosodic features can be used to predict emo-
tion significantly better than a majority class baseline, us-
ing only non-acoustic-prosodic features consistently pro-
duces even significantly better results. Furthermore, the
more text-based features the better, i.e., supplementing
lexical items with additional features consistently yields
further accuracy increases. While adding in the subject-
and problem- specific “+ident” features improves the ac-
curacy of all the “-ident” feature sets, the improvement is
only significant for the highest-performing set (“alltext”).

The next question we addressed concerns whether
combinations of acoustic-prosodic and other types of fea-

6We compute the SE from the std. deviation (std(x)/sqrt(n),
where n=10 (runs)), which is automatically computed in Weka.

7For each cross-validation, the training and test data are
drawn from turns produced by the same set of speakers. We
also ran cross-validations training on n-1 subjects and testing
on the remaining subject, but found our results to be the same.

8Relative improvement over the baseline error for feature
set x = ������ �� ��!�"$# �

%'&�(
� �)� ������ �� ��*+�

������ �� ��!�"$# �
%'&�(

� �
, where error(x) is 100 minus

the %correct(x) value shown in Table 1.
9For any feature set, the mean +/- 2*SE = the 95% con-

fidence interval. If the confidence intervals for two feature
sets are non-overlapping, then their mean accuracies are sig-
nificantly different with 95% confidence.

tures can further improve AdaBoost’s predictive accu-
racy. We investigated AdaBoost’s performance on the
set of 6 feature sets formed by combining the “speech”
acoustic-prosodic set with each text-based set, both with
and without identifier features, as shown in Table 2.

Feature Set -ident SE +ident SE
lexical+speech 79.26 0.46 79.09 0.36
autotext+speech 79.64 0.47 79.36 0.48
alltext+speech 83.69 0.36 84.26 0.26

Table 2: %Correct on Speech+Text (cross-val.)

AdaBoost’s best accuracy of 84.26% is achieved on the
“alltext+speech+ident” combined feature set. This result
is significantly better than the % correct achieved on the
four “autotext” and “lexical” combined feature sets, but
is not significantly better than the “alltext+speech-ident”
feature set. Furthermore, there was no significant dif-
ference between the results of the “autotext” and “lexi-
cal” combined feature sets, nor between the “-ident” and
“+ident” versions for the 6 combined feature sets.

Comparing the results of these combined (speech+text)
feature sets with the speech versus text results in Table 1,
we find that for autotext+speech-ident and all +ident fea-
ture sets, the combined feature set slightly decreases pre-
dictive accuracy when compared to the corresponding
text-only feature set. However, there is no significant
difference between the best results in each table (all-
text+speech+ident vs. alltext+ident).

Emotion Class Precision Recall F-Measure
negative 0.71 0.60 0.65
neutral 0.86 0.92 0.89
positive 0.50 0.27 0.35

Table 3: Other Metrics on “alltext+speech+ident” (LOO)

In addition to accuracy, other important evalua-
tion metrics include recall, precision, and F-Measure
(
�-,+.�/�021�3'3�,)4�.-/50�68756:9�;
.�/�021�3'3�<�4�.�/�0�6:7�6:9�; ). Table 3 shows AdaBoost’s per-

formance with respect to these metrics across emotion
classes for the “alltext+speech+ident” feature set, using
leave-one-out cross validation (LOO). AdaBoost accu-
racy here is 82.08%. As shown, AdaBoost yields the best
performance for the neutral (majority) class, and has bet-
ter performance for negatives than for positives. We also
found positives to be the most difficult emotion to anno-
tate. Overall, however, AdaBoost performs significantly
better than the baseline, whose precision, recall and F-
measure for negatives and positives is 0, and for neutrals
is 0.727, 1, and 0.842, respectively.

6 Adding Context-Level Features
Research in other domains (Litman et al., 2001; Batliner
et al., 2003) has shown that features representing the di-



alogue context can sometimes improve the accuracy of
predicting negative user states, compared to the use of
features computed from only the turn to be predicted.
Thus, we investigated the impact of supplementing our
turn-level features in Figure 2 with the features in Fig-
ure 4, representing local and global10 aspects of the prior
dialogue, respectively.

� Local Features: feature values for the two student
turns preceding the student turn to be predicted

� Global Features: running averages and totals for
each feature, over all student turns preceding the
turn to be predicted

Figure 4: Contextual Features for Machine Learning

We next performed machine learning experiments us-
ing our two original speech-based feature sets (“speech
+/- ident”), and four of our text-based feature sets (“au-
totext” and “alltext” +/- ident), each separately supple-
mented with local, global, and local+global features. Ta-
ble 4 presents the results of these experiments.

Feature Set -ident SE +ident SE
speech+loc 76.90 0.45 76.95 0.40
speech+glob 77.77 0.52 78.02 0.33
speech+loc+glob 77.00 0.46 76.88 0.47
autotext+loc 78.06 0.33 78.24 0.45
autotext+glob 79.35 0.18 80.39 0.43
autotext+loc+glob 77.67 0.54 77.74 0.48
alltext+loc 80.33 0.46 80.99 0.40
alltext+glob 83.85 0.37 83.74 0.55
alltext+loc+glob 81.02 0.35 81.23 0.58

Table 4: %Correct, Speech vs. Text, +context (cross-val.)

AdaBoost’s best accuracy of 83.85% is achieved on
the “alltext+glob-ident” combined feature set. This re-
sult is not significantly better than the % correct achieved
on its “+ident” counterpart, but both of these results are
significantly better than the % correct achieved on all
other 16 feature sets. Moreover, all of the results for
both the “alltext” and “autotext” feature sets were sig-
nificantly better than the results for all of the “speech”
feature sets. Although the “alltext+loc” feature sets were
not significantly better than the best autotext feature sets
(autotext+glob), they were better than the remaining “au-
totext” feature sets, and the “alltext+loc+glob” feature
sets were better than all of the autotext feature sets. For
all feature sets, the difference between the “-ident” and

10Running totals are only computed for numeric features if
the result is interpretable, e.g., for turn duration, but not for
tempo. Running averages for text-based features additionally
include a “# turns so far” feature and a “# essays so far” feature.

“+ident” versions was not significant. In sum, we see
again that the more text-based features the better: adding
text-based features again consistently improves results
significantly. We also see that global features perform
better than local features, and while global+local perform
better than local features, global features alone consis-
tently yield the best performance.

Comparing these results with the results in Tables 1
and 2, we find that while overall the performance of
contextual non-combined feature sets shows a small
performance increase over most non-contextual com-
bined or non-combined feature sets, there is again a
slight decrease in performance across the best results
in each table. However, there is no significant differ-
ence between these best results (alltext+glob-identvs. all-
text+speech+ident vs. alltext+ident).

Table 5 shows the results of combining speech-based
and text-based contextual feature sets. We investigated
AdaBoost’s performance on the 12 feature sets formed
by combining the “speech” acoustic-prosodic set with our
“autotext” and “alltext” text-based feature sets, both with
and without identifier features, and each separately sup-
plemented with local, global, and local+global features.

Feature Set -iden SE +iden SE
auto+speech+lo 78.23 0.39 77.30 0.52
auto+speech+gl 79.33 0.22 78.84 0.39
auto+speech+lo+gl 78.26 0.20 78.01 0.43
all+speech+lo 82.44 0.31 82.15 0.56
all+speech+gl 84.75 0.32 84.35 0.20
all+speech+lo+gl 81.43 0.28 81.04 0.43

Table 5: %Correct on Text+Speech+Context (cross-val.)

AdaBoost’s best accuracy of 84.75% is achieved on
the “alltext+speech+glob-ident” combined feature set.
This result is not significantly better than the % correct
achieved on its “+ident” counterpart, but both results are
significantly better than the % correct achieved on all 10
other feature sets. In fact, all the “alltext” results are sig-
nificantly better than all the “autotext” results. Again for
all feature sets, the difference between the “-ident” and
“+ident” versions was not significant. In sum, adding
text-based features again consistently improves results
significantly, and global features alone consistently yield
the best performance. Although the best result across all
experiments is that of “alltext + speech + glob - ident”,
there is no significant difference between the best results
here and those in our three other experimental conditions.

A summary figure of our best results for text (all-
text) and speech alone, then combined with each other
and with our best result for context (global), is shown
in Figure 5, for the “+/- ident” conditions; baseline per-
formance is also shown. As shown, the accuracy of the
“-ident” condition monotonically increases as features



are added or replaced in the right-to-left order shown.
The “+ident” condition initially increases, then decreases
with the addition of “global” or “speech” features to the
“alltext” feature set, but then slightly increases again
when these feature sets are combined. With less fea-
tures “+ident” typically outperforms “-ident”, although
this switches when “alltext” and “global” features are
combined (with and without “speech”).

Figure 5: Comparison of %Correct for Best Results

7 Feature Usage in Machine Learning

As discussed above, we use AdaBoost to “boost” a de-
cision tree algorithm. Although the Weka output of Ad-
aBoost does not include a decision tree, to get an intu-
ition about how our features are used to predict emo-
tion classes in our domain, we ran the basic decision
tree algorithm on our highest-performing feature set,
“alltext+speech+glob-ident”. Table 6 shows the feature
types used in this feature set, and the feature usages of
each based on the structure of the tree. Following (Ang
et al., 2002), feature usage is reported as the percent-
age of decisions for which the feature type is queried.
As shown, the turn-based (non-context) text-based fea-
tures are the most highly queried, with lexical items and
manual features queried most, followed by the temporal
(speech-based) features. Manual text-based global fea-
tures are queried far more than other global features.

8 Conclusions and Current Directions

We have examined the utility of different features for
automatically predicting student emotions in a corpus
of tutorial spoken dialogues. Our emotion annotation
schema distinguishes negative, neutral and positive emo-
tions, with inter-annotator agreement and Kappa values
that exceed those obtained for other types of spoken dia-
logues. From our annotated student turns we extracted a

Features Turn Global Total
Speech-Based 14.29% 1.97% 16.26%

Temporal 12.81% 0.99% 13.79%
Energy 1.48% 0.99% 2.46%
Pitch 0% 0% 0%

Text-Based 67.98 15.76 83.74%
Lexical 41.87% - 41.87%
Automatic 8.37% 0.99% 9.36%
Manual 17.73% 14.78% 32.51%

Table 6: Feature Usage for “alltext+speech+glob-ident”

variety of acoustic and prosodic, text-based, and contex-
tual features. We used machine learning to examine the
impact of different feature sets (with and without iden-
tifier features) on prediction accuracy. Our results show
that while acoustic-prosodic features outperform a base-
line, non-acoustic-prosodic features, and combinations of
both types of features, perform even better. Adding cer-
tain types of contextual features and identifier features
also often improves performance. Our best performing
feature set, which contains speech and text-based features
extracted from the current and previous student turns,
yields an accuracy of 84.75% and a 44% relative im-
provement in error reduction over a baseline. Our ex-
periments suggest that ITSPOKE can be enhanced to au-
tomatically predict student emotions.

We are currently exploring the use of other emotion
annotation schemas for emotion prediction, such as those
that incorporate categorizations encompassing multiple
dimensions (Craggs, 2004; Cowie et al., 2001) and those
that examine emotions at smaller units of granularity
than turns (Batliner et al., 2003). With respect to pre-
dicting emotions, we plan to explore additional features
found to be useful in other studies of spoken dialogue
(e.g., language model, speaking style, dialog act, part-of-
speech, repetition, emotionally salient keywords, word-
level prosody (Batliner et al., 2003; Lee et al., 2002; Ang
et al., 2002)) and in text-based applications (Qu et al.,
2004). We are also exploring methods of combining in-
formation other than by feature level combination, such
as data fusion across multiple classifiers (Lee et al., 2002;
Batliner et al., 2003). For evaluation, we would like
to see whether the ordering preferences among feature
sets (as in Figure 5) are the same when recall, precision,
and F-measure are plotted instead of accuracy. Further-
more, we are investigating whether greater tutor response
to emotions correlates with greater student learning. Fi-
nally, when ITSPOKE’s evaluation is completed, we will
address the same questions for our human-computer dia-
logues that we have addressed here for our corresponding
human-human dialogues.
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