
Automatic Question Answering: Beyond the Factoid

Radu Soricut
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, USA
radu@isi.edu

Eric Brill
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
brill@microsoft.com

Abstract

In this paper we describe and evaluate a Ques-
tion Answering system that goes beyond an-
swering factoid questions. We focus on FAQ-
like questions and answers, and build our sys-
tem around a noisy-channel architecture which
exploits both a language model for answers
and a transformation model for an-
swer/question terms, trained on a corpus of 1
million question/answer pairs collected from
the Web.

1 Introduction

The Question Answering (QA) task has received a great
deal of attention from the Computational Linguistics
research community in the last few years (e.g., Text RE-
trieval Conference TREC 2001-2003). The definition of
the task, however, is generally restricted to answering
factoid questions: questions for which a complete answer
can be given in 50 bytes or less, which is roughly a few
words. Even with this limitation in place, factoid ques-
tion answering is by no means an easy task. The chal-
lenges posed by answering factoid question have been
addressed using a large variety of techniques, such as
question parsing (Hovy et al., 2001; Moldovan et al.,
2002), question-type determination (Brill et al., 2001;
Ittycheraih and Roukos, 2002; Hovy et al., 2001;
Moldovan et al., 2002), WordNet exploitation (Hovy et
al., 2001; Pasca and Harabagiu, 2001; Prager et al.,
2001), Web exploitation (Brill et al., 2001; Kwok et al.,
2001), noisy-channel transformations (Echihabi and
Marcu, 2003), semantic analysis (Xu et al., 2002; Hovy
et al., 2001; Moldovan et al., 2002), and inferencing
(Moldovan et al., 2002).
 The obvious limitation of any factoid QA system is
that many questions that people want answers for are not
factoid questions. It is also frequently the case that non-
factoid questions are the ones for which answers cannot

as readily be found by simply using a good search en-
gine. It follows that there is a good economic incentive
in moving the QA task to a more general level: it is
likely that a system able to answer complex questions of
the type people generally and/or frequently ask has
greater potential impact than one restricted to answering
only factoid questions. A natural move is to recast the
question answering task to handling questions people
frequently ask or want answers for, as seen in Frequently
Asked Questions (FAQ) lists. These questions are some-
times factoid questions (such as, “What is Scotland's
national costume?”), but in general are more complex
questions (such as, “How does a film qualify for an
Academy Award?”, which requires an answer along the
following lines: “A feature film must screen in a Los
Angeles County theater in 35 or 70mm or in a 24-frame
progressive scan digital format suitable for exhibiting in
existing commercial digital cinema sites for paid admis-
sion for seven consecutive days. The seven day run must
begin before midnight, December 31, of the qualifying
year. […]”).
 In this paper, we make a first attempt towards solv-
ing a QA problem more generic than factoid QA, for
which there are no restrictions on the type of questions
that are handled, and there is no assumption that the an-
swers to be provided are factoids. In our solution to this
problem we employ learning mechanisms for question-
answer transformations (Agichtein et al., 2001; Radev et
al., 2001), and also exploit large document collections
such as the Web for finding answers (Brill et al., 2001;
Kwok et al., 2001). We build our QA system around a
noisy-channel architecture which exploits both a lan-
guage model for answers and a transformation model for
answer/question terms, trained on a corpus of 1 million
question/answer pairs collected from the Web. Our
evaluations show that our system achieves reasonable
performance in terms of answer accuracy for a large va-
riety of complex, non-factoid questions.

2 Beyond Factoid Question Answering

One of the first challenges to be faced in automatic ques-
tion answering is the lexical and stylistic gap between
the question string and the answer string. For factoid
questions, these gaps are usually bridged by question
reformulations, from simple rewrites (Brill et al., 2001),
to more sophisticated paraphrases (Hermjakob et al.,
2001), to question-to-answer translations (Radev et al.,
2001). We ran several preliminary trials using various
question reformulation techniques. We found out that in
general, when complex questions are involved, reformu-
lating the question (using either simple rewrites or ques-
tion-answer term translations) more often hurts the
performance than improves on it.
 Another widely used technique in factoid QA is
sentence parsing, along with question-type determina-
tion. As mentioned by Hovy et al. (2001), their hierar-
chical QA typology contains 79 nodes, which in many
cases can be even further differentiated. While we ac-
knowledge that QA typologies and hierarchical question
types have the potential to be extremely useful beyond
factoid QA, the volume of work involved is likely to
exceed by orders of magnitude the one involved in the
existing factoid QA typologies. We postpone such work
for future endeavors.
 The techniques we propose for handling our ex-
tended QA task are less linguistically motivated and
more statistically driven. In order to have access to the
right statistics, we first build a question-answer pair
training corpus by mining FAQ pages from the Web, as
described in Section 3. Instead of sentence parsing, we
devise a statistical chunker that is used to transform a
question into a phrase-based query (see Section 4). After
a search engine uses the formulated query to return the N
most relevant documents from the Web, an answer to the
given question is found by computing an answer lan-
guage model probability (indicating how similar the pro-
posed answer is to answers seen in the training corpus),
and an answer/question translation model probability
(indicating how similar the proposed answer/question
pair is to pairs seen in the training corpus). In Section 5
we describe the evaluations we performed in order to
assess our system’s performance, while in Section 6 we
analyze some of the issues that negatively affected our
system’s performance.

3 A Question-Answer Corpus for FAQs

In order to employ the learning mechanisms described in
the previous section, we first need to build a large train-
ing corpus consisting of question-answer pairs of a broad
lexical coverage. Previous work using FAQs as a source
for finding an appropriate answer (Burke et al., 1996) or
for learning lexical correlations (Berger et al., 2000)
focused on using the publicly available Usenet FAQ

collection and other non-public FAQ collections, and
reportedly worked with an order of thousands of ques-
tion-answer pairs.
 Our approach to question/answer pair collection
takes a different path. If one poses the simple query
“FAQ” to an existing search engine, one can observe that
roughly 85% of the returned URL strings corresponding
to genuine FAQ pages contain the substring “faq”, while
virtually all of the URLs that contain the substring “faq”
are genuine FAQ pages. It follows that, if one has access
to a large collection of the Web’s existent URLs, a sim-
ple pattern-matching for “faq” on these URLs will have
a recall close to 85% and precision close to 100% on
returning FAQ URLs from those available in the collec-
tion. Our URL collection contains approximately 1 bil-
lion URLs, and using this technique we extracted
roughly 2.7 million URLs containing the (uncased)
string “faq”, which amounts to roughly 2.3 million FAQ
URLs to be used for collecting question/answer pairs.
 The collected FAQ pages displayed a variety of for-
mats and presentations. It seems that the variety of ways
questions and answers are usually listed in FAQ pages
does not allow for a simple high-precision high-recall
solution for extracting question/answer pairs: if one
assumes that only certain templates are used when
presenting FAQ lists, one can obtain clean ques-
tion/answer pairs at the cost of losing many other such
pairs (which happen to be presented in different tem-
plates); on the other hand, assuming very loose con-
straints on the way information is presented on such
pages, one can obtain a bountiful set of question/answer
pairs, plus other pairs that do not qualify as such. We
settled for a two-step approach: a first recall-oriented
pass based on universal indicators such as punctuation
and lexical cues allowed us to retrieve most of the ques-
tion/answer pairs, along with other noise data; a second
precision-oriented pass used several filters, such as lan-
guage identification, length constrains, and lexical cues
to reduce the level of noise of the question/answer pair
corpus. Using this method, we were able to collect a total
of roughly 1 million question/answer pairs, exceeding by
orders of magnitude the amount of data previously used
for learning question/answer statistics.

4 A QA System Architecture

The architecure of our QA system is presented in Figure
1. There are 4 separate modules that handle various
stages in the system’s pipeline: the first module is called
Question2Query, in which questions posed in natural
language are transformed into phrase-based queries be-
fore being handed down to the SearchEngine module.
The second module is an Information Retrieval engine
which takes a query as input and returns a list of docu-
ments deemed to be relevant to the query in a sorted
manner. A third module, called Filter, is in charge of

filtering out the returned list of documents, in order to
provide acceptable input to the next module. The forth
module, AnswerExtraction, analyzes the content pre-
sented and chooses the text fragment deemed to be the
best answer to the posed question.

Figure 1: The QA system architecture

 This architecture allows us to flexibly test for vari-
ous changes in the pipeline and evaluate their overall
effect. We present next detailed descriptions of how each
module works, and outline several choices that present
themselves as acceptable options to be evaluated.

4.1 The Question2Query Module

A query is defined to be a keyword-based string that
users are expected to feed as input to a search engine.
Such a string is often thought of as a representation for a
user’s “information need”, and being proficient in ex-
pressing one’s “need” in such terms is one of the key
points in successfully using a search engine. A natural
language-posed question can be thought of as such a
query. It has the advantage that it forces the user to pay
more attention to formulating the “information need”
(and not typing the first keywords that come to mind). It
has the disadvantage that it contains not only the key-
words a search engine normally expects, but also a lot of
extraneous “details” as part of its syntactic and discourse
constraints, plus an inherently underspecified unit-
segmentation problem, which can all confuse the search
engine.
 To counterbalance some of these disadvantages, we
build a statistical chunker that uses a dynamic program-
ming algorithm to chunk the question into
chunks/phrases. The chunker is trained on the answer
side of the Training corpus in order to learn 2 and 3-
word collocations, defined using the likelihood ratio of
Dunning (1993). Note that we are chunking the question
using answer-side statistics, precisely as a measure for
bridging the stylistic gap between questions and answers.
 Our chunker uses the extracted collocation statistics
to make an optimal chunking using a Dijkstra-style dy-

namic programming algorithm. In Figure 2 we present
an example of the results returned by our statistical
chunker. Important cues such as “differ from” and
“herbal medications” are presented as phrases to the
search engine, therefore increasing the recall of the
search. Note that, unlike a segmentation offered by a
parser (Hermjakob et al., 2001), our phrases are not nec-
essarily syntactic constituents. A statistics-based chunker
also has the advantage that it can be used “as-is” for
question segmentation in languages other than English,
provided training data (i.e., plain written text) is avail-
able.

Figure 2: Question segmentation into query using a
statistical chunker

4.2 The SearchEngine Module

This module consists of a configurable interface with
available off-the-shelf search engines. It currently sup-
ports MSNSearch and Google. Switching from one
search engine to another allowed us to measure the im-
pact of the IR engine on the QA task.

4.3 The Filter Module

This module is in charge of providing the AnswerExtrac-
tion module with the content of the pages returned by the
search engine, after certain filtering steps. One first step
is to reduce the volume of pages returned to only a man-
ageable amount. We implement this step as choosing to
return the first N hits provided by the search engine.
Other filtering steps performed by the Filter Module
include tokenization and segmentation of text into sen-
tences.
 One more filtering step was needed for evaluation
purposes only: because both our training and test data
were collected from the Web (using the procedure de-
scribed in Section 3), there was a good chance that ask-
ing a question previously collected returned its already
available answer, thus optimistically biasing our evalua-
tion. The Filter Module therefore had access to the refer-
ence answers for the test questions as well, and ensured
that, if the reference answer matched a string in some
retrieved page, that page was discarded. Moreover, we
found that slight variations of the same answer could
defeat the purpose of the string-matching check. For the
purpose of our evaluation, we considered that if the
question/reference answer pair had a string of 10 words
or more identical with a string in some retrieved page,
that page was discarded as well. Note that, outside the

Question2Query
Module

Q Search Engine
Module

Filter
Module

Answer Extraction
Module

A

Query

Documents

Answer
List

 Training
Corpus

 Web

Query
How do herbal medications differ from
conventional drugs?

"How do" "herbal medications" "differ from"
"conventional" "drugs"

evaluation procedure, the string-matching filtering step
is not needed, and our system’s performance can only
increase by removing it.

4.4 The AnswerExtraction Module

Authors of previous work on statistical approaches to
answer finding (Berger et al., 2000) emphasized the need
to “bridge the lexical chasm” between the question terms
and the answer terms. Berger et al. showed that tech-
niques that did not bridge the lexical chasm were likely
to perform worse than techniques that did.
 For comparison purposes, we consider two different
algorithms for our AnswerExtraction module: one that
does not bridge the lexical chasm, based on N-gram co-
occurrences between the question terms and the answer
terms; and one that attempts to bridge the lexical chasm
using Statistical Machine Translation inspired techniques
(Brown et al., 1993) in order to find the best answer for a
given question.
 For both algorithms, each 3 consecutive sentences
from the documents provided by the Filter module form
a potential answer. The choice of 3 sentences comes
from the average number of sentences in the answers
from our training corpus. The choice of consecutiveness
comes from the empirical observation that answers built
up from consecutive sentences tend to be more coherent
and contain more non-redundant information than an-
swers built up from non-consecutive sentences.

4.4.1 N-gram Co-Occurrence Statistics for Answer
Extraction

N-gram co-occurrence statistics have been successfully
used in automatic evaluation (Papineni et al. 2002, Lin
and Hovy 2003), and more recently as training criteria in
statistical machine translation (Och 2003).
 We implemented an answer extraction algorithm
using the BLEU score of Papineni et al. (2002) as a
means of assessing the overlap between the question and
the proposed answers. For each potential answer, the
overlap with the question was assessed with BLEU (with
the brevity penalty set to penalize answers shorter than 3
times the length of the question). The best scoring poten-
tial answer was presented by the AnswerExtraction
Module as the answer to the question.

4.4.2 Statistical Translation for Answer Extraction

As proposed by Berger et al. (2000), the lexical gap be-
tween questions and answers can be bridged by a statis-
tical translation model between answer terms and
question terms. Their model, however, uses only an An-
swer/Question translation model (see Figure 3) as a
means to find the answer.
 A more complete model for answer extraction can
be formulated in terms of a noisy channel, along the
lines of Berger and Lafferty (2000) for the Information

Retrieval task, as illustrated in Figure 3: an answer gen-
eration model proposes an answer A according to an an-
swer generation probability distribution; answer A is
further transformed into question Q by an an-
swer/question translation model according to a question-
given-answer conditional probability distribution. The
task of the AnswerExtraction algorithm is to take the
given question q and find an answer a in the potential
answer list that is most likely both an appropriate and
well-formed answer.

Figure 3: A noisy-channel model for answer
extraction

 The AnswerExtraction procedure employed depends
on the task T we want it to accomplish. Let the task T be
defined as “find a 3-sentence answer for a given ques-
tion”. Then we can formulate the algorithm as finding
the a-posteriori most likely answer given question and
task, and write it as p(a|q,T). We can use Bayes’ law to
write this as:

)|(
)|(),|(),|(

Tqp
TapTaqpTqap ⋅

= (1)

Because the denominator is fixed given question and
task, we can ignore it and find the answer that maxi-
mizes the probability of being both a well-formed and an
appropriate answer as:

4342143421
dependentquestiontindependenquestion

a
TaqpTapa

−−

⋅=),|()|(maxarg (2)

The decomposition of the formula into a question-
independent term and a question-dependent term allows
us to separately model the quality of a proposed answer
a with respect to task T, and to determine the appropri-
ateness of the proposed answer a with respect to ques-
tion q to be answered in the context of task T.
 Because task T fits the characteristics of the ques-
tion-answer pair corpus described in Section 3, we can
use the answer side of this corpus to compute the prior
probability p(a|T). The role of the prior is to help down-
grading those answers that are too long or too short, or
are otherwise not well-formed. We use a standard tri-
gram language model to compute the probability distri-
bution p(·|T).
 The mapping of answer terms to question terms is
modeled using Black et al.’s (1993) simplest model,
called IBM Model 1. For this reason, we call our model

Answer
Generation

Model

A Q

Answer Extraction
Algorithm

q a

Answer/Question
Translation

Model

Model 1 as well. Under this model, a question is gener-
ated from an answer a of length n according to the fol-
lowing steps: first, a length m is chosen for the question,
according to the distribution ψ(m|n) (we assume this
distribution is uniform); then, for each position j in q, a
position i in a is chosen from which qj is generated, ac-
cording to the distribution t(·| ai). The answer is as-
sumed to include a NULL word, whose purpose is to
generate the content-free words in the question (such as
in “Can you please tell me…?”). The correspondence
between the answer terms and the question terms is
called an alignment, and the probability p(q|a) is com-
puted as the sum over all possible alignments. We ex-
press this probability using the following formula:

))|(
1

1

))|()|((
1

()|()|(
11

NULLqt
n

aacaqt
n

nnmaqp

j

ii

n

i
j

m

j

+
+

+⋅
+

= ∑∏
==

ψ
(3)

where t(qj| ai) are the probabilities of “translating” an-
swer terms into question terms, and c(ai|a) are the rela-
tive counts of the answer terms. Our parallel corpus of
questions and answers can be used to compute the trans-
lation table t(qj| ai) using the EM algorithm, as described
by Brown et al. (1993). Note that, similarly with the
statistical machine translation framework, we deal here
with “inverse” probabilities, i.e. the probability of a
question term given an answer, and not the more intui-
tive probability of answer term given question.
 Following Berger and Lafferty (2000), an even sim-
pler model than Model 1 can be devised by skewing the
translation distribution t(·| ai) such that all the probabil-
ity mass goes to the term ai. This simpler model is called
Model 0. In Section 5 we evaluate the proficiency of
both Model 1 and Model 0 in the answer extraction task.

5 Evaluations and Discussions

We evaluated our QA system systematically for each
module, in order to assess the impact of various algo-
rithms on the overall performance of the system. The
evaluation was done by a human judge on a set of 115
Test questions, which contained a large variety of non-
factoid questions. Each answer was rated as either cor-
rect(C), somehow related(S), wrong(W), or cannot
tell(N). The somehow related option allowed the judge
to indicate the fact that the answer was only partially
correct (for example, because of missing information, or
because the answer was more general/specific than re-
quired by the question, etc.). The cannot tell option was
used in those cases when the validity of the answer could
not be assessed. Note that the judge did not have access
to any reference answers in order to asses the quality of a
proposed answer. Only general knowledge and human
judgment were involved when assessing the validity of
the proposed answers. Also note that, mainly because

our system’s answers were restricted to a maximum of 3
sentences, the evaluation guidelines stated that answers
that contained the right information plus other extrane-
ous information were to be rated correct.
 For the given set of Test questions, we estimated the
performance of the system using the formula
(|C|+.5|S|)/(|C|+|S|+|W|). This formula gives a score of 1
if the questions that are not “N” rated are all considered
correct, and a score of 0 if they are all considered wrong.
A score of 0.5 means that, in average, 1 out of 2 ques-
tions is answered correctly.

5.1 Question2Query Module Evaluation

We evaluated the Question2Query module while keeping
fixed the configuration of the other modules
(MSNSearch as the search engine, the top 10 hits in the
Filter module), except for the AnswerExtraction module,
for which we tested both the N-gram co-occurrence
based algorithm (NG-AE) and a Model 1 based algo-
rithm (M1e-AE, see Section 5.4).
 The evaluation assessed the impact of the statistical
chunker used to transform questions into queries, against
the baseline strategy of submitting the question as-is to
the search engine. As illustrated in Figure 4, the overall
performance of the QA system significantly increased
when the question was segmented before being submit-
ted to the SearchEngine module, for both AnswerExtrac-
tion algorithms. The score increased from 0.18 to 0.23
when using the NG-AE algorithm, and from 0.34 to 0.38
when using the M1e-AE algorithm.

0

0.1

0.2

0.3

0.4

NG-AE M1e-AE

As-is
Segmented

Figure 4: Evaluation of the Question2Query
module

5.2 SearchEngine Module Evaluation

The evaluation of the SearchEngine module assessed the
impact of different search engines on the overall system
performance. We fixed the configurations of the other
modules (segmented question for the Question2Query
module, top 10 hits in the Filter module), except for the
AnswerExtraction module, for which we tested the per-
formance while using for answer extraction the NG-AE,
M1e-AE, and ONG-AE algorithms. The later algorithm
works exactly like NG-AE, with the exception that the
potential answers are compared with a reference answer

available to an Oracle, rather than against the question.
The performance obtained using the ONG-AE algorithm
can be thought of as indicative of the ceiling in the per-
formance that can be achieved by an AE algorithm given
the potential answers available.
 As illustrated in Figure 5, both the MSNSearch and
Google search engines achieved comparable perform-
ance accuracy. The scores were 0.23 and 0.24 when us-
ing the NG-AE algorithm, 0.38 and 0.37 when using the
M1e-AE algorithm, and 0.46 and 0.46 when using the
ONG-AE algorithm, for MSNSearch and Google, re-
spectively. As a side note, it is worth mentioning that
only 5% of the URLs returned by the two search engines
for the entire Test set of questions overlapped. There-
fore, the comparable performance accuracy was not due
to the fact that the AnswerExtraction module had access
to the same set of potential answers, but rather to the fact
that the 10 best hits of both search engines provide simi-
lar answering options.

0

0.1

0.2

0.3

0.4

0.5

NG-AE M1e-AE ONG-AE

MSNSearch
Google

Figure 5: MSNSearch and Google give similar
performance both in terms of realistic AE
algorithms and oracle-based AE algorithms

5.3 Filter Module Evaluation

As mentioned in Section 4, the Filter module filters out
the low score documents returned by the search engine
and provides a set of potential answers extracted from
the N-best list of documents. The evaluation of the Filter
module therefore assessed the trade-off between compu-
tation time and accuracy of the overall system: the size
of the set of potential answers directly influences the
accuracy of the system while increasing the computation
time of the AnswerExtraction module. The ONG-AE
algorithm gives an accurate estimate of the performance
ceiling induced by the set of potential answers available
to the AnswerExtraction Module.
 As illustrated in Figure 6, there is a significant per-
formance ceiling increase from considering only the
document returned as the first hit (0.36) to considering
the first 10 hits (0.46). There is only a slight increase in
performance ceiling, however, from considering the first
10 hits to considering the first 50 hits (0.46 to 0.49).

0
0.1
0.2
0.3
0.4
0.5

First Hit First 10
Hits

First 50
Hits

ONG-AE

Figure 6: The scores obtained using the ONG-AE
answer extraction algorithm for various N-best lists

5.4 AnswerExtraction Module Evaluation

The Answer-Extraction module was evaluated while
fixing all the other module configurations (segmented
question for the Question2Query module, MSNSearch as
the search engine, and top 10 hits in the Filter module).
 The algorithm based on the BLEU score, NG-AE,
and its Oracle-informed variant ONG-AE, do not depend
on the amount of training data available, and therefore
they performed uniformly at 0.23 and 0.46, respectively
(Figure 7). The score of 0.46 can be interpreted as a per-
formance ceiling of the AE algorithms given the avail-
able set of potential answers.
 The algorithms based on the noisy-channel architec-
ture displayed increased performance with the increase
in the amount of available training data, reaching as high
as 0.38. An interesting observation is that the extraction
algorithm using Model 1 (M1-AE) performed poorer
than the extraction algorithm using Model 0 (M0-AE),
for the available training data. Our explanation is that
the probability distribution of question terms given an-
swer terms learnt by Model 1 is well informed (many
mappings are allowed) but badly distributed, whereas the
probability distribution learnt by Model 0 is poorly in-
formed (indeed, only one mapping is allowed), but better
distributed. Note the steep learning curve of Model 1,
whose performance gets increasingly better as the distri-
bution probabilities of various answer terms (including
the NULL word) become more informed (more map-
pings are learnt), compared to the gentle learning curve
of Model 0, whose performance increases slightly only
as more words become known as self-translations to the
system (and the distribution of the NULL word gets bet-
ter approximated).
 From the above analysis, it follows that a model
whose probability distribution of question terms given
answer terms is both well informed and well distributed
is likely to outperform both M1-AE and M0-AE. Such a
model was obtained when Model 1 was trained on both
the question/answer parallel corpus from Section 3 and
an artificially created parallel corpus in which each ques-
tion had itself as its “translation”. This training regime

allowed the model to assign high probabilities to identity
mappings (and therefore be better distributed), while also
distributing some probability mass to other question-
answer term pairs (and therefore be well informed). We
call the extraction algorithm that uses this model M1e-
AE, and the top score of 0.38 was obtained by M1e-AE
when trained on 1 million question/answer pairs. Note
that the learning curve of algorithm M1e-AE in Figure 7
indeed indicates that this answer extraction procedure is
well informed about the distribution probabilities of vari-
ous answer terms (it has the same steepness in the
learning curve as for M1-AE), while at the same time
uses a better distribution of the probability mass for each
answer term compared to M1-AE (it outperforms M1-
AE by roughly a constant amount for each training set
size in the evaluation).

10
4

10
5

10
6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training size (QA pairs)

A
cc

ur
ac

y

ONG−AE

M0−AE

M1e−AE

NG−AE

M1−AE

Figure 7: The performance of our QA system with
various answer extraction algorithms and different
training set sizes

6 Performance issues

In building our system, we have demonstrated that a
statistical model can capitalize on large amounts of read-
ily available training data to achieve reasonable per-
formance on answering non-factoid questions. Our
system was able to successfully answer a large variety of
complex, non-factoid questions, such as:

Q: Can I travel with the Ameripass in Mexico?
A: The Ameripass includes all of USA excluding Alaska.
In Canada, it is valid for travel to Montreal, Quebec, To-
ronto, Ontario, Vancouver BC, and New Westminster BC.
In Mexico it is valid for travel to Matamoros, Nuevo
Laredo, Tamaulipas and Tijuana Baja California.

Q: What is a PIC Freeze?
A: How to Prevent Slamming: Institute a PIC Freeze The
best way to keep from being slammed, or having a long dis-
tance company change your service without your permis-
sion, is to request a "PIC freeze" for your line. PIC, or pre-

subscribed interexchange carrier, is the telecom industry 's
term for a long distance company.

 For those questions which were not answered cor-
rectly, we identified some of the most frequent causes
which led to erroneous answers:
• answer was not in the retrieved pages (see the 46%

performance ceiling given by the Oracle)
• answer was of the wrong “type” (e.g., an answer for

“how-to” instead of “what-is”):
Q: What are best graduate schools for AI?
A: If you are applying for grad school in AI, and you did
some research for an AI person, even if it was long ago
and you don't consider it to be relevant, get a recommen-
dation if you think that the person likes you at all. […]

• it pointed to where an answer might be instead of
answering the question:

Q: What do research studies say about massage therapy?
A: It supports research on the efficacy of therapeutic
massage through the public, charitable AMTA Founda-
tion. Additional information about massage therapy and
about AMTA is available via the Web at
www.amtamassage.org.

• the translation model overweighed the answer lan-
guage model (too good a "translation", too bad an
answer)

Q: What are private and public keys?
A: Private and public keys Private and public keys Algo-
rithms can use two types of keys: private and public.

• did not pick up the key content word (in the exam-
ple below, eggs)

Q: What makes eggs have thin, brittle shells?
A: The soft-shelled clams, such as steamer, razor, and
geoduck clams, have thin brittle shells that can't com-
pletely close. Cod - A popular lean, firm, white meat
fish from the Pacific and the North Atlantic.

It is worth pointing out that most of these errors do not
arise from within a single module, but rather they are the
result of various interactions between modules that miss
on some relevant information.

7 Conclusions

Previous work on question answering has focused almost
exclusively on building systems for handling factoid
questions. These systems have recently achieved impres-
sive performance (Moldovan et al., 2002). The world
beyond the factoid questions, however, is largely unex-
plored, with few notable exceptions (Berger et al., 2001;
Agichtein et al., 2002; Girju 2003). The present paper
attempts to explore the portion related to answering
FAQ-like questions, without restricting the domain or
type of the questions to be handled, or restricting the
type of answers to be provided. While we still have a
long way to go in order to achieve robust non-factoid
QA, this work is a step in a direction that goes beyond
restricted questions and answers.

 We consider the present QA system as a baseline on
which more finely tuned QA architectures can be built.
Learning from the experience of factoid question an-
swering, one of the most important features to be added
is a question typology for the FAQ domain. Efforts to-
wards handling specific question types, such as causal
questions, are already under way (Girju 2003). A care-
fully devised typology, correlated with a systematic ap-
proach to fine tuning, seem to be the lessons for success
in answering both factoid and beyond factoid questions.

References
Eugene Agichten, Steve Lawrence, and Luis Gravano.

2002. Learning to Find Answers to Questions on the
Web. ACM Transactions on Internet Technology.

Adam L. Berger, John D. Lafferty. 1999. Information
Retrieval as Statistical Translation. Proceedings of
the SIGIR 1999, Berkeley, CA.

Adam Berger, Rich Caruana, David Cohn, Dayne
Freitag, Vibhu Mittal. 2000. Bridging the Lexical
Chasm: Statistical Approaches to Answer-Finding.
Research and Development in Information Retrieval,
pages 192--199.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
Andrew Ng. 2001. Data-Intensive Question Answer-
ing. Proceedings of the TREC-2001Conference, NIST.
Gaithersburg, MD.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics,
19(2):263--312.

Robin Burke, Kristian Hammond, Vladimir Kulyukin,
Steven Lytinen, Noriko Tomuro, and Scott Schoen-
berg. 1997. Question Answering from Frequently-
Asked-Question Files: Experiences with the FAQ
Finder System. Tech. Rep. TR-97-05, Dept. of Com-
puter Science, University of Chicago.

Ted Dunning. 1993. Accurate Methods for the Statistics
of Surprise and Coincidence. Computational Linguis-
tics, Vol. 19, No. 1.

Abdessamad Echihabi and Daniel Marcu. 2003. A Noisy-
Channel Approach to Question Answering. Proceed-
ings of the ACL 2003. Sapporo, Japan.

Roxana Garju. 2003. Automatic Detection of Causal
Relations for Question Answering. Proceedings of the
ACL 2003, Workshop on "Multilingual Summariza-
tion and Question Answering - Machine Learning and
Beyond", Sapporo, Japan.

Ulf Hermjakob, Abdessamad Echihabi, and Daniel
Marcu. 2002. Natural Language Based Reformulation
Resource and Web Exploitation for Question Answer-
ing. Proceedings of the TREC-2002 Conference,
NIST. Gaithersburg, MD.

Abraham Ittycheriah and Salim Roukos. 2002. IBM's
Statistical Question Answering System-TREC 11. Pro-
ceedings of the TREC-2002 Conference, NIST.
Gaithersburg, MD.

Cody C. T. Kwok, Oren Etzioni, Daniel S. Weld. Scaling
Question Answering to the Web. 2001. WWW10.
Hong Kong.

Chin-Yew Lin and E.H. Hovy. 2003. Automatic Evalua-
tion of Summaries Using N-gram Co-occurrence Sta-
tistics. Proceedings of the HLT/NAACL 2003.
Edmonton, Canada.

Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul
Morarescu, Finley Lacatusu, Adrian Novischi, Adri-
ana Badulescu, Orest Bolohan. 2002. LCC Tools for
Question Answering. Proceedings of the TREC-2002
Conference, NIST. Gaithersburg, MD.

Franz Joseph Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. Proceedings of the
ACL 2003. Sapporo, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing
Zhu. 2002. Bleu: a Method for Automatic Evaluation
of Machine Translation. Proceedings of the ACL
2002. Philadephia, PA.

Marius Pasca, Sanda Harabagiu, 2001. The Informative
Role of WordNet in Open-Domain Question Answer-
ing. Proceedings of the NAACL 2001 Workshop on
WordNet and Other Lexical Resources, Carnegie
Mellon University. Pittsburgh, PA.

John M. Prager, Jennifer Chu-Carroll, Krysztof Czuba.
2001. Use of WordNet Hypernyms for Answering
What-Is Questions. Proceedings of the TREC-2002
Conference, NIST. Gaithersburg, MD.

Dragomir Radev, Hong Qi, Zhiping Zheng, Sasha Blair-
Goldensohn, Zhu Zhang, Weiguo Fan, and John
Prager. 2001. Mining the Web for Answers to Natural
Language Questions. Tenth International Conference
onInformation and Knowledge Management. Atlanta,
GA.

Jinxi Xu, Ana Licuanan, Jonathan May, Scott Miller,
Ralph Weischedel. 2002. TREC 2002 QA at BBN:
Answer Selection and Confidence Estimation. Pro-
ceedings of the TREC-2002 Conference, NIST.
Gaithersburg, MD.

