

Cooperative Model Based Language Understanding in Dialogue

Donghui Feng
Information Sciences Institute,

University of Southern California
4676 Admiralty Way

Marina Del Rey, CA 90292-6695
donghui@isi.edu

Abstract

In this paper, we propose a novel
Cooperative Model for natural language
understanding in a dialogue system. We
build this based on both Finite State Model
(FSM) and Statistical Learning Model
(SLM). FSM provides two strategies for
language understanding and have a high
accuracy but little robustness and flexibility.
Statistical approach is much more robust
but less accurate. Cooperative Model
incorporates all the three strategies together
and thus can suppress all the shortcomings
of different strategies and has all the
advantages of the three strategies.

1 Introduction

In this paper, we propose a novel language
understanding approach, Cooperative Model, for a
dialogue system. It combines both Finite State Model
and Statistical Learning Model for sentence
interpretation.

This approach is implemented in the project MRE
(Mission Rehearsal Exercise). The goal of MRE is to
provide an immersive learning environment in which
army trainees experience the sights, sounds and
circumstances they will encounter in real-world
scenarios (Swartout et al., 2001). In the whole
procedure, language processing part plays the role to
support the communication between trainees and
computers.

In the language processing pipeline, audio signals
are first transformed into natural language sentences by
speech recognition. Sentence interpretation part is used
to “understand” the sentence and extract an information
case frame for future processing such as dialogue
management and action planning. We adopt the
Cooperative Model as the overall frame of sentence
interpretation, which incorporates two mainly used
language processing approaches: the Finite State Model

and the Statistical Learning Model. Currently there is
relatively little work on the cooperation of the two kinds
of models for language understanding.

The Cooperative Model has great advantages. It
balances the shortcomings of each separate model. It is
easy to implement the parsing algorithm and get the
exact expected result for finite state model (FSM) but
it’s difficult and tedious to design the finite state
network by hand. Also, the finite state model is not too
robust and the failure of matching produces no results.
On the other hand, statistical learning model (SLM) can
deal with unexpected cases during designing and
training by giving a set of candidate results with
confidence scores. It is a must to provide some kind of
rules to select results needed. However, applying it may
not give a completely satisfactory performance.

The rest of this paper is organized as follows:
Section 2 describes the case frame as the semantic
representation produced by the cooperative model. In
section 3, we explain our cooperative language
understanding model and discuss two different
strategies of the Finite State Model and the Statistical
Learning Model. We analyze the experimental results in
Section 4. Section 5 concludes with on-going research
and future work.

2 Semantic Representation

The goal of automated natural language understanding
is to parse natural language string, extract meaningful
information and store them for future processing. For
our application of training environment, it’s impossible
to parse sentences syntactically and we here directly
produce the nested information frames as output. The
topmost level of the information frame is defined as
follows:

Figure 1. Topmost-Level Information Frame

In the definition, <semantic-object> consists of

<i-form> := (^mood <mood>
^sem <semantic-object>)

three types: question, action and proposition. Here,
question refers to requests for information, action refers
to orders and suggestions except requests, and all the
rest falls into the category of proposition.

Each of these types can also be further
decomposed as Figure 2 and 3.

Figure 2. Second-Level Information Frame

Figure 3. Third-Level Information Frame

These information frames can be further extended
and nested as necessary. In our application, most of the
information frames obtained contain at most three levels.
In Figure 4, we give an example of information frame
for the English sentence “who is not critically hurt?”.
All the target information frames in our domain are
similar to that format.

Figure 4. Example Nested Information Frame

Since the information frames are nested, for the
statistical learning model to be addressed, ideally both
the semantic information and structural information
should be represented correctly. Therefore we use prefix
strings to represent the cascading level of each
slot-value pair. The case frame in Figure 4 can be
re-represented as shown in Figure 5. Here we assume
that the slots in the information frame are independent
of each other. Reversely the set of meaning items can be
restored to a normal nested information frame.

Figure 5. Re-representation to handle cascading

We introduce the cooperative model in the

following section to extract meaningful information
frames for all the English sentences in our domain.

3 Cooperative Model

The Cooperative Model (CM) combines two
commonly-used methods in natural language processing,
Finite State Model (FSM) and Statistical Learning
Model (SLM). We discuss them in section 3.1 and 3.2
respectively.

3.1 Finite State Model
The main idea of finite state model is to put all the
possible input word sequences and their related output
information on the arcs.

For our application, the input is a string composed
of a sequence of words, and the output should be a
correctly structured information frame. We apply two
strategies of FSM. The Series Mode refers to build a
series of finite state machine with each corresponding to
a single slot. The Single Model builds only one complex
Finite State Machine that incorporates all the sentence
patterns and slot-value pairs.

3.1.1 Strategy I: Series Model of Finite State

Machine
For this strategy, we analyze our domain to obtain a list
of all possible slots. From the perspective of linguistics,
a slot can be viewed as characterized by some specific
words, say, a set of feature words. We therefore can
make a separate semantic filter for each slot. Each
sentence passes through a series of filters and as soon as

<question> := (^type question
^q-slot <prop-slot-name>
^prop <proposition>)

<action> := (^type action-type

^name <event-name>
^<prop-slot-name> <val>)

<proposition> := <state> | <event> | <relation>

<state> := (^type state
^object-id ID
^polarity <pol>
…)

<event> := (^type event-type
^name <event-name>
^<prop-slot-name> <val>
…)

<relation> := (^type relation
^relation <rel-name>
^arg1 <semantic-object>

 ^arg2 <semantic-object>)

<i> ^mood interrogative
 <i> ^sem <t0>

<i> <t0> ^type question
<i> <t0> ^q-slot agent
<i> <t0> ^prop <t1>
<i> <t0> <t1> ^type event-type
<i> <t0> <t1> ^time present
<i> <t0> <t1> ^polarity negative
<i> <t0> <t1> ^degree critical-injuries
<i> <t0> <t1> ^attribute health-status
<i> <t0> <t1> ^value health-bad

Input Sentence: who is not critically hurt?
Output Information Frame:
(<i> ^mood interrogative

^sem <t0>)
(<t0> ^type question

^q-slot agent
^prop <t1>)

(<t1> ^type event-type
^time present
^polarity negative
^degree critical-injuries
^attribute health-status
^value health-bad)

we find the “feature” words, we extract their
corresponding slot-value pairs. All the slot-value pairs
extracted produce the final nested case frame.

 Sentence Information Frame

Figure 6. An Example from Series Model of FSM

Figure 6 is an example of the way that series
model of finite state machine works. For example, three
slot-value pairs are extracted from the word “who”.
Practically, we identified 27 contexts and built 27 finite
state machines as semantic filters, with each one
associated with a set of feature words. The number of
arcs for each finite state machine ranges from 4 to 70
and the size of the feature word set varies from 10 to 50.

This strategy extracts semantic information based
on the mapping between words and slots. It is relatively
easy to design the finite state machine networks and
implement the parsing algorithm. For every input
sentence it will provide all possible information using
the predefined mappings. Even if the sentence contains
no feature words, the system will end gracefully with an
empty frame. However, this method doesn’t take into
account the patterns of word sequences. Single word
may have different meanings under different situations.
In most cases it is also difficult to put one word into one
single class; sometimes a word can even belong to
different slots’ feature word sets that can contradict each
other. On the other hand, the result produced may have
some important slot-value pairs missed and the number
of slots is fixed.

3.1.2 Strategy II: Single Model of Finite State

Machine
In this strategy we only build a big finite state network.
When a new sentence goes into the big FSM parser, it
starts from “START” state and a successful matching of
prespecified patterns or words will move forward to
another state. Any matching procedure coming to the
“END” state means a successful parsing of the whole
sentence. And all the outputs on the arcs along the path
compose the final parsing result. If no patterns or words
are successfully matched at some point, the parser will
die and return failure.

This strategy requires all the patterns to be
processed with this finite state model available before
designing the finite state network. The target sentence
set includes 65 sentence patterns and 23 classes of
words and we combine them into a complex finite state
network manually. Figure 7 gives some examples of the
collected sentence patterns and word classes.

Figure 7. Target Sentence Patterns

Aimed at processing these sentences, we design
our finite state network consisting of 128 states. This
network covers more than 20k commonly-used
sentences in our domain. It will return the exact parsing
result without missing any important information. If all
of the input sentences in the application belong to the
target sentence set of this domain, this approach
perfectly produces all of the correct results. However,
the design of the network is done totally by hand, which
is very tedious and time-consuming. The system is not
very flexible or robust and it’s difficult to add new
sentences into the network before a thorough
investigation of the whole finite state network. It is not
convenient and efficient for extension and maintenance.

Finite state models can’t process any sentence with
new sentence patterns. However in reality most systems
require more flexibility, robustness, and more powerful
processing abilities on unexpected sentences. The
statistical machine learning model gives us some light
on that. We discuss learning models in Section 3.2.

3.2 Statistical Learning Model

3.2.1 Naïve Bayes Learning
Naïve Bayes learning has been widely used in natural
language processing with good results such as statistical
syntactic parsing (Collins, 1997; Charniak, 1997),
hidden language understanding (Miller et al., 1994).

We represent the mappings between words and
their potential associated meanings (meaning items
including level information and slot-value pairs) with
P(M|W). W refers to words and M refers to meaning
items. With Bayes’ theorem, we have the formula 3.1.

P(W)
 P(M) * M)|P(Wmaxarg W)|P(Mmaxarg = (3.1)

 Here P(W|M) refers to the probability of words
given their meanings.

who
is
driving
the
car

(<i>
 ^mood interrogative

^sem <t0>)
(<t0>

^type question
^q-slot agent
^prop <t1>)

(<t1>
^type action
^event drive
^patient car
^time present)

$phrase1 = what is $agent doing;
$phrase2 = [and|how about] (you|me|[the]
 $vehicle|$agent);
…

$agent = he|she|$people-name|[the] ($person_civ |
 $person_mil| $squad);
$vehicle = ambulance | car | humvee | helicopter
 |medevac;
…

In our domain, we can view P (W) as a constant
and transform Formula 3.1 to Formula 3.2 as follows:

P(M)*M)|P(WmaxargW)|P(Mmaxarg
mm

= (3.2)

3.2.2 Training Set and Testing Set
We created the training sentences and case frames by
running full range of variation on Finite State Machine
described in Section 3.1.2. This gives a set of 20, 677
sentences. We remove ungrammatical sentences and
have 16,469 left. Randomly we take 7/8 of that as the
training set and 1/8 as the testing set.

3.2.3 Meaning Model
The meaning model P(M) refers to the probability of
meanings. In our application, meanings are represented
by meaning items. We assume each meaning item is
independent of each other at this point. In the meaning
model, the meaning item not only includes slot-value
pairs but level information. Let C(mi) be the number of
times the meaning item mi appears the training set, we
obtain P(M) as follows:

∑
=

= n

j 1
j

i
i

)C(m

)C(m)P(m

(3.3)

This can be easily obtained by counting all the
meaning items of all the information frames in the
training set.

3.2.4 Word Model
In the naïve Bayes learning approach, P(W|M) stands
for the probability of words appearing under given
meanings. And from the linguistic perspective, the
patterns of word sequences can imply strong
information of meanings. We introduce a language
model based on a Hidden Markov Model (HMM). The
word model can be described as P (wi | mj, wi-2wi-1), P
(wi | mj, wi-1) or P (wi | mj) for trigram model, bigram
model, and unigram model respectively. They can be
calculated with the following formulas:

)w w,m(#
)w w,m(#

)w w,m|P(w
1-i2-ij

1-i2-ij
1-i2-iji of

wof i= (3.4)

) w,m(#
) w,m(#

)w,m|P(w
1-ij

1-ij
1-iji of

wof i= (3.5)

)m(#
) ,m(#

)m|P(w
j

j
ji of

wof i= (3.6)

3.2.5 Weighted Sum Voting and Pruning
We parse each sentence based on the naïve Bayes
learning Formula 3.2. Each word in the sentence can be
associated with a set of candidate meaning items. Then
we normalize each candidate set of meaning items and
use the voting schema to get the final result set with a

probability for each meaning item.
However, this inevitably produces noisy results.

Sometimes the meanings obtained even contradict other
useful meaning items. We employ two cutoff strategies
to eliminate such noise. The first is to cut off
unsatisfactory meaning items based on a gap in
probability. The degree of jump can be defined with an
arbitrary threshold value. The second is to group all the
slot-value pairs with the same name and take the top one
as the result.

3.3 Cooperative Mechanism
In the previous two sections, we discussed two
approaches in our natural language understanding
system. However, neither is completely satisfactory.

Cooperative Model can combine all three
approaches from these two models. The main idea is to
run the three parsing models together whenever a new
sentence comes into the system. With the statistical
learning model, we obtain a set of information frames.
For the result we get from single model of finite state
machine, if an information frame exists, it means the
sentence is stored in the finite state network. We
therefore assign a score 1.0. The result should be no
worse than any information frame we get from
statistical learning model. Otherwise, it means this
sentence is not stored in our finite state work, we can
ignore this result. In the end, we combine this
information frame with the frame set from statistical
learning model and rank them according to the
confidence scores. Generally we can consider the one
with the highest confidence score as our parsing result.

The cooperative model takes all advantages of the
three methods and combines them together. The
cooperative mechanism also suppresses the
disadvantages of those methods. The series model of the
finite state machine has the advantage of mapping
between word classes and contexts, though it sometimes
may lose some information, and it contains real
semantic knowledge. The statistical learning model can
produce a set of information frames based on the word
patterns and its noise can be removed by the result of
the series model of the finite state machine. For the
single finite state machine model, if it can parse
sentence successfully, the result will always be the best
one. Therefore through the cooperation of the three
methods, it can either produce the exact result for
sentences stored in the finite state network or return the
most probable result through statistical machine
learning method if no sentence matching occurs. Also
the noise is reduced by the other finite state machine
model. The cooperative model is robust and has the
ability to learn in our target domain.

4 Experimental Results

The cooperative model will demonstrate its ability on
sentence processing no matter whether the sentence is in

the original sentence set. However, currently we only
have simple preference rule for the cooperation and
haven’t obtained the overall performance. In this section,
we’ll compare the different models’ performance to
demonstrate the cooperative model’s potential ability.

Based on our target sentence patterns and word
classes, we built a blind set with 159 completely new
sentences. Although all the words used belong to this
domain these sentences don’t appear in the training set
and the testing set. In the evaluation of its performance,
we compare the results of the three approaches and get
Table 1. As we can see from this table, finite state
method is better in the relative processing speed and for
processing existing patterns while statistical model is
better for processing new sentence patterns, which
makes the system very robust.

 Sentences
in Domain

Speed Existing
Patterns

New
Patterns

Series
of

FSM

Fixed Fast 100% Partial
Result

Single
FSM

Fixed Fast 100% Die

Stat
Model

Open Slow 85%(pre)
95%(rec)

75%(pre)
92%(rec)

Table 1. Results Comparison

On the other hand, we investigate the performance
of statistical model in more detail on the blind test.
Given the whole blind testing set, the statistical learning
model produced 159 partially correct information
frames. We manually corrected them one by one. This
took us 97 minutes in total. To measure this efficiency,
we also built all the real information frames for the
blind test set manually, one by one. It took 366 minutes
to finish all the 159 information frames. This means it is
much more efficient to process a completely new
sentence set with the statistical learning model.

We next investigate the precision and recall of this
statistical learning model. Taking the result frames we
manually built as the real answers, we define precision,
recall, and F-score to measure the system’s
performance.

model learning from pairs value-slot of #
pairs value-slotcorrect of #precsion =

answer real from pairs value-slot of #
pairs value-slotcorrect of #recall =

recall precision
)recall *precision (*2F_Score

+
=

Our testing strategy is to randomly select some
portion of the new blind set and add it into the training
set. Then we test the system with sentences in the rest of
the blind set. As more and more new sentences are
added into the training set (1/4, 1/3, 1/2, etc) we can see
the performance changing accordingly. We investigate

the three models: P(M|W), P(W|M) and P(M)*P(M|W).
All of them are tested with same testing strategy.

Portion 0 1/4 1/3 1/2 2/3
Prec 0.7131 0.7240 0.7243 0.7311 0.7370
Rec 0.8758 0.8909 0.8964 0.9133 0.9254
F-Score 0.7815 0.7943 0.7966 0.8073 0.8152

Table 2. Result of P (M|W)

Portion 0 1/4 1/3 1/2 2/3
Prec 0.7218 0.7416 0.7444 0.7429 0.7540
Rec 0.8871 0.9161 0.9276 0.9270 0.9386
F-Score 0.7913 0.8147 0.8208 0.8197 0.8304

Table 3. Result of P (W|M)

Portion 0 1/4 1/3 1/2 2/3
Prec 0.7545 0.7693 0.7704 0.7667 0.7839
Rec 0.8018 0.8296 0.8407 0.8372 0.8323
F-Score 0.7745 0.7950 0.8021 0.7985 0.8035

Table 4. Result of P (W|M) * P (M)

From the three tables, we can see that as new
sentences are added into the training set, the
performance improves. Comparing Tables 2, 3 and 4,
the poor performance of P (W|M)* P (M) is partially due
to unbalance in the training set. The higher occurrences
of some specific meaning items increase P(M) and
affect the result during voting.

5 Conclusions

In this paper we proposed a cooperative model
incorporating finite state model and statistical model for
language understanding. It takes all of their advantages
and suppresses their shortcomings. The successful
incorporation of the methods can make our system very
robust and scalable for future use.

We notice that the series model of the finite state
machine model actually incorporates some semantic
knowledge from human beings. Ongoing research work
includes finding new ways to integrate semantic
knowledge to our system. For the statistical learning
model, the quality and the different configurations of
training set highly affect the performance of models
trained and thus their abilities to process sentences. The
balance of training set is also a big issue. How to build a
balanced training set with single finite state machine
model will remain our important work in the future. For
the learning mechanism, Naïve Bayesian learning
requires more understanding of different factors’ roles
and their importance. These problems should be
investigated in future work.

Acknowledgements

The author would like to thank Deepak Ravichandran
for his invaluable help of the whole work.

References
Eugene Charniak. 1997. Statistical Parsing with a Context-free

Grammar and Word Statistics. Proc. Of AAAI-97. pp.
598-603.

M. Collins. 1997. Three Generative, Lexicalised Models for

Statistical Parsing. Proc. of the 35th ACL.

S. Miller, R. Bobrow, R. Ingria, and R. Schwartz. 1994.

Hidden Understanding Models of Natural Language,"
Proceedings of the Association of Computational
Linguistics, pp. 25-32.

W. Swartout, et al. 2001. Toward the Holodeck: Integrating

Graphics, Sound, Character and Story. Proceedings of 5th
International Conference on Autonomous Agents

