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Abstract

In this paper, a multi-stream paradigm is pro-
posed to improve the performance of auto-
matic speech recognition (ASR) systems in the
presence of highly interfering car noise. It
was found that combining the classical MFCCs
with some auditory-based acoustic distinctive
cues and the main formant frequencies of a
speech signal using a multi-stream paradigm
leads to an improvement in the recognition per-
formance in noisy car environments.

1 Introduction

In general, the performance of existing speech recogni-
tion systems, whose designs are predicated on relatively
noise-free conditions, degrades rapidly in the presence of
a high level of adverse conditions. However, a recognizer
can provide good performance even in very noisy back-
ground conditions if the exact testing condition is used
to provide the training material from which the reference
patterns of the vocabulary are obtained, which is practi-
cally not always the case. In order to cope with the ad-
verse conditions, different approaches could be used. The
approaches that have been studied for achieving noise ro-
bustness can be summarized into two fundamentally dif-
ferent approaches. The first approach attempts to prepro-
cess the corrupted speech input signal prior to the pattern
matching in an attempt to enhance the SNR. The second
approach attempts to modify the pattern matching itself
in order to account for the effects of noise. For more de-
tails see (O’Shaughnessy, 2000).

In a previous work, we introduced an auditory-based
multi-stream paradigm for ASR (Tolba et al., 2002).
Within this multi-stream paradigm, we merge different
sources of information about the speech signal that could
be lost when using only the MFCCs to recognize uttered
speech. Our experiments showed that the use of some

auditory-based features and formant cues via a multi-
stream paradigm approach leads to an improvement of the
recognition performance. This proves that the MFCCs
loose some information relevant to the recognition pro-
cess despite the popularity of such coefficients in all cur-
rent ASR systems. In our experiments, we used a 3-
stream feature vector. The First stream vector consists of
the classicalMFCCs and their first derivatives, whereas
the second stream vector consists of acoustic cues derived
from hearing phenomena studies. Finally, the magnitudes
of the main resonances of the spectrum of the speech sig-
nal were used as the elements of the third stream vector.

In this paper, we extend our work presented in (Tolba et
al., 2002) to evaluate the robustness of the proposed fea-
tures (the acoustic distinctive cues and the spectral cues)
using a multi- stream paradigm for ASR in noisy car en-
vironments. As mentioned above, the first stream con-
sists of the MFCCs and their first derivatives, whereas
the second stream vector consists of the acoustic cues are
computed from an auditory-based analysis applied to the
speech signal modeled using the Caelen Model (Caelen,
1985). Finally, the values of the main peaks of the spec-
trum of the speech signal were used as the elements of the
third stream vector. The magnitudes of the main peaks
were obtained through an LPC analysis.

The outline of this paper is as follows. In section 2, an
overview on the auditory Caelen Model is given. Next,
we describe briefly in section 3 the statistical framework
of the multi-stream paradigm. Then in section 4, we pro-
ceed with the evaluation of the proposed approach for
ASR. Finally, in section 5 we conclude and discuss our
results.

2 The Auditory-based Processing

It was shown through several studies that the use of
human hearing properties provides insight into defin-
ing a potentially useful front-end speech representa-
tion (O’Shaughnessy, 2000). However, the performance



of current ASR systems is far from the performance
achieved by humans. In an attempt to improve the ASR
performance in noisy environments, we evaluate in this
work the use of the hearing/perception knowledge for
ASR in noisy car environments. This is accomplished
through the use of the auditory-based acoustic distinctive
features and the formant frequencies for robust ASR.

2.1 The Caelen’s Auditory Model

Caelen’s auditory model (Caelen, 1985) consists of three
parts which simulate the behavior of the ear. The exter-
nal and middle ear are modeled using a bandpass filter
that can be adjusted to signal energy to take into account
the various adaptive motions of ossicles. The next part
of the model simulates the behavior of the basilar mem-
brane (BM), the most important part of the inner ear, that
acts substantially as a non-linear filter bank. Due to the
variability of its stiffness, different places along the BM
are sensitive to sounds with different spectral content. In
particular, the BM is stiff and thin at the base, but less
rigid and more sensitive to low frequency signals at the
apex. Each location along the BM has a characteristic fre-
quency, at which it vibrates maximally for a given input
sound. This behavior is simulated in the model by a cas-
cade filter bank. The bigger the number of these filters the
more accurate is the model. In front of these stages there
is another stage that simulates the effects of the outer and
middle ear (pre-emphasis). In our experiments we have
considered 24 filters. This number depends on the sam-
pling rate of the signals (16 kHz) and on other param-
eters of the model such as the overlapping factor of the
bands of the filters, or the quality factor of the resonant
part of the filters. The final part of the model deals with
the electro-mechanical transduction of hair-cells and af-
ferent fibers and the encoding at the level of the synaptic
endings. For more details see (Caelen, 1985).

2.2 Acoustic Distinctive Cues

The acoustic distinctive cues are calculated starting from
the spectral data using linear combinations of the ener-
gies taken in various channels. It was shown in (Jakob-
son et al., 1951) that 12 acoustic cues are sufficient to
characterize acoustically all languages. However, it is
not necessary to use all of these cues to characterize a
specific language. In our study, we choose 7 cues to be
merged in a multi-stream feature vector in an attempt to
improve the performance of ASR. These cues are based
on the Caelen ear model described above, which does
not correspondexactlyto Jakobson’s cues. Each cue is
computed based on the output of the 24 channel filters of
the above-mentioned ear model. These seven normalized
acoustic cues are: acute/grave (AG), open/closed (OC),
diffuse/compact (DC), sharp/flat (SF), mat/strident (MS),
continuous/discontinuous (CD) and tense/lax (TL).

3 Multi-stream Statistical Framework

Most recognizers use typically left-to-right HMMs,
which consist of an arbitrary number of statesN
(O’Shaughnessy, 2000). The output distribution associ-
ated with each state is dependent on one or more statisti-
cally independent streams. Assuming an observation se-
quenceO composed ofS input streamsOs possibly of
different lengths, representing the utterance to be recog-
nized, the probability of the composite input vectorOt at
a timet in statej can be written as follows:

bj(Ot) =
S∏

s=1

[bjs(Ost)]
γs , (1)

whereOst is the input observation vector in streams at
timet andγs is the stream weight. Each individual stream
probabilitybjs(Ost) is represented by amultivariate mix-
ture Gaussian. To investigate the multi-stream paradigm
using the proposed features for ASR, we have performed
a number of experiments in which we merged different
sources of information about the speech signal that could
be lost with the cepstral analysis.

4 Experiments & Results

In the following experiments the TIMIT database was
used. The TIMIT corpus contains broadband record-
ings of a total of6300 sentences,10 sentences spoken
by each of630 speakers from8 major dialect regions
of the United States, each reading10 phonetically rich
sentences. To simulate a noisy environment, car noise
was added artificially to the clean speech. Throughout
all experiments the HTK-based speech recognition plat-
form system described in (Cambridge University Speech
Group, 1997) has been used. The toolkit was designed to
support continuous-density HMMs with any numbers of
state and mixture components.

In order to evaluate the use of the proposed features
for ASR in noisy car environments, we repeated the same
experiments performed in our previous study (Tolba et
al., 2002) using the subsets dr1 & dr2 of a noisy ver-
sion of the TIMIT database at different values of SNR
which varies from 16 dB to -4 dB. In all our experi-
ments, 12 MFCCs were calculated on a 30-msec Ham-
ming window advanced by 10 msec each frame. More-
over, the normalized log energy is also found, which is
added to the 12 MFCCs to form a 13-dimensional (static)
vector. This static vector is then expanded to produce a
26-dimensional (static+dynamic) vector. This latter was
expanded by adding the seven acoustic distinctive cues
that were computed based on the Caelen model analysis.
This was followed by the computation of the main spec-
tral peak magnitudes, which were added to the MFCCs
and the acoustic cues to form a 37-dimensional vector



16 dB 8dB 4 dB 0 dB -4 dB
MFCCEDA 81.67 58.02 48.02 33.44 22.81
MFCCEDE 87.60 50.83 38.23 27.29 17.29
MFCCEDP 89.69 69.58 60.73 40.31 27.50
MFCCEDEP 89.38 55.31 41.88 28.44 17.40

[a] %CWrd using 1-mixture triphone models.

16 dB 8dB 4 dB 0 dB -4 dB
MFCCEDA 83.85 60.31 49.58 36.56 25.21
MFCCEDE 88.12 51.98 39.58 28.02 16.56
MFCCEDP 90.21 71.35 59.06 42.92 27.19
MFCCEDEP 89.79 55.73 42.92 29.06 18.12

[b] %CWrd using 2-mixture triphone models.

16 dB 8dB 4 dB 0 dB -4 dB
MFCCEDA 84.58 62.40 51.77 35.73 26.25
MFCCEDE 89.06 53.85 42.29 29.38 17.71
MFCCEDP 89.69 71.67 59.79 42.81 27.81
MFCCEDEP 89.27 58.65 43.75 29.27 19.38

[c] %CWrd using 4-mixture triphone models.

16 dB 8dB 4 dB 0 dB -4 dB
MFCCEDA 85.42 63.54 52.60 40.10 28.75
MFCCEDE 89.38 53.33 41.46 29.27 17.92
MFCCEDP 90.62 70.94 58.85 42.19 28.85
MFCCEDEP 91.35 57.92 43.85 28.75 18.33

[d] %CWrd using 8-mixture triphone models.

Table 1: Comparison of the percent word recognition performance (%CWrd) of the MFCCEDA-, MFCCEDE-
MFCCEDP- and MFCCEDEP-based HTK ASR systems to the baseline HTK using (a) 2-mixture, (b) 4-mixture
and (c) 8-mixture triphone models and the dr1 & dr2 subsets of the TIMIT database when contaminated by additive
car noise for different values of SNR.

upon which the hidden Markov models (HMMs), that
model the speech subword units, were trained. The main
spectral peak magnitudes were computed based on an
LPC analysis using 12 poles followed by a peak picking
algorithm. The proposed system used for the recogni-
tion task uses tri-phone Gaussian mixture HMM system.
Three different sets of experiments has been carried out
on the noisy version of the TIMIT database. In the first
set of these experiments, we tested our recognizer using
a 30-dimensional feature vector (MFCCEDP), in which
we combined the magnitudes of the main spectral peaks
to the classical MFCCs and their first derivatives to form
two streams that have been used to perform the recogni-
tion process. We found through experiments that the use
of these two streams leads to an improvement in the ac-
curacy of the word recognition rate compared to the one
obtained when we used the classical MFCCEDA feature
vector, Table 1. These tests were repeated using the 2-
stream feature vector, in which we combined the acous-
tic distinctive cues to the classical MFCCs and their first
derivatives to form two streams (MFCCEDE). Again, us-
ing these two streams, an improvement in the accuracy
of the word recognition rate has been obtained when we
tested our recognizer usingN mixture Gaussian HMMs
using triphone models for different values of SNR, Table
1. We repeated these tests using the proposed features
which combines the MFCCs with the acoustic distinctive
cues and the formant frequencies to form a three-stream
feature vector (MFCCEDEP). Again, using these com-
bined features, an improvement in the accuracy of the
word recognition rate was obtained, Table 1.

5 Conclusion

We have proposed in this paper a multi-stream paradigm
to improve the performance of ASR systems in noisy

car environments. Results showed that combining the
classical MFCCs with the main formant frequencies of
a speech signal using a multi- stream paradigm leads to
an improvement in the recognition performance in noisy
car environments for a wide range of SNR values varying
from 16 dB to -4 dB. These results show that the formant
frequencies are relevant for the recognition process not
only for clean speech, but also for noisy speech, even at
very low SNR values. On the other hand, results showed
also that the use of the auditory-based acoustic distinctive
cues improves the performance of the recognition process
in noisy car environments with respect to the use of only
the MFCCs, their first and second derivatives at high SNR
values, but not for low SNR values.
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