
A Structured Language Model based on Context-Sensitive Probabilistic
Left-Corner Parsing

Dong Hoon Van Uytsel†

donghoon@esat.kuleuven.ac.be

Filip Van Aelten‡

filip.van.aelten@lhs.be

Dirk Van Compernolle†

compi@esat.kuleuven.ac.be

†Katholieke Universiteit Leuven, ESAT, Belgium
‡Lernout & Hauspie, Belgium

Abstract
Recent contributions to statistical language model-
ing for speech recognition have shown that prob-
abilistically parsing a partial word sequence aids
the prediction of the next word, leading to “struc-
tured” language models that have the potential to
outperform n-grams. Existing approaches to struc-
tured language modeling construct nodes in the par-
tial parse tree after all of the underlying words have
been predicted. This paper presents a different ap-
proach, based on probabilistic left-corner grammar
(PLCG) parsing, that extends a partial parse both
from the bottom up and from the top down, lead-
ing to a more focused and more accurate, though
somewhat less robust, search of the parse space. At
the core of our new structured language model is a
fast context-sensitive and lexicalized PLCG parsing
algorithm that uses dynamic programming. Prelim-
inary perplexity and word-accuracy results appear
to be competitive with previous ones, while speed is
increased.

1 Structured language modeling
In its current incarnation, (unconstrained) speech
recognition relies on a left-to-right language model
L , which estimates the occurrence of a next word
w j given a sequence of preceding words c j = w

j−1
0

(the context):1

L(w j |c j) = p̂(w j |c j).

L is called a language model (LM).
Obviously the context space is huge and even

in very large training corpora most contexts never
occur, which prohibits a reliable probability esti-
mation. Therefore the context space needs to be
mapped to a much smaller space, such that only
the essential information is retained. In spite of its

1As a shorthand, wb
a denotes a sequence wawa+1 . . . wb if

b ≥ a, else it is the empty sequence.

simplicity the trigram LM, that reduces c j to w
j−1
j−2,

is hard to improve on and still the main language
model component in state-of-the-art speech recog-
nition systems. It is therefore commonly used as a
baseline in the evaluation of other models, including
the one described in this paper.

Structured language models (SLM) introduce
parsing into language modeling by alternating be-
tween predicting the next word using features of
partial parses of the context and extending the par-
tial parses to cover the next word. Following this
approach, Chelba and Jelinek (2000) obtained a
SLM that slightly improves on a trigram model
both in perplexity and recognition performance.
The Chelba-Jelinek SLM is, to our knowledge, the
first left-to-right LM using parsing techniques that
is successfully applied to large vocabulary speech
recognition. It is built on top of a lexicalized prob-
abilistic shift-reduce parser that predicts the next
word from the headwords (“exposed” heads) and
categories of the last two predicted isolated con-
stituents of the context. Then the predicted word
becomes the last isolated constituent and the last
two constituents are repeatedly recombined until the
parser decides to stop.

A dynamic programming (DP) version of
Chelba’s parser, inspired on the CYK chart parser,
was proposed in (Jelinek and Chelba, 1999). Our
implementation is roughly quadratic in the length
of the sentence, but not significantly faster than
Chelba’s non-DP parser. It scored somewhat lower
in perplexity before reestimation (presumably by
avoiding search errors), but remained roughly at
the same level after full inside-outside reestimation
(Van Aelten and Hogenhout, 2000).

An obvious weakness of the Chelba-Jelinek SLM
is the bottom-up behavior of the parser: it creates
isolated constituents and only afterwards is it able to
check whether a constituent fits into a higher struc-
ture. Van Uytsel (2000) developed a top-down al-

ternative along similar lines but based on a lexical-
ized and context-sensitive DP version of an efficient
Earley parser (Stolcke, 1995; Jelinek and Lafferty,
1991). The Earley-based SLM performed worse
than the Chelba-Jelinek SLM, mostly due to the fact
that the rule production probabilities cannot be con-
ditioned on the underlying lexical information, thus
producing a lot of wrong parses.

The weaknesses of our Earley SLM have led
us to consider probabilistic left-corner grammar
(PLCG) parsing (Manning and Carpenter, 1997),
which follows a mixed bottom-up and top-down ap-
proach. Its potential to enhance parsing efficiency
has been recognized by Roark and Johnson (2000),
who simulated a left-corner parser with a top-down
best-first parser applying a left-corner-transformed
PCFG grammar. For the language model described
in this paper, however, we implemented a DP ver-
sion of a native left-corner parser using a left-corner
treebank grammar (containing projection rules in-
stead of production rules). The efficiency of our im-
plementation further allowed to enrich the history
annotation of the parser states and to apply a lexi-
calized grammar.

The following section contains a brief review of
Manning’s PLCG parser. Section 3 describes how it
was adapted to our SLM framework: we introduce
lexicalization and context-sensitivity, present a DP
algorithm using a chart of parser states and finally
we define a language model based on the adapted
PLCG parser. At the end of the same section we ex-
plain how the initial language model can be trained
on additional plain text through a variant of inside-
outside reestimation. In section 4 we evaluate a few
PLCG-based SLMs obtained from the Penn Tree-
bank and BLLIP WSJ Corpus. We present test set
perplexity measurements and word accuracy after n-
best list rescoring to assess their viability for speech
recognition.

2 Classic PLCG parsing
The parameters of a PLCG are called projection
probabilities. They are of the form

p(Z → X α|X, G),

to be read as “given a completed constituent X dom-
inated by a goal category G, the probability that
there is a Z that has X as its first daughter and α

as its next daughters”. A PLCG contains essentially
the same rules as a probabilistic context-free gram-
mar (PCFG), but the latter conditions the rule prob-

abilities on the mother category Z (production prob-
abilities). In both cases the joint probability of the
entire parse tree and the parsed sentence is the prod-
uct of the production resp. projection probabilities
of the local trees it consists of.

While PCFG parsing proceeds from the top down
or from the bottom up, PLCG naturally leads to a
parsing scheme that is a mixture of both. The ad-
vantages of this are made clear in the subsections
below. Formally, a PLCG parser has three elemen-
tary operations:

• SHIFT: given that an unexpanded constituent
G starts from position i , shift the next word wi

with probability ps(wi |G) (G is called the goal
category);

• PROJECT: given a complete constituent X ,
dominated by a goal category G, starting in po-
sition i and ending in j , predict a mother con-
stituent Z starting in position i and completed
up till position j , and zero or more unexpanded
sister constituents α starting in j with probabil-
ity pp(Z → X α|X, G);

• ATTACH: given a complete constituent X dom-
inated by a goal category G, identify the first
as the latter with probability pa(X, G).

3 Extending the PLCG framework
3.1 Synchronous chart parsing with PLCG
In this subsection we present the basic parsing al-
gorithm and its data structures and operations. In
the subsections that follow, we will introduce lexi-
calization and context-sensitivity by extending this
framework.

The PLCG parsing process is interpreted as a
search through a network of states, a compact re-
presentation of the search space. The network nodes
correspond to states and the arcs to operations (an-
notated with transition probabilities). A (partial)
parse corresponds to a (partial) path through the net-
work. The joint probability of a partial parse and the
covered part of the sentence is equal to the partial
path probability, i.e. the product of the probabilities
of the transitions in the path.

3.1.1 PLCG states
We write a state q as

q = (G; Z → i X ? jβ;µ, ν) (1)

where G is the goal category, Z is the category of a
constituent from position i complete up till position

j , X is the first daughter category, β denotes the re-
maining unresolved daughters of Z , and µ and ν are
forward and inner probabilities defined below. The
wildcard ? symbolizes zero or more resolved daugh-
ter categories: we make abstraction of the identities
of resolved daughters (except the first one), because
further parser moves do not depend on them. If β is
empty, q is called a complete state, otherwise q is a
goal state.

3.1.2 Forward and inner probability
Given a state q as defined in (1). We define its for-
ward probability µ = µ(q) as the sum of the prob-
abilities of the paths ending in q, starting in the ini-
tial state and generating w

j−1
0 . As a consequence,

µ(q) = p(w
j−1
0 , q) (joint probability).

The inner probability ν = ν(q) is the sum of the
probabilities of the paths generating w

j−1
i , ending

in q and starting with a SHIFT of wi . As a conse-
quence, ν(q) = p(w

j−1
i , q).

Note that the forward and inner probabilities of
the final state should be identical and equal to p(S).

3.1.3 Parser operations
In this paragraph we reformulate the classic PLCG
parser operations in terms of transitions between
states. We hereby specify update formulas for for-
ward and inner probabilities.

Shift The SHIFT operation starts from a goal state

q = (G; Z → i X ? j Y β;µ, ν) (2)

and shifts the next word w at position j of the input
by updating q ′ or generating a new state q ′ where2

q ′ = (Y ;W→ j w ? j+1;µ
′+= µp, ν ′ = p) (3)

with transition probability

p = ps(w|Y). (4)

If q ′ already lives in the chart, only its forward prob-
ability is updated. The given update formula is jus-
tified by the relation

µ(q ′) =
∑

q⇒sq ′
µ(q)p(q ⇒ q ′)

where the sum is over all SHIFT transitions from q to
q ′ and p(q ⇒ q ′) denotes the transition probability
from q to q ′. Computing ν(q ′) is a trivial case of the
definition.

2The C-like shorthand notation µ′+= µp means that µ′ is
set to µp if there was no q ′ in the chart yet, otherwise µ′ is
incremented with µp.

Projection From a complete state, two transitions
are possible: ATTACH to a goal state with a prob-
ability pa or PROJECT with a probability 1 − pa.
PROJECT starts from a complete state

q = (G; Z → i X ? j ;µ, ν) (5)

and generates or updates a state

q ′ = (G; T → i Z ? jα;µ
′+= µp, ν ′+= νp) (6)

with transition probability

p = pp(T, α|Z , G) · (1− pa(Z , G)). (7)

Again, the forward probability is computed recur-
sively as a sum of products. Now ν ′ needs to be
accumulated, too: the constituent Z in general may
be resolved with more than one different X , which
each time adds to ν ′.

Note that a mother constituent inherits G from
her first daughter (left-corner).

Attachment Given a complete state q as in (5)
where G = Z and some goal state q ′′ in the par-
tial path leading to q

q ′′ = (G ′′; T → h U ? i Z β;µ′′, ν ′′) (8)

then the ATTACH operation is a transition from q to
q ′ with

q ′ = (G ′′; T → h U ? jβ;µ
′+= µ′′νp/ν ′′, ν ′+= νp)

(9)
and transition probability

p = pa(Z , G) · ν ′′. (10)

Why can µ′ not be updated from µ, similarly to (3)
and (6)? The reason is that ATTACH makes use of
non-local constraints: the transition from q to q ′ is
only possible if a matching goal state q ′′ occurred in
a path leading to q. Therefore computing µ as in (3)
and (6) would include all paths that generate q ′, also
those that do not contain q ′′. Instead, the update of
µ′ in (9) combines all paths leading to q ′′ with the
paths starting from q ′′ and ending in q. The update
of ν ′ follows an analogous reasoning.

3.1.4 Chart representation
The parser produces a set of states that can be conve-
niently organized in a staircase-shaped chart similar
to the one used by the CYK parser. In the chart cell
with coordinates (i, j) we store all the states starting
in i and completed up till position j .

3.1.5 Synchronous parsing algorithm
Following (Chelba, 2000), we represent a sentence
by a sequence of word identities starting with a
sentence-begin token 〈s〉, that is used in the con-
text but not predicted, followed by a sentence-end
token 〈/s〉, that is predicted by the model. We are
collecting the sentence proper together with 〈/s〉 un-
der a node labeled TOP′, and the TOP′ node together
with 〈s〉 under a TOP node. The parser starts from
the initial state

qI = (TOP;TOP/〈s〉 →−1 SB/〈s〉 ? 0TOP′; 1, 1).

(11)
After processing the sentence S = wN−1

0 and pro-
vided a full parse was found, the final state

qF = (TOP;TOP/〈s〉 →−1 SB/〈s〉 ? N ; p(S), p(S))

(12)
is found in cell (−1, N).

Now we are ready to formulate the parsing algo-
rithm. Note that we treat an ATTACH operation as a
special PROJECT, as explained in Sec. 4.1.

1 for j ← 0, 1 to N
2 for i ← j − 1, j − 2 to −1
3 foreach complete state q in cell (i, j)
4 foreach proj in projections(q)
5 if goal(q) = cat(q) and proj = ‘attach’
6 for h← i − 1, i − 2 to −1
7 foreach goal state m in cell (h, i)

matching q
8 q ′← ATTACH(q, m)

9 add q ′ to cell (h, j)
10 else
11 q ′← PROJECT(q)
12 add q ′ to cell (i, j)
13 if q ′ is complete, recursively add further

projections/attachments
14 if j = N
15 break
16 for i ←−1, 0 to j − 1
17 foreach goal state q in cell (i, j)
18 q ′← SHIFT(q, w j)
19 add q ′ to cell (j, j + 1)

3.2 Lexicalization and context-sensitivity
Probably the most important shortcoming of
PCFG’s is the assumption of context-free rule prob-
abilities, i.e. the probability distribution over pos-
sible righthand sides given a lefthand side is inde-
pendent from the function or position of the left-
hand side. This assumption is quite wrong. For

instance, in the Penn Treebank an NP in subject
position produces a personal pronoun in 13.7% of
the cases, while in object position it only does so in
2.1% of the cases (Manning and Carpenter, 1997).
Furthermore, findings from corpus-based linguis-
tic studies and developments in functional gram-
mar indicate that the lexical realization of a con-
text, besides its syntactic analysis, strongly influ-
ences patterns of syntactic preference. Today’s best
automatic parsers are made substantially more ef-
ficient and accurate by applying lexicalized gram-
mar (Manning and Schütze, 1999).

3.2.1 Context-sensitive and lexicalized states
In our work we did not attempt to find semantic gen-
eralizations (such as casting a verb form to its infini-
tive form or finding semantic attributes); our simple
(but probably suboptimal) approach, borrowed from
(Magerman, 1994; Collins, 1996; Chelba, 2000), is
to percolate words upward in the parse tree in the
form in which they appear in the sentence. In our
experiments, we opted to hardcode the head posi-
tions as part of the projection rules.3 The nodes of
the resulting partial parse trees thus are annotated
with a category label (the CAT feature) and a lexical
label (the WORD feature).

The notation (1) of a state is now replaced with

q = (G, L1, L2; Z/z → i X/x ? jβ;µ, ν) (13)

where z is the WORD of the mother (possibly
empty), x is the WORD of the first daughter (not
empty), and the extended context contains

• G = CAT of a goal state qg;

• L1 = (CAT, WORD) of the state q1 projecting
qg;

• L2 = (CAT, WORD) of the state q2 projecting a
goal state dominating q1.

If the grammar only contains unary and binary
rules, L1 and L2 correspond with Chelba’s concept
of exposed heads — which was in fact the idea be-
hind the definition above. The mixed bottom-up and
top-down parsing order of PLCG allows to condi-
tion q on a goal constituent G higher up in the par-
tial tree containing q; this turns out to significantly
improve efficiency with respect to Jelinek’s bottom-
up chart parser.

3Inserting a probabilistic head percolation model, as in
(Chelba, 2000), may be an alternative.

3.2.2 Extended parser operations
In this section, we extend the parser operations of
Sec. 3.1.3 to handle context-sensitive and lexical-
ized states. The forward and inner probability up-
date formulas remain formally the same and are not
repeated here.

The SHIFT operation q ⇒s q ′ is a transition from
q to q ′ with probability p where

q = (G, L1, L2; Z/z → i X/x ? j Y β;µ, ν) (2′)

q ′ = (Y, X/x, L1;W/w→ j W/w ? j+1;µ
′, ν ′)

(3′)

p = ps(w j |q). (4′)

The PROJECT operation q ⇒p q ′ is a transition
from q to q ′ with probability p where

q = (G, L1, L2; Z/z → i X/x ? j ;µ, ν) (5′)

q ′ = (G, L1, L2; T/t → i Z/z ? jα;µ
′, ν ′) (6′)

p = pp(T, α|q) · (1− pa(q)) (7′)

If Z is in head position, t = z; otherwise t is left
unspecified.

The ATTACH operation q ⇒a q ′ is a transition
from q to q ′ given q ′′ with a probability p where

q ′′ = (G, L1, L2; Z/z → h X/x ? iYβ;µ′′, ν ′′)

(8′)

q = (Y, X/x, L1;Y/y → i T/t ? j ;µ, ν)

q ′ = (G, L1, L2; Z/z ′→ h X/x ? jβ;µ
′, ν ′) (9′)

p = pa(q) · ν ′′ (10′)

If Y is in head position, z ′ = y; otherwise, z ′ = z.

3.3 PLCG-based language model

A language model (LM) is a word sequence pre-
dictor (or an estimator of word sequence probabili-
ties). Following common practice in language mod-
eling for speech recognition, we predict words in a
sentence from left to right4 with probabilities of the
form p(w j |w

j−1
0). Suppose the parser has worked

its way through w
j−1
0 and is about to make w j -

SHIFT transitions. Then we can write

p(w j |w
j−1
0) =

∑

q∈
�

j

p(w j |q)p(q|w j−1
0). (14)

4Since this allows the language model to be applied in early
stages of the search.

where � j is the set of goal states in position j . The
factor p(w j |q) is given by the transition probability
associated with the SHIFT operation.5

On the other hand, note that
∑

q∈
�

j

µ(q) =
∑

q∈ � j

µ(q) = p(w
j−1
0) (15)

where � j is the set of states in position j that
resulted from SHIFT operations. The first equa-
tion holds because there are only PROJECT and AT-
TACH transitions between the elements of � j and
� j , since the sum of outgoing transitions from each
state in that region equals 1 and therefore the total
probability mass is preserved. By inserting (15) into
(14) we obtain

p(w j |w
j−1
0) =

∑

q∈
�

j
p(w j |q)µ(q)

∑

q∈
�

j
µ(q)

. (16)

3.4 Model reestimation

The pp, ps and pa submodels can be rees-
timated with iterative expectation-maximization,
which needs the computation of frequency expec-
tations. For this purpose we define the outer prob-
ability of a state q, written as ξ(q), as the sum of
probabilities of precisely that part of the paths that
is not included in the inner probability of q. The
outer probability of a complete state is analogous to
Baker’s (1979) definition of an outside probability.

The outer probabilities are computed in the re-
verse direction starting from qF, provided that a list
of backward references were stored with each state
(ξ(q ′) ≡ ξ ′, ξ(q ′′) ≡ ξ ′′):6

• ξ(qF) = 1.

• Reverse ATTACH (cfr. (8′, 9′, 10′)): ξ+= ξ ′ p
and ξ ′′+= ξ ′νp/ν ′′. These formulas are made
clear in Fig. 1.

• Reverse PROJECT (cfr. (5′, 6′, 7′)): ξ+= ξ ′p.

• A reverse SHIFT is not necessary, but could be
used as a computational check.

5Consequently the computation of LM probabilities re-
quires almost no extra work. A model p(w j |q) used in (14)
different from ps(w j |q) used by the parser may be chosen how-
ever.

6Care has to be taken that an outer probability is complete
before it propagates to other items. A topological sort could
serve this purpose.

qI
p
qo

s a
q ′′

s
q

a
q ′ qF

� ξ ′′ � � ξ ′′ ��

ν′′
�

� ξ � � ξ �� ν �

� ξ ′ � � ξ ′ ��

ν′
�

Figure 1: Relations between inner and outer probabili-
ties along a single path at attachment of q to q ′′ resulting
into q ′.

Now the expected frequency of a transition o ∈
{s, p, a} from q to q ′ in a full parse of S is

E[Freq(q ⇒o q ′|S)] =
∑

all paths

Pr(path|S)Freq(q ⇒o q ′|path). (17)

Since all full parses terminate in qF, the final state,
ν(qF) = µ(qF) = Pr(S). Therefore (17) is com-
putable as

E[Freq(q ⇒o q ′|S)] =
{

1
ν(qF)

ν(q ′)ξ(q ′) if o = s,
1

ν(qF)
ν(q)p(q⇒o q ′)ξ(q ′) else.

(18)

The expected frequencies required for the reesti-
mation of the conditional distributions are then ob-
tained by summing (18) over the state attributes
from which the required distribution is independent.

4 Empirical evaluation

4.1 Modeling

We have trained two sets of models. The first set
was trained on sections 0–20 of the Penn Treebank
(PTB) (Marcus et al., 1995) using sections 21–22
for development decisions and tested on sections
23–24. The second set was trained on the BLLIP
WSJ Corpus (BWC), which is a machine-parsed
(Charniak, 2000) version of (a selection of) the
ACL/DCI corpus, very similar to the selection made
for the WSJ0/1 CSR corpus. As the training set,
we used the BWC minus the WSJ0/1 “dfiles” and
“efiles” intended for CSR development and evalua-
tion testing.

The PTB devset was used for fixing submodel pa-
rameterizations and software debugging, while per-
plexities are measured on the PTB testset. The
BWC trainset was used in rescoring N-best lists
in order to assess the models’ potential in speech
recognition. Both the PTB and BWC underwent

the following preprocessing steps: (a) A vocabu-
lary was fixed as the 10k (PTB) resp. 30k (BWC)
most frequent words; out-of-vocabulary words were
replaced by 〈unk〉. Numbers in Arabic digits were
replaced by one token ‘N’. (b) Punctuation was re-
moved. (c) All characters were converted to lower-
case. (d) All parse trees were binarized in much the
same way as detailed in (Chelba, 2000, pp. 12–17);
non-terminal unary productions were eliminated by
collapsing two nodes connected by a unary branch
to one node annotated with a combined label. This
step allowed a simple implementation and compar-
ison of results with related publications. We dis-
tinguished 1891 different projections, 143 different
non-terminal categories and 41 different parts-of-
speech. (e) All constituents were annotated with a
lexical head using deterministic rules by Magerman
(1994).

The training then proceded by decomposing all
parse trees into sequences of SHIFT, PROJECT and
ATTACH transitions. The submodels were finally
estimated from smoothed relative counts of transi-
tions using standard language modeling techniques:
Good-Turing back-off (Katz, 1987) and deleted in-
terpolation (Jelinek, 1997).

Shift submodel
The SHIFT submodel implements (4′). Finding a
good parameterization entails fixing the features
that should explicitly appear in the context and in
which order, so that all information-bearing ele-
ments are incorporated, with limited data fragmen-
tation. This is not a straightforward task. We went
through an iterative process of intuitively guessing
which feature should be added or removed from
the context or changing the order, building a corre-
sponding model and evaluating its conditional per-
plexity (CPPL) against the devset. The CPPL of
a SHIFT submodel is its perplexity measured on
a test set consisting of (context, word to be pre-
dicted) pairs (i.e. the SHIFT transitions according to
a certain parameterization) extracted from the cor-
rect parse trees of a parsed test corpus. In other
words, the CPPL is an underbound of the PPL in
that it would be the PPL from an ideal parser. We fi-
nally concluded that the parameterization (notation
being consistent with (2′))

ps(w|Y, x, L1.WORD), (19)

where the conditioning sequence is ordered from
most to least significant, is optimal for our purposes
in the given experimental conditions. The CPPL of

Table 1: Word trigram (baseline) and PTB model per-
plexities.

model GT DI
(a) word trigram 190 193
(b) PLCG-based LM 185 187
(c) linear interpolation: .6(a) + .4(b) 159 166

this model on the PTB devset is 48, which displays
the great potential of a correct syntactic partial parse
to predict the next word.

Project/attach submodel
The ATTACH submodel can be incorporated into
the PROJECT submodel by treating the attachment
as a special kind of projection. This approach
was systematically applied since it sped up pars-
ing. Having the possibility to choose different pa-
rameterizations in separate PROJECT and ATTACH

submodels did not lower perplexity and increased
execution time. Therefore, we always used com-
bined PROJECT/ATTACH submodels in further ex-
periments.

The PROJECT/ATTACH submodel implements (7′)
and (10′). The process of finding an appropriate
parameterization used to build the SHIFT submodel
was also applied here. Finally we concluded that
the parameterization (notation being consistent with
(5′))

pp(T, α|Z , G, z) (20)

is optimal for our purposes in the given experimen-
tal conditions.

4.2 Evaluation of PTB models

Table 1 lists test set perplexities (excluding OOVs
and unparsed parts of sentences) of Good-Turing
smoothed back-off models (GT) and deleted-
interpolation smoothed (DI) models trained on the
PTB trainset and tested on the PTB testset. We ob-
served similar results with both smoothing meth-
ods. As a baseline, word trigram (a) was trained
and tested on the same material. The PPL obtained
with the PLCG-based LM (b), using parametriza-
tions (19) and (20), is not much lower than the base-
line PPL.7 Interpolation (c) with the baseline how-
ever yields a relative PPL reduction of 14 to 16%
with respect to the baseline.

7Using parametrizations pp(T, α|z, G, L1.CAT) for projec-
tion from W-items and pp(T, α|G, Z, X, z) for other projec-
tions, we recently obtained a PPL of 178 (and 155 when inter-
polated). This result is left out from the discussion in order to
keep it clear and complete.

Table 2: WER results (%) after 100-best list rescoring
on the DARPA WSJ Nov ’92 evaluation test set, non-
verbalized punctuation. The models are smoothed with
Good-Turing back-off (WER results in column GT) or
deleted interpolation (DI).

rescoring model GT DI
(a) DARPA word trigram 10.44
(b) BWC word trigram 11.31 11.08
(c) BWC Chelba-Jelinek SLM 10.86
(d) (a) and (c) combined 9.82
(e) (b) and (c) combined 10.60
(f) BWC PLCG-based SLM 11.45 11.48
(g) (a) and (e) combined 9.85 9.87
(h) (b) and (e) combined 10.38 10.58
(i) Best possible 4.46 4.46

Parse accuracy is around 79% for both labeled
precision and recall on section 23 of PTB (exclud-
ing unparsed sentences, about 4% of all sentences).
In comparison, with our own implementation of
Chelba-Jelinek, we measured a labeled precision
and recall of 57% and 75% on the same input. These
results seem fairly low compared to other recent
work on large-scale parsing, but may be partly due
to the left-to-right restriction of our language mod-
els,8 which for instance prohibits word-lookahead.
Moreover, while we measured accuracy against a
binarized version of PTB, the original parses are
rather flat, which may allow higher accuracies.

4.3 Evaluation of BWC-models

The main target application of our research into
LM is speech recognition. We performed N-best
list rescoring experiments on the DARPA WSJ Nov
’92 evaluation test set, non-verbalized punctuation.
The N-best lists were obtained from the L&H Voice
Xpress v4 speech recognizer using the standard tri-
gram model included in the test suite (20k open vo-
cabulary, no punctuation).

In Table 2 we report word-recognition error rates
(WER) after rescoring using Chelba-Jelinek and
PLCG-based models. Both DI and GT smooth-
ing methods yielded very comparable results. Due
to technical limitations, all the models except the
baseline trigram were trimmed by ignoring highest-
order events that occurred only once.

The best PLCG-based SLM trained on the BWC
train set (f) performs worse than the official word
trigram (a). However, since the BWC does not com-
pletely cover the complete WSJ0 LM train material

8Not to be confused with left-to-right parsing.

and slightly differs in tokenization, it is more fair
to compare with the performance of a word trigram
trained on the BWC train set (b). Results (g) and
(h) show that the PLCG-based SLM lowers WER
with 4% relative when used in combination with the
baseline models. A comparable result was obtained
with the Chelba-Jelinek SLM (results (d) and (e)).

5 Conclusion and future work

The PLCG-based SLM exposes a slight loss of ro-
bustness in the reduced recognition rate when it
is used as a stand-alone rescoring LM. Combined
with a word trigram LM however, perplexity and
WER reductions with respect to a word 3-gram
baseline seem similar to those obtained with the
Chelba-Jelinek SLM and those previously reported
by Chelba (2000). On the other hand, the PLCG-
based SLM is significantly faster and obtains a
higher parsing accuracy.

In the future we plan to evaluate full EM reesti-
mation of the models on the trainset using the for-
mulas given in this paper.

Acknowledgements

The authors wish to thank Paul Vozila for discussing
intermediate results and for providing the authors
with the 100-best lists used for sentence rescoring.
The authors are also indebted to Saskia Janssens and
Kristin Daneels for their help with some of the ex-
periments.

This research is supported by the Institute for
the promotion of Innovation by Science and Tech-
nology in Flanders (IWT-Flanders), contract no.
000286.

References

James K. Baker. 1979. Trainable grammars for
speech recognition. In Jared J. Wolf and Den-
nis H. Klatt, editors, Speech Communication Pa-
pers for the 97th Meeting of the Acoustical Soci-
ety of America, pages 547–550. The MIT Press,
Cambridge, MA.

Eugene Charniak. 2000. A maximum-entropy in-
spired parser. In Proc. of the NAACL, pages 132–
139.

Ciprian Chelba. 2000. Exploiting Syntactic Struc-
ture for Natural Language Modeling. Ph.D. the-
sis, Johns Hopkins University.

Michael J. Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In Proc.

of the 34th Annual Meeting of the ACL, pages
184–191.

Frederick Jelinek and Ciprian Chelba. 1999.
Putting language into language modeling. In
Proc. of Eurospeech ’99, volume I, pages KN–
1–6.

Frederik Jelinek and John Lafferty. 1991. Compu-
tation of the probability of initial substring gener-
ation by stochastic context-free grammars. Com-
putational Linguistics, 17(3):315–323.

Frederick Jelinek. 1997. Statistical Methods for
Speech Recognition. The MIT Press, Cambridge,
MA.

Slava M. Katz. 1987. Estimation of probabili-
ties from sparse data for the language model
component of a speech recognizer. IEEE Trans.
on Acoustics, Speech and Signal Processing,
35:400–401.

David M. Magerman. 1994. Natural Language
Parsing as Statistical Pattern Recognition. Ph.D.
thesis, Stanford University.

Christopher D. Manning and Bob Carpenter. 1997.
Probabilistic parsing using left corner language
models. In Proc. of the Fifth International Work-
shop on Parsing Technologies, pages 147–158.

Christopher D. Manning and Hinrich Schütze.
1999. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Cambridge,
MA.

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1995. Building a
large annotated corpus of English: the Penn Tree-
bank. Computational Linguistics, 19(2):313–
330.

Brian Roark and Mark Johnson. 2000. Efficient
probabilistic top-down and left-corner parsing.
In Proc. of the 37th Annual Meeting of the ACL,
pages 421–428.

Andreas Stolcke. 1995. An efficient probabilis-
tic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics,
21(2):165–201.

Filip Van Aelten and Marc Hogenhout. 2000.
Inside-outside reestimation of Chelba-Jelinek
models. Internal Report L&H–SR–00–027,
Lernout & Hauspie, Wemmel, Belgium.

Dong Hoon Van Uytsel. 2000. Earley-inspired
parsing language model: Background and pre-
liminaries. Internal Report PSI-SPCH-00-1,
K.U.Leuven, ESAT, Heverlee, Belgium.

