
Transformation-Based Learning in the Fast Lane

Grace Ngaiy;z and Radu Floriany

{gyn,r�orian}@cs.jhu.edu

y Johns Hopkins University
Baltimore, MD 21218, USA

z Weniwen Technologies
Hong Kong

Abstract

Transformation-based learning has been successfully
employed to solve many natural language process-
ing problems. It achieves state-of-the-art perfor-
mance on many natural language processing tasks
and does not overtrain easily. However, it does have
a serious drawback: the training time is often in-
torelably long, especially on the large corpora which
are often used in NLP. In this paper, we present a
novel and realistic method for speeding up the train-
ing time of a transformation-based learner without
sacri�cing performance. The paper compares and
contrasts the training time needed and performance
achieved by our modi�ed learner with two other
systems: a standard transformation-based learner,
and the ICA system (Hepple, 2000). The results of
these experiments show that our system is able to
achieve a signi�cant improvement in training time
while still achieving the same performance as a stan-
dard transformation-based learner. This is a valu-
able contribution to systems and algorithms which
utilize transformation-based learning at any part of
the execution.

1 Introduction

Much research in natural language processing has
gone into the development of rule-based machine
learning algorithms. These algorithms are attractive
because they often capture the linguistic features of
a corpus in a small and concise set of rules.
Transformation-based learning (TBL) (Brill,

1995) is one of the most successful rule-based ma-
chine learning algorithms. It is a �exible method
which is easily extended to various tasks and do-
mains, and it has been applied to a wide variety of
NLP tasks, including part of speech tagging (Brill,
1995), noun phrase chunking (Ramshaw and Mar-
cus, 1999), parsing (Brill, 1996), phrase chunking
(Florian et al., 2000), spelling correction (Mangu
and Brill, 1997), prepositional phrase attachment
(Brill and Resnik, 1994), dialog act tagging (Samuel
et al., 1998), segmentation and message understand-
ing (Day et al., 1997). Furthermore, transformation-
based learning achieves state-of-the-art performance

on several tasks, and is fairly resistant to overtrain-
ing (Ramshaw and Marcus, 1994).
Despite its attractive features as a machine learn-

ing algorithm, TBL does have a serious draw-
back in its lengthy training time, especially on the
larger-sized corpora often used in NLP tasks. For
example, a well-implemented transformation-based
part-of-speech tagger will typically take over 38
hours to �nish training on a 1 million word cor-
pus. This disadvantage is further exacerbated when
the transformation-based learner is used as the base
learner in learning algorithms such as boosting or
active learning, both of which require multiple it-
erations of estimation and application of the base
learner. In this paper, we present a novel method
which enables a transformation-based learner to re-
duce its training time dramatically while still retain-
ing all of its learning power. In addition, we will
show that our method scales better with training
data size.

2 Transformation-based Learning

The central idea of transformation-based learning
(TBL) is to learn an ordered list of rules which
progressively improve upon the current state of the
training set. An initial assignment is made based on
simple statistics, and then rules are greedily learned
to correct the mistakes, until no net improvement
can be made.
The following de�nitions and notations will be

used throughout the paper:

� The sample space is denoted by S;

� C denotes the set of possible classi�cations of
the samples;

� C[s] denotes the classi�cation associated with a
sample s, and T [s] denotes the true classi�ca-
tion of s;

� p will usually denote a predicate de�ned on S;

� A rule r is de�ned as a predicate - class label
pair, (p; t), where t 2 C is called the target of r;

� R denotes the set of all rules;

� If r = (p; t), pr will denote p and tr will denote
t;



� A rule r = (pr; tr) applies to a sample s if
pr(s) = true and tr 6= C[s]; the resulting sam-
ple is denoted by r(s).

Using the TBL framework to solve a problem as-
sumes the existence of:

� An initial class assignment. This can be as sim-
ple as the most common class label in the train-
ing set, or it can be the output of another clas-
si�er.

� A set of allowable templates for rules. These
templates determine the types of predicates the
rules will test; they have the largest impact on
the behavior of the system.

� An objective function f for learning. Unlike
in many other learning algorithms, the objec-
tive function for TBL will directly optimize the
evaluation function. A typical example is the
di�erence in performance resulting from apply-
ing the rule:

f (r) = good (r)� bad (r)

where

good (r) = jfsjC [s] 6= T [s] ^ C [r (s)] = T [s]gj
bad (r) = jfsjC [s] = T [s] ^ C [r (s)] 6= T [s]gj

Since we are not interested in rules that have a nega-
tive objective function value, only the rules that have
a positive good (r) need be examined. This leads to
the following approach:

1. Generate the rules (using the rule template set)
that correct at least an error (i.e. good (r) > 0),
by examining all the incorrect samples (s s.t.
C [s] 6= T [s]);

2. Compute the values bad (�) for each rule r such
that good(r) > f(b) , storing at each point in
time the rule b that has the highest score; while
computing bad(r), skip to the next rule when

f (r) < f (b)

The system thus learns a list of rules in a greedy
fashion, according to the objective function. When
no rule that improves the current state of the train-
ing set beyond a pre-set threshold can be found, the
training phase ends. During the application phase,
the evaluation set is initialized with the initial class
assignment. The rules are then applied sequentially
to the evaluation set in the order they were learned.
The �nal classi�cation is the one attained when all
rules have been applied.

2.1 Previous Work

As was described in the introductory section, the
long training time of TBL poses a serious prob-
lem. Various methods have been investigated to-
wards ameliorating this problem, and the following
subsections detail two of the approaches.

2.1.1 The Ramshaw & Marcus Approach

One of the most time-consuming steps in
transformation-based learning is the updating
step. The iterative nature of the algorithm requires
that each newly selected rule be applied to the
corpus, and the current state of the corpus updated
before the next rule is learned.
Ramshaw & Marcus (1994) attempted to reduce

the training time of the algorithm by making the up-
date process more e�cient. Their method requires
each rule to store a list of pointers to samples that
it applies to, and for each sample to keep a list of
pointers to rules that apply to it. Given these two
sets of lists, the system can then easily:

1. identify the positions where the best rule applies
in the corpus; and

2. update the scores of all the rules which are af-
fected by a state change in the corpus.

These two processes are performed multiple times
during the update process, and the modi�cation re-
sults in a signi�cant reduction in running time.
The disadvantage of this method consists in the

system having an unrealistically high memory re-
quirement. For example, a transformation-based
text chunker training upon a modestly-sized corpus
of 200,000 words has approximately 2 million rules
active at each iteration. The additional memory
space required to store the lists of pointers associ-
ated with these rules is about 450 MB, which is a
rather large requirement to add to a system.1

2.1.2 The ICA Approach

The ICA system (Hepple, 2000) aims to reduce the
training time by introducing independence assump-
tions on the training samples that dramatically re-
duce the training time with the possible downside of
sacri�cing performance.
To achieve the speedup, the ICA system disallows

any interaction between the learned rules, by enforc-
ing the following two assumptions:

� Sample Independence � a state change in a
sample (e.g. a change in the current part-
of-speech tag of a word) does not change the
context of surrounding samples. This is cer-
tainly the case in tasks such as prepositional
phrase attachment, where samples are mutually
independent. Even for tasks such as part-of-
speech tagging where intuition suggests it does
not hold, it may still be a reasonable assump-
tion to make if the rules apply infrequently and
sparsely enough.

1We need to note that the 200k-word corpus used in this
experiment is considered small by NLP standards. Many of
the available corpora contain over 1 million words. As the
size of the corpus increases, so does the number of rules and
the additional memory space required.



� Rule Commitment � there will be at most one
state change per sample. In other words, at
most one rule is allowed to apply to each sample.
This mode of application is similar to that of a
decision list (Rivest, 1987), where an sample is
modi�ed by the �rst rule that applies to it, and
not modi�ed again thereafter. In general, this
assumption will hold for problems which have
high initial accuracy and where state changes
are infrequent.

The ICA system was designed and tested on the
task of part-of-speech tagging, achieving an impres-
sive reduction in training time while su�ering only
a small decrease in accuracy. The experiments pre-
sented in Section 4 include ICA in the training time
and performance comparisons2.

2.1.3 Other Approaches

Samuel (1998) proposed a Monte Carlo approach
to transformation-based learning, in which only a
fraction of the possible rules are randomly selected
for estimation at each iteration. The �-TBL sys-
tem described in Lager (1999) attempts to cut down
on training time with a more e�cient Prolog imple-
mentation and an implementation of �lazy� learning.
The application of a transformation-based learning
can be considerably sped-up if the rules are compiled
in a �nite-state transducer, as described in Roche
and Schabes (1995).

3 The Algorithm

The approach presented here builds on the same
foundation as the one in (Ramshaw and Marcus,
1994): instead of regenerating the rules each time,
they are stored into memory, together with the two
values good (r) and bad (r).
The following notations will be used throughout

this section:

� G (r) = fs 2 Sjpr(s) = true and C[s] 6=
tr and tr = T [s]g � the samples on which the
rule applies and changes them to the correct
classi�cation; therefore, good(r) = jG(r)j.

� B (r) = fs 2 Sjpr(s) = true and C[s] 6=
tr and C[s] = T [s]g � the samples on which
the rule applies and changes the classi�cation
from correct to incorrect; similarly, bad(r) =
jB(r)j.

Given a newly learned rule b that is to be applied
to S, the goal is to identify the rules r for which at
least one of the sets G (r) ; B (r) is modi�ed by the
application of rule b. Obviously, if both sets are not
modi�ed when applying rule b, then the value of the
objective function for rule r remains unchanged.

2The algorithm was implemented by the the authors, fol-
lowing the description in Hepple (2000).

The presentation is complicated by the fact that,
in many NLP tasks, the samples are not indepen-
dent. For instance, in POS tagging, a sample is de-
pendent on the classi�cation of the preceding and
succeeding 2 samples (this assumes that there ex-
ists a natural ordering of the samples in S). Let
V (s) denote the �vicinity� of a sample � the set of
samples on whose classi�cation the sample s might
depend on (for consistency, s 2 V (s)); if samples are
independent, then V (s) = fsg.

3.1 Generating the Rules

Let s be a sample on which the best rule b applies
(i.e. [b (s)] 6= C [s]). We need to identify the rules
r that are in�uenced by the change s ! b (s). Let
r be such a rule. f (r) needs to be updated if and
only if there exists at least one sample s0 such that

s0 2 G (r) and b (s0) =2 G (r) or (1)

s0 2 B (r) and b (s0) =2 B (r) or (2)

s0 =2 G (r) and b (s0) 2 G (r) or (3)

s0 =2 B (r) and b (s0) 2 B (r) (4)

Each of the above conditions corresponds to a spe-
ci�c update of the good (r) or bad (r) counts. We
will discuss how rules which should get their good or
bad counts decremented (subcases (1) and (2)) can
be generated, the other two being derived in a very
similar fashion.
The key observation behind the proposed algo-

rithm is: when investigating the e�ects of applying
the rule b to sample s, only samples s0 in the set
V (s) need to be checked. Any sample s0 that is not
in the set [

fsjb changes sg

V (s)

can be ignored since s0 = b(s0).
Let s0 2 V (s) be a sample in the vicinity of s.

There are 2 cases to be examined � one in which b
applies to s0 and one in which b does not:

Case I: c (s0) = c (b (s0)) (b does not modify the
classi�cation of sample s0). We note that the
condition

s0 2 G (r) and b (s0) =2 G (r)

is equivalent to

pr (s
0) = true ^ C [s0] 6= tr ^

tr = T [s0] ^ pr (b (s
0)) = false

(5)

and the formula

s0 2 B (r) and b (s0) =2 B (r)

is equivalent to

pr (s
0) = true ^ C [s0] 6= tr^

C [s0] = T [s0] ^ pr (b (s
0)) = false

(6)



(for the full details of the derivation, inferred from
the de�nition of G (r) and B (r), please refer to
Florian and Ngai (2001)).
These formulae o�er us a method of generating

the rules r which are in�uenced by the modi�cation
s0 ! b (s0):

1. Generate all predicates p (using the predicate
templates) that are true on the sample s0.

2. If C [s0] 6= T [s0] then
(a) If p (b (s0)) = false then decrease good (r),

where r is the rule created with predicate
p s.t. target T [s0];

3. Else
(a) If p (b (s0)) = false then for all the rules

r whose predicate is p3 and tr 6= C [s0] de-
crease bad (r);

The algorithm for generating the rules r that need
their good counts (formula (3)) or bad counts (for-
mula (4)) increased can be obtained from the formu-
lae (1) (respectively (2)), by switching the states s0

and b (s0), and making sure to add all the new pos-
sible rules that might be generated (only for (3)).
Case II: C [s0] 6= C [b (s0)] (b does change the clas-

si�cation of sample s0). In this case, the formula (5)
is transformed into:

pr (s
0) = true ^ C [s0] 6= tr ^ tr = T [s0] ^

(pr (b (s
0)) = false _ tr = C [b (s0)])

(7)

(again, the full derivation is presented in Florian and
Ngai (2001)). The case of (2), however, is much
simpler. It is easy to notice that C [s0] 6= C [b (s0)]
and s0 2 B (r) implies that b (s0) =2 B (r); indeed,
a necessary condition for a sample s0 to be in a set
B (r) is that s0 is classi�ed correctly, C [s0] = T [s0].
Since T [s0] 6= C [b (s0)], results C [b (s0)] 6= T [s0] and
therefore b (s0) =2 B (r). Condition (3) is, therefore,
equivalent to

pr (s
0) = true ^ C [s0] 6= tr ^ C [s0] = T [s0]

(8)

The algorithm is modi�ed by replacing the test
p (b (s0)) = false with the test pr (b (s

0)) = false _
C [b (s)] = tr in formula (1) and removing the test
altogether for case of (2). The formulae used to gen-
erate rules r that might have their counts increased
(equations (3) and (4)) are obtained in the same
fashion as in Case I.

3.2 The Full Picture

At every point in the algorithm, we assumed that all
the rules that have at least some positive outcome
(good (r) > 0) are stored, and their score computed.

3This can be done e�ciently with an appropriate data
structure - for example, using a double hash.

For all samples s that satisfy C [s] 6= T [s], generate all rules
r that correct the classi�cation of s; increase good (r).
For all samples s that satisfy C [s] = T [s] generate all pred-
icates p s.t. p (s) = true; for each rule r s.t. pr = p and
tr 6= C [s] increase bad (r).
1: Find the rule b = argmaxr2R f (r).
If (f (b) < Threshold or corpus learned to completion) then
quit.
For each predicate p, let R (p) be the rules whose predicate
is p (pr = r).
For each samples s; s0 s.t. C [s] 6= C [b (s)] and s0 2 V (s):
If C [s0] = C [b (s0)] then

� for each predicate p s.t. p (s0) = true
� If C [s0] 6= T [s0] then

� If p (b (s0)) = false then decrease good (r),
where r = [p; T [s0]], the rule created with
predicate p and target T [s0];

�Else
� If p (b (s0)) = false then for all the rules
r 2 R (p) s.t. tr 6= C [s0] decrease bad (r);

� for each predicate p s.t. p (b (s0)) = true

� If C [b (s0)] 6= T [s0] then
� If p (s0) = false then increase good (r),
where r = [p; T [s0]];

�Else
� If p (s0) = false then for all rules r 2 R (p)
s.t. tr 6= C [b (s0)] increase bad (r);

Else
� for each predicate p s.t. p (s0) = true

� If C [s0] 6= T [s0] then

� If p (b (s0)) = false _ C [b (s0)] = tr then
decrease good (r), where r = [p; T [s0]];

�Else
�For all the rules r 2 R(p) s.t. tr 6= C [s0]
decrease bad (r);

� for each predicate p s.t. p (b (s0)) = true
� If C [b (s0)] 6= T [s0] then

� If p (s0) = false _ C [s0] = tr then increase
good (r), where r = [p; T [s0]];

�Else
�For all rules r 2 R (p) s.t. tr 6= C [b (s0)]
increase bad (r);

Repeat from step 1:

Figure 1: FastTBL Algorithm

Therefore, at the beginning of the algorithm, all the
rules that correct at least one wrong classi�cation
need to be generated. The bad counts for these rules
are then computed by generation as well: in every
position that has the correct classi�cation, the rules
that change the classi�cation are generated, as in
Case 4, and their bad counts are incremented. The
entire FastTBL algorithm is presented in Figure 1.
Note that, when the bad counts are computed, only
rules that already have positive good counts are se-
lected for evaluation. This prevents the generation
of useless rules and saves computational time.
The number of examined rules is kept close to the

minimum. Because of the way the rules are gen-
erated, most of them need to modify either one of
their counts. Some additional space (besides the one
needed to represent the rules) is necessary for repre-
senting the rules in a predicate hash � in order to



have a straightforward access to all rules that have a
given predicate; this amount is considerably smaller
than the one used to represent the rules. For exam-
ple, in the case of text chunking task described in
section 4, only approximately 30Mb additional mem-
ory is required, while the approach of Ramshaw and
Marcus (1994) would require approximately 450Mb.

3.3 Behavior of the Algorithm

As mentioned before, the original algorithm has a
number of de�ciencies that cause it to run slowly.
Among them is the drastic slowdown in rule learning
as the scores of the rules decrease. When the best
rule has a high score, which places it outside the tail
of the score distribution, the rules in the tail will be
skipped when the bad counts are calculated, since
their good counts are small enough to cause them
to be discarded. However, when the best rule is in
the tail, many other rules with similar scores can no
longer be discarded and their bad counts need to be
computed, leading to a progressively longer running
time per iteration.
Our algorithm does not su�er from the same prob-

lem, because the counts are updated (rather than
recomputed) at each iteration, and only for the sam-
ples that were a�ected by the application of the lat-
est rule learned. Since the number of a�ected sam-
ples decreases as learning progresses, our algorithm
actually speeds up considerably towards the end of
the training phase. Considering that the number
of low-score rules is a considerably higher than the
number of high-score rules, this leads to a dramatic
reduction in the overall running time.
This has repercussions on the scalability of the al-

gorithm relative to training data size. Since enlarg-
ing the training data size results in a longer score dis-
tribution tail, our algorithm is expected to achieve
an even more substantial relative running time im-
provement over the original algorithm. Section 4
presents experimental results that validate the su-
perior scalability of the FastTBL algorithm.

4 Experiments

Since the goal of this paper is to compare and con-
trast system training time and performance, extra
measures were taken to ensure fairness in the com-
parisons. To minimize implementation di�erences,
all the code was written in C++ and classes were
shared among the systems whenever possible. For
each task, the same training set was provided to each
system, and the set of possible rule templates was
kept the same. Furthermore, extra care was taken
to run all comparable experiments on the same ma-
chine and under the same memory and processor
load conditions.
To provide a broad comparison between the sys-

tems, three NLP tasks with di�erent properties
were chosen as the experimental domains. The

�rst task, part-of-speech tagging, is one where the
commitment assumption seems intuitively valid and
the samples are not independent. The second
task, prepositional phrase attachment, has examples
which are independent from each other. The last
task is text chunking, where both independence and
commitment assumptions do not seem to be valid.
A more detailed description of each task, data and
the system parameters are presented in the following
subsections.
Four algorithms are compared during the follow-

ing experiments:

� The regular TBL, as described in section 2;

� An improved version of TBL, which makes ex-
tensive use of indexes to speed up the rules' up-
date;

� The FastTBL algorithm;

� The ICA algorithm (Hepple, 2000).

4.1 Part-of-Speech Tagging

The goal of this task is to assign to each word
in the given sentence a tag corresponding to its
part of speech. A multitude of approaches have
been proposed to solve this problem, including
transformation-based learning, Maximum Entropy
models, Hidden Markov models and memory-based
approaches.
The data used in the experiment was selected from

the Penn Treebank Wall Street Journal, and is the
same used by Brill and Wu (1998). The training set
contained approximately 1M words and the test set
approximately 200k words.
Table 1 presents the results of the experiment4.

All the algorithms were trained until a rule with
a score of 2 was reached. The FastTBL algorithm
performs very similarly to the regular TBL, while
running in an order of magnitude faster. The two
assumptions made by the ICA algorithm result in
considerably less training time, but the performance
is also degraded (the di�erence in performance is sta-
tistically signi�cant, as determined by a signed test,
at a signi�cance level of 0:001). Also present in Ta-
ble 1 are the results of training Brill's tagger on the
same data. The results of this tagger are presented
to provide a performance comparison with a widely
used tagger. Also worth mentioning is that the tag-
ger achieved an accuracy of 96:76% when trained on
the entire data5; a Maximum Entropy tagger (Rat-
naparkhi, 1996) achieves 96:83% accuracy with the
same training data/test data.

4The time shown is the combined running time for both
the lexical tagger and the contextual tagger.

5We followed the setup from Brill's tagger: the contextual
tagger is trained only on half of the training data. The train-
ing time on the entire data was approximately 51 minutes.



Brill's tagger Regular TBL Indexed TBL FastTBL ICA (Hepple)

Accuracy 96:61% 96:61% 96:61% 96:61% 96:23%
Running time 5879 mins, 46 secs 2286 mins, 21 secs 420 mins, 7 secs 17 mins, 21 secs 6 mins, 13 secs

Time ratio 0:4 1:0 5:4 131:7 367:8

Table 1: POS tagging: Evaluation and Running Times

Regular TBL Indexed TBL Fast TBL ICA (Hepple)

Accuracy 81:0% 81:0% 81:0% 77:8%
Running time 190 mins, 19 secs 65 mins, 50 secs 14 mins, 38 secs 4 mins, 1 sec

Time Ratio 1:0 2:9 13 47:4

Table 2: PP Attachment:Evaluation and Running Times

4.2 Prepositional Phrase Attachment

Prepositional phrase attachment is the task of decid-
ing the point of attachment for a given prepositional
phrase (PP). As an example, consider the following
two sentences:

1. I washed the shirt with soap and water.

2. I washed the shirt with pockets.

In Sentence 1, the PP �with soap and water� de-
scribes the act of washing the shirt. In Sentence 2,
however, the PP �with pockets� is a description for
the shirt that was washed.
Most previous work has concentrated on situa-

tions which are of the form VP NP1 P NP2. The
problem is cast as a classi�cation task, and the sen-
tence is reduced to a 4-tuple containing the preposi-
tion and the non-in�ected base forms of the head
words of the verb phrase VP and the two noun
phrases NP1 and NP2. For example, the tuple cor-
responding to the two above sentences would be:

1. wash shirt with soap

2. wash shirt with pocket

Many approaches to solving this this problem have
been proposed, most of them using standard ma-
chine learning techniques, including transformation-
based learning, decision trees, maximum entropy
and backo� estimation. The transformation-based
learning system was originally developed by Brill
and Resnik (1994).
The data used in the experiment consists of ap-

proximately 13,000 quadruples (VP NP1 P NP2 )
extracted from Penn Treebank parses. The set is
split into a test set of 500 samples and a training set
of 12,500 samples. The templates used to generate
rules are similar to the ones used by Brill and Resnik
(1994) and some include WordNet features. All the
systems were trained until no more rules could be
learned.
Table 2 shows the results of the experiments.

Again, the ICA algorithm learns the rules very fast,
but has a slightly lower performance than the other
two TBL systems. Since the samples are inherently
independent, there is no performance loss because

of the independence assumption; therefore the per-
formance penalty has to come from the commitment
assumption. The Fast TBL algorithm runs, again,
in a order of magnitude faster than the original TBL
while preserving the performance; the time ratio is
only 13 in this case due to the small training size
(only 13000 samples).

4.3 Text Chunking

Text chunking is a subproblem of syntactic pars-
ing, or sentence diagramming. Syntactic parsing at-
tempts to construct a parse tree from a sentence by
identifying all phrasal constituents and their attach-
ment points. Text chunking simpli�es the task by
dividing the sentence into non-overlapping phrases,
where each word belongs to the lowest phrasal con-
stituent that dominates it. The following exam-
ple shows a sentence with text chunks and part-of-
speech tags:

[NP A.P.NNP GreenNNP ] [ADVP
currentlyRB ] [VP has ] [NP 2,664,098CD
sharesNNS] [ADJP outstandingJJ ] .

The problem can be transformed into a classi�cation
task. Following Ramshaw & Marcus' (1999) work in
base noun phrase chunking, each word is assigned
a chunk tag corresponding to the phrase to which
it belongs . The following table shows the above
sentence with the assigned chunk tags:

Word POS tag Chunk Tag

A.P. NNP B-NP

Green NNP I-NP

currently RB B-ADVP

has VBZ B-VP

2,664,098 CD B-NP

shares NNS I-NP

outstanding JJ B-ADJP

. . O

The data used in this experiment is the CoNLL-
2000 phrase chunking corpus (Tjong Kim Sang and
Buchholz, 2000). The training corpus consists of
sections 15-18 of the Penn Treebank (Marcus et al.,
1993); section 20 was used as the test set. The chunk
tags are derived from the parse tree constituents,



Regular TBL Indexed TBL Fast TBL ICA (Hepple)

F-measure 92.30 92.30 92.30 86.20
Running Time 19211 mins, 40 secs 2056 mins, 4secs 137 mins, 57 secs 12 mins, 40 secs

Time Ratio 1:0 9:3 139:2 1516:7

Table 3: Text Chunking: Evaluation and Running Times

and the part-of-speech tags were generated by Brill's
tagger (Brill, 1995). All the systems are trained to
completion (until all the rules are learned).
Table 3 shows the results of the text chunking ex-

periments. The performance of the FastTBL algo-
rithm is the same as of regular TBL's, and runs in an
order of magnitude faster. The ICA algorithm again
runs considerably faster, but at a cost of a signi�-
cant performance hit. There are at least 2 reasons
that contribute to this behavior:

1. The initial state has a lower performance than
the one in tagging; therefore the independence
assumption might not hold. 25% of the samples
are changed by at least one rule, as opposed to
POS tagging, where only 2.5% of the samples
are changed by a rule.

2. The commitment assumption might also not
hold. For this task, 20% of the samples that
were modi�ed by a rule are also changed again
by another one.

4.4 Training Data Size Scalability

A question usually asked about a machine learning
algorithm is how well it adapts to larger amounts
of training data. Since the performance of the Fast
TBL algorithm is identical to that of regular TBL,
the issue of interest is the dependency between the
running time of the algorithm and the amount of
training data.
The experiment was performed with the part-of-

speech data set. The four algorithms were trained
on training sets of di�erent sizes; training times were
recorded and averaged over 4 trials. The results are
presented in Figure 2(a). It is obvious that the Fast
TBL algorithm is much more scalable than the reg-
ular TBL � displaying a linear dependency on the
amount of training data, while the regular TBL has
an almost quadratic dependency. The explanation
for this behavior has been given in Section 3.3.
Figure 2(b) shows the time spent at each iteration

versus the iteration number, for the original TBL
and fast TBL systems. It can be observed that the
time taken per iteration increases dramatically with
the iteration number for the regular TBL, while for
the FastTBL, the situation is reversed. The con-
sequence is that, once a certain threshold has been
reached, the incremental time needed to train the
FastTBL system to completion is negligible.

5 Conclusions

We have presented in this paper a new and im-
proved method of computing the objective function
for transformation-based learning. This method al-
lows a transformation-based algorithm to train an
observed 13 to 139 times faster than the original
one, while preserving the �nal performance of the
algorithm. The method was tested in three di�er-
ent domains, each one having di�erent characteris-
tics: part-of-speech tagging, prepositional phrase at-
tachment and text chunking. The results obtained
indicate that the algorithmic improvement gener-
ated by our method is not linked to a particular
task, but extends to any classi�cation task where
transformation-based learning can be applied. Fur-
thermore, our algorithm scales better with training
data size; therefore the relative speed-up obtained
will increase when more samples are available for
training, making the procedure a good candidate for
large corpora tasks.
The increased speed of the Fast TBL algorithm

also enables its usage in higher level machine learn-
ing algorithms, such as adaptive boosting, model
combination and active learning. Recent work (Flo-
rian et al., 2000) has shown how a TBL frame-
work can be adapted to generate con�dences on the
output, and our algorithm is compatible with that
framework. The stability, resistance to overtraining,
the existence of probability estimates and, now, rea-
sonable speed make TBL an excellent candidate for
solving classi�cation tasks in general.

6 Acknowledgements

The authors would like to thank David Yarowsky
for his advice and guidance, Eric Brill and John
C. Henderson for discussions on the initial ideas of
the material presented in the paper, and the anony-
mous reviewers for useful suggestions, observations
and connections with other published material. The
work presented here was supported by NSF grants
IRI-9502312, IRI-9618874 and IIS-9985033.

References

E. Brill and P. Resnik. 1994. A rule-based ap-
proach to prepositional phrase attachment disam-
biguation. In Proceedings of the Fifteenth Interna-
tional Conference on Computational Linguistics
(COLING-1994), pages 1198�1204, Kyoto.

E. Brill and J. Wu. 1998. Classi�er combination for



0

5000

10000

15000

20000

25000

100000 150000 200000 250000 300000 350000 400000 450000 500000 550000

R
un

ni
ng

 T
im

e 
(m

in
ut

es
)

Training Set Size (words)

ICA FastTBL
Indexed TBL

Regular TBL

(a) Running Time versus Training Data Size

R
un

ni
ng

 T
im

e 
(s

ec
on

ds
)

Iteration Number

Regular TBL

FastTBL

Indexed TBL

0

500

1000

1500

2000

0 200 400 600 800 1000

(b) Running Time versus Iteration Number

Figure 2: Algorithm Scalability

improved lexical disambiguation. Proceedings of
COLING-ACL'98, pages 191�195, August.

E. Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational
Linguistics, 21(4):543�565.

E. Brill, 1996. Recent Advances in Parsing Technol-
ogy, chapter Learning to Parse with Transforma-
tions. Kluwer.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vilain. 1997. Mixed-
initiative development of language processing sys-
tems. In Fifth Conference on Applied Natural
Language Processing, pages 348�355. Association
for Computational Linguistics, March.

R. Florian and G. Ngai. 2001. Transformation-
based learning in the fast lane. Technical report,
Johns Hopkins University, Computer Science De-
partment.

R. Florian, J.C. Henderson, and G. Ngai. 2000.
Coaxing con�dence from an old friend: Probabilis-
tic classi�cations from transformation rule lists.
In Proceedings of SIGDAT-EMNLP 2000, pages
26�43, Hong Kong, October.

M. Hepple. 2000. Independence and commitment:
Assumptions for rapid training and execution of
rule-based pos taggers. In Proceedings of the 38th
Annual Meeting of the ACL, pages 278�285, Hong
Kong, October.

T. Lager. 1999. The �-tbl system: Logic pro-
gramming tools for transformation-based learn-
ing. In Proceedings of the 3rd International Work-
shop on Computational Natural Language Learn-
ing, Bergen.

L. Mangu and E. Brill. 1997. Automatic rule acqui-
sition for spelling correction. In Proceedings of the
Fourteenth International Conference on Machine
Learning, pages 734�741, Nashville, Tennessee.

M. P. Marcus, B. Santorini, and M. A.

Marcinkiewicz. 1993. Building a large an-
notated corpus of english: The Penn Treebank.
Computational Linguistics, 19(2):313�330.

L. Ramshaw and M. Marcus. 1994. Exploring the
statistical derivation of transformational rule se-
quences for part-of-speech tagging. In The Bal-
ancing Act: Proceedings of the ACL Workshop on
Combining Symbolic and Statistical Approaches to
Language, pages 128�135, New Mexico State Uni-
versity, July.

L. Ramshaw and M. Marcus, 1999. Natural Lan-
guage Processing Using Very Large Corpora, chap-
ter Text Chunking Using Transformation-based
Learning, pages 157�176. Kluwer.

A. Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. In Proceedings of the First Con-
ference on Empirical Methods in NLP, pages 133�
142, Philadelphia, PA.

R. Rivest. 1987. Learning decision lists. Machine
Learning, 2(3):229�246.

E. Roche and Y. Schabes. 1995. Computational
linguistics. Deterministic Part of Speech Tagging
with Finite State Transducers, 21(2):227�253.

K. Samuel, S. Carberry, and K. Vijay-Shanker.
1998. Dialogue act tagging with transformation-
based learning. In Proceedings of the 17th Interna-
tional Conference on Computational Linguistics
and the 36th Annual Meeting of the Association
for Computational Linguistics, pages 1150�1156,
Montreal, Quebec, Canada.

K. Samuel. 1998. Lazy transformation-based
learning. In Proceedings of the 11th Intera-
tional Florida AI Research Symposium Confer-
ence, pages 235�239, Florida, USA.

E. Tjong Kim Sang and S. Buchholz. 2000. In-
troduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of CoNLL-2000 and LLL-
2000, pages 127�132, Lisbon, Portugal.


