
SRA :
Description of the SRA System as Used for MUC— 6

George R. Krupka

Systems Research and Applications
4300 Fair Lakes Court

South Building, Suite 50 0
Fairfax, VA 22033—423 2

krupka@sra.com

INTRODUCTIO N
SRA used the combination of two systems for the MUC–6 tasks : NameTag"" , a commercial software product

that recognizes proper names and other key phrases in text ; and HASTEN, an experimental text extraction system
that has been under development for only one year . For the Named Entity task, SRA adapted a subset of NameTag ' s
capabilities to the MUC–6 specification . For the Template Element task, SRA fed the full results of NameTag into
HASTEN, which performed additional processing to extract and generate the organization and person templates . For
the Scenario Template task, SRA fed NameTag's results into HASTEN, which used its full extraction capabilities t o
extract and generate the management succession templates . Figure 1 illustrates the contribution of each system to the
MUC–6 tasks . Due to the relative complexity of the scenario template task, this paper will focus on HASTEN and
the experimental results for scenario extraction, and will provide brief descriptions of NameTag and the other tasks .

TE
Template

Text

Figure 1 : SRA MUC—6 System

SYSTEM DESCRIPTION
Ease of customization, trainability, and automated knowledge acquisition are widely acknowledged as critica l

issues for text extraction systems . Many systems, including ones from BBN, SRI, Lockheed Martin, University o f
Massachusetts, and New Mexico State University, have made significant contributions in these areas . SRA has also
investigated these issues, and has renewed its effort with the development of HASTEN . The long-term objective of
HASTEN is to provide a system that non-developers can easily customize to extract information from text . The target
operating environment might consist of 50 users trying to use HASTEN on 50 different extraction scenarios .
Therefore, HASTEN must be simple, flexible, robust, and trainable, and must minimize the customization effort .
These requirements motivate HASTEN ' s vision of extraction, which is to use the simplest input from users : extraction
examples. As illustrated in Figure 2, the user annotates examples of what to extract, labelling the important region s
of text with their relationship (e .g . the successee) to the expressed concept (e .g . management succession) .

<p>

	

Now, Mr . James is preparing to sai l
the sunset, and Mr .Dooner is poised to r

engines

	

to

	

guide

	

Interpu
'ann-Erickson into the 21st cen t

made official what had
57 ears old ,Dated

a s
July 1 and will retire as chairman at the en
of the year . He will be succeeded by Mr .
Dooner, 45 . </p>

Figure 2: HASTEN's Extraction Vision

221

HASTEN uses that example to analyze subsequent text. HASTEN computes the similarity between an annotate d
example and the subsequent text, and uses that computation to decide how to analyze it . As more examples are
encoded, HASTEN's coverage and accuracy improve .

The HASTEN system has a simple architecture, consisting of four main modules shown in Figure 3 . The
Analyzer extracts semantic information from the text, using a set of extraction examples and a supporting knowledg e
base . The Reference Resolver supports the Analyzer by providing links from references to their referents . Concept
specifications define what concepts to extract, in what order, what semantic roles to fill, and determine how th e
extraction examples are encoded . The Collector collects and merges the semantic information according to concep t
specifications . The Generator uses an output script to convert the collected semantic information into an arbitrary
output format, such as a database template . In addition to these core modules, HASTEN includes a tokenizer, a
document structure facility, a lexical data facility, and an object-oriented (template) scoring program .

Figure 3 : HASTEN System Architecture

Each Collector concept represents a processing phase for the Analyzer. For each Collector concept, the
Analyzer processes the text and creates a link from the text to the semantic representations, similar to the reference
links created by the Reference Resolver. Each analysis phase can access the results of previous phases, thus enablin g
complex embedded semantic representations to be created . For the MUC-6 Scenario Template task, the Analyzer first
extracted person concepts, then organization concepts, then management post concepts, then succession events .

Extraction by Example
The key module of HASTEN is the Analyzer, which matches the extraction examples to incoming text an d

decides what to extract . The Analyzerhas two components, as shown in Figure 4 . The Matcher compares an incomin g
text unit, such as a sentence, to each extraction example. Using a set of parameters, the Matcher computes the
similarity between them . The Matcher also produces an annotated sentence by transferring the extraction annotatio n
from the example to the incoming sentence .

parameters

	

threshold

extraction
example

sentence

Figure 4 : Extraction by Example

The Extractor compares the similarity values of all extraction examples, selects the most similar example tha t
exceeds the threshold, and then converts the maximal annotated sentence into a semantic representation. If all
extraction examples fail to exceed the threshold, the Extractor does not extract anything from the incoming text unit .
Thus, a high threshold will result in less extracted semantics than a low threshold . This feature provides HASTEN
with a central control on extraction performance, which will be illustrated in the test results .

222

Egraphs
HASTEN represents the extraction examples using a data structure, called an Egraph. The major characteristic s

of this representation are that it is straight forward to create, conducive to automated learning, easy to compare to each
other, and easy to match against text . An Egraph contains three components: an extracted concept, structural elements
attached to the original regions of text, and semantic labels attached to the structural elements, as illustrated in Figure
5 . In order to use the Egraph for matching other text, the structural element must be generalized into word classes ,
grammatical constituents, or arbitrarily—defined word sequences . This generalization is represented as a structura l
class and a set of constraints . The actual definition of the structural class is maintained in the auxiliary knowledge base .
For MUC-6, the process of generalizing the structural elements was done manually, using a graphical editor.

NP
sem=notgovt

example
text

	

Armco

	

also named

	

John C . Haley , 64 years old, chairman

Figure 5: Egraph Structure

In Figure 5, the extracted concept is called SUCCESSION, representing a management succession event. There
are five structural elements : a noun phrase with a semantic constraint of a non—governmental organization ; a verb
group with a head having the root "name" ; a noun phrase with a semantic constraint of person ; an age phrase; and a
list phrase (i .e. a coordinating conjunctive noun phrase) with the semantic constraint of a management post . The
semantic labels ORG, IN, and POST are attached to the appropriate structural elements . The semantic label ANCHOR
is attached to the main element, or head, of the example .

Similarity Metri c
HASTEN uses a metric to compute the similarity between an Egraph and an incoming text unit . HASTEN first

matches the structural elements, and binds the semantic labels of those elements that successfully matched . The metric
computes the percent of the Egraph that matched, using a weighted sum of factors . The factors represent how wel l
the elements match, how well they are ordered, how well the adjacent elements are joined, and how much semanti c
content was bound . The weights are configuration parameters that can be adjusted . A perfect match results in a 1 .0
similarity value . An incoming text with absolutely nothing in common with the Egraph receives a 0 .0 similarity value.

4/5 element s
4/4 labels
2/4 joins

Figure 6 : Egraph Matchin g

Figure 6 illustrates the comparison of an Egraph to a textual unit . The incoming text does not match the AGE
structural element, causing a failure to join the person NP and the post LIST elements . However, the four semantic

223

labels are successfully bound . Therefore, this incoming text matches 4 of the 5 structural elements, 4 of the 4 semanti c
labels, and joins 2 of the 4 adjacent element pairs . This Egraph will receive a high similarity value, with its exact valu e
depending on the weights .

Training and Parameterization
During development, HASTEN may be run on training texts that have been used to create Egraphs . However,

the Egraphs created from a given text unit are withheld and not used for extraction on that text unit . This practic e
ensures that HASTEN has no knowledge about a particular incoming text, and that the training set is not corrupted.
However, these withheld Egraphs can be treated as a key for evaluating the other Egraphs . HASTEN has a training
module that runs each Egraph against every text unit in the training text, and for those units that have an Egraph key,
recall and precision measures are computed based on the semantic labels . Egraphs that match a text unit that has n o
Egraph key are spurious . The training module collects the results and produces tables of results . The first table is a
listing of every text unit, the maximal matching Egraph, the similarity value, whether the similarity exceeded th e
threshold (i .e . the Result), and the performance (i .e. F-measure for semantic labels). The Egraphs are named afte r
the originating document. The Con fig column lists the name of the particular settings of similarity metric weights
and threshold used during the matching, in this case essential -7 0 . Table 7 shows a portion of this listing.

File Config Component Egraph Match Result Performanc e
9404250043 essential-70 SENTENCE[2] 930219-0013 0 .86 Succeeded 0 .00
9404250043 essential-70 SENTENCE[2] 930219-0013 0 .86 Succeeded 0 .00
9404250043 essential-70 SENTENCE(2] 930219-0013 0 .86 Succeeded 100 .0 0
9404250043 essential-70 SENTENCE(4] 931028-0075 .E 0 .78 Succeeded 75 .0 0
9404250043 essential-70 SENTENCE(5] 930219-0013 .B 1 .00 Succeeded 100 .0 0
9404220086 essential-70 SENTENCE(5] 940131-0163 0 .65 Failed 66 .6 7
9404220086 essential-70 SENTENCE(6] 930219-0013 .B 0 .99 Succeeded 0 .00
9404220086 essential-70 SENTENCE(6] 930219-0013 .B 0 .99 Succeeded 66 .6 7
9404190012 essential-70 SENTENCE(5] 930225-0042 0 .88 Succeeded 13 .3 3
9404190012 essential-70 SENTENCE(6] 940412-0147 0 .85 Succeeded 50 .0 0
9404180007 essential-70 SENTENCE(5] 930219-0013 .B 0 .99 Succeeded 30 .77

Table 7 : Egraph Training Results

The second table is a list summarizing the training information for each Egraph . This listing contains the name of the
configuration, the number of matches, the number of spurious matches, the average similarity value for all matches ,
the total extraction recall, and the over-generation (i.e. spurious over count) . Table 8 shows a portion of this listing .

Config Egraph Count Spurious Match Recall Overgeneratio n
essential-70 930219-0013 .B 31 7 0 .96 30 .15 0 .2 3
essential-70 940425-0043 .A 31 26 0 .81 23 .81 0 .8 4
essential-70 930219-0013 .A 24 20 0 .92 18 .00 0 .8 3
essential-70 930219-0013 .E 21 2 0 .98 40 .87 0 .1 0
essential-70 930628-0011 .B 16 8 0 .95 32 .50 0 ..5 0
essential-70 930629-0071 .B 15 12 0 .79 45 .00 0 .8 0
essential-70 931028-0075 .B 13 7 0 .79 15 .00 0 .5 4
essential-70 930412-0090 12 9 0 .86 16 .67 0 .7 5
essential-70 940412-0147 .A 10 7 0 .80 44 .74 0 .7 0
essential-70 930219-0013 9 2 0 .86 35 .71 0 .2 2

Table 8: Egraph Training Summary

Since multiple parameter configurations can be run, the HASTEN training module provides valuable insight into what
weights will achieve the best result and what threshold value will maximize extraction performance .

Extraction Bias
Another benefit of the training module is that it provides an additional parameter that can be factored into th e

similarity metric. After the training module has run, the results can be probed to construct an extraction bias, which
consists of a number from 0 to 1 .0 for each Egraph . The similarity value is multiplied by this number to adjust the result .
A bias of 0 effectively disables the Egraph, a bias of 1 .0 leaves the original value unchanged, and a bias in between
reduces the value . The simplest bias is one that disables some of the Egraphs, and leaves the other Egraphs unchanged .
This bias is useful since it can eliminate the Egraphs that predominately over-generate . A complex bias might adjust
each Egraph similarity value to favor high-frequency or high-precision Egraphs . Several test runs using extraction
biases are presented in the Test Results section .

Extraction Links
The Extractor creates semantic representations based on the Egraph matches . However, the Egraph match i s

simply an annotated text unit, with semantic labels bound to portions of the incoming text . For example, the ORG labe l

224

might be bound to "the company" or "IBM", and the Collector is expecting an embedded semantic representation t o
fill the ORG role . To accomplish this, the Extractor has access to links that either connect the references to thei r
referents or connect named entities to their semantic representation . The Reference Resolver creates the links for
references, and the Extractor itself creates links from earlier processing passes . A portion of text that has no link s
is considered a generic reference, and a special unnamed semantic representation is created dynamically.

CUSTOMIZATION
HASTEN is simple to customize, and involves the steps listed below . Due to the complexity of the task, these

steps may be repeated to adjust the definitions .
• Encode the template specification according to the task specification . This step not only supports th e

creation of the Generator output scripts, but also enables the loading of answer key templates fo r
analysis and evaluation .

• Define the Collector concept specifications, including semantic roles and constraints .
• Define the Generator output script which maps the Collector concepts to the template format . The

output script invokes utility functions to convert the Collector data structure into the template format .
Depending on task specification, special purpose routines may be required .
Formulate Egraphs for examples from the training texts. Encoding an Egraph requires less than a minute ,
using a graphical editor. However, for MUC-6, significant time was spent comprehending the template s
and locating the originating text units .

The remainder of the effort involves determining the similarity metric weights and thresholds to maximize th e

extraction performance.

The Template Element task required 2 PERSON Egraphs, one for an untitled personal name and one for a titled persona l
name. The Template Element task required 44 ORGANIZATION Egraphs, in order to extract the locations ,
nationalities, local descriptors, and unnamed organizations . The Scenario Template task required 132 SUCCESSION

Egraphs . In total, the Egraphs referenced 12 structural element classes (e .g. NP), and were constrained to form 10 0
unique structural elements . The Egraphs required 14 syntactic categories, 20 semantic classes, and 2 lexical properties .

SYSTEM WALKTHROUGH
This section will provide a brief description of HASTEN's performance on the selected walkthrough document .

HASTEN performed reasonably well, achieving a recall/precision of 38/77 . HASTEN extracted the principal
succession event involving "James" and "Dooner, " but failed to detect both management posts . HASTEN failed to
extract a secondary succession event involving "Kim . "

Analysis
For each text unit, the Analyzer compared the SUCCESSION Egraphs, computed the similarity metric value, an d

selected the maximal matching Egraph that exceeded the similarity threshold . The first successful match occurred in
the headline, resulting in the extraction of the succession event, but not the post :

INPUT : "Marketing & Media--Advertising : John Dooner Will Succeed James At
Helm of McCann- Erickson "
EXAMPLE : 930219-0013 .B (similarity 1 .0) "He succeeds Lance R . Primis "

COLLECT : #<SEM :SUCCESSION 747>
:IN #<SEM :PERSON 2441 :NAME "John Dooner" >
:OUT #<SEM :PERSON 2442 :NAME "James" >

The Analyzer had created the semantic PERSON representations during a previous processing phase, and linked the m
to the originating text . The Analyzer accesses these representations and fills the : IN and : OUT slots. The next match
occurred in sentence 2, resulting in the additional extraction of the organization and post:

INPUT : "Yesterday, McCann made official what had been widely anticipated :
Mr . James, 57 years old, is stepping down as chief executive officer o n
July 1 and will retire as chairman at the end of the year . "
EXAMPLE : 940128-0022 (similarity .86) "E-Systems Inc . said E . Gene Keiffer
stepped down as chief executive officer "
COLLECT : #<SEM :SUCCESSION 744 >

:ORG #<SEM :ORGANIZATION 2351 :NAME "McCann" >
:OUT #<SEM :PERSON 2391 :NAME "James" >
:POST "chief executive officer "

225

Note that the semantic PERSON representation for "James" has a different identifier (i .e . 2391) than the representation
from the headline (i.e. 2442) . It is the Collector's responsibility to merge identical or compatible representations . The
Collector will also merge the SUCCESS ION representations from the headline and sentence 2, as described in the nex t
section . The next match occurred in sentence 3, resulting in the erroneous extraction of the succession event in reverse .
The example was encoded without regard to the active/passive feature, and therefore, the only structural differenc e
between the example and the input is that the input has the preposition "by," thus resulting in the near-perfect similarit y
value of 0 .99. If the Analyzer had a passive example, its Egraph would have matched perfectly and therefore
pre-empted this erroneous match . In this sentence, the Reference Resolver correctly resolved the pronoun "He" to
the last mention of "James" , thus resulting in the extraction of the PERSON 2391 representation for "James . "

INPUT : "He will be succeeded by Mr . Dooner, 45 . "
EXAMPLE :930412-0090 .A(similarity .99) "He succeeds investor Carl H .Lindner "
COLLECT : #<SEM :SUCCESSION 745>

:OUT #<SEM :PERSON 2393 :NAME "Dooner" >
:IN #<SEM :PERSON 2391 :NAME "James" :REF "He" >

Sentence 20 contained the succession event for "Kim." The training examples did not contain a sentence involvin g
the word "hire," and thus the Egraphs were not similar enough to result in a match . The closest examples achieve d
a similarity value of approximately 0.60 .

In addition, Peter Kim was hired from WPP Group's J . Walter Thompson last
September as vice chairman, chief strategy officer, world-wide .

Collection
The Collector receives the semantic representations from all the sentences, and merges them into a cumulative

semantic representation . The Collector maintains separate semantic representations for incompatible information . I n
the walkthrough document, the Collector combines the semantic representations from the headline and sentence 2
into the following representation :

#<EXT :SUCCESSION 56>
:IN #<EXT :PERSON 373 :NAME "John Dooner"/"Dooner"/"JohnJ .Dooner Jr . "

:TITLE "Mr ." >
:ORGANIZATION #<EXT :ORGANIZATION 211 :NAME "McCann-Erickson"/"McCann" >
:OUT #<EXT :PERSON 374 :NAME "James"/"Robert L . James" :TITLE "Mr ." >
:POST "chief executive officer " >

Multiple references to the same named entity (e .g . "James" and "Robert L . James") are merged, relying on the alias
information provided by NameTag . The PERSON Egraphs extract and fill the : TITLE slot . The erroneous
SUCCESSION representation from sentence 3 is incompatible with this structure, and is maintained separately .

Generatio n
The Generator applies an output script to the Collector representations to produce the data templates . Since the

erroneous succession event from sentence 3 does not have a :POST fill, the output script invalidates it and no templat e
is generated . For object-oriented templates used in MUC-6, the output script must recursively traverse the Collecto r
representations and apply conversion routines for each sub-template . The Generator actually produces a template
data structure, which can be easily printed, but also fed directly to HASTEN's scoring program . The scoring program
employs a top-down comparison algorithm that produces performance measures as well as a side-by-side display,
as illustrated below. The display shows the individual credit assignments as well as the recall/precision subtotals fo r
each object :

226

RESPONSE

	

KEY
--- -

	

1/1 <TEMPLATE-9402240133-1>

	

1/3 <TEMPLATE-9402240133-1 >
CONTENT

	

CONTENT

	

*** MISSING FILL ***

	

0 <SUCCESSION_EVENT-9402240133-3 >

	

*** MISSING FILL ***

	

0 <SUCCESSION_EVENT-9402240133-2 >
<SUCCESSIONEVENT-9402240133-1>

	

1 <SUCCESSION_EVENT-9402240133-1 >

4/5 <SUCCESSION_EVENT-9402240133-1> 4/5 <SUCCESSION_EVENT-9402240133-1 >
VACANCY_REASON

REASSIGNMENT
IN_AND_OUT

<IN_AND_OUT-9402240133-1 >
<IN_AND_OUT-9402240133-2 >

POST
"\"chief executive officer\" "

SUCCESSION_ORG
<ORGANIZATION-9402240133-1>

2/5 <IN_AND_OUT-9402240133-2 >
ON_THE_JOB
NO

NEW_STATUS
OUT

IO_PERSON
<PERSON-9402240133-2 >

OTHER_ORG
<ORGANIZATION-9402240133-1>

REL_OTHER_ORG
SAME_ORG

4/5 <IN_AND_OUT-9402240133-1 >
REL_OTHER_ORG

SAME_ORG
OTHER_ORG

<ORGANIZATION-9402240133-1>
ON_THE_JOB

UNCLEAR
NEW_STATUS

IN
IO_PERSON
<PERSON-9402240133-1>

2/3 <ORGANIZATION-9402240133-1 >
ORG_TYPE

OTHER
ORG_ALIAS

"\"McCann\" "
ORG_NAME

" \"McCann-Erickson \ " "
*** MISSING SLOT ** *

4/4 <PERSON-9402240133-1>
PER_TITLE

"\"Mr . \ " "
PER_ALIAS

"\"Dooner\" "
" \ "John Dooner\ " "

PER_NAME
" \ "John J . Dooner Jr .\ " "

3/3 <PERSON-9402240133-2>
PER_TITLE

\"Mr . \ ,,,,

PER_ALIAS
"\"James\" "

PER_NAME
"\"Robert L . James\ ""

VACANCY_REASON
0 DEPART_WORKFORCE

IN_AND_OUT
1 <IN_AND_OUT-9402240133-2 >
1 <IN_AND_OUT-9402240133-1>

POST
1 "\"chief executive officer\" "

SUCCESSION ORG
1 <ORGANIZATION-9402240133-1 >

2/3 <IN_AND_OUT-9402240133-1 >
ON_THE_JOB

0 YES
NEW_STATUS

1 OUT
IO_PERSON

1 <PERSON-9402240133-2>
*** SPURIOUS SLOT ** *

*** SPURIOUS SLOT ** *

4/5 <IN_AND_OUT-9402240133-2 >
REL_OTHER_ORG

1 SAME _ORG
OTHER_ORG

1 <ORGANIZATION-9402240133-1 >
ON_THE_JOB

0 NO
NEW_STATUS

1 IN
IO_PERSON

1 <PERSON-9402240133-1>
2/4 <ORGANIZATION-9402240133-1 >

ORG_TYPE
0 COMPANY

ORG_ALIAS
1 "\"McCann\" "

ORG_NAME
1 "\"McCann-Erickson\" "

ORG_DESCRIPTOR
0 "\"one of the largest . . .

4/4 <PERSON-9402240133-1 >
PER_TITLE

1 "\"Mr \" "
PER_ALIAS

1 "\"Dooner\" "
1 "\"John Dooner\" "

PER_NAME
1 "\"John J . Dooner Jr .\ " "

3/3 <PERSON-9402240133-2 >
PER_TITLE

1 "\"Mr .\" "
PER_ALIAS

1 "\"James\" "
PER_NAME

1 "\"Robert L . James\ " "

227

TEST RESULTS AND ANALYSIS
For the formal MUC-6 test data, HASTEN had three official configurations: one to maximize recall, one to

maximize precision, and one to maximize both . A simple adjustment to the similarity metric threshold created these
configurations . The training module determined the values of the thresholds, and also determined the optima l
extraction bias, which disabled the most over-generating Egraphs . Figure 9 shows the results of the three official
configurations for both the training and the test data, as well as additional data points for other threshold settings . This
figure clearly illustrates that HASTEN has the ability to trade recall for precision .

n - Test Data

A - Training Data

II - Base Configuration
(threshold .70)

- Recall Configuration
(threshold .60)

© - Precision Configuratio n
(threshold .90)

Figure 9 : Scenario Template Test Results

HASTEN rapidly achieved its extraction performance, as illustrated in Figure 10 . After the initial effort to encode
the training examples, the training module determined the optimal similarity metric parameters (see ©) . During this
time, no effort was made to actually generate the template slots VACANCY_REASON and ON_THE_JOB, and
HASTEN generated a default fill of UNCLEAR and NO, respectively. HASTEN also defaulted the OTHER_ORG to
be the same as the SUCCESSION_ORG, and therefore REL_OTHER_ORG was always SAME_ORG. A few days were
then spent on those slots, raising the performance slightly (see ©) . HASTEN's performance got a boost from the latest
upgrade to the scoring program and keys (see l3) . The remainder of the test period was spent on improving the nam e
recognition, which impacts all three tasks, but resulted in very little improvement on the scenario template task .

Nit

K3

i

0 .40

	

0 .50

	

0 .60

	

0 .70

	

0 .8 0
Recall

0 .80

0 .70

0 .60

0 .50

0 .40

0.30
0.20

	

0 .30

♦ - Training Data

0 - Finished encodin g
all training example s

• - Finished training and
parameterizatio n

• - Set fills generate d

•

	

- Scoring program / keys
upgraded

09/06

	

Date

	

09/21

	

10/05

Figure 10 : Extraction Performance Time Line

228

EXPERIMENTAL RESULTS
Even though the MUC–6 extraction task focused on one scenario, SRA did not want to produce a single extractio n

result. SRA's focus was on experimentation with MUC–6 providing a testing environment . This section reports on
various other test results that fall outside of the official MUC–6 tests .

Example Sampling
Since extraction examples are the core knowledge source for HASTEN 's extraction capability, it is worthwhil e

to explore the relationship between the number of examples and extraction performance . Furthermore, the order o f

encoding the examples may also effect performance .

0.7

0.7

0.6

n

II n 3/4 ~
I---n

°°n

1

Half
n Al l

n
Freq

n – Test Data (threshold .70)

0 – First Egraph Quarter

p – Second Egraph Quarter

® – Third Egraph Quarter

O – Fourth Egraph Quarter

Half – First 2 Egraph Quarters

3/4 – First 3 Egraph Quarters

All – All Egraph s

Freq – Most Frequent Egraphs

0.5

0.25 0.35

	

0 .40
Recall

0.30 0.45 0 .50

Figure 11 : Egraph Subset Test Results

Figure 11 shows eight experimental runs on the final test data, using extraction biases to partition the Egraphs i n
several ways . The first four runs use one quarter (33) of the total number of SUCCESS ION Egraphs (132), which were
sequentially ordered by the document number of the originating text unit . The next three runs use one–half ,
three-quarters, and all of the Egraphs, respectively . The first quarter run is connected with these three runs to sho w
the gradual improvement in recall (26 to 46) and the minor degradation in precision (65 to 63) as more examples wer e
given to HASTEN . Notice that the fourth Egraph quarter out–performs the first three quarters. Presumably, the fourth
Egraph quarter includes generally applicable examples, while the first three Egraph quarters include unusual o r
redundant examples . The last run, labelled Freq, consists of running only those Egraphs that matched at least tw o
training text units (42 total), approximately one third of the total Egraphs . Presumably, this configuration eliminate s
the unusual and redundant examples, and produces the performance near the level of all Egraphs .

Alternative Metric Weights
The Egraph similarity metric utilizes a weighted sum of factors . The official MUC–6 test results considered onl y

one configuration of weights, which created a strong preference for the semantic content, especially the ANCHOR label .
As an alternative, HASTEN was configured with weights that created a strong preference for the structural match .
This experiment did not produce significantly different results than the official configuration, as illustrated in Figure
12 . The five point drop in recall for the BASE configuration does demonstrate that structural differences in example s
may interfere with the extraction of semantic content .

229

0.7

0 . 6

0 . 6

0 . 5

0 . 5

0 . 4

0 . 4

0.3
0 .30

\

;-1 i

Recall

Figure 12: Alternative Metric Weights Experimen t

Extraction by Hand
As described earlier, the Egraphs originating from a particular text unit are withheld and not used for extraction

on that unit. However, HASTEN has a special mode that runs only the Egraph keys, in order to test the rest of the
system. This mode can test how well the Collector is merging information, how well the Reference Resolver i s
working, or test the format produced by the Generator. In effect, this mode simulates perfect Egraph matching, an d
predicts the upper bound on extraction performance for those Egraphs .

The Egraph key extraction performance is not 100% recall and precision, for a variety of reasons . First, not all
occurrences of the extraction concept can be encoded with an Egraph . Elliptical or other highly contextual reference s
can not be feasibly encoded . Second, mistakes in reference resolution can cause the extraction of erroneous semanti c
representations, even if the Egraph match is correct . Third, the Collector can erroneously merge or split the extracte d
semantic representations, even if the Egraph matches are independently correct. Fourth, due to the task specification ,
some of the scenario extraction output may not come directly from the Egraph matches . Fifth, for MUC-6, about 25 %
of the management scenario template fills are contained in the PERSON and ORGANI ZATION objects .

r -

I ~ ♦
p I I

\11 K, tNA

)

1-
0 .50

	

0 .60

	

0.70

	

U
Recall

Figure 13 : Egraph Key Performanc e

Figure 13 shows the results of running the Egraph keys for the training data, in relation to the other configurations .
The significant improvement to precision is due to the elimination of all spurious Egraph matches, since Egraph key s
are by definition relevant. Recall also improves mainly because unusual examples that fail to match other Egraph s
are now matched by their own Egraph .

Micro—MUC
The MUC–6 Scenario Template framework achieved its goal of reducing the amount of task–specific an d

domain–specific customization required by the extraction systems . However, the succession event scenario stil l

n – Test Data
Official Metric Weights

♦ – Test Data
Alternative Metric Weights

II – Base Configuration
(threshold .70)

– Recall Configuration
(threshold .60)

0 .45 0.55 0.600.40 0.50 0.650.35

p – Precision Configuration
(threshold .90)

0
. 4
au

▪ 0 . 5

0.9

0.8

0.7

0.6

0 .4

0 .3
0 .40

A – Training Data

U – Base Configuratio n
(threshold .70)

– Recall Configuration
(threshold .60)

– Precision Configuration
(threshold .90)

– Egraph Key Configuration

23 0

0.60

0 .70

0 .30
0 .30

-© H

CI In

	

Ill\

1

0.40

	

0 .50
Recall

Figure 15: Scenario Template Interim Results

0 .60
0 - Interim Test Result

04/28/9 5

included a few template slots that forced systems to attempt to make subtle and inferential judgements ; namely, the
VACANCY_REASON, ON_THE_JOB, and REL_OTHER_ORG slots . Furthermore, template specification itself wa s
rather cumbersome due to the IN_AND_oUT object, which really was a "pseudo" object for grouping relate d
information. These features of the task specification confused the customization and evaluation of extraction system s
on the central scenario event, namely the management succession . Therefore, as an additional experiment, SRA
devised the very minimal (or micro-MUC) template specification to represent the management succession event, as
shown below :

<SUCCESSION_EVENT> : =
POST : "post "
IN : <PERSON>+
OUT: <PERSON>+
ORG : <ORGANIZATION>

This template specification completely eliminates the IN_AND_oUT object, the set fill slots, and the distinction of
an acting post . This specification required changes to only HASTEN's Generator script . To evaluate its performance ,
SRA automatically converted the answer keys, and edited the official scoring program configuration file .

n - Test Data

A - Training Data

♦ - Test Data
(scenario-only)

• - Training Data
(scenario-only)

II - Base Configuration
(threshold .70)

® - Recall Configuration
(threshold .60)

® - Precision Configuratio n
(threshold .90)

0 - Egraph Key Configuration

Figure 14 : micro-MUC Scenario Template Test Result s

Figure 14 shows the performance results for the training and test data . This figure also shows the adjusted performanc e
results (labelled scenario-only) that factor out the slots of the PERSON and ORGANIZATION objects, since these slots
confuse the evaluation of the scenario event extraction . The points labelled 0 are the results of running the Egrap h
keys on the training data . These points represent the potential extraction performance on the central scenario event .

Labor Negotiation Scenario Template Results

0

Ei \\IN
1

	

-

0.50 0.60 0.70 0.80 0.90
Recall

0.45
0.30 0.40

0 .9 5

0 .8 5

0 .7 5

0.65

0.55

n - Test Data
A - Training Data

0 - Base Configuration
(threshold .66)

- Recall Configuration
(threshold .50)

- Precision Configuration
(threshold .80)

0 .50

23 1

The generality of HASTEN's design can only be tested by using other task definitions in other domains . The
MUC-6 interim scenario task of labor negotiations provides another good application for HASTEN . Figure 15 shows
the final performance results on the labor negotiation data.

Egraph Mutations
Since the ultimate goal of HASTEN is to minimize the customization effort, HASTEN must strive to maximize

its performance from as few examples as possible . One possibility is to automatically derive other Egraphs from thos e
that have been encoded manually . HASTEN has another special module that tries to mutate Egraphs in a variety of
ways, based on their similarity with other Egraphs . Currently, there are three mutation methods :

• cross-over - replace some structural elements of one Egraph with elements from another ;
• trim - eliminate structural elements from the ends of the Egraph ;
• merge - combine the structural elements of multiple Egraphs ;

The mutation module compares every Egraph with each other, and for each pair of significantly similar Egraphs ,
applies the three methods . The resulting Egraphs are saved and can be treated in the same way as a manually created
Egraph . Thus, the training module can run these derivative Egraphs to determine how well they perform, and construc t
an extraction bias to include best ones . This module is promising, but there was insufficient time to fully investigat e
it for the MUC-6 evaluation .

HASTEN IMPLEMENTATION
HASTEN is implemented in Allegro Common LISP, including a development environment written in CLIM .

HASTEN consists of 12,675 lines of code, and the development environment consists of 12,450 lines of code .
HASTEN required approximately 20 person-weeks for its development, and MUC-6 required 16 person-weeks o f
effort, including the interim test, formal test, and final report . Table 16 shows the processing time for the three officia l
Scenario Template configurations, run on a Sun SPARCstation 20. The 100 final test data documents have an original
size of 261,658 characters . NameTag took 19 seconds to process these documents, as shown in the CPU Time column .

Configuration CPU Time (seconds) Speed (Meg/hour) Real Time (minutes) F-Measure

BASE 334 (+ 19) 2 .67 12 53 .27

RECALL 525 (+ 19) 1 .73 18 .6 50 .9 8

PRECISION 310 (+ 19) 2 .86 11 .2 43 .24

Table 16 : Scenario Template Processing Statistics

NAMED ENTITY TASK
SRA performed the Named Entity task using its commercial name recognition product, called NameTag" .

NameTag is a high-speed software program consisting of a C++ engine and name recognition data . NameTag uses
its own tag specification that classifies names and other key phrases, and can either generate SGML annotated tex t
or a table of extracted entities. Besides the classification, NameTag also assigns unique identifiers to those names that
refer to the same entity, such as "International Business Machines " and "IBM." NameTag also assigns country codes
to place names . NameTag required 20 person-weeks for its engine development, 9 person-weeks for its data, and 1 0
person-weeks for its development interface and utilities .

NameTag has three major processing modes that represent trade-offs between performance and speed . The BASE
configuration performs the maximum analysis, achieves the best results, but is the slowest . The FAST mode reduces
the analysis to increase speed with minimal degradation in performance . The FASTEST mode performs the minimum
analysis at the greatest speed with the lowest performance . NameTag includes a small number of personal an d
organization names (currently 530), which eliminate the need to dynamically recognize them . NameTag can process
text without the use of these names . NameTag also can be run in case-insensitive mode to handle text in all upper
case .

For the MUC-6 Named Entity task, a 300 line C++ driver program used the NameTag API to run its name
recognition, access the table of extracted entities, map the NameTag classification into the MUC-6 specification, an d
generate the SGML annotated document. Since NameTag recognizes more names and phrases than defined for
MUC-6, such as publications and relative temporal expressions, the driver program filtered some extracted entities .
Since the links between aliases are not required for the Named Entity task, the driver suppressed this NameTag
information .

23 2

1 .

0 0. 9

0 .9

0 .9

base

faste s
n

no-names
n n

n base

fas t

allcapsA

n allcaf s

0 .84

	

0 .86 0 .88 0.90 0.92 0 .94 0 .96 0 .98 1 .0

Recall

Figure 17 : Named Entity Test Result s

SRA submitted four official configurations : the BASE configuration, the two speed configurations, and the
configuration without the use of personal and organizational names . Figure 17 shows the name recognition
performance for the final test data, plus two reference points using the interim test data . SRA also conducted a test
run using the case-insensitive mode, which is labelled allcaps in the figure. The NameTag case-insensitive mode was
run on the upper-case version of the test data. Since the test data was manually tagged in mixed case and the MUC- 6
task specification includes case-sensitive tagging rules, the case-insensitive performance would actually be slightl y
higher. For example, in mixed case, "group" is not included in the tag for "Chrysler group ." However, in upper case
text, "GROUP" would presumably be included in the tag .

Configuration Rules CPU Time (seconds) Speed (Meg/hour) F-Measure

BASE 226 3 .72 78 .68 96 .42

FAST 86 3 .33 87 .73 95 .66

FASTEST 59 2.62 111 .76 92 .6 1

NO-NAMES 226 3 .67 79 .75 94 .92

Table 18 : Named Entity Processing Statistic s

Table 18 shows the processing time and speed of the four official configurations for the Named Entity test data ,
run on a Sun SPARCstation 20 . The 30 test documents had a size of 87,203 characters . The number of recognition rule s
for each configuration is also shown . Table 19 contains the performance measures for the ENAMEX tag and its
sub-classifications. The ENAMEX tag is the most difficult due to the ambiguity between people, places, and
organizations . Furthermore, case sensitivity is more significant in the recognition of these names, as opposed to the
numeric and temporal entities . Also, the NO-NAMES configuration excluded the use of personal and organizational
names .

Configuration Organization Person Location Ename x

BASE 91/94 98 / 99 99 / 95 96 / 96

FAST 90/96 98/98 96/91 94/96

FASTEST 87 / 96 96/98 96 / 98 92 / 97

NO-NAMES 85 / 92 97 / 99 99 / 94 92 / 96

ALLCAPS 72 / 83 95 / 95 92 / 90 82 / 87

Table 19 : ENAMEX Performance Measures (Recall/Precision)

The three speed configurations show the general trade-off between speed and recall, with precision remainin g
about the same. Note the anomaly in Location precision measure for the fast configuration ; this is a side effect of
recognizing less organizations, which pre-empt the location classification . The NO-NAMES configuration had littl e
effect on person names, illustrating how simple they are to dynamically recognize . The NO-NAMES configuration

n - Test Data

A - Interim Data

0. 9

0. 9

0.8

23 3

resulted in a significant drop in recall for organization names, reflecting the references to household names with littl e
contextual clues, such as "Microsoft . "

System Walkthrough

NameTag performed very well on the selected walkthrough document, achieving a recall/precision of 98/97 fo r
the BASE configuration, resulting from three errors . NameTag classified "J. Walter Thompson" as a person rather
than a organization, since it looks like a personal name . NameTag tagged "Coca—Col a" within "Coca—Cola Classic"
as an organization, since it failed to recognize the larger product name . NameTag tagged "Goldman" within "Kevin
Goldman" as an organization, since that is a company alias in its static list of names . The NO—NAMES configuration
eliminates this error, but causes NameTag to miss the mentions of "Coke" and "Coca—Cola, " which were also
contained in its static list of names .

The FAST configuration drops the performance to 87/96 due to its failure to learn "McCann—Erickson " as an
organization, which consequently causes NameTag to miss 9 "McCann" aliases . The FASTEST configuration further
drops performance to 82/94, since it does not apply the ampersand recognition rule to find "Ammirati & Pulls" as an
organization, and then individually tags "Puns " as an alias to "Martin Pulls ." The ALLCAPS configuration achieve s
92/92, due to additional erroneous names "BIG HOLLYWOOD TALENT AGENCY," "JAMES PLACES, "
"DOONER DECLINES," and "COKE ADVERTISING ."

TEMPLATE ELEMENT TASK

SRA combined the results of NameTag and some additional processing by HASTEN to perform the Template
Element task . NameTag performs the majority of the work, since it identifies the person and organization names ,
classifies them, and resolves the aliases . NameTag also assigns country codes to the place names which support th e
normalized oRG_coUNTRY slot . HASTEN matched person and organization Egraphs to extract additional loca l
information, such as location, nationality, and descriptors . The Reference Resolver attempted to resolve
organizational references to the names in order to extract additional non-local information .

SRA submitted two official configurations : a BASE configuration running all components of HASTEN ; and a
NO-REF configuration with the Reference Resolver disabled. Since the Reference Resolver provides some of the
organizational descriptors, which may include some location or nationality information, the second configuratio n
resulted in lower recall . However, since reference resolution is difficult, erroneous references can hurt precision . To
demonstrate the portion of HASTEN's performance comes from NameTag, a third unofficial configuration was run
that disabled reference resolution and the extraction of locations, nationalities, and descriptors . Figure 20 shows the
performance results for these three configurations on the final test and training data, as well as the BASE configuration
performance on the interim test and training data .

90

8 8

86

n

84

♦
fit

n

A 0

82

•

0.66 0.68 0.70 0.72 0.74 0.76 0.7 8

Recall

Figure 20: Template Element Test Results

Table 21 shows the processing time for the three Template Element configurations, run on a Sun SPARCstatio n
20. The 100 fmal test data documents have an original size of 261,658 characters . NameTag took 19 seconds to process
these documents, as shown in the CPU Time column .

0 .

0 .

0 .

0 .

n — Test Data

A — Training Data

• — Interim Test Data

♦ — Interim Training Data

II — Base Configuration

— No Reference Resolution
Configuration

— NameTag—onl y
Configuration

234

Configuration CPU Time (seconds) Speed (Meg/hour) Real Time (minutes) F-Measure

BASE 152(+19) 5 .51 8 .09 79 .85

NO-REF 75(+19) 10 .02 4.08 79 .99

NAMETAG-ONLY 63(+19) 11 .49 3 .75 76.84

Table 21: Template Element Processing Statistics

System Walkthrough

HASTEN and NameTag performed very well on the selected walkthrough document, achieving a
recall/precision of 76/84 for the BASE and NO-REF configurations . The "Goldman" and "J . Walter Thompson" errors
described in the Named Entity system walkthrough caused a spurious ORGANIZATION and PERSON object.
NameTag classified three organization names as OTHER instead of COMPANY, due to the lack of explicit company
indicators . They were "Ammirati & Puri's," "PaineWebber," and "McCann-Erickson ." NameTag also classified
"Creative Artists Agency" as GOVERNMENT due to the organizational head noun AGENCY. The NAMETAG-ONLY
configuration achieved a performance of 68/82 . HASTEN generated one of the three organization descriptors, usin g
an Egraph to extract the appositive "the big Hollywood agency," which then enabled it to extract the locale and countr y
fills. The Reference Resolver did not attempt to resolve the other two descriptors. HASTEN did not possess an Egraph

to match "Coke headquarters in Atlanta, " thus causing a missing locale and country fill .

CONCLUSION
SRA used the combination of two systems for the MUC-6 tasks : NameTag, a commercial software product that

recognizes proper names and other key phrases in text ; and HASTEN, an experimental text extraction system .
NameTag demonstrated high performance at high speed for the Named Entity task, as well as advanced capabilitie s
that provided the majority of the performance for the Template Element task . HASTEN demonstrated a simple ,
flexible design using simple training examples with minimal customization for the Scenario Template task .
Experimental results demonstrated the speed of customization, the relationship between the number of examples an d
performance, the predicted potential performance, and performance on just the core scenario event .

In the near future, NameTag will continue to improve its coverage, accuracy, and speed. In addition, NameTag
will provide foreign language versions, including French, Italian, Spanish, German and Japanese . SRA will strive to
make HASTEN easier to customize by non-developers, while enhancing its features to improve its extraction
performance. Potential areas of experimentation are automatic Egraph construction, the utilization of negativ e
examples, the utilization of mutated Egraphs, and user-in-the-loop feedback. HASTEN's modular design will also
facilitate the integration of other supporting software modules such as syntactic parsers and discourse modules .

ACKNOWLEDGEMENTS
Kevin Hausman implemented all of the C++ code for the NameTag'engine . Kurt Dusterhoff created training

data and conducted valuable testing for NameTag.

Since 1986, SRA has developed NLP systems, mainly in the area of text extraction in both English and foreign
languages . SRA developed a generic text understanding prototype Solomon, which was used for text extraction in
several domains and languages, including MUC-4, MUC-5, Murasaki, and IAA . Currently, SRA is focusing on the
issues of speed, robustness, portability, and trainability . NameTag is a side-effect of the effort to create a fast, robust
and portable multilingual preprocessor, called TurboTag. Besides HASTEN, SRA has conducted other research i n
automatically trainable systems, including co-reference resolution for the SENSEMAKER project . SRA has als o
developed graphical annotation tools (e .g . NameTool, Discourse Tagging Tool) to support the creation of trainin g
data for automated acquisition . The Natural Language group is led by Chinatsu Aone, and key members include Kevin
Hausman, Sharon Flank, Scott Bennett, John Maloney, Hamid Bacha, Job van Zuijlen, and Arcel Castillo .

235

