
University of Manitoba :
Description of the PIE System Used for MUC-6

Dekang Lin*
Department of Computer Scienc e

University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N 2

lindek@cs . umanitoba . ca

Background

The PIE (Principar-driven Information Extraction) system takes a different approach to the problem o f
information extraction from the NUBA system that was used in MUC-5 . The NUBA system did not have a
parser and relies on an abductive reasoner to construct the semantic relationships between domain specifi c
concepts mentioned in a sentence . The PIE system, on the other hand, relies heavily on a principle-base d
broad-coverage parser, called PRINCIPAR [2, 6, 8], that we have developed over the past three years . Most of
the information extracted are directly "read-off" the parser outputs by a subtree pattern-matcher, bypassin g
the usual step of constructing semantic representations .

In spite of the radical difference between the high-level approaches of our MUC-5 and MUC-6 systems ,
over 85% of the code of the MUC-5 system was reused . This is largely due to the unified abductive view o f
different tasks in natural language understanding [7] . PRINCIPAR and the abductive semantic interprete r
share the same message passing algorithm for abduction . They differ only in the contents of the messages
and constraints on message propagation.

The architecture of the PIE system is shown in Figure 1 . The processing is sequential . A text is firs t
broken up into sentences . The lexical analyzer turns a stream of tokens into a lattice of lexical items . The
lexical items may then be combined or deleted by lexical rules, which are responsible for recognizing named

entities . PRINCIPAR takes the lattice of lexical items and output a dependency tree between the words in a

sentence . PRINCIPAR attempts to construct a parse for the full sentence . However, when it fails to do that ,
it retrieves parse fragments that cover the complete sentence . Information is extracted from the dependenc y
trees by a subtree pattern matcher. The format of NE and CO outputs do not meet the standard of the
scoring software because of arbitrary insertion and deletion of white spaces . A separate program is used t o
resolved the differences .

The PIE system is implemented in about 38k lines of C++, about 33k to 34k lines were written befor e

MUC-6. It contains an interpreter for LISP-like expressions so that all the knowledge structures, such a s
finite automata for finding sentence boundaries, the lexicon, the lexical rules, the grammar network, an d
extraction rules, are written in LISP-like expressions .

Performance in MUC-6

Considering the very limited time and human resources with which the PIE system was developed, it di d
very well in all of the four evaluation tasks, especially in coreference recognition . Table 1 summarizes the

*Part of this research was conducted when the author was on leave at MIT AI La b

113

() Component s

Static knowledge

Dynamic structures

Inputs and outputs

0

Figure 1 : The PIE architecture

performance of PIE system in MUC-6 .

NE CO TE ST
Recall
Precisio n
F-measure (P&R)

9 2
9 5
93 .33

6 3
63

7 1
78
74 .32

39
62
48 .14

Time* (sec .) 618 683 2510
*The time to run the MUC-6 formal tests (30 articles for NE and CO, 100 article s
for TE and ST) on a Pentium-90 PC with 24MB memory .

Table 1 : The Performance of PIE System in MUC- 6

We have also included the timing data in Table 1, even though speed is not an evaluation criterion . A
single timing datum is shown for TE and ST tests because they are generated in a single run . The PIE

system runs quite fast . It takes from 20 to 25 seconds to process an article on an inexpensive PC . Most o f

the processing time was spent on parsing . The difference between the time for NE and CO is roughly th e
time taken by the coreference recognition algorithm .

11 4

Lexical Analysis and Named Entity Recognition (NE)

The lexicon we used contains only syntactic information such as parts of speech and subcategorization frames .
Some proper noun entries have semantic features to indicate whether they are company names, compan y
name designators, locations, family or given names, etc . Sample entries are listed in (1) .

(1) (name
(syn (C))
(syn (Dn .n))
(syn (Tn))
)
(succeed
(syn (T [n]))
(syn (Dn .pr .as))
)
(Japan
(syn (PN (sem (+country))))
(syn (Tn))
(phrases (Japan Current) (Japan wax) (Japan Automobile Dealers' Association)

(Japan Federation of Economic Organizations))
)

The entries in the lexicon are organized in a similar way as paper dictionaries . Each entry consists of a
head word and a list of usages . The symbols C, Dn .n, Tn and T [n] , etc . are abbreviations for bundles
of features. The definitions of these abbreviations are stored in a separate file . Table 2 explains some of
them. The use of abbreviations not only results in simpler and more readable lexicon files, but also make s
the modifications to the entries much easier . For example, to modify the features of a class of words, on e
needs only to modify the abbreviation file .

Abbrev Meaning Features
C countable noun ((cat n) (nform norm) +ct)
Tn transitive verb ((cat v) (agr (N -adv))

	

(args (((cat n)))))
Dn .n ditransitive verb ((cat v) (agr (N -adv))

	

(args (((cat n))

	

((cat n)))))
PN proper noun ((cat n) (nform norm) +pn)

Table 2 : Sample definitions of abbreviation s

The lexicon contains about 110K root entries. A small number of the entries are manually-coded . Other s
are extracted from machine-readable versions of Oxford Advanced Learner's Dictionary and Collins Englis h
Dictionary (both from the Oxford Text Archive), and public domain proper name lists from Consortium fo r
Lexical Research at New Mexico State University .

Since the lexicon is derived from machine readable dictionaries, it contains many obscure usages of the
words. For example, the word "japan" is also listed as a transitive verb s .

When a word or a phrasal word is found in the lexicon, a lexical item is created for each of its usages . A
lexical item consists of the position of the word in the sentence, the root form of the word, and its feature
values . After the retrieval of all the words in a sentence, a set of lexical rules are matched against the lexical
items . One of the purposes of lexical rules is to recognize relevant semantic entities . For example, (2) is a
lexical rule for recognizing references to money.

(2) (def rule money 2
(seq (! (word (reg-match [0-9][0-9]*[.]?[0-9]*$))

To cover (wood or metal) with a special kind of paint that gives a black shiny surface, as first done in Japan (Longman
Dictionary of Contemporary English) .

11 5

(att-val (sem "AttVec*" (contain sem (+number)))))
(? (word (in (hundred thousand million billion trillion))))
(* (word (in . ./dict/moneymod .txt)))
(word (in . ./dict/moneyunit .txt)))

(prog
(delete-smaller (low) (high))
(assert (low) (high) (attvec syn (PN (sem (+money)))))))

A lexical rule consists of a pattern and an action. Both are specified with LISP-like expressions . The patter n
in (2) consists of four components . The first component matches a word that is made up of a sequence of digit s
or a lexical item that has the semantic feature +number . The second component matches an empty strin g
or one of {hundred thousand million billion trillion} . The third component matches a sequence o f
zero or more modifying word for money, such as "New," "Taiwan , " "Canadian," etc . The last component
matches a money unit, such as "dollar," "cent," "dong," or "franc . "

If all the four components in the pattern in (2) are matched by a sequence of lexical items or words, the
action part of the rule will be executed :

• Lexical items that span on a subsequence of the match will be deleted .

• A lexical item will be created that spans on the sequence of words and contains the semantic featur e
value +money .

The lexical rules are also used to recognize names of organizations, persons, locations, time expressions ,
and dates . The rule (3) detects sequences of capitalized words that are not recognized as any of the above
categories, it then calls the function fund-prev-occ to find whether or not this sequence of words is a
substring of a previously recognized proper noun . If it is, the sequence words will have the same semanti c
features as the previously recognized entity .

(3) (defrule cap-word-sequenc e
(seq (* (seq (word (and (reg-match [A-Z]) (not (in . ./dict/begwords .txt))))

(? (word (str= -)))))
(word (and (reg-match [A-Z]) (not (in . ./dict/begwords .txt))))
(! (word (reg-match ["A-Z]))

($)))
(when

(not (exist-lexitem
(int -1) ($ 2 (high))
(pred

(and (att (defined (sem)))
(att (value sem "AttVec* "

(defined-one-of sem
(money time date corpname percent location city
province person country))))))))

(find-prev-occ (low) ($ 2 (high)))
(isolate (low) ($ 2 (high)))))

Principle-based Parsing

PRINCIPAR is a principle-based parser [6, 8] . It has reasonablely broad coverage for the English language .

An evaluation of PRINCIPAR with the SUSANNE corpus [10] shows that it is able to correctly identif y

dependency relationships for about 75% of the words [5] . PRINCIPAR is also very efficient . Sentences wit h

50-60 words can usually be parsed within 10 seconds on a Pentium-90 PC . The longest sentences in th e

SUSANNE corpus, consisting of 215 words, was parsed in 56 seconds .

116

Given an input sentence, such as (4), PRINCIPAR returns either a constituency tree (Figure 2a) or a
dependency tree (Figure 2b) .

(4) Kim wanted John to leave

In a dependency tree [9], every word in the sentence is a modifier of exactly one other word (called its hea d
or modifiee), except the head word of the sentence . The dependency tree in Figure 2b is output as (5) .

(5) (
N

	

<

	

wanted subj)

want

	

V :IP

	

*

	

)
N

	

<

	

to

	

subj)
I

	

>

	

wanted compl)
V :[NP] >

	

to

	

pred)

corresponds to a word in the input sentence . A tuple has the format :

(word root cat position modifiee relationship)

where
word is a word in the sentence ;
root is the root form of word; if root is "=", then word is in root form ;
cat is the lexical category or subcategory of word ; V:IP is the subcategory of verbs tha t

take an IP as the complement; V:[NP] is the subcategory of verbs that take a n
optional NP as a complement ;

modifiee is the word that word modifies ;
position indicates the position of modifiee relative to word . It can take one of the follow-

ing values : {<, >, <<, >>, <<<, . . ., *}, where < (or >) means that th e
modifiee of word is the first occurrence to the left (or right) of word ; << (or >>)
means modifiee is the second occurrence to the left (or right) of word . If position
is

	

then the word is the head of the sentence ;
relationship is the type of the dependency relationship between modifiee and word, such as

subj (subject), adjn (adjunct), comps (first complement), spec (specifier), etc .

Subtree Pattern Matchin g

Once a dependency tree is constructed by the parser, the subtree pattern matcher searches the tree fo r

partially specified subtrees and acts on the matches . Each pattern can be matched against nodes in a tre e

~P

I

	

VI P

John to
V

leave

a. a constituency tree

comp l

pre d

~1 /subj\ nl
Kim wanted John too leave

b. a dependency tre e

N

	

V

Kim wanted subj

Figure 2 : Constituency Tree vs . Dependency Tree

(Kim
(wanted
(John
(t o
(leave

)

Each row in (5) is a tuple that

117

in either top-down or bottom-up order .
Rules in the subtree pattern matcher are in the following form, where CONDITION and ACTION are LISP-

like expressions .

RULE

	

(down PATTERN ACTION)

	

; ; a top-down rule
(up PATTERN ACTION)

	

; ; a bottom-up rule
PATTERN : := (node CONDITION)

	

; ; matches a single nod e
(tree CONDITION (PATTERN . . . PATTERN)) ; ; matches a subtree

Example : The pattern for matching the subtree in (6a) has the format in (6b) :

(6)

	

a.
nodel

node2

	

node5

	

node3

	

node4

b .

	

(tree <condition-on-nodel >
((tree <condition-on-node2 >

((node <condition-on-node3>))
((node <condition-on-node4>)))

(node <condition-on-node5)))
Example : The pattern in (7) matches a node in the dependency tree whose surface string is capitalized an d

is not one of the words listed in " . ./dict/prons .txt " .

(7) (up (node (node2word (and (reg-match [A-Z])
(not (in . ./dict/prons .txt)))))

(when (not (comp (muc-state) (str= HL)))
(bind-pn-to-same (match))))

If the sentence being processed is not inside <HL> and </HL> (i .e ., a part of the headline), the action part of

(7) passes the node to a function, called bind-pn-to-same, which searches the previous text for the same

proper noun and asserts that the two occurrences are equivalent .

Coreference Recognition (CO)

PIE maintains a set of discourse entities and constraints between them . Each discourse entity is an equiv-

alence class of noun phrases . The discourse entities are constructed sequentially by a list of equality an d

inequality assertions . Equality assertions may cause equivalence classes to be merged . Inequality assertions

are recorded as constraints . Each assertion is assigned a weight . The higher the weight, the higher th e

likelihood that the assertion is true . The assertions are accepted in the decreasing order of their weights .

Assertions that contradict previous assertions are ignored .
Example : Suppose there are 6 elements : a, b, c, d, e, and f. The following table shows equivalent classes

and constraints after each assertion :
Assertion

	

Weight Classes

	

Constraints Comment s

	

initial state

	

[a] [b] [c] [d] [e] [f]
equiv(a, b)

	

100

	

[a b] [c] [d] [e] [f]
diff(a, c)

	

50

	

[a b] [c] [d] [e] [f]

	

a#c
equiv(d, f)

	

40

	

[a b] [c] [d f] [e]

	

arc
equiv(c, f)

	

40

	

[a b] [c d f] [e]

	

a0 c
equiv(b, d) 30

	

[a b] [c d f] [e]

	

arc

	

contradicts arc, ignored

diff(c, d)

	

30

	

[a b] [c d f] [e]

	

arc

	

c and d already in same class, ignore d

diff(e, d)

	

20

	

[a b] [c d f] [e]

	

a0c e0d
	 equiv(c, e)	 10	 [a b] [c d f] [e]	 a0c e#d

	

contradict e#d, ignored

118

This representation of discourse entities does not determine or restrict how the equivalence and differenc e
relationships are proposed. Its function is to integrate different (sometimes conflicting) assertions that com e
from different sources .

In PIE, the coreference assertions are proposed by the following knowledge sources :

• Assumptions about proper names

—Identical proper nouns in a text refer to the same entity .

—A pair of proper nouns in which neither is a substring of the other refer to different entities .

• Binding Theory constraint s

—Reflexive pronouns must refer to a c-commanding noun phrase in the same clause or the sam e
noun phrase .

—A (non-reflexive) pronoun cannot refer to a c-commanding noun phrase in the same clause or th e
same noun phrase .

—Other noun phrases (R-expressions) cannot refer to a c-commanding noun phrase in the sam e
sentence .

In Government-Binding theory [3], the c-command relationship is defined as follows : a node a c-
commands another node /3 if (a) a does not dominate /3 and (b) the parent of a dominates O . Since we
use dependency structures instead of constituency structures, the c-command relationship is defined a s
follows : a word a c-commands another word /3 if (a) a or its modifiee dominates /3 ; and (b) a precede s

a.

• The WordNet [1]

For each pair of noun phrases (NP1, NP2), where NP2 precedes NP1 in the text, a manually constructed
decision tree computes a weight, using the classification of the heads of NP1 and NP2 in the WordNe t
[1], as well as their semantic and syntactic features . If the weight is negative, NP1 and NP2 are
incompatible, "diff (NP1, NP2)" is asserted . If the weight is positive, the pair (NP1, NP2) is a
potential instance of coreference relationship . The positive weight is then adjusted according to the
proximity of (NP!, NP2), the grammatical role of NP2 .

• Heuristics that are inspired by the centering theory [4, 11] .

If NP1 in the pair (NP1, NP2) is a pronoun, bonus weights bi 's are added to the weight of pair accordin g
to the following rules :

Discourse Entitie s

sort

d!=c

	

- b= c

	

b!=c

	

a=e

	

Binding

	

Centering

	

Theory

	

Theory

Figure 3 : An Architecture for Coreference Recognitio n

a=b
a!=c

a=d e!= d

Semantic

Compatibility

String

MatchingJ

119

b]. if (a) NP2 is a pronoun ; and (b) both NP1 and NP2 are in the current sentence .

b 2 if (a) NP2 is a pronoun ; and (b) NP2 is in the previous sentence .

b3 if (a) NP2 is a pronoun ; and (b) both NP1 and NP2 are at the same type of grammatical rol e
(subject, object of verb, object of preposition, etc.) .

b4 if NP2 is a subject .

b5 if NP2 is an object of a verb .

bs if NP2 c-commands NP1 . The closer NP2 is to NP1, the larger the bonus weight .

Example : Consider the following discourse example from [11] :

(8)

	

a . Susan]. drives a Ferrari2 .

b. Shea drives too fast .

c. Lyn4 races hers on weekendss .

d. She 7 often beats her b .

e. She 9 wins a lot t o of trophies].]. .

After each sentence is processed, the potential coreference relationships are shown in Table 3 . We assum e
that the values of w i 's and bi 's are defined such that

wl > w2 + bl + b2 + b3 + b4 + bs + b s
w2 > w3 + bl + b2 + b3 + b4 + b5 + b 6
b]. > b2 +b3 +b 4 +b5 +b6
b2 > b3 + b4 + b 5 + bs

Template Elements (TE)

A template element frame for an organization or a person consists of all the relevant information, such
as locale and alias, about the organization or the person mentioned in the text . After identifying th e
coreference relationships, the PIE unifies these properties associated with each instance of a domain entity
and fills out the templates . The properties associated with each instance of a domain entity are extracte d
by the subtree pattern matcher . For example, the locale of an organization is identified by finding th e
closest (indirect) dependent of the organization that has the semantic feature +location, unless there is an
intervening organization node . This single rule covers many kinds of expressions for specifying the locale of
an organization, such as (9a), (9b), (9c), and (9d). The constraint that the organization and its locale mus t
not be separated by another organization prevents "Boston" to be assigned as the locale of XYZ in (9e) ,
since "retailer" is also a kind of organization .

(9)

a. XYZ of Canada

c. the Boston , MA company

b. the Boston - based company

/ _
d. the computer maker headquartered in Boston

e. XYZ Inc . , which acquired the Boston - based retaile r

120

(a)
S i

Action :

Susan]. drives a Ferrari2 .
Susan 1 �Ferrari 2

	

w l
s 1 is asserted

(b)
8 2
Action :

Shea drives too fast .
Shea=Susan 1

	

w3 + b 4 + b 3
s2 is asserted

(c) Lyn 3 races her 5 on weekends6 .
8 3
s 4
8 5

8 6

8 7
88

Lyn 3 OSusan l
Lyn3 �Ferrari 2
Lyn 3 �her 5

Lyn 3 0weekends 5

her5=Shea
her5=Susan3

w].
w].
w 2

w 2

w3 + b2 + b 4
w3 + b4

"her 5 " cannot refer to a c-commanding element in
the same clause
"weekends "

	

cannot

	

refer to a c-commanding
element

Action : 83, 84, 85, 86, and 8 7 are asserted . s 8 is ignored because of 87 .
(d) She7 often beats her 8 .
8 9

810

She70her8

She7 =her8

w 2

w 3 + N.

"her8" cannot refer to a c-commanding element in
the same clause
It is possible to have immediate contradictions ,
since 3 9 and slo are made by different rules .

S11 She7=Lyn3 w3 + b4 + b 3
s12 She7=her5 w3 + b2 + b 5
813 She7=Susan]. w3 + b 4

814 her 8=Lyn3 w3 + b 4
815 her 8=her5 w3 + b2 + b3 + b5
816 herb=Susan]. w3 + b 4
Order : 8 9, 8 10, 8 15, 8 12, 8 11, 8 13, 8 14, 8 1 6
Action : s 9 is accepted . slo is ignored because of s 9 . s15 is accepted . 5 12 is ignored because

of 8 9 and s15 . sll is accepted . 813 i 3 14 and s16 are ignored .
(e) She9 wins a lot t o of trophies].]. .
817 She9=She7 w3 + b2 + b3 + b5
818 She9=her8 w3 + b2 + b 4

819 She9=Lyn3 w3 + b 4
8 20 She9 =hers w 3
821 She9=Susan]. w3 + b 4

Order : 8 17, S ts, 8 21, 8 19, 8 20 .
Action : s17 is accepted . All other assertions are ignored .

Table 3 : The coreference recognition process for (8)

12 1

Scenario Templates (ST)
The ST module is executed after all the sentences in the text have been parsed, all the coreference rela-
tionships has been asserted and all the template elements have been created . The scenario templates are
generated in two steps : First, a post-holder database is created . Then ST templates are filled according t o
the contents in the database .

A record in the post-holder database is made up of the following fields :

(10) post :

	

e .g ., CEO, president
holder: a pointer to a discourse entity representing a perso n
org :

	

a pointer to a discourse entity representing an organizatio n
status : one of IN, OUT, UN K

The records in the database are created by three rules :

static: recognizes a static situation in which a person holds a post in an organization .

single : recognizes succession events in which one person is explicitly mentioned .

double : recognizes succession events in which two persons are explicitly mentioned .

The rule static is triggered by a person . The pattern matcher searches the dependency tree rooted at
the person and find a post or posts and an organization, skipping all the nodes that are also persons . The
status field in the records created by the rule static is usually UNK, unless the post has modifiers such as

"former" or "retired ." For example, the static rule creates the records in (12) if any of the expressions i n

(11) is encountered .

(11)

	

a . XYZ president and CEO John Smith . . .

b. XYZ's president and CEO John Smith . . .

c. John Smith, who has been XYZ 's president and CEO since 1990, . . .

d. John Smith, president and CEO of XYZ Inc

(12) post : CEO

	

holder: John Smith org : XYZ Inc . status: UNK
post : president holder: John Smith org: XYZ Inc. status: UNK

If the pronoun "he" is determined by the coreference module to refer to "John Smith," then (13) will als o
cause the two records in (12) to be created .

(13) he has been XYX 's president and CEO since 199 0

The rule single is triggered by any of words in (14) . 2

(14) "take over" assume appoint promote name become "act as" "serve as" resume "force out " sack resign
"step down" retire fire "lay off" remove dismiss leave oust appointment dismissal ouster resignatio n
retirement removal

The person involved in the succession event is assumed to be a dependent of the trigger word or the paren t

node of the trigger word in the dependency tree . The post is a dependent of the trigger word . The

organization is either a dependent or a c-commanding NP of the trigger word . The status is determined by

the trigger word . If the post or organization is not found in the dependency tree, then the person 's positio n

in the post-holder database is used .
If the event is an IN-event, the post-holder database is searched . If the person holds multiple positions

in different organizations, or incompatible jobs 3 in the same organization, we assume that the person will

give up those positions, and corresponding records of OUT-events will be created .

Example :

2 The list (14) is what we used in our MUC-6 system . "Quit" and "hire" are obvious omissions .
a we assume two jobs are incompatible if a word appears in both job title s

122

(15) ABC announced that John Smith, president and CEO of XYZ, is named its next chairman .

The word "named" triggers the single rule. "John Smith, " "its next chairman, " and "ABC" are the n
recognized as the holder, post, and organization of an IN-event . The record (16) is created :

(16) post : chairman holder : John Smith org : ABC status: IN

Assuming that the static rule had created the records in (12), the IN-event triggered by "named" would

also cause records in (17) to be inserted into the database .

(17) post : CEO

	

holder: John Smith org: XYZ Inc. status: OUT
post: president holder : John Smith org : XYZ Inc . status: OUT

The rule double is triggered by the following words :

(18) succeed accede replace follow succession replacement

If the trigger is -passive, the IN person is the subject of the trigger or c-commands the trigger . If the

trigger is +passive, the IN person is the object of "by" . The OUT person is similarly defined .

Once the post-filler database has been created by the above three rules, the ST templates are filled b y

examining the records in the database . For each distinct pairs of "post " and "org" fields, if there exists a

record with status=IN or status=OUT, a succession frame is filled .

Analysis of the Walkthrough Article

NE

PIE had 90% recall and 93% precision for the walkthrough article in the NE test . The errors included the

following :

• Five occurrences of "Coke " were not recognized as entities .

• "Hollywood" was not recognized as a location .

• Two mistakes were made in the following sentence :

Dooner, who recently lost 60 pounds over three-and-a-half months ,

The lexical rules classified "60 pounds" as MONEY and "-half" as a DATE .

• "New York Times" and Coca-Cola within "Coca-Cola Classic " are mistakenly recognized as companies .

• The words "John Dooner Will Succeed James" were grouped together as a single person name .

• The company "Fallon McElligott" is incorrectly recognized as a person .

CO
The coreference scores for the walkthrough article were :

Recall : 101/132 = 0.77
Precision : 101/128 = 0 .79

These are much higher than the scores for the test corpus . The reason, we believe, is that the majority of

the coreference relationships in the article involved proper names and personal pronouns . The coreference
algorithm is very good at matching proper names and determining the antecedents of personal pronouns .

123

TE

PIE got 73% recall and 77% precision for the walkthrough article . There were 15 errors : 5 incorrect, 6
missing, and 4 spurious, many of which were due to failures of the NE module :

• Incorrectly treating "New York Times" as an organization caused 2 TE errors .

• Incorrectly treating "Fallon McElligott" as a person, instead of a company caused 3 TE errors .

• Incorrectly treating "John Dooner Will Succeed James" as a name caused 1 TE error .

• Failing to recognize "Coke" as a company name was partly responsible for 2 TE errors .

The errors in coreference recognition caused 3 incorrect descriptors in TE .
PIE failed to infer the location of "Coke" from the phrase "from Coke headquarters in Atlanta" because

"Atlanta" is not a dependent of "Coke . "

ST

The ST recall and precision for the article are 63% and 72% respectively. Most of the correct fillings can b e
attributed to its successful analysis of (19) and (20) .

(19) One of the many differences between Robert L . James, chairman and chief executive officer of
McCann-Erickson, and John J . Dooner Jr ., the agency's president and chief operating officer, is quit e
telling :

(20) He will be succeeded by Mr . Dooner, 45 .

The static rule created 4 entries in the post-holder database according to (19) :

(21)
post : chief executive officer org : McCann - Erickson holder: Robert L . James

	

status: UNK
post: chairman

	

org: McCann - Erickson holder: Robert L . James

	

status: UNK
post: chief operating officer org :

	

holder: John J . Dooner Jr. status: UNK
post: president

	

org :

	

holder: John J . Dooner Jr. status: UNK

The double rule is triggered by "succeed" in (20) . The coreference module correctly determined that "He "
in (20) refers to "Dooner" and generated two succession events for the chairman and CEO positions o f
McCann-Erickson .

A spurious OUT event (Dooner out as president) was generated because of (22) .

(22) There are no immediate plans to replace Mr . Dooner as presiden t

The omission of "hire" in the trigger word list is responsible for a missing IN-event implied by (23) :

(23) In addition, Peter Kim was hired from WPP Group's J . Walter Thompson last September as vice
chairman, chief strategy officer, world-wide .

All VACANCYJtEASON slots are filled with the default value REASSIGNMENT . For the walkthrough article ,
all three fillings happen to be incorrect .

Development Proces s

The NE module is trained on the 30 dry-run test articles and 50 articles (94*) out of the 100 formal trainin g
articles . The CO module is trained on the 30 dry-run test articles . The TE and ST modules are trained
on less than 25 of the 100 formal training articles, though they are tested with the complete set durin g
development .

The greatest limiting factor in the development of PIE is the amount of time and human resources
available to examine training articles to create domain specific vocabulary and dependency patterns, and to
inspect the differences between the answer keys and the system responses to fine-tune the system .

124

The development of PIE system started in July 1995, when MUC-6 was announced . The developmen t
prior to August 27, 1995 was mostly on general tools that can also be used in non-MUC applications . We
estimate that 30 person-days were spent on the following components/tasks .

• A sentence boundary identifier .

• A subtree pattern matcher which works on any tree structure (not just dependency trees) .

• A sequentially constructed equivalence classes .

• Interface classes to the WordNet .

• A SGML markup generator that takes a set of tuples (low, high, type, contents) and generates
SGML markups surrounding the words with indices from low to high. The generator guarantees that
overlapping markups are nested .

• Additional lexical rules for recognizing entity names .

• Tuning up PRINCIPAR.

The development of MUC-specific components started on August 28 . Table 4 summarizes the process .
The first training tests for the CO, TE and ST module were conducted as soon as the system was able t o
process all the testing articles without crashing . The last training tests was conducted just before runnin g
the formal test . The formal testing results for NE, CO and TE are quite close to the training test results .
The F-measure for ST in formal testing is significantly lower than that of training tests because the recall
dropped from about 50% to 39%. This was not totally unexpected, since the implementation of the S T
module did not begin until September 29th . It did not reach a relatively stable state by the time of the
formal testing on October 6th .

Person- First Training Test Last Training Test Formal Tes t
Category Days Date P&R Date P&R Date P&R

NE 10 1-Sep 88 6-Oct 96 6-Oct 9 3
CO* 14 14-Sep (49,47) 6-Oct (65,58) 6-Oct (63,63)

TE 6 25-Sep 67 6-Oct 78 6-Oct 7 4
ST 5 2-Oct 45 6-Oct 53 6-Oct 48

*The first number is precision, the second is recal l

Table 4 : Summary of the MUC-6 development process

Conclusions

We feel that we have achieved the following objectives in MUC-6 .

• We developed and tested a domain independent algorithm for coreference recognition that turned ou t
to work quite well .

• We showed that broad-coverage and efficiency can be achieved by principle-based parsing .

• We demonstrated that a broad-coverage parser can be very useful in information extraction . Once the
dependency relationships of a sentence are established, a small number rules can be used to extrac t

information that can be expressed in a large number of variations .

12 5

Acknowledgment

We wish to thank the Oxford Text Archive, Princeton University, and New Mexico State University fo r
making valuable data resources publicly available . The author is a member of the Institute for Robotics and
Intelligent Systems (IRIS) and wishes to acknowledge the support of the Networks of Centres of Excellenc e
Program of the Government of Canada, the Natural Sciences and Engineering Research Council (NSERC) ,
and the participation of PRECARN Associates Inc . This research has also been partially supported b y
NSERC Research Grant 0GP121338 .

References

[1] R. Beckwith, C Fellbaum, D . Gross, and G . Miller . WordNet : a lexical database organized on psy-
cholinguistic principles . In Uri Zernik, editor, Lexical Acquisition: Using On-Line Resources to Build a
Lexicon . Lawrence Erlbaum, Hillsdale, NJ, 1991 .

[2] Bonnie J . Dorr, Dekang Lin, Jye-hoon Lee, and Sunki Suh . Efficient parsing for Korean and English :
A parameterized message-passing approach . Computational Linguistics, 21(2) :255-264, June 1995 .

[3] Liliane Haegeman . Introduction to Government and Binding Theory . Basil Blackwell Ltd ., 1991 .

[4] Barbara j . Grosz, Aravind K. Joshi, and Scott Weinstein . Centering: A framework for modeling the
local coherence of discourse . Computational Linguistics, 21(2) :203-226, June 1995 .

[5] Dekang Lin . Evaluation of PRINCIPAR with the SUSANNE corpus . (draft) .

[6] Dekang Lin . Principle-based parsing without overgeneration . In Proceedings of ACL-93, pages 112-120 ,
Columbus, Ohio, 1993 .

[7] Dekang Lin. University of Manitoba: Description of the NUBA System as Used for MUC-5. In Pro-
ceedings of the Fifth Message Understanding Conferenc, pages 263-276, 1993.

[8] Dekang Lin . Principar—an efficient, broad-coverage, principle-based parser . In Proceedings of COLING -
94, pages 482-488. Kyoto, Japan, 1994 .

[9] Igor A . Mel'cuk . Dependency syntax: theory and practice . State University of New York Press, Albany,
1987 .

[10] Geoffrey R. Sampson . English for the Computer . Oxford University Press, 1995 .

[11] Linda Z . Sufi and Kathleen McCoy. RAFT/RAPR and centering : A comparision and discussion of

problems related to processing complex sentences . Computational Linguistics, 20(2) :289-300, Jun e

1995 .

126

