
GE NLTOOLSET :
MUC-3 TEST RESULTS AND ANALYSI S

George Krupka, Lucja Iwariska, Paul Jacobs and Lisa Ra u
Artificial Intelligence Laboratory

GE Research and Developmen t

Schenectady, NY 12301 US A
ra.u@crd .ge.com

Abstract

This paper reports on the GE NLTooLsET customization effort for MUC-3, and analyzes th e
results of the TST2 run . Although our own tests had shown steady improvement between TST1
and TST2, our official scores on TST2 were lower than on TST1 . The analysis of this unexpected
result explains some of the details of the i1'UC-3 test, and we propose ways of looking at the score s

.

	

to distinguish different aspects of system performance .

INTRODUCTIO N

We report on the GE results from the MUC-3 conference and provide an analysis of system performance .
In general, MUC-3 was a very successful effort for GE. The NLTooLsET, a suite of natural language tex t
processing tools designed for easy application in new domains, proved its mettle, as we were quickly able t o
show good results on the MUC-3 task . Even on TST2, where we experienced some system-level problems ,
all of our results were in the top group, and the program was especially accurate at filling out templates .
There were, however, some surprises that resulted from MUC-3, including the major differences in syste m
capabilities that are largely hidden in the scores, as well as the relative ease of sentence-level interpretation .

On the positive side, MUC-3 provided a thorough, fair test of system capabilities . The methodology
of testing on a real task, along with the benefit of a common corpus, has produced advances in the fiel d
as well as highlighting certain new aspects of text interpretation . Certain parts of our system, includin g
a lexically-driven pre-processor and knowledge-based language analysis mechanism, worked extremely well ,
while other issues, such as our lack of an explicit discourse representation, prevented us from doing better .
This recognition of strengths and weaknesses comes directly from the results of the MUC-3 experiment .

On the negative side, too much of each system's score, as well as the work involved in the task, is fro m
applying "rules of the game", and future MUCs must try to minimize this component . Some of these rule s
are not tied either to text processing capabilities or to the practical requirements of the task . Another
problem is how to determine from the results what a system is actually doing, as some major difference s
between systems proved largely hidden in the MUC-3 scoring . In this report, we will attempt to relate th e
evaluation results to system capabilities as well as to suggest some methods for attributing different aspect s
of the scores to particular types of processing .

RESULTS

Our overall results on TST2 were very good in relation to other systems, but we devoted much of our analysi s
to explaining why they were much lower than our expectations .

The GE results on TST2 are unusual in that we experienced a considerable drop in performance between
TST1 and TST2, in spite of enhancements to our system that showed substantial improvement on ou r
testing prior to TST2 . Part of the drop is attributable to system-level problems introduced directly befor e
the test . To determine the effect of these problems, we produced a revised run with two one-line changes i n
the system code . However, even this revised run shows a significant difference between runs on TST1 an d
the development corpus and the TST2 .

60



The following table summarizes our results on the second test, TST2, both officially and with the syste m
problems corrected .

Revised Run

	

Original Run

REC PREC OVERGEN REC PREC OVERGEN

62 62 20 58 63 18

52 62 20 42 63 18

52 45 42 42 46 40

50 61 22 39 60 21

Figure 1 : GE MUC-3 TST2 Revised Results* (Unofficial) vs . Official

In addition to these core results, we ran a number of other tests to put the TST2 runs in the context o f
our other results . Figure 2 illustrates how our two runs TST2 (official) and TST2* (revised) compare wit h
the historical system performance on training data . Data points that share an X coordinate represent run s
using the same system configuration on distinct 100-message samples taken from the development corpus .

Although the TST2* (revised) point is clearly more representative of system performance than TST2 ,
we were still surprised by the drop and did some analysis to try to determine its cause . While we canno t
definitively explain why the TST2 points are lower, the lower performance on TST2 does not seem to indicat e
that our system was overly tuned to the development examples . To test this, we restored the system fro m
tape to a configuration as close as possible to the TST1 run . This point, marked on the Figure 2 graph as
TST2 in March, is still about 10 points lower in recall than the TST1 run . In addition, note that the range
of recall scores on different sets of 100 texts from the development corpus, shown by unlabeled dots at an y
fixed time on the graph, is about 20 points, a substantial variation .

R"call

70—
60—
50—
40—
3 r
20—
10—
0

Figure 2 : Improvement

Matched Only

Matched / Missing

All Template s

Set Fills Only

_	•

	

. .

TST2 .

	

• '• •

	

•
•

	 _	 TST1 ovg
. TST1

IC la•TST2*

	 •	 .TST2

TST1•

Feb

	

March

	

April

	

May

	

Date

6 1



Site M/M REC M—O REC Templates Spurious Template Ovg
UMass 51 54 215 108 50%
NYU 44 49 187 90 48%
BBN 45 45 296 179 60%
GE 42 58 105 31 30%
HUGHES 31 41 163 77 47%
PRC 28 32 174 68 39%
MCDAC 28 39 118 42 36 %
SRI 25 44 83 27 32 %
ITP 20 35 79 21 26 %
UNISYS 19 47 47 9 19 %
LSI 16 32 81 29 36%
UNEB 14 22 143 81 57 %
ADS 12 14 221 124 56%
GTE 11 28 84 44 52%
SYNCH 7 18 63 31 49%

Figure 3 : Template Overgeneration and Recall (Official TST2 Run )

Although the much lower performance on TST2 could fall within the normal variation of performanc e
among different message sets, we are still left to explain this variation, which did not seem to hit othe r
systems as hard . The most likely hypothesis is that our program performed substantially lower on TST 2
than on other runs, because the strategy we chose in the final configuration was overly cautious in producin g
templates, while the answer key had an unusually large number of templates . This hypothesis is supported b y
the higher performance of our system in the MATCHED-ONLY row (see Figure 3 below) . The fact that ou r
program produced less than half as many templates as the system with the highest MATCHED/MISSIN G
recall, combined with the fact that the answer key contained more templates than other sets, adds to th e
evidence that our program paid a "recall penalty" for generating fewer templates .

To test this theory, we conducted a number of experiments, two of which involved using different strategie s
that we had viewed as being sub-optimal . In one test, we eliminated all portions of code that cut out spuriou s
templates, causing the program to generate about twice as many templates per message set, where most
of the additional templates were incorrect (because the code had been specifically designed to eliminat e
incorrect templates, not correct ones) . This change, certainly not one that improved the program, resulte d
in a 6-point gain in recall on the TST1 set (shown by TST1 ovg in Figure 2) with a 3-point loss in precision .

Then, we tried an experiment by blindly copying every template in our answer key (without changing the
program or the answers otherwise) . This resulted in a 6-point gain in recall with a 6-point loss in precision .
Since these extra templates could not possibly be matching correctly (because no two events should b e
alike), this experiment also shows that generating incorrect templates tends to result in higher recall than
not generating enough templates, and suggests that overgenerating more intelligently tends to improve recal l
more than it hurts precision .

The TST2 set contained far more templates, as well as far more optional templates, than TST1 or
the average for 100 messages in the development set . The development answer key contained, on average ,
8 optional templates per 100 messages, while TST1 had 7 and TST2 had 32 . The development answers
averaged 83 filled templates per 100 messages, and TST1 and TST2 had 95 and 130, respectively .

Systems that overgenerate at the template level tend to be more impervious to changes in the percentag e
of OPTIONAL templates because extra templates are more likely to match, perhaps felicitously . In addition ,
overgenerating at the template level helps to prevent missing non-optional templates, which have the greates t
effect on MATCHED/1VIISSING recall .

6 2



Figure 3 gives a concise summary of the number of templates each system generated with respect t o
their recall in MATCHED/MISSING (M/M REC) and MATCHED-ONLY (M-O REC) . Our system kept
its template overgeneration very low . Li fact, only 3 sites had lower template overgeneration, none o f
them within 20 recall points . One system with slightly higher recall produced 148 additional spurious
templates . Note that the systems with lower template overgeneration also tend to get a bigger gain in recal l
in MATCHED-ONLY .

The results seem to show a surprising variation from one test set to another, as well as an importan t
tradeoff between template overgeneration and recall, especially in the important MATCHED/MISSIN G
column . In retrospect, we believe that our overall TST2 results would have been closer to the expecte d
performance of our system had we been less cautious about avoiding spurious templates . On the other hand ,
it might have been a good idea to measure template overgeneration (as well as the "accidental" matchin g
of templates) as part of the results, since these incorrect templates are not a good thing . In most systems ,
overgeneration probably came from trying to maximize MATCHED/MISSING recall, so the MUC-3 scor e
reporting didn't suggest that template overgeneration was a real issue . Probably the test design for MUC- 4
should show the relationship between template performance and overall scores more clearly.

EFFORT

We spent overall approximately between 1 and 1 .5 person-years on MUC-3 . This time was divided as follows :

1 mo: Pre-Processing : Pattern acquisition, prepositional phrase handling, and handling of lists of people ,
targets, locations, etc .

1 mo: Semantic Interpreter Improvements : Reference resolution mechanism .

4 mo: Discourse Processing: Design and implementation of mechanism to determine portions of tex t
that describe different events .

1 mo: Parser Improvements: Parser recovery and improving attachment .

1 mo: Knowledge Engineering: Addition of primary and support templates, lexicon, phrases, pattern s
and hierarchy .

1 mo: MUC-specific Engineering : Implementation of target typing, location handling .

5 mo: Misc. Bug Fixing: Isolation of problems and fixing .

1 mo : "Improvements" : Template merging, template thresholds .

3 mo: Scoring, Reporting : Meetings, reporting, incremental and final scoring, analysis and other over -
head .

Primary Limiting Factor

The primary limiting factor in performance on MUC-3 was the limited ability of programs to perfor m
linguistic and extra-linguistic tasks at a pragmatic or discourse level . These tasks include event referenc e
resolution and inference . For example, some correct templates in TST2 depended on distinguishing tw o
events based on the knowledge that. Cartagena is a resort, assuming that two men leaving a package in a
restaurant could be planting a bomb, and generating an extra template for a series of kidnappings because on e
of them took place on a particular day. These many discourse and event-based issues overwhelm the relativel y
minor problems of parsing and semantic interpretation . Robustness of linguistic processing for MUC-3 was
surprisingly easy to achieve, while the intricacies of template generation were surprisingly difficult to master .

63



Trainin g

Our method of training was to run our system over the messages in the development and TST1 corpus . We
used the results of these runs to detect problems and determine what new capabilities we needed to mak e
these test stories work . We did not perform any automated training, although we did make heavy use of a
keyword-in-context browser and some use of data from a tagged corpus .

As explained above, lexical coverage and parsing did not seem to stand in the way of major performance
gains for MUC-3, so we did not focus our efforts in these areas .

Our system improved fairly steadily over time, as the graph shown in Figure 2 illustrates .
These improvements were gained through a combination of adding knowledge, fixing bugs, adding som e

capabilities (like template splitting and merging) and coding MUC-specific tasks (like distinguishing guerrill a
warfare from terrorist activity) .

RETROSPECTIVE ON THE TASK AND RESULT S

In retrospect, over the last six month period, there were no major changes to our system that we would hav e
made for MUC as a result of our experience with this corpus and task .

With a minimum of customization (perhaps one or two person months of effort), our system quickl y
reached the level of performance on MUC-3 achieved by the other top systems . This ultimately proved a bit
discouraging, as progress from that point on was quite slow, but it is evidence that the NLTooLsET system ,
designed for easy adaptation to new tasks and domains, does what it is supposed to do .

The most successful portion of our system that was designed for this task was the text reduction mecha-
nism [1] . The NLTooLsET now uses a lexico-semantic pattern matcher as a text pre-preprocessor to reduc e
the complexity of the sentences passed to the parser . This allowed us to keep the system running in rea l
time, prevented the parser from dealing with overly complex sentences, and achieved more accurate results .
In addition, the pre-processor allowed a discourse processing module to divide the input text roughly int o
events prior to parsing, which seemed to have a considerable positive effect on later processing (see the pape r
on discourse in this volume )

The speed of our system, over 1000/words per minute on this task on conventional hardware without an y
major optimizations, is already way ahead of human performance and suggests that this technology will b e
able to process large volumes of text .

We were similarly pleased that the sentence-level performance of the NLTooLsET was as good as it was .
While we fixed minor problems with the lexicon, grammar, parser, and semantic interpreter, robustness o f
linguistic processing did not seem to be a major problem . In part, this seems to be because the MUC- 3
domain is still quite narrow . It is much broacler than MUCK-II, and the linguistic complexity is a challenge ,
but knowledge base and control issues are relatively minor because there are simply not that many differen t
ways that bombings, murders, and kidnappings occur .

The fact that sentence-level interpretation wasn't a major barrier in MUC-3 has both good and ba d
implications. Fortunately, we can expect that progress in new (perhaps extra-linguistic) areas will soo n
bring system performance on this sort. of task ahead of human performance, and make this research pay off
in real applications . Unfortunately, it. is unclear whether this new progress will spill over into other domain s
and applications, or whether it will lead to narrowly-focused development for future MUCs . The combination
of a narrow domain with broad linguistic issues could make non-linguistic solutions more attractive for thi s
sort of task . The only way to test the degree to which these solutions are reusable is to keep testing system
transportability and evaluating performance on new and broader tasks .

ISSUES IN EVALUATIO N

After analyzing the results of our system and the primary measures of comparison between systems (recall ,
precision and overgeneration in the MATCHED/MISSING row), we realized that several factors in syste m
performance were being confounded and/or not being measured . We isolated six, interrelated measures o f
system performance as follows :

1 . Recall : Gross, overall recall can be estimated by the MATCHED/MISSING column .

64



2. Precision : Gross, overall precision call be estimated by the MATCHED/MISSING column .

3. Template Overgeneration : The OVERGENERATION column in the ALL-TEMPLATES score repor t
is the best overall measure of template overgeneration .

4. Slot Overgeneration: Subtracting the TEMPLATE-ID scores from the MATCHED/MISSING over -
generation column results in slot overgeneration .

5 . Quality of Fills: Recall and precision in the MATCHED-ONLY row, when template-ID and spuriou s
templates are subtracted, provides an approximation to how well the templates that are filled out ar e

filled out .

6 . Template Match : There are two aspects to how well a system matches the templates that are in the

answer key. One is the number of templates systems generate, and the other is how accurate the type s
of those templates are . The precision of the TEMPLATE-ID row gives a measure of how close the
number of answer templates were given . Precision and recall of the INCIDENT-TYPE slot also giv e
the accuracy of the templates matched .

Any measure of the performance of a data extraction system must have a meaningful way of combining the
effects of template level decisions with slot-filling ability, but must also distinguish slot-filling from templat e

decisions for system comparison . Template-level decisions are :

• When to create a template

• What type of template to creat e

• When to merge multiple templates

• When to eliminate a templat e

Template-level decisions reflect a system's ability to carve out messages into discrete topics or individua l
events . This includes text-level issues such as when a new event is being introduced as opposed to giving
further detail on an already mentioned event, and determining the topic or type of that event .

Slot-level decisions relate to the quality of the template fills once the decision has been made as to whic h
and how many templates to generate . In general, slot-level decisions are closer to and represent more th e
core language processing capabilities than template-level decisions .

The interaction of recall, precision and overgeneration presents additional challenges in evaluating sys-
tems, and MUC-3 should provide ample data to test the utility of combined metrics . In addition, it i s
important to be able use the scores on the MUC task both for comparing systems and for proving th e
ultimate utility of the systems . The MUC-3 results might seem low to those not really familiar with th e
tests, while many of the systems could already be extremely useful even without major improvements i n

performance .
Finally, estimates providing a margin of error for all the scores on a MUC-like task are necessary in

order to compare results meaningfully . This error comes from the inherent imprecision in any "right answer "
against which scores are computed, and the inevitable difference in the performance of systems from one tes t
set to another .

LINGUISTIC PHENOMENA TES T

Our results on the linguistic test of apposition are interesting, as we estimate that we recognize 90% of thes e
syntactic structures with regular expression patterns in a context-independent pre-processing stage, prior t o
the application of any syntactic parsing using our context-free grammar .

The slot configuration files confounded the pure test of recall and precision with respect to appositio n
by not factoring out entire templates that were missed (presumably an issue not related to the treatmen t
of the appositive) . Also complicating a "pure" test is the penalty for spurious fills included in those slots
where the appositives were present ; again, an error unr elated to the fill that contained the appositive .

65



We corrected for these interfering effects to get a truer measure of the performance. This was done
by eliminating from the test score those slots not present because of missing templates, and eliminatin g
the spurious slot fills . With these corrections, we calculated recall for the "easy" cases to be 96% from 72 %
(unrevised) . The hard cases went from 43% recall to 89% recall (again, unrevised) . This difference is entirel y
attributed to one example. Based on this, we would not want to draw any substantive conclusions on our
performance of easy vs . hard appositives .

Our results on the linguistic phenomena tests show that our performance on the same sentence appositive s
was better than the same information distributed across multiple sentences . This was expected, as our syste m
does not use the semantic interpretation of "to be" sentences to modify the type assignments of targets . The
cases here where the assignments were correct were cases of our default typing, CIVILIAN .

The preposed appositives were more accurate than the postposed . We would have expected that post-
posed would be easier because it is easier to determine their boundaries . Preposed appositives, on the othe r
hand, are typically shorter and do not appear next to or in list constructs .

We would not want to draw any conclusions from these results on the intrinsic power of the pertinent
techniques . These techniques are detailed in the system walkthrough paper (cf . this volume) . We feel that
a fair amount of effort has gone into system development for the apposition, so, from this regard, these
tests seem to reflect that linguistic phenomena are not as important for overall performance as other factors .
That is, larger gains in terms of recall and precision scores seem to come with less effort from focusing o n
discourse and event structure rather than local linguistic issues such as apposition .

REUSABILITY

We estimate that about 50% of the effort spent on this task will not be reusable at all (except, perhaps ,
for future MUCs), although 80% of the improvements to the parser recovery (or 20% of the total effort) are
reusable . Note, however, that these are not, necessarily the changes we would have chosen to make! Abou t
10-15% of the total effort is work that is necessary for any template generation task from text in a new
domain . The other 35-40% of the non-reusable effort stems from MUC-3 specific rules not tied to the effor t
of data extraction in general or in particular . The items that went into this effort are discussed more i n
Section below .

LESSONS LEARNE D

The GE System

This task has proven our system's transportability, robustness and accuracy quite well . The things that
worked particularly well for MUC-3 were :

pattern matching pre-processor
discourse processin g
lexicon
parser
semantic interpreter
partial parser

The MUC experience also pointed out some clear deficits with some aspects of text-level interpretatio n
that are particularly critical in multi-template texts, in particular :

discourse and complex event representation
reference resolution
handling background event s

In addition, there were three problems with our system that were largely fixed during MUC-3 :

list processing (including coordination)
phrase attachment and parser control

	

66



The MUC Task

Certain aspects of this MUC task did not test the text processing capabilities of the systems . These fal l
into the category of task-specific rules to eliminate correctly filled-out templates . The application of these
rules is outside the language processing components of the systems ; however, the misapplication of the rule s
can have a great effect on the score . We estimate three-quarters of our missing templates and most of th e
spurious templates are due to the misapplication of the following "rules", further described below— stal e
data, guerrilla warfare, non-specific events, and template splitting

We estimate that these specific problems account for approximately 50% of the missing recall in ou r
results (i .e . half of the difference between our recall and 100% recall) . The rest of the missing recal l
is a combination of sharing information across templates, language analysis failures, knowledge failures ,
and subtle differences in interpretating events . Looking at recall, this is supported by our score on th e
MATCHED-ONLY row, which is an underestimate because it still includes many problems in incorrectl y
splitting or merging templates .

The four major MUC-specific issues are :

Stale Date: Eliminate all templates that report on events over two months old, unless they add new
information . The application of this rule depends on correctly determining the date of the event ; an
error in this slot will cause the incorrect deletion of the entire template, while extra templates an d
slots can result from missing the "stale date" .

Guerrilla Warfare : Eliminate all templates that report on guerrilla warfare events as opposed to terroris t
events .

Non-specific Events : Eliminate all templates that report in a non-specific events .

Template Splitting : Deciding on when to generate a separate template based on the granularity of th e
reported locations and dates for any given incident .

We believe that, to test text processing systems, fine lines of distinction between relevant and irrelevan t
texts should be left to human beings, and that the MUC task should focus on accurate information extraction ,
not subtle judgements of relevance or validity . One proposal, which has been tentatively adopted for MUC -
4, is to encode these distinctions as slot fills as opposed to template/no-template decisions ; for example ,
GUERRILLA-WARFARE could be a TYPE-OF-INCIDENT as opposed to an IRRELEVANT template .
This will minimize the influence of the extra-linguistic post, editing and maximize the testing of the cor e
system ability to extract information from text .

Evaluation

The most important lesson we learned on this task, and probably the biggest contribution of MUC t o
the state of the art, is the importance of having an "answer key" to direct the focus of research efforts .
Without the answer key, we would proceed by fixing problems with our system, sentence by sentence . This
methodology succeeds in making particular sentences and texts work, and can also fix general problems wit h
the system . However, concentrating on sentences and phenomena, rather than tasks and answers, can als o
introduce unintended effects, and can focus research on phenomena that prove irrelevant to a task .

The answer key allows system developers to focus attention on fixing widespread problems as well a s
quickly testing the global effect of every change .

Another important lesson from this evaluation is that drastically different techniques could produc e
similar answers, while many important differences between systems are "buried" in the more detailed report s
of scores . This happened because MUC-3 really combined many different tasks, from template generation
and slot filling to temporal interpretation, knowledge-base issues, and even event recognition (e .g . knowin g
that Jesuits are a good target) . One of the challenges for this sort of evaluation is to determine not only wha t
produces good overall results, but also which portions of the task are best covered by which technologies .

67



THOUGHTS FOR MUC- 4

Two competing designs for future MUCs are to retain the same domain, perhaps deepening the task, and t o
move on to a new domain with the same basic template-filling task. Retaining the same basic domain an d
task has the apparent advantage of minimizing the effort required just to perform the test, at least for those
groups that have already invested the effort . The stable task also allows MUC to be used as a benchmark for
measuring the progress of the field . On the other hand, keeping the task and domain stable could put ne w
groups (i .e . those not involved in MUC-3) at a disadvantage, and runs the risk of having effort unknowingl y
devoted to MUC-specific problems .

The alternative, to select new tasks and broader domains for future MUCs, has the benefit of allowin g
new projects to enter on a roughly equal basis, to check the validity of the MUC-3 task, and to measur e
transportability across domains . However, this choice would require additional work of all participants, an d
would probably require holding the evaluations less frequently.

Presently, it seems that MUC-4 will follow the line of MUC-3, measuring the progress of the field (an d
the individual participants) but not showing the relationships between domains or transportability, and no t
introducing new capabilities . The field is moving quickly enough, however, that broader domains and ne w
tasks will soon be necessary to have better measures of problems, progress, and applications .

Another major issue in MUGs is how often they should occur . We believe that it is far more dangerous
to have the tests too frequently than to have them infrequently . While infrequent tests produce less data an d
provide less of a chance for new entrants, frequent evaluations of this sort are more likely to inhibit research
by pushing short-term system issues in front of larger, critical advances . Perhaps the best compromise is
to have continual evaluations, but expect that each site will participate only once in every two or thre e
evaluations .

We believe that MUCs can only be a useful test of text interpretation technology if they measure trans-
portability and customizability as well as accuracy . Otherwise, it will not be clear how much functionalit y
is produced by special-purpose features . This could be achieved by moving to a new domain and shortening
the length of the development time . Also, the task should minimize or eliminate domain-specific rules tha t
move systems away from their information extraction role . This will give truer measures of a text processing
system's ability to move into a new domain and extract useful factual information from free text .

SUMMARY

The GE system performed very well on MUC-3, but our official run on TST2 produced scores substantiall y
lower than our TST1 results, in spite of other tests that showed system improvement over time . Even
in a revised run that fixed system-level problems, our TST2 score was about the same as on TST1 . I n
trying to explain why the performance was lower than our expectations, we made some interesting ob-
servations about the test, including the apparent relationship between template overgeneration and recall .
The result of this analysis is that while the highest scoring systems all produced comparable results in th e
MATCHED/MISSING row, there are major differences in the way the systems produced the results . We
propose several ways of finding these differences in the score reports, as well as one correction to the tes t
design to reduce some problems with template-level decisions . Finally, we strongly support the methodology
of MUC while warning against repeated, prolonged testing in any single domain .

References

[1] Paul S. Jacobs, George R . Krupka, and Lisa F . Rau . Lexico-semantic pattern matching as a companio n
to parsing in text understanding . In Fourth DARPA Speech and Natural Language Workshop, San Mateo ,
CA, February 1991 . Morgan-Kaufnma.nn .

68




