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Abstract

We present a new workflow to create components for the MaryTTS text-to-speech synthesis platform, which is popular with researchers

and developers, extending it to support new languages and custom synthetic voices. This workflow replaces the previous toolkit

with an efficient, flexible process that leverages modern build automation and cloud-hosted infrastructure. Moreover, it is compatible

with the updated MaryTTS architecture, enabling new features and state-of-the-art paradigms such as synthesis based on deep neural

networks (DNNs). Like MaryTTS itself, the new tools are free, open source software (FOSS), and promote the use of open data.
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1. Introduction

Over the last 15 years, MaryTTS (Schröder and Trouvain,

2001) has become one of the reference systems for open

source text-to-speech synthesis (TTS). Today, it is actively

used by researchers working in speech science, human-

computer interaction (HCI), and related fields, as well as

by professional and enthusiast software developers in free,

open source software (FOSS) or enterprise settings. Its

popularity is due in part to the number of languages and

voices which are freely available as open resources, as well

as the possibility of extending it to support new languages

and building custom synthetic voices, or even integrating

MaryTTS as a component into more complex applications,

such as TTS web services, accessibility software, or spoken

dialog systems (SDSs). Because of its implementation in

the Java programming language, MaryTTS can be used on

any device or computer with a Java Runtime Environment

(JRE), and its modular design allows developers and users

alike to inspect and customize the entire processing pipeline

from input text to speech output.

However, the number of people who have participated in,

and contributed to, MaryTTS development over the years

has led to a complex and overburdened system. Conse-

quently, a reboot of the system became unavoidable; until

now, we focused on restructuring the system core and ex-

plained the philosophy behind the new architecture (LeMa-

guer and Steiner, 2017a; Le Maguer and Steiner, 2017b).

Independently, the process of creating new synthetic voices

and support for new languages in MaryTTS has also fun-

damentally evolved since it was presented by Pammi et al.

(2010). Therefore, the current paper presents the new lan-

guage and voice building workflow for MaryTTS.

The remainder of the paper is structured as follows. Sec-

tion 2 provides a brief background on build automation in

MaryTTS. In Section 3, we present the newworkflow to add

support for a new language. Then, in Section 4, we focus

on the new voice building pipeline. Finally, in Section 5,

we present the reorganized source code and project hosting,

particularly from a user perspective.

2. Background

Development on MaryTTS has adopted several significant

paradigms which had become best practice in Java-based

software engineering in the years since the project’s incep-

tion. These include,

dependency management, where required software libraries

are downloaded from cloud-based repositories,1

software testing, and

convention over configuration, where common standards

are integrated into the software build lifecycle without

the need for redundant specification.

In the latest version of MaryTTS, all of these aspects are

managed through the Gradle build automation tool.2

The increase in flexibility and efficiency provided by Gra-

dle is not limited to the development “under the hood”.

Rather, we leverage Gradle as a user-facing tool which re-

places the custom applications previously required to add

new languages to MaryTTS, or build new synthetic voices.

This shift removes numerous limitations on performance

and functionality, and solves common, recurring problems

with installing third-party tools and writing boilerplate code

for new MaryTTS components. At the same time, the text

and speech data itself — required to build new components

— can be managed as dependencies, and the components

can be built, tested, and distributed more efficiently.

An overview of the entire workflow to create new language

and synthetic voice components is shown in Figure 1. How-

ever, this workflow can be broken up into several indepen-

dent steps, which are described in the following sections.

3. New Language Support

The purpose of a language component in MaryTTS is to

allow the system to extract linguistic features from ortho-

graphic text using natural language processing (NLP). This

includes, at the very least, the sequence of phonemes, i.e.,

the pronunciation, but typically also other features related to

1Examples of such dependencies in MaryTTS include third-

party libraries for text tokenization (JTok), number expansion

(ICU4J), and part-of-speech (POS) tagging (OpenNLP).
2https://gradle.org/

3171

https://gradle.org/


lexicon resource

speech corpus Bintray Gradle Plugins Portal

GitHub

obtains lexicon resource

applies

lexicon-compiler-plugin

trains lexicon FST and G2P rules

publishes marytts-lexicon-xy

(a) The lexicon project, which resolves or con-

tains lexicon resources and is published to Bin-

tray.

depends on marytts-lexicon-xy

provides NLP modules for language “xy”

publishes marytts-lang-xy

(b) The language project depends on the lexicon

project, may contain other modules, and is pub-

lished to Bintray.

obtains audio and text resources

obtains phonetic annotation or

applies kaldi-mfa-plugin

publishes

speaker-somename-xy-data

(c) The data project resolves audio and text from a

speech corpus and either converts provided pho-

netic annotation or runs forced alignment using

the language project. It can be published to

GitHub as a release asset.

depends on marytts-lang-xy and

speaker-somename-xy-data

applies voicebuilding-plugin

1. extracts acoustic features from audio

2. extracts linguistic features from text

3. aligns features based on phonetic labels

4. builds models

5. packages data (for unit selection)

publishes voice-somename-xy

(d) The voice project resolves the processed data

from the cloud (e.g., downloading from GitHub),

runs all steps required to build a voice, and is pub-

lished to Bintray. Large unit selection voice pack-

ages can be published to GitHub as release assets.

Figure 1: Overview of the complete workflow for a new language “xy” and synthetic voice components. Dashed blue arrows

visualize the dependency of the voice project (Figure 1d) on the language and data projects (Figures 1b and 1c, respectively),

the dependency of the data project on the language project, and the language project on the lexicon project (Figure 1a). All

of these depend on the core MaryTTS runtime libraries (not shown), which are resolved from Bintray. Orange and purple

arrows show the actual dependency resolution from, and publishing to, cloud-hosted services, respectively. Green arrows

show plugins resolved from the Gradle Plugins Portal. Note that all or part of the cloud-hosted infrastructure (shown inside

the cloud) could also be replaced by internal, non-public repositories.

phonology and used for the prediction of acoustic parame-

ters, such as segment duration and fundamental frequency

(F0). Pronunciation prediction in MaryTTS is handled by

a language-specific “Phonemiser” module, which looks up

each text token in a lexicon and returns the sequence of

phonemes. For any out-of-vocabulary (OOV) tokens, the

module falls back to rules for grapheme-to-phoneme (G2P)

prediction.

To add support for a new language toMaryTTS, the first step

is to define the set of phonemes to be used, along with their

standard phonological features, based on the International

Phonetic Alphabet (IPA). The next step is to obtain (or cre-

ate) a lexicon resource, ideally a text file, spreadsheet, etc.,

containing a list of words with their orthographic and cor-

responding phonetic transcription.

Finally, the lexicon is automatically compiled into a finite

state transducer (FST)-based representation, relying in part

on theWEKA toolkit (Hall et al., 2009). In the past, this was

done using the custom TranscriptionTool GUI application

(Pammi et al., 2010), which however suffers from various

usability and performance issues. To improve this situation,

we have developed a Gradle plugin3 to convert the lexicon

into the format required by MaryTTS. Furthermore, we are

currently developing a more state-of-the-art G2P approach

based on TensorFlow (Abadi et al., 2016), comparable to

that of, e.g., van Esch et al. (2016).

It is possible to create further NLP modules for the new lan-

guage component, handling text normalization to expand

acronyms, numbers, and so on, into pronounceable repre-

3https://github.com/marytts/gradle-marytts-lexicon-

compiler-plugin
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sentations, POS tagging, etc. Alternatively, MaryTTS can

just fall back to generic modules for such tasks. All of these

modules are then combined to build the new language com-

ponent, which will be used to process input text, and rep-

resents a dependency of the synthetic voice building, and

ultimately, full TTS in the new language.

4. Voice Building

Building a new synthesis voice for MaryTTS consists of

three distinct stages, (a) data preparation, (b) feature ex-

traction, and (c) model building, which are described in the

following subsections. All three stages are handled effi-

ciently using Gradle plugins,4 which wrap third-party tools

and can run tasks in parallel where appropriate, speeding up

the voice building process significantly compared to the old

toolkit.

4.1. Data Preparation

When preparing the recording of speech data intended to

create a new synthesis voice, it is common practice to cre-

ate a prompt list which covers the phonetic (and possibly

prosodic) inventory of the corresponding language, as well

as the content of the voice’s domain. These prompts are

then read out by the voice talent over one or more recording

sessions, preferably in a studio environment.

The previous voice creation toolkit (Pammi et al., 2010)

promoted the use of a custom Java-based recording tool

named Redstart, which is able to display a sequence of

prompts on a computer screen and record the user reading

them through the computer’s microphone. While MaryTTS

Redstart remains fully functional, it may not be usable in

every recording scenario. For instance, in a professional

recording studio, the voice talent is typically recorded us-

ing a digital audio workstation (DAW), and any visual pre-

sentation of prompts may only be possible using a separate

computer. In other cases, the goal may be to record a more

fluent performance (such as an audiobook), and a user expe-

rience that forces the voice talent to pause for each prompt

would be too disruptive.

Regardless of which text prompts are selected, or how they

are recorded, the outcome of this process is a set of text

and audio files with corresponding contents. However, be-

fore these files can be used to build a synthetic voice for

MaryTTS, they have to be phonetically annotated. This step

requires determining the pronunciation of each text prompt,

i.e., the sequence of phonetic units, and mapping them to

the recorded audio’s time domain; the process is related

to automatic speech recognition (ASR), except that the ex-

pected content is known, and the sequence of phonetic units

can be forced to align with the audio; this is known as forced

alignment. In the past, theMaryTTS voice building tools re-

lied on integrating third-party tools for this task, including

Sphinx-4 (Walker et al., 2004),HTK (Young et al., 2006), or

the FestVox tool EHMM (Prahallad et al., 2006); however,

MaryTTS users often report problems installing or running

them, and errors are difficult to solve. More recently, Kaldi

(Povey et al., 2011) has emerged as a leading ASR toolkit,

4https://github.com/marytts/gradle-marytts-voicebuilding-

plugin

and it has been integrated into theMontreal Forced Aligner

tool (McAuliffe et al., 2017). This tool in turn has been inte-

grated into the MaryTTS data preparation workflow in the

form of a Gradle plugin.5 The pronunciation can be pre-

dicted using MaryTTS and collected into a custom dictio-

nary for Kaldi, then acoustic models are trained from the

recorded data, and the phonetic unit boundaries are aligned

and stored in the form of Praat TextGrids; this process is

fully automated and can take a few minutes or hours, de-

pending on the amount of recorded data.

Previously, the forced alignment process was described as

part of the voice building process in MaryTTS (Pammi et

al., 2010), but it can be more appropriately regarded as a

prerequisite. While it is still possible to use both the forced

alignment and voice building plugins in the same Gradle

project, a more efficient workflow is to build a data artifact,

which is then available as a dependency for the proper voice

building process. Therefore, this stage can be skipped if a

corpus of speech data is already available with appropriate

orthographic and phonetic annotations.

4.2. Feature Extraction

At the core of the voice building process, the recorded

speech data is converted to a feature representation. It

is this feature representation which allows the use of ma-

chine learning techniques to train models to predict prosody

and/or vocoder parameters from text during the actual TTS

process in the runtime system.

The feature extraction stage of the voice building process

yields a combination of frame-wise feature vectors from

acoustic analysis of the audio, and time-aligned symbolic

features based on linguistic analysis of the corresponding

text; the alignment is based on the phonetic annotation ob-

tained in the data preparation (cf. Section 4.1).

Acoustic features include F0, tracked using Praat (Boersma,

2001), and mel-frequency cepstral coefficients (MFCCs),

extracted using the Edinburgh Speech Tools (EST) (King et

al., 2003). The linguistic features are obtained depending

on the MaryTTS language component for the correspond-

ing language. When creating a synthetic voice for a new

language, this is where the new language component built

previously (cf. Section 3) is used. The linguistic features

extracted and assigned to the feature vectors include sev-

eral related to phonology (e.g., distinctive features, position

in the syllable, stress, accent), syntax (e.g., POS, distance

to phrase and sentence boundaries), and — optionally —

speaking style (Steiner et al., 2010; Charfuelan and Steiner,

2013), information density (Le Maguer et al., 2016), or

other high-level context features.

4.3. Model Building

Depending on the underlying synthesis paradigm, it is pos-

sible to build a unit selection voice or a statistical paramet-

ric synthesis voice.

4.3.1. Unit Selection

Unit selection synthesis concatenates halfphone-sized snip-

pets of natural speech selected from a voice database, given

5https://github.com/marytts/gradle-marytts-kaldi-mfa-plugin
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target features computed for an input utterance. The out-

put can sound very natural, but often suffers from audible

glitches when synthesizing out-of-domain utterances, and

prosody control is limited. Moreover, the voice database

can be very large, as it contains the actual audio data.

Building a unit selection voice for MaryTTS involves stor-

ing the feature representation and related metadata for each

unit, training statistical models for sparse prosody predic-

tion, and packaging these along with the actual audio data.

We have created a Gradle plugin which wraps some of the

old toolkit’s components to assemble unit selection voices

which are backward-compatible with the current stable re-

lease of MaryTTS (v5.2). In addition, we are develop-

ing new build tools to support audio compression and en-

able prosody modeling and target feature prediction using

hidden Markov models (HMMs) or deep neural networks

(DNNs), paving the way for state-of-the-art “hybrid” TTS.

4.3.2. Statistical Parametric Synthesis

MaryTTS has supported statistical parametric synthesis for

numerous years, using a Java port of theHMMbased speech

synthesis system (HTS) engine API6 with amel-generalized

log spectrum approximation (MLSA) vocoder. Although

such synthesis can sound rather buzzy and unnatural, these

HMM-based voices offer higher flexibility andmore consis-

tent quality than unit-selection synthesis, as well as a much

smaller memory footprint. However, some drawbacks are

(a) that building HMM-based voices for MaryTTS has a

high technical overhead, and (b) that the Java port has be-

come quite outdated, while HTS development has seen sig-

nificant progress. The former has been mitigated by provid-

ing a consistent, pre-configured Docker container, while to

address the latter, we are developing completely new func-

tionality. This includes the possibility to train models for

third-party frameworks such asMerlin (Wu et al., 2016) and

to allow other vocoders to be used, including STRAIGHT

(Kawahara et al., 1999) or WORLD (Morise et al., 2016).

The parametric voice building process comprises three

stages: the input and output feature packing, the model

training, and the voice configuration generation. The voice

configuration generation is similar to the unit selection

voice building part (cf. Section 4.3.1). The output feature

packing goal is just to adapt the acoustic features (e.g., mel-

generalized cepstrum (MGC), F0, band aperiodicity (BAP),

etc.) to be compatible with the process used to train the

models. Currently this means computing the delta and

delta-delta coefficients and generating the binary observa-

tion vector for each utterance. The input feature packing

consists of calling MaryTTS with a serializer dedicated to

the training process.

The model training is a specific plugin implementing the

process to train the models needed for the synthesis stage.

We have developed a Gradle plugin dedicated to train HTS

models (HMM-GMM or HMM-DNN).7 This plugin can be

adapted to the kind of parametric synthesis model or system

we want to use.

6http://hts-engine.sourceforge.net/
7https://github.com/marytts/gradle-hts-voicebuilding-plugin

4.4. New Configuration Mechanism

Previously a configurationwas attached to an artifact to con-

figure the different modules. Moving forward, we consider

three levels of configuration: the default configuration, the

voice configuration, and the user configuration. The first

of these is given in the module itself. The voice configura-

tion corresponds to the parametrization of eachmodule used

during the voice building process and has priority over the

default configuration. Finally, a user configuration can be

specified at runtime, to override the other configurations.

5. Global Project Management

Refactoring the core system and of the voice building pro-

cess has allowed us to separate the source codemanagement

(SCM) for each language and each voice project. There-

fore, each language and voice can have its own SCM reposi-

tory hosted on GitHub,8 while the released artifacts are pub-

lished to Bintray9 and indexed in JCenter.10 Any large data

objects (specifically unit selection audio data) can be hosted

on GitHub as release assets.

This makes the custom Component Installer GUI from pre-

vious MaryTTS versions obsolete, and allows us to re-

place it with a lightweight wrapper around the dependency

management. A user can install and run MaryTTS voices

and language components simply by executing Gradle tasks

with the corresponding names; this is demonstrated by a

new web installer for MaryTTS.11

Meanwhile, developers and researchers looking to integrate

MaryTTS into their projects, only need to declare a depen-

dency on the desired voice artifacts, and this will automati-

cally resolve all transitive dependencies on the correspond-

ing languages and other libraries.

6. Conclusion

In conclusion, we have presented a new language and voice

building workflow designed for the updated MaryTTS sys-

tem. We have detailed our reliance on the Gradle build au-

tomation tool, which provides a much more efficient and

powerful framework via its extensible plugin system than

the previous toolkit. We have also seen that the language

components maintain the same concepts as in previous ver-

sions, but the methodologies used are updated. Finally, we

have described the redesigned and extended voice building

process, as well as our leverage of cloud-based infrastruc-

ture for hosting and distribution.

The next stage is to integrate the new MaryTTS core, state-

of-the-art synthesis paradigms, and the new build system

more deeply to provide the fully modular, modern TTS

platform we are aiming for. Moreover, we are working to

release the first preview of MaryTTS v6.0 in the coming

months.
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