
DeepTC – An Extension of DKPro Text Classification for
Fostering Reproducibility of Deep Learning Experiments

Tobias Horsmann and Torsten Zesch
Language Technology Lab

Department of Computer Science and Applied Cognitive Science
University of Duisburg-Essen, Germany

{tobias.horsmann,torsten.zesch}@uni-due.de
Abstract

We present a deep learning extension for the multi-purpose text classification framework DKPro Text Classification (DKPro TC). DKPro
TC is a flexible framework for creating easily shareable and reproducible end-to-end NLP experiments involving machine learning. We
provide an overview of the current state of DKPro TC, which does not allow integration of deep learning, and discuss the necessary
conceptual extensions. These extensions are based on an analysis of common deep learning setups found in the literature to support all
common text classification setups, i.e. single outcome, multi outcome, and sequence classification problems. Additionally to providing
an end-to-end shareable environment for deep learning experiments, we provide convenience features that take care of repetitive steps,
such as pre-processing, data vectorization and pruning of embeddings. By moving a large part of this boilerplate code into DKPro TC,
the actual deep learning framework code improves in readability and lowers the amount of redundant source code considerably. As
proof-of-concept, we integrate Keras, DyNet, and DeepLearning4J.
Keywords: Reproducibility, Deep Learning, DKPro TC, Keras, Dynet, DeepLearning4J

1. Motivation
Experiments based on deep neural networks pose huge
challenges to reproducibility. An experiment consists not
just of the actual neural network architecture, but also of
a potentially large number of processing steps to prepare
the data. Furthermore, countless network parameters exist,
which can greatly affect a network’s performance. Repro-
duction attempts, thus, lead to a high amount of time spent
with constructing comparable processing setups. Even if
the deep learning code is released, code that applies all pre-
processing steps is often missing. Additional effort is often
necessary to install and configure required third-party tools.

A potential solution to these reproducibility challenges
is DKPro Text Classification (DKPro TC)1 (Daxenberger et
al., 2014). DKPro TC ensures that the same preprocessing
is automatically applied to any (new) dataset and provides
convenience services such as an automatic installation of
third-party tools. DKPro TC experiments are end-to-end
shareable, enabling a quick and easy execution of exper-
iments by other researchers. However, until now, DKPro
TC only supports shallow learning frameworks. In this
work, we present a deep learning extension to DKPro TC
called DeepTC. In addition to improved reproducibility,
DeepTC also eases architecture analysis by moving boiler-
plate code for pruning word embeddings and vectorization
into DeepTC. This leads to a considerably reduced amount
of framework-specific deep learning code. As proof-of-
concept, we integrate the deep learning frameworks Keras2,
Dynet (Neubig et al., 2017) and DeepLearning4J3.

2. DKPro Text Classification (DKPro TC)
We start with an overview of the current state of DKPro
TC and discuss how it helps NLP researchers with their

1https://github.com/dkpro/dkpro-tc.git
2https://keras.io
3https://deeplearning4j.org

daily work. DKPro TC is a Java-based open-source soft-
ware framework build upon the UIMA architecture (Fer-
rucci and Lally, 2004) and the lightweight DKPro Lab
framework (Eckart de Castilho and Gurevych, 2011) for
parameter sweeping experiments. DKPro TC provides an
intermediate software layer that harmonizes the use of var-
ious machine learning frameworks. The same experimental
setup is easily executed with one or more classifiers, which
enables a direct comparison of different implementations.
The user defines feature extractors, which collect the in-
formation the classifier uses for training a model. DKPro
TC transforms the extracted feature information into the
data format required by the respective classifier. Hence,
the user is completely shielded from the intrinsic data for-
mat details required by a certain implementation. Further-
more, DKPro TC allows running experiments as train/test
or cross-validation setups and takes care of all data split-
ting operations, execution, and aggregation of results. Re-
quired pre-processing components are automatically down-
loaded and installed. In summary, DKPro TC allows shar-
ing self-contained and executable experiments with other
researchers.

As of version 0.9.0, DKPro TC supports: Weka (Hall
et al., 2009), LibLinear (Fan et al., 2008), LibSvm (Chang
and Lin, 2011), SvmHmm (Joachims, 2008), and CrfSuite
(Okazaki, 2007) that cover the common machine learning
tasks in NLP, i.e. single outcome, multi-outcome and se-
quence classification.

2.1. Design Goals
DKPro TC is designed around three design goals: (i) repro-
ducibility, (ii) convenience, and (iii) applicability.

Reproducibility is achieved by using only software com-
ponents that are released in public repositories such as
Maven Central. This ensures that software remains avail-
able even if components are no longer maintained. Fur-
thermore, all parametrization details of the experiment, e.g.

2539

https://github.com/dkpro/dkpro-tc.git
https://keras.io
https://deeplearning4j.org


Vectorization
(N-to-1,	N-to-N,	N-to-M) Embedding	Pruning

Interface	to	Deep	Learning	Frameworks

Evaluation

DeepLearning4JDyNetKeras

Record	Software	Versions

Preprocessing
(Tokenization,	part-of-speech	tagging,	parsing,	…)

Feature	Extraction

Interface	to	Shallow	Learning	Frameworks

Weka LibSvm LibLinear CrfSuite SvmHmm

Data	Reader
(CoNLL,	British	National	Corpus,	Brown,	Penn	Treebank,	…)

Word
Embedding

Corpus
DKProTC

DeepTC

Figure 1: Processing Schema for Experiments in DKPro TC

classifier parametrization, features, and configuration of
pre-processing tools, are automatically stored in a DKPro
TC project for sharing the project right away.

Convenience is achieved by (i) easy-to-implement fea-
ture extractors with frequently needed ones being al-
ready pre-defined, and (ii) automatic installation of third-
party components from public repositories. Additionally,
DKPro TC integrates DKPro Core (Eckart de Castilho and
Gurevych, 2014) and thus provides a rich source of tools
such as tokenizers, part-of-speech taggers, or lemmatizers,
which can be added in a plug-and-play fashion as process-
ing component. These tools are automatically downloaded
and installed as Maven artifacts. This provides a high de-
gree of flexibility in terms of experimenting with various
pre-processing tools and picking the best working one for a
certain task. Of course, researchers can always implement
their own UIMA processing components.

Applicability DKPro TC supports all common machine
learning setups related to text classification tasks, i.e. sin-
gle outcome (e.g. sentiment analysis), multi outcome or se-
quence classification (e.g. part-of-speech tagging), and re-
gression (e.g. assessment of text reading difficulty).

2.2. Shallow Architecture
Figure 1 shows a conceptual overview of DKPro TC.

Reader The corpus data is read into DKPro TC by a
reader component. Via DKPro Core dozens of common
NLP formats are supported, for instance CoNLL, TEI, or
Penn Treebank (Marcus et al., 1993).

Preprocessing In this step, an optional pre-processing
can be applied, which might entail tasks such as tokeniza-
tion or part-of-speech tagging.

Feature Extraction The feature extractors are applied to
the data with access to information created during the pre-

processing step. The extracted information is temporarily
stored in an intermediate data format.

Interface to Shallow Learning Frameworks The fea-
ture information is transformed into the data format of the
selected machine learning framework.

Evaluation If test data is provided, the trained model is
applied to this dataset (after running through the same pre-
processing and feature extraction as the train data). Many
commonly used metrics such as accuracy, F-Score or Pear-
son correlation can be computed during evaluation. In case
of cross-validation, aggregated results over all folds are au-
tomatically provided.

3. DeepTC – A Deep Learning Extension
Software focusing on the shallow learning paradigm is not
easily extendible to support the deep learning paradigm.
The conceptual differences between both paradigms make
such an extension challenging, i.e. the shallow paradigm
learns a model from a representation created from human
defined features while the deep paradigm learns a suited
representation by itself. Furthermore, a meaningful exten-
sion must not just work on a technical level, but also sustain
the advantages of taking workload from the user. Conse-
quently, we conducted an analysis of common deep learn-
ing setups in the literature to learn about the challenges to
reproducibility and convenience. This led to the DeepTC
extension shown in Figure 1.

3.1. Format
Many deep learning code releases assume a flat file for-
mat to demonstrate the usage of a new network architec-
ture. The most common format is a whitespace or tabulator
separation of text and labels. This format is quite popular
and wide-spread as it allows a rather easy transformation
of the textual data into an integer representation. Thus, one

2540



Awesome PC! POSITIVE The beautiful tree … DET ADJ NOUN ...
The beautiful car ... DET ADJ NOUN ...

SINGLE OUTCOME (N-TO-1)
SENTIMENT CLASSIFICATION

SEQUENCE (N-TO-N)
PART-OF-SPEECH TAGGING

[Awesome, PC, !]
[The, PC, is, slow]

POSITIVE
NEGATIVE

Τ
Τ

[1, 2, 3]
[4, 2, 5, 6]

[1]
[2]

Τ
Τ

Integer Vectorization

Raw Vectorization
[The, beautiful, tree]
[The, beautiful, car]

[DET, ADJ, NOUN]
[DET, ADJ, NOUN]

Raw Vectorization

Integer Vectorization

Text OutcomesText Outcomes

Text Outcomes

The PC is slow NEGATIVE

[1, 2, 3]
[1, 2, 4]

Τ
Τ

Text Outcomes

[1, 2, 3]
[1, 2, 4]

Τ
Τ

Τ
Τ

Τ
Τ

MULTI OUTCOMES (N-TO-M)
GENRE CATEGORIZATION

[A, murder, series]
[A, dead, student]

[CRIME, MYSTERY]
[CRIME]

Raw Vectorization

Integer Vectorization

Text Outcomes

[1, 2, 3]
[1, 4, 5]

Τ
Τ

Text Outcomes

[1, 2, 3]
[1]

Τ
Τ

Τ
Τ

Τ
Τ

A murder series ... CRIME, MYSTERY,
A dead student … CRIME

Τ
Τ

Figure 2: Vectorization N-to-1, N-to-M and N-to-N

must first transform his data into this flat file format before
the code can be executed. In case of more complex data
formats, such as XML, this leads to considerable additional
effort. This challenge is solved in DKPro TC by the many
data format readers included in DKPro Core. The seamless
integration of DKPro Core allows it to read a large vari-
ety of data formats and access information such as lemmas,
part-of-speech tags, etc. from DKPro TC. This enables a
quick and easy exchange of corpora and data formats. Of
course, own readers for highly specific data formats can be
easily written, too.

3.2. Vectorization
All textual information has to be transformed into a numer-
ical vector representation before it can be provided to the
deep learning framework. This vectorization entails map-
ping words and labels to integer values. When applying a
prototype to unlabelled plain text, the integer values have
to be mapped back to their original label to obtain human
interpretable results. This is a mandatory task that can be
easily automatized. While the general task of vectorization
appears straightforward, its details depend on the kind of
classification task of which we distinguish the three vari-
ants shown in Figure 2:

Single Outcome (N-to-1): In this setting, a single out-
come has to be predicted for a text document with N to-
kens. In classification the outcomes are labels, in case of
regression they are numeric values. Use cases for single
outcome classification are e.g. sentiment analysis or scor-
ing the reading difficulty of a text (regression).

Multi-Outcome (N-to-M): For a text document with N
tokens, M outcomes have to be predicted. For instance,
categorization of books into genres, where a single book
might have more than just one genre.

Sequence (N-to-N): For a text document with N tokens,
an equal amount of N labels has to be predicted. The se-
quence in which the tokens occur is furthermore informa-
tive for predicting the labels. A prominent example is part-
of-speech tagging.

Implementation The user is given control as to whether
a vector is created with textual information (raw vector-
ization) or if the words have already been mapped to an
integer representation (integer vectorization). Integer vec-
torization fits most setups and leads to further reduction
of user-specific preprocessing code as the mapping process
is done automatically by DeepTC. If the network architec-

ture also considers sub-word information, e.g. character- or
byte-level information, integer vectorization would be pre-
mature as the networks requires access to the actual word
forms. For such cases, raw vectorization allows providing
the actual words to the deep learning framework. As trade-
off, the deep learning code has then to take care of map-
ping the raw data to an integer representation. This allows
DeepTC to be flexible for more complex tasks, but still pro-
vide convenience features for common NLP setups.

3.3. Word Embeddings
It is common to use pre-trained word embeddings, which
are often quite large with negative effects on the start-up
time of experiments. As a consequence, embeddings are
usually pruned to contain only words that occur in the vo-
cabulary. Furthermore, in some tasks, words without pre-
trained embedding are either dropped or vectors are ran-
domly initialized instead.

Implementation We provide a processing step in which
the word embedding is pruned to contain only the occurring
vocabulary. The user is given control as to whether words
missing in the embeddings are removed or shall be initial-
ized with a random vector. In case no word embedding is
provided, this step performs no operation.

3.4. Interface to Deep Learning Framework
The prepared data is provided to the deep learning frame-
work. All necessary files are written to disk and the frame-
work code is executed. The file locations are passed as pa-
rameters to the framework code. The framework code is
expected to create a file at a specified location which con-
tains the results of the execution.

Implementation An integration of third-party frame-
works often leads to challenges how to interface with these
frameworks. There might be breaks between programming
environments, for instance operating Python frameworks
from Java, but also breaks between the data representation
in DeepTC and the data format that is expected by a frame-
work. The break between programming environments, i.e.
Java to Python to Java, are tackled by defining a protocol of
data exchange. For each of the three defined classification
tasks, i.e. single outcome, multi-outcome, and sequence
classification, a data format is expected in which the frame-
work code provides the predicted outcomes. This allows
bridging to deep learning frameworks based on non-Java
technologies. The break between data formats is solved by

2541



the vectorization processing step which writes the data to
disc. As non-Java frameworks work internally with their
own data structures, the framework code then can read this
data and wrap the vectorized data into the respective data
format. This leads to a minimal amount of data conversion
overhead that has to take place in the framework code. In
case of Keras, for instance, which is based on Python, the
vectorized data has to be transformed into the NumPy data
type. This defines a simple way of interfacing between dif-
ferent data formats and deep learning environments.

3.5. Software Versions
An important challenge to reproducibility is keeping track
of the software versions that are being used for running an
experiment. Many deep learning frameworks are still under
rapid development and, thus, change quickly with bugs be-
ing fixed and APIs being updated. If code is released, it is
often not reported which software version was used.

For instance for Keras, which depends on a backend
such as TensorFlow, we record not just the Keras version
but also the version of the backend and the NumPy library
as primary data structure. The software version that is
recorded is highly dependent on the respective deep learn-
ing framework. This provides a basic software versioning
record, which can be released with the experimental code.

4. Limitations
The rapid development of deep learning software creates
practical limitations to reproducibility and convenience.

The convenience of automatically installing needed
components is easily provided for Java/Maven-based soft-
ware. For non-Java frameworks, this is not as easily pos-
sible and the task of installing software is delegated to the
user. We would require a method to serialize the deep learn-
ing framework environment into a container that would al-
low deployment on a third-party computer, i.e. in the case
of Keras, which would also entail the respective backend
and their dependencies. A common strategy is to use vir-
tualization software such as Docker (Merkel, 2014). A vir-
tualization container is created that capsules a software en-
vironment, for instance Python with Keras installed, into a
deployable container. At the moment, an automatically cre-
ation of such a virtualization container for an experiment is
not supported by DeepTC, but one can run DeepTC within
such a container if one is prepared beforehand.

A further challenge is to track the names and versions of
all involved components the user has to install to reproduce
an environment. While using a virtualization container as a
black-box environment is convenient, it is often not clear
which exact version of the required software is used in
a certain setup. Furthermore, recording an entire system
configuration setup would lead to an extremely long list of
software components with some being more important than
others to the reproducibility of results. As a compromise,
we record the software versions of the key components, for
instance Keras or NumPy, to create an overview of the used
software versions to run an experiment.

A further limitation occurs if researchers work on unsta-
ble software versions. It is not uncommon that researchers
compile their deep learning software from the latest version

in a source-code repository to make certain features avail-
able, i.e. a bleeding edge version. One would have to record
the exact hash-id of the source-code repository from which
the software was built to enable reproducibility. Detecting
such setups is beyond an automatic detection by DeepTC.

5. Proof of Concept
As proof of concept, we conduct a replication experiment
with all three deep learning frameworks in parallel, and
compare the results to using a shallow learning framework.4

We attempt to reproduce the state-of-the-art results for Part-
of-Speech (PoS) tagging. Our code is publicly available5

and demonstrates the usage of DeepTC for deep learning
experiments.

DeepTC configuration Figure 3 shows the code snippet
for configuring DeepTC for our replication study. Configu-
rations for other (deep learning) classification tasks follow
the same structure.

The first lines define the UIMA data reader: one for the
training data and one for the test data. As a suitable reader
for the WSJ data is already provided by DKPro Core, we
can simply us it as-is in our DeepTC experiment without
any additional effort. After the readers, we define the so
called parameter space which configures the experiment.
Feature mode and learning mode define the nature of the
learning task. In the case of PoS tagging, this is a sequence
classification task where a single label is to be predicted
for each word.6 Python installation, pre-trained word em-
beddings, and user code point to locations in the user’s file
system. The Python path points to the installed Python ver-
sion that shall be used to execute the framework code, i.e.
the one for which the deep learning framework is installed.
In the case of DL4J, which is Java, this parameter is not
necessary. Word embeddings points to the file location of
the pre-trained word embeddings, this parameter is optional
and can be omitted if no pre-trained embeddings are neces-
sary for an experiment. The variable userCode points to
a file which contains the framework code. The seed value
is passed through to the user code to initialize the random
generator in the respective framework with the provided
value7. Integer vectorization is set to true to enable the
automatically mapping of words to integer values.

This parameter space is provided to a train-test ex-
periment object (an alternative would be cross-validation),
which is then executed by the underlying DKPro Lab envi-
ronment. Changing the path of the user code and the ma-
chine learning adapter allows switching between the deep
learning frameworks.

4All used frameworks are part of DKPro TC, which makes it
easy to implement such comparison between multiple classifiers

5https://github.com/Horsmann/
LREC2018-DeepTC

6Other configurations would allow, for instance, a multi-label
classification on full documents rather than classifying single
words in sentences. See Figure 2 which defines the different vec-
torization modes for different classification tasks.

7This ensures reproducibility by using a fixed seed value for
initialization, which leads to the same random numbers being gen-
erated between several executions of the framework code

2542

https://github.com/Horsmann/LREC2018-DeepTC
https://github.com/Horsmann/LREC2018-DeepTC


Figure 3: Configuration of a DeepTC experiment

Experimental setup As training data, we use Wall-
Street-Journal (WSJ) (Marcus et al., 1993) corpus sections
0-18 and test on sections 22-24, which is the usual evalua-
tion data split of this corpus (Collins, 2002). For each deep
learning framework, we implement a plain, bidirectional
Long-Short-Term-Memory (LSTM) network (Hochreiter
and Schmidhuber, 1997; Graves et al., 2005). As the pur-
pose of the experiment is to show that we can execute ar-
bitrary network code within DeepTC and not to obtain the
highest possible results, we use ‘default’ parameter choices
(as much as there is already something like a default in the
field). Our bi-LSTM uses 100 hidden units, the output layer
applies a softmax function, and we use cross-entropy as loss
function during model training. We use the 64-dimensional
Wikipedia word embeddings by Al-Rfou et al. (2013). We
train 20 epochs with a learning rate of 0.1 using statistical
gradient decent.

We compare the deep learning results to the results of
a shallow learning PoS tagger that we also implement with
DKPro TC. We use Conditional Random Field (CRF) (Laf-
ferty et al., 2001) for implementing this shallow classifier,
which is based on the implementation by Okazaki (2007)
that is provided in DKPro TC. We use a minimalistic fea-
ture set of a tri-gram word window as local word context

and provide the cluster-id of a the word in focus if it is con-
tained in a Brown (Brown et al., 1992) word cluster, which
was created from 100 million tokens of Twitter messages.
The information obtained by Brown clustering is compara-
ble to the information contained in the word embeddings
that are used in the neural networks, i.e. both encode dis-
tributional knowledge. It is common to also use character
ngrams, which we excluded in this case to sustain compa-
rability to the neural network setup, which only use word-
level information.

Results Table 1 shows that the different classifiers reach
comparable results. Keras and DyNet reach the same re-
sult, which is not surprising as they both use Python and
the NumPy library. The Java based Deeplearning4J gives
slightly lower results. As we are using exactly the same
setup and configuration, this is already a finding which
could not have been easily achieved without DeepTC. Fur-
thermore, the neural network results are competitive to the
96.5% by Brants (2000) and the 97.6% by Choi (2016).

DeepTC allowed us to avoid a large part of the repetitive
work, and limited the manual effort for writing framework-
specific code to defining the network architecture and few
data-type wrapping method calls. Furthermore, the cre-
ated experiments are immediately shareable with other re-

2543



Framework Acc (%)

DeepTC
Deeplearning4j 95.8
DyNet 96.4
Keras 96.4

ShallowTC CRF 94.2

Table 1: Accuracy on WSJ sections 22-24 using shallow
and deep learning classifiers in DKPro TC

searchers to allow a quick and easy replication of our ex-
periments.

6. Related Work
There are several software projects that aim at providing
(shallow) machine learning tools over a common inter-
face, e.g. ClearTK (Ogren et al., 2008), NLTK (Bird et al.,
2009), Mallet (McCallum, 2002), Scikit-learn (Pedregosa
et al., 2011), or Weka (Hall et al., 2009). These projects
provide building blocks for creating text classification ex-
periments, but still require a considerable amount of pro-
gramming by the user. Most similar to DKPro TC are
ClearTK and Weka. ClearTK is also UIMA-based and pro-
vides a similar middle-layer for defining feature extractors
and shares many machine learning tools with DKPro TC.
Weka provides many classifiers that work with a Weka-
specific data format. An abstraction layer that extracts cer-
tain feature values from a dataset is not provided, and the
user is responsible for compiling a file in the Weka data
format. None of these projects intends to provide a self-
contained environment.

There are many deep learning frameworks such as
Tensorflow, Theano, DyNet, DeepLearning4J, Torch (Col-
lobert et al., 2002), or Chainer (Tokui et al., 2015) to
name just a few. Software such as Keras, Lasagne (Diele-
man et al., 2015) or Fuel&Blocks (van Merriënboer et al.,
2015) provide a simplified, building-block like interface to
an underlying, low-level deep learning framework such as
Theano. Data loading capabilities are included to some ex-
tent for instance for the well-known MNIST (Lecun et al.,
1998) dataset with hand-written digits for image processing
tasks. Furthermore, there are approaches to analyze what a
neural network actually learns when applied to image and
text processing tasks (Yosinski et al., 2015; Li et al., 2016).
The deep learning software, thus, provides means to build
prototypes quickly, but provides no means to ensure repli-
cability by a third-party researcher. This means that all pro-
cessing components must be manually provided and config-
ured by the researcher who wants to run a certain prototype.

Hence, the DeepTC extension fills a gap in the soft-
ware landscape, which will improve reproducibility of deep
learning experiments.

7. Conclusion
We presented DeepTC, a deep learning extension of the
NLP experiment framework DKPro TC. We discussed the
current state of DKPro TC, which is limited to shallow
learning frameworks and discussed the need for a soft-
ware environment that also supports reproducibility for

deep learning experiments. As frequent challenges to re-
production of deep learning experiments, we identified in-
complete data preparation steps, embedding preparations
tasks, and the vectorization of data into an integer repre-
sentation. DeepTC takes care of those steps and allows to
share a self-contained experiment to improve reproducibil-
ity. DKPro TC installs necessary pre-processing tools au-
tomatically and applies all processing steps to any dataset.
Furthermore, by performing the data preparation inside
DKPro TC, the high code duplication of typical deep learn-
ing code is avoided, which leads to a higher code readability
of the actual network code. As proof of concept, we imple-
mented support for three deep learning frameworks: Keras,
DyNet, and DeepLearning4J. In a replication experiment,
we showed that this setup allows to replicate state-of-the-
art result and demonstrated the usage of DeepTC.

Acknowledgement
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) under grant No. GRK 2167, Research
Training Group “User-Centred Social Media”.

8. Bibliographical References
Al-Rfou, R., Perozzi, B., and Skiena, S. (2013). Polyglot:

Distributed Word Representations for Multilingual NLP.
In Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 183–192,
Sofia, Bulgaria. ACL.

Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-
guage Processing with Python. O’Reilly Media Inc.

Brants, T. (2000). TnT: A Statistical Part-of-speech Tag-
ger. In Proceedings of the Conference on Applied Natu-
ral Language Processing, pages 224–231, Seattle, Wash-
ington. Association for Computational Linguistics.

Brown, P. F., DeSouza, P. V., Mercer, R. L., Pietra, V. J. D.,
and Lai, J. C. (1992). Class-Based n-gram Models of
Natural Language. Computational Linguistics, 18:467–
479.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A Library
for Support Vector Machines. 2(3):1–27.

Choi, J. D. (2016). Dynamic Feature Induction: The Last
Gist to the State-of-the-Art. In Proceedings of the Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages 271–
281, San Diego, California. Association for Computa-
tional Linguistics.

Collins, M. (2002). Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1–8, Philadelphia, USA. Asso-
ciation for Computational Linguistics.

Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch:
a modular machine learning software library. Technical
Report IDIAP-RR 02-46, IDIAP.

Daxenberger, J., Ferschke, O., Gurevych, I., and Zesch,
T. (2014). DKPro TC: A Java-based Framework for
Supervised Learning Experiments on Textual Data. In

2544



Proceedings of ACL: System Demonstrations, pages 61–
66, Baltimore, Maryland. Association for Computational
Linguistics.

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby,
S. K., Nouri, D., Maturana, D., Thoma, M., Battenberg,
E., Kelly, J., Fauw, J. D., Heilman, M., de Almeida,
D. M., McFee, B., Weideman, H., Takács, G., de Rivaz,
P., Crall, J., Sanders, G., Rasul, K., Liu, C., French,
G., and Degrave, J. (2015). Lasagne: First release.
http://dx.doi.org/10.5281/zenodo.27878.

Eckart de Castilho, R. and Gurevych, I. (2011). A
Lightweight Framework for Reproducible Parameter
Sweeping in Information Retrieval. In Proceedings of
the Workshop on Data infrastructurEs for Supporting In-
formation Retrieval Evaluation, pages 7–10, New York,
NY, USA.

Eckart de Castilho, R. and Gurevych, I. (2014). A broad-
coverage collection of portable NLP components for
building shareable analysis pipelines. In Proceedings
of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT, pages 1–11, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin City
University.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). Liblinear: A Library for Large Linear
Classification. Journal of Machine Learning Research,
9:1871–1874.

Ferrucci, D. and Lally, A. (2004). UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering, 10(3-4):327–348.

Graves, A., Fernández, S., and Schmidhuber, J. (2005).
Bidirectional LSTM Networks for Improved Phoneme
Classification and Recognition. In Proceedings of the
15th International Conference on Artificial Neural Net-
works: Formal Models and Their Applications - Vol-
ume Part II, pages 799–804, Warsaw, Poland. Springer-
Verlag.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA Data
Mining Software: An Update. 11:10–18.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.

Joachims, T. (2008). SvmHmm: Sequence Tag-
ging with Structural Support Vector Machines.
https://www.cs.cornell.edu/People/
tj/svm_light/svm_hmm.html.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proceed-
ings of the Eighteenth International Conference on Ma-
chine Learning, pages 282–289, San Francisco, CA,
USA.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2016). Vi-
sualizing and Understanding Neural Models in NLP. In
Proceedings of the Conference of the North American

Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 681–691,
San Diego, California, June. Association for Computa-
tional Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
(1993). Building a Large Annotated Corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):313–330.

McCallum, A. K. (2002). MALLET: A
Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu.

Merkel, D. (2014). Docker: Lightweight Linux Contain-
ers for Consistent Development and Deployment. Linux
Journal, 2014(239), March.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Am-
mar, W., Anastasopoulos, A., Ballesteros, M., Chiang,
D., Clothiaux, D., Cohn, T., Duh, K., Faruqui, M., Gan,
C., Garrette, D., Ji, Y., Kong, L., Kuncoro, A., Ku-
mar, G., Malaviya, C., Michel, P., Oda, Y., Richardson,
M., Saphra, N., Swayamdipta, S., and Yin, P. (2017).
DyNet: The Dynamic Neural Network Toolkit - Techni-
cal Report.

Ogren, P. V., Wetzler, P. G., and Bethard, S. J. (2008).
ClearTK: A UIMA Toolkit for Statistical Natural Lan-
guage Processing. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC).

Okazaki, N. (2007). CRFsuite: A fast implementa-
tion of Conditional Random Fields. http://www.
chokkan.org/software/crfsuite/.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine Learning in Python. The
Journal of Machine Learning Research, 12.

Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015).
Chainer: a Next-Generation Open Source Framework for
Deep Learning. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Twenty-ninth An-
nual Conference on Neural Information Processing Sys-
tems (NIPS).

van Merriënboer, B., Bahdanau, D., Dumoulin, V.,
Serdyuk, D., Warde-Farley, D., Chorowski, J., and
Bengio, Y. (2015). Blocks and Fuel: Frame-
works for deep learning. CoRR, abs/1506.00619.
http://arxiv.org/abs/1506.00619.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson,
H. (2015). Understanding Neural Networks Through
Deep Visualization. In Deep Learning Workshop, Inter-
national Conference on Machine Learning (ICML).

2545

http://dx.doi.org/10.5281/zenodo.27878
https://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html
https://www.cs.cornell.edu/People/tj/svm_light/svm_hmm.html
http://mallet.cs.umass.edu
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
http://arxiv.org/abs/1506.00619

	Motivation
	DKPro Text Classification (DKPro TC)
	Design Goals
	Shallow Architecture

	DeepTC – A Deep Learning Extension
	Format
	Vectorization
	Word Embeddings
	Interface to Deep Learning Framework
	Software Versions

	Limitations
	Proof of Concept
	Related Work
	Conclusion
	Bibliographical References

