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Abstract
Classifying research grants into useful categories is a vital task for a funding body to give structure to the portfolio for analysis,
informing strategic planning and decision-making. Automating this classification process would save time and effort, providing
the accuracy of the classifications is maintained. We employ five classification models to classify a set of BBSRC-funded research
grants in 21 research topics based on unigrams, technical terms and Latent Dirichlet Allocation models. To boost precision, we
investigate methods for combining their predictions into five aggregate classifiers. Evaluation confirmed that ensemble classification
models lead to higher precision. It was observed that there is not a single best-performing aggregate method for all research
topics. Instead, the best-performing method for a research topic depends on the number of positive training instances available for
this topic. Subject matter experts considered the predictions of aggregate models to correct erroneous or incomplete manual assignments.

Keywords: research grant classification, document classification, topic models

1. Introduction

On a worldwide scale, funding bodies fund thousands of
research grants per year. In the United Kingdom, national
funding bodies are mostly organised by discipline in re-
search councils. For example, the Biotechnology and Bi-
ological Sciences Research Council (BBSRC) funds re-
search in biotechnology and biology, the Medical Research
Council (MRC) funds research in medicine, the Engi-
neering and Physical Sciences Research Council (EPSRC0
funds research in engineering and physical sciences etc.
BBSRC processes, on average, over 1600 research grant
applications per year.
Classifications give structure to research portfolios, en-
abling timely, accurate portfolio analysis, to inform strate-
gic planning and decision making, whilst also assisting in
the process of peer review. Currently classification is a
manual and subjective process taking considerable time and
effort. Being able to assign classifications automatically
will enable greater accuracy, consistency and timelines and
has the potential to be used across a broad range of funding
mechanisms. In addition, automatic classification offers the
potential to amend the set of topics flexibly. The efficiency
savings can free up capacity to perform increasingly sophis-
ticated analyses. However, automatic assignment is only
meaningful if the associated error rate is very limited, even
if no assignment can be produced for some grants. Increas-
ing classification accuracy requires that enough manually
annotated data is available, to avoid error propagation and
ensure that the resulting classification model will be able to
generalise. The current study showed that automatic classi-
fications were useful in correcting manual assignments.
In this study, we address the task of classifying grants into

research topics. We combine a variety of classifiers whose
features encode the words and technical terms in the de-
scription of funded grants as well as Latent Dirichlet Allo-
cation (LDA) topics. In particular, for each research topic
we train five classification models based on Support Vector
Machines (SVMs) that employ as features different combi-
nations of words, techincal terms, LDA topics (Blei et al.,
2003) and link LDA topics (Erosheva et al., 2004). LDA
topics are used as a means of reducing sparsity in the space
of words and technical terms.

Combining classifiers aims at boosting precision. The pre-
dictions of the five basic classification models are combined
using five voting-based aggregate classifiers. We investi-
gate whether avoiding to produce final predictions for in-
stances on which the basic classification models disagree
leads to more accurate final predictions.

As evaluation data we use a set of freely available descrip-
tions of BBSRC funded research grants to be assigned to
21 research topics. Combining diverse classifiers proves to
be beneficial towards increasing classification performance
without leaving many instances unclassified. The precision
achievable by combined classification models for a research
topic depends on the number of positive training instances
available for this topic.

The remaining of the paper is structured as follows: section
2. briefly reviews related work. In section 3., we present
five basic SVM classifiers based on SVMs and LDA mod-
els. Section 5. discusses our experimentation with the basic
classifiers and evaluation results. It presents five aggregate
classifiers and the evaluation results of applying them to the
dataset at hand. Finally, section 6. concludes the paper and
summarises futore work dimensions.
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field value
reference number BB/C000072/1

title Understanding the role and regulation of cation homeostasis during citric acid stress in the
spoilage yeast Saccharomyces cerevisiae

abstract

Yeasts are able to spoil foods and beverages because they have evolved mechanisms that allow
them to adapt and grow under the extreme environmental conditions, such as acid pH, that are
often used to preserve foods and drinks. Citric acid (E330) and its salts are used extensively
in the food and beverage industry to control pH and act as preservatives to prevent microbial
growth, but little is known about how yeasts adapt and grow in the presence of the acid...

objectives

We have identified three regulatory proteins, the protein kinases Hog1p, Sky1p and Ptk2p,
whose function is required for optimal adaptation of spoilage yeast to the inhibitory effect of
citric acid. Thus, the overall aim of this research will be to; a) identify the other component
proteins of the signalling pathways used by Hog1p, Sky1p and Ptk2p; b) determine whether
Hog1p, Sky1p and Ptk2p interact, or are components of the same, or different, signalling path-
ways; and, b) identify what proteins Hog1p, Sky1p and Ptk2p interact with, and thus regulate,
to switch on the adaptive mechanisms that allow the yeast to grow in the presence of citric acid
stress. To fulfil these aims we will ...

initiative Proteomics and Cell Function (PCF)
holding institution University of St. Andrews
holding department Biology
principal investigator Dr Peter Coote
research topics MFS, MIC

Table 1: Example grant description

2. Related work
LDA models have been applied extensively for a variety of
purposes, e.g. modelling dependencies in text (Griffiths et
al., 2005), matrix factorisation (Agarwal and Chen, 2010),
decomposing biodiversity data (Valle et al., 2014), iden-
tifying musical key-profiles (Hu and Saul, 2009) and cy-
ber security (Aswani et al., 2015). Similarly to the present
study, Torkkola (2003) used LDA models to reduce the
dimensionality of token representation. Moreover, LDA
topics have been used as classification features in Lee et
al. (2015).
Semi-supervised LDA models have been used for classify-
ing documents, rating movies from reviews, predicting the
popularity of webpages and for image classification and an-
notation (Mcauliffe and Blei, 2008; Lacoste-Julien et al.,
2009; Wang et al., 2009). Using semi-supervised LDA
models for the current task is a matter of future work.

3. Classification Models
We build classification models for assigning a grant de-
scription to one or more predefined research topics. A grant
description is structured in fields, as shown in Table 1. We
hypothesise that field content similarities between grants
correspond to thematic similarities and thus should be the
basis for assigning grants to research topics. As our base-
line classification model, we employ a Support Vector Ma-
chine (SVM) trained on features representing words in the
textual fields of the grant descriptions, i.e. title, abstract and
objectives.
Analysing the results and errors of the baseline experiment
revealed that frequently grant descriptions in the same re-
search topic do not share many words, due to the limited
number of instances in the data set. The number of funded
grants over the years is significant in terms of research but
marginally sufficient to train a machine learner. To address

# abbreviation research topic
1 AGE ageing
2 AH animal health
3 AW animal welfare
4 CS crop science
5 DH diet and health
6 EG bioenergy
7 IB industrial biotechnology
8 IMM immunology
9 MFS microbial food safety
10 MIC microbiology
11 NS neuroscience and behaviour
12 PHM pharmaceuticals
13 PS plant science
14 REG regenerative biology

15 RRR replacement, reduction and
refinement of animals in research

16 SB systems biology
17 SC stem cells
18 SS soil science
19 STR structural biology
20 SYN synthetic biology
21 TD technology development

Table 2: Research topics

sparsity, we employed LDA models (Blei et al., 2003; Grif-
fiths and Steyvers, 2004; Torkkola, 2003) to assign prob-
abilistically grant descriptions to a predefined number of
topics in an unsupervised manner based on content similar-
ity. Using LDA topic features to represent grants addresses
sparsity, because the LDA topics are less than the distinct
words.
A second analysis outcome is that for some grants it is
important to consider fields other than the free text ones.
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For example, the principal investigator’s name (table 1) can
provide hints for classifying a grant, given that a researcher
usually investigates a small number of areas and applies
for follow-up grants. This extra Information can be ac-
commodated in LDA models. The standard LDA model
assumes the same distribution for all features. However, in-
formation of different fields is not equally important for the
task. To cover this requirement, we use the link LDA model
(Erosheva et al., 2004), which allows considering different
views to describe a single grant description. We employ
separate views for the free text fields, the award details and
the principal investigator’s name.
Thirdly, although free text fields often contain multiword
technical terms, they are not parts of the feature represen-
tation. Technical terms, as well-known/common phrases
(concepts), occur naturally in text and are often shared be-
tween grant descriptions. Complimentary to words, terms
are used as features in the standard LDA model or as an ex-
tra view in the link LDA model. We synthesise the above
components into the classifiers:
SVM: A SVM trained on words in the free text fields,

i.e. title abstract and objectives (table 1).
LDA: A SVM trained on the topic distribution of an LDA

that considers words in the free text fields.
LDA + terms: A SVM trained on the topic distribution of

an LDA that considers word and multiword terms in
the free text fields.

link LDA: A SVM trained on the topic distribution of a
link LDA that collectively considers the following
views: (a) free text fields, (b) award details, i.e. ini-
tiative, holding institution and department, and (c)
principal investigator’s name.

link LDA + terms: A SVM trained on the topic distribu-
tion of a link LDA that considers the views above
plus a view for multiword terms extracted from the
free text fields.

4. Data
The dataset consists of 5,462 descriptions that have been
awarded by the BBSRC between 2008 and 2013 or with
annual spend between 2008/09 and 2013/14. For joint or
transferred grants, only one grant per group was included
in the dataset: the lead grant for joint grants or the original
grant for transferred grants. 3,924 grants have been manu-
ally assigned to one or more research topics in table 2 by
subject matter experts. These grants were used as training
data while the remaining 1,538 descriptions comprise the
test data. Manual annotations of test set descriptions were
provided at a later stage for evaluation. The description of
each grant in these two sets consists of the fields shown
in table 1. The abstract, the objectives and the initiative
under which the grant was funder may be empty. Table
3 shows the numbers and associated percentages of posi-
tive and negative instances per research topic in the training
data.

5. Experiments
We evaluate five classification models, introduced in sec-
tion 3., and we investigate prediction ensembles that can

research positive instances negative instances
topic % # % #
MIC 28.9 444 71.1 1094
PS 22.4 345 77.6 1193
NS 14.6 225 85.4 1313
TD 14.4 221 85.6 1317
CS 13.7 211 86.3 1327

STR 13.6 209 86.4 1329
AH 12.5 193 87.5 1345

IMM 11.1 170 88.9 1368
IB 8.7 134 91.3 1404

AGE 5.0 77 95.0 1461
SB 4.8 74 95.2 1464

PHM 4.1 63 95.9 1475
DH 4.0 62 96.0 1476

SYN 4.0 62 96.0 1476
SC 3.4 53 96.6 1485
EG 2.5 39 97.5 1499

MFS 2.5 38 97.5 1500
REG 2.2 34 97.8 1504
SS 2.1 32 97.9 1506
AW 1.2 19 98.8 1519
RRR 1.0 16 99.0 1522

Table 3: Positive and negative instance counts and percent-
ages per research topic sorted in order of decreasing posi-
tive instances.

boost performance. In the pre-processing stage, the free
text fields of grant descriptions, i.e. title abstract and ob-
jectives and the fields describing award details, i.e. ini-
tiative, holding institution and department (table 1), were
sentence split and tokenised. Technical terms were ex-
tracted using TerMine1 (Frantzi et al., 2000). For our ex-
periments, the LibLinear SVM implementation2 (Fan et al.,
2008) was used, while the LDA model (Blei et al., 2003)
and link LDA model (Erosheva et al., 2004) were imple-
mented from scratch and parameters were set as follows:
alpha = beta = 0.5. LDA models were trained for 2000
iterations to induce 500 topics. As evaluation measures, we
employ precision (P), recall (R) and F-score (F1):

P =
TP

TP + FP
, R =

TP

TP + FN

F1 = 2
(
P−1 +R−1

)−1
TP, FP and FN stand for true positives, false positives and
false negatives, respectively.
As this study is part of a collaboration of the National Cen-
tre for Text Mining (NaCTeM)3 and the BBSRC, to eval-
uate the classification models of section 3. we followed a
procedure similar to the SemEval series4. Initially, the BB-
SRC provided fully annotated training data and unanno-
tated test data. Classification models were trained on the

1nactem.ac.uk/software/termine
2In particular, L2-regularized L2-loss support vector classi-

fication (dual) solver was employed, with parameter settings:
C = 1, eps = 0.01, p = 0.1.

3nactem.ac.uk
4alt.qcri.org/semeval2015
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Classification model
research SVM LDA LDA + terms link LDA link LDA + terms

topic P R F1 P R F1 P R F1 P R F1 P R F1

MIC 91.9 74.6 82.3 87.9 72.1 79.2 86.5 73.9 79.7 85.6 73.9 79.3 89.1 73.4 80.5
PS 97.4 87.3 92.1 94.2 84.1 88.8 94.5 84.9 89.5 93.1 82.6 87.6 95.4 78.0 85.8
NS 99.0 85.8 91.9 98.0 86.7 92.0 97.0 87.6 92.1 98.0 85.3 91.2 96.6 88.4 92.3
TD 77.8 72.9 75.2 80.0 76.0 78.0 73.3 73.3 73.3 77.9 70.1 73.8 75.7 74.7 75.2
CS 88.7 77.7 82.8 89.3 75.7 81.8 85.4 74.9 79.8 85.3 71.6 77.8 88.2 74.4 80.7

STR 91.1 78.0 84.0 87.3 72.3 79.1 86.5 76.6 81.2 84.8 74.6 79.4 87.7 71.3 78.6
AH 93.1 77.2 84.4 92.3 80.8 86.2 94.1 82.4 87.9 92.0 77.7 84.3 89.0 79.3 83.8

IMM 94.5 71.2 81.2 90.8 69.4 78.7 90.9 76.5 83.1 84.2 68.8 75.7 87.3 72.9 79.5
IB 87.0 64.9 74.4 70.3 72.4 71.3 81.1 76.9 78.9 83.2 73.9 78.3 79.7 70.2 74.6

AGE 92.7 49.4 64.4 83.3 45.5 58.8 85.7 39.0 53.6 81.3 33.8 47.7 87.9 37.7 52.7
SB 81.9 48.7 61.0 74.4 43.2 54.7 81.3 52.7 63.9 76.2 43.2 55.2 76.2 43.2 55.2

PHM 87.5 22.2 35.4 87.5 33.3 48.3 74.4 46.0 56.9 76.7 36.5 49.5 77.8 33.3 46.7
DH 95.9 75.8 84.7 86.3 71.0 77.9 91.8 72.6 81.1 84.9 72.6 78.3 85.7 77.4 81.4

SYN 96.6 45.2 61.5 93.9 50.0 65.3 93.1 43.6 59.3 97.1 53.2 68.8 90.0 58.1 70.6
SC 100.0 58.5 73.8 86.7 73.6 79.6 92.3 67.9 78.3 84.6 62.3 71.7 79.6 66.0 72.2
EG 90.0 46.2 61.0 78.6 56.4 65.7 78.1 64.1 70.4 81.3 66.7 73.2 67.7 59.0 63.0

MFS 92.9 34.2 50.0 61.1 29.0 39.3 76.2 42.1 54.2 84.2 42.1 56.1 80.0 21.1 33.3
REG 92.3 35.3 51.1 77.8 41.2 53.9 70.0 41.2 51.9 82.4 41.2 54.9 83.3 29.4 43.5
SS 90.5 59.4 71.7 77.8 65.6 71.2 88.9 75.0 81.4 81.5 68.8 74.6 87.5 65.6 75.0
AW 80.0 21.1 33.3 75.0 15.8 26.1 85.7 31.6 46.2 66.7 21.1 32.0 85.7 31.6 46.2
RRR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

average 86.7 56.5 66.5 79.6 57.8 65.5 81.3 61.1 68.7 80.0 58.1 66.2 80.5 57.4 65.3

Table 4: Results per classification model and research topic (%). Scores greater than 85% or less than 50% are printed in
bold or italics, respectively. Research topics are sorted in order of decreasing positive instances (see Table 3).

training set to produce predictions for the grant descrip-
tions in the test set. Each classification model was trained
for each research topic. Then, each test grant description
was presented to each of these models and produced five
estimates for each research topic. Finally, the BBSRC dis-
closed the gold-standard assignments of test grant descrip-
tions to research topics.
Table 4 presents evaluation results per classification model
and research topic. The best performing models are SVM
and LDA + terms. In some cases, the remaining 3 mod-
els achieve comparable or better results. For example, link
LDA + terms achieved the maximum F-score for the NS
topic. For some research topics, e.g. AW, MFS and RRR,
all five models achieved very low results. The reason is
sparsity of positive instances for these topics, as shown in
table 3. For RRR the results are zero because none of the
classifiers identified true positives.
Automatic assignments are useful for decision making only
if they are very precise. Thus, we investigate ways of com-
bining the predictions of the five classification models, to
increase precision. Cross-verifying predictions of grant de-
scriptions to research topics, lowers the possibility of ac-
cepting a prediction. However, accepted predictions are ex-
pected to be more accurate than any of the five models. We
consider the following methods:
5 agreements: we accept a positive prediction if all five

classification models agree.
4 positives: we accept a positive prediction if at least four

models agree.
3 positives: we accept a positive prediction if at least

three models agree.
2 positives: we accept a positive prediction if at least two

models agree.
1 positive: we accept a positive prediction if produced by

one or more models.

In all methods, we accept a negative prediction if all five
models agree. These methods do not produce any predic-
tion for some grant descriptions, e.g. if the five models do
not agree when using 5 agreements.
Table 5 shows evaluation scores of the five ensemble meth-
ods for each of the 21 research topics. It can be observed
that the stricter the aggregate algorithm is, the higher preci-
sion and the lower recall it achieves. However, there is not a
particular aggregate model that achieves the best balance in
this trade-off between precision and recall, i.e. the highest
F-score, for all research topics.
As mentioned previously, all aggregate methods except for
1 positive are lossy, i.e. do not produce predictions for all
test instances. Table 6 enlightens this issue, by showing
the percentages of omitted instances over the total number
of training instances for each aggregation method and for
each research topic. The results in table 5 confirm the in-
crease of precision at the expense of a small percentage of
grant descriptions for which no prediction was produced
(see column omitted instances). We observe that the stricter
an aggregation method is, the more lossy it is. As table 6
is sorted in order of decreasing positive training instances
available for a research topic, we observe that topics with
more positive training instances tend to be more lossy. This
is probably because for topics with small numbers of pos-
itive training instances the five basic classifiers tend to be
very strict and as a result agree with each other more often.
Table 5 shows that the methods 5 agreements and 4 posi-
tives are the best performing for many research topics but
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Classification ensemble model
research 5 agreements 4 positives 3 positives 2 positives 1 positive

topic P R F1 P R F1 P R F1 P R F1 P R F1

MIC 99.2 81.0 89.2 94.4 84.4 89.1 91.8 85.7 88.6 87.0 86.8 86.9 77.3 87.4 82.0
PS 100.0 90.8 95.2 97.9 91.6 94.7 95.7 92.1 93.9 94.2 92.5 93.3 89.1 92.8 90.9
NS 100.0 93.1 96.4 99.5 93.6 96.4 98.5 93.8 96.1 97.6 94.0 95.8 93.8 94.2 94.0
TD 93.1 83.6 88.1 86.5 86.0 86.2 81.4 87.4 84.3 74.3 88.2 80.6 63.8 89.1 74.3
CS 96.8 82.1 88.8 94.9 85.1 89.8 88.5 86.1 87.3 87.9 87.1 87.5 76.5 87.7 81.7

STR 98.3 88.5 93.1 92.7 90.3 91.5 89.7 91.2 90.4 84.1 92.1 87.9 80.2 92.8 86.0
AH 97.7 89.0 93.1 96.5 89.6 92.9 94.6 90.8 92.6 91.7 91.2 91.5 83.9 91.7 87.6

IMM 99.0 81.9 89.6 93.3 84.1 88.5 92.4 85.2 88.6 88.7 86.5 87.6 80.5 87.7 83.9
IB 94.0 85.1 89.4 87.5 88.4 88.0 84.8 89.6 87.2 79.9 91.3 85.2 67.2 91.8 77.6

AGE 100.0 35.0 51.9 100.0 46.9 63.9 88.6 54.4 67.4 88.6 60.0 71.6 76.1 66.2 70.8
SB 100.0 50.0 66.7 93.6 52.7 67.4 85.7 53.6 65.9 71.7 59.4 65.0 64.9 64.9 64.9

PHM 100.0 19.4 32.4 100.0 35.9 52.8 91.3 45.7 60.9 85.3 53.7 65.9 64.4 60.3 62.3
DH 97.1 82.9 89.5 93.3 85.7 89.4 92.2 87.0 89.5 86.4 87.9 87.2 80.9 88.7 84.6

SYN 100.0 54.3 70.4 100.0 59.0 74.2 96.8 65.2 77.9 94.9 69.8 80.4 86.8 74.2 80.0
SC 100.0 74.3 85.3 96.9 77.5 86.1 92.1 79.6 85.4 84.4 80.9 82.6 77.2 83.0 80.0
EG 93.8 65.2 76.9 94.7 69.2 80.0 88.5 74.2 80.7 75.0 77.1 76.1 63.3 79.5 70.5

MFS 100.0 16.7 28.6 100.0 34.8 51.6 92.9 46.4 61.9 94.4 53.1 68.0 59.0 60.5 59.7
RE 100.0 33.3 50.0 100.0 39.1 56.3 87.5 50.0 63.6 77.8 50.0 60.9 66.7 58.8 62.5
SS 94.4 77.3 85.0 95.3 80.0 87.0 87.5 80.8 84.0 81.5 81.5 81.5 75.0 84.4 79.4
AW 75.0 21.4 33.3 80.0 26.7 40.0 80.0 26.7 40.0 80.0 26.7 40.0 80.0 42.1 55.2
RRR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

average 98.1 79.4 87.8 94.6 82.1 87.9 91.2 83.6 87.2 87.0 84.8 85.9 78.4 86.0 82.0

Table 5: Results per classification ensemble model and research topic (%). Scores greater than 85% or less than 50% are
printed in bold or italics, respectively. Research topics are sorted in order of decreasing positive instances (see Table 3).
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MIC 17.0 11.8 8.9 5.1 0.0
PS 7.4 5.1 3.6 2.1 0.0
NS 3.3 2.3 1.8 1.0 0.0
TD 11.6 9.0 6.8 4.4 0.0
CS 7.7 5.5 3.9 2.8 0.0

STR 8.1 6.0 4.4 2.2 0.0
AH 5.1 4.4 2.9 2.0 0.0

IMM 5.8 4.3 3.5 2.2 0.0
IB 7.5 5.7 4.6 2.5 0.0

AGE 3.5 2.9 2.1 1.5 0.0
SB 3.1 2.8 2.5 1.4 0.0

PHM 3.5 2.9 2.3 1.6 0.0
DH 2.2 1.5 1.1 0.6 0.0

SYN 2.2 2.0 1.4 0.9 0.0
SC 2.0 1.6 1.2 0.8 0.0
EG 2.2 2.0 1.5 0.9 0.0

MFS 2.3 2.0 1.6 1.4 0.0
RE 1.5 1.4 0.9 0.8 0.0
SS 1.2 1.0 0.8 0.6 0.0
AW 0.4 0.3 0.3 0.3 0.0
RRR 0.0 0.0 0.0 0.0 0.0

average 4.6 3.6 2.7 1.7 0.0

Table 6: Percentage of omitted instances per classification
ensemble model and research topic (%). Research topics
are sorted in order of decreasing positive instances (see Ta-
ble 3).

not for all. To investigate this further, we computed sep-
arate average scores for research topics where the aggre-
gate methods perform well or not so well. In particular,
as shown in table 8 we computed average scores for re-
search topics for which the 5 agreements method achieved
an F-score higher than 75%, i.e. AH, CS, DH, EG, IB, IMM,
MIC, NS, PS, SB, SC, SS, STR and TD. Average scores for
the remaining research topics are illustrated in table 8. We
observe that the best performing aggregate method for the
high-performance research topics is 5 agreements, while
the best performing method for the low-performance re-
search topics is 2 positives. Due to the sparsity of positive
training instances for the low-performance research top-
ics (table 3) the classification models rarely produce pos-
itive predictions. Thus, requiring a positive prediction from
three, four or five models is a very strict criterion, affecting
performance negatively.
Disagreements between manual assignments and automatic
predictions were studied by subject matter experts. Analy-
sis revealed that some manual assignments were wrong or
incomplete, decreasing the error rate from 2.04% to 1.38%,
when using the 5 agreements combination method and av-
eraging over all research topics.

6. Conclusion & Future Work
We investigated the task of classifying funded grants de-
scriptions into research topics. The task is currently done
manually. A precise automatic solution would speed up the
process of informing decision makers, while minimising
the cost. We investigated five classification models based
on feature representations that consist of words, terms and
LDA-induced topics. To boost precision, we combined pre-
dictions using five different methods. We concluded that
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Method P R F1
omitted

instances
5 agreements 98.1 84.4 90.7 6.0
4 positives 94.4 86.5 90.2 4.5
3 positives 91.2 87.5 89.3 3.4
2 positives 86.9 88.4 87.6 2.0
1 positive 78.4 89.1 83.4 0.0

Table 7: Results per prediction combination method for
the research topics AH, CS, DH, EG, IB, IMM, MIC,NS,
PS,SB, SC, SS, STR, TD (%).

Method P R F1
omitted

instances
5 agreements 98.7 34.4 51.0 2.1
4 positives 97.3 42.5 59.1 1.8
3 positives 89.9 49.0 63.4 1.4
2 positives 84.4 54.4 66.2 1.0
1 positive 70.5 61.1 65.5 0.0

Table 8: Results per prediction combination method for the
research topics AGE, AW, MFS, PHM, REG, RRR, SB,
SYN (%).

accepting a prediction only when five classification models
agree achieved high precision for research topics for which
adequate positive instances are available. BBSRC experts
used the results to improve manual assignments.
In the future, we will pursue further precision increase, es-
pecially for research topics associated with very few pos-
itive instances. We plant to consider methods for adapt-
ing Support Vector Machines to highly imbalanced datasets
(Akbani et al., 2004; Batuwita and Palade, 2013; Wang
and Japkowicz, 2010; Tang et al., 2009). The relevant
literature suggests various methods for smoothing the ef-
fect of the small number of positives, including oversam-
pling and undersampling (Akbani et al., 2004; Batuwita
and Palade, 2013; Wang and Japkowicz, 2010; Tang et al.,
2009; Chawla, 2005; Wang et al., 2014; Ganganwar, 2012).
It is worth applying these methods to the particular problem
at hand, in an attempt to improve classification performance
for topic labels of very high sparsity of positive training in-
stances.
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