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Abstract
We design, implement and evaluate two se-
mantic parsers, which represent factorization-
and composition-based approaches respec-
tively, for Elementary Dependency Struc-
tures (EDS) at the CoNLL 2019 Shared Task
on Cross-Framework Meaning Representa-
tion Parsing. The detailed evaluation of the
two parsers gives us a new perception about
parsing into linguistically enriched meaning
representations: current neural EDS parsers
are able to reach an accuracy at the inter-
annotator agreement level in the same-epoch-
and-domain setup.

1 Introduction

For the CoNLL 2019 Shared Task on Cross-
Framework Meaning Representation Parsing
(MRP; Oepen et al., 2019), we concentrate on
Elementary Dependency Structures (EDS; Oepen
and Lønning, 2006), the graph-based meaning
representations derived from English Resource
Semantics1 (ERS; Flickinger et al., 2014b) that is
the richly detailed semantic annotation associated
to English Resource Grammar (ERG; Flickinger,
2000), a domain-independent, linguistically deep
and broad-coverage HPSG grammar. The full
ERS and EDS annotations include not only basic
predicate–argument structures, but also informa-
tion about quantifiers and scopal operators, e.g.
negation, as well as analyses of linguistically
complex phenomena such as time and date
expressions, conditionals, and comparatives.

Following Koller et al. (2019)’s practice, we
divide existing work on string-to-semantic-graph
parsing into four types, namely factorization-,
composition-, transition- and translation-based ap-
proaches. Our previous studies (Chen et al.,
2018b; Cao et al., 2019) as well as other inves-
tigations on other graph banks indicate that the

1http://moin.delph-in.net/ErgSemantics

factorization- and composition-based approaches
obtain currently superior accuracies. In this paper,
we fine-tune our factorization- and composition-
based parsers and present a detailed evaluation on
the MRP data.

Our factorization-based system obtains an over-
all accuracy of 94.47 in terms of the official MRP
evaluation metrics, and out-performs other sub-
mission systems by a large margin with respect
to the prediction for labels, properties, anchors
and edges. We highlight a new perception: Cur-
rent neural parsers are able to reach an accuracy at
the inter-annotator agreement level (Bender et al.,
2015) for the linguistically enriched EDS repre-
sentations in the same-epoch-and-domain setup.
Given the information depth of ERS, we think
many NLP applications may benefit from a re-
visit of classic discrete semantic representations.
The composition-based system reaches a score of
91.84. We do not think the performance gap sug-
gests a weakness of the latter approach, but take
it a reflection of the fact that a composition-based
parser involves more individual modules that have
not been fully optimized yet.

2 Parsing to Semantic Graphs

In this section, we present a summary of
factorization-, composition-, transition- and
translation-based parsing approaches.

Factorization-Based Approach. This type of
approach is inspired by the successful design of
graph-based dependency tree parsing (McDonald,
2006). A factorization-based parser explicitly
models the target semantic structures by defining a
score function that is able to evaluate the goodness
of any candidate graph. Usually, the set of possible
graphs that can be assigned to an input sentence is
extremely large. Therefore, a parser also needs to
know how to find the highest-scoring graphs from

http://moin.delph-in.net/ErgSemantics
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a large set.
To the best of our knowledge, McDonald and

Pereira (2006) present the first graph-based syn-
tactic dependency parsing algorithm that removes
the tree-shape constraint. In the scenario of se-
mantic dependency parsing, Kuhlmann and Jons-
son (2015) generalize the graph-based framework
(aka Maximum Spanning Tree parsing) and pro-
pose Maximum Subgraph parsing. Given a di-
rected graph G = (V,E) that corresponds to an
input sentence x = w0, . . . wn−1 and a score func-
tion SCOREG. The string-to-graph parsing is for-
mulated as a problem of searching for a subset
E′ ⊆ E with the maximum score. Formally, we
have the following optimization problem:

(V,E′) = arg max
G∗=(V,E∗⊆E)

SCOREG(G∗) (1)

For semantic dependency parsing, V is the set of
surface tokens, and G is, usually, the correspond-
ing complete graph.

It is relatively straightforward to extend
Kuhlmann and Jonsson’s framework to cover more
types of semantic graphs as follows,

G′ = arg max
G∗∈GEN(x)

SCOREG(G∗) (2)

where GEN(x) denotes all plausible semantic
graphs that can be assigned to x.

To make the above combinatorial optimization
problems solvable, people usually employ a fac-
torization strategy, i.e. defining a decomposable
score function that enumerates all sub-parts of a
candidate graph. This view matches a classic so-
lution to structured prediction which captures el-
emental and structural information through part-
wise factorization. For example, the following for-
mula defines a first-order factorization model for
semantic dependency parsing,

G′ = arg max
G∗=(V,E∗⊆E)

∑
e∈E∗

SCOREEDGE(e) (3)

The essential computational module in this ar-
chitecture is the score function, which is usually
induced based on moderate-sized annotated sen-
tences. Various deep learning models together
with vector-based encodings induced from large-
scale raw texts have been making advances in
shaping a score function significantly (Dozat and
Manning, 2018). We will detail our factorization-
based parser in §3.

Composition-Based Approach. Composition-
ality is a cornerstone for many formal semantic
theories. Following a principle of compositional-
ity, a semantic graph can be viewed as the result of
a derivation process, in which a set of lexical and
syntactico-semantic rules are iteratively applied
and evaluated. On the linguistic side, such rules
extensively encode explicit knowledge about nat-
ural languages. On the computational side, such
rules must be governed by a well-defined gram-
mar formalism. In particular, to manipulate graph
construction in a principled way, Hyperedge Re-
placement Grammar (HRG; Drewes et al., 1997)
and AM Algebra (Groschwitz et al., 2017) have
been applied to build semantic parsers for various
graph banks (Chen et al., 2018b; Groschwitz et al.,
2018; Lindemann et al., 2019).

A composition-based parser explicitly models
derivations that yield semantic graphs by defining
a score function SCORED. Assume a derivation
D = r1, r2, . . . , rm is a sequence of rules. For-
mally, we have the following optimization prob-
lem:

G′ = arg max
G∗∈GEN(x)

∑
D∈DERIV(G∗)

SCORED(D) (4)

To make the above problem solvable, people usu-
ally employ a decomposition strategy, i.e. sum-
ming over local scores that correspond to individ-
ual derivation steps:

SCORED(D) =

m∑
i=1

SCORERULE(ri) (5)

Again, this matches many structured prediction
models. Deep learning has been shown very pow-
erful to associate scores to individual rule applica-
tions, and thus to provide great models for eval-
uating a derivation. The general form of (4) is
a very complex combinatorial optimization prob-
lem. The approximating strategy to search for the
best derivation instead has been shown practical
yet effective for ERS parsing (Chen et al., 2018b).
Formally, we solve the below problem,

D′ = arg max
D∗∈GENDERIV(x)
D∗=r1r2···rm

m∑
i=1

SCORERULE(ri) (6)

where GENDERIV(x) denotes all sound derivations
that yield x. Then we get a target graph by eval-
uating D′. We will detail our composition-based
parser in §4.
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Transition-Based Approach. This type of ap-
proach is inspired by the successful design of
transition-based dependency tree parsing (Yamada
and Matsumoto, 2003; Nivre, 2008). To the best
of our knowledge, Sagae and Tsujii (2008) firstly
apply this type of approach to predict predicate–
argument structures grounded in HPSG (Miyao
et al., 2005). A number of new transition sys-
tems and disambiguation models have been dis-
cussed for parsing into different graphs (Wang
et al., 2015; Zhang et al., 2016; Buys and Blun-
som, 2017; Gildea et al., 2018; Sun et al., 2019)

Translation-Based Approach. This type of ap-
proach is inspired by the success of sequence-to-
sequence (seq2seq for short) models that are the
heart of modern Neural Machine Translation. A
translation-based parser takes a family of seman-
tic graphs as a foreign language, in that a seman-
tic graph is encoded and then viewed as a string
from another language (Peng et al., 2017b; Kon-
stas et al., 2017; Buys and Blunsom, 2017). A
parser knows how to linearize a graph. Data aug-
mentation has been shown very helpful (Konstas
et al., 2017), partially reflecting the data-hungry
nature of seq2seq models.

Simple application of seq2seq models is
not sucessful. However, some basic mod-
els can be integrated with other types of ap-
proaches. Peng et al. (2018) propose to combine
the translation- and transition-based approaches.
Zhang et al. (2018) combined the translation- and
factorization-based approaches.

3 The Factorization-Based Parser

3.1 Elements in EDS Graphs

The key idea underlying the factorization-based
approach is to explicitly model what are expected
as elements in target structures. Therefore before
introducing the technical details of our parser, we
roughly sketch key elements in EDS graphs. Refer
to Flickinger et al. (2014a) for more information
about the design of ERS.

We distinguish three kinds of elements: (1) la-
beled nodes, (2) node properties and (3) labeled
edges. Nodes are sometimes called concepts2,
where their labels reflect conceptual meaning. The

2 Considering the original design and especially the logic
foundation of ERS, the seemly more standard name is pred-
icate. In this paper, we call them concepts, mainly because
we want to follow the new tradition of graph-based meaning
representations (Kuhlmann and Oepen, 2016).

node labels can be divided into two classes: (1)
surface concepts that are exclusively introduced
by lexical entries, whose orthography is the source
form of a core part of a concept symbol, and (2)
abstract concepts that are used to represent the se-
mantic contribution of grammatical constructions
or more specialized lexical entries. Take the out-
put structure in Figure 1 for example: go v 1
and want v 1 indicate surface concepts, while
proper q and named indicate abstract concepts.

To avoid proliferation of concepts, some con-
cepts are parameterized. The parameters can
be viewed as properties of nodes. For exam-
ple, named("Tom") is a named concept with a
CARG property of "Tom". For every EDS graph,
there exists a top concept, which relates to the
top handle in its original ERS annotation. In Fig-
ure 1, for example, want v 1 is the top. In this
paper, we practically treat whether a node is top as
a property whose value can be either true or false.

Edges are called relations. An edge links ex-
actly two nodes and mainly reflects predicate–
argument relations. Edges are assigned with a
small, fixed inventory of role labels (e.g. ARG1,
ARG2, . . . ).

3.2 The Architecture

We employ a four-stage pipeline to incrementally
construct an EDS graph. Figure 1 illustrates the
four steps with a simple sentence. The core idea is
to identify concepts from surface strings, and then
detect the relations between them.

3.3 Tokenization

Automatic tokenization for English has been
widely viewed as a solved problem for quite a
long time. Taking the risk of oversimplifying the
situation, tokenization does not have a significant
impact on downstream NLP tasks, e.g. POS tag-
ging and syntactic parsing. When we consider se-
mantic parsing, however, it is still a controversial
issue which unit is the most basic one that trig-
gers conceptual meaning and semantic construc-
tion. Therefore, we need to rethink the tokeniza-
tion problem in which tokens may not be fully con-
sistent with their traditional definitions. Moreover,
when we consider other languages like German or
Chinese, tokenization brings other issues.

In this paper, we take the most basic word-level
units3 as strings that are separated by whitespaces

3We purposely avoid using words here. But when we in-
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Tom wants to go.

Input

Tom / wants / to / go / .
proper q
named * v 1 ∅ * v 1 ∅

Tom wants to go .

named

want v 1
go v 1

proper q

ARG1
ARG1BV

ARG2

named("Tom")〈0:3〉

want v 1〈4:9〉

go v 1〈13:15〉

proper q〈0:3〉
Top

ARG1
ARG1BV

ARG2

Output

Tokenization
Concept

Identification

Relation Detection

Property
Prediction

Figure 1: The workflow of our factorization-based parser. Tokenization: To separate an input sentence into se-
mantic parsing-oriented tokens. Concept Identification: To generate concepts with a sequence labeling model.
Relation Detection: To link concepts with a semantic dependency parsing model. Property Prediction: To predict
node properties by classification.

Input string Assets of these short-term funds surged more than $5.5 billion in September.

RegEx match Assets of these short - term funds surged more than $ 5 . 5 billion in September .
Classification B B B B BB B B B I B B I I B B B B

Our tokens Assets of these short - term funds surged more than $ 5 . 5 billion in September .

PTB tokens Assets of these short - term funds surged more than $ 5 . 5 billion in September .

Table 1: A tokenization example. Row “Our tokens” shows the result of our tokenizer, while Row “PTB tokens”
shows the tokenization results defined by the Penn TreeBank (PTB; Marcus et al., 1993).

Concept Type String

more+than p multi-unit more than
asset n 1 single unit Assets
short a of sub-unit short-term
term n of sub-unit short-term
mis- a error sub-unit misinterpreted
interpret v 1 sub-unit misinterpreted

Table 2: Examples to illustrate the relationships be-
tween surface concepts and word-level units. ‘ ’ is an
escape character for whitespace.

and punctuation markers. In an EDS graph, a sur-
face concept may be aligned with a sub-unit, a sin-
gle unit or multiple units. Table 2 shows some ex-
amples. During concept identification (§3.4), there
should exist a surjection from surface concepts to
the input tokens. Therefore, tokenization is impor-
tant for obtaining a reasonable alignment between
concepts and input tokens.

We adopt the character-based word segmenta-
tion approach for Chinese (Sun, 2010) to find suit-
able tokens. We first split an input sentence into

troduce our neural parsing models, we still use word to relate
the units to word embeddings.

a sequence of basic elements with simply defined
regular expressions. The core part of our tokenizer
is a sequence labeling model over this sequence.
In particular, each element is assigned with a po-
sitional label that indicates token boundaries. The
labels can be either B, which means the unit is at
the begining of a target token, or I, which means
the unit is inside a token. For sequential classifi-
cation, we utilize a multi-layer BiLSTM network.
Tokens can be retrieved from the predicted labels.
See Figure 1 for an example. Note that, Dridan
and Oepen (2012) showed that regular expressions
are quite powerful to deal with the tokenizaiton
problem for different styles.

3.4 Concept Identification

Surface concepts (e.g. quantifier some q) and
some of the abstract concepts (e.g. named en-
tity named) have a more transparent connection to
surface forms and are relatively easier to identify.
We call such concepts lexicalized concepts, which
include all but are not limited to surface concepts.
We cast identification of lexicalized concepts as
a token-based tagging problem. The lexicalized
concepts usually include lemma information in its
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label. For example, boy n 1 consists of a lemma
(boy) and a type , denoted as * n 1. As lemmas
are much more easily to analyze, our concept iden-
tifier targets the type part only.

Some of the rest of abstract concepts are trig-
gered by phrasal constructions. For example,
compound is associated to the combination of
multiple words. In this case, a concept is origi-
nally aligned to a sequence of continuous words.
Considering that this type of concepts is a small
portion, we propose to handle them in a word-level
tagger. To this end, we re-align them to specific
tokens with a small set of heuristic rules. For ex-
ample, compound is re-aligned to the first word
of a compound. Re-aligning these concepts means
discarding their original anchors. To fully fit the
MRP goals, we treat anchors as properties of con-
cepts, and recover them by predicting the start/end
boundaries with a classification model, as to be de-
scribed in §3.6.

We employ a neural sequence labeling model
to predict concepts. A multi-layer BiLSTM is
utilized to encode tokens and another two soft-
max layers to predict concept-related labels: One
for lexicalized concepts and the other for the rest.
We also use recently widely-used contextualized
word representation models, including ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018).
Figure 2 shows the neural network for concept
identication.

3.5 Relation Detection
After finding a set of concepts, the next step is to
link them together. Each semantic dependency is
treated independently. We use integers as indices
to mention concepts nodes. For any two nodes i
and j, we give a score SCOREEDGE(i, j) to the
possible arc i → j. An arc is included to the final
graph if and only if its score is greater than 0. We
use a first-order model as described in Eq. (3).
Figure 2 briefly summarizes the neural network for
relation detection.

Following Dozat and Manning (2016, 2018), we
use a deep biaffine attention to evaluate a candi-
date edge:

SCOREEDGE(i, j) = BIAFFINE(ci, cj)

= cTi Ucj +W (ci + cj) + b

where ci/cj is the vector associated to i/j. We
consider two information sources to calculate c:
a textual part rc2w(i) and a conceptual part ni, as

He wants to go

encoder encoder encoder encoder
r1 r4

2:pronoun q
1:pron 3:* v 1 φ 4:* v 1

arg max

c1 c4
BIAFFINE

SCOREEDGE(pron← go v 1)

Figure 2: The network architecture for our con-
cept identification and relation detection models which
share the same architecture in word embedding and
contextual encoder layers but with the same sets of pa-
rameters. A softmax layer is used for concept identifi-
cation. To determine whether the dependency pron←
go v 1 exists, i.e. unlabeled dependency parsing, the

corresponding embeddings c1 and c4, which are the
concatenation of textual embeddings (in the red color)
and the conceptual embeddings (in the yellow color),
are biaffinely transformed into a score.

following,
ci = rc2w(i) ⊕ ni

Due to our concept identification method, we have
a function “c2w” that takes as input the index of
a node and returns as output the index of its an-
chored word. rc2w(i) is the contextual vector of
the word aligned to i, which is calculated by the
word embedding layer and the encoder layers. ni

is the randomly-initialized embedding of i’s con-
cept type, e.g. * v 1. We also use the deep bi-
affine attention function to calculate each edge’s
scores for all labels, according to which we select
the best label that achieves the maximum.

For training, we use a margin-based approach to
compute loss from the gold graph G∗ and the best
predicted Ĝ according to current model parame-
ters. We define the loss term as:

loss = max(0,∆(G∗, Ĝ)

− SCOREG(G∗) + SCOREG(Ĝ))
(7)

The margin objective ∆ measures the similarity
betweenG∗ and Ĝ. Following Peng et al. (2017a),
we define ∆ as weighted Hamming to trade off
between precision and recall.

3.6 Property Prediction

The final stage is to predict properties for each
concept that is generated in the previous stages.
For the EDS representation at CoNLL2019, we
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He wants to go

encoder encoder encoder encoder

r1 r4

c1

pron
predicted
concepts PROJ(·)

BIAFFINEs

SCOREs(pron, go)

Figure 3: The network architecture for property pre-
diction. The vector representations of concepts are ob-
tained similarly to relation detection. The only differ-
ence is that the labels of concepts are provided by pre-
vious stages instead of being predicted by a softmax
layer.

consider three types of properties and apply dif-
ferent strategies.

Anchors (spans). String anchors are treated as
properties of concepts. For a given concept, a
classification model is utilized to select two to-
kens over all input tokens as the start/end bound-
ary of the concept respectively. We use exactly the
same neural architecture in §3.5 to encode input
tokens. See Figure 3 for a visualized illustration.
The score of token jw being the start/end boundary
of node i can be computed by following equation:

SCOREs/e(i, jw) = BIAFFINEs/e(ci, PROJ(rjw))

Here PROJ(·) represents a feed-forward network
with LEAKYRELU activation.

The anchors provided by training dataset are all
character-based, so transformation is required be-
fore training this model. In the same manner, after
retrieving the start/end word of a concept, we need
to convert word-based anchors back to character-
based anchors. Margin-based loss is used again
when training this model and the total loss is the
sum of losses for both boundaries.

The CARG property. Since the main function
of the CARG attribute is to reduce the size of pred-
icate names by parameterizing them with regular-
ized surface strings, a rule-based system could be
effective to predict the CARG information.

Firstly, we decide whether a concept has the
CARG property according to its label. For exam-
ple, named, card and ord need CARGs, but not
the q.

Secondly, we use a dictionary which is ex-
tracted automatically from the training dataset.
Entries of the dictionary are of the form

〈label, string,CARG〉. For example, a concept
named whose anchoring string is D.C. will be
mapped to WashingtonDC. Based on a close ob-
servation of the data, we introduce several heuris-
tic rules if there is no applicable entry for a con-
cept in the dictionary. For example, one widely
applicable rule is to use 1 as the CARG value for
concepts labeled card and aligned to a float num-
ber which is less than 1.

Finally, if no rule is available, we remove punc-
tuation markers at left or right boundaries of an-
choring strings and use the remaining part.

Top concept. We cast the precition for top as a
binary classification problem over all nodes in a fi-
nal graph. This strategy matches a recent research
interest in graph neural networks (Li et al., 2015;
Veličković et al., 2017; Defferrard et al., 2016;
Chen et al., 2018a; Song et al., 2018), one goal of
which is to associate vectors to graph nodes. Such
vectors can be more easily to be integrated to neu-
ral networks for various purposes. We employ a
Graph-based LSTM (Song et al., 2018) to encode
an EDSgraph and a multi-layer feed-forward net-
work to determine whether a node is top. Similar
as §3.5, margin-based approach is used to compute
the loss term.

4 The Composition-Based Parser

Our composition-based parser is based on our pre-
vious work (Chen et al., 2018b). The core engine
is a graph rewriting system that explicitly explores
the syntactico-semantic recursive derivations that
are governed by a synchronous HRG (SHRG). See
Figure 4 for an example. Our parser constructs
EDS graphs by explicitly modeling such deriva-
tions. In particular, it utilizes a constituent parser
to build a syntactic derivation, and then selects se-
mantic HRG rules associated to syntactic CFG rules
to generate a graph. When multiple rules are ap-
plicable for a single phrase, a neural network is
used to rank them.

One main difference between our submission
parer and the parser introduced in Chen et al.
(2018b) is that the syntactic parsing model is a re-
implementation of Kitaev and Klein (2018). It uti-
lizes transformer layers to capture words’ contex-
tual information, denoted as ri. After encoding an
input sentence, a multiple-layer peceptron (MLP)
is employed to get span scores. The score of span
(i, j) with label L is calculated from its embed-
ding si,j , which is from the contextual vector of
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X

Y
Z

boy n 1some q

want v 1

go v 1

ARG1ARG1

BV

ARG2
S

Y

Z

want v 1

go v 1

ARG2

VP

want to go

X

boy n 1

some q

BV

NP

boy n 1N

boys

some qD

Some

⇐=

X

Y
Z

NP

ARG1ARG1

VP

S

⇐=

BVD N

NP

Figure 4: An SHRG-based syntactico-semantic deriva-
tion. The derivation can be viewed as a syntactic tree
enriched with semantic interpretation rules that are de-
fined by an HRG. Each phrase in the syntactic tree is
also assigned with a graph which corresonds to a sub-
part in the final semantic graph. Moreover, some par-
ticular nodes (filled nodes) in a sub-graph is marked as
communication channels to other meaning parts in the
same sentence. In HRG, these nodes are summarized
as a hyperedge. Gluing two sub-graphs according to a
construction rule follows the graph substitution princi-
ple of HRG. The application of the top rule that intro-
duces a reentrancy structure is such an example. The
“X” node in the graph of the left branching phrase is
unified with the “X” node in the rule, and so do to the
“Y” and “Z” nodes.

the two endpoints, ri and rj−1:

SBCORE(i, j, L) = MLP(si,j)[L]

si,j = ri ⊕ ri−1

MLP(x) = W2σ(W1x + b1) + b2

The operator [] denotes index selection. We
perform CKY decoding to retrieve the highest-
scored constituent tree that agrees with the syn-
tactic CFG grammar.

When a phrase structure tree is available, se-
mantic interpretation can be regarded as translat-
ing this tree to the derivation of graph construc-
tion. As multiple subgraph correspondents in each
node are available, the beam search strategy is
used to balance the search complexity and quality.

To score subgraphs, we use two types of fea-
tures. The first type is node feature. For a concept
n aligned with span (i, j), we use the span em-
bedding si,j as features, and score with non-linear
transformation:

SCOREPARTconcept(i, j, p) = MLPconcept(si,j)[p]

The second type is edge feature. Note that a se-
mantic dependency with label L from conceptual
node na to nb are aligned to constituents (i1, j1)
and (i2, j2) respectively. We calculate this part
of score with non-linear transformation from the
span embeddings si1,j1 , si2,j2 and random initial-
ized concept embeddings na, nb:

SCOREPARTarc(i1, j1, i2, j2,pa,pb, L)

= MLParc(si1,j1 ⊕ si2,j2 ⊕ pa ⊕ pb)[L]

For training, again, we use the margin-based loss.

5 Experiments

The MRP2019 training data consists of 35656 sen-
tences in total. For convenience, the composition-
and factorization-based parsers share the same to-
kenization model. Gold token position labels are
extracted from DeepBank (Flickinger et al., 2012).
For the composition-based parser, we leverage the
syntactic information provided by DeepBank to
extract synchronous grammars. Therefore, all sen-
tences in the MRP2019 data that do not appear
in DeepBank 1.1 are removed. Following the
same preprocessing of semantic graphs in Chen
et al. (2018b) and using the recommended setup
in DeepBank, there are 33722 samples for training
and 1689 samples for validation. The synchronous
grammars are extracted from the training data us-
ing coarse-grained labels (Chen et al., 2018b). For
factorization-based parser, we use heuristic rules
to re-align the non-lexicalized concepts to input
tokens. We remove all sentences that do not re-
cieve results in this step from our training set. Af-
ter re-alignment, 33580 sentences are left for train-
ing and 1689 for validation.

Table 3 shows the results of both parsers on the
validation data using the official evalution tool—
mtool4. Table 4 shows the intermediate results
during parsing for both parsers.

For factorization-based parsing, we combine 4
models for concept identification and 5 models for
relation detection. We ensemble models by av-
eraging the score functions across all stand-alone
models. These models use different initial random
seeds, different pretraining methods (ELMo or
BERT) or different encoder architectures (Trans-
former or BiLSTM). All these models achieve a
similar performance respectively, but the ensem-
ble one achieves a much better performance, as we
can conclude from Table 3.

4https://github.com/cfmrp/mtool

https://github.com/cfmrp/mtool
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# Top Label Property Anchor Edge
DEVEL. TEST

P R F1 F1

Factorization-based Parsing

Gold tokenization 88.75 96.92 96.39 96.98 94.88 96.38 96.00 96.19 —
+ensemble stage2 89.23 97.37 97.46 97.16 95.18 96.80 96.26 96.53 —
+ensemble stage2 & 3 89.64 97.37 97.46 97.17 95.53 96.95 96.34 96.64 —

Full pipeline 88.87 96.76 96.03 96.72 94.69 96.20 95.78 95.99 —
+ensemble stage2 89.29 97.12 97.08 96.91 94.98 96.59 96.00 96.30 —
+ensemble stage2 & 3 89.52 97.12 97.10 96.93 95.34 96.74 96.10 96.42 94.47

Composition-based Parsing

gold tokenization 88.63 95.73 97.37 96.85 93.00 95.38 95.04 95.21 —
Full pipeline 88.27 95.44 97.17 93.62 92.67 94.08 93.86 93.97 91.84

Table 3: Results on the development data set. The evaluation algorithm is Maximum Common Edge Subgraph
Isomorphism (MRP). Gold tokenization means that the parser uses gold standard tokenization provided by Deep-
Bank. Full pipeline means that all stages in the pipeline are based on automatic predictions. Columns in the
middle block include F1 scores with respect to basic evaluation items respectively. The right block shows overall
precision, recall and F1. All numbers are obtained by using mtool.

Factorization-based Parser
Concept Identification (F1) Relation Detection

Lexicalized Non-lexicalized Overall Nodes Edges Overall

Gold tokenization 97.04 95.72 96.50 96.94 93.43 95.20
+ensemble stage2 97.40 96.20 96.94 97.30 93.85 95.60
+ensemble stage2 & 3 the same as above row 97.28 94.03 95.67

Composition-based Parser
Syntactic Parsing Semantic Interpretation

P R F1 POS Nodes Edges Overall

Gold tokenization 92.16 92.16 92.16 95.01 95.63 91.43 93.56

Table 4: Results of each stage for both parsers on the development data. Gold tokenization has the same meaning in
Table 3. Columns in the right block are the SMATCH scores ignoring all the node and edge properties for generated
graphs. For factorization-based parser, columns in the middle block include the F1 scores of concept identification
with respect to lexicalized, non-lexicalized and all concepts respectively. For composition-based parser, columns
in the middle block are the syntactic parsing results using standard metric and POS concerns the prediction of
preterminals.

Our factorization-based parser achieves rela-
tively satisfactory performance in all basic evalua-
tion items except top. In the in-domain evalution,
its performace nearly reaches the inter-annotator
agreement reported in Bender et al. (2015). To
find top concepts, our model encodes the semantic
graphs and ignores the input sentences. We take
the unsatisfactory result as a confirmation of the
challenge to encode complex discrete structures
into vectors.

The evalution results of our composition-based
parser are not as good as the factorization-based
one. We believe that the disagreement between our
SHRG grammar and the original ERG leads to a
major part of the performance gap.

6 Conclusion

Current neural ERS parsers work rapidly and re-
liably, with an MRP accuracy of over 94% in
the same-epoch-and-domain setup. It is com-
parable to the inter-annotator agreement (in Ele-
mentary Dependency Match) reported in Bender
et al. (2015). As ERS parsers become more and
more accurate, efficient and robust, they have ex-
tensive application prospects in downstream deep
language understanding-related tasks.
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