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Abstract

This paper describes Jeonbuk National Uni-
versity (JBNU)’s system for the 2019 shared
task on Cross-Framework Meaning Represen-
tation Parsing (MRP 2019) at the Conference
on Computational Natural Language Learn-
ing. Of the five frameworks, we address
only the DELPH-IN MRS Bi-Lexical Depen-
dencies (DP), Prague Semantic Dependencies
(PSD), and Universal Conceptual Cognitive
Annotation (UCCA) frameworks. We propose
a unified parsing model using biaffine atten-
tion (Dozat and Manning, 2017), consisting of
1) a BERT-BiLSTM encoder and 2) a biaffine
attention decoder. First, the BERT-BiLSTM
for sentence encoder uses BERT to compose
a sentence’s wordpieces into word-level em-
beddings and subsequently applies BiLSTM
to word-level representations. Second, the bi-
affine attention decoder determines the scores
for an edge’s existence and its labels based
on biaffine attention functions between role-
dependent representations. We also present
multi-level biaffine attention models by com-
bining all the role-dependent representations
that appear at multiple intermediate layers.

1 Introduction

Recent studies on meaning representation pars-
ing (MRP) have focused on different semantic
graph frameworks such as bilexical semantic de-
pendency graphs (Peng et al., 2017; Wang et al.,
2018; Peng et al., 2018; Dozat and Manning,
2018), universal conceptual cognitive annotation
(Hershcovich et al., 2017, 2018), and abstract
meaning representation (Wang and Xue; Guo and
Lu; Song et al., 2019; Zhang et al., 2019). To
jointly address various semantic graphs, the aim
of the Cross-Framework MRP task (MRP 2019)
at the 2019 Conference on Computational Nat-
ural Language Learning (CoNLL) is to develop
semantic graph parsing across the following five

frameworks (Oepen et al., 2019): 1) DM: DELPH-
IN MRS Bi-Lexical Dependencies (Ivanova et al.,
2012), 2) PSD: Prague Semantic Dependencies
(Hajič et al., 2012; Miyao et al., 2014), 3) EDS:
Elementary Dependency Structures (Oepen and
Lønning, 2006), 4) UCCA: Universal Concep-
tual Cognitive Annotation (Abend and Rappoport,
2013), and 5) AMR: Abstract Meaning Represen-
tation (Banarescu et al., 2013).

One of the main aims of MRP 2019 is to ind-
duce a unified parsing model for different seman-
tic frameworks such that parsing models can be
trained using multi-task learning or transfer learn-
ing. To enable multi-task learning, we explic-
itly make shared common components in a neural
network architecture across different frameworks.
For MRP 2019, we propose a unified neural model
for the DM/PSD/UCCA frameworks based on the
biaffine attention used in (Dozat and Manning,
2017, 2018; Zhang et al., 2019) by deploying the
sentence encoder part as a “shared” component
across these three frameworks. Our system con-
sists of two main components:

1. BERT-BiLSTM sentence encoder (shared
across frameworks): Given a sentence, the
BERT encoder (Devlin et al., 2019) encodes
to its wordpieces and the encoded word
piece-level represenations are composed into
word-level embeddings based on BiLSTM.
Another BiLSTM layer is then applied to the
resulting word-level embeddings to create the
final sentence representations. We refer to
this neural layer for encoding sentences as the
BERT-BiLSTM sentence encoder. For multi-
task learning, the BERT-BiLSTM sentence
encoder is shared across all target frame-
works.

2. Biaffine attention decoder (framework-
specific): Role-dependent representations
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for each word are first induced from the
sentence-level embeddings of the BERT-
BiLSTM encoder using simple feed-forward
layers. Biaffine attention is then performed
on the resulting role-dependent representa-
tions to predict the existence of an edge and
its labels. However, the biaffine attention de-
coder is not shared but separately trained for
each framework. Thus, we have three differ-
ent biaffine decoders corresponding to DM,
PSD, and UCCA.

In addition, our system handles the following
specific issues for UCCA parsing and node prop-
erty prediction:

1. UCCA parsing using biaffine attention To
handle UCCA formats using a biaffine at-
tention model, we convert a UCCA graph
to a bilexical framework using the semstr
tool, which is based on the head rules of
UCCA in (Hershcovich et al., 2017). 1 Af-
ter the biaffine attention is performed, the
parsed bilexical graph is converted back to
the UCCA format.

2. BiLSTM neural models for node property
prediction: In addition to predicting the ex-
istence and labels of an edge, the system is
required to predict node properties (for DM
and PSD). To handle node properties, we
further develop property-specific BiLSTM-
based neural models.2 These property-
specific neural components are designed in
a framework-specific manner and are not
shared across frameworks.

Furthermore, we present multi-level biaffine at-
tention models, motivated by the multi-level archi-
tecture of FusionNet in the machine reading com-
prehension task (Huang et al., 2018).

The preliminary unofficial experiments using
our own development seting show that multi-task
learning is helpful in improving UCCA’s perfor-
mance, but it does not lead to improvement in per-
formances on the DM and PSD frameworks.

1 We first converted a UCCA MRP format
to its xml format and then applied the converter
(semstr/convert.py) in semstr to obtain its
CoNLL format: https://github.com/danielhers/semstr

2The node properties required for DM and PSD are a POS
tag and a frame. We prepared a BiLSTM neural model for
predicting the frame information of a node only, whereas we
used the companion data of MRP 2019 to predict POS tags.

Figure 1: Biaffine attention for bilexical semantic de-
pendency parsing based on word representation using
BERT, Glove and POS embeddings.

The remainder of this paper is organized as fol-
lows: Section 2 presents our system architecture
with details, Section 3 describes the detailed pro-
cess for training biaffine attention models. Section
4 and 5 provide the preliminary experiment results
and the official results at MRP 2019, respectively,
and our concluding remarks and a description of
future work are given in Section 6.

2 Model

Figure 1 shows the neural architecture based on bi-
affine attention for bilexical semantic dependency
parsing. The neural architecture consists of two
components: 1) the BERT-BiLSTM encoder and
2) the biaffine attention decoder. 1) In BERT-
BiLSTM encoder, an input sentence is fed to a
word representation layer using BERT, resulting
in a sequence of word embedding vectors, which
are then given to the BiLSTM layer to produce a
sentence representation. 2) In biaffine attention,
additional feed-forward layers are applied to ob-
tain role-dependent representations for head and
dependent roles, which are then forwarded to the
biaffine attention.

2.1 Encoder: BERT-BiLSTM
2.1.1 Word representation layer using BERT
The word representation using BERT uses BiL-
STM for composing to word-level embeddings
from wordpiece-level embeddings, similar to
(Zhang et al., 2019), which used the average pool-
ing for composition. Specifically, suppose that an
input sentence consists of n words, i.e., x1 · · ·xn.
To obtain the word representation xi for xi, we use
BERT from (Devlin et al., 2019), as shown in Fig-
ure 2. An input sentence is segmented into word-
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Figure 2: BERT Word embedding using Bi-LSTM.

pieces and they are fed to the BERT encoder. The
resulting output from BERT, which consists of the
word pieces in the i-th word are aggregated using
BiLSTM, producing wbert

i , named BERT word-
level embedding.3

The BERT word-level embedding is further
combined with the pretrained GloVe word em-
bedding of (Pennington et al., 2014) and part-of-
speech (POS) tag embedding to produce the final
word representation, as follows:

xi =
[
wbert

i ; eglovei ; ePOS
i

]
where eglovei and ePOS

i denote the pretrained
GloVe word embedding and the POS tag embed-
ding for the i-th word, respectively.

2.1.2 BiLSTM sentence encoding layer
Once word representations are obtained, we fur-
ther apply BiLSTM to x1 · · ·xn to obtain the fol-
lowing initial hidden representation of the i-th
word:

ri = BiLSTMi (x1 · · ·xn)

where BiLSTMi refers to the i-th hidden repre-
sentation obtained by applying BiLSTM to a given
sequence.

2.2 Decoder: Biaffine attention
To formulate a decoder using biaffine attention, let
BiAff(x, y) be a biaffine function using the no-
tations of (Dozat and Manning, 2018) and (Socher

3 This aggregation is similar to the BiLSTM-based com-
position in (Ballesteros et al., 2015; Na et al., 2018) which
uses characters as subtokens, whereas our aggregation uses
word pieces as subtokens.

et al., 2013) as follows:

BiAffm(x,y) = xTU[1:m]y +V

[
x
y

]
+ b

where U[1:k] ∈ Rd×d×m is a tensor, xTU[1:m]y
produces vector r ∈ Rk, V ∈ Rm×d is a matrix
and b ∈ Rm is a vector for the bias term.

Our biaffine attention decoder is similar to that
of (Dozat and Manning, 2018) and is formulated
as follows:

FFN (x) = f (Ax+ b)

h
(head)
i = FFN (head) (ri)

h
(dep)
i = FFN (dep) (ri)

h
(l-head)
i = FFN (l-head) (ri)

h
(l-dep)
i = FFN (l-dep) (ri)

s
(edge)
i,j = BiAff

(edge)
1

(
h
(dep)
i ,h

(head)
j

)
s
(label)
i,j = BiAff

(label)
k

(
h
(l-dep)
i ,h

(l-head)
j

)
s
(top)
i = FFN (top) (ri) (1)

where k is the number of node labels, and f is the
activation function used in the feed-forward layer
FFN .4

In contrast to the setting of (Dozat and Man-
ning, 2018), the top score s(top)i is newly intro-
duced in our model, where we exploit a simple
feed-forward layer for predicting top nodes in-
stead of using an attention method.

Using the score functions of Eq. (1), the pre-
diction results for arcs, labels, and top nodes are
formulated as follows:

y
(edge)
i,j = I

(
sedgei,j ≥ 0

)
y
(label)
i,j = argmax

{
s
(label)
i,j

}
y
(top)
i = I

(
s
(top)
i ≥ 0

)
(2)

where I(expr) is an indicator function which
gives 1 if expr is true and 0 otherwise.

2.3 Multi-level Biaffine attention

We also investigated a multi-level biaffine atten-
tion, whose information flow is described in Fig-
ure 3. Motivated by (Huang et al., 2018), we
assume that multi-layer encoders gradually trans-
form from a low-level word representation into a

4In our submission, we used the identity function for f .
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Figure 3: The neural architecture of multi-level biaffine
attention. The hidden representations at three levels
h
(dep)
i,k and h

(head)
j,k are composed to the final hidden

representation z
(dep)
i and z

(head)
j , respectively.

more abstract high-level representation. In the task
of semantic graph parsing, predicting an arc and a
label may be resolved not just by single-level rep-
resentation but by the combination of various lev-
els of representations; For example, predicting an
arc between two deep semantic subgraphs (with
high depths) may require more abstract represen-
tations for those graphs than the case of predicting
an arc between two shallow semantic subgraphs
(with low depths).

The multi-level biaffine attention is based on
the fusion of all the role-dependent representations
across levels.5 This type of multi-level attention
is different from deep biaffine attention of (Dozat
and Manning, 2018), which uses only single role-
dependent hidden representation at the final level.

To formulate the multi-level biaffine attention,
we first apply deep BiLSTM encoder of L-levels
to a list of word embeddings x1, · · · ,xn as fol-
lows.

ri,0 = xi

ri,l = BiLSTMi (r1,l−1 · · · rn,l−1)

where ri,l is the hidden representation of the BiL-
STM at the l-th layer.

The role-dependent representation for each l-th
layer is formulated as follows:

h
(head)
i,l = FFN (head) (ri,l)

h
(dep)
i,l = FFN (dep) (ri,l)

5A pair of syntactic roles in role-dependent representa-
tions are considered – head-dependent roles (or predicate-
argument roles).

To aggregate all the role-dependent represen-
tations, we use the fusion function, denoted as
o = fusion(x,y), as defined in (Hu et al., 2018):

x̃ = gleu (Wr [x;y;x� y;x− y])

g = σ (Wg [x;y;x� y;x− y])

o = g � x̃+ (1− g)� x

where � is element-wise multiplication. For no-
tational simplicity, we further define sfu(x,y, z),
the fusion function that takes three arguments, as
follows:

sfu (x,y, z) = fusion (fusion (x,y) , z)

Applying the sfu function results in the compo-
sitional role-dependent representations z(head)i and
z
(dep)
i at the i-th position. The multi-level biaffine

attention is then defined on z
(head)
i and z

(dep)
i as

follows:

z
(head)
i = sfu(head)

(
h
(head)
i,1 ,h

(head)
i,2 ,h

(head)
i,3

)
z
(dep)
i = sfu(dep)

(
h
(dep)
i,1 ,h

(dep)
i,2 ,h

(dep)
i,3

)
s
(edge′)
i,j = BiAff

(edge′)
1

(
z
(dep)
i , z

(head)
j

)
(3)

Similar to the arc scores in Eq. (3), we straight-
forwardly define multi-level terms related to la-
bel scores such as h(l-dep)

i,k , h(l-head)
i,k , z(l-head)i , and

z
(l-dep)
i .

2.4 Property prediction based on BiLSTM

To predict frame information, which is one of the
node properties in DM and PSD, we use a simple
BiLSTM architecture with a single output layer
that generates a node property for each word.6

Different from the biaffine attention model, the
property predictor does not use BERT but a simple
word representation that consists of the pretrained
GloVe and the POS tag embedding as follows:

x
(prop)
i =

[
eglovei ; ePOS

i

]
For encoding a sentence, another BiLSTM is

then applied to the sequence of word representa-
tions, as follows:

r
(prop)
i = BiLSTM

(prop)
i (x1 · · ·xn)

6Here, words (or tokens) correspond to nodes in a seman-
tic graph.
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The output layer uses the following simple
affine transformation:

s
(prop)
i = FFN (prop)

(
r
(prop)
i

)
(4)

The loss function uses the cross entropy, which
is formulated given a single training sentence as
follows:

L(prop) =
∑
i

log softmaxg(i)

(
s
(prop)
i

)
(5)

where g(i) is the gold property value of the i-th
word and softmaxk is the function of k-th ele-
ment of softmax values.7

3 Training

3.1 Preprocessing

We use word tokens and their POS tags in the com-
panion dataset provided by MRP 2019. To per-
form UCCA parsing using biaffine attention, con-
version between UCCA and bilexical formats is
required. For the conversion, we use the semstr
tool, which is based on the head rules defined in
(Hershcovich et al., 2017).

3.2 Multi-task learning on a single
framework

In each semantic graph framework, the biaffine at-
tention models consist of three subtasks – edge
detection, edge labeling, and top node predic-
tion. We jointly train the neural components of all
the subtasks for each framework in the multi-task
learning setting using the following combined loss
function:

L = λ1L
(edge) + λ2L

(label) + λ3L
(top) (6)

where L(edge), L(label), and L(top) are the loss
functions for edge detection, edge labeling, and
top node prediction, respectively, and λi is the
weight for each loss function.

However, the property predictor of Section 2.4
is not jointly trained on a single framework be-
cause its neural components can be shared in any
component in the biaffine attention models.

7We allow a NULL value to be a gold property value.
Given this setting, the values of g(i) are mostly NULL in
the frame property of PSD.

GloVe
source 840B

dim 300
BERT layer

source BERT-Base-cased
dim 784

Word embedding layer: BiLSTM
hidden size 384
num layers 1

Sentence encoder: BiLSTM
hidden size 600
num layers 3

(Multi-level) Biaffine decoder
hidden size 600

Property predictor
BiLSTM hidden size 600
BiLSTM num layers 3

output vocab size(DM) 474
output vocab size(PSD) 5474
Adam optimizer

learning rate 0.001
weight decay rate 3e-9

Adam β1 0.0
Adam β2 0.95

BERT Adam optimizer
learning rate 2e-5

weight decay rate 0.01
Adam β1 0.9
Adam β2 0.999

Loss for multi-task learning of Eq. (6)
λ1 0.025
λ2 0.975
λ3 1.0

batch size 16

Table 1: Hyper-parameter settings

3.3 Multi-task learning across frameworks

To enable multi-task learning across frameworks,
we share the BERT-BiLSTM encoder as a com-
mon neural component across three frameworks
and use framework-specific models for the biaffine
attention decoder. Our approach to multi-task
learning is similar to that of SHARED1 of (Peng
et al., 2017).

In multi-task learning, we alternate training ex-
amples for each framework using the framework-
specific loss function of Eq. (6) such that, over
each epoch, all the training examples across the
three frameworks are fairly fed without bias to a
specific framework.

3.4 Hyperparameters

We used Adam optimizer (Kingma and Ba, 2015)
to train our biaffine attention models. Table 1
summarizes the hyper-parameters used for train-
ing these models
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Framework Train Dev
DM 32091 3565
PSD 32091 3565

UCCA 5915 656

Table 2: Statistics of dataset used in the preliminary
experiment

4 Unofficial Results: Preliminary
Experiment

In this section, we present the preliminary exper-
imental results, which compare variants of our
models. To perform the preliminary experiment,
we randomly split the MRP 2019 dataset into
training and development sets. Table 2 shows the
statistics of training and development sets for the
three frameworks.

The evaluation measures are unlabeled depen-
dency F1 scores (UF), labeled dependency F1
scores (LF), and top node prediction accuracy
(Top). We report the evaluation metrics for the
development sets.

4.1 Experimental results

We evaluated the following four biaffine attention
methods:

1. Biaffine: This model is the baseline biaffine
attention model based on the BiLSTM sen-
tence encoder without using BERT.

2. BERT+Biaffine: This model uses the BERT-
BiLSTM encoder of Section 2.1 and the bi-
affine attention model of Section 2.2.

3. BERT+Multi-level Biaffine: This model
uses BERT-BiLSTM encoder of Section 2.1
and uses the multi-level attention method of
Section 2.3.

4. BERT+Biaffine+MTL: This model is the
same as BERT+Biaffine but uses the multi-
task learning across frameworks described in
Section 3.3.

Table 3 shows the UF, LF, and Top on the
three semantic graph frameworks, comparing
the four variants of biaffine attention models.
BERT+Biaffine performs better than Biaffine, in
particular, obtaining the increases of about 5% for
UF and LF on the UCCA framework. However,
BERT+Multi-level Biaffine does not achieve any

further improvements with respect to Biaffine, of-
ten yielding weak performances similar to that of
the BERT-Biaffine model on the PSD and UCCA
frameworks.

BERT+Biaffine+MTL only achieves small im-
provements on UCCA framework whereas no
improvements on DM and PSD frameworks
can be observed. A statistically insignifi-
cant improvement for multi-task learning in
BERT+Biaffine+MTL was similarly reported in
the results of SHARED1 in (Peng et al., 2017).
These results imply that instead of naively using
the shared encoder only, other advanced multi-task
learning approaches such as placing task-specific
encoding, as detailed in (Peng et al., 2017), need
to be considered.

5 Official Results

Given the preliminary results, we chose the ba-
sic biaffine model “BERT+Biaffine” of Table 3
for the final submission to MRP 2019. The of-
ficial results using BERT+Biaffine are summa-
rized in Tables 4 and 5, which compare the
results of ERG (Oepen and Flickinger, 2019)
and TUPA (Hershcovich and Arviv, 2019) which
were provided by the task organizer. Table
4 shows the performances of the MRP met-
rics on the three frameworks, whereas Table 5
presents the performances of task-specific met-
rics using the SDM metrics (Oepen et al., 2014)
and UCCA metric (Hershcovich et al., 2019).
The SDM metrics use the unlabeled dependency
precision/recall/F1 (UP/UR/UF), the labeled de-
pendency precision/recall/F1 (LP/LR/LF), and the
unlabeled/labeled exact matches (UM/LM). The
UCCA metrics use the unlabeled and labeled arc
precision/recall/F1 for primary, remote and all
types of arcs.8

Overall, our system shows better performances
over the baseline TUPA’s system, except for the re-
sults of UCCA metrics. Comparing to ERG which
is the top-performing system in MRP metric on
DM, our biaffine system shows slightly improved
performance over ERG in terms of UF of the SDP
metric. Comparing to the published MRP metrics
of the best system (i.e. MRP all metric), the per-
formances of our system are about 1.5 percentage
point (p.p.) lower on DM framework, about 3.4

8Our system ranked fifth for framework-specific LF on
DM and PSD, ranked eighth on UCCA, first for framework-
specific UF using the 100-sentence LPPS sub-set, and second
for LF on the PSD framework.
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method
DM PSD UCCA

Top UF LF Top UF LF Top UF LF
Biaffine 93.67 92.08 90.86 95.97 90.50 78.21 72.60 69.67 65.17

BERT+Biaffine 95.06 93.85 93.00 96.89 92.30 80.24 77.09 74.85 70.15
BERT+Multi-level Biaffine 95.09 93.86 93.02 96.76 91.95 79.76 78.12 74.42 69.81

BERT+Biaffine+MTL N/A 93.66 92.73 N/A 92.13 79.63 N/A 75.40 70.59

Table 3: Unofficial results of Top, UF, and LF metrics on the three frameworks (DM, PSD, and UCCA), comparing
variants of biaffine attention models.

p.p. lower on PSD framework, and about 31 p.p.
lower on UCCA framework.

6 Summary and Conclusion

In this paper, we presented the Jeonbuk National
University’s system based on unified biaffine at-
tention models for DM, PSD, and UCCA frame-
works for the MRP 2019 task. We investigated the
extensions of the original biaffine models using
multi-level biaffine attention and multi-task learn-
ing. The preliminary experiment results show that
the use of multi-level models and multi-task learn-
ing had no effect on MRP performances under our
current settings. The statistically insignificant re-
sults of multi-task learning imply that there may
be some necessary conditions beyond the default
setting to meet before multi-task learning with pa-
rameter sharing is effective. In this direction, we
plan to explore why multi-task learning is not ef-
fective in our current experiment, try to postulate
reasonable hypothesis that will help clarifying the
effect of multi-task learning, and further examine
other advanced multi-task learning including the
approaches of (Peng et al., 2017). In addition, we
would like to examine alternative fusion functions
for multi-level affine attention.
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method tops labels properties anchors edges all
P R F P R F P R F P R F P R F P R F

ERG all 0.92 0.92 0.92 0.99 0.99 0.99 0.96 0.96 0.96 0.99 0.99 0.99 0.91 0.91 0.91 0.96 0.96 0.9608
lpps 0.95 0.95 0.95 0.99 0.99 0.99 0.98 0.98 0.98 0.99 1.00 0.99 0.93 0.93 0.93 0.97 0.97 0.9731

TUPA all 0.53 0.51 0.52 0.40 0.75 0.52 0.22 0.66 0.33 0.85 0.83 0.84 0.24 0.54 0.33 0.31 0.69 0.4270
lpps 0.74 0.67 0.71 0.35 0.73 0.48 0.19 0.64 0.29 0.85 0.84 0.85 0.21 0.56 0.31 0.28 0.68 0.3946

BERT+Biaffine all 0.92 0.92 0.92 0.91 0.90 0.90 0.91 0.95 0.94 0.95 0.99 0.98 0.99 0.92 0.91 0.94 0.94 0.9401
lpps 0.96 0.96 0.96 0.88 0.88 0.88 0.91 0.92 0.91 0.98 0.98 0.98 0.93 0.92 0.92 0.92 0.92 0.9240

(a) The official results of MRP metrics on the DM framework

method tops labels properties anchors edges all
P R F P R F P R F P R F P R F P R F

TUPA all 0.58 0.46 0.51 0.56 0.77 0.65 0.34 0.57 0.42 0.82 0.80 0.80 0.27 0.39 0.32 0.45 0.63 0.5265
lpps 0.62 0.53 0.57 0.58 0.77 0.66 0.31 0.60 0.41 0.82 0.81 0.81 0.30 0.42 0.35 0.47 0.65 0.5453

BERT+Biaffine all 0.96 0.96 0.96 0.86 0.85 0.86 0.88 0.88 0.88 0.99 0.98 0.99 0.79 0.78 0.78 0.88 0.88 0.88
lpps 0.96 0.96 0.96 0.77 0.77 0.77 0.78 0.95 0.86 0.98 0.98 0.98 0.79 0.79 0.79 0.84 0.88 0.8568

(b) The official results of MRP metrics on the PSD framework

method tops anchors edges attributes all
P R F P R F P R F P R F P R F

TUPA all 0.87 0.83 0.8492 0.90 0.52 0.6574 0.08 0.29 0.1299 0.10 0.08 0.0907 0.17 0.38 0.2365
lpps 0.90 0.88 0.8889 0.93 0.67 0.7776 0.19 0.42 0.2645 0.28 0.14 0.1832 0.34 0.52 0.4104

BERT+Biaffine all 0.91 0.91 0.9142 0.77 0.80 0.7833 0.33 0.28 0.3026 0.19 0.11 0.1405 0.53 0.49 0.5069
lpps 0.91 0.91 0.9100 0.90 0.92 0.9126 0.47 0.42 0.4411 0.13 0.07 0.0882 0.66 0.62 0.6365

(c) The official results of MRP metrics on the UCCA framework

Table 4: The official results of MRP metrics on the three frameworks (DM, PSD, and UCCA), comparing ERG
(Oepen and Flickinger, 2019), TUPA (Hershcovich and Arviv, 2019), and our system (BERT+Biaffine).

method labeled unlabeled
LP LR LF LM UP UR UF UM

ERG all 0.91 0.91 0.9121 0.5144 0.92 0.92 0.9204 0.5374
lpps 0.93 0.93 0.9295 0.6900 0.93 0.94 0.9348 0.7200

TUPA all 0.51 0.62 0.5623 0.0723 0.63 0.66 0.6430 0.0848
lpps 0.50 0.63 0.5571 0.1400 0.62 0.67 0.6468 0.1700

BERT+Biaffine all 0.92 0.90 0.9119 0.3998 0.93 0.92 0.9233 0.4329
lpps 0.93 0.92 0.9265 0.5700 0.95 0.94 0.9413 0.6100

(a) The official results of SDP metrics on the DM framework

method labeled unlabeled
LP LR LF LM UP UR UF UM

TUPA all 0.47 0.53 0.5012 0.0863 0.65 0.67 0.6599 0.2200
lpps 0.52 0.59 0.5533 0.1500 0.67 0.71 0.6876 0.2700

BERT+Biaffine all 0.80 0.80 0.7998 0.1920 0.92 0.91 0.9164 0.4519
lpps 0.82 0.81 0.8147 0.2800 0.93 0.93 0.9272 0.5500

(b) The official results of SDP metrics on the PSD framework

method
labeled unlabeled

primary remote all primary remote all
P R F P R F P R F P R F P R F P R F

TUPA all 0.30 0.19 0.23 0.08 0.06 0.07 0.28 0.19 0.22 0.37 0.23 0.28 0.09 0.06 0.07 0.35 0.22 0.27
lpps 0.33 0.26 0.29 0.21 0.10 0.14 0.32 0.25 0.28 0.38 0.31 0.34 0.23 0.10 0.14 0.38 0.30 0.33

BERT+Biaffine all 0.19 0.17 0.18 0.13 0.08 0.10 0.19 0.17 0.18 0.23 0.20 0.21 0.13 0.08 0.10 0.22 0.20 0.21
lpps 0.35 0.32 0.34 0.04 0.02 0.03 0.34 0.31 0.33 0.41 0.39 0.40 0.04 0.02 0.03 0.40 0.37 0.38

(c) The official results of UCCA metrics on the UCCA framework

Table 5: The official results of task-specific metrics on the three frameworks, comparing ERG (Oepen and
Flickinger, 2019), TUPA (Hershcovich and Arviv, 2019), and our system (BERT+Biaffine).
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