
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 CoNLL, pages 86–94
Hong Kong, November 3, 2019. c©2019 Association for Computational Linguistics

https://doi.org/10.18653/v1/K19-2008

86

SJTU at MRP 2019: A Transition-Based Multi-Task Parser for
Cross-Framework Meaning Representation Parsing

Hongxiao Bai1,2,3, Hai Zhao1,2,3,∗

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China
3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

baippa@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn

Abstract

This paper describes the system of our team
SJTU for our participation in the CoNLL 2019
Shared Task: Cross-Framework Meaning Rep-
resentation Parsing. The goal of the task
is to advance data-driven parsing into graph-
structured representations of sentence mean-
ing. This task includes five meaning represen-
tation frameworks: DM, PSD, EDS, UCCA,
and AMR. These frameworks have different
properties and structures. To tackle all the
frameworks in one model, it is needed to find
out the commonality of them. In our work, we
define a set of the transition actions to once-
for-all tackle all the frameworks and train a
transition-based model to parse the meaning
representation. The adopted multi-task model
also can allow learning for one framework to
benefit the others. In the final official evalu-
ation of the shared task, our system achieves
42% F1 unified MRP metric score.

1 Introduction

Semantic understanding of texts is very important
in Natural Language Processing (NLP), in which,
Meaning Representation Parsing (MRP) attracts
attentions of many researchers. This task is to en-
code a sentence into a semantic graph, which usu-
ally is directed. Compared with dependency pars-
ing (Ma and Zhao, 2012; Li et al., 2018a; Zhou
and Zhao, 2019) or semantic role labeling (Zhao
et al., 2009a,b; Li et al., 2018b; Guan et al., 2019),
this task is much harder since its representation is a
graph which may incorporate both syntactical and
semantic information. These general graphs are
more expressive and arguably more adequate tar-
get structures for sentence-level analysis beyond

∗Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100) and Key Projects of Na-
tional Natural Science Foundation of China (No. U1836222
and No. 61733011).

shallow syntax and in particular for representa-
tions of the semantic structure. Many works have
shown that these meaning representations are ben-
eficial to other tasks such as machine translation
and abstractive summarization. However, there
are several types of meaning representations with
different definitions, structures, and abstractions,
which hinder the applications.

The CoNLL 2019 Shared Task (Oepen et al.,
2019) combines formally and linguistically dif-
ferent meaning representation in graph form on
a uniform training and evaluation setup for the
first time. This task includes five MRP frame-
works: DM, PSD, EDS, UCCA, and AMR. These
frameworks have different anchoring types, i.e.,
the tightness of correspondence between graph
nodes and sentence tokens with different abstrac-
tions. The nodes in DM and PSD are all the sur-
face tokens in the sentences. In EDS and UCCA,
the anchoring is flexible so that arbitrary parts of
the sentence (e.g. sub-token or multi-token se-
quences) may be node anchors, as well as mul-
tiple nodes anchored to overlapping sub-strings.
Further, AMR has even no anchoring but with the
strongest expressive ability.

For each of these frameworks, the common
methods for their parsing are transition-based
method and graph-based method. The former
parses sentences by making a sequence of transi-
tion actions according to the present state which
usually consists of a stack, a buffer, and a pro-
cessed edge set, while the latter gets nodes first
and predicts the edges between these nodes.

In our system, we use the transition-based
model to do the cross-framework meaning rep-
resentation parsing, since we can define a set of
transition actions and incorporate all the frame-
works into our system, and the shared part of
the model can learn from all the data from dif-
ferent frameworks. Our model is modified from

87

TUPA (Transition-based UCCA Parser) (Hersh-
covich et al., 2017, 2018) in terms of neural
networks, which is powerful in a lot of NLP
tasks (Cai and Zhao, 2016; Zhang et al., 2016; Qin
et al., 2016; Vaswani et al., 2017; Cai et al., 2017;
Wang et al., 2017; Qin et al., 2017; Bai and Zhao,
2018; He et al., 2018; Cai et al., 2018; Zhang
and Zhao, 2018; Zhang et al., 2018a,b; Zhu et al.,
2018; Huang and Zhao, 2018; Li et al., 2018c; Wu
et al., 2018; Zhang et al., 2019; Xiao et al., 2019).
Neural networks can encode the texts into a dense
representation. We put the parsing job of all the
frameworks to one model and use a multi-task set-
ting to jointly train the system. In the final official
evaluation of the shared task, our system achieves
42%F1 unified MRP metric score.

The rest of this paper is organized as follows.
Section 2 introduces these frameworks. Section 3
shows our model. Section 4 gives the settings of
our model and test results.

2 Framework Schemes

This shared task considers five meaning represen-
tation frameworks. In this section, we briefly in-
troduce these frameworks and figure out the traits
of these frameworks.

2.1 DM and PSD

DELPH-IN MRS Bi-Lexical Dependen-
cies (DM) (Ivanova et al., 2012) and Prague
Semantic Dependencies (PSD) (Hajič et al.,
2012; Miyao et al., 2014) use bi-lexical semantic
dependencies to represent the meaning with
different annotations. Graph nodes in DM and
PSD correspond to surface tokens, and graphs are
neither fully connected nor rooted trees, that is,
some tokens from the underlying sentence remain
structurally isolated, and for some nodes, there
are multiple incoming edges.

2.2 EDS

Elementary Dependency Structures (EDS) (Oepen
and Lønning, 2006) is a variable-free semantic de-
pendency graph, where graph nodes correspond to
logical predictions and edges to labeled argument
positions. The variable-free feature makes these
graphs quite similar to Abstract Meaning Repre-
sentation (AMR). Nodes in EDS are in principle
independent of surface lexical units, but for each
node, there is an explicit and many-to-many an-
choring onto sub-strings of the underlying sen-

tence.

2.3 UCCA

Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013)
targets to a more semantic way rather than only
syntactically and can be extended to cross-
linguistic settings. UCCA representations are
directed acyclic graphs (DAGs), where termi-
nal nodes correspond to the text tokens and
non-terminal nodes to semantic units with more
abstract meanings. Edges are labeled, indicating
the role of a child in the relation. UCCA enable
reentrancy to allow a node to participate in several
semantic relations.

2.4 AMR

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) tries to abstract out all the se-
mantic information from the sentences. The AMR
graphs are rooted directed graphs, in which both
nodes and edges are labeled, and reentrancy is also
allowed. AMR declines to make explicit how el-
ements of the graph correspond to the surface ut-
terance and the nodes are abstract. So similar to
EDS, it is also needed to generate nodes from se-
mantic information, but AMR is harder since even
no anchor is available. AMR graphs quite gener-
ally appear to be more abstractive compared to the
other frameworks.

2.5 Framework Summary

DM PSD EDS UCCA AMR
Node Labels • • • - •

Node Properties • • • - •
Node Anchoring • • • • -
Generated Node - - • ◦ •
Edge Attributes - - - • -

Table 1: Framework properties. Generated node means
the nodes in the graph are not the superficial tokens and
◦ means in UCCA they are empty non-terminal nodes.

These frameworks have different structures and
different complexity. The graphs of these frame-
works all have a top node or root node, and edges
are all directed and labeled. Other properties are
summarized in Table 1. By analyzing these prop-
erties, we can design a transition set to accommo-
date all these frameworks.

88

Action Current State Resulting State Description
1 Drop [σ|s0, b0|β,A] [σ|s0, β, A] drop the word that does not convey any

semantics (the first element of the buffer)
2 New(c) [σ|s0, b0|β,A] [σ|s0, c|b0|β,A] generate a new node c and push it into the

buffer
3 Add [σ|s0, b0|β,A] [σ|s0, o|b0|β,A] generate a non-terminal node for UCCA

and push it into the buffer
4 Left(r) [σ|s0, b0|β,A] [σ|s0, b0|β,A ∪ s0

r←− b0] make left-arc with label r (edge label)
5 Right(r) [σ|s0, b0|β,A] [σ|s0, b0|β,A ∪ s0

r−→ b0] make right-arc with label r (edge label)
6 Swap [σ|s1|s0, β, A] [σ|s0, s1|β,A] swap the top two nodes in stack and then

put the top one in the buffer
7 Shift [σ|s0, b0|β,A] [σ|s0|b0, β, A] shift the first node of the buffer to the

stack
8 Reduce [σ|s0, b0|β,A] [σ, b0|β,A] if the top node of the stack is processed,

pop it from stack

Table 2: The transition system. σ is the stack and s0 is the top element of the stack. β is the buffer and b0 is the
first element of the buffer. A is the set containing all processed edges. The [σ|s0, b0|β,A] denotes one state of the
transition procedure. For initialization, the σ and A are empty and β contains all tokens in the sentence (for AMR,
only words that can be aligned to the graph are kept).

3 Model Description

For the joint learning task, we select a multi-task
transition-based model. Following we will de-
scribe the transition set, the model, and the train-
ing/inference.

3.1 Transition Set

For a transition-based system, a transition action
set is needed, and an oracle is also needed to gen-
erate gold-standard actions during training. We
define the transition set to cover all meaning rep-
resentation frameworks then these tasks can be
learned consistently. Our transition system has
a stack, a buffer, and a set of processed edges.
Given a sentence consisting of a sequence of to-
kens t0, t1, · · · , tn, we put all these tokens to the
buffer as initialization. During training, an oracle
will generate a gold-standard action sequence, and
during inference, the model will predict the action
sequence and recover it to a graph. Table 2 sum-
marizes all the actions. In these actions, actions 4,
5, 6, 7, 8 are used by all the frameworks, actions 1,
2 are used by EDS and AMR, action 3 is used by
UCCA. If one action is not used by the framework,
then the oracle will not generate this action for it,
and during inference, the action is only selected
from the legal actions for task-specified classifiers.

3.2 Model

Figure 1 depicts our model. x1, x2, · · · , xi de-
notes the input tokens. Our model architecture

X1

Shared	BiLSTM Specific	BiLSTM

X2 X3 X4 X5 X6 X7

Classifier State

Figure 1: Model overview.

follows TUPA. The model uses a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) to
encode the sentence and a multi-layer percep-
tron (MLP) with a softmax layer for classification.
Following Hershcovich et al. (2018), in the model,
we have shared embedding components and a
shared LSTM module, and for each framework,
we have a task-specified LSTM module and a cor-
responding classifier. For each framework, the
outputs of shared LSTM and task-specified LSTM
are concatenated and fed into the task-specified
classifier for action prediction. For the word em-
beddings, we use the pre-trained GloVe embed-
dings (Pennington et al., 2014) and the pre-trained
BERT (Devlin et al., 2019). For each token, there
are also embeddings for lemma, POS tag, and syn-
tactic dependency label. These embeddings to-
gether with token embeddings and BERT outputs

89

are concatenated and sent to the BiLSTMs as in-
put. These embeddings and pre-trained models are
tuned during training.

Besides the neural model, we also add hand-
made features to the classifier. We use features
representing the existing node labels related to the
top four stack elements and the first three buffer el-
ements. We also use the last three actions taken by
the parser, and if there are less than three actions
before, use zero embeddings instead. For all these
features, we use vector embeddings to represent
them, that is, node labels and transition actions are
embedded to vectors. All these embeddings are
initialized randomly. These features embeddings
are concatenated as a feature vector for the state.

The final hidden state vectors of shared and spe-
cific BiLSTMs and the feature vector of the state
are concatenated and fed as input to the action
classifiers. The training is done with an oracle that
yields the set of all optimal transitions at a given
state. The actual transition performed in training
is the one with the highest score given by the clas-
sifier, which is trained to maximize the sum of log-
likelihoods of all optimal transitions at each step.

In addition to the main model, we also apply
two classifiers for property prediction of DM and
PSD. The classifier is an MLP and the input is the
concatenated output vectors of each token from
shared and specific BiLSTM since the nodes are
one-to-one corresponding to the tokens in the sen-
tence.

3.3 Training and Inference Procedures

The training and test data have companion data
processed by UDPipe (Straka, 2018). For all the
input sentences, we use the tokenization, lemma,
POS tagging, dependency parsing, and anchor in-
formation results from UDPipe data. Then the an-
chors of the output graphs are directly obtained
from the UDPipe data. For EDS and AMR, the an-
chors are derived from the first token in the buffer.

Since AMR has no anchoring between nodes
and texts, so we use the alignments generated from
JAMR (Flanigan et al., 2014) and the tokens and
nodes which have no alignments are discarded.
Then the oracle can generate an action sequence
for AMR during training. We also do pre-process
on AMR and EDS graphs by expanding the node
properties of graphs in the two frameworks, that is,
the property key is seen as edge label and property
value is seen as node label. We collect these edge

labels and convert these nodes and edges to prop-
erties. For DM and PSD, the pos node property is
from XPOS in UDPipe data, and the frame prop-
erty are predicted by additional classifiers. UCCA
has edge attribute remote to reflect the reentrancy
and we neglect the edge attribute in our transition
system for convenience. So we add the attribute
remote to the later predicted edges that link the
used nodes. For node labels, we use the lemma
corresponding to the token in the sentences as
node label for DM and PSD, and we generate node
label for EDS and AMR in the New action.

During training, an oracle is used to generate
action sequences. We use a dynamic oracle which
outputs a set of optimal transitions from a given
state, and from the resulting state, the gold stan-
dard graph is still reachable. For example, for EDS
and AMR, if the first element of the buffer is a to-
ken and it has aligned unprocessed nodes, then a
node with small id is generated by the New and
put to the buffer. For UCCA, if the top node in
the stack connects to a non-terminal node which is
not generated yet, then the Add this non-terminal
node. If this token has no aligned nodes remain-
ing, then the Drop is applied. If the top element
of the stack and the first element of the buffer are
nodes and the node in the buffer is the child of an
unprocessed edge, then the Right action is applied.
Similarly, we have the Left action. If the top ele-
ment of the stack has no unprocessed edges, then
the Reduce is applied. If the stack is empty and the
buffer has elements, then the Shift is applied. If no
other actions can be found, then we do the Swap
action.

For inference, after the action sequence is pre-
dicted, we can generate a graph from this se-
quence. However, this graph may not conform
to the graph rules of the respective framework.
So we prune the generated graph. The pruning
method includes: deleting the repeated nodes and
edges, deleting the nodes containing empty labels
of EDS and AMR, deleting the edges attached to
the deleted nodes.

4 Experiments and Results

4.1 Data settings

Our system is trained and evaluated on the data
provided by the shared task. The data size is
shown in Table 5. We randomly sample out 3%
of the training data in each framework as the de-
velopment set. After the hyperparameters are de-

90

tops labels properties anchors edges attributes all rank base all
all MRP 52.7 42.8 32.1 54.7 29.5 0.2 43.0 10 45.3

lpps MRP 60.2 44.3 24.9 56.0 30.8 0.1 45.1 10 50.6
all MRP DM 47.8 56.5 34.7 70.2 31.4 0.0 43.2 11 42.7

lpps MRP DM 61.2 55.8 33.1 70.4 27.9 0.0 41.9 11 39.5
all MRP PSD 48.4 60.7 39.0 72.8 23.4 0.0 47.6 11 52.7

lpps MRP PSD 53.3 60.6 40.5 72.7 24.8 0.0 48.8 11 54.5
all MRP EDS 32.6 53.1 52.8 64.8 40.5 0.0 53.2 8 74.0

lpps MRP EDS 43.2 53.6 40.0 67.8 43.2 0.0 55.3 8 74.8
all MRP UCCA 81.8 0.0 0.0 66.0 19.4 0.8 32.7 9 23.7

lpps MRP UCCA 75.6 0.0 0.0 69.3 23.4 0.7 35.3 9 41.0
all MRP AMR 53.2 43.8 34.1 0.0 33.0 0.0 38.5 9 33.8

lpps MRP AMR 67.7 51.4 10.8 0.0 34.8 0.0 44.1 9 43.4

Table 3: Test results.F1(%) scores for tops, labels, properties, anchors, edges, attributes, and all unified score.
MRP is the results of all frameworks and others are for specific frameworks. For the test data, “all” denotes all test
data and “lpps” denotes the 100 sentences in The Little Prince. base denotes the results of TUPA baseline.

labeled F labeled M labeled rank unlabeled F unlabeled M unlabeled rank
all DM 37.9 (56.2) 1.7 (7.2) 11 41.6 (64.3) 1.8 (8.5) 12

lpps DM 33.5 (55.7) 0.0 (14.0) 11 37.8 (64.7) 0.0 (17.0) 12
all PSD 34.0 (50.1) 2.2 (8.6) 12 45.9 (66.0) 4.1 (22.0) 12

lpps PSD 35.9 (55.3) 0.0 (15.0) 12 45.7 (68.8) 0.0 (27.0) 12

Table 4: SDP results for DM and PSD. F denotes F1(%) score and M denotes exact match score(%). The scores
in the brackets are from TUPA baseline.

termined, we train our system on all the training
data. The shared task also evaluates the system on
the 100 annotated sentences from The Little Prince
which denote as “lpps” in the Results section.

Training Test
DM 35,656 3359
PSD 35,656 3359
EDS 35,656 3359

UCCA 6,572 1131
AMR 56,240 1998

Table 5: Number of sentences of each framework in
training set and test set.

4.2 Model Settings

We implement our model with PyTorch1 and tuned
on the development set. During inference, we use
greedy decoding to get the action sequence. Ta-
ble 6 shows the hyperparameter settings. The op-
timizer is Adam (Kingma and Ba, 2015). The
dropout is applied to the embeddings, the outputs
of BiLSTMs, and the outputs of the first MLP lay-

1https://pytorch.org/

ers. If the length of one sentence is larger than
the max length, then the exceeding tokens are dis-
carded. Other features denote the node labels in
the stack and buffer, and the previous actions in-
troduced in Section 3.2.

4.3 Results

The evaluation is blindly conducted. The MRP
score results are shown in Table 3. For framework
specified metric, the SDP results for DM and PSD
are reported in Table 4, the EDM results for EDS
are reported in Table 7, and the SMATCH results
for AMR are reported in Table 9. Table 3 also con-
tains the comparison results with the TUPA base-
line (Hershcovich and Arviv, 2019). For some of
the frameworks, our model is better than the TUPA
baseline.

4.4 Analysis

Though following the same model architecture
and dynamic oracle of TUPA, we adopt a different
transition set with a different feature set and set-
ting. For example, UCCA only generates a node
when an unprocessed edge is met and the node is
on it, and UCCA has separate actions to predict

https://pytorch.org/

91

Hyperparameter Value
Max sentence length 100

GloVe embedding dim 300
BERT output dim 1024

Lemma embedding dim 200
POS-tag embedding dim 20

Dependency embedding dim 20
Other feature dim 10
BiLSTM layers 2
BiLSTM dim 300
MLP layers 2
MLP dim 50
Dropout 0.2

Optimizer Adam
Learning rate 0.001

Adam β1 0.9
Adam β2 0.999

Table 6: Model hyperparameters.

all lpps
tops 28.8 40.5

names 50.6 52.8
arguments 34.7 35.5
properties 53.5 40.0

all 43.5 (65.6) 44.9 (66.0)
rank 8 8

Table 7: EDM F1(%) results for EDS. The scores in
the brackets are from TUPA baseline.

node label, edge label, node property, and edge
attribute. Whereas we have actions to generate
nodes (New and Add) and the node or edge label is
predicted when the node or the edge is generated.
However, our set does not have actions for node
properties and edge attributes, which has been in-
troduced in Section 3.3. The motivation for de-
signing our transition set is to use fewer actions to
parse a sentence.

For the results, we find the MRP metric may
be imperfect for every framework. For example,
the MRP results for UCCA of ours and the base-
line are comparative, whereas, for the UCCA task-
specific metric, ours (Table 8) are much lower than
TUPA. That is, a better MRP result may not reflect
a better task-specific result. This is due to some
items calculated by MRP that are not in UCCA
graphs such as labels and properties, and the edge
overlapping search methods are different. The gap
comes from our transition set, which is not well
suitable for UCCA, and this is mainly due to that

all lpps
labeled primary 4.7 5.6
labeled remote 0.6 1.6

labeled all 4.5 (22.4) 5.5 (28.4)
labeled rank 9 9

unlabeled primary 6.5 7.7
unlabeled remote 1.1 3.3

unlabeled all 6.3 (27.1) 7.5 (33.1)
unlabeled rank 9 9

Table 8: UCCA F1(%) results. The scores in the brack-
ets are from TUPA baseline.

all lpps
F1 37.3 (32.8) 41.1 (41.1)

rank 9 9

Table 9: SMATCH F1(%) results for AMR. SMATCH
is the specific evaluation metric for AMR. The scores
in the brackets are from TUPA baseline.

Ours TUPA
P R F P R F

MRP 46.0 43.0 43.0 39.0 57.0 45.3
DM 36.0 53.0 43.2 31.0 69.0 42.7
PSD 48.0 48.0 47.6 45.0 63.0 52.7
EDS 75.0 41.0 53.2 74.0 74.0 74.0

UCCA 31.0 35.0 32.7 17.0 38.0 23.7
AMR 40.0 37.0 38.5 29.0 41.0 33.8

Table 10: Precision, Recall, and F1 score comparisons
on all MRP results.

we generate non-terminal node separately whereas
TUPA directly generates edges attached to the
non-terminal nodes, and our method may even il-
legally connect two terminal nodes. Other frame-
works have the same issue such as DM. These
task-specific metrics pay more attention to edges
and have a different overlapping search method
compared with MRP metric, which is more sim-
ilar to the AMR specific metric SMATCH.

Only for AMR, our MRP results and SMATCH
results are both better, which may be due to the
separate New action and expanding the properties
as nodes.

In Table 10, we compare the precision, recall,
and F1 results for MRP metric, and we can find
that though the F1 scores are comparative, our pre-
cision scores are much higher than TUPA, whereas
recall scores are much lower. That is, we can pre-
dict the elements in the graph more accurately, but

92

our model misses too much nodes and edges. This
is due to that the new node action and the separate
property classifiers can bring better element pre-
diction. Fewer actions also make the prediction
more accurate. However, the design of the oracle
and the training may have flaws, so some tokens
are dropped and some edges are not predicted out,
which makes the low recall. Our parser tends to
predict a smaller graph, so for some frameworks
which tend to have bigger graphs, such as PSD and
EDS, the MRP results of our parser are worse.

5 Conclusion

In this paper, we describe our transition-based
multi-task parsing system for the CoNLL 2019
Shared Task: Cross-Framework Meaning Repre-
sentation Parsing. In our system, we integrate all
the frameworks into one transition-based neural
model using shared features, and we focus more
on unified overall MRP metric results. The results
of the blind test show that our system achieves
42% F1 unified MRP metric score. Compared
with baseline TUPA, our parser has higher preci-
sion but lower recall, for future work, we will op-
timize our transition set and oracle for better per-
formance.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL) (Volume
1: Long Papers), pages 228–238, Sofia, Bulgaria.

Hongxiao Bai and Hai Zhao. 2018. Deep enhanced
representation for implicit discourse relation recog-
nition. In Proceedings of the 27th International
Conference on Computational Linguistics (COL-
ING), pages 571–583, Santa Fe, New Mexico, USA.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria.

Deng Cai and Hai Zhao. 2016. Neural Word Segmen-
tation Learning for Chinese. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 409–420, Berlin,
Germany.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and

accurate neural word segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) (Vol-
ume 2: Short Papers), pages 608–615, Vancouver,
Canada.

Jiaxun Cai, Shexia He, Zuchao Li, and Hai Zhao. 2018.
A full end-to-end semantic role labeler, syntactic-
agnostic over syntactic-aware? In Proceedings of
the 27th International Conference on Computational
Linguistics (COLING), pages 2753–2765, Santa Fe,
New Mexico, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL:HLT), Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Min-
nesota.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (ACL) (Volume 1: Long Papers), pages
1426–1436, Baltimore, Maryland.

Chaoyu Guan, Yuhao Cheng, and Hai Zhao. 2019. Se-
mantic role labeling with associated memory net-
work. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL:HLT), Volume 1 (Long and
Short Papers), pages 3361–3371, Minneapolis, Min-
nesota.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́
Semecký, Jana Šindlerová, Jan Štěpánek, Josef
Toman, Zdeňka Urešová, and Zdeněk Žabokrtský.
2012. Announcing Prague Czech-English depen-
dency treebank 2.0. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 3153–3160, Istan-
bul, Turkey.

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai.
2018. Syntax for semantic role labeling, to be, or
not to be. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(ACL) (Volume 1: Long Papers), pages 2061–2071,
Melbourne, Australia.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (ACL) (Volume 1: Long Papers), pages
1127–1138, Vancouver, Canada.

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/P13-1023
http://aclweb.org/anthology/C18-1048
http://aclweb.org/anthology/C18-1048
http://aclweb.org/anthology/C18-1048
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
http://www.aclweb.org/anthology/P16-1039
http://www.aclweb.org/anthology/P16-1039
https://doi.org/10.18653/v1/P17-2096
https://doi.org/10.18653/v1/P17-2096
http://aclweb.org/anthology/C18-1233
http://aclweb.org/anthology/C18-1233
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/N19-1340
https://doi.org/10.18653/v1/N19-1340
https://doi.org/10.18653/v1/N19-1340
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/510_Paper.pdf
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.18653/v1/P18-1192
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104

93

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL) (Volume 1: Long Papers), pages 373–385,
Melbourne, Australia.

Daniel Hershcovich and Ofir Arviv. 2019. TUPA at
MRP 2019. A multi-task baseline system. In Pro-
ceedings of the Shared Task on Cross-Framework
Meaning Representation Parsing at the 2019 Con-
ference on Natural Language Learning, pages 27–
38, Hong Kong, China.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735–1780.

Yafang Huang and Hai Zhao. 2018. Chinese pinyin
aided IME, input what you have not keystroked
yet. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2923–2929, Brussels, Belgium.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
a contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop, pages 2–11, Jeju, Republic of Korea.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR), San Diego, CA.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao.
2018a. Seq2seq dependency parsing. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics (COLING), pages 3203–
3214, Santa Fe, New Mexico, USA.

Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang,
Hai Zhao, Gongshen Liu, Linlin Li, and Luo Si.
2018b. A unified syntax-aware framework for
semantic role labeling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2401–2411,
Brussels, Belgium.

Zuchao Li, Shexia He, Zhuosheng Zhang, and Hai
Zhao. 2018c. Joint learning of POS and dependen-
cies for multilingual universal dependency parsing.
In Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies, pages 65–73, Brussels, Belgium.

Xuezhe Ma and Hai Zhao. 2012. Fourth-order depen-
dency parsing. In Proceedings of COLING 2012:
Posters, pages 785–796, Mumbai, India.

Yusuke Miyao, Stephan Oepen, and Daniel Zeman.
2014. In-house: An ensemble of pre-existing off-
the-shelf parsers. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 335–340, Dublin, Ireland.

Stephan Oepen, Omri Abend, Jan Hajič, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, and
Nianwen Xue. 2019. MRP 2019. Cross-framework
Meaning Representation Parsing. In Proceedings of
the Shared Task on Cross-Framework Meaning Rep-
resentation Parsing at the 2019 Conference on Nat-
ural Language Learning, pages 1–26, Hong Kong,
China.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the Fifth International Conference on Language
Resources and Evaluation (LREC’06), Genoa, Italy.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016. A
stacking gated neural architecture for implicit dis-
course relation classification. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2263–2270,
Austin, Texas.

Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu,
and Eric Xing. 2017. Adversarial connective-
exploiting networks for implicit discourse relation
classification. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL) (Volume 1: Long Papers), pages
1006–1017, Vancouver, Canada.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NIPS) 30, pages 5998–6008.

Hao Wang, Hai Zhao, and Zhisong Zhang. 2017. A
transition-based system for universal dependency
parsing. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 191–197, Vancouver,
Canada.

Yingting Wu, Hai Zhao, and Jia-Jun Tong. 2018. Mul-
tilingual universal dependency parsing from raw text
with low-resource language enhancement. In Pro-
ceedings of the CoNLL 2018 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependen-
cies, pages 74–80, Brussels, Belgium.

Fengshun Xiao, Jiangtong Li, Hai Zhao, Rui Wang,
and Kehai Chen. 2019. Lattice-based transformer
encoder for neural machine translation. In Proceed-
ings of the 57th Annual Meeting of the Association

https://doi.org/10.18653/v1/P18-1035
https://doi.org/10.18653/v1/P18-1035
https://doi.org/10.18653/v1/D18-1321
https://doi.org/10.18653/v1/D18-1321
https://doi.org/10.18653/v1/D18-1321
https://www.aclweb.org/anthology/W12-3602
https://www.aclweb.org/anthology/W12-3602
https://www.aclweb.org/anthology/W12-3602
https://www.aclweb.org/anthology/C18-1271
https://doi.org/10.18653/v1/D18-1262
https://doi.org/10.18653/v1/D18-1262
https://doi.org/10.18653/v1/K18-2006
https://doi.org/10.18653/v1/K18-2006
https://www.aclweb.org/anthology/C12-2077
https://www.aclweb.org/anthology/C12-2077
https://doi.org/10.3115/v1/S14-2056
https://doi.org/10.3115/v1/S14-2056
http://www.lrec-conf.org/proceedings/lrec2006/pdf/364_pdf.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D16-1246
https://doi.org/10.18653/v1/D16-1246
https://doi.org/10.18653/v1/D16-1246
http://aclweb.org/anthology/P17-1093
http://aclweb.org/anthology/P17-1093
http://aclweb.org/anthology/P17-1093
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/K17-3020
https://doi.org/10.18653/v1/K17-3020
https://doi.org/10.18653/v1/K17-3020
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/K18-2007
https://doi.org/10.18653/v1/P19-1298
https://doi.org/10.18653/v1/P19-1298

94

for Computational Linguistics (ACL), pages 3090–
3097, Florence, Italy.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016.
Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 1382–1392,
Berlin, Germany.

Zhuosheng Zhang, Yafang Huang, and Hai Zhao.
2018a. Subword-augmented embedding for cloze
reading comprehension. In Proceedings of the 27th
International Conference on Computational Lin-
guistics (COLING), pages 1802–1814, Santa Fe,
New Mexico, USA.

Zhuosheng Zhang, Yafang Huang, and Hai Zhao. 2019.
Open vocabulary learning for neural Chinese pinyin
IME. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1584–1594, Florence, Italy.

Zhuosheng Zhang, Jiangtong Li, Pengfei Zhu, Hai
Zhao, and Gongshen Liu. 2018b. Modeling multi-
turn conversation with deep utterance aggregation.
In Proceedings of the 27th International Conference
on Computational Linguistics (COLING), pages
3740–3752, Santa Fe, New Mexico, USA.

Zhuosheng Zhang and Hai Zhao. 2018. One-shot
learning for question-answering in Gaokao history
challenge. In Proceedings of the 27th International
Conference on Computational Linguistics (COL-
ING), pages 449–461, Santa Fe, New Mexico, USA.

Hai Zhao, Wenliang Chen, Jun’ichi Kazama, Kiyotaka
Uchimoto, and Kentaro Torisawa. 2009a. Multi-
lingual dependency learning: Exploiting rich fea-
tures for tagging syntactic and semantic dependen-
cies. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL 2009): Shared Task, pages 61–66, Boulder,
Colorado.

Hai Zhao, Wenliang Chen, and Chunyu Kit. 2009b. Se-
mantic dependency parsing of NomBank and Prop-
Bank: An efficient integrated approach via a large-
scale feature selection. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 30–39, Singa-
pore.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
2396–2408, Florence, Italy.

Pengfei Zhu, Zhuosheng Zhang, Jiangtong Li, Yafang
Huang, and Hai Zhao. 2018. Lingke: a fine-grained
multi-turn chatbot for customer service. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics (COLING): System Demon-
strations, pages 108–112, Santa Fe, New Mexico.

http://www.aclweb.org/anthology/P16-1131
http://www.aclweb.org/anthology/P16-1131
https://www.aclweb.org/anthology/C18-1153
https://www.aclweb.org/anthology/C18-1153
https://doi.org/10.18653/v1/P19-1154
https://doi.org/10.18653/v1/P19-1154
https://www.aclweb.org/anthology/C18-1317
https://www.aclweb.org/anthology/C18-1317
https://www.aclweb.org/anthology/C18-1038
https://www.aclweb.org/anthology/C18-1038
https://www.aclweb.org/anthology/C18-1038
https://www.aclweb.org/anthology/W09-1209
https://www.aclweb.org/anthology/W09-1209
https://www.aclweb.org/anthology/W09-1209
https://www.aclweb.org/anthology/W09-1209
https://www.aclweb.org/anthology/D09-1004
https://www.aclweb.org/anthology/D09-1004
https://www.aclweb.org/anthology/D09-1004
https://www.aclweb.org/anthology/D09-1004
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://www.aclweb.org/anthology/C18-2024
https://www.aclweb.org/anthology/C18-2024

