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Abstract

This paper presents the system used in
our submission to the CoNLL 2019 shared

task: Cross-Framework Meaning Representa-

tion Parsing. Our system is a graph-based
parser which combines an extended pointer-
generator network that generates nodes and
a second-order mean field variational infer-
ence module that predicts edges. Our sys-
tem achieved 1st and 2nd place for the DM
and PSD frameworks respectively on the in-
framework ranks and achieved 3rd place for the
DM framework on the cross-framework ranks.

1 Introduction

The goal of the Cross-Framework Meaning Rep-

resentation Parsing (MRP 2019, Oepen et al.
(2019)) is learning to parse text to multiple for-
mats of meaning representation with a uniform
parsing system. The task combines five different
frameworks of graph-based meaning representa-
tion. DELPH-IN MRS Bi-Lexical Dependencies
(DM) (Ivanova et al., 2012) and Prague Seman-
tic Dependencies (PSD) (Hajič et al., 2012; Miyao
et al., 2014) first appeared in SemEval 2014 and
2015 shared task Semantic Dependency Parsing
(SDP) (Oepen et al., 2014, 2015). Elementary De-
pendency Structures (EDS) (Oepen and Lønning,
2006) is the origin of DM Bi-Lexical Dependen-
cies, which encodes English Resource Semantics
(Flickinger et al., 2016) in a variable-free semantic
dependency graph. Universal Conceptual Cogni-
tive Annotation (UCCA) (Abend and Rappoport,
2013) targets a level of semantic granularity that
abstracts away from syntactic paraphrases. Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013) targets to abstract away from syn-
tactic representations, which means that sentences
have similar meaning should be assigned the same
AMR graph. One of the main differences be-

tween these frameworks is their level of abstrac-
tion from the sentence. SDP is a bi-lexical depen-
dency graph, where graph nodes correspond to to-
kens in the sentence. EDS and UCCA are general
forms of anchored semantic graphs, in which the
nodes are anchored to arbitrary spans of the sen-
tence and the spans can have overlaps. AMR is
an unanchored graph, which does not consider the
correspondence between nodes and the sentence
tokens. The shared task also provides a cross-
framework metric which evaluates the similarity
of graph components in all frameworks.

Previous work mostly focused on developing
parsers that support only one or two frameworks
while few work has explored cross-framework se-
mantic parsing. Peng et al. (2017), Stanovsky
and Dagan (2018) and Kurita and Søgaard (2019)
proposed methods learning jointly on the three
frameworks of SDP and Peng et al. (2018) fur-
ther proposed to learn from different corpora. Her-
shcovich et al. (2018) converted UCCA, AMR,
DM and UD (Universal Dependencies) into a uni-
fied DAG format and proposed a transition-based
method for UCCA parsing.

In this paper, we present our system for MRP
2019. Our system is a graph-based method which
combines an extended pointer-generator network
introduced by Zhang et al. (2019) to generate
nodes for EDS, UCCA and AMR graphs and
a second-order mean field variational inference
module introduced by Wang et al. (2019) to pre-
dict edges for all the frameworks. According to
the official results, our system gets 94.88 F1 score
in the cross-framework metric for DM, which is
the 3rd place in the ranking. For in-framework
metrics, our system gets 92.98 and 81.61 labeled
F1 score for DM and PSD respectively, which are
ranked 1st and 2nd in the ranking.
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Figure 1: An example of converting AMR graphs
into tree structures. This is a sub-graph of sentence
#20003002.

2 Data Processing

In this section, we introduce our data pre-
processing and post-processing in our system for
all the frameworks. We use sentence tokeniza-
tions, POS tags and lemmas from the official com-
panion data and named entity tags extracted by
Illinois Named Entity Tagger (Ratinov and Roth,
2009) in the official ‘white-list’. We follow Zhang
et al. (2019) to convert each EDS, UCCA, and
AMR graph to a tree through duplicating the nodes
that have multiple edge entrances, An example is
shown in Fig. 1. The node sequences for EDS,
UCCA and AMR are decided by depth-first search
that starts from the root node and sorts neighbour-
ing nodes in alphanumerical order.

2.1 AMR Data Processing

Our data processing follows Zhang et al. (2019).
In pre-processing, we remove the senses, wiki
links and polarity attributes in AMR nodes, and
replace the sub-graphs of special named entities,
such as names, places, time, with anonymized
words. The corresponding phrases in the sen-
tences are also anonymized. A mapping from

proper_q〈0:28〉

named〈7:14〉
carg Vinken

BV

compound〈0:14〉

named〈0:6〉
carg Pierre

ARG2ARG1

proper_q〈0:6〉
BV

(a) Before reduction.

proper_q〈0:28〉

Vinken〈7:14〉
attributes [named]

BV

Pierre〈0:6〉
attributes [named, proper_q]

compound

(b) After reduction.

Figure 2: An example of EDS reduction. This is a sub-
graph of sentence #20001001.

NER tags to these entities is built to process the
test data.

In post-processing, we generate the AMR sub-
graphs from the anonymized words. Then we as-
sign the senses, wiki links and polarity attributes
with the method in Zhang et al. (2019).

2.2 EDS and UCCA Data Processing

In pre-processing we first clean the companion
data to make sure the tokens in the companion data
is consistent with those in the MRP input. We sup-
pose anchors are continuous for each node, so we
replace the anchors with the corresponding start
and end token indices.

In EDS graphs, there are a lot of nodes with-
out a direct mapping to individual surface tokens,
which we call type 1 nodes. We call nodes with
corresponding surface tokens type 2 nodes. We re-
duce type 1 nodes in two ways:

• If a node a of type 1 is connected to only one
node b which is of type 2 and has the same
anchor as a, we reduce node a into node b as
a special attribute for the node.

• If a node a of type 1 is connected to exactly
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two nodes b and c which are of type 2 and
have a combined anchor range that matches
the anchor of a. We reduce node a as an edge
connecting b and c with the same label. The
edge direction is decided by the labels of the
edges connecting a to b and c. For example,
if node a has two child nodes b and c, edge
(a, c) has label ARG2 and edge (a, b) has la-
bel ARG1, then node a will be reduced to
directed edge (b, c) with the label of node a.

An example of the reduction is shown in Fig. 2.
This method reduces 4 nodes on average for each
graph. We also look at nodes whose node label
corresponds to a multi-word in the sentence For
example, ‘_such+as’ in an EDS graph corresponds
to ‘such as’ in the sentence. In such case, if the
phrase has a probability over 0.5 that maps to a
single node, then all words in this phrase will be
combined to a single token in the sentence.

In the post-processing, we recover reduced
nodes by reversing the reduction precedure ac-
cording to the node attributes and edge labels.

For UCCA, we label implicit nodes with spe-
cial labels ni, where i is the index that the implicit
node appears in the node sequence.

3 System Description

In this section, we describe our model for the task.
We first predict the nodes of the parse graph. For
DM and PSD, there is a one-to-one mapping be-
tween sentence tokens and graph nodes. For EDS,
UCCA and AMR, we apply an extended pointer-
generator network (Zhang et al., 2019) for node
prediction. Given predicted nodes, we then adopt
the method of second-order mean field variational
inference (Wang et al., 2019) for edge prediction.
Figure 3 illustrates our system architecture.

3.1 Word Representation

Previous work found that various word represen-
tation could help improve parser performance.
Many state-of-the-art parsers use POS tags and
pre-trained GloVe (Pennington et al., 2014) em-
beddings as a part of the word representation.
Dozat and Manning (2018) find that character-
based LSTM and lemma embeddings can further
improve the performance of semantic dependency
parser. Zhang et al. (2019) use BERT (Devlin
et al., 2019) embeddings for each token to improve
the performance of AMR parsing. In our system,

we find that predicted named entity tags are help-
ful as well. The word representation oi in our sys-
tem is:

oi = [owi ;o
pos
i ;olemmas

i ;opwi ;obwi ;ochar
i ;one

i ]

where owi is word embedding with random initial-
ization, opwi is pre-trained GloVe embedding and
obwi are BERT embedding through average pool-
ing over subwords. o

pos
i , olemmas

i , ochar
i , one

i are
XPOS, lemmas, character and NER embedding re-
spectively. XPOS and lemmas are extracted from
the official companion data.

3.2 Node Prediction

We use extended pointer-generator network
(Zhang et al., 2019) for nodes prediction. Given
a sentence with n words w = [w1, w2, ..., wn],
we predict a list of nodes u = [u1, u2, ..., um] se-
quentially and assign their corresponding indices
idx = [idx1, idx2, ..., idxm]. The indices idx are
used to track whether a copy of a previous gener-
ated nodes or a newly generated node.

P (u) =

m∏

i=1

P (ui | u<i, idx<i,w)

To encode the input sentence, we use a multi-layer
BiLSTM fed with embeddings of the words:

R = BiLSTM(O) (1)

whereO represents [o1, . . . ,on], oi is the concate-
nation different types of embeddings for wi, and
R = [r1, . . . , rn] represents the output from the
BiLSTM.

For the decoder, at each time step t, we use an
l-layer LSTM for generating hidden states zlt se-
quentially:

zlt = f l(zl−1
t , zlt−1)

where f l is the l-th layer of LSTM, zl0 is the last
hidden state rn in Eq. 1. z0t is the concatenation of
the label embedding of node ut−1 and attentional
vector z̃t−1. z̃t is defined by:

etsrc =W⊤
satttanh(WsrcR+Usrcz

l
t + bsrc) (2)

atsrc =softmax(etsrc) (3)

ct =
n∑

i

atsrc,iri

z̃t =tanh(Wc[ct; z
l
t] + bc) (4)
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Figure 3: Illustration of our system architecture.

Where atsrc is the source attention distribution, and
ct is contextual vector of encoder hidden layers,
Wsatt, Wsrc, Usrc, bsrc, Wc, bc are learnable pa-
rameters. The vocabulary distribution is given by:

Pvocab = softmax(Wvocabz̃t + bvocab) (5)

where Wvocab and bvocab are learnable parameters.
The target attention distribution is defined simi-
larly as Eq. 2 and 3:

ettgt =W⊤
tatttanh(Wtgtz̃1:t−1 +Utgtz̃t + btgt),

attgt = softmax(ettgt),

where W⊤
tatt, Wtgt, Utgt, btgt are learnable param-

eters. Finally, at each time step, we need to de-
cide which action should be taken. Possible ac-
tions include copying an existing node from previ-
ous nodes and generating a new node whose label
is either from the vocabulary or a word from the
source sentence. The corresponding probability of
these three actions are ptgt, pgen and psrc:

[ptgt, pgen, psrc] = softmax(Wactionz̃t + baction)

where ptgt + pgen + psrc = 1.
At time step t, if ut is a copy of an existing

nodes, then the probability P (node)(ut) and the in-
dex idxt is defined by:

P (node)(ut) = ptgt

∑

i:ui=ut

attgt[i]

idxt = idxj

where idxj is the copied node index. If ut is a new
node:

P (node)(ut) = pgenPvocab(ut) + psrc

∑

i:wi=ut

atsrc[i]

idxt = t

3.3 Edge Prediction

We adopt the method presented in Wang et al.
(2019) for edge prediction, which is based on
second-order scoring and inference. Suppose that
we have a sequence of vector representations of
the predicted nodes [r′1, . . . , r

′
m], which can be the

BiLSTM output ri in Eq. 1 in the cases of DM and
PSD, or the extended pointer-generator network
output z̃i in Eq. 4 in the cases of EDS, UCCA
and AMR. The edge prediction module is shown
in Fig. 4.

To score first-order and second-order parts (i.e.,
edges and edge-pairs) in both edge-prediction and
label-prediction, we apply the Biaffine function
(Dozat and Manning, 2017, 2018) and Trilinear
function (Wang et al., 2019) fed with node rep-
resentations.

Biaff(v1,v2) := v⊤
1 Uv2 + b

gi := Uivi i ∈ [1, 2, 3]

Trilin(v1,v2,v3) :=
d∑

i=1

g1i ◦ g2i ◦ g3i (6)
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Figure 4: The structure of our edge prediction module. The figure is from Wang et al. (2019) with minor modifi-
cations.

where Ui is a (d×d)-dimensional tensor, where d
is hidden size and ◦ represents element-wise prod-
uct. We consider three types of second-order parts:
siblings (sib), co-parents (cop) and grandparents
(gp) (Martins and Almeida, 2014). For a specific
first-order and second-order part, we use single-
layer FNNs to compute a head representation and
a dependent representation for each word, as well
as a head_dep representation which is used for
grandparent parts:

part ∈ {edge, label, sib, cop, gp}

h
(part-head)
i = FNN(part-head)(r′i)

h
(part-dep)
i = FNN(part-dep)(r′i)

h
(gp-head_dep)
i = FNN(gp-head_dep)(r′i)

We then compute the part scores as follows:

s
(edge)
ij = Biaff (edge)(h

(edge-dep)
i ,h

(edge-head)
j ) (7)

s
(label)
ij = Biaff (label)(h

(label-dep)
i ,h

(label-head)
j ) (8)

s
(sib)
ij,ik ≡ s

(sib)
ik,ij = Trilin(sib)(h(head)

i ,h
(dep)
j ,h

(dep)
k )

(9)

s
(cop)
ij,kj ≡ s

(cop)
kj,ij = Trilin(cop)(h(head)

i ,h
(dep)
j ,h

(head)
k )

(10)

s
(gp)
ij,jk = Trilin(gp)(h(head)

i ,h
(head_dep)
j ,h

(dep)
k )

(11)

In Eq. 7,8, the tensor U in the biaffine function is
(d× 1× d)-dimensional and (d× c)-dimensional,

where c is the number of labels. We require j < k

in Eq. 9 and i < k in Eq. 10.
In the label-prediction module, s(label)

i,j is fed into
a softmax layer that outputs the probability of each
label for edge (i, j). In the edge-prediction mod-
ule, we can view computing the edge probabilities
as doing posterior inference on a Conditional Ran-
dom Field (CRF). Each Boolean variable Xij in
the CRF indicates whether the directed edge (i, j)
exists. We use Eq. 7 to define our unary potential
ψu representing scores of an edge and Eqs. (9-
11) to define our binary potential ψp. We define a
unary potential φu(Xij) for each variable Xij .

φu(Xij) =

{
exp(s

(edge)
ij ) Xij = 1

1 Xij = 0

For each pair of edges (i, j) and (k, l) that form a
second-order part of a specific type, we define a
binary potential φp(Xij , Xkl).

φp(Xij , Xkl) =

{
exp(s

(type)
ij,kl ) Xij = Xkl = 1

1 Otherwise

Exact inference on this CRF is intractable. We
use mean field variational inference to approxi-
mate a true posterior distribution with a factorized
variational distribution and tries to iteratively min-
imize their KL divergence. We can derive the fol-
lowing iterative update equations of distribution
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Qij(Xij) for each edge (i, j).

F
(t−1)
ij =

∑

k 6=i,j

Q
(t−1)
ik (1)s

(sib)
ij,ik +Q

(t−1)
kj (1)s

(cop)
ij,kj

+Q
(t−1)
jk (1)s

(gp)
ij,jk +Q

(t−1)
ki (1)s

(gp)
ki,ij

(12)
Q

(t)
ij (0) ∝ 1

Q
(t)
ij (1) ∝ exp{s

(edge)
ij + F

(t−1)
ij }

The initial distributionQ(0)
ij (Xij) is set by normal-

izing the unary potential φu(Xij). We iteratively
update the distributions for T steps and then out-

put Q(T )
ij (Xij), where T is a hyperparameter. We

can then predict the parse graph by including ev-

ery edge y(edge)
ij such thatQ(T )

ij (1) > 0.5. The edge

labels y(label)
ij are predicted by maximizing the la-

bel probabilities computed by the label-prediction
module.

P (y
(edge)
ij |w) = softmax(Q(T )

ij (Xij))

P (y(label)
ij |w) = softmax(s(label)

ij )

Note that the iterative updates in mean-field
variational inference can be seen as a recurrent
neural network that is parameterized by the poten-
tial functions. Therefore, the whole edge predic-
tion module can be seen as an end-to-end neural
network.

3.4 Other Predictions

The shared task also requires prediction of com-
ponent pieces such as top nodes, node properties,
node anchoring and edge attributes. In this sec-
tion, we present our approaches to predicting these
components.

Top Nodes

We add an extra ROOT node for each sentence to
determine the top node through edge prediction for
DM and PSD. For the other frameworks, we use
the first predicted node as the top node.

Node Properties

Node properties vary among different frameworks.
For DM and PSD, we need to predict the POS and
frame for each node. As DM and PSD are bi-
lexical semantic graphs, we directly use the pre-
diction of XPOS from the official companion data.
We use a single layer MLP fed with word features
obtained in Eq. 1 for frame prediction. For EDS,
the properties only contain ‘carg’ and the corre-
sponding values are related to the surface string.

For example, the EDS sub-graph in Fig. 2 contains
a node with label ‘named’ which has property
‘carg’ with a corresponding value ‘Pierre’. The
anchor of this node matches the token ‘Pierre’ in
the sentence. We found that nodes with properties
have limited types of node labels. Therefore, we
exchange node labels and values for EDS nodes
containing properties during training. We combine
the node attributes and value predictions described
in Section 2.2 together as a multi-label prediction
task. We use a single layer MLP to predict node la-
bels specially for nodes with properties. For each
property value, we regard it as a node label and use
the extended pointer-generator network described
in Section 3.2 to predict it. Therefore, the proba-
bility of node property prediction is:

Pprop = softmax(Wpropr̃
′
t + bprop) (13)

Node Anchoring

As DM and PSD contain only token level depen-
dencies, we can decide a node anchor by the cor-
responding token. For the other frameworks, we
use two biaffine functions to predict the ‘start to-
ken’ and ‘end token’ for each node and the final
anchor range is decided by the start position of
‘start token’ and the end position of ‘end token’.
The biaffine function is fed by word features from
the encoder RNN and node features from decoder
RNN.

s
(start/end)
ij = Biaff (start/end)(ri, z̃j)

Pstart/end,j = softmax([s1j , s2j , . . . , snj ]) (14)

where i ranges from 1 to n and j ranges from 1 to
m.

Edge Attributes

Only UCCA requires prediction of edge attributes,
which are the ‘remote’ attributes of edges. We
create new edge labels by combining the original
edge labels and edge attributes. In this way, edge
attribute prediction is done by edge label predic-
tion.

3.5 Learning

Given a gold graph y⋆, we use the cross entropy
loss as learning objective:

L(edge)(θ) = −
∑

i,j

log(Pθ(y
⋆(edge)
ij |w))

L(label)(θ) = −
∑

i,j

✶(y
⋆(edge)
ij ) log(Pθ(y

⋆(label)
ij |w))
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DM PSD EDS UCCA AMR
Ours-all 94.88 89.49 86.90 - 63.59
Best-all 95.50 91.28 94.47 81.67 73.38

Ours-lpps 94.28 85.22 87.49 - 66.82
Best-lpps 94.96 88.46 92.82 82.61 73.11

Table 1: Comparison of cross-framework F1 scores
achieved by our system and best scores of other teams
for each metric. all represents the F1 score over the
full test set for each framework. lpps represents a
100-sentence sample from the little prince containing
graphs over all the frameworks.

L(prop)(θ) = −
∑

i,k

log(Pθ(y
⋆(prop)
ik |w))

L(anchor)(θ) = −
∑

i

∑

j∈{start,end}

(log(Pθ(y
⋆(j)
i |w))

where θ is all the parameters of the model, ✶(X )
is an indicator function of whether X exists in the
graph, i, j range over all the nodes and k ranges
over all possible attributes in the graph. The total
loss is defined by:

L =λ1L
(edge) + λ2L

(label) + ✶(y⋆(prop))λ3L
(prop)

+ ✶(y⋆(anchor))λ4L
(anchor)

where λ1,...,4 are hyperparameters. For DM and
PSD, we tuned on λ1, λ2 and λ3. For other frame-
works, we set all of them to be 1.

4 Experiments and Results

4.1 Training

For DM, PSD and EDS, we used the same
dataset split as previous approaches (Martins and
Almeida, 2014; Du et al., 2015) with 33,964 sen-
tence in the training set and 1,692 sentences in
the development set. For each of the other frame-
works, we randomly chose 5% to 10% of the train-
ing set as the development set. We additionally re-
moved graphs with more than 60 nodes (or with
input sentences longer than 60 words for DM and
PSD). We trained our model for each framework
separately and used Adam (Kingma and Ba, 2015)
to optimize our system, annealing the learning rate
by 0.5 for 10,000 steps. We trained the model for
100,000 iterations with a batch size of 6,000 to-
kens and terminated with 10,000 iterations with-
out improvement on the development set.

4.2 Main Results

Due to an unexpected bug in UCCA anchor pre-
diction, we failed to submit our UCCA prediction.

Our results are still competitive to those of the
other teams and we get the 3rd place for the DM
framework in the official metrics. The main result
is shown in Table 1. Our system performs well
on the DM framework with an F1 score only 0.4
percent F1 below the best score on DM. Note that
our system does not learn to predict node labels
for DM and PSD and simply uses lemmas from
the companion data as node labels. We find that
compared to gold lemmas from the original SDP
dataset, lemmas from the companion data have
only 71.4% accuracy. We believe that it is the
main reason for the F1 score gap between our sys-
tem and the best one on DM and PSD. A detailed
comparison between each component will be dis-
cussed in Section 4.3. For PSD, EDS and AMR
graph, our system ranks 6th, 5th and 7th among 13
teams.

4.3 Analysis

DM and PSD

Table 2 and 3 show detailed comparison for each
evaluation component for DM and PSD. For DM,
our system outperforms systems of the other teams
on tops, properties and edges prediction and is
competitive on anchors. For PSD, our system is
also competitive on all the components except la-
bels. There is a large gap in the performance of
node label prediction between our system and the
best one on both DM and PSD, we believe adding
an MLP layer for label prediction would diminish
this gap.

Table 4 shows the performance comparison on
in-framework metrics for DM and PSD. For DM,
our system outperforms the best of the other sys-
tems by 0.5 and 0.8 F1 scores on all and lpps test
sets. For PSD, our system outperforms the best of
the other systems by 0.4 F1 score for lpps and only
0.05 F1 score below the best score for all.

AMR

For AMR graph prediction, our node prediction
module is based on Zhang et al. (2019), but our
edge prediction module is based on the second-
order method of Wang et al. (2019). To verify the
effectiveness of second-order edge prediction, we
compare the performances on the development set
of our model and Zhang et al. (2019). The result
is shown in Table 5. The result shows that our
second-order edge prediction is useful not only on
the SDP frameworks but also on the AMR frame-
work.
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tops labels properties anchors edges average
Ours-all 93.68 90.51 95.16 98.38 92.32 94.32
Best-all 93.23 96.34 94.93 98.74 92.08 94.76

Ours-lpps 99.00 87.26 94.53 99.36 93.92 94.03
Best-lpps 96.48 94.82 94.36 99.04 93.28 94.64

Table 2: Comparison of cross-framework F1 scores achieved by our system and best scores of the other teams for
each evaluation component on DM. average is the micro-average among all components.

tops labels properties anchors edges average
Ours-all 95.68 84.79 91.83 97.66 79.50 88.77
Best-all 95.83 94.68 92.38 98.35 79.44 90.76

Ours-lpps 96.00 76.72 84.73 97.61 79.80 85.22
Best-lpps 96.40 92.04 86.00 98.46 79.18 88.40

Table 3: Comparison of cross-framework F1 scores achieved by our system and best scores of the other teams for
each evaluation component on PSD.

DM PSD Avg
all lpps all lpps all lpps

Ours 92.98 94.46 81.61 81.91 87.30 88.19
Best 92.52 93.68 81.66 81.47 87.09 87.58

Table 4: Comparison of in-framework labeled F1
scores by our system and best scores over the other
teams. Note that the Best scores are not only from a
single system.

Model Smatch
Zhang et al. (2019) 69.1
Ours 69.3

Table 5: Smatch F1 score on AMR development set.
We compare the results without post-processing.

Set MRP Smatch
test 63.59 63.08
dev 72.03 71.55

Table 6: MRP and Smatch score on the development
set and the test set.

From the official results on the test sets, we
find it surprising that there is a huge gap between
the test and development results on both the MRP
and the Smatch (Cai and Knight, 2013) scores, as
shown in Table 6. In future work, we will figure
out the reason behind this problem.

EDS

For EDS, our parser ranks 5th. There are multi-
ple details of our parser that can be improved. For
example, our anchor prediction module described

in Eq. 14 (ranking 4th in the task) may occasion-
ally predict an end anchor positioned before a start
anchor, which would be rejected by the evaluation
system. This can be fixed by adding constraints.

UCCA

For UCCA, we failed to submit the result because
of the same reversed start-end anchor predictions,
which prevents us from obtaining an MRP score.

4.4 Ablation Study

BERT with Other Embeddings

We use BERT (Devlin et al., 2019) embedding in
our model. We compared the performance of DM
in the original SDP dataset with different subtoken
pooling methods, and we also explored whether
combining other embeddings such as pre-trained
word embedding Glove (Pennington et al., 2014)
and contextual embedding ELMo (Peters et al.,
2018) will further improve the performance. The
detailed results are shown in table 7. We found
that Glove, lemma and character embeddings are
helpful for DM and fine-tuning on the training set
slightly improves the performance. ELMo embed-
ding is also helpful but cannot outperform BERT
embedding. However, the performance dropped
when ELMo embedding and BERT embedding are
combined. We speculate that the drop is caused by
the conflict between the two types of contextual
information. For subtoken pooling, we compared
the performance of using first subtoken pooling
and average pooling as token embedding. We
found that average pooling is slightly better than
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LF1
Baseline 93.41
Base-fixed 94.17
Base-tuned 94.22
Base-fixed + Glove 94.45
Base-tuned + Glove 94.48
Large-fixed + Glove 94.62
Large-tuned + Glove 94.64
Large-fixed + Glove + Lemma 95.10
Large-fixed + Glove + Lemma + Char 95.22
ELMo + Large-fixed + Glove + Lemma 94.78
ELMo + Glove + Lemma + Char 95.06
BERT-First 95.22
BERT-Avg 95.28
BERT-Avg + dep-tree 95.30

Table 7: Comparing Labeled F1 scores of models with
different types of embedding combinations on the de-
velopment set of the gold DM dataset. Baseline rep-
resents the parser of Wang et al. (2019). Base repre-
sents the pre-trained BERT-Base uncased model and
Large represents the pre-trained BERT-Large uncased
model. fixed and tuned represents whether to fine-tune
the BERT model. BERT in the last block represents
the last embedding combination (Large-fixed + Glove
+ Lemma + Char) in the first block. First represents
first subtoken pooling, Avg represents average pooling
over subtokens. dep-tree represents adding dependency
information into embeddings. For each case, we report
the highest Labeled F1 score on the development set in
our experiments.

DM PSD
basic 96.01 90.80
+lemma 96.09 90.79
+ner 96.07 90.80
+lemma & ner 96.16 90.88

Table 8: F1 score averaged over the labeled F1 score
and the frame F1 score on the development sets of DM
and PSD. basic represents our model with embeddings
described in 3.1 except lemma and named entity em-
beddings.

first pooling. For syntactic information, we en-
code each head word and dependency label as
embeddings and concatenate them together with
other embeddings. The result shows that syntac-
tic information as embeddings is not very helpful
for the task. We will try other methods utilizing
syntactic information in future work.

Lemma and Named Entity Tags

Dozat and Manning (2018) found that gold lemma
embedding is helpful for semantic dependency
parsing. However, in section 4.2, we note that
the lemmas from the official companion data
have only 71.4% accuracy compared to lemmas
in gold SDP data, which makes lemma embed-
dings less helpful for parsing. We found that
one of the difference is about the lemma annota-
tions of entities, for example, lemmas of “Pierre
Vinken” are “Pierre” and “Vinken” in the com-
panion data while the lemmas are named-entity-
like tags “Pierre” and “_generic_proper_ne” in the
original SDP dataset. Based on this discovery,
we experimented on the influence of named en-
tity tags on parsing performance. We used Illinois
Named Entity Tagger (Ratinov and Roth, 2009) in
white list to predict named entity tags and com-
pared the performance on the development sets of
DM and PSD. The result is shown in table 8. We
tuned the hyperparameters for all the embedding
conditions in the table, and we found that adding
lemma or named entity embeddings results in a
slight improvement on DM but does not help on
PSD. With both lemma and named entity embed-
dings, there is a further improvement on both DM
and PSD, which shows the named entity tags are
helpful for semantic dependency parsing. As a re-
sult, we apply named entity information in parsing
other frameworks.

5 Conclusion

In this paper, we present our graph-based pars-
ing system for MRP 2019, which combines two
state-of-the-art methods for sequence to graph
node generation and second-order edge infer-
ence. The result shows that our system per-
forms well on the DM and PSD frameworks
and achieves the best scores on the in-framework
metrics. For future work, we will improve
our system to achieve better performance on all
these frameworks and explore cross-framework
multi-task learning. Our code for DM and
PSD is available at https://github.com/
wangxinyu0922/Second_Order_SDP.
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