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Abstract

The English Resource Grammar (ERG) is
a broad-coverage computational grammar of
English that derives underspecified logical-
form representations of meaning. Elementary
Dependency Structures (EDS) and DELPH-
IN MRS Bi-Lexical Dependencies (DM) are
graph-based simplifications of ERG mean-
ing representations. As a point of refer-
ence outside the official competition of the
2019 Shared Task on Cross-Framework Mean-
ing Representation Parsing, we evaluate ERG-
derived EDS and DM graphs. These graphs
yield higher accuracy scores than the purely
data-driven parsers in the shared task, sug-
gesting that the general-purpose grammatical
knowledge encoded in the ERG aids parsing
into these meaning representations.

1 Introduction

Two of the target representations in the 2019 Shared
Task on Cross-Framework Meaning Representation
Parsing (MRP 2019; Oepen et al., 2019) derive
from the framework dubbed English Resource Se-
mantics (ERS; Flickinger et al., 2014; Bender et al.,
2015). ERS instantiates the designer logic for sco-
pally underspecified meaning representation called
Minimal Recursion Semantics (MRS; Copestake
et al., 2005); in and of themselves, ERS terms are
logic- rather than graph-based, i.e. require conver-
sion into graph-structured representations of mean-
ing in the context of the MRP shared task. Ele-
mentary Dependency Structures (EDS; Oepen and
Lønning, 2006) and DELPH-IN MRS Bi-Lexical
Dependencies (DM; Ivanova et al., 2012) achieve
simplification of ERS into labeled directed graphs
by elimination of most of the information regard-
ing scope underspecification and, in the case of
DM, further reduction into pure bi-lexical graphs.
Oepen et al. (2019) provide additional background
on these representations. This paper gives some lin-
guistic and technical background on ERS parsing
(§2), summarizes the processes used in deriving
EDS and DM graphs for the MRP evaluation data

(§3), and puts quantitative ERS parsing results into
the perspective of the shared task at large (§4).

2 The LinGO English Resource
Grammar and Redwoods Treebank

At the core of this work are two linguistic resources
that have been under continuous development for
multiple decades now, as part of the world-wide
Deep Linguistic Processing with HPSG Initiative
(DELPH-IN; http://delph-in.net). First,
the LinGO English Resource Grammar (ERG;
Flickinger, 2000) is an implementation of the gram-
matical theory of Head-Driven Phrase Structure
Grammar (HPSG; Pollard and Sag, 1994) for En-
glish, i.e. a computational grammar that can be
used for parsing and generation. Development of
the ERG started in 1993, building conceptually on
earlier work on unification-based grammar engi-
neering for English at Hewlett Packard Laborato-
ries (Gawron et al., 1982). The ERG has contin-
uously evolved through a series of R&D projects
(and a small handful of commercial applications)
and today allows the grammatical analysis of run-
ning text across domains and genres. The hand-
built ERG lexicon of some 38,000 lemmata (for
27,000 distinct citation forms) aims for complete
coverage of function words and open-class words
with ‘non-standard’ syntactic properties (e.g. argu-
ment structure). Built-in support for light-weight
named entity recognition and an unknown word
mechanism combining statistical PoS tagging and
on-the-fly lexical instantiation for ‘standard’ open-
class words (e.g. names or non-relational common
nouns and adjectives) typically enable the grammar
to derive complete syntactico-semantic analyses for
85 – 95 percent of all utterances in standard corpora,
including newspaper text, the English Wikipedia,
or bio-medical research literature (Flickinger et al.,
2017). Parsing times for these data sets measure in
seconds per sentence, time comparable to human
production or comprehension.

Second, since around 2001 the ERG has been
accompanied by a selection of development cor-

http://delph-in.net
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pora, where for each sentence an annotator has
selected the intended analysis among the alterna-
tives provided by the grammar (or has recorded
that no appropriate analysis is available, in a given
version of the grammar). This companion resource
is called the LinGO Redwoods Treebank (Oepen
et al., 2004). For each release of the ERG, a cor-
responding version of the treebank has been pro-
duced, manually validating and updating existing
analyses to reflect changes in the underlying gram-
mar, as well as ‘picking up’ analyses for previously
out-of-scope inputs and new development corpora.
Since mid-2016, the current version of Redwoods
(dubbed Ninth Growth, corresponding to ERG re-
lease 1214) encompasses gold-standard analyses
for some 85,400 utterances (or close to 1.3 million
tokens) of running text from half a dozen different
genres and domains, including the first 22 sections
of the venerable Wall Street Journal (WSJ) text in
the Penn Treebank (PTB; Marcus et al., 1993).

The original motivation for treebanking ERG
analyses was to enable training discriminative parse
ranking models, i.e. a conditional probability distri-
bution over ERG derivations (Johnson et al., 1999).
For this purpose, the treebank must disambiguate
at the same level of granularity as is maintained
in the grammar, i.e. encode its exact linguistic dis-
tinctions. Furthermore, to train discriminative (i.e.
conditional) stochastic models, both the intended
as well as the dispreferred analyses are needed.

The Redwoods treebank is built exclusively from
ERG analyses, i.e. full HPSG syntactico-semantic
signs. Annotation in Redwoods amounts to disam-
biguation among the candidate analyses derived
by the grammar (identifying the intended parse)
and, of course, analytical validation of the final
result. To make this task practical, a specialized
tree selection tool extracts a set of what are called
discriminants from the complete set of analyses.
Discriminants encode contrasts among alternate
analyses—for example whether to treat a word like
crop as nominal or verbal, or where to attach a
prepositional phrase modifier. While picking one
full analysis (among a set of hundreds or thousands
of trees) would be daunting (to say the least), the
isolated contrasts presented as discriminants are
comparatively easy to judge for a human annotator.

Discriminant-based tree selection was first pro-
posed by Carter (1997) and has since been suc-
cessfully applied to a range of grammatical frame-
works. To the best of our knowledge, Redwoods is

the most comprehensive such effort, complement-
ing the original proposal by Carter (1997) with the
notion of dynamic treebanking, in two senses of
this term. First, different views can be projected
from the multi-stratal HPSG analyses at the core
of the treebank, highlighting subsets of the syn-
tactic or semantic properties of each analysis, e.g.
HPSG derivations, more conventional phrase struc-
ture trees, full logical-form meaning representa-
tions, and various variable-free forms of semantic
dependency graphs—including EDS and DM.

Second, the dynamic treebank is extended and
refined over time. As the grammar (the core reposi-
tory of knowledge about derivation and composi-
tion) evolves, dynamic refinement refers to the abil-
ity to mostly automatically update the Redwoods
treebank, to for example add detail to the linguistic
analyses or apply targeted error correction while
minimizing any loss of manual input from previous
annotation cycles. Although we can by no means
quantify precisely the effort devoted to ERG and
Redwoods development to date, we estimate that
in excess of thirty person years have been accumu-
lated between 1993 and 2019.

3 Parsing with the ERG

There are several highly engineered implemen-
tations of the DELPH-IN feature structure refer-
ence formalism; for our experiments we used the
PET parser of Callmeier (2002), as bundled in the
open-source distribution of DELPH-IN resources
called LOGON (Lønning and Oepen, 2006).1 At its
core, PET is a classic, agenda-driven chart parser
(Kay, 1986), synthesizing a large body of algo-
rithm design for efficient feature structure manip-
ulation and unification-based parsing by among
others Tomabechi (1995), Malouf et al. (2000),
Erbach (1991), Kiefer et al. (1999), and Oepen
and Callmeier (2000). The parser achieves exact
inference by constructing the complete parse for-
est, factoring local ambiguity under feature struc-
ture subsumption (a technique termed retroactive
packing by Oepen and Carroll, 2000) and subse-
quently enumerating n-best full derivations from
the forest according to a discriminative parse rank-
ing model in the tradition of Johnson et al. (1999)
and Toutanova et al. (2005).

Despite the non-local nature of features (of ERG
derivations) used in parse ranking, the selective
unpacking procedure of Carroll and Oepen (2005)

1See http://moin.delph-in.net/LogonTop.

http://moin.delph-in.net/LogonTop
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Tops Labels Properties Anchors Edges Attributes All

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F

ERG .92 .92 .918 .99 .99 .987 .96 .96 .956 .99 .99 .994 .91 .91 .912 – – – .96 .96 .961
.95 .95 .950 .99 .99 .987 .98 .98 .978 .99 .00 .995 .93 .93 .927 – – – .97 .97 .973

SJTU–NICT .93 .93 .933 .95 .95 .949 .96 .95 .955 .99 .99 .993 .93 .92 .924 – – – .96 .95 .955
.97 .96 .965 .93 .93 .933 .94 .94 .944 .99 .99 .990 .93 .93 .933 – – – .95 .95 .949

D
M HIT-SCIR .93 .93 .926 .93 .93 .930 .95 .95 .953 .99 .99 .993 .93 .92 .925 – – – .95 .95 .951

.95 .95 .950 .93 .93 .928 .95 .95 .947 .99 .99 .990 .94 .94 .935 – – – .95 .95 .950

SUDA–Alibaba .91 .91 .911 .90 .91 .903 .91 .92 .915 .97 .99 .982 .89 .91 .898 – – – .91 .93 .923
.91 .88 .893 .86 .89 .872 .88 .91 .895 .96 .99 .979 .88 .92 .896 – – – .89 .92 .907

Peking .93 .93 .927 .92 .91 .915 .95 .94 .945 .99 .99 .991 .92 .92 .924 – – – .94 .94 .944
.96 .96 .960 .88 .88 .882 .91 .92 .914 .99 .99 .989 .92 .92 .921 – – – .92 .93 .925

ERG .90 .90 .902 .97 .96 .965 .96 .96 .960 .96 .96 .963 .93 .93 .929 – – – .95 .95 .952
.93 .93 .930 .96 .97 .964 .85 .88 .863 .98 .99 .983 .93 .94 .932 – – – .96 .96 .959

SUDA–Alibaba .90 .90 .899 .91 .91 .912 .89 .91 .897 .95 .95 .949 .90 .90 .897 – – – .92 .92 .918
.94 .94 .940 .91 .92 .913 .72 .84 .778 .95 .96 .953 .91 .91 .911 – – – .92 .93 .925

E
D

S

HIT-SCIR .88 .82 .852 .90 .89 .894 .89 .91 .895 .95 .94 .943 .89 .88 .888 – – – .91 .90 .907
.92 .91 .915 .85 .86 .854 .76 .88 .815 .95 .96 .950 .89 .89 .890 – – – .89 .90 .898

SJTU–NICT .91 .85 .877 .93 .86 .894 .79 .76 .775 .97 .90 .934 .95 .82 .878 – – – .95 .86 .899
.97 .89 .927 .93 .88 .904 .27 .24 .255 .97 .93 .949 .94 .86 .894 – – – .94 .88 .912

Peking .83 .83 .829 .95 .94 .946 .91 .96 .936 .96 .96 .961 .94 .93 .933 – – – .95 .94 .945
.89 .89 .890 .91 .92 .918 .49 .88 .629 .95 .96 .959 .92 .92 .918 – – – .92 .93 .928

Table 1: MRP results for DM (top) and EDS (bottom), with precision (P), recall (R), and F1 for different types of
graph components: top nodes, node labels, other node properties, anchoring into the surface string, labeled edges,
and all of these combined (neither DM nor EDS use edge attributes). Best F1 scores in each category are in bold.
The pair of rows per submission indicate the full MRP evaluation data vs. the 100-sentence Little Prince subset.

guarantees n-best enumeration from the parse for-
est in globally correct rank order. At its core, this
is a specialized search procedure on a weighted
and–or graph (the forest), where for packed (i.e.
disjunctive) nodes local contexts of optimization
are established on demand. Although worst-case
complexity for both forest construction and unpack-
ing is in principle exponential, parsing times (for
small values of n) with the ERG in practice mostly
grow polynomially in input length. For example,
parser throughput for the sentences from the Lit-
tle Prince subset of the MRP evaluation data (see
Oepen et al., 2019) averages at two sentences per
second, whereas average parse times for the much
longer 100-sentence MRP sample of WSJ text lie
around four seconds per sentence.

For parsing the MRP evaluation data, we applied
ERG release 1214 with its bundled WSJ parse rank-
ing model, which uses the feature configuration of
Zhang et al. (2007) and was trained on Sections 00–
20 of the Redwoods Ninth Growth using the Maxi-
mum Entropy estimation toolkit of Malouf (2002).
We use the LOGON distribution as of August 2019

to parse in one-best mode the ‘raw’ strings for the
MRP evaluation data whose target representations
were indicated as DM or EDS. The resulting HPSG
derivations each uniquely determine an ERS mean-
ing representation in underspecified logic, which
we subsequently convert to EDS and DM.2

Given the formal nature of this process, the re-
sulting graphs are guaranteed to reflect the com-
position algebra of the ERG, recursively building
larger fragments of meaning from smaller parts.

4 Experimental Results

Parsing accuracies for PET and the ERG are sum-
marized in Table 1, for both the DM (top) and
EDS (bottom) evaluation graphs. The table com-
pares ERG parsing results to a selection of ‘real’
submissions to the shared task, viz. the top per-
formers within each framework and for the task

2The ERS-to-EDS converter of Oepen and Lønning (2006)
is part of the LOGON distribution, as is the converter of
Ivanova et al. (2012) for further simplification to bi-lexical
DM. Exact command-line incantations for all tools and their
parameterization are specified as part of the submission
archive in the MRP 2019 data release.
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overall: HIT-SCIR (Che et al., 2019), Peking (Chen
et al., 2019)3, SJTU–NICT (Bai and Zhao, 2019),
and SUDA–Alibaba (Zhang et al., 2019). In con-
trast to the ERG parser, all of these systems are
purely data-driven, in the sense that they do not
incorporate manually curated linguistic knowledge
(beyond finite-state tokenization rules, maybe) but
rather learn all their parameters exclusively from
the shared task training data.

By and large, the data-driven parsers are compet-
itive to the ERG, in particular the SJTU–NICT and
HIT-SCIR systems for DM, and the Peking parser
for EDS. For some structural types of graph com-
ponents (tops and edges), the ERG is in fact out-
performed by some submissions, whereas it holds
at times commanding leads on node-local types of
information, e.g. labels, properties, and achors. It
could be argued that comparison for some of these
graph components favors the ERG, seeing as it em-
bodies the exact principles of deriving these values
that were used in creating the Redwoods annota-
tions. However, for DM at least, node labels are
essentially lemmas, and it is prima facie surprising
that none of the data-driven parsers succeeds very
well in replicating ERG-style lemmatization.

Likewise, anchoring for EDS is a many-to-many
relation between graph nodes and (arbitrary) input
sub-strings, where one can speculate that at least
some of the conventions used in the ERG may be
linguistically idiosyncratic. Inasmuch as that may
(or may not) be the case, the Peking parser shows
anchoring accuracies comparable to the ERG.

The Little Prince subset of the evaluation data
is comprised of much shorter sentences, and ob-
served accuracies for some types of graph compo-
nents may appear to correlate with input complex-
ity, notably top node and (to a lesser) degree edge
prediction. At the same time, the novelistic style
of this subset most likely makes it least similar to
the WSJ-derived training data for the data-driven
parsers, hence some submissions can seem to suffer
from detrimental cross-domain effects.

5 Reflections

As long-term co-developers of the ERG and its
PET parser, we are impressed by the overall perfor-
mance levels of the data-driven submissions to the
MRP 2019 shared task. We hope to conduct more

3The Peking submission is not considered in the primary
ranking of the official shared task results, because the team in-
advertently used tokenization training data beyond the ‘white-
listed’ resources for task participants

contrastive error-analysis, possibly in collabora-
tion with other parser developers, to further isolate
effects of domain variation, for example, and gener-
ally gauge the contributions (if any) of the explicit
body of linguistic knowledge in the ERG.
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