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Abstract

In hospitals, critical care patients are often
susceptible to various complications that ad-
versely affect their morbidity and mortality.
Digitized patient data from Electronic Health
Records (EHRs) can be utilized to facilitate
risk stratification accurately and provide prior-
itized care. Existing clinical decision support
systems are heavily reliant on the structured
nature of the EHRs. However, the valuable
patient-specific data contained in unstructured
clinical notes are often manually transcribed
into EHRs. The prolific use of extensive med-
ical jargon, heterogeneity, sparsity, rawness,
inconsistent abbreviations, and complex struc-
ture of the clinical notes poses significant chal-
lenges, and also results in a loss of information
during the manual conversion process. In this
work, we employ two coherence-based topic
modeling approaches to model the free-text
in the unstructured clinical nursing notes and
capture its semantic textual features with the
emphasis on human interpretability. Further-
more, we present FarSight, a long-term aggre-
gation mechanism intended to detect the onset
of disease with the earliest recorded symptoms
and infections. We utilize the predictive capa-
bilities of deep neural models for the clinical
task of risk stratification through ICD-9 code
group prediction. Our experimental valida-
tion on MIMIC-III (v1.4) database underlined
the efficacy of FarSight with coherence-based
topic modeling, in extracting discriminative
clinical features from the unstructured nurs-
ing notes. The proposed approach achieved a
superior predictive performance when bench-
marked against the structured EHR data based
state-of-the-art model, with an improvement
of 11.50% in AUPRC and 1.16% in AUROC.

∗Corresponding author.

1 Introduction

Until recently, the healthcare industry had an
inclination towards conservative approaches for
the treatment and diagnosis of patients, result-
ing in less patient-centric and imprecise assess-
ments (Mathew and Pillai, 2015). Intensive Care
Units (ICUs) utilize the most advanced medical
resources to treat and monitor critically ill pa-
tients. However, such advanced medical interven-
tions in ICUs often make patients vulnerable to
several complications (To and Napolitano, 2012).
Various infections, including barotrauma, short-
and long-term intubation, catheter-associated uri-
nary tract infection, weaning errors, ventilator-
associated pneumonia, gastrointestinal tract bleed-
ing, and infections from unrecognized drug inter-
actions, are associated with invasive ICU devices
(Wollschlager and Conrad, 1988). The lack of ac-
curate knowledge of the etiology of such compli-
cations leads to the inability to accurately strat-
ify risk, due to which, in most cases, adequate
care is provided to patients only after the devel-
opment of a complication (Huddar et al., 2016).
With the advent of digitization, advancement in
technology, need for evidence-based medicine, in-
creased population, and rising rates of chronic
diseases, the utilization of ever-increasing hetero-
geneous medical data to improve the quality of
life has become imperative. Specifically, ICUs
are data-rich environments where several param-
eters of patients are monitored continuously. Such
data can be vital to improve the existing Clinical
Decision Support Systems (CDSSs), develop new
treatments, and predict prominent clinical events
and outcomes. Furthermore, such CDSSs could
promote evidence-based and patient-centric treat-
ments, resulting in reduced hospital mortality and
morbidity rates, and improved risk assessment.
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Pat is 83 yo F w/PMHx for CLL and hypotens,
who was admited for an elective total hip
arthroplasty for persistent hip pain. NGT
to low cont suct. Family here to visit.

Pat initially sustained a right hip
fracture after a fall in [**2137**], and
had an ORIF performed at the time. Gave med
for pain. Has had right hip pain ever since,
and also has AVN of the right femoral head.

She came in today for elective tot hip repl.
In the OR today, patient had an estimated
1600cc EBL, and received 6u pRBC.
I/Os were 7200cc in (3.7L LR, 1.5L pRBCs).

Figure 1: Sample de-identified nursing note from criti-
cal care. Observe the absence of grammatical structure,
informal word usage, and extensive medical jargon.

Structured medical data in the form of Elec-
tronic Health Records (EHRs) contain numerical
assessments (e.g., lab results) and are amenable to
standard statistical analysis (Huddar et al., 2016).
However, unstructured clinical text and images
also contain valuable information concerning the
state of a patient. In particular, clinical nurs-
ing notes maintain objective and subjective assess-
ments of a patient’s condition. Such raw notes
contain the intuitions and observations of nurses
and caregivers who regularly monitor the patient.
This valuable patient-specific information present
in the clinical nursing notes has the potential to
uncover hidden clues about the mental state (e.g.,
family support and mental fitness) and the health
of a patient (Jo et al., 2015). Such information
is not found in EHRs or elsewhere (Dubois et al.,
2017). However, these notes are informally writ-
ten, and modeling such notes is challenging due to
their high-dimensionality, rawness, sparsity, com-

plex linguistic and temporal nature, inconsistent
abbreviations, and occurrence of rich medical jar-
gon (a sample note is shown in Figure 1).

The voluminosity of nursing notes can be ob-
served from the heavy-tailed distribution of the
MIMIC-III nursing notes across various patients
(see Figure 2), with an average of 176.49 nurs-
ing notes per patient. The presentation, analysis,
and interpretation of the data present in such notes
in a medically appropriate and usable format de-
termine the competence of the underlying CDSS
(Wang et al., 2018). Furthermore, there is often
a need to assign multiple labels to a patient entry,
owing to the diverse and manifold nature of the
disease symptoms of the patients (Baumel et al.,
2018). Risk stratification as ICD-91 code group
prediction can help in predicting disease onset and
its severity, thus facilitating preventive and priori-
tized care, and reduction of hospital mortality and
morbidity rates.

With the availability of large de-identified
healthcare databases such as MIMIC-III2 (John-
son et al., 2016), modeling patient data using ma-
chine and deep learning to predict prominent clin-
ical events and outcomes has sparked widespread
interest. Early works (Tu and Guerriere, 1993;
Doig et al., 1993; Grigsby et al., 1994; Clermont
et al., 2001; Hanson and Marshall, 2001) have re-
ported on the superior performance of machine
learning models in forecasting the length-of-stay
and mortality, for ICU patients. More recently,
Pirracchio (2016) used an ensemble of several ma-
chine learning models that offered improved per-
formance in ICU mortality prediction over various

1International Classification of Diseases, ninth revision.
2Medical Information Mart for Intensive Care.
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Figure 2: Distribution of the nursing notes across various MIMIC-III subjects.



1014

severity scoring systems. Feldman et al. (2016)
mined the clinical nursing, radiology, physician,
and ECG narratives to study the linguistic, struc-
tural, and topical differences among them. The au-
thors only provided a foundation for mining clin-
ical notes effectively, and in our work, we ex-
tend their efforts by effectively modeling the un-
derlying patient representations of the nursing text
through effective topic modeling and deep neu-
ral learning. Johnson et al. (2017) extracted a set
of features from the MIMIC-III database for ICU
mortality prediction and compared several state-
of-the-art models against gradient boosting and lo-
gistic regression. The authors stressed the need for
improvement in the way of reporting performance
to ensure a fairer comparison. Most of these mod-
els utilize machine learning models built on struc-
tured EHR data for the prediction of clinical tasks.

Recent works show promising results in mod-
eling patient data using deep learning approaches.
Harutyunyan et al. (2017) benchmarked their per-
formance on four clinical prediction tasks on
the MIMIC-III database using multitask recurrent
neural networks. Zalewski et al. (2017) presented
a viable framework to combine several modali-
ties of a patient’s health states for risk stratifica-
tion. Their approach was built on the hierarchi-
cal Dirichlet method, aimed at tackling the spar-
sity and high-dimensionality of the nursing notes
extracted from the MIMIC-II database. How-
ever, the authors used a logistic regression model
to predict the mortality rate of the patients and
did not evaluate their performance with the recent
works and deep neural architectures. Purushotham
et al. (2018) reported a suite of five clinical pre-
diction tasks, including the length-of-stay, mor-
tality, and ICD-9 code group prediction on the
MIMIC-III database using deep learning models
and benchmarked their performance against the
existing state-of-the-art methods and severity scor-
ing systems. However, mining and modeling the
valuable patient-specific information in unstruc-
tured clinical nursing notes for the development of
CDSSs remains mostly uncommon.

In this paper, we discuss an approach to model
the rich patient-specific information in the un-
structured clinical nursing notes, to aid in the
risk stratification as an ICD-9 code group predic-
tion task. ICD-9 codes are a taxonomy of di-
agnostic codes used for cost-effectiveness analy-
sis, epidemiology studies, and designing health-

care policies. Accurate ICD-9 code group pre-
diction not only promotes better ICD-9 code de-
termination, but also facilitates more reliable risk
stratification by reporting on the severity, symp-
toms, and the use of resources across code groups,
thus aiding disease-specific staging systems. In
our work, two coherence-based topic modeling ap-
proaches, Coherence-based Latent Dirichlet Allo-
cation (C-LDA) and Coherence-based Nonnega-
tive Matrix Factorization (C-NMF) are employed
to capture the semantic relationships between the
textual features of the clinical notes and derive op-
timal data representations with a higher guaran-
tee on human interpretability. We employ Far-
Sight to aggregate the documented patient data
in a way intended to detect the onset of the dis-
ease with the earliest recorded symptoms. Fur-
thermore, we benchmark the performance of our
proposed topic models using two neural archi-
tectures, including Multi-Layer Perceptron (MLP)
and Attention-based Long Short Term Memory
(A-LSTM). Additionally, we perform a sensitiv-
ity analysis to assess the statistical significance of
the obtained results.

The remainder of this paper is structured as fol-
lows: Section 2 describes the MIMIC-III database,
the preprocessing steps, and the topic model-
ing approaches employed to obtain the optimal
data representations from the raw clinical nursing
notes. The deep neural architectures employed in
the clinical task of ICD-9 code group prediction
along with the discussion of the experimental re-
sults of our benchmarking are presented in Sec-
tion 3. Finally, Section 4 summarizes this paper
with highlights on future research possibilities.

2 Materials and Methods

In this section, we discuss in detail, the Natural
Language Processing (NLP) pipeline designed to
facilitate multi-label ICD-9 code group prediction,
and the same is depicted in Figure 3.

2.1 Dataset and Cohort Selection

MIMIC-III (v1.4) is a publicly available large
healthcare database with comprehensive medical
data of over 40, 000 ICU patients. The health-
care database contains 223, 556 nursing notes ex-
tracted from 2, 083, 180 note events (noteevents
table), corresponding to 7, 704 distinct patients
(diagnoses icd table). Two selection criteria were
employed in the cohort selection. Firstly, only
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those records corresponding to the patients older
than 15 (adults) were retained using the patient’s
age at the time of admission to the ICU (extracted
from admissions and patients tables). Secondly,
only the first admission of a patient to the hospital
was considered. Both these steps were followed
in accordance with the existing literature (Johnson
et al., 2017; Purushotham et al., 2018). The re-
sultant dataset comprises nursing notes of 7, 638
patients with a median age of 66 years (Quartile
Q1 −Q3: 52− 78 years).

2.2 Data Cleaning
The data extracted from the MIMIC-III database
contained erroneous patient entries due to several
factors, including missing values, duplicate or in-
correct records, outliers, and noise. The erroneous
entries were filtered out using the iserror attribute
of the noteevents table. Then, duplicate patient
records were identified and deduplicated. The re-
sultant dataset comprised of nursing notes corre-
sponding to 6, 532 patients, and the data in these
records were aggregated using the proposed Far-
Sight technique.

2.3 FarSight: Long-Term Aggregation
It is crucial to detect the onset of the disease with
the earliest detected symptoms, to provide pre-
ventive care and reduce the mortality and mor-
bidity of complications. We propose FarSight,
which is designed to aggregate the patient data us-
ing a future lookup on all the detected diseases
in the later medical records concerning that pa-
tient. Let P be the set of all patients, and let
a patient p have a sequence of N clinical notes,
S(p) = {(η(p)i , I(p)i )}Ni=1, with each clinical note
η
(p)
i mapped to an ICD-9 code I(p)i indexed in the

order from the oldest to the most recent. Now, Far-
Sight aggregates the ICD-9 codes across the nurs-
ing notes of a patient using a future lookup, re-
sulting in S(p) = {(η(p)i , I(p))}Ni=1, where I(p) =

{I(p)i }Ni=1. Ultimately, we aim at learning a func-
tion F to estimate the probability of classifying
a given nursing note η(p)j into a set of diagnostic
code groups: F(S(p)) ≈ Pr(I(p) | ηpj ). Instead of
aggregating several patient records, FarSight only
aggregates the ICD-9 codes across a particular pa-
tient’s nursing notes to facilitate risk stratification
at the initial stages of the disease with the earliest
recorded symptoms and infections.

2.4 Data Preprocessing

Data (text) normalization is performed to facilitate
the transformation of inconsistent and informally
written medical text into a consistent canonical
form. Preprocessing includes tokenization, stop-
word removal, and stemming/lemmatization. To-
kenization splits the nursing text into words (to-
kens). Using the NLTK English stopword cor-
pus, we removed the stopwords from the gener-
ated set of tokens. Next, references to images
(e.g., PET Scan.jpg) were removed, and character
case folding was performed. Word length based
token removal was not performed to retain med-
ical abbreviations such as CT, MRI, DEXA, and
PET. Lastly, stemming was employed to facili-
tate suffix stripping, followed by lemmatization to
convert the stripped tokens into their base forms.
The tokens appearing in less than ten clinical notes
were eliminated to mitigate overfitting and lower
the computational complexity of training.

2.5 Topic Modeling of Clinical Notes

Let the set of all nursing notes be S = {S(p)}Pp=1.
Each nursing note ηj constitutes a variable length
of words from a large vocabulary V, making S
very complex. Thus, a transformation (T ) of the
unstructured clinical text to a machine-processable
form (T : S → Rk (k � |V|)) is vital to the effi-
cacy and performance of the underlying deep neu-
ral architectures.

Topic modeling aims at finding a set of topics

MIMIC-III
database

Cohort selection
of nursing notes

FarSight data
aggregation Preprocessing

Coherence-
based LDA

Coherence-
based NMF

Deep neural
architectures

ICD-9 group
prediction

Topic modeling

Figure 3: NLP pipeline used in the prediction of the ICD-9 code group.



1016

from a set of clinical notes that best represents the
corpus. Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) is a cluster analysis approach based
on the three-layer Bayesian framework including
documents, topics, and tokens. LDA draws a mix-
ture of topics from the Dirichlet distribution and
facilitates a flat and soft probabilistic clustering
of tokens into topics and documents into topics.
LDA posits that each term and clinical note be-
long to a set of clinical topics with a certain prob-
ability. Nonnegative Matrix Factorization (NMF)
(Lee and Seung, 2000) is a matrix factorization
approach that decomposes multivariate data into
topics. In NMF, each topic is a nonnegative linear
combination of the tokens in the vocabulary. NMF
iteratively decomposes the data matrix (N × |V|)
into two lower rank matrices with T topics (N×T
and T ×|V|). These topic models capture the con-
text of occurrence and co-occurrence, which is es-
sential for accurate predictability of the underlying
deep neural models.

Determining the optimal number of LDA or
NMF clusters is a challenging task. To address
this issue, we utilize the Topic Coherence (TC) or
semantic coherence (Röder et al., 2015) between
the topics to derive the optimal number of clus-
ters. Furthermore, when topics are learned from
a multinomial distribution over words from noisy
and sparse text data, they are less coherent and
hard to interpret. TC evaluates topic models with
a greater guarantee of human interpretability. This
study adopts LDA and NMF with TC (C-LDA and
C-NMF) as TC accounts for the semantic simi-

larity between the higher scoring tokens and fa-
cilitates the generation of human-understandable
topics. We employ the Cv variant of coherence
measurement with a Normalized Pointwise Mu-
tual Information (NPMI) score (Bouma, 2009) as
the confirmation measure, due to its high correla-
tion with the available human-judged data (Röder
et al., 2015). Let T = {t1, t2, . . . , tk} be a topic
generated from a topic model which is represented
using its top-k most probable tokens (tis). Note
that higher values of the average pairwise similar-
ity among the tokens in T imply greater coherence
of the topic. For a predetermined similarity mea-
sure S(ti, tj) (here NPMI), the coherence score is
computed as:

CoherenceS(T ) =

∑
1≤i≤k−1
i+1≤j≤k

S(ti, tj)(
k
2

) (1)

where ti, tj ∈ T . The coherence score comes
from external data, i.e., the data not used dur-
ing training (we employed the full set of English
Wikipedia articles), and is intended to regularize
the topic models. The NPMI similarity score is
an extension of the pointwise mutual information
score, and is used in finding associations and col-
locations between the words (Aletras and Steven-
son, 2013). The NPMI score is computed as:

NPMI(ti, tj) =
PMI(ti, tj)

−log2(Pr(ti, tj))
(2)

PMI(ti, tj) = log2

(
Pr(ti, tj)

Pr(ti)Pr(tj)

)
(3)

(a) Coherence-based LDA. (b) Coherence-based NMF.

Figure 4: Correlations between top terms’ membership in top five topic modeling clusters.
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Figure 5: Coherence score comparison to determine the
optimal number of topics.

The individual confirmation measures obtained for
all topics (Tis) are averaged to obtain the final co-
herence score.

The number of topics for both LDA and NMF
models was determined to be 100, by computing
the coherence score of several topic models ob-
tained by varying the number of topics. The LDA
and NMF matrices were built on a bag-of-words
representation of the clinical notes. For the ease
of interpretation, a heat map presenting the cor-
relations between top terms’ membership in top
five C-LDA clusters is presented in Figure 4a, and
top five C-NMF clusters is depicted in Figure 4b.
From Figure 4, it can be observed that both the C-
LDA and C-NMF models effectively capture spe-
cific clinical terms, including penicillin, cataract,
coumadin, insulin, heparin, and pleural from the
raw nursing text. Figure 5 shows the coherence
score comparison of LDA and NMF models with
the number of topics varying from 2 to 500.

3 ICD-9 Code Group Prediction

ICD-9 codes are a taxonomy of diagnostic codes
typically used by healthcare professionals and in-
surers when discussing medical conditions. This
study only focuses on category-level (group) pre-
dictions, owing to the high granularity of the di-
agnostic codes. Each code group comprises a set
of similar diseases, and most of the health con-
ditions can be categorized into a unique group.
This study focuses on the risk stratification as a
multi-label problem, where each nursing note is
mapped to multiple ICD-9 code groups. The ICD-
9 codes for a given admission are mapped into 19
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Figure 6: Comparison of ICD-9 code group statis-
tics with the state-of-the-art model (Purushotham et al.,
2018).

distinct code groups3. Note that the ICD-9 code
range of 760 − 779 was left out since it corre-
sponds to the conditions originating in the peri-
natal period, which is usually assigned to new-
borns, who are excluded from this study as per the
defined cohort selection criteria (see Section 2.1).
Additionally, to lower the computational cost of
training, we merged all the reference and supple-
mental V-codes into a single code group. Figure 6
presents a spider plot depicting the statistics of the
ratio of the number of patients in a particular code
group to the total number of patients in the co-
hort. Although our work and the state-of-the-art
(Purushotham et al., 2018) differ in data and co-
hort selection, it can be observed from Figure 6
that both the works share similar statistics con-
cerning the ICD-9 code groups, thus facilitating
a fair comparison of performance.

3.1 Deep Neural Architectures

We used two deep neural architectures, Multi-
layer Perceptron (MLP) and Attention-based
LSTM (A-LSTM), for the multi-label ICD-9 code
group prediction task. The deep models were
trained to minimize a binary cross-entropy loss
function using an Adam optimizer, with a batch
size of 128, for eight epochs.

3.1.1 Multi-Layer Perceptron
The MLP is a feed-forward artificial neural net-
work consisting of multiple layers of neurons
(nodes) interacting using weighted connections.

3http://tdrdata.com/ipd/ipd_
SearchForICD9CodesAndDescriptions.aspx.

http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
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MLP offers several advantages including adap-
tive learning, fault tolerance, parallelism, and gen-
eralizability. The output of a neuron in every
layer serves as an input to the subsequent layer.
A neuron in the current layer (l) with the input
I(l) is activated in the following layer (l + 1) as
g(l)(W (l) · I(l) + b(l)), where g(l) is a non-linear
activation such as Rectified Linear Unit (ReLU),
tanh, or logistic sigmoid, and b(l) and W (l) are the
bias and weight matrix at layer l. MLP uses back-
propagation to determine the gradient of the loss
function needed to learn an optimal set of weights
and biases needed to minimize a loss function.
This study employs an MLP network with one hid-
den layer of 75 nodes, activated using a ReLU
function, and one output layer of 19 nodes, acti-
vated using a sigmoid function.

3.1.2 Attention-based LSTM
The LSTM effectively captures the long-term de-
pendencies and overcomes the gradient vanishing
problem which is crucial in the accurate risk strat-
ification using unstructured nursing notes. LSTMs
introduce an adaptive gating mechanism to deter-
mine the extent to which the LSTM memory units
must retain the previous state (ct−1) and memo-
rize the features in the current state (ct). Typically,
four gates composite an LSTM network including
the input gate i, the forget gate f , the output gate
o, and the candidate value g for the cell state. The
precise form of an LSTM update at a layer l and
time step t is computed as:

i
f
o
g

 =


sigm
sigm
sigm
tanh

W (l)

(
h
(l)
t−1

h
(l−1)
t

)
(4)

c
(l)
t = f � c(l)t−1 + i� g (5)

h
(l)
t = o� tanh(c(l)t ) (6)

where � denotes element-wise multiplication, ht
is the output at a time step t, andW (l) is a [4n×2n]
weight matrix at layer l.

Attentive neural models have been successfully
applied to several NLP tasks including sentence
summarization, text entailment, and reading com-
prehension (Bahdanau et al., 2014). This study
utilizes the attention mechanism for the clinical
task of risk stratification as ICD-9 code group pre-
diction. Let H be the matrix of output vectors
[h1, h2, . . . , hT ] produced from LSTM. The rep-
resentation rj of a nursing note ηj after T time

steps is computed asH ·(softmax(vT ·tanh(H)))T ,
where v is a trainable parameter. This study uti-
lizes an attention-based LSTM with dimension
size of 289 for the embedding (17 time steps) and
300 for the LSTM hidden state. The multi-label
classification is facilitated using a sigmoid activa-
tion of the final A-LSTM output.

3.2 Experimental Results and Discussion

To experimentally validate the proposed approach,
we performed an exhaustive benchmarking on the
clinical nursing notes obtained from the MIMIC-
III database. The experiments were performed us-
ing a server running Ubuntu OS with 56 cores of
Intel Xeon processors, 128 GB RAM, 3 TB hard
drive, and two NVIDIA Tesla M40 GPUs. A sig-
nificant challenge arose due to the manifold nature
of diseases, as each patient record was assigned a
set of ICD-9 code groups. This study employs a
pair-wise comparison of the actual and predicted
code group sets. Five standard evaluation met-
rics including Accuracy (ACC), F1 score, MCC
score, Area Under the Precision-Recall Curve
(AUPRC), and Area Under the ROC Curve (AU-
ROC) were employed to evaluate the performance
of the proposed coherence-based modeling ap-
proaches, classified using MLP and A-LSTM.
Ten-fold cross-validation was performed to assess
the predictability of the proposed models. Table 1
tabulates the performance of the proposed mod-
eling approaches using the proposed FarSight ap-
proach for data aggregation along with two stan-
dard baselines. We observe that the proposed C-
LDA model outperforms the C-NMF model in
accurately classifying the diagnostic ICD-9 code
groups. Additionally, from Table 1, we observe
that the proposed C-LDA model outperforms the
other standard baselines including LDA and NMF
without coherence scores.

AUPRC varies with the change in the ratio of
the target classes in the data and hence is more
informative than AUROC while evaluating imbal-
anced data (Saito and Rehmsmeier, 2015). F1
score captures both precision and recall of the pre-
diction, and MCC score takes into account, the
true positives, false positives, and false negatives,
thus serving as a balanced measure even with class
imbalance. Due to the significant class imbalance
in the underlying corpus (see Figure 6), AUROC
and MCC scores serve as accurate evaluation met-
rics. The existing works, including the state-of-
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the-art model (Purushotham et al., 2018), are built
on the structured nature of the EHRs, modeled us-
ing numerical feature sets (e.g., lab results) to aid
in the prediction of clinical events. From Figure 7,
we remark that the proposed approach built on the
unstructured medical text and preprocessed using
the FarSight approach outperformed the state-of-
the-art model by 11.50% in AUPRC and 1.16%
in AUROC. Furthermore, the existing works do
not benchmark their performance on metrics other
than AUPRC and AUROC. We urge that the other
metrics presented in this study aid in the accu-
rate assessment of the proposed models, essen-
tial in determining the reliability of the underlying
CDSS. It can also be noted that the FarSight ap-
proach effectively models the unstructured data to
facilitate the detection of the onset of the disease
with the earliest recorded symptoms, and such
modeling results in an improvement in the clin-
ical decision-making process. We observe that
utilizing the proposed approach leads to accurate
health risk appraisal well in advance, with an over-
all accuracy of 80%. Thus, CDSSs built on the
predictive capabilities of FarSight-aggregated and
C-LDA classified modeling could demonstrate ef-
fective patient-centric and evidence-based risk as-
sessment, thus ensuring proper channeling of pre-
ventive and prioritized care.

3.3 Sensitivity Analysis

The experimental results in Table 1 highlight the
efficacy of the proposed models over the state-of-
the-art model (see Figure 7) and standard base-
lines, including LDA and NMF without coherence
scores, in modeling the raw patient-specific clini-
cal nursing notes. To analyze the significance of
the observed performance further, we performed a
statistical sensitivity analysis. Sensitivity analysis
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Figure 7: Comparison of the proposed approach with
the state-of-the-art model (Purushotham et al., 2018).

(Simar and Wilson, 1998) is a potential approach
that facilitates decision-making by measuring the
extent to which the optimal solution is sensitive to
the change in the input of one or more parameters.

To understand the distribution of the underlying
data, we employed the Kolmogorov-Smirnov test
for normality (J and Jr, 1951), which revealed that
the data was not normally distributed. The perfor-
mance of an algorithm measured as a result of ten-
fold cross-validation forms the treatment popula-
tion of that approach. Additionally, note that each
sample (performance score) in the corresponding
treatments of the algorithms under comparison uti-
lize the same kth fold data, and thus the samples
are generated as a function of the same input popu-
lation. Therefore, to perform the sensitivity analy-
sis, we employed a nonparametric paired samples
Wilcoxon signed-rank test (Wilcoxon, 1992) at a
significance level (α) of 5%. The null hypothe-
sis in Wilcoxon signed-rank test is that the two
treatments are drawn from the same distribution,

Data Model Classifier
Performance score

ACC F1 MCC AUPRC AUROC

C-LDA
(140, 792× 100)

MLP 0.7954± 0.0003 0.7175± 0.0008 0.5743± 0.0006 0.6692± 0.0006 0.7857± 0.0004

A-LSTM 0.7932± 0.0002 0.7186± 0.0002 0.5712± 0.0007 0.6660± 0.0007 0.7854± 0.0013

C-NMF
(140, 792× 100)

MLP 0.7826± 0.0004 0.7011± 0.0008 0.5480± 0.0007 0.6530± 0.0013 0.7735± 0.0006

A-LSTM 0.7811± 0.0005 0.6990± 0.0040 0.5449± 0.0007 0.6510± 0.0009 0.7715± 0.0026

LDA
(140, 792× 100)

MLP 0.7950± 0.0003 0.7168± 0.0020 0.5735± 0.0012 0.6685± 0.0013 0.7848± 0.0011

A-LSTM 0.7930± 0.0007 0.7153± 0.0034 0.5701± 0.0022 0.6655± 0.0013 0.7833± 0.0020

NMF
(140, 792× 100)

MLP 0.7829± 0.0006 0.7029± 0.0016 0.5498± 0.0009 0.6530± 0.0017 0.7744± 0.0007

A-LSTM 0.7815± 0.0008 0.6935± 0.0052 0.5451± 0.0024 0.6535± 0.0014 0.7689± 0.0031

Table 1: Experimental results for ICD-9 code group prediction using MLP and A-LSTM.
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Data Model Classifier
ACC F1 MCC AUPRC AUROC

p z p z p z p z p z

C-LDA
(140, 792× 100)

MLP − 0.005 −2.803 − − −
A-LSTM 0.005 −2.803 − 0.005 −2.803 0.005 −2.803 0.009 −2.599

C-NMF
(140, 792× 100)

MLP 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

LDA
(140, 792× 100)

MLP 0.005 −2.803 0.009 −2.599 0.007 −2.701 0.016 −2.395 0.009 −2.599
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

NMF
(140, 792× 100)

MLP 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803
A-LSTM 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803 0.005 −2.803

Table 2: A paired samples Wilcoxon signed-rank test (two-tailed, p < 0.05) for the proposed model with the best
performance against other modeling strategies.

which is rejected in favor of the alternate hypoth-
esis when the significance level (p-value) result-
ing from the test is higher than the preset α. Ta-
ble 2 presents the results of our sensitivity analysis
for the proposed model with the best performance
against other modeling strategies. From Table 2, it
can be observed that the value of p is always lower
than the preset α of 0.05. Thus, we conclude that
the proposed model with the best performance is
statistically significant than the other approaches
and baseline methods with respect to all the em-
ployed performance evaluation metrics.

4 Concluding Remarks

In this paper, we presented FarSight, a tech-
nique for detecting the onset of the disease with
the earliest recorded symptoms and infections, to
provide preventive and prioritized care, in turn
aiding in the reduction of the morbidity rate.
Two coherence-based topic modeling approaches
were employed to capture the semantic informa-
tion in the nursing notes and derive the optimal
data representations with emphasis on the human
interpretability of the derived clinical concepts.
The obtained data representations were effectively
leveraged for diagnostic ICD-9 code group predic-
tion using deep neural architectures. Unlike in the
previous works, we benchmarked the performance
of our proposed models using several evaluation
metrics which are essential in the accurate assess-
ment of the reliability of the models. The pro-
posed model captured the valuable patient-specific
information present in the informally written nurs-
ing notes and outperformed the structured EHR
data based state-of-the-art model with an improve-
ment of 11.50% in terms of AUPRC and 1.16% in

terms of AUROC. Furthermore, we also observed
that the proposed FarSight-aggregated and C-LDA
classified model captured the discriminative fea-
tures of the nursing notes and consistently outper-
formed several other standard models, including
C-NMF, LDA, and NMF. Moreover, our model
eliminates the dependency on structured EHRs for
the development of CDSSs and is extremely vital
in countries with low EHR adoption rates.

Although the proposed approach effectively
stratifies the patients’ risk and the associated com-
plications, it can be enhanced further, which calls
for further research on this topic. First, the
proposed approach only models the unstructured
nursing text and neglects the structured EHR infor-
mation (e.g., lab results), which can potentially be
utilized to facilitate robust patient profiling. Sec-
ond, the modeling presented in this study does
not account for real-time clinical data. In the fu-
ture, we intend on exploring the techniques for
modeling structured EHR data along with the data
modeled from the unstructured clinical nursing
notes. We also aim at validating our model on real-
time clinical data to enhance its predictability and
adaptability, thus focusing on the need for time-
aware, dependable architectures in real-world hos-
pital scenarios.
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Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the Space of Topic Coherence
Measures. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Min-
ing, WSDM ’15, pages 399–408, New York, NY,
USA. ACM.

https://www.aclweb.org/anthology/W13-0102
https://www.aclweb.org/anthology/W13-0102
https://www.aclweb.org/anthology/W13-0102
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1709.09587
https://arxiv.org/abs/1709.09587
http://www.jmlr.org/papers/v3/blei03a.html
https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf
https://svn.spraakdata.gu.se/repos/gerlof/pub/www/Docs/npmi-pfd.pdf
https://doi.org/10.1097/00003246-200102000-00012
https://doi.org/10.1097/00003246-200102000-00012
https://doi.org/10.1097/00003246-200102000-00012
https://www.ncbi.nlm.nih.gov/pubmed/8130495
https://www.ncbi.nlm.nih.gov/pubmed/8130495
https://www.ncbi.nlm.nih.gov/pubmed/8130495
https://www.ncbi.nlm.nih.gov/pubmed/8130495
https://arxiv.org/abs/1705.07025
https://arxiv.org/abs/1705.07025
https://doi.org/10.1109/ICHI.2016.37
https://doi.org/10.1109/ICHI.2016.37
http://www.sciencedirect.com/science/article/pii/0003999394900817
http://www.sciencedirect.com/science/article/pii/0003999394900817
http://www.sciencedirect.com/science/article/pii/0003999394900817
https://www.cs.princeton.edu/courses/archive/fall02/cs597A/papers/icu.pdf
https://www.cs.princeton.edu/courses/archive/fall02/cs597A/papers/icu.pdf
https://www.cs.princeton.edu/courses/archive/fall02/cs597A/papers/icu.pdf
https://arxiv.org/abs/1703.07771
https://arxiv.org/abs/1703.07771
https://doi.org/10.1109/ACCESS.2016.2618775
https://doi.org/10.1109/ACCESS.2016.2618775
http://www.jstor.org/stable/2280095?origin=JSTOR-pdf
http://www.jstor.org/stable/2280095?origin=JSTOR-pdf
https://doi.org/10.1145/2806416.2806541
https://doi.org/10.1145/2806416.2806541
https://doi.org/10.1145/2806416.2806541
http://proceedings.mlr.press/v68/johnson17a.html
http://proceedings.mlr.press/v68/johnson17a.html
https://doi.org/10.1038/sdata.2016.35
http://dl.acm.org/citation.cfm?id=3008751.3008829
http://dl.acm.org/citation.cfm?id=3008751.3008829
https://doi.org/10.1109/ICIIECS.2015.7193211
https://doi.org/10.1109/ICIIECS.2015.7193211
https://doi.org/10.1109/ICIIECS.2015.7193211
https://doi.org/10.1007/978-3-319-43742-2_20
https://doi.org/10.1007/978-3-319-43742-2_20
https://doi.org/10.1007/978-3-319-43742-2_20
http://www.sciencedirect.com/science/article/pii/S1532046418300716
http://www.sciencedirect.com/science/article/pii/S1532046418300716
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324


1022

Takaya Saito and Marc Rehmsmeier. 2015. The
Precision-Recall Plot Is More Informative than the
ROC Plot When Evaluating Binary Classifiers on
Imbalanced Datasets. PLOS ONE, 10(3):1–21.
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