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Abstract

In this paper, we focus on quantifying model
stability as a function of random seed by in-
vestigating the effects of the induced random-
ness on model performance and the robustness
of the model in general. We specifically per-
form a controlled study on the effect of random
seeds on the behaviour of attention, gradient-
based and surrogate model based (LIME) in-
terpretations. Our analysis suggests that ran-
dom seeds can adversely affect the consistency
of models resulting in counterfactual interpre-
tations. We propose a technique called Aggres-
sive Stochastic Weight Averaging (ASWA) and
an extension called Norm-filtered Aggressive
Stochastic Weight Averaging (NASWA) which
improves the stability of models over random
seeds. With our ASWA and NASWA based
optimization, we are able to improve the ro-
bustness of the original model, on average re-
ducing the standard deviation of the model’s
performance by 72%.

1 Introduction

There has been a tremendous growth in deep neu-
ral network based models that achieve state-of-
the-art performance. In fact, most recent end-
to-end deep learning models have surpassed the
performance of careful human feature-engineering
based models in a variety of NLP tasks. However,
deep neural network based models are often brit-
tle to various sources of randomness in the training
of the models. This could be attributed to several
sources including, but not limited to, random pa-
rameter initialization, random sampling of exam-
ples during training and random dropping of neu-
rons. It has been observed that these models have,
more often, a set of random seeds that yield better
results than others. This has also lead to research

∗This work was conducted when the author was a student
at Imperial College London.

suggesting random seeds as an additional hyper-
parameter for tuning (Bengio, 2012)1. One possi-
ble explanation for this behavior could be the exis-
tence of multiple local minima in the loss surface.
This is especially problematic as the loss surfaces
are generally non-convex and may have multiple
saddle points making it difficult to achieve model
stability.

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.99)

if high crimes were any more generic it would
have a universal product code instead of a title

(Pr (Ynegative) = 0.98)

Figure 1: Importance based on attention probabil-
ities for two runs of the same model with same
parameters and same hyperparameters, but with
two different random seeds (color magnitudes:
pink<magenta<red)

Recently the NLP community has witnessed
a resurgence in interpreting and explaining deep
neural network based models (Jain et al., 2019;
Jain and Wallace, 2019; Alvarez-Melis and
Jaakkola, 2017). Most of the interpretation based
methods involve one of the following ways of in-
terpreting models: a) sample oriented interpreta-
tions: where the interpretation is based on changes
in the prediction score with either upweighting
or perturbing samples (Jain et al., 2019; Jain and
Wallace, 2019; Koh and Liang, 2017); b) interpre-
tations based on feature attributions using atten-
tion or input perturbation or gradient-based mea-
sures; (Ghaeini et al., 2018; Feng et al., 2018;
Bach et al., 2015); c) interpretations using surro-

1http://www.argmin.net/2018/02/26/
nominal/
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gate linear models (Ribeiro et al., 2016) – these
methods can provide local interpretations based on
input samples or features. However, the presence
of inherent randomness makes it difficult to accu-
rately interpret deep neural models among other
forms of pathologies (Feng et al., 2018).

In this paper, we focus on the stability of deep
neural models as a function of random-seed based
effects. We are especially interested in investigat-
ing the hypothesis focusing on model stability: do
neural network based models under different ran-
dom seeds allow for similar interpretations of their
decisions? We claim that for a given model which
achieves a substantial performance for a task, the
factors responsible for any decisions over a sam-
ple should be approximately consistent irrespec-
tive of the random seed. In Figure 1, we show
an illustration of this question where we visual-
ize the attention distributions of two CNN based
binary classification models for sentiment anal-
ysis, trained with the same settings and hyper-
parameters, but with different seeds. We observe
that both models obtain the correct prediction with
significantly high confidence. However, we note
that both the models attend to completely differ-
ent sets of words. This is problematic, especially
when interpreting these models under the influ-
ence of such randomness. We observe that on av-
erage 40−60% of the most important interpretable
units are different across different random seeds
for the same model. This phenomenon also leads
us to the question on the exact nature of inter-
pretability – are the interpretations specific to an
instantiation of the model or are they general to a
class of models?

We also provide a simple method that can, to
a large extent, ameliorate this inherent random
behaviour. In Section 3.1, we propose an ag-
gressive stochastic weight averaging approach that
helps in improving the stability of the models at
almost zero performance loss while still making
the model robust to random-seed based instability.
We also propose an improvement to this model in
Section 3.2 which further improves the stability of
the neural models. Our proposals significantly im-
prove the robustness of the model, on average by
72% relative to the original model and on Diabetes
(MIMIC), a binary classification dataset, by 89%
(relative improvement). All code for reproducing
and replicating our experiments is released in our

repository2.

2 Measuring Model Stability

In this section, we describe methods that we use to
measure model stability, specifically — prediction
and interpretation stability.

2.1 Prediction Stability

We measure prediction stability using standard
measures of the mean and the standard deviations
corresponding to the accuracy of the classification
based models on different datasets. We ensure that
the models are run with exactly the same config-
urations and hyper-parameters but with different
random seeds. This is a standard procedure that is
used in the community to report the performance
of the model.

2.2 Interpretation Stability

For a given task, we train a set of models only
differing with random-seeds. For every given test
sample, we obtain interpretations using different
instantiations of the models. We define a model
to be stable if we obtain similar interpretations re-
gardless of different random-seed based instanti-
ations. We use the following metrics to quantify
stability:

a) Relative Entropy quantification (H):
Given two distributions over interpretations, for
the same test case, from two different models,
it measures the relative entropy between the two
probability distributions. Note that, the higher the
relative entropy the greater the dissimilarity be-
tween the two distributions.

H =
∑
i∈d

Pr1 · log
Pr1
Pr2

where, Pr1 and Pr2 are two attention distributions
of the same sample from two different runs of the
model and d is the number of tokens in the sam-
ple. Given n differently seeded models, for each
test instance, we calculate the relative entropy ob-
tained from the corresponding averaged pairwise
interpretation distributions.

b) Jaccard Distance (J ): It measures the dis-
similarity between two sets. Here higher values
of J indicate larger variances. We consider top-n
tokens which have the highest attention for com-
parison. Note that, Jaccard distance is over sets of

2https://github.com/rishj97/ModelStability
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word indices and do not take into account the at-
tention probabilities explicitly. Jaccard distance is
defined as:

J = (1− A∩B
A∪B

) ∗ 100%

where, A and B are the sets of most relevant
items. We specifically decided to use ‘most’ rel-
evant (top-n items) as the tail of the distribution
mostly consists of values close to 0.

Interpretation methods under study: In this
paper we study interpretation stability using the
following three interpretation methods:

1. Attention based interpretation: We focus on
attention probabilities as the mode of inter-
pretation and consider the model to be stable
if different instantiations of the model leads
to similar attention distributions. Our major
focus in this paper is attention based inter-
pretation. As we use Jain et al. (2019) as a
testbed for our investigation, we focus heav-
ily on attention. Also, as the attention layer
has a linear relationship with the prediction,
we consider attention to be more indicative of
the model stability.

2. Gradient-based feature importance: Given
a sample, we use the input gradients of the
model corresponding to each of the word rep-
resentations and compute the magnitude of
the change as a local explanation. We re-
fer the reader to Baehrens et al. (2010) for
a good introduction to gradient-based inter-
pretations. As all of our models are differen-
tiable, we use this as an alternative method
for interpretation. We follow the standard
procedure as followed in Feng et al. (2018)
and note that we do not follow Jain and Wal-
lace (2019) and do not disconnect the com-
putational graph at the attention module. We
obtain probabilistic gradient scores by nor-
malizing over the absolute values of gradient
values.

3. LIME based interpretation: We use lo-
cally interpretable model-agnostic interpreta-
tions (Ribeiro et al., 2016) that learns a sur-
rogate interpretable model locally around the
predictions of the deep neural based model.
We obtain LIME based interpretations for ev-
ery instantiation of the models. We then use
Jaccard Distance to measure the divergence.

We note that, we observe similar patterns across
the three interpretation methods and the interpre-
tations consistently differ with random seeds.

3 Reducing Model Instability with an
Optimization Lens

We observe that different instantiations of the
model can cause the model have different starts
on the optimization surface. Further, stochastic
sampling might result in different paths. Both of
these factors can lead to different local minimas
potentially leading to different solutions. With
this observation as our background we propose
two, closely related, methods to ameliorate di-
vergence: Agressive Stochastic Weight Averaging
and Norm-filtered Agressive Stochastic Weight
Averaging. We describe these two in the follow-
ing subsections.

3.1 Aggressive Stochastic Weight Averaging
(ASWA)

Stochastic weight averaging (SWA) (Izmailov
et al., 2018) works by averaging the weights of
multiple points in the trajectory of gradient de-
scent based optimizers. The algorithm typically
uses modified learning rate schedules. SWA is
itself based on the idea of maintaining a run-
ning average of weights in stochastic gradient
descent based optimization techniques (Ruppert,
1988; Polyak and Juditsky, 1992). The principle
idea in SWA is averaging the weights that are max-
imally distant helps stabilize the gradient descent
based optimizer trajectory and improves general-
ization. Izmailov et al. (2018) use the analysis
of Mandt et al. (2017) to illustrate the stability ar-
guments where they show that, under certain con-
vexity assumptions, SGD iterations can be visual-
ized as sampling from a Gaussian distribution cen-
tred at the minima of the loss function. Samples
from high-dimensional Gaussians are expected to
be concentrated on the surface of the ellipse and
not close to the mean. Averaging iterations is
shown to stabilize the trajectory and further im-
prove the width of the solutions to be closer to the
mean.

In this paper, we focus on the stability of deep
neural models as a function of random-seeds. Our
proposal is based on SWA, but we extend it to the
extremes and call it Aggressive Stochastic Weight
Averaging. We assume that, for small batch size,
the loss surface is locally convex. We further relax
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the conditions for the optimizer and assume that
the optimizer is based on some version of gradi-
ent descent — this means that our modification is
valid even for other pseudo-first-order optimiza-
tion algorithms including Adam (Kingma and Ba,
2014) and Adagrad (Duchi et al., 2011).

We note that, Izmailov et al. (2018) suggest
using SWA usually after ’pre-’training the model
(at least until 75% convergence) and followed by
sampling weights at different steps either using
large constant or cyclical learning rates. While,
SWA is well defined for convex losses (Polyak
and Juditsky, 1992), Izmailov et al. (2018) con-
nect SWA to non-convex losses by suggesting that
the loss surface is approximately convex after con-
vergence. In our setup, we investigate the utility
of averaging weights over every iteration (an it-
eration consists of one batch of the gradient de-
scent). Algorithm 1 shows the implementation
pseudo-code for SWA. We note that, unlike Iz-
mailov et al. (2018), we average our weights at
each batch update and assign the ASWA parame-
ters to the model at the end of each epoch. That is,
we replace the model’s weights for the next epoch
with the averaged weights.

Algorithm 1: Aggressive SWA algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
e← 0;
while e < m do

i← 1
while i ≤ n do

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

In Figure 2, we show an SGD optimizer (with
momentum) and the same optimizer with SWA
over a 3-dimensional loss surface with a saddle
point. We observe that the original SGD reaches
the desired minima, however, it almost reaches
the saddle point and does a course correction and
reaches minima. On the other hand, we observe

that SGD with ASWA is very conservative, it re-
peatedly restarts and reaches the minima without
reaching the saddle point. We empirically ob-
serve that this is a desired property for the sta-
bility of models over runs of the same model
that differ only over random instantiations. The
grey circles in Figure 2 highlight this conservative
behaviour of SGD with ASWA optimizer, espe-
cially when compared to the standard SGD. Fur-
ther, Polyak and Juditsky (1992) show that for
convex losses, averaging SGD proposals achieves
the highest possible rate of convergence for a vari-
ety of first-order SGD based algorithms.

(a) Trajectory for Stochastic Gradient Descent

(b) Trajectory for Stochastic Gradient Descent with
ASWA

Figure 2: Trajectory for gradient descent algorithms
with red and black arrows on (b) indicating movements
from consecutive epochs with restarts. Conservative
behaviour of ASWA algorithm helps avoid the saddle
point without ever reaching it.

3.2 Norm-filtered Aggressive Stochastic
Weight Averaging (NASWA)

We observe that the ASWA algorithm is especially
beneficial when the norm difference of the param-
eters of the model are high. We hypothesise that
in general, the norm difference indicates the diver-
gence between optimizers’ steps and we observe
that the larger the norm difference, the greater the
change in the trajectory. Therefore, we propose to



933

Algorithm 2: Norm-filtered Aggressive SWA
algorithm
Require:

1: e = Epoch number
2: m = Total epochs
3: i = Iteration number
4: n = Total iterations
5: α = Learning rate
6: O = Stochastic Gradient optimizer function
7: Ns = List of previous iterations’ norm

differences
e← 0;
while e < m do

i← 1
while i ≤ n do

Ncur ← ‖W −Wswa‖1;

Nmean ←
∑|Ns|

i=1
Ns[i]

|Ns| ;
if Ncur > Nmean then

Wswa ←Wswa +
(W−Wswa)
(e∗n+i+1) ;

Ns ← [Ncur];
else

Ns ← Ns + [Ncur];

W ←W −O(α,W );
i← i+ 1

W ←Wswa;
e← e+ 1

maintain a list that stores the norm differences of
the previous iterations. If the norm difference of
the current iteration is greater than the average of
the list, we update the ASWA weights and reini-
tialize the list with the current norm difference.
When the norm difference, however, is less than
the average of the list, we just append the current
norm difference to the list. After the completion
of the epoch, we assign the ASWA parameters to
the model. This is shown in Algorithm 2. We call
this approach Norm-filtered Aggressive Stochastic
Weight Averaging.

4 Experiments

We base our investigation on similar sets of mod-
els as Jain and Wallace (2019). We also use the
code provided by the authors for our empirical in-
vestigations for consistency and empirical valida-
tion. We describe our models and datasets used for
the experiments below.

4.1 Models
We consider two sets of commonly used neural
models for the tasks of binary classification and
multi-class natural language inference. We use
CNN and bi-directional LSTM based models with
attention. We follow (Jain and Wallace, 2019) and
use similar attention mechanisms using a) additive
attention (Bahdanau et al., 2014); and b) scaled dot
product based attention (Vaswani et al., 2017). We
jointly optimize all the parameters for the model,
unlike Jain and Wallace (2019) where the encod-
ing layer, attention layer and the output prediction
layer are all optimized separately. We experiment
with several optimizers including Adam (Kingma
and Ba, 2014), SGD and Adagrad (Duchi et al.,
2011) but most results below are with Adam.

For our ASWA and NASWA based experi-
ments, we use a constant learning rate for our op-
timizer. Other model-specific settings are kept the
same as Jain and Wallace (2019) for consistency.

Dataset Avg. Length Train Size Test size

IMDB 179 12500 / 12500 2184 / 2172
Diabetes(MIMIC) 1858 6381 / 1353 1295 / 319

SST 19 3034 / 3321 652/653
Anemia(MIMIC) 2188 1847 / 3251 460 / 802

AgNews 36 30000 / 30000 1900 / 1900
ADR Tweets 20 14446 / 1939 3636 / 487

SNLI 14 182764 / 183187 / 183416 3219 / 3237 / 3368

Table 1: Dataset characteristics. Train size and test size
show the cardinality for each class. SNLI is a three-
class dataset while the rest are binary classification

4.2 Datasets
The datasets used in our experiments are listed
in Table 1 with summary statistics. We fur-
ther pre-process and tokenize the datasets us-
ing the standard procedure and follow Jain and
Wallace (2019). We note that IMDB (Maas
et al., 2011), Diabetes(MIMIC) (Johnson et al.,
2016), Anemia(MIMIC) (Johnson et al., 2016),
AgNews (Zhang et al., 2015), ADR Tweets (Nik-
farjam et al., 2015) and SST (Socher et al., 2013)
are datasets for the binary classification setup.
SNLI (Bowman et al., 2015) is a dataset for the
multiclass classification setup. All of the datasets
are in English, however we expect the behavior to
persist regardless of the language.

4.3 Settings and Hyperparameters
We use a 300-dimenstional embedding layer
which is initialized with FastText (Joulin et al.,
2016) based free-trained embeddings for both
CNN and the bi-directional LSTM based models.
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We use a 128-dimensional hidden layer for the bi-
directional LSTM and a 32-dimensional filter with
kernels of size {1, 3, 5, 7} for CNN. For others, we
maintain the model settings to resemble the mod-
els in Jain and Wallace (2019). We train all of our
models for 20 Epochs with a constant batch size
of 32. We use early stopping based on the valida-
tion set using task-specific metrics (Binary Classi-
fication: using roc-auc, Multiclass and question
answering based dataset: using accuracy).

Dataset CNN(%) CNN+ASWA(%) CNN+NASWA(%)

IMDB 89.8 (±0.79) 90.2 (±0.25) 90.1 (±0.29)
Diabetes 87.4 (±2.26) 85.9 (±0.25) 85.9 (±0.38)

SST 82.0 (±1.01) 82.5 (±0.39) 82.5 (±0.39)
Anemia 90.6 (±0.98) 91.9 (±0.20) 91.9 (±0.19)
AgNews 95.5 (±0.23) 96.0 (±0.11) 96.0 (±0.07)

Tweet 84.6 (±2.65) 84.4 (±0.54) 84.4 (±0.54)

Table 2: Performance statistics obtained from 10 dif-
ferently seeded CNN based models. Table compares
accuracy and its standard deviation for the normally
trained CNN model against the ASWA and NASWA
trained models, whose deviation drops significantly,
thus, indicating increased robustness.

5 Results

In this section, we summarize our findings for 10
runs of the model with 10 different random seeds
but with identical model settings.

5.1 Model Performance and Stability
We first report model performance and prediction
stability. The results are reported in Table 2.

Dataset LSTM(%) LSTM+ASWA(%) LSTM+NASWA(%)

IMDB 89.1 (±1.34) 90.2 (±0.32) 90.3 (±0.17)
Diabetes 87.7 (±1.44) 87.7 (±0.60) 87.8 (±0.55)

SST 81.9 (±1.11) 82.0 (±0.60) 82.1 (±0.57)
Anemia 91.6 (±0.49) 91.8 (±0.34) 91.9 (±0.36)
AgNews 95.5 (±0.32) 96.1(±0.17) 96.1 (±0.10)

Tweet 84.7 (±1.79) 83.8 (±0.45) 83.9 (±0.45)

Table 3: Performance statistics obtained from 10 dif-
ferently seeded LSTM based models.

We note that the original CNN based mod-
els, on an average, have a standard deviation of
±1.5%. Which seems standard, however, we note
that ADR Tweets dataset has a very high standard
deviation of±2.65%. We observe that ASWA and
NASWA are almost always able to achieve higher
performance with a very low standard deviation.
This suggests that both ASWA and NASWA are
extremely stable when compared to the standard
model. They significantly improve the robustness,
on an average, by 72% relative to the original

model and on Diabetes (MIMIC), a binary clas-
sification dataset, by 89% (relative improvement).
We observe similar results for the LSTM based
models in Table 3.

(a) CNN models (b) LSTM models

Figure 3: Prediction’s standard deviation for CNN
and LSTM based models for all binary classification
datasets under consideration. Predictions are bucketed
in intervals of size 0.1, starting from 0 (containing pre-
dictions from 0 to 0.1), until 0.9

We further analyze the prediction score stabil-
ity by computing the mean standard deviation over
the binned confidence intervals of the models in
Figure 3a. We note that on an average, the stan-
dard deviations are on the lower side. However,
we observe that the mean standard deviation of the
bins close to 0.5 is on the higher side as is expected
given the high uncertainty. On the other hand
both, ASWA and NASWA based models are rel-
atively more stable than the standard CNN based
model. We observe similar behaviours for the
LSTM based models in Figure 3b. This suggests
that our proposed methods, ASWA and NASWA,
are able to obtain relatively better stability without
any loss in performance. We also note that both
ASWA and NASWA had relatively similar perfor-
mance over more than 10 random seeds.

5.2 Attention Stability

(a) CNN models (b) LSTM models

Figure 4: Average attention entropy against the buck-
eted predictions for CNN and LSTM based models.
Figure highlights the high entropy between attention
based distributions from differently seeded models (es-
pecially for the Diabetes-MIMIC datatset), indicating
towards model instability.
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We now consider the stability of attention dis-
tributions as a function of random seeds. We first
plot the results of the experiments for standard
CNN based binary classification models over uni-
formly binned prediction scores for positive labels
in Figure 4a. We observe that, depending on the
datasets, the attention distributions can become
extremely unstable (high entropy). We specifi-
cally highlight the Diabetes(MIMIC) dataset’s en-
tropy distribution. We observe similar, but rela-
tively worse results for the LSTM based models
in Figure 4b. In general, we would expect the en-
tropy distribution to be close to zero however, this
doesn’t seem to be the case. This means that using
attention distributions to interpret models may not
be reliable and can lead to misinterpretations.

(a) CNN models (b) LSTM models

Figure 5: Jaccard distance highlighting instability in at-
tention distributions of CNN and LSTM based models.

(a) CNN+ASWA (b) CNN+NASWA

(c) LSTM+ASWA (d) LSTM+NASWA

Figure 6: Improved prediction stability from ASWA
and NASWA for CNN and LSTM based models

We use the top 20% of the most important
items (indices) in the attention distribution for
each dataset over 10 runs and plot the Jaccard dis-
tances for CNN and LSTM based models in Fig-
ure 5a and Figure 5b. We again notice a similar

(a) Diabetes (b) SST

Figure 7: Gradient based interpretations’ stability im-
provement from NASWA on CNN based models. The
Jaccard distance is calculated using the top 20% atten-
tive items.

trend of unstable attention distributions over both
CNN and LSTM based attention distribution.

In the following sections for space constraints,
we focus on CNN based models with additive at-
tention. Our results on LSTM based models are
provided in the attached supplementary material.
We note that the observations for LSTM mod-
els are, in most cases, similar to the behaviour
of the CNN based models. Scaled dot-product
based models are also provided in the supplemen-
tary material and we notice a similar trend as the
additive attention.

We now focus on the effect of ASWA and
NASWA on binary and multi-class CNN based
neural models separately.

Binary Classification In Figure 8, we plot the
results of the models with ASWA and NASWA.
We observe that both these algorithms signifi-
cantly improve the model stability and decrease
the entropy between attention distributions. For
example, in Figure 8b, both ASWA and NASWA
decrease the average entropy by about 60%. We
further notice that NASWA is slightly better per-
forming in most of the runs. This empirically val-
idates the hypothesis that averaging the weights
from divergent weights (when the norm difference
is higher than the average norm difference) helps
in stabilizing the model’s parameters, resulting in
a more robust model.

Multi-class Classification In Figure 9, we plot
the entropy between the attentions distributions
of the models for the SNLI dataset (CNN based
model), separately for each label (neutral, contra-
diction, and entailment). We notice, similar ob-
servations as the binary classification models, the
ASWA and NASWA algorithms are able to signif-
icantly improve the entropy of the attention distri-
butions and increases the robustness of the model
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(a) IMDB (b) Diabetes (c) SST

(d) Anemia (e) AgNews (f) ADR Tweets

Figure 8: Attention stability improvement from ASWA and NASWA on CNN based models.

(a) Label 0 prediction vs entropy (b) Label 1 prediction vs entropy (c) Label 2 prediction vs entropy

Figure 9: Attention stability improvement from ASWA and NASWA on CNN based model for the SNLI dataset.

with random seeds.

5.3 Gradient-based Interpretations

We now look at an alternative method of interpret-
ing deep neural models and look into the consis-
tency of the gradient-based interpretations to fur-
ther analyze the model’s instability. For this setup,
we focus on binary classifier and plot the results
on the SST and the Diabetes dataset in partic-
ular since they cover the low and the high end
of the entropy spectrum (respectively). We no-
tice similar trends of instability in the gradient-
based interpretations from model inputs as we did
for the attention distributions. Figure 7 shows
that the entropy between the gradient-based inter-
pretations from differently seeded models closely
follows the same trend as the attention distribu-
tions. This result further strengthens our claim on
the importance of model stability and shows that
over different runs of the same model with differ-

ent seeds, we may get different interpretations us-
ing gradient-based feature importance. Moreover,
Figure 7 shows the impact of ASWA towards mak-
ing the gradient-based interpretations more consis-
tent, thus, significantly increasing the stability.

5.4 LIME based Interpretations

We further evaluated the surrogate model based in-
terpretability using LIME (Ribeiro et al., 2016).
LIME obtains a locally linear approximation of the
model’s behaviour for a given sample by perturb-
ing it and learning a sparse linear model around
it. We focus on AgNews and SST based datasets
and obtain interpretability estimates using LIME.
Once again, we notice a similar pattern of insta-
bility as the other two interpretability methods. In
Figure 10 we present our results from the LIME
based interpretations with Jaccard distance as the
measure. Note that we measure the Jaccard dis-
tance over the top 20% most influential items. We
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(a) AgNews (b) SST

Figure 10: LIME based interpretations’ stability im-
provement from NASWA on CNN based models. The
Jaccard distance is calculated using the top 20% atten-
tive items.

observe once again that NASWA helps in reduc-
ing the instability and results in more consistent
interpretations.

In all our experiments, we find that a significant
proportion of interpretations are dependent on the
instantiation of the model. We also note that we
perform experiments over 100 random seeds for
greater statistical power and see similar patterns3.

6 Discussion

Recent advances in adversarial machine learn-
ing (Neelakantan et al., 2015; Zahavy et al., 2016)
have investigated robustness to random initializa-
tion based perturbations, however, to our knowl-
edge, no previous study investigates the effect of
random-seeds and its connection on model inter-
pretation. Our study analyzed the inherent lack of
robustness in deep neural models for NLP. Recent
studies cast doubt on the consistency and corre-
lations of several types of interpretations (Doshi-
Velez and Kim, 2017; Jain and Wallace, 2019;
Feng et al., 2018). We hypothesise that some of
these issues are due to the inherent instability of
the deep neural models to random-seed base per-
turbations. Our analysis (in Section 4) leads to
the hypothesis that models with different instanti-
ations may use completely different optimization
paths. The issue of variance in all black-box in-
terpretation methods over different seeds will con-
tinue to persist until the models are fully robust to
random-seed based perturbations. Our work how-
ever, doesn’t provide insights into instabilities of
different layers of the models. We hypothesise that
it might further uncover the reasons for the rela-
tively lower correlation between different black-
box interpretation methods as these are effectively
based off on different layers and granularity.

3These results are provided in the appendix.

There has been some work on using noisy gradi-
ents (Neelakantan et al., 2015) and learning from
adversarial and counter-factual examples (Feng
et al., 2018) to increase the robustness of deep
learning models. Feng et al. (2018) show that neu-
ral models may use redundant features for predic-
tion and also show that most of the black-box in-
terpretation methods may not be able to capture
these second-order effects. Our proposals show
that aggressively averaging weights leads to bet-
ter optimization and the resultant models are more
robust to random-seed based perturbation. How-
ever, our research is limited to increasing consis-
tency in neural models. Our approach further uses
first order based signals to boost stability. We
posit that second-order based signals can further
enhance consistency and increase the robustness.

7 Conclusions

In this paper, we study the inherent instability of
deep neural models in NLP as a function of ran-
dom seed. We analyze model performance and
robustness of the model in the form of attention
based interpretations, gradient-based feature im-
portance and LIME based interpretations across
multiple runs of the models with different random
seeds. Our analysis strongly highlights the prob-
lems with stability of models and its effects on
black-box interpretation methods leading to differ-
ent interpretations for different random seeds. We
also propose a solution that makes use of weight
averaging based optimization technique and fur-
ther extend it with norm-filtering. We show that
our proposed methods largely stabilize the model
to random-seed based perturbations and, on aver-
age, significantly reduce the standard deviations of
the model performance by 72%. We further show
that our methods significantly reduce the entropy
in the attention distribution, the gradient-based
feature importance measures and LIME based in-
terpretations across runs.
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