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Abstract

Document embeddings, created with methods
ranging from simple heuristics to statistical
and deep models, are widely applicable. Bag-
of-vectors models for documents include the
mean and quadratic approaches (Torki, 2018).
We present evidence that quadratic statistics
alone, without the mean information, can of-
fer superior accuracy, fast document compar-
ison, and compact document representations.
In matching news articles to their comment
threads, low-rank representations of only 3–4
times the size of the mean vector give most
accurate matching, and in standard sentence
comparison tasks, results are state of the art
despite faster computation. Similarity mea-
sures are discussed, and the Frobenius prod-
uct implicit in the proposed method is con-
trasted to Wasserstein or Bures metric from the
transportation theory. We also shortly demon-
strate matching of unordered word lists to doc-
uments, to measure topicality or sentiment of
documents.

1 Introduction

Today, most computational models for natural
language are based on distributional representa-
tions. Words are routinely represented by word
embeddings (Mikolov et al., 2013), most com-
monly as fixed-dimensional real-valued vectors,
such as GloVe (Pennington et al., 2014) and fast-
Text (Mikolov et al., 2018). Even though there is
extensive literature on using, e.g., character-level
and other sub-word information (Lee et al., 2017;
Radford et al., 2017; Mikolov et al., 2018) or non-
Euclidean embedding spaces (Nickel and Kiela,
2017; Muzellec and Cuturi, 2018), the standard
embeddings remain currently as the default build-
ing block for practical tools.

Most applications do not, however, care about
individual words. Instead, we may be concerned

about the meaning of sentences or retrieval of doc-
uments, or in general, units larger than words.
Distributed representations can be built for these
larger units as well. Although sentences and docu-
ments differ as linguistic concepts, computational
models for them can be similar when they are con-
sidered as sequences or even (unordered) bags of
words.

Document representations often build on word
embeddings. Already the mean of the word vec-
tors turns out to be a surprisingly good representa-
tion (Wieting et al., 2015b), and accounting for the
importance of words by a weighting scheme im-
proves it further (Arora et al., 2016; Gupta et al.,
2019). Even though the bare mean clearly ig-
nores information, it is very efficient to compute.
On the other end of the spectrum, document em-
beddings are built with computationally extremely
heavy deep learning models such as ELMo (Peters
et al., 2018), ULMFiT (Howard and Ruder, 2018),
and BERT (Devlin et al., 2018). Deep models pro-
duce rich representations, but the amount of data
and computation needed for training make them
prohibitive for many applications.1

Our work falls between these two extremes.
With the understanding that mean vectors may
miss important aspects of documents, we want to
develop fast and easy-to-use tools. This rules out
complex deep networks. Instead, we focus on
using second-order interactions between words,
building on covariance of the embeddings of indi-
vidual words, following the recent works of Torki
(2018) and Nikolentzos et al. (2017).

The motivation of the paper is on finding fast
and accurate ways to compare documents, or, al-
ternatively, documents and semantics spanned by
word lists. We start by evaluating document sim-

1For example BERT takes 0.5 secs to process a sentence
on a CPU (Nvidia blog, our experiments), and getting good
document representations may require fine-tuning.
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ilarity as pairwise similarities between words and
show that this induces a compact approximative
representation for the documents themselves. We
relate the pairwise similarity to Wasserstein or Bu-
res metric, used recently in various machine learn-
ing tasks (Arjovsky et al., 2017; Muzellec and
Cuturi, 2018) and in quantum information theory
(Bhatia et al., 2018).

The main result of these derivations is a prac-
tical document embedding strategy that builds on
pre-trained word embeddings. The document em-
beddings are of relatively low dimension, larger
than the word embeddings only by a small fac-
tor. They allow for efficient comparisons and are
easy to implement and use in downstream tasks
of document retrieval, sentence classification, etc.
We demonstrate competitive performance against
state-of-the-art methods in standard sentence sim-
ilarity tasks (Conneau and Kiela, 2018), with a
lower computational cost. We further demonstrate
the approach in matching articles to their comment
chains, and briefly in scoring moral sentiment and
topicality defined by word lists.

2 Related work

Work on document representations has a long his-
tory in information retrieval. Sentence embed-
dings (Arora et al., 2016; Perone et al., 2018) is
a related topic that has lately become more promi-
nent, maybe because of the fast growth of social
media platforms where communication is mostly
done via short messages. For this paper, we treat
sentences as short documents.

The mainline of research deals with building
document vectors from pre-trained word vectors.
The straightforward way averages over the word
vectors. Wieting et al. (2015b) show that com-
plex computations are not necessary for good doc-
ument vectors. Instead, smart weighting under the
averaging model is usually sufficient. On top of
that work, weighting schemes and other heuristics
have been proposed. The latest include common
component removal (Arora et al., 2016), and the
weighting schemes SIF (Arora et al., 2016), and P-
SIF (Gupta et al., 2019), similar in idea to TF-IDF
weighting. As alternatives to usage of pre-trained
word embeddings, one can train directly document
embeddings like skip-thought (ST) vectors (Kiros
et al., 2015) basically generalizing the word2vec
training method to sentences, or train the word em-
beddings and document embeddings together, but

still within the bag-of-the-words averaging frame-
work as is done with Paragraph Vectors (Le and
Mikolov, 2014) and Doc2VecC (Chen, 2017).

Our core contributions are in the use of
second-order information—covariance of the
word vectors—for improving the representations.
To our best knowledge, there is quite limited
previous work in this direction. Torki (2018) used
covariance matrices as (quite high-dimensional)
representation for documents and Nikolentzos
et al. (2017) represented documents with Gaus-
sian distributions and used divergence metrics to
compare the imposed distributions. We provide
technical and computational analysis of the
covariance approach, discuss similarity measures
for the representations, including Frobenius
and Wasserstein inner products, and show how
low-rank approximations can then speed up the
comparisons and make the representations more
compact.

A completely different approach is taken by the
deep learning community, with the use of uni-
versal language and transformer models such as
ELMo (Peters et al., 2018), ULMFiT (Howard and
Ruder, 2018), and BERT (Devlin et al., 2018). The
accuracy of these deep learning models is state of
the art, but the computational cost and need for
training data are high. At the time of writing, there
are no pre-trained models available for the Finnish
language used in our experiments, and training
such a base model would be costly as shown by
Strubell et al. (2019).

3 Representations and similarities

Most applications compare word embeddings by
the cosine similarity, cos(w1, w2) =

wT
1 w2

|w1||w2| ,
where w1, w2 ∈ Rd are the embeddings (vectors).
Cosine similarity is invariant to lengths of the vec-
tors. Lengths typically do not encode semantics
but relate to aspects like frequency of the word or
homogeneity of its context.

Documents or sentences (later simply docu-
ments) are, in the absence of a sequence model,
treated as bags of words. That is, methods for
comparing documents are invariant to word order.
We define for later purposes a document matrix,

D =


. . . w1 . . .
. . . w2 . . .
. . . . . . . . . . . .
. . . wn . . .

 ∈ Rn×d , (1)
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as a collection of word vectors. Although
the representation as such is not order-invariant,
order-invariant ways to compare documents
can be derived for this representation. The
simplest is the cosine similarity of means,
cos(1TD1/n1, 1

TD2/n2). Performance of docu-
ment mean vectors in benchmarks is not quite a
state of the art, but decent enough for many appli-
cations (Wieting et al., 2015b).

A refinement from the simple average is to
reweigh the word vectors before averaging, either
in a general way or by specializing into the cur-
rent corpus. Term-frequency inverse-document-
frequency (TF-IDF) weighting is the classic way.
Later variations of weighting schemes are smooth
inverse frequency (SIF) (Arora et al., 2016) and
its derivative partition SIF (P-SIF) (Gupta et al.,
2019). They use weighted mean with weights
computed from corpus; SIF uses α/(α + p(w)),
where α > 0 controls the smoothing based on em-
pirical probability p(w) of word w. The precom-
putation of weights for the whole corpus makes
SIF unusable in some cases where the whole cor-
pus is not available or is extremely large, and pro-
hibits online processing. The issue is even more
severe with P-SIF that requires more elaborate pre-
processing.

For further improvement within the mean vec-
tor framework, it should be possible to improve
performance either by (a) computing word em-
beddings in a way that optimizes the document
embeddings (still computed as word vector aver-
ages), or by (b) transformations of the document
averages in a way that takes the current document
corpus into account. An example of the former is
the Doc2VecC embedding (Chen, 2017), and SIF
(Arora et al., 2016) demonstrates the latter by re-
moving variation common to the corpus by pro-
jecting away the main variation over documents.

Still, a third way to improve performance would
be to expand the representation from average
while maintaining order invariance for model sim-
plicity. This leads to second-order representations
discussed next.

4 Second-order document
representations

Our motivation arises from an empirical observa-
tion that mean vectors are not necessarily efficient
summaries of documents (Fig. 1). At least with
the word2vec embeddings, the distribution of word

Figure 1: Words of a Finnish news article as word2vec
vectors, projected to the 2D space of principal varia-
tion. The broad tail up right contains words related to
health care and social services, especially those of se-
niors. The lower right tail is about politics. The mean
vector (red star) makes a compromise between the tails,
and is determined to a large degree by the numerous
non-descriptive words projected closer to the origin. A
representation that takes higher moments into account
would catch the tails better. This structure seems to be
typical to most of the documents in our corpora.

vectors (on the 2D-space of their principal vari-
ance) is strongly skewed, with a comet-like shape,
often with more than one separate ”tails”. Mean is
not an efficient statistic for such distribution, and
it is an especially poor description of the tails that
seem to carry the most descriptive words.

A representation based on higher-order mo-
ments would better catch the characteristics of the
word vectors. Second moments, or covariance if
centered to the means, would lose the asymmetry
of the distributions, but the advantages compared
to still higher-order moments are (relative) com-
pactness and elegant algebra.

A question remains how second-order represen-
tations should be compared pairwise. A related
worry is the computational efficiency, as the com-
putational cost for naive second-order represen-
tations scales quadratically with the dimension-
ality of the embedding. Below, we first present
an extension of cosine similarity to pairs of un-
ordered collections of word vectors, and note how
this induces a second-order representation for doc-
uments, and is interpretable as a Frobenius inner
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product. We note a connection of this approach
to existing work, compare to Bures and Wasser-
stein metric (later referred only as Wasserstein)
and optimal transport theory, and later in the paper
present empirical evidence of good performance
of low-rank approximations of these representa-
tions.

4.1 Extending cosine similarity to documents
Using the notation of (1), let A ∈ Rn×d, B ∈
Rm×d be the word vectors of two documents, sen-
tences, or other unordered collections of words,
with word counts (n,m) and embedding of di-
mensionality d.

The core of cosine similarity of single words
a, b is the ordinary inner product cos(a, b) ∝ aT b,
with a normalization such that cos(a, a) = 1 for
any a 6= 0. We generalize this to similarities
of word collections A and B, as the normalized
square sum of all pairwise dot products:

Z(A,B)h2(A,B) ≡∑
a,b

(aT b)2 =
∑
a,b

abT baT

=
∑
a

aBTBaT =
∑
a

Tr(BaTaBT )

= Tr(BATABT ) = Tr(ATABTB)

with Z(A,B) such that h2(A,A) = 1 for any
A 6= 0. The unnormalized trace structure appears
so often later in the paper, that we define a shorter
notation for it:

A ∗B ≡ [Tr(BATABT )]1/2. (2)

The trace is interpretable as the Frobenius inner
product of covariance-like but unnormalized ma-
trices CA ≡ ATA and CB ≡ BTB:

(A ∗B)2 = Tr(CT
ACB) . (3)

With normalization, the similarity then becomes

h2(A,B) =
(A ∗B)2

(A ∗A) (B ∗B)
≡ A′ ∗B′ , (4)

where the last expression prenormalizes the word
list matrices so that

A′ ≡ A/(A ∗A)1/2 . (5)

Finally, one can centralize word matrices before
computing the similarity, A0 = A − 1TmA, etc.,
without affecting the formalism:

h(A0, B0) = A′0 ∗B′0 . (6)

Torki (2018) introduced a document represen-
tation named DoCoV and extended it in experi-
ments to include mean vector gaining an increase
in performance. This variant of the DoCoV rep-
resentation is defined as vec(mA, A

T
0A0), where

the vec operation concatenates the arguments and
flattens the matrices row by row. This is similar to
our cross product CA but includes the mean. For
computing similarities they used dot products

mT
AmB + vec(AT

0A0)
T vec(BT

0 B0)

= mT
AmB + (A0 ∗B0)

2 .

We note that this is the similarity h2 introduced
above, summed to the cosine similarity of the
means, but the normalization of the dot product
by Torki (2018) is for the entire concatenated vec-
tors, which is reasonable as long as mean and
covariance are treated as commensurable. There
is a unit inconsistency in the concatenation, for
the covariance term is quadratic while the mean
is not. Our reinterpretation and slight reformula-
tion of the similarity as h2 offers a way of sub-
stantially shrinking the document representations
(Section 5), and including the mean does not seem
empirically important.

4.2 Connection to transport theory

Wasserstein metric compares two (elliptic or gaus-
sian) distributions defined by their means and co-
variances. It emerges in the optimal transport the-
ory as a measure of minimum-path transport of the
probability mass of distribution (mA, CA) to dis-
tribution (mB, CB):

W2((mA, CA), (mB, CB)) =

||mA −mB||2+

Tr

(
CA + CB − 2

(
C

1/2
A CB C

1/2
A

)1/2)
.

For covariances computed from word vectors,
CA = ATA, etc., we would like to have scale
invariance similar to cosine or the Frobenius co-
sine above. But it is not clear how to obtain scale
invariance in a principled way, for the scales of
terms TrCA and TrCB vary differently from the
scale of the cross term.

Within the context of their elliptical embed-
dings, Muzellec and Cuturi (2018) define a Bu-
res or Wasserstein cosine by normalizing the sole
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cross term2:

hW(CA, CB) =
Tr
(
C

1/2
A CB C

1/2
A

)1/2
[TrCA]1/2 [TrCB]1/2

.

This form is surprisingly close to the ”Frobenius
cosine” of Eq. 4, and allows prenormalization of
representations: First by applying the cyclic prop-
erty of trace, and then moving normalizations to
be computed first, we have

hW(CA, CB) =
Tr
(
CT
A CB

)1/2
[TrCA]1/2 [TrCB]1/2

= Tr

([
CA

TrCA

]T [ CB

TrCB

])1/2

.

The difference to our similarity defined in Eq. 4
is only in the order of the outer square root and
trace operators. If one denotes the eigenvalues of
the suitably normalized matrix CACB by η2i , the
Wasserstein cosine is equal to

∑
i ηi, while the

Frobenius cosine equals to (
∑

i η
2
i )1/2. The latter

obviously gives more weight to ”high-variance co-
variation” of CA and CB , that is, for larger eigen-
values. When only one eigenvalue is non-zero, the
cosines are equal.

Matrix square root in the Wasserstein cosine,
however, seems to require matrix diagonalization
for every document comparison, which would be
of computational complexity O(d3).

So although deriving anything equivalent to
Frobenius cosine by starting from the Wasserstein
metrics seems hard, similarities may be worth
further investigation, either empirical or theoreti-
cal. An empirical comparison, presented in Fig-
ure 2, suggests that in practice the two cosines are
quite closely related. Experiments later in the pa-
per indicate better practical performance from the
Frobenius cosine, in some applications. Frobenius
cosine is notably faster to compute in practice, as
shown in the next section.

2Or actually they have two separately normalized terms,
one for means as ordinary cosine, and one for quadratics. We
test the two-term version of our Frobenius product briefly in
the experimental section and find that the mean term does
not help performance there. The supplementary material of
Muzellec and Cuturi (2018) easily leads to a similar conclu-
sion with the Wasserstein cosine.

Figure 2: For our document collection of Finnish news
articles and their comments, the Frobenius and Wasser-
stein cosines are closely related with correlation coeffi-
cient r = 0.95.

5 Computation and low-rank
approximation

The Frobenius cosine of Eq. 4 can be computed by
using word matricesA (of size n×d) as document
representations. Comparing these by pairwise vec-
tor inner products (Eq. 2) would have computa-
tionally cost of O(nAnBd) — efficient for short
word lists but not when lengths n approach or ex-
ceed d.

On the other hand, one can follow in the foot-
steps of Torki (2018) and represent documents as
covariance-like inner products ATA, which are of
dimensionality d(d + 1)/2. Torki (2018) named
this method as DoCoV descriptor. In this case,
the Frobenius complexity would then be O(d2),
which for long documents is cheaper than a pair-
wise comparison of word lists, but still expen-
sive compared to inner products of mean vectors,
O(d).

Key to low-order approximations is to note that
the rows of the word listsA etc. do not need to rep-
resent words: Instead, any vectors Â would give
the same Frobenius product (and cosine) as long
as the covariances are preserved, that is, ÂT Â =
ATA. If Â is just an approximation of A, of, say,
dimensionality k × d and of similar size for all
documents, the pairwise Frobenius computation
(Eq. 2) would be of complexity O(k2d).

Our approximation and computation strategy is
therefore to replace A with a suitable approxima-
tion Â, and compute the Frobenius inner product
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without ever realizing the covariance matrices, by

Â ∗ B̂ =

(∑
kl

(Â)Tk·(B̂)l·

)1/2

. (7)

For prenormalized approximations (Eq. 5), this is
directly the desired similarity h2 (as in Eq. 4).

We cannot optimize for approximation errors of
pairwise Frobenius cosines, so we choose to opti-
mize representations so that A ∗A = Tr(ATA) is
well preserved. Remembering that, for a symmet-
ric matrix, trace is the sum of its eigenvalues, we
may specifically choose a decomposition HTH of
ATA such that dropping rows from H minimizes
the approximation error in Tr(ATA). The optimal
H consists of the eigenvectors of ATA multiplied
by square roots of their eigenvalues:

ATA = UTΛ
1
2 Λ

1
2U = (UΛ

1
2 )T (UΛ

1
2 ) ≡ HTH .

Now Tr(ATA) =
∑

i λi, where λ are the diag-
onal of Λ, the eigenvalues. All eigenvalues of a
positive semidefinite matrix are non-negative, so
trace is best approximated with a Ĥ that contains
the eigenvectors associated to largest eigenvalues
(the square roots of the eigenvalues multiplied in):

Â = Ĥ =


√
λ1u1√
λ2u2
. . .√
λ3uk

 ∈ Rk×d . (8)

Let the SVD of the word list matrix be A =
UΛ′V T . Then ATA = V Λ′UTUΛ′V T =
V Λ′2V T , the last form being the eigenvalue de-
composition ofATA. So the approximation Ĥ can
be obtained directly from the SVD of the word list
A, without computing the covariance matrix. This
is relatively cheap for small ranks k, and can be
scaled up for documents with very large n with
stochastic methods (Halko et al., 2011). The com-
plexity depends on the SVD algorithm chosen.

Note that analogously to the original word lists,
the above approximation is applicable to centered
word lists A0, and the normalized counterparts
A′ and A′0, as long as normalization of represen-
tations is done after approximation (to preserve
h2(Â′, Â′) = 1).

The Frobenius cosine can, therefore, be ef-
ficiently computed with Eq. 7 of complexity
O(k2d), if the documents are approximated by the
first k principal vectors of the word list SVD. Sav-
ings, compared to full covariances, are of order
k/d for space, and k2/d for document comparison
times.

6 Method summary

The pre-computation process for online compari-
son document comparison or search is as follows:

1. Choose suitable word embeddings for the
corpus, defining factors being language and
the domain.

2. Collect word vectors of each document into
matrix A, as in Eq. 1.

3. Choose a rank k, typically 2–20. Compute
the k-rank (SVD left side) approximation Â0

of centered documents like in Eq. 8. Prenor-
malize (Eq. 5) and store Â′0.

4. Compare documents by Â′0 ∗ B̂′0, using the
pairwise dot products as in Eq. 7 for compu-
tation.3

Representations for new, upcoming documents re-
peat steps 2–3. (There is no global model to update
or refer to.)

7 Experiments

To validate the proposed representations and the
similarity h2, we conducted two separate exper-
iments and one demonstration. In the first one,
proposed methods are compared to state-of-the-
art sentence embedding models on the tasks of
Facebook’s SentEval library (Conneau and Kiela,
2018). The other experiment and the demonstra-
tion apply the techniques to news articles and their
comments on three Finnish media sites. For the
latter experiment, 88,986 articles with comments
were gathered from the associated websites.

For English we use fastText (Mikolov et al.,
2018) embeddings with d = 300, but note that
similar results were achieved also with GloVe
(Pennington et al., 2014) and Word2Vec (Mikolov
et al., 2013). For Finnish, we use word2vec em-
beddings, provided by the Turku NLP group4,
since fastText does not provide adequate embed-
dings for Finnish.

3With rank k = 1, the similarity h2 is equal to square
of the cosine between directions of principal variation. The
principal vectors have no well-defined polarity, so taking a
square or absolute value of the cosine is important.

4Older version of the fin-word2vec.bin embeddings with
dimension 300, linked from http://bionlp.utu.fi/
finnish-internet-parsebank.html.

http://bionlp.utu.fi/finnish-internet-parsebank.html
http://bionlp.utu.fi/finnish-internet-parsebank.html
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7.1 Textual similarity tasks
As an initial experiment on the quality of the
second-order representations, we evaluated them
with the standard unsupervised similarity tasks
(STS12 - STS16) using SentEval library by Face-
book (Conneau and Kiela, 2018).

We compare a few different low-rank approx-
imations using our proposed method against the
state-of-the-art unsupervised and semi-supervised
methods in Table 1. We see that already at k = 10,
the approximation reaches close to the accuracy of
the full rank, within this dataset, while decreas-
ing the size of representations significantly (here
300× 10 vs. 300× 300). It surpasses most of the
other unsupervised methods and compares well
with the semi-supervised methods. Interestingly,
already the rank-1 approximation is better than the
classical mean vector approach (Glove Avg in Ta-
ble 1), while having the same computational com-
plexity.

Our low-rank estimation is on par with the re-
lated unsupervised method, DoCoV, and the only
model reaching clearly higher scores is the P-SIF
+ PSL by Gupta et al. (2019), which uses compu-
tationally relatively heavy reweighting.

Figure 3 demonstrates the validity of the low-
rank approximation, by plotting the STS evalua-
tion scores against the rank k of the approxima-
tion. The results are as expected: Using more
components retains more information, and k ≈
5 . . . 10 is roughly enough for all tasks. Contrary
to the experiment of the next section, using too
large k does not hurt performance (except nomi-
nally in some cases).5

7.2 Comments vs. article
Many news sites contain a comment section asso-
ciated with articles. It can be useful to compare
articles to the comments, for example for modera-
tion: If the discussion drifts too far from the origi-
nal topic, human attention may be needed. In this
experiment, we tried to find real article–comment
pairs from a set in which half of the pairs were
fake, as a proxy for the moderation task. It tests
the semantic resolution of the similarity measures
and has the convenience of known ground truth.

We crawled articles and their comment sections
from three Finnish news sources: Yle (national

5This may be because of the relative shortness of sen-
tences here, vs. documents in the other experiment. The
short sentences cannot even span a high-dimensional repre-
sentation.

Figure 3: STS scores vs. rank k of the covariance
approximation. Performance on these sentence tasks
mostly saturates at k = 5 . . . 25.

broadcasting company), Uusi Suomi (news and
blogging platform), and Iltalehti (a tabloid). Com-
ments were concatenated to a single document
(per article), retaining all article–comment pairs
with at least 100 words on both sides. This gave
16,263, 18,548, and 9,682 pairs for Iltalehti, Uusi
Suomi and Yle, respectively. The pairs were con-
catenated to sets of fake pairs of equal size, ob-
tained by permuting the real pairs. We then rank
the pairs according to decreasing similarity, and
consider real pairs positive instances for retrieval
measures. Figure 4 shows the ROC-like curves
for our proposed h2 of Eq. 7 (with rank k = 4),
and two baselines based on document means, one
computed directly from the word vectors and one
after SIF weighting. The proposed method per-
forms clearly better than average-based methods
for all news sources, demonstrating the benefits of
including second moments. It also outperforms
the Wasserstein cosine hW while having a clear
advantage also in computation speed, and center-
ing improves the results.

To see the effect of the rank, we ran the same
test for various values of k and evaluated the re-
call at the selected value of precision (5% of fake
pairs retrieved). All ranks k > 0 outperform the
baseline of mean-vector cosine (horizontal line),
except for Uusi Suomi at k = 1 (Figure 5). A bit
unexpectedly, optimum is already at low values of
k, which is nice from the computational perspec-
tive and suggests a regularization effect from SVD
maybe worth of further study.

Finally, we wanted to see if adding a conven-
tional mean term to the similarity computed with
centralized second-order terms only helps with
resolution, and ran the tests with various values
of the weight α for the second-order term. One
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Unsupervised Semi-supervised Ours
Glove Glove P-SIF PSL Glove PSL Frob. Frob. Frob.

Task ST Avg tf-idf DoCoV PSL Avg WR WR k = 1 k = 10 k = 300

STS12 30.8 52.5 58.7 56.4 65.7 52.8 56.2 59.5 54.1 59.4 59.7
STS13 24.8 42.3 52.1 62.1 64.0 46.4 56.6 61.8 56.0 62.1 62.1
STS14 31.4 54.2 63.8 70.3 74.8 59.5 68.5 73.5 59.4 69.3 69.4
STS15 31.0 52.7 60.6 76.2 77.3 60.0 71.7 76.3 64.0 74.5 74.6
STS16 51.4 47.2 51.1 73.0 73.7 63.3 72.4 72.5 58.5 70.3 70.3

Table 1: Our method vs. other unsupervised and semi-supervised methods (from Gupta et al., 2019) on semantic
textual similarity (STS) tasks, evaluated as Pearson correlations to human ground truth. ST stands for skip-thought
vectors (Kiros et al., 2015), WR for SIF weighting combined with common component removal (Arora et al.,
2016), and PSL for PARAGRAM-SL999 word vectors (Wieting et al., 2015a).

Figure 4: Fake vs. real pairs retrieved (ROC curves), in the article–comment matching tasks, for the three news
sources, and for different matching methods. Cosine of mean vectors with original word2vec weights (blue; solid)
and SIF weights (blue; dotted) perform practically identically. Quadratic approaches are all better, in general
Frobenius (red) outperforming Wasserstein (green), and centered covariances (solid) outperforming non-centered
ones (dotted). More fine-grained evaluations over k and mean-vector cosine mixing (Fig. 5 and 6) are run for 5%
of the fake pairs retrieved (at the middle of x-axis).

source (Uusi Suomi) peaks around α = 0.5,
but for other sources, the performance increases
monotonically with the weight of h2. Apparently,
mean vector is at least sometimes redundant if just
low-rank second-order information is available.6

7.3 Media segmentation

Finally, the classic task of scoring documents for
sentiment or topic by a word list is amenable to
the application of the Frobenius similarity h2. The
target word list is usually just an unordered collec-
tion of words, although it may be weighted. Ex-
tensive sets of word lists are curated, for exam-
ple, by LIWC. Likely, the semantics of such a list
would sometimes be better operationalized by the

6The appendix of (Muzellec and Cuturi, 2018) gives sim-
ilar impression for Wasserstein cosine: The performance is
relatively flat over wide range of α and sometimes seems to
increase monotonically.

suggested quadratic representation rather than by
the list itself or its vectorized mean (with respect
to an embedding).

As an example, we just present a single finding
in Figure 7. The moral content of the comment
chains of online news articles seems to vary by
source, and climate change as a topic has differ-
ing effects, depending on the platform. The moral
word lists were manually augmented and trans-
lated from the lists available from the developers
of the Moral Foundations Theory (MFT)7.

8 Conclusions

As already demonstrated by Torki (2018) and
Nikolentzos et al. (2017), taking second mo-
ments of word vectors into document represen-

7https://www.moralfoundations.org/
othermaterials

https://www.moralfoundations.org/othermaterials
https://www.moralfoundations.org/othermaterials


642

Figure 5: Frobenius recall of the article–comment
matching task (proportion of real pairs retrieved when
5% of fake pairs are retrieved), as a function of rank
k. For all news sources, performance saturates at rather
low orders, k = 2 . . . 10. Horizontal lines indicate re-
call with cosine of mean word vectors, which ignores
second moments of the document.

Figure 6: A recall measure on the article–comment
matching task (proportion of real pairs retrieved when
5% of fake pairs are retrieved), when matching is
with a mixture cos +αh2 of ordinary cosine of means
and centered Frobenius similarity (with rank k = 3).
Adding mean information (smaller α) generally de-
grades performance except for one news source (Uusi
Suomi) which peaks at α ≈ 0.5.

tations improves document matching. Surpris-
ingly, the often-used mean vector seems to then
become about irrelevant, a finding that needs to
be replicated with other embeddings and larger
experiments. There may exist efficient, ICA-like
schemes relying on even higher moments to opti-
mize the representations.

The second-order representations, and an asso-
ciated similarity measure equivalent to the Frobe-
nius inner product, can be derived by extending
the Euclidean inner product into sets of words in a
natural, pairwise manner. Empirically, the Frobe-
nius similarity closely approximates Wasserstein
similarity, familiar from transport theory, but al-

Figure 7: Moral sentiment of text, in the sense of the
Moral Foundation Theory (Graham et al., 2013), has
been measured by counting words appearing on a cu-
rated list (Garten et al., 2016). Moral word lists can
also be related to documents with our h2. On a blog-
ging platform (Uusi Suomi), climate change as a promi-
nent topic does not always rise moral comments at all
(comments are probably technical). Points represent
single article–comment pairs for articles of high topi-
cality. Left: fairness, negative polarity; right: fairness,
positive polarity.

lows efficient low-rank approximations of other-
wise high-dimensional representations. The rela-
tionships of the two similarities may be worth fur-
ther investigation, both theoretical and empirical.

Low-rank approximations are not only compu-
tationally useful, but also may sometimes have
a regularizing effect that improves matching.
Like mean vectors, second-order representations
are useful as an alternative to traditional word-
occurrence scoring, on quantifying sentiment and
topicality of documents. Our experiments also
show that rank-1 approximations are better rep-
resentations of the documents than the mean vec-
tors, while having the same representation size and
computational complexity. There is an interesting
contrast to the SIF preprocessing, where one step
is to remove the corpus-wide largest component of
variance to enhance the performance. While these
two results are not contradictory, the combination
is somewhat counter-intuitive.

Compared to other embedding methods, our ap-
proach requires only low precomputation effort
and is local to document. The locality allows on-
line processing that would be hard to implement
with methods requiring preprocessing the corpus.
If the online property is not needed, second-order
representations are compatible with smart weight-
ing schemes like SIF (Arora et al., 2016) or P-SIF
(Gupta et al., 2019), and also with corpus-wide
preprocessing schemes like projections and scal-
ings.
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