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Abstract
This paper focuses on how to extract multiple
relational facts from unstructured text. Neu-
ral encoder-decoder models have provided a
viable new approach for jointly extracting re-
lations and entity pairs. However, these mod-
els either fail to deal with entity overlapping
among relational facts, or neglect to produce
the whole entity pairs. In this work, we pro-
pose a novel architecture that augments the en-
coder and decoder in two elegant ways. First,
we apply a binary CNN classifier for each re-
lation, which identifies all possible relations
maintained in the text, while retaining the tar-
get relation representation to aid entity pair
recognition. Second, we perform a multi-
head attention over the text and a triplet at-
tention with the target relation interacting with
every token of the text to precisely produce
all possible entity pairs in a sequential man-
ner. Experiments on three benchmark datasets
show that our proposed method successfully
addresses the multiple relations and multiple
entity pairs even with complex overlapping
and significantly outperforms the state-of-the-
art methods. All source code and documen-
tations are available at https://github.
com/chenjiayu1502/MrMep.

1 Introduction

Extracting relational facts from unstructured text
is a significant step in building large-scale knowl-
edge graphs. A relational fact is typically repre-
sented as a triplet <h, r, t> where h represents
a head entity, t represents a tail entity, and r is a
relation that connects h to t.

A number of neural models for extracting
relational facts have been developed in recent
years, and the most successful models all have
one thing in common: they extract both rela-
tion and its corresponding entity pairs in a man-
ner of joint learning (Zheng et al., 2017; Zeng

et al., 2018; Takanobu et al., 2019). However,
jointly extracting relation and entity pairs is far
from a trivial task due that there might exist
more than one relation within the text, while
each target relation might correspond to more
than one entity pair. A more challenging aspect
of this problem is that there might exist com-
plex overlapping among different triplets. As ex-
emplified in Figure 1, the entity “Indonesia”
overlaps in all triplets within the text, while
<Indonesia, leaderName, Jusuf Kalla> and
<Indonesia, leaderName, Joko Widodo>
have the same relation type “leaderName”,
<Bakso, region, Indonesia> and <Bakso,
country, Indonesia> share the same head and
tail entities.

A well-defined relational fact extraction task
aims to detect all possible relation types in the text,
and extract all candidate entity pairs for each target
relation type, while taking into account the com-
plicated overlapping among the triplets.

Zheng et al. (2017) propose a tagging mecha-
nism (referred as Tagging thereafter) to transform
the relational fact extraction into a sequence la-
beling task by injecting the information of rela-
tion type and entity position into tags. In this
paradigm, Tagging model assigns a unique label to
each word, which fails to extract triplets with over-
lapped entities or even overlapped entity pairs.

Zeng et al. (2018) model the triplet extraction
using sequence-to-sequence learning with copy
mechanism (referred as CopyR thereafter) that is
often used in sentence generation (Gu et al., 2016;
He et al., 2017). Takanobu et al. (2019) apply a hi-
erarchical framework with reinforcement learning,
which decomposes triplet extraction into a high-
level task for relation detection and a low-level
task for entity extraction (referred as HRL there-
after). Both CopyR and HRL determine a relation
type each time and detect an entity pair for it, then
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Bakso is a food found in Indonesia where the capital is Jakarta and the leaders are Jusuf Kalla and Joko Widodo .

region capital

country learderName

Figure 1: An example of multiple triplets. Entities are underlined, the relation types between entity pairs are
connected by colored lines marked with relation types.

repeat the process to extract all triplets. However,
to extract multiple entity pairs for a relation type,
both CopyR and HRL have to repeatedly predict
the relation type in multiple passes, which is com-
putationally inefficient.

In this work, we propose, with simplicity and
effectiveness in mind, a novel approach for jointly
extracting Multiple Relations and Multiple Entity
Pairs (MrMep). MrMep utilizes a triplet atten-
tion to exploit connections between relation and its
corresponding entity pairs. It first predicts all pos-
sible relations, then for each target relation, it uses
a variant of the pointer network (Vinyals et al.,
2015) to generate boundaries (START/END posi-
tions) of all head and tail entities in a sequential
manner, whereby the model generates all possible
entity pairs as answers. In this way, for each can-
didate relation type, relation detection only needs
to be performed one time, and then all possible
entity pairs can be extracted for it, avoiding the
repeated process of relation identification that is
adopted in both CopyR and HRL. Moreover, we
approach entity overlapping problems by a variant
of the pointer network. It can sequentially gener-
ate entity boundaries in arbitrary position within
the text. Therefore, it allows entities freely to par-
ticipate in different triplets.

Our contributions can be summarized as fol-
lows:

• We propose MrMep, a novel neural method
which firstly extracts all possible relations
and then extracts all possible entity pairs for
each target relation, while the two procedures
are packed together into a joint model and are
trained in a joint manner.

• MrMep uses a triplet attention to strengthen
the connections among relation and entity
pairs, and is computationally efficient for
sophisticated overlapped triplets even with
lightweight network architecture.

• Through extensive experiments on three
benchmark datasets, we demonstrate

MrMep’s effectiveness over the most com-
petitive state-of-the-art approach by 7.8%,
7.0% and 9.9% improvement respectively in
F1 scores.

2 Related Work

Traditional pipelined approaches (Chan and Roth,
2011; Zelenko et al., 2003; Lin et al., 2016) sep-
arately design two subtasks of relation identifica-
tion and entity pair extraction, ignoring the con-
nection between them (Li and Ji, 2014) and suf-
fering from error propagation.

To address the above problems, several joint
models have been proposed. Early work (Li and Ji,
2014; Yu and Lam, 2010; Miwa and Sasaki, 2014)
builds the connections between relation identifi-
cation and entity recognition by designing multi-
ple ingenious features, which needs complicated
feature engineering. Recently, with the success of
deep learning on many NLP tasks, several pieces
of work (Miwa and Bansal, 2016; Gupta et al.,
2016; Zhang et al., 2017) jointly model the inter-
action between the two subtasks based on neural
networks, which they firstly apply RNN or CNN
to encode the text, then treat entity recognition as a
sequence labeling task and regard relation extrac-
tion as a multi-class classification problem. Zheng
et al. (2017) formulate joint triplet extraction prob-
lem to the task of sequence labeling, by deliber-
ately designing a tagging schema that injects in-
formation of relation type and entity position into
tags. However, due to the limitation that a word
can only be assigned a unique label in sequence
labeling task and unique relation type can be as-
signed to each entity pair in multi-class classifica-
tion problem, the above methods cannot fully ad-
dress the triplet overlapping problem.

Most recent work aims at further exploring
the overlapping triplet extraction. Zeng et al.
(2018) propose CopyR, a joint model based on
copy mechanism to convert the joint extraction
task into a triplet generation task. For simplifi-
cation, CopyR only copies the last word of the
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entity, thereafter it cannot extract the whole enti-
ties consisting of multiple words. Takanobu et al.
(2019) propose a hierarchical reinforcement learn-
ing framework that decomposes the joint extrac-
tion task into a high-level task for relation de-
tection and a low-level task for entity extraction.
However, both CopyR and HRL generate each re-
lation type along with one entity pair at each time.
In this paradigm, both of them have to perform the
same relation detection multiple times to explore
all possible entity pairs, which is computationally
inefficient and principled not graceful enough.

We propose MrMep, a novel joint extraction
framework that not only can jointly model triplet
extraction task, but also efficiently extract various
overlapped triplets. First, MrMep executes multi-
ple relation classifiers by adopting a binary clas-
sifier for each relation type. Second, MrMep per-
forms variable-length entity pair predictor. It uti-
lizes a pointer network (Vinyals et al., 2015) alike
way to generate the START/END positions for all
the candidate head and tail entities in a sequen-
tial fashion, which is tracked by an LSTM decoder
until it produces a word position beyond the text
boundary. Inspired by machine reading and com-
prehending models (Wang and Jiang, 2016; Seo
et al., 2017), we use the relation as a query, and
conduct interaction between query and text via a
triplet attention with relation peeking all possible
entity pairs. We discuss two different principled
ways to perform the above triplet attention, and
demonstrate the versatility and effectiveness of our
methods on both English and Chinese relational
fact extraction benchmarks.

The main difference between our models and
CopyR and HRL is that ours has the advantage
of learning a strategic decoder using triplet atten-
tion that can model the interaction between rela-
tion and entity pairs. By letting the decoder only
predict entity pairs, we relieve it from the burden
of having to generate relation types repeatedly.

Das et al. (2019)’s work is similar in spirit to
our work in that we both use a machine reading
comprehension framework to extract relations and
entities. But our approach differs from that of Das
et al. (2019): their work aims at extracting newest
state from procedural text which mainly describes
the entity state at different steps, while our work is
proposed for extracting multiple triplets from arbi-
trary unstructured text. Another similar approach
is introduced by Roth et al. (2019), which per-

forms relation argument extraction given a query
entity and relation, essentially not for joint triplet
extraction.

3 The Approach

3.1 Overview
For relational fact extraction task, the input is a
text paragraph with n words S = [w1, ..., wn].
Let R be the set of predefined relation types. The
task is to predict all possible triplets <ei, rij , ej>
maintained in S, where ei, ej are sequences of to-
kens denoting head entity and tail entity respec-
tively, and rij ∈ R is the relation type that con-
nects ei to ej .

Figure 2 shows an overview architecture of
the proposed MrMep. It consists of three main
parts: Encoder, Multiple Relation Classifiers and
Variable-length Entity Pair Predictor. The en-
coder preprocesses the source text and extracts
the sequence-level features using a Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997), the multiple relation classifiers pre-
dict all possible relations maintained in S, and the
variable-length entity pair predictor sequentially
generates all possible entity pairs for each possi-
ble relation type.

3.2 Encoder
Given a text paragraph S = [w1, ..., wn], we first
embed it to obtain text embedding E ∈ Rn×de ,
where n is the length of words in text, de denotes
the dimension of word embedding pretrained us-
ing Glove (Pennington et al., 2014). Then an
LSTM is used to learn the token representation Xi

for each word wi:

Xi = LSTMencoder(Ei, Xi−1), (1)

where Xi−1, Xi ∈ Rd denotes word vectors for
word wi−1 and wi, yielding the text representation
matrix X = [X1, ...Xn] ∈ Rn×d.

The LSTM maps the variable length input se-
quences to a fixed-sized vector, and uses the last
hidden state Xn ∈ Rd as the representation vector
of the text.

3.3 Multiple Relation Classifiers
The relation classifier aims to identify relation
types contained in the text. Since a text may
contain multiple relations, inspired by the idea
of multi-label classification, we design M CNN
(Kim, 2014) based binary classifiers, respectively
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Figure 2: The model architecture of MrMep.

for M relation types, whose output is the proba-
bility distribution over whether the corresponding
relation is a possible relation or not.

We adopt a convolutional neural network with
the same structure as in Kim (2014). Given the text
representationX ∈ Rn×d. A convolution operator
and max-over-time pooling (Collobert et al., 2011)
operator are applied:

C = Conv(X), (2)

Q = relu(max(C)), (3)

where C ∈ Rm×(n−l+1) is the feature map output
by the convolution operator, m is the number of
different filters, n is the length of the text, l is the
convolutional filter size. Eq. (3) applies an max-
over-time pooling operator on feature map C first,
and then a relu activation is used to obtain the text
embedding Q ∈ Rm. When sliding over the text
with a window size l, different filters offer a va-
riety of l-gram compositions. Therefore, the text
embedding Q is viewed as local feature vector of
the text in our model.

In order to make better use of the features ex-
tracted by LSTM and CNN, a concatenation op-
erator is used between the last word representa-
tionXn in the encoder and text embeddingQ from
CNN to produce a fused vector H ∈ Rm+d:

H = Concat(Q,Xn). (4)

The binary classifier for j-th relation type is
shown as follows (We omit the bias b for simplifi-
cation):

Rj = HWH
j , (5)

Y j = softmax(RjW
R
j ). (6)

As in Eq. (5), a linear layer is applied to produce
the hidden layer state Rj ∈ Rd. WH

j ∈ R(m+d)×d

is a learnable weight matrix. As in Eq. (6), an-
other linear layer with a softmax activation func-
tion is used to predict the probability distribution
of whether the text contains the j-th relation type
or not, Y j ∈ R2. WR

j ∈ Rd×2 is weight param-
eter. The hidden layer state Rj is viewed as the
relation embedding for j-th relation type.

If the text contains j-th relation type, Rj will be
fed into variable-length entity pair predictor to aid
entity pair recognition.

3.4 Variable-length Entity Pair Predictor

Given a text, and a target relation type output by
the relation classifier, the variable-length entity
pair predictor aims to extract its all possible entity
pairs in a sequence manner. Inspired by the pointer
network (Vinyals et al., 2015), we determine an
entity by identifying START and END position in-
dexes of the words in the text. As shown in Figure
2, entity pairs are generated by a sequence of in-
dexes. Each two indexes can identify an entity and
each two entities form an entity pair in order. In
this paradigm, our model can explore all the pos-
sible relations in one pass and predict all possible
entity pairs for a given relation via a lightweight
sequence decoder, unlike previous work which has
to predict the target relation in a multi-pass way
(Zeng et al., 2018; Takanobu et al., 2019).

Multi-head Attention. We apply a multi-head
attention (Vaswani et al., 2017) on X to obtain a
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new text representation P :

Q = XWQ
j ,K = XWK

j , V = XW V
j , (7)

headj = softmax(
QKT

√
dk

)V, (8)

P = Concat(head1, ...headh)W
O, (9)

where different linear layers are used in Eq. (7) to
map X into different subspaces by learnable pa-
rameters WQ

j , WK
j ∈ Rd×dk , and W V

j ∈ Rd×dv ,
yielding query Q ∈ Rn×dk , keys K ∈ Rn×dk and
values V ∈ Rn×dv . By Scaled Dot-Product At-
tention (Vaswani et al., 2017), headj ∈ Rn×dv
is obtained as the representation of j-th head. A
concatenation operator and a linear layer are used
in Eq. (9) to produce text representation P ∈
Rn×d, where h is the number of heads and WO ∈
Rhdv×d is learnable parameter.

Triplet Attention. At each position of the text,
attention mechanism is used to obtain a weighted
value that represents the matching degree between
the token and the target relation type. Since its
aim is to extract the candidate entity pair for the
target relation, we call this attention the triplet at-
tention. The triplet attention essentially aggregates
the matching of the relation type to each token of
the text and used the aggregated matching result to
make the entity prediction.

Assume the j-th relation is the target relation
identified by the relation classifier in Section 3.3.
To get the final attention of j-th relation to i-th
token, we study two different modes to implement
the triplet attention: paralleled mode and layered
mode.

Paralleled Mode. The so-called paralleled
mode draws the connections among the target re-
lation, the token, and previous hidden state in a
synchronous way:

ait =W atanh(W r ◦Rj +W d ◦ dt−1+W
p ◦Pi),

(10)
where ◦ is the element-wise multiplication opera-
tor. Rj ∈ Rd is j-th relation embedding, Pi ∈ Rd
is i-th word of text representation P , dt−1 ∈ Rd is
hidden state of LSTM decoder at time step t − 1
which obtained by Eq. (13). W r, W d, W p, and
W a ∈ Rd are learnable parameters. ait ∈ R is
attention weight of i-th word in the text.

The attention distribution on text αt ∈ Rn is
computed as follows:

αt = softmax(at), (11)

where αt = [α1
t , ...α

n
t ], n denotes the text length.

It is worthy to note that, αit is used as the proba-
bility that position index i is selected as output at
time step t. At time step t, the position index with
the highest probability in αt is greedily sampled
as the output Ot.

Once the attention weights are computed, the
context vector ct is computed by:

ct =
n∑
i=1

αit · Pi. (12)

Then ct together with dt−1 are fed into LSTM de-
coder at time step t:

dt = LSTMdecoder(ct, dt−1). (13)

Therefore, the LSTM decoder is capable of
tracking the state of the variable-length entity pair
predictor.

Layered Mode. The layered mode first com-
putes the connection between Rj and dt−1:

βt = tanh(W r′ ◦Rj +W d′ ◦ dt−1), (14)

where W β , W p′ , and W a′ ∈ Rd are learnable pa-
rameters.

Then vector βt is used to calculate triplet atten-
tion:

ati =W a′tanh(W β ◦ βt +W p′ ◦ Pi), (15)

where W β , W p′ ∈ Rd are learnable parameters.
The following procedure is conducted as the same
denoted in Eq. (11)-(13).

3.5 Training
We adopt the cross-entropy loss function to de-
fine the loss of multiple relation classifiers and
variable-length entity pair predictor respectively,
which denoted as Lrel and Lent.

To jointly train the model, the loss L is obtained
by:

L = λ · Lrel + (1− λ) · Lent, (16)

where λ ∈ R is a hyperparameter to balance the
multiple relation classifiers and the variable-length
entity pair predictor.

4 Experiments

4.1 Dataset
In order to test our proposed recipe for jointly
extracting multiple relations and multiple entity
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Dataset NYT WebNLG SKE
Language English English Chinese
Relation 24 246 50
Triplets 104,518 12,863 111,539
Token 90,760 5,051 170,206

Table 1: Statistics of three datasets in language, number
of relation types, triplet number and token numbers.

pairs, we conducted experiments on two English
benchmark datasets: New York Times (NYT) and
WebNLG, and a Chinese public dataset Schema
based Knowledge Extraction (SKE).

NYT is produced by distant supervision method
(Riedel et al., 2010) and widely used in the triplet
extraction (Zheng et al., 2017; Zeng et al., 2018).
There are 24 relation types, 61,265 train texts and
5,000 test texts in NYT dataset. We randomly se-
lect 5,000 texts from train data as the development
set.

WebNLG dataset (Gardent et al., 2017), is origi-
nally a dataset for natural language generation task
and later used for triplet extraction (Zeng et al.,
2018). There are 246 relation types, 5,321 train
texts and 695 test texts. We randomly select 500
from train data as the development set.

Different from the two previous English
datasets, SKE is a Chinese dataset for information
extraction, which is released in the 2019 Language
and Intelligence Challenge1. SKE contains 50 re-
lation types and training texts exceed 200,000. We
build our training set, development set, and test
set by randomly selecting 50,000, 5,000 and 5,000
texts respectively.

Following the work of Zeng et al. (2018), we
prepropose the three datasets as follows: (1) re-
move texts that contain no triplets at all; (2) filter
out texts if there is an entity in the triplet that is
not found in the text.

As shown in Table 1, SKE has a richest vo-
cabulary (170,206 tokens), while WebNLG has a
smallest vocabulary (5,051 tokens). In contrast to
NYT and SKE which has a medium body of re-
lations (24 and 50, respectively), WebNLG has a
significantly big body of relations (246 relations).

4.2 Baseline and Evaluation Metrics

To evaluate our method, we compared against one
baseline model and three state-of-the-art models.

1http://lic2019.ccf.org.cn/kg

Hyperparameter value
dropout rate 0.5
learning rate 0.001
batch size 50
hidden size of LSTM 100
filter number of CNN 100
window size of CNN 3
head number 4
λ 0.3

Table 2: Hyperparameter setting.

Baseline: In our proposed baseline model, we
design similar architecture with MrMep, in which
the encoder and multiple relation classifiers are
the same with MrMep, but we use Match-LSTM
(Wang and Jiang, 2016) as an implementation of
variable-length entity pair predictor. The three
main layers of Match-LSTM in our baseline model
are as follows: (1) LSTM Preprocessing Layer:
we use output of the encoder as passage repre-
sentation and relation embedding of multiple re-
lation classifiers as the query representation; (2)
Match-LSTM Layer: we make concatenation of
query representation and each token embedding of
passage representation to obtain query-aware to-
ken representation, and then fed it into a Bi-LSTM
layer; (3) Answer Pointer Layer: this layer is same
with Match-LSTM (Wang and Jiang, 2016) and
we adopt the sequence model to produce entity
pairs.

Tagging (Zheng et al., 2017): This model is a
sequence labeling model which assigns to each to-
ken a unique tag denoting the information of re-
lation, head or tail entity, even if that the token
participates in two different triplets.

CopyR (Zeng et al., 2018): This model is a
seq2seq model utilizing copy mechanism that gen-
erating a triplet by jointly copying a relation from
relation set and copying an entity pair from the
source texts in a sequential manner.

HRL (Takanobu et al., 2019): This model ap-
plies a hierarchical reinforcement learning frame-
work that decomposes the task into a high-level
task for relation detection and a low-level task
for entity extraction, which is jointly optimized
through a reinforcement learning paradigm.

Following (Zheng et al., 2017; Zeng et al., 2018;
Takanobu et al., 2019), we use the standard micro
Precision, Recall and F1 score to evaluate the re-
sults. Triplets are regarded as correct when the
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Model NYT WebNLG SKE
Prec Rec F1 Prec Rec F1 Prec Rec F1

Tagging 0.526 0.336 0.410 0.476 0.186 0.267 0.347 0.158 0.220
CopyR 0.602 0.556 0.578 0.381 0.369 0.375 0.402 0.362 0.380
HRL 0.741 0.651 0.693 0.695 0.629 0.660 0.582 0.422 0.489

Baseline 0.743 0.730 0.736 0.641 0.744 0.689 0.607 0.560 0.583
MrMep (para) 0.769 0.730 0.747 0.695 0.759 0.725 0.589 0.543 0.565
MrMep (layer) 0.779 0.766 0.771 0.694 0.770 0.730 0.611 0.567 0.588

Table 3: Results of different models in three datasets. MrMep (para) denotes that we adopt paralleled mode of
triplet attention in variable-length entity pair predictor. MrMep (layer) denotes the layered mode.

Model NYT10 NYT11 NYT10-sub NYT11-plus
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Tagging 0.593 0.381 0.464 0.469 0.489 0.479 0.256 0.237 0.246 0.292 0.220 0.250
CopyR 0.569 0.452 0.504 0.347 0.534 0.421 0.392 0.263 0.315 0.329 0.224 0.264
HRL 0.714 0.586 0.644 0.538 0.538 0.538 0.815 0.475 0.600 0.441 0.321 0.372

MrMep 0.717 0.635 0.673 0.434 0.522 0.474 0.832 0.550 0.662 0.512 0.327 0.399

Table 4: Detailed results of different models in datasets used in HRL (Takanobu et al., 2019). NYT10-sub is
selected from NYT10 test set (original version), NYT11-plus is splitted from NYT-11 train set (manually created
version). NYT10-sub and NYT11-plus contains a variety of overlapping triplets.

relation type and entity pair are both correct.

4.3 Implementation Details

We evaluate two variants of our approach: Mr-
Pep (para) using paralleled mode for triplet atten-
tion and MrMep (layer) using layered mode. For
both variants, all hyperparameters are tuned on the
same validation set. The hyperparameter setting is
shown in Table 2. The word embedding are ini-
tialized using Glove (Pennington et al., 2014) and
are updated during training, and the dimension is
set to 100. The cell unit number of LSTM encoder
and decoder is set to 100. The filter number used
in CNN classifier is 100, filter window is 3, and
the following dense layer has a hidden layer with
100 dimensions. The learning rate is set to 0.001.
The tradeoff parameter λ in loss function is set to
0.3. The batch size is set to 50. The head num-
ber in muti-head attention is set to 4. For training,
we use Adam (Kingma and Ba, 2015) to optimize
parameters.

4.4 Main Results

Table 3 shows the Precision, Recall and F1
value of different models on the three datasets.
When compared to Tagging and CopyR, the pro-
posed model MrMep substantially improves the
F1 scores in three datasets. Both the MrMep (para)
and MrMep (layer) outperform the most compet-

itive HRL model in three F1 scores. Moreover,
compared with HRL, both the baseline model and
our proposed models achieve a significant increase
in Recall. Specifically, MrMep (layer) achieves
11.5% improvement in NYT, 14.1% improvement
in WebNLG, and 14.5% improvement in SKE in
Recall value. Our hypothesis is that the state-of-
the-art models such as CopyR and HRL are seek-
ing connection between relation and entity pairs
in a sequential fashion, whereas we seek this con-
nection in an interactive manner with the relation
paying attention to the tokens one by one interac-
tively.

To draw a paralleled comparison with HRL
in more details, we compare the results on the
same data partition used in HRL: NYT10, NYT11,
NYT10-sub and NYT11-plus. The results of dif-
ferent approaches are summarized in Table 4. On
NYT10, NYT10-sub and NYT11-plus test set,
MrMep (layer) achieves the highest F1 values
when compared with three state-of-the-art mod-
els. In NYT11 test set, our model gets poorer per-
formance than HRL. But it is worthy to note that
NYT11 dataset averagely contains a triplet per text
(totally 369 texts with 370 triplets), while NYT10-
sub and NYT11-plus test set contain more over-
lapping triplets. These observations suggest that
our model is essentially feasible to extract more
complicated triplets.
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Figure 3: Detailed results on different test subsets. The ordinate of the coordinate axis represents the F1 value.

Model NYT WebNLG SKE
MrMep 0.771 0.730 0.588
w/o CNN 0.745 0.724 0.530
w/o Multi-head 0.723 0.616 0.512

Table 5: An ablation study for MrMep (layer) model.
All values are F1 scores.

4.5 Detailed Results

To further verify the ability of MrMep in handling
the various complex triplets, we conduct a series
of qualitative analysis from two distinct views:

Single triplet vs Multiple triplets. According
to the number of triplets contained in the text, we
divide the NYT test set into two sub-datasets: (1)
single triplet test set: each text contains only one
triplet, and 3,240 texts are in the set; (2) multi
triplet test set: each text contains two or more
triplets, and 1,760 texts are in the set.

Relation overlap vs entity pair overlap. Ac-
cording to whether an overlap is relation overlap
or entity pair overlap, we obtain two subsets from
the test set: (1) relation overlap: one relation con-
nects with two or more different entity pairs (462
texts in NYT test set); (2) entity pair overlap: one
entity pair connects with two or more relations
(969 texts in NYT test set).

Figure 3 (a) shows the F1 values of different ap-
proaches on NYT test data with single triplet and
multiple triplets. It can be seen that both MrMep
(para) and MrMep (layer) outperform the baseline
and the three comparative models. Noticeably,
the improvements on multiple triplets are more re-
markable.

From Figure 3 (b) we can observe that MrMep
(layer) outperforms MrMep (para) and both of

them outperform the reference models. It is also
interesting to notice that predicting relation over-
laps is more challenging than predicting entity pair
overlaps.

The baseline model adopts Match-LSTM
(Wang and Jiang, 2016) as an implement of en-
tity pair predictor, which sequentially aggregates
the matching of the attention-weighted query to
each token of the text. Although we could treat
the relation as a query, the relation is essentially a
tag with much simpler semantics than that of ac-
tual queries. Therefore, we design a lightweight
MrMep model which is proven to be more elegant
and powerful for entity pair extraction.

4.6 Ablation Study

We examine the contributions of two main com-
ponents, namely, convolutional neural network
(CNN) in multiple relation classifiers and multi-
head attention in entity pair predictor, using the
best-performing MrMep model with layered mode
on three dataset. First, instead of using repre-
sentations learnt by CNN, we use the last hidden
state of the LSTM encoder as text presentation,
then feed it directly to the multiple binary classi-
fier (MrMep w/o CNN). Second, instead of apply-
ing multi-head attention, we use the hidden state at
each time step of the LSTM encoder to represent
each token, which is directly fed into the follow-
ing triplet attention to extract entity pairs (MrMep
w/o Multi-head). Table 5 shows the results. We
can observe that adding either CNN or multi-head
attention improves the performance of the model.
This suggests that both parts can assist MrMep
to jointly extract entities and relations, where the
CNN layer seems to be playing a more significant
role. One possible reason is that CNN is used for
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MrMep (layer)
(NYT): “It ’s pretty neat”, said Ward, who grew up in the
[Edmonton]Et−contains suburb of Sherwood Park, [Alberta]Eh−contains.

MrMep (para)
(NYT): “It ’s pretty neat”, said Ward, who grew up in the [Edmonton suburb
of Sherwood Park]Et−contains, [Alberta]Eh−contains.

MrMep (layer)
(WebNLG): [Bakso]Eh−country comes from [Indonesia]Et−country, and cel-
ery is a main ingredient. [Jasuf Kalla]Et−leaderName is a leader in
[Indonesia]Eh−leaderName.

MrMep (para)
(WebNLG): [Bakso]Eh−country comes from [Indoneisa]Et−country, and [cel-
ery is a main ingredient. Jasuf Kalla]Et−leaderName is a leader in
[Indonesia]Eh−leaderName.

Table 6: Extracted results from MrMep (para) and MrMep (layer). The words in a bracket represents an entity, Eh

stands for the head entity and Et stands for the tail entity. Red is marked as identifying the wrong.

extracting local feature of input text, which is not
only beneficial for relation extraction but also as-
sist producing better relation embedding to aid en-
tity pair predition.

4.7 Case Study
Table 6 shows two examples of extracted results
from MrMep (para) and MrMep (layer). In the
first example, MrMep (layer) precisely extracts the
correct triplet <Alberta, contains, Edmonton>,
while MrMep (para) recognizes incorrect tail en-
tity “ Edmonton suburb of Sherwood Park”. In
the second example, MrMep (layer) precisely ex-
tracts correct triplet <Indoneisa, leaderName, Ja-
suf Kalla> while MrMep (para) wrongly recog-
nizes the tail entity “ celery is a main ingredi-
ent. Jasuf Kalla”. Taking NYT test set as exam-
ple, among 1250 differences between the output
of MrMep (para) and MrMep (layer), there are 885
differences resulting from the wrong entity bound-
aries identified by MrMep (para). The most likely
reason might be that the hidden state of the de-
coder plays as crucial role as the relation in se-
quentially producing different entity pairs.

5 Conclusion

We propose a joint multiple relation and multiple
entity pair extraction model. The model uses a
triplet attention to model the connection of rela-
tion and entities in a novel and lightweight frame-
work. It gives state-of-the-art performance on
three benchmark datasets.
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