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Abstract

Story understanding requires developing ex-
pectations of what events come next in text.
Prior knowledge – both statistical and declar-
ative – is essential in guiding such expecta-
tions. While existing semantic language mod-
els (SemLM) capture event co-occurrence in-
formation by modeling event sequences as se-
mantic frames, entities, and other semantic
units, this paper aims at augmenting them with
causal knowledge (i.e., one event is likely to
lead to another). Such knowledge is mod-
eled at the frame and entity level, and can
be obtained either statistically from text or
stated declaratively. The proposed method,
KnowSemLM1, infuses this knowledge into a
semantic LM by joint training and inference,
and is shown to be effective on both the event
cloze test and story/referent prediction tasks.

1 Introduction

Natural language understanding requires a coher-
ent understanding of a series of events or actions in
a story. In story comprehension, we need to under-
stand not only what events have appeared in text,
but also what is likely to happen next. While event
extraction has been well studied (Ji and Grishman,
2008; Huang and Riloff, 2012; Li et al., 2013;
Peng et al., 2016; Nguyen et al., 2016; Nguyen
and Grishman, 2016), the task of predicting fu-
ture events (Radinsky et al., 2012; Radinsky and
Horvitz, 2013) has received less attention.

One perspective is to utilize the co-occurrence
information between past and future events
learned from a large corpus, which has been stud-
ied in script learning works (Chambers and Ju-
rafsky, 2008; Pichotta and Mooney, 2014, 2016a;
Peng and Roth, 2016; Peng et al., 2017). However,
only considering co-occurrence information is not

1Related resources refer to https://cogcomp.
seas.upenn.edu/page/publication_view/886.

sufficient for modeling event sequences in natural
language. Human decisions on the likelihood of a
specific event depend on both local context – what
has happened earlier in text – and global context
– knowledge gained from human experience. This
paper leverages both the local and global context
information to model event sequences, and shows
that it can lead to more accurate predictions of fu-
ture events. For example, the following text snip-
pet describes a scenario of someone taking a flight:

... I checked in at the counter, took my luggage
to the security area, got cleared ten minutes in ad-
vance, and waited for my plane ...
This example consists of a series of events, i.e.,
“check in (a flight)”, “be cleared (at the secu-
rity)”, “wait for (the plane)”, etc., which humans
who have traveled by plane are very familiar with.
However, this event sequence appears infrequently
in text.2 Consequently, only relying on event co-
occurrence in text is not sufficient – there is also a
need to model some “common sense” information.

The local and global contexts in this ex-
ample are illustrated in Figure 1. The ex-
isting event sequence is “(sub)check in[flight]”,
“(sub)clear[security]” and “(sub)wait for[plane]”
(denoted by blue dots), where “sub” means
subject. Language models (LM) for statisti-
cal co-occurrences of events can capture this lo-
cal context and generate a distribution over all
possible events, e.g., “(sub)purchase[food]” and
“(sub)go to[work]”, as in the blue circle.

More importantly, global context is the knowl-
edge of event causality learned from human ex-
perience in the form of “cause-effect” event pairs
(i.e., one event leads to another). One such
pair is represented as “(sub)wait for[plane] ⇒

2The events “check in” and “be cleared” only co-occur
twice in a same document in the 20-year New York Times
corpus (1987-2007); we count with frame and entity level
abstractions (see Section 2.1 for details).

https://cogcomp.seas.upenn.edu/page/publication_view/886
https://cogcomp.seas.upenn.edu/page/publication_view/886
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Figure 1: Local and global context information when
modeling event sequences. The blue dots are events
that are already described in text. The blue circle indi-
cates local context, i.e., event sequences inferred from
a large corpus via semantic LMs; the red circle repre-
sents global context, i.e., events learned from human
experience via knowledge of event causality (which
may overlap with local context). For event represen-
tations, we abstract over the surface forms of semantic
frames and entities, where “sub” represents the shared
common subject. The proposed KnowSemLM lever-
ages both information to better predict future events.

(sub)get on[plane]”, which means that one has to
wait for a plane before getting on it (red dashed
arrow in Figure 1). Global context, as a result,
helps generate a distribution over a focused set
of expected events, as in the red circle. Note
that the causality links have directions, and one
event might lead to multiple possible events, e.g.,
one has to wait for the plane before it takes off
“(sub)wait for[plane] ⇒ [plane]take off”. Such
connections can be viewed as temporal relations.
Here, we consider causality to include tempo-
ral orderings of events which align with common
sense. More discussions are provided in Sec. 6.

Thus, we propose KnowSemLM, a knowledge
infused semantic language model. It combines
knowledge from external sources (in the form of
event causality) with the basic semantic LM (Peng
et al., 2017) trained on a given text corpus. Our
model is a generative model of events, where
each event is either generated based on a piece of
knowledge or generated from the semantic LM.
When predicting future events at inference time,
we generate two distributions over events: one
from the given knowledge, and the other from the
semantic LM. We also learn a binary variable that
selects the distribution from which we take the

next event. In this way, the proposed KnowSemLM
has the ability to generate event sequences based
on both local and global context, and better imitate
the story generation process.

This knowledge infused semantic LM operates
on abstractions over the surface form – semantic
frames and entities. We associate each semantic
unit (frames and entities) with an embedding and
construct a joint embedding space for each event.
We train KnowSemLM on a large corpus and use
the same embedding setting for events involved in
the knowledge. The event causality knowledge is
mined either statistically from the training corpus
or declaratively for constrained domains (both in
the form of event pairs). In the statistical way, we
utilize a set of discourse connectives to identify
“cause-effect” event pairs and filter them based on
their counts; if provided with event templates for
specific domains, we also manually write down
such pairs based on human experience. In both
ways, we further enrich the knowledge base by
considering transitivity among event pairs.

We evaluate KnowSemLM on two tasks – event
cloze test and story/referent predictions. In both
cases, we model text as a sequence of events
and apply trained KnowSemLM to calculate con-
ditional probabilities of future events given text
and knowledge. We show that KnowSemLM can
outperform competitive results from models with
no such knowledge. In addition, we demonstrate
the language modeling ability of KnowSemLM
through quantitative and qualitative analysis.

The main contributions can be summarized
as follows: 1) formulation of knowledge used
in story generation as event causality; 2) pro-
posal of KnowSemLM to integrate such event
causality knowledge into semantic language mod-
els; 3) demonstration of the effectiveness of
KnowSemLM via multiple benchmark tests.

The rest of the paper is organized as follows.
We define how we model events and event causal-
ity knowledge in Sec. 2, followed by the descrip-
tion of the knowledge infused KnowSemLM (Sec.
3). The training procedure of KnowSemLM is de-
tailed in Sec. 4, followed by our experimental re-
sults and analysis (Sec. 5) and related work (Sec.
6). We conclude in Sec. 7.

2 Event and Knowledge Modeling

To better understand the proposed KnowSemLM,
here we first introduce the event representation and
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event causality model used in this paper.

2.1 Event Representation
To preserve the full semantic meaning of events,
we need to consider multiple semantic aspects:
semantic frames, entities, and sentiments. We
adopt the event representation proposed in Peng
et al. (2017), which is built upon abstractions of
three basic semantic units: (disambiguated) se-
mantic frames, subjects & objects in such seman-
tic frames, and sentiments of the frame text.

In a nutshell, the event representation is a com-
bination of the above three semantic elements.

... Steven Avery committed murder. He was ar-
rested, charged and tried ...
For example, the event representations of the
above text would be (four separate events):

PER[new]-commit.01-ARG[new](NEG)
ARG[new]-arrest.01-PER[old](NEU)
ARG[new]-charge.05-PER[old](NEU)
ARG[new]-try.01-PER[old](NEG)

Here, “commit.01”, “arrest.01” and so on rep-
resent disambiguated predicates (“01” and “05”
refer to the disambiguated senses in VerbNet).
The arguments (subject and object) of a predi-
cate are denoted with NER types (“PER, LOC,
ORG, MISC”) or “ARG” if unknown, along with a
“[new/old]” label indicating if it is the first appear-
ance in the sequence. Additionally, the sentiment
of a frame is represented as positive (POS), neural
(NEU), or negative (NEG).

We formally define such an explicit and ab-
stracted event as e. Computationally, the vector
representation of an event evec is built in a joint
semantic space:

evec =Wfrf +Were +Wsrs.

During language model training, we learn frame
embeddings Wf (rf , re, rs are one-hot vectors for
each unique frame, entity and sentiment abstrac-
tion, respectively) as well as the transforming ma-
trices We and Ws.

2.2 Knowledge: Causality between Events
We model the knowledge gained from human ex-
perience as pre-determined relationship between
events. Since we are modeling event sequences,
the knowledge of one event leads to another is very
important, hence event causality. We formally de-
fine a piece of event knowledge as

ex ⇒ ey,

meaning that the outcome event ey is a possible re-
sult of the causal event ex. Note that event causal-
ity here is directional, and one event may lead to
multiple different outcomes. We group all event
knowledge pairs with the same causal event, thus
event ex can lead to a set of events:

ex ⇒ {ey1 , ey2 , ey3 , · · · , eym}.

We store all such event causality structures in a
knowledge base KBEC.

3 Knowledge Infused SemLM

With a proper modeling of events and event
causality above, this section explains the pro-
posed KnowSemLM, a method to inject causal-
ity knowledge into a semantic LM. Specifically,
KnowSemLM is based on FES-RNNLM (Frame-
Entity-Sentiment infused Recurrent Neural Net
Language Model) proposed in Peng et al. (2017).
We briefly review FES-RNNLM and describe how
KnowSemLM adds knowledge on top of it.

3.1 FES-RNNLM
To model semantic sequences and train the joint
event representations in Sec. 2.1, we build neural
language models over such sequences. Peng et al.
(2017) uses Log-Bilinear Language model (Mnih
and Hinton, 2007), but since we require the use
of event causality knowledge to be based on past
events, we choose to implement an RNN language
model (RNNLM) where the generation of future
events is only dependent on past events.

For ease of explanation, we denote a seman-
tic sequence of joint event representations as
[e1, e2, · · · , et], with et being the tth event in the
sequence. Thus, we model the conditional proba-
bility of an event et given its context as

plm(et|e1, · · · , et−1)
= softmax(Wsht + bs)

=
exp(evec

t (Wsht + bs))∑
e∈V exp(e

vec(Wsht + bs))
.

Note that the softmax operation is carried out over
the event vocabulary V , i.e., all possible events in
the language model. Moreover, the hidden layer
ht in RNN is computed as: ht = φ(evec

t Wi +
ht−1Wh + bh), where φ is the activation function.
For language model training, we learn parameters
Ws, bs, Wi, Wh, and bh, and maximize the se-
quence probability

∏k
t=1 plm(et|e1, e2, · · · , et−1).
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Figure 2: Overview of the computational workflow
for the proposed KnowSemLM. There are two key
components: 1) a knowledge selection model, which
activates the use of knowledge based on probabilisti-
cally matching causal event and produce a distribution
over outcome events via attention; 2) a sequence gen-
eration model, which takes input from both the knowl-
edge selection model and the base semantic language
model (FES-RNNLM) to generate future events via a
copying mechanism. Note that the single dots indicate
explicit event representations while three consecutive
dots stand for event vectors.

3.2 KnowSemLM

In Figure 2, we show the computational work-
flow of the proposed KnowSemLM. There are two
key components: 1) a knowledge selection model,
which activates the use of knowledge based on
probabilistically matching causal events and pro-
duces a distribution over outcome events; 2) a se-
quence generation model, which takes input from
both the knowledge selection model and the base
semantic language model (FES-RNNLM) to gen-
erate future events via a copying mechanism.3

Knowledge Selection Model
For an event in the sequence et, we first match it
with possible causal events {ex} in the knowledge
base KBEC based on the bi-focal attention of pre-
vious events. Thus, from the knowledge base, we
get a list of outcome events Vy , {ey1 , ey2 , · · · }.

Computationally, we model the conditional
probability of matching with causal event ex and
outcome event ey from knowledge base given the
context of e1, e2, · · · , et as

pkn(ex ⇒ ey|e1, e2, · · · , et)

=
exp(evec

x Waht) exp(e
vec
y Wbht)∑

e∈Vx,e′∈Vy exp(e
vecWaht) exp(e′vecWbht)

.

3The proposed computational framework of KnowSemLM
is similar to DynoNet proposed in He et al. (2017). Compared
to DynoNet, the knowledge base utilized here operates on
event level representations rather than on tokens.

Here, we use the bi-focal attention mecha-
nism (Nema et al., 2018) via attention parameters
Wa,Wb, and apply it on the hidden layer ht, which
embeds information from all previous events in the
sequence. Therefore, we produce a distribution
over the set of possible outcome events Vy.
Sequence Generation Model
The base semantic LM produces a distribution
over events from the language model vocabulary,
which represents local context, while the knowl-
edge selection model generates a set of outcome
events with a probability distribution, which rep-
resents global context of event causality knowl-
edge. The sequence generation model then com-
bines the local and global context for generat-
ing future events. Therefore, we model the con-
ditional probability of event et+1 given context
p(et+1|Context) = p(et+1|e1, e2, · · · , et,KBEC).
This overall distribution is computed via a copy-
ing mechanism (Jia and Liang, 2016), i.e., we ei-
ther generate the next event (ei) from the language
model vocabulary (V) or copy from the outcome
event set (ey) based on the following probabilities:{

p(et+1 = ei ∈ V|Context) = (1− λ)plm(ei)

p(et+1 = ey ∈ Vy|Context) = λpkn(ey).

Here, λ is a learned scaling parameter to choose
between events from LM vocabulary V and events
from event causality knowledge base KBEC.

4 Construction of KnowSemLM

4.1 Dataset and Preprocessing
Dataset: We use the New York Times (NYT) Cor-
pus4 (from year 1987 to 2007) as the training cor-
pus. It contains over 1.8M documents in total.
Preprocessing: We preprocess all training doc-
uments with Semantic Role Labeling and Part-
of-Speech tagging. We also implement the ex-
plicit discourse connective identification module
of a shallow discourse parser (Song et al., 2015).
Additionally, we utilize within-document entity
co-reference (Peng et al., 2015a) to produce co-
reference chains and get the anaphoricity informa-
tion. To obtain all annotations, we use the Illinois
NLP tools (Khashabi et al., 2018).5 Further, we
obtain event representations from text with frame,
entity and sentiment level abstractions by follow-
ing procedures described in Peng et al. (2017).

4https://catalog.ldc.upenn.edu/
LDC2008T19

5http://cogcomp.org/page/software/

https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
http://cogcomp.org/page/software/
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4.2 Knowledge Mining

Statistical Way: Part of the human knowledge
can be mined from text itself. Since discourse con-
nectives are important for relating different text
spans, we carefully select discourse connectives
which can indicate a “cause-effect” situation. For
example, “The police arrested Jack because he
killed someone.” In this sentence, readers can gain
the knowledge of “the person who kills shall be
arrested”, which can be represented as “PER[*]-
kill.01-*[*](*)⇒ *[*]-arrest.01-PER[old](*)” ac-
cording to the abstractions specified in Sec. 2.

In practice, we choose 22 “cause-effect” con-
nectives/phrases (such as “because”, “due to”, “in
order to”). We then extract all event pairs con-
nected by such connectives from the NYT train-
ing data, and abstract over their surface forms to
get the event level representations. Finally, we fil-
ter cases where the direction of the event causal-
ity pairs is unclear from a statistical standpoint.
Specifically, we calculate the ratio of counts of
one direction over another, i.e. θ =

#(ex⇒ey)
#(ey⇒ex)

.

If θ > 2, then we store ex ⇒ ey as knowledge;
while θ < 0.5, we only keep ey ⇒ ex. In the case
of 0.5 < θ < 2, we filter both event causality pairs
since we are unsure of the knowledge statistically.

After the above filtering procedures, we auto-
matically get 8,293 different pairs of event pairs
(without human efforts). According to Sec. 2, we
merge them if they have the same causal event, i.e.
ex ⇒ ey and ex ⇒ ez becomes ex ⇒ {ey, ex}.
Thus, we get a total of 2,037 causal events (trees);
and on average, each causal event has 4 possible
outcome events. Furthermore, those event pairs
of knowledge defined in this work are transitive,
e.g., if e1 ⇒ e2 and e2 ⇒ e3, then we can have
e1 ⇒ e3. Considering this transitivity, we iterate
over all pairs twice, and derive more event causal-
ity pairs, achieving a total number of 9,022.6

Declarative Way: Besides mining knowledge au-
tomatically from text corpus, we also take full
advantage of human input in some practical sit-
uations. For the InScript Corpus (Modi et al.,
2017), it specifies 10 everyday scenarios, e.g.,
“Bath”, “Flight”, “Haircut”. In each scenario,
the corpus also provides event templates and the
corresponding event template annotations for the
text. Examples of such generated event causal-

6We do not further carry out the transitivity expansion
process, since empirically the noise it introduces outweighs
the benefits it brings (see Sec. 5.4 for details).

Method Accuracy
Granroth-Wilding and Clark (2016) 49.57%
Wang et al. (2017) 55.12%
KnowSemLM w/o knowledge 39.23%
KnowSemLM w/o transit. & fine-tuning 43.56%
KnowSemLM w/o fine-tuning 45.28%
KnowSemLM 56.27%

Table 1: Accuracy results for the event cloze task.
KnowSemLM outperforms previously reported results
and we show the ablation study results for model with-
out the use of knowledge (w/o knowledge), without the
use of knowledge transitivity as described in Sec 4.2
(w/o transit.) and without fine-tuning on the dev data
(w/o fine-tuning), resepctively.

ity knowledge can be referred back to Sec. 1,
e.g., “(sub)wait for[plane]⇒ (sub)get on[plane]”.
In total, we manually generate 875 event causal-
ity pairs and group them with 121 causal events.
Here, since during the manual generation process,
we try to cover all event causality knowledge that
makes sense; we do not further apply the transitive
property and expand.

4.3 Model Training
Based on the formulation in Sec. 3, we apply
the overall sequence probability as the objective:∏k

t=1 p(et|e1, e2, · · · , et−1,KBEC).where k is the
sequence length. For the sequence generation
model, we implement the Long Short-Term Mem-
ory (LSTM) network with a layer of 64 hidden
units while the dimension of the input event vec-
tor representation is 200. Because we carry out
the same event-level abstractions as in Peng et al.
(2017), the event vocabulary is the same, with the
size of ∼4M different events.7

5 Experiments

We show that KnowSemLM can achieve better per-
formance for the event cloze test and story/referent
prediction tasks compared to models without the
use of knowledge. We also evaluate the language
modeling ability of KnowSemLM through quanti-
tative and qualitative analysis.

5.1 Application for Event Cloze Test
Task Description and Setting: We utilize the
MCNC task and dataset proposed in Granroth-
Wilding and Clark (2016) as the benchmark evalu-
ation. For each test instance, the goal is to recover
the event (defined as predicate with associated en-
tities) from an event chain given multiple choices.

7Please see Table 2 in Peng et al. (2017) for details.
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Since the event definition in this task is compat-
ible with our representation defined in Sec 2.18,
we can directly convert event chains into our se-
mantic event sequences. In this application task,
we train KnowSemLM on the NYT portion of the
Gigaword9 corpus, and also fine-tune on the de-
velopment set specified in this task10.
Application of KnowSemLM: For each test case
(i.e., an event chain inside a document), we first
construct the event level representation as de-
scribed in Sec. 2 for each event in the chain. We
then apply KnowSemLM to obtain the overall se-
quence probability by replacing the missing event
with each candidate choice. The final decision is
made by choosing the event with the highest prob-
ability. Note that the event causality knowledge
here for both training and testing is generated au-
tomatically from NYT corpus specified in Sec. 4.2
(the Statistical Way). To efficiently calculate the
sequence probability, we limit the context window
size surrounding the missing event to be 10.
Results: The accuracy results are shown in Ta-
ble 1. We compare KnowSemLM with previous
reported results on this event cloze test (Granroth-
Wilding and Clark, 2016; Wang et al., 2017).
KnowSemLM outperforms both baselines and we
further carry out the ablation study to measure the
impact of knowledge, transitivity of knowledge,
and fine-tuning. We can see that it is important
for the semantic LM to consider knowledge and
also learn the process of applying such knowledge
in event sequences, i.e., the fine-tuning step.

5.2 Application for Story Prediction

Task Description and Setting: We use the bench-
mark ROCStories dataset (Mostafazadeh et al.,
2017), and follow the test setting in Peng et al.
(2017). For each instance, we are given a
four-sentence story and the system needs to pre-
dict the correct fifth sentence from two choices;
with the incorrect ending being semantically un-
reasonable, or un-related. Instead of treating the
task as a supervised binary classification prob-
lem with a development set to tune, we evaluate
KnowSemLM in an unsupervised fashion where

8Our event representation is abstracted on a higher level.
Thus, we process the original NYT documents, where event
chains come from, for abstraction purposes; and then match
it to the event chains in the test data.

9https://catalog.ldc.upenn.edu/
LDC2011T07

10https://mark.granroth-wilding.co.uk/
papers/what_happens_next/

Baselines Accuracy
Seq2Seq 58.0%
Mostafazadeh et al. (2016) 58.5%
Seq2Seq with attention 59.1%
Model w/o Knowledge S. M.V.
FES-LM (Peng et al., 2017) 62.3% 61.6%
Knowledge Model S. M.V.
KnowSemLM 66.5% 63.1%

Table 2: Accuracy results for story cloze test in the
unsupervised setting. “S.” represents the inference
method with the single most informative feature while
“M.V.” means majority voting.

we directly evaluate on the test set. In such a
way, we can directly compare with the FES-LM
model proposed in Peng et al. (2017), which is
base model of KnowSemLM without the use of
knowledge. Similar to the training of FES-LM,
we fine tune KnowSemLM on the in-domain short
story training data, with the model trained on NYT
corpus as initialization.11

Application of KnowSemLM: For each test story,
we generate a set of conditional probability fea-
tures from KnowSemLM. We first construct the
event level representation as described in Sec. 2.
We then utilize the conditional probability of the
fifth sentence given previous context sentences
and the knowledge base KBEC as features. Here
KBEC is generated automatically from NYT cor-
pus specified in Sec. 4.2 without human efforts.
We get multiple features depending on how long
we go back in the context in terms of events. In
practice, we get at most 12 events as context since
one sentence can contain multiple events. Thus,
for each story, we generate at most 12 pairs of
conditional probability features from two given
choices. Every pair of such features can yield a
decision on which ending is more probable. Here,
we test two different inference methods: a single
most informative feature (where we go with the
decision made by the pair of features which have
the highest ratio) or majority voting based on the
decision made jointly by all feature pairs.
Results: The accuracy results are shown in Ta-
ble 2. We compare KnowSemLM with Seq2Seq
baselines (Sutskever et al., 2014) and Seq2Seq
with attention mechanism (Bahdanau et al.,
2014). We also include the DSSM system

11We iterate over the NYT corpus until it converges on the
perplexity metric for the development set, and then the model
is further trained on ROC-Stories training set for 5 epochs.

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07
https://mark.granroth-wilding.co.uk/papers/what_happens_next/
https://mark.granroth-wilding.co.uk/papers/what_happens_next/
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Method Accuracy
Base (Modi et al., 2017) 62.65%
EntityNLM (Ji et al., 2017) 74.23%
Base∗ 60.58%
Base∗ w/ FES-RNNLM 63.79%
Base∗ w/ KnowSemLM 76.15%

Table 3: Accuracy results for the referent predic-
tion task on InScript Corpus. We re-implement the
base model (Modi et al., 2017) as “Base∗”, and ap-
ply KnowSemLM to add additional features. “Base∗

w/ FES-RNNLM” is the ablation study where no event
causality knowledge is used. Even though “Base∗”
model performs not as good as the original base
model, we achieve the best performance with added
KnowSemLM features.

from Mostafazadeh et al. (2016) as the original
reported result. KnowSemLM outperforms both
baselines and the base model without the use of
knowledge, i.e., FES-LM. The best performance
achieved by KnowSemLM uses single most infor-
mative feature, with the feature being the condi-
tional probability depending on only the nearest
preceding event and event causality knowledge).

5.3 Application for Referent Prediction

Task Description and Setting: For referent pre-
diction task, we follow the setting in Modi et al.
(2017), where the system predicts the referent of
an entity (or a new entity) given the preceding
text. The task is evaluated on the InScript Cor-
pus, which contains a group of documents where
events are manually annotated according to pre-
defined event templates. Each document contains
one entity which needs to be resolved. The In-
Script Corpus can be divided into 10 situations and
is split into standard training, development, and
testing sets. We fine-tune KnowSemLM on the In-
Script Corpus training set, with the model trained
on NYT corpus as initialization.
Application of KnowSemLM: For each test case
(i.e., an entity inside a document), each can-
didate choice will be represented as a differ-
ent event representation. Note that the event
representation here comes from the event tem-
plates defined in the InScript Corpus. In the
meantime, we can extract the event sequence
from the preceding context. Thus, we can ap-
ply KnowSemLM to compute the conditional prob-
ability of the candidate event et+1 given the
event sequence and the event causality knowl-

Perplexity
FES-RNNLM 121.8
KnowSemLM w/o transitivity 120.7
KnowSemLM 120.4
Narrative Cloze Test (Recall@30)
FES-RNNLM 47.9
KnowSemLM w/o transitivity 49.3
KnowSemLM 49.6

Table 4: Results for perplexity and narrative cloze
test. Both studies are conducted on the NYT hold-
out data. “FES-RNNLM” represents the semantic LM
without the use of knowledge. The numbers show that
KnowSemLM has lower perplexity and higher recall on
narrative cloze test, which demonstrates the contribu-
tion of the infused knowledge.

Match/Event Activation/Event λ
NYT 0.13 0.03 0.36
InScript 0.82 0.28 0.46

Table 5: Statistics for the use of event causality
knowledge in KnowSemLM. We gather the statistics
for both NYT and InScript Corpus. “Match/Event” rep-
resents average number of times a causal event match is
found in the event causality knowledge base per event;
while “Activation/Event” stands for the average num-
ber of times we actually generate event predictions
from the outcome events of the knowledge base. In ad-
dition, we believe the ratio of “Activation/Event” over
“Match/Event” co-relates with the scaling parameter λ.

edge: pk(et+1|et−k, et−k+1, · · · , et,KBEC).Here,
knowledge in KBEC is generated manually from
event templates specified in Sec. 4.2. Moreover,
index k decides how far back we consider the pre-
ceding event sequence. We then add this set of
conditional probabilities as additional features in a
base model (re-implementation of the linear model
proposed in Modi et al. (2017), namely “Base∗”)
to train a classifier to predict the right referent.

Results: The accuracy results are shown in Ta-
ble 3. We compare with the original base model
as well as the EntityNLM proposed in Ji et al.
(2017) as baselines. Our re-implemented base
model (“Re-base”) does not perform as good as
the original model. However, with the help of ad-
ditional features from FES-RNNLM, we outper-
form the base model. More importantly, with addi-
tional features from KnowSemLM, we achieve the
best performance and beat the EntityNLM system.
This demonstrates the importance of the manually
added event causality knowledge, and the ability
of KnowSemLM to successfully capture it.
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5.4 Analysis of KnowSemLM

First, to evaluate the language modeling ability of
KnowSemLM, we report perplexity and narrative
cloze test results. We employ the same experimen-
tal setting as detailed in Peng and Roth (2016) on
the NYT hold-out data. Results are shown in Ta-
ble 4. Here, “FES-RNNLM” serves as the seman-
tic LM without the use of knowledge for the abla-
tion study. The numbers shows that KnowSemLM
has lower perplexity and higher recall on narrative
cloze test; which demonstrates the contribution of
the infused event causality knowledge. The results
w.r.t. the transitivity evaluation shows that the ex-
pansion through knowledge transitivity improves
the model quality.

We also gather the statistics to analyze the us-
age of event causality knowledge in KnowSemLM.
We compute two key values: 1) average num-
ber of times a causal event match is found in the
event causality knowledge base per event (so that
we can potentially use the outcome events to pre-
dict), i.e. “Match/Event”; 2) average number of
times we actually generate event predictions from
the outcome events of the knowledge base (result
of the final probability distribution), i.e. “Activa-
tion/Event”. We get the statistics on both NYT
and InScript Corpus, and associate the numbers
with the scaling parameter λ in Table 5. The
frequency of event matches and event activations
from knowledge are both much lower in NYT than
in InScript. Moreover, we can compute the chance
of an outcome event being used as the prediction
when it participates in the probability distribution.
On NYT, it is 0.03/0.13 = 23%; while on In-
Script, it is 0.28/0.82 = 34%. We believe such
chance co-relates with the scaling parameter λ.

For qualitative analysis, we provide a compar-
ative example between KnowSemLM and FES-
RNNLM in practice. The system is fed into the
following input:

... Jane wanted to buy a new car. She had to
borrow some money from her father. ...
So, on an event level, we abstract the text as
“PER[new]-want.01-buy.01-ARG[new](NEU),
PER[old]-have.04-borrow.01-ARG[new](NEU)”.
For FES-RNNLM, the system predicts the next
event as “PER[old]-sell.01-ARG[new](NEU)”
since in training data, there are many co-
occurrences between the “borrow” event and
“sell” event (coming from financial news articles
in NYT). In contrast, for KnowSemLM, since

we have the knowledge “PER[*]-borrow.01-
ARG[*](*)⇒ PER[old]-return.01-ARG[old](*)”,
meaning that something borrowed by someone is
likely to be returned, the predicted event would
be “PER[old]-return.01-ARG[old](NEU)”. This
is closer to the real text semantically: ... She
promised to return the money once she got a job ...
Such an example shows that KnowSemLM works
in situations where 1) the required knowledge
is stored in the event causality knowledge base,
and 2) the training data contains scenarios where
required knowledge is put into use.

6 Related Work

Our work is built upon the previous works for se-
mantic language models (Peng and Roth, 2016;
Peng et al., 2017; Chaturvedi et al., 2017). This
line of work is in general inspired by script learn-
ing. Early works (Schank and Abelson, 1977;
Mooney and DeJong, 1985) tried to learn scripts
via construction of knowledge bases from text.
More recently, researchers focused on utilizing
statistical models to extract high-quality scripts
from large amounts of data (Chambers and Ju-
rafsky, 2008; Bejan, 2008; Jans et al., 2012; Pi-
chotta and Mooney, 2014; Granroth-Wilding and
Clark, 2016; Rudinger et al., 2015; Pichotta and
Mooney, 2016a,b). Other works aimed at learn-
ing a collection of structured events (Chambers,
2013; Cheung et al., 2013; Balasubramanian et al.,
2013; Bamman and Smith, 2014; Nguyen et al.,
2015; Inoue et al., 2016). In particular, Ferraro
and Durme (2016) presented a unified probabilis-
tic model of syntactic and semantic frames while
also demonstrating improved coherence. Several
works have employed neural embeddings (Modi
and Titov, 2014a,b; Frermann et al., 2014; Titov
and Khoddam, 2015). Some prior works have
used scripts-related ideas to help improve NLP
tasks (Irwin et al., 2011; Rahman and Ng, 2011;
Peng et al., 2015b).

Several recent works focus on narrative/story
telling (Rishes et al., 2013), as well as studying
event structures (Brown et al., 2017). Most re-
cently, Mostafazadeh et al. (2016, 2017) proposed
story cloze test as a standard way to test a system’s
ability to model semantics. They released ROC-
Stories dataset, and organized a shared task for
LSDSem’17; which yields many interesting works
on this task. Cai et al. (2017) developed a model
that uses hierarchical recurrent networks with at-
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tention to encode sentences and produced a strong
baseline. Lee and Goldwasser (2019) considered
the problem of learning relation aware event em-
beddings for commonsense inference, which can
account for different relations between events, be-
yond simple event similarity. We differ from them
because the basic semantic unit we model is event
level abstractions instead of word tokens.

The definition of event causality knowledge
in this work includes temporal ordering relation-
ships. Much progress has been made in iden-
tifying and modeling such relations. In early
works (Mani et al., 2006; Chambers et al., 2007;
Bethard et al., 2007; Verhagen and Pustejovsky,
2008), the problem was formulated as a clas-
sification problem for determining the pair-wise
event temporal relations; while recent works (Do
et al., 2012; Mirza and Tonelli, 2016; Ning et al.,
2017, 2018) took advantage of utilizing structural
constraints such as transitive properties of tem-
poral relationships via ILP to achieve better re-
sults. Comparatively, the concept of event causal-
ity knowledge here is broader and more flexible.
Any event causality relation gained from human
experience could be represented and utilized in
KnowSemLM; as shown in Sec. 4.2 that such
knowledge can be both mined from corpus and
written down declaratively.

Since we formulate the semantic sequence mod-
eling problem as a language modeling issue, we
also review recent neural language modeling liter-
ature. Bengio et al. (2003) introduced a model that
learns word vector representations as part of a sim-
ple neural network architecture for language mod-
eling. Collobert and Weston (2008) decoupled the
word vector training from the downstream train-
ing objectives, which paved the way for Collobert
et al. (2011) to use the full context of a word for
learning the word representations. The skip-gram
and continuous bag-of-words (CBOW) models of
Mikolov et al. (2013) propose a simple single-
layer architecture based on the inner product be-
tween two word vectors. Mnih and Kavukcuoglu
(2013) also proposed closely-related vector log-
bilinear models, vLBL and ivLBL, and Levy and
Goldberg (2014) proposed explicit word embed-
dings based on a PPMI metric. Additionally, re-
searcher have been attempting to infuse knowl-
edge into the language modeling process (Ahn
et al., 2016; Yang et al., 2016; Ji et al., 2017; He
et al., 2017; Clark et al., 2018).

Most recently, pre-trained language models
such as BERT (Devlin et al., 2019), GPT (Radford
et al., 2018), and XLNET (Yang et al., 2019) have
achieved much success for language modeling and
generation tasks. Our proposed knowledge in-
fused semantic language model can not be directly
applied upon such word-level pre-trained language
models. However, as future works, we are inter-
ested in exploring the possibility of pre-training
a semantic language model with frame and entity
abstractions on a large corpus with event causality
knowledge, and fine-tune it on application tasks.

7 Conclusion

This paper proposes KnowSemLM, a knowledge
infused semantic LM. It utilizes both local con-
text (i.e., what has been described in text) and
global context (i.e., causality knowledge about
events) to predict future events. We show that
such event causality knowledge can be obtained
statistically from a corpus or declaratively in
specific scenarios. Similar to previous works,
KnowSemLM takes advantage of event-level ab-
stractions to achieve generalization. Evaluations
demonstrate that the knowledge awareness of the
proposed KnowSemLM helps improve results on
tasks such as the event cloze test and story/referent
prediction.
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