
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 441–451
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

441

Procedural Reasoning Networks for Understanding Multimodal
Procedures

Mustafa Sercan Amac Semih Yagcioglu Aykut Erdem Erkut Erdem
Hacettepe University Computer Vision Lab

Dept. of Computer Engineering, Hacettepe University, Ankara, TURKEY
{b21626915,n13242994,aykut,erkut}@cs.hacettepe.edu.tr

Abstract

This paper addresses the problem of com-
prehending procedural commonsense knowl-
edge. This is a challenging task as it re-
quires identifying key entities, keeping track
of their state changes, and understanding tem-
poral and causal relations. Contrary to most
of the previous work, in this study, we do
not rely on strong inductive bias and explore
the question of how multimodality can be ex-
ploited to provide a complementary semantic
signal. Towards this end, we introduce a new
entity-aware neural comprehension model aug-
mented with external relational memory units.
Our model learns to dynamically update en-
tity states in relation to each other while read-
ing the text instructions. Our experimental
analysis on the visual reasoning tasks in the
recently proposed RecipeQA dataset reveals
that our approach improves the accuracy of the
previously reported models by a large margin.
Moreover, we find that our model learns effec-
tive dynamic representations of entities even
though we do not use any supervision at the
level of entity states.1

1 Introduction

A great deal of commonsense knowledge about the
world we live is procedural in nature and involves
steps that show ways to achieve specific goals. Un-
derstanding and reasoning about procedural texts
(e.g. cooking recipes, how-to guides, scientific pro-
cesses) are very hard for machines as it demands
modeling the intrinsic dynamics of the procedures
(Bosselut et al., 2018; Dalvi et al., 2018; Yagcioglu
et al., 2018). That is, one must be aware of the
entities present in the text, infer relations among
them and even anticipate changes in the states of
the entities after each action. For example, consider
the cheeseburger recipe presented in Fig. 1. The

1The project website with code and demo is available at
https://hucvl.github.io/prn/

instruction “salt and pepper each patty and cook
for 2 to 3 minutes on the first side” in Step 5 entails
mixing three basic ingredients, the ground beef,
salt and pepper, together and then applying heat
to the mix, which in turn causes chemical changes
that alter both the appearance and the taste. From
a natural language understanding perspective, the
main difficulty arises when a model sees the word
patty again at a later stage of the recipe. It still cor-
responds to the same entity, but its form is totally
different.

Over the past few years, many new datasets and
approaches have been proposed that address this in-
herently hard problem (Bosselut et al., 2018; Dalvi
et al., 2018; Tandon et al., 2018; Du et al., 2019).
To mitigate the aforementioned challenges, the ex-
isting works rely mostly on heavy supervision and
focus on predicting the individual state changes
of entities at each step. Although these models
can accurately learn to make local predictions, they
may lack global consistency (Tandon et al., 2018;
Du et al., 2019), not to mention that building such
annotated corpora is very labor-intensive. In this
work, we take a different direction and explore the
problem from a multimodal standpoint. Our basic
motivation, as illustrated in Fig. 1, is that accompa-
nying images provide complementary cues about
causal effects and state changes. For instance, it
is quite easy to distinguish raw meat from cooked
one in visual domain.

In particular, we take advantage of recently pro-
posed RecipeQA dataset (Yagcioglu et al., 2018), a
dataset for multimodal comprehension of cooking
recipes, and ask whether it is possible to have a
model which employs dynamic representations of
entities in answering questions that require multi-
modal understanding of procedures. To this end, in-
spired from (Santoro et al., 2018), we propose Pro-
cedural Reasoning Networks (PRN) that incorpo-
rates entities into the comprehension process and al-

https://hucvl.github.io/prn/

442

dressing

Step 1: Ingredients and Tools Step 2: Form Patties Step 3: Season Step 4: Toast Buns
Lightly toast the both halves of the hamburger
bun, face down in the pan. Set aside.

Step 5: Cook Step 6: Chop Onions & Tomatoes
For the "authentic" feel you want to get a large
onion and a large tomato, then slice a large slice
from the middle to use on the hamburger.

Step 7: Chop Onions & Tomatoes Step 8: Enjoy
All that's left to do is enjoy this copycat double
double! To be honest, this was impressively close
to the real taste. I would definitely make this one
again.

ground beef

lettuce leaf

onion

salt pepper

dressing

hamburger bun

American cheese

tomato

ground beef
ground beef

ground beef

ground beef

ground beef

ground beef

ground beef

ground beefground beef

ground beef

ground beef ground beef
ground beef

ground beef

hamburger bun

hamburger bun

hamburger bun

hamburger bun

hamburger bun

hamburger bun

hamburger bun

hamburger bun

salt

salt

salt

pepper

pepper
tomato

lettuce leaf lettuce leaf

onion

onion
onion

onion

tomato

tomato
dressing

dressing

Salt and pepper one side of the patty now, the other
half will be done when grilling.

Set the patty seasoned side down on the skillet, salt and pepper
each patty and cook for 2 to 3 minutes on the first side. Flip the
patties over and season with salt and pepper and immediately
place one slice of cheese on each one. Cook for 2-3 minutes on
the other side.

1 hamburger bun, 4 oz. ground beef (25-30% fat
if available) (2 ounce per patty), salt and
pepper, Thousand Island dressing (or In-N-Out
official spread), 1 large tomato, 1 large lettuce
leaf, 1 whole onion, 2 slices real American
cheese

Assemble the burger in the following stacking order from the
bottom up: bottom bun, thousand island dressing, tomato, lettuce,
beef patty with cheese, onion slice, beef patty with cheese, top
bun

Begin by preheating a cast iron skillet over medium heat. Make four patties by
rolling 2-ounce portions of beef into balls and weigh it out on the kitchen scale.
In-N-Out uses a 25-30% fat beef patty which is not easily available at a local
grocery store, in many cases it would have to be ground by hand. Forming them
slightly larger than buns. I do this by placing the 2 ounce beef in between 2
pieces of parchment paper then taking my large cast iron skillet and applying a
little force to smash the beef into a patty. You will want to form them into a
perfect circle with your hand if they do not come out right after the initial smash.

Figure 1: A recipe for preparing a cheeseburger (adapted from the cooking instructions available at https:
//www.instructables.com/id/In-N-Out-Double-Double-Cheeseburger-Copycat). Each basic in-
gredient (entity) is highlighted by a different color in the text and with bounding boxes on the accompanying
images. Over the course of the recipe instructions, ingredients interact with each other, change their states by
each cooking action (underlined in the text), which in turn alter the visual and physical properties of entities. For
instance, the tomato changes it form by being sliced up and then stacked on a hamburger bun.

lows to keep track of entities, understand their inter-
actions and accordingly update their states across
time. We report that our proposed approach signifi-
cantly improves upon previously published results
on visual reasoning tasks in RecipeQA, which test
understanding causal and temporal relations from
images and text. We further show that the dynamic
entity representations can capture semantics of the
state information in the corresponding steps.

2 Visual Reasoning in RecipeQA

In our study, we particularly focus on the visual
reasoning tasks of RecipeQA, namely visual cloze,
visual coherence, and visual ordering tasks, each
of which examines a different reasoning skill2. We
briefly describe these tasks below.

Visual Cloze. In the visual cloze task, the question
is formed by a sequence of four images from
consecutive steps of a recipe where one of them is
replaced by a placeholder. A model should select
the correct one from a multiple-choice list of four
answer candidates to fill in the missing piece. In
that regard, the task inherently requires aligning
visual and textual information and understanding

2We intentionally leave the textual cloze task out from our
experiments as the questions in this task does not necessarily
need multimodality.

temporal relationships between the cooking actions
and the entities.

Visual Coherence. The visual coherence task tests
the ability to identify the image within a sequence
of four images that is inconsistent with the text
instructions of a cooking recipe. To succeed in this
task, a model should have a clear understanding
of the procedure described in the recipe and at the
same time connect language and vision.

Visual Ordering. The visual ordering task is about
grasping the temporal flow of visual events with
the help of the given recipe text. The questions
show a set of four images from the recipe and the
task is to sort jumbled images into the correct order.
Here, a model needs to infer the temporal relations
between the images and align them with the recipe
steps.

3 Procedural Reasoning Networks

In the following, we explain our Procedural Reason-
ing Networks model. Its architecture is based on a
bi-directional attention flow (BiDAF) model (Gard-
ner et al., 2018)3, but also equipped with an explicit
reasoning module that acts on entity-specific rela-

3Our implementation is based on the implementation pub-
licly available in AllenNLP (Gardner et al., 2018).

https://www.instructables.com/id/In-N-Out-Double-Double-Cheeseburger-Copycat
https://www.instructables.com/id/In-N-Out-Double-Double-Cheeseburger-Copycat

443

CNN CNN CNN

LSTM LSTM LSTM

Step 1: Ingredients
8-12 oz (225-350g) gingersnap cookies (depending on
how much crust you like!) 1/4 cup (57g) butter, melted
(or slightly more if you're going full-hog on the crust) 24
oz.. (680g) cream cheese, softened 15 oz. (425g)
pumpkin puree 2/3 cup (75g) sugar 4 eggs 1 teaspoon
vanilla 1/4 cup (30g) flour Pinch of salt Freshly ground
cinnamon, ginger and nutmeg to taste (I use 1/2
teaspoon each!) Optional: fresh ground pepper - I know
it sounds weird, but it adds depth to the spice profile!

In a mixer or food processor,
combine the softened cream
cheese, pumpkin puree, sugar,
and vanilla extract until well
blended. Add the eggs, one at a
time, mixing after each until just
incorporated. Combine flour and
spices and slowly add to the liquid
mixture. Pour mixture into crust.

Step 3: The Filling
Bake the pumpkin cheesecake for 80-90
minutes, until the center is almost set., and
barely jiggles in the middle. Use a knife to gently
loosen the crust from the edge of the pan. Allow
cheesecake to cool before removing the rim of
the pan. Refrigerate for at least 4 hours and up
to overnight. If you are traveling with the
cheesecake, leave the pan in tact until ready to
eat! You're gonna love this one, I just know it!

Step 4: BakeStep 2: The Crust

CNN

LSTM

Char Embed

Embed
CNN

Concat

BiLSTM

Embed
CNN

Concat

BiLSTM

Char Embed

fresh ground pepper
gingersnap cookies

ground cinnamon
pumpkin puree
cream cheese

nutmeg
vanilla
ginger
butter
sugar
eggs
flour
salt

Em
be

d

Preheat your oven to 350F (180C). Using a food processor (or
a mallet and a baggie - go for it!), turn your gingersnaps into
crumbs! Add butter to crumbs and process until well
incorporated. (If you're using the mallet method, you can use a
fork for this part!) I like to line just the bottom of a 9" springform
pan with parchment, but that is optional. Pat the crust mixture
into your pan, covering just the bottom, or going up the sides as
far as you dare! If you're going full-crust, it's a good idea to par-
bake your crust (meaning bake it before filling) for 5-10 mins.

Embed
CNN

Concat

BiLSTM

Char Embed Char Embed

Embed
CNN

Concat

BiLSTM Bi-Attention

Bi-Attention

Entities
(Ingredients)

R-RNN R-RNN R-RNN R-RNN

Question (Visual Coherence Task)

Answer
Candidate

Concat

BiLSTM

BiLSTM

Similarity

Char Embed

CNN

Concat

BiLSTM

Embed

Recipe
(4 Steps)

MLP

C
N
N

M
LP

Figure 2: An illustration of our Procedural Reasoning Networks (PRN). For a sample question from visual coher-
ence task in RecipeQA, while reading the cooking recipe, the model constantly performs updates on the representa-
tions of the entities (ingredients) after each step and makes use of their representations along with the whole recipe
when it scores a candidate answer. Please refer to the main text for more details.

tional memory units. Fig. 2 shows an overview of
the network architecture. It consists of five main
modules: An input module, an attention module, a
reasoning module, a modeling module, and an out-
put module. Note that the question answering tasks
we consider here are multimodal in that while the
context is a procedural text, the question and the
multiple choice answers are composed of images.

1. Input Module extracts vector representations
of inputs at different levels of granularity by
using several different encoders.

2. Reasoning Module scans the procedural text
and tracks the states of the entities and their re-
lations through a recurrent relational memory
core unit (Santoro et al., 2018).

3. Attention Module computes context-aware
query vectors and query-aware context vectors
as well as query-aware memory vectors.

4. Modeling Module employs two multi-
layered RNNs to encode previous layers out-
puts.

5. Output Module scores a candidate answer
from the given multiple-choice list.

At a high level, as the model is reading the
cooking recipe, it continually updates the internal
memory representations of the entities (ingredients)
based on the content of each step – it keeps track
of changes in the states of the entities, providing an
entity-centric summary of the recipe. The response
to a question and a possible answer depends on the
representation of the recipe text as well as the last
states of the entities. All this happens in a series of

implicit relational reasoning steps and there is no
need for explicitly encoding the state in terms of a
predefined vocabulary.

3.1 Input Module

Let the triple (R,Q,A) be a sample input. Here,
R denotes the input recipe which contains textual
instructions composed of N words in total. Q
represents the question that consists of a sequence
of M images. A denotes an answer that is either
a single image or a series of L images depending
on the reasoning task. In particular, for the visual
cloze and the visual coherence type questions, the
answer contains a single image (L = 1) and for the
visual ordering task, it includes a sequence.

We encode the input recipe R at character, word,
and step levels. Character-level embedding layer
uses a convolutional neural network, namely Char-
CNN model by Kim (2014), which outputs charac-
ter level embeddings for each word and alleviates
the issue of out-of-vocabulary (OOV) words. In
word embedding layer, we use a pretrained GloVe
model (Pennington et al., 2014) and extract word-
level embeddings4. The concatenation of the char-
acter and the word embeddings are then fed to a
two-layer highway network (Srivastava et al., 2015)
to obtain a contextual embedding for each word in
the recipe. This results in the matrix R′ ∈ R2d×N .

On top of these layers, we have another layer
that encodes the steps of the recipe in an individual
manner. Specifically, we obtain a step-level con-

4We also consider pretrained ELMo embeddings (Peters
et al., 2018) in our experiments but found out that the perfor-
mance gain does not justify the computational overhead.

444

textual embedding of the input recipe containing
T steps as S = (s1, s2, . . . , sT) where si repre-
sents the final state of a BiLSTM encoding the i-th
step of the recipe obtained from the character and
word-level embeddings of the tokens exist in the
corresponding step.

We represent both the question Q and the answer
A in terms of visual embeddings. Here, we employ
a pretrained ResNet-50 model (He et al., 2016)
trained on ImageNet dataset (Deng et al., 2009)
and represent each image as a real-valued 2048-d
vector using features from the penultimate average-
pool layer. Then these embeddings are passed first
to a multilayer perceptron (MLP) and then its out-
puts are fed to a BiLSTM. We then form a matrix
Q′ ∈ R2d×M for the question by concatenating the
cell states of the BiLSTM. For the visual ordering
task, to represent the sequence of images in the
answer with a single vector, we additionally use a
BiLSTM and define the answering embedding by
the summation of the cell states of the BiLSTM.
Finally, for all tasks, these computations produce
answer embeddings denoted by a ∈ R2d×1.

3.2 Reasoning Module

As mentioned before, comprehending a cooking
recipe is mostly about entities (basic ingredients)
and actions (cooking activities) described in the
recipe instructions. Each action leads to changes
in the states of the entities, which usually affects
their visual characteristics. A change rarely oc-
curs in isolation; in most cases, the action affects
multiple entities at once. Hence, in our reasoning
module, we have an explicit memory component
implemented with relational memory units (San-
toro et al., 2018). This helps us to keep track of the
entities, their state changes and their relations in
relation to each other over the course of the recipe
(see Fig. 3). As we will examine in more detail in
Section 4, it also greatly improves the interpretabil-
ity of model outputs.

Specifically, we set up the memory with a mem-
ory matrix E ∈ RdE×K by extracting K entities
(ingredients) from the first step of the recipe5. We
initialize each memory cell ei representing a spe-
cific entity by its CharCNN and pre-trained GloVe
embeddings6. From now on, we will use the terms

5The first steps of the recipes in RecipeQA commonly
contain a list of ingredients.

6Multi-word entities (e.g. minced garlic) are represented
by the average embedding vector of the words that they con-
tain, and OOV words are expressed with the average word

memory cells and entities interchangeably through-
out the paper. Since the input recipe is given in
the form of a procedural text decomposed into a
number of steps, we update the memory cells after
each step, reflecting the state changes happened on
the entities. This update procedure is modelled via
a relational recurrent neural network (R-RNN), re-
cently proposed by Santoro et al. (2018). It is built
on a 2-dimensional LSTM model whose matrix of
cell states represent our memory matrix E. Here,
each row i of the matrix E refers to a specific entity
ei and is updated after each recipe step t as follows:

φi,t = R-RNN(φi,t−1, st) (1)

where st denotes the embedding of recipe step t
and φi,t = (hi,t, ei,t) is the cell state of the R-RNN
at step t with hi,t and ei,t being the i-th row of
the hidden state of the R-RNN and the dynamic
representation of entity ei at the step t, respectively.
The R-RNN model exploits a multi-headed self-
attention mechanism (Vaswani et al., 2017) that
allows memory cells to interact with each other and
attend multiple locations simultaneously during the
update phase.

In Fig. 3, we illustrate how this interaction takes
place in our relational memory module by consider-
ing a sample cooking recipe and by presenting how
the attention matrix changes throughout the recipe.
In particular, the attention matrix at a specific time
shows the attention flow from one entity (memory
cell) to another along with the attention weights
to the corresponding recipe step (offset column).
The color intensity shows the magnitude of the at-
tention weights. As can be seen from the figure,
the internal representations of the entities are ac-
tively updated at each step. Moreover, as argued
in (Santoro et al., 2018), this can be interpreted as
a form of relational reasoning as each update on a
specific memory cell is operated in relation to oth-
ers. Here, we should note that it is often difficult
to make sense of these attention weights. However,
we observe that the attention matrix changes very
gradually near the completion of the recipe.

3.3 Attention Module

Attention module is in charge of linking the ques-
tion with the recipe text and the entities present in
the recipe. It takes the matrices Q′ and R′ from the
input module, and E from the reasoning module

vector of all the words.

445

We'll start with a nice piece of
roast, mine was 1 kilo and a
half, but you can do less if you
want.We'll have to cut the
pieces so that it eventually fit in
the bottle. This depends
entirely from the size of the
bottle itself, that said remember
the meat will shrink in the oven.

Step 1: Slicin', Dicin'...

salt
oil

potatoes
rosemary

thyme
crushed garlic

pork tenderloin
blackpepper

Then comes the phase that is
known in italian as "Pillottare".
Using a mortar, grind together
the spices, the salt, the
crushed garlic and add a drop
or two of olive oil so that the
mixture sticks together After
that, take a knife, stab the meat
and start filling the cavities with
the spices. When you're
finished it should look like your
meat had grown a beard.

Quickly clean the potatoes and
the onion and chop them in
medium sized pieces. Put half
an inch of Olive oil in the pan
and put everything in it. Add
the remaining spices and, if
you like, add some more.

Preheat the oven to 180C
(356F) and then put this baby
to roast. Turn it from time to
time so that both sides cook
evenly. I kept it one hour and
ten, but it depends really from
the size of your roast. You can
always go old school and
check with a toothpic from time
to time.

Bottle has to be clean, so after
washing and drying it, and right
before putting the meat in it,
boil some water and pour it in
for a quick rinse off. To avoid
breaking the bottle pour some
cold water in it and pour the
boiling water into the cold
water. You do not need much of
it, just a cup or so, quickly rinse
the bottle and throw the water
away.

Wait till the meat is cold, then
put it into the freshly sterilized
bottle and cover in olive oil.
The meat has to rest for at
least two days, then you can
start eating it.

Step 2: ... and Spicin' Step 3: Bring Company! Step 4: Burn Baby Burn! Step 5: Ready the Bottle. Step 6: Put the Piggies to Sleep.

ste
p 1

ste
p 2

ste
p 3

ste
p 4

ste
p 5

ste
p 6

sa
lt

oil po
tat

oe
s

ros
em

ary

thy
me

cru
sh

ed
 ga

rlic

po
rk

ten
de

rlo
in

bla
ckp

ep
pe

r Time

Recipe: Oil
Bottled Pork
Tenderloin

at
te

nd
in

g
fr

om

attending
to

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Sample visualizations of the self-attention weights demonstrating both the interactions among the ingre-
dients and between the ingredients and the textual instructions throughout the steps of a sample cooking recipe
from RecipeQA (darker colors imply higher attention weights). The attention maps do not change much after the
third step as the steps after that mostly provide some redundant information about the completed recipe.

and constructs the question-aware recipe represen-
tation G and the question-aware entity representa-
tion Y. Following the attention flow mechanism
described in (Seo et al., 2017a), we specifically
calculate attentions in four different directions: (1)
from question to recipe, (2) from recipe to question,
(3) from question to entities, and (4) from entities
to question.

The first two of these attentions require comput-
ing a shared affinity matrix SR ∈ RN×M with SR

i,j

indicating the similarity between i-th recipe word
and j-th image in the question estimated by

SR
i,j = w>R[R

′
i;Q

′
j ;R

′
i ◦Q′j] (2)

where w>R is a trainable weight vector, ◦ and [;] de-
note elementwise multiplication and concatenation
operations, respectively.

Recipe-to-question attention determines the im-
ages within the question that is most relevant to
each word of the recipe. Let Q̃ ∈ R2d×N repre-
sent the recipe-to-question attention matrix with
its i-th column being given by Q̃i =

∑
j aijQ

′
j

where the attention weight is computed by ai =
softmax(SR

i) ∈ RM .
Question-to-recipe attention signifies the words

within the recipe that have the closest similarity
to each image in the question, and construct an
attended recipe vector given by r̃ =

∑
i biR

′
i

with the attention weight is calculated by b =
softmax(maxcol (S

R)) ∈ RN where maxcol de-
notes the maximum function across the column.
The question-to-recipe matrix is then obtained by
replicating r̃ N times across the column, giving
R̃ ∈ R2d×N .

Then, we construct the question aware represen-
tation of the input recipe, G, with its i-th column
Gi ∈ R8d×N denoting the final embedding of i-th
word given by

Gi = [R′i; Q̃i;R
′
i ◦ Q̃i;R

′
i ◦ R̃i;] . (3)

Attentions from question to entities, and from
entities to question are computed in a way similar
to the ones described above. The only difference is
that it uses a different shared affinity matrix to be
computed between the memory encoding entities E
and the question Q′. These attentions are then used
to construct the question aware representation of
entities, denoted by Y, that links and integrates the
images in the question and the entities in the input
recipe.

3.4 Modeling Module

Modeling module takes the question-aware repre-
sentations of the recipe G and the entities Y, and
forms their combined vector representation. For
this purpose, we first use a two-layer BiLSTM to
read the question-aware recipe G and to encode the
interactions among the words conditioned on the
question. For each direction of BiLSTM , we use
its hidden state after reading the last token as its
output. In the end, we obtain a vector embedding
c ∈ R2d×1. Similarly, we employ a second BiL-
STM, this time, over the entities Y, which results
in another vector embedding f ∈ R2dE×1. Finally,
these vector representations are concatenated and
then projected to a fixed size representation using
o = ϕo([c; f]) ∈ R2d×1 where ϕo is a multilayer
perceptron with tanh activation function.

446

3.5 Output Module
The output module takes the output of the mod-
eling module, encoding vector embeddings of the
question-aware recipe and the entities Y, and the
embedding of the answer A, and returns a simi-
larity score which is used while determining the
correct answer. Among all the candidate answer,
the one having the highest similarity score is cho-
sen as the correct answer. To train our proposed
procedural reasoning network, we employ a hinge
ranking loss (Collobert et al., 2011), similar to the
one used in (Yagcioglu et al., 2018), given below.

L = max{0, γ − cos(o,a+) + cos(o,a−)} (4)

where γ is the margin parameter, a+ and a− are
the correct and the incorrect answers, respectively.

4 Experiments

In this section, we describe our experimental setup
and then analyze the results of the proposed Proce-
dural Reasoning Networks (PRN) model.

4.1 Entity Extraction
Given a recipe, we automatically extract the entities
from the initial step of a recipe by using a dictionary
of ingredients. While determining the ingredients,
we exploit Recipe1M (Marin et al., 2018) and
Kaggle Whats Cooking Recipes (Yummly, 2015)
datasets, and form our dictionary using the most
commonly used ingredients in the training set of
RecipeQA. For the cases when no entity can be
extracted from the recipe automatically (20 recipes
in total), we manually annotate those recipes with
the related entities.

4.2 Training Details
In our experiments, we separately trained models
on each task, as well as we investigated multi-task
learning where a single model is trained to solve all
these tasks at once. In total, the PRN architecture
consists of ∼12M trainable parameters. We imple-
mented our models in PyTorch (Paszke et al., 2017)
using AllenNLP library (Gardner et al., 2018). We
used Adam optimizer with a learning rate of 1e-4
with an early stopping criteria with the patience set
to 10 indicating that the training procedure ends
after 10 iterations if the performance would not
improve. We considered a batch size of 32 due to
our hardware constraints. In the multi-task setting,
batches are sampled round-robin from all tasks,
where each batch is solely composed of examples

from one task. We performed our experiments on
a system containing four NVIDIA GTX-1080Ti
GPUs, and training a single model took around 2
hours. We employed the same hyperparameters
for all the baseline systems. We plan to share our
code and model implementation after the review
process.

4.3 Baselines
We compare our model with several baseline
models as described below. We note that the
results of the first two are previously reported
in (Yagcioglu et al., 2018).

Hasty Student (Yagcioglu et al., 2018) is a
heuristics-based simple model which ignores the
recipe and gives an answer by examining only the
question and the answer set using distances in the
visual feature space.

Impatient Reader (Hermann et al., 2015) is a
simple neural model that takes its name from the
fact that it repeatedly computes attention over the
recipe after observing each image in the query.

BiDAF (Seo et al., 2017a) is a strong reading
comprehension model that employs a bi-directional
attention flow mechanism to obtain a question-
aware representation and bases its predictions on
this representation. Originally, it is a span-selection
model from the input context. Here, we adapt it to
work in a multimodal setting and answer multiple
choice questions instead.

BiDAF w/ static memory is an extended version
of the BiDAF model which resembles our proposed
PRN model in that it includes a memory unit for the
entities. However, it does not make any updates on
the memory cells. That is, it uses the static entity
embeeddings initialized with GloVe word vectors.
We propose this baseline to test the significance of
the use of relational memory updates.

4.4 Results
Table 1 presents the quantitative results for the vi-
sual reasoning tasks in RecipeQA. In single-task
training setting, PRN gives state-of-the-art results
compared to other neural models. Moreover, it
achieves the best performance on average. These
results demonstrate the importance of having a dy-
namic memory and keeping track of entities ex-
tracted from the recipe. In multi-task training set-

447

Vanilla-Apricot Shortbread Cookies
Add to the whipped butter 1 cup of
baker's sugar. Stir until the sugar and
butter mix thoroughly. Add the whole
egg and the egg yolk and stir well.

Toffee Bottomed Brownies
Cut the brownie into small squares,
cleaning your knife after each cut.
The topload of cocoa powder makes
this dessert so very rich that you don't
need much, and there will be ...

Cherry Almond Torrone (Italian
Nougat)
I used a knife, spatula, and pizza
roller. Use what you've got. Corn
starch and butter will help to prevent
sticking....

Apple Pie
...the apple pie filling should not have
the skins on them, BUT... I made this
one for a friend of mine who is a health
conscious women and she insisted on
me leaving the skins on for all the
nutritional values....

Henderson's Sauce
After it has been simmering for around
5 minutes, it is time to add some other
ingredients. Add all these being; Add
around 1 soup-spoon of sugar (1 soup
spoon brown or 2 soup spoons
white)....

Absolutely Amazing Cream of
Celery Soup
Add cream, lemon juice, hot sauce,
salt and pepper. Reheat and simmer
for about five minutes. ...

Miniature Doughnut Coconut
Creatures
Chill a can of coconut milk or cream in
the fridge overnight. When you’re
ready to make the whipped cream,
open the can and scoop out the
hardened coconut. ...

Mango Mint Ice Tea
Take the measured amount of water
and heat it till hot. I used the
microwave here. You can heat the
water even on the stove top. To the
hot water add the Black tea powder
or the Black tea bags.

Creme Brulee Recipe
Place the ramekins into a pan with
high sides and carefully fill the pan
with hot water until half way up the
sides of the ramekins. Make sure
not to splash any water into the
custard.

bread

S
te

p:
 4

E
nt

ity
: w

at
er

S
te

p:
 3

E
nt

ity
: w

at
er

S
te

p:
 1

E
nt

ity
: c

re
am

S
te

p:
 6

E
nt

ity
: c

re
am

S
tep: 2

E
ntity: sugar

S
tep: 6

E
ntity: sugar

S
tep: 5

E
ntity: butter

S
tep: 6

E
ntity: butter

S
tep: 3

E
ntity: sugar

Food Categories

vegetarian-and-vegan
snacks-and-appetizers
salad
cocktails-and-mocktails
sandwiches
pizza
soups-and-stews
pie
coffee
canning-and-preserves
bbq-and-grilling

dessert
bacon
homebrew
cupcakes
cake
breakfast
pasta
main-course
beverages
cookies
recipes
candy

S
tep: 4

E
ntity: sugar

(perfect) Lemon Meringue Pie
...
Add half the sugar (150g) and whisk
again
...

Figure 4: t-SNE visualizations of learned embeddings from each memory snapshot mapping to each entity and
their corresponding states from each step for visual cloze task.

Single-task Training Multi-task Training
Model Cloze Coherence Ordering Average Cloze Coherence Ordering All
Human∗ 77.60 81.60 64.00 74.40 – – – –
Hasty Student 27.35 65.80 40.88 44.68 – – – –
Impatient Reader 27.36 28.08 26.74 27.39 – – – –
BIDAF 53.95 48.82 62.42 55.06 44.62 36.00 63.93 48.67
BIDAF w/ static memory 51.82 45.88 60.90 52.87 47.81 40.23 62.94 50.59
PRN 56.31 53.64 62.77 57.57 46.45 40.58 62.67 50.17
∗ Taken from the RecipeQA project website, based on 100 questions sampled randomly from the validation set.

Table 1: Quantitative comparison of the proposed PRN model against the baselines.

ting where a single model is trained to solve all the
tasks at once, PRN and BIDAF w/ static memory
perform comparably and give much better results
than BIDAF. Note that the model performances
in the multi-task training setting are worse than
single-task performances. We believe that this is
due to the nature of the tasks that some are more
difficult than the others. We think that the perfor-
mance could be improved by employing a carefully
selected curriculum strategy (McCann et al., 2018).

In Fig. 4, we illustrate the entity embeddings
space by projecting the learned embeddings from
the step-by-step memory snapshots through time
with t-SNE to 3-d space from 200-d vector space.
Color codes denote the categories of the cook-
ing recipes. As can be seen, these step-aware
embeddings show clear clustering of these cate-
gories. Moreover, within each cluster, the entities
are grouped together in terms of their state charac-
teristics. For instance, in the zoomed parts of the
figure, chopped and sliced, or stirred and whisked
entities are placed close to each other.

Fig. 5 demonstrates the entity arithmetics us-
ing the learned embeddings from each entity step.

Here, we show that the learned embedding from the
memory snapshots can effectively capture the con-
textual information about the entities at each time
point in the corresponding step while taking into
account of the recipe data. This basic arithmetic
operation suggests that the proposed model can
successfully capture the semantics of each entity’s
state in the corresponding step7.

5 Related Work

In recent years, tracking entities and their state
changes have been explored in the literature from
a variety of perspectives. In an early work, Henaff
et al. (2017) proposed a dynamic memory based
network which updates entity states using a gat-
ing mechanism while reading the text. Bansal
et al. (2017) presented a more structured memory
augmented model which employs memory slots
for representing both entities and their relations.
Pavez et al. (2018) suggested a conceptually simi-
lar model in which the pairwise relations between
attended memories are utilized to encode the world

7We used Gensim for calculating entity arithmetics using
cosine distances between entity embeddings.

448

Step 1:
This is a cheap and easy method of an ancient
cooking technique known as clay pot cooking
using a common terra cotta flowerpot and saucer.
You can spend over $100 on a clay cooker at a
gourmet kitchen gadget store, or about $20 at a
garden supply. You choose. Some of you may
already have the pot lying in your yard, garage or
shed. Once you try this you will probably be
cooking all kinds of things in it!

onions (Flowerpot Chicken)
Step 3: Prepare Vegetables.
Chop your vegetables while the pot is soaking.
You can use whatever you like for this, root
vegetables mixed with onions are always a nice
base. This time I used leeks, bell peppers, garlic
and red onions.:
onions (Flowerpot Chicken)

::
Step 1:
This is a cheap and easy method of an ancient
cooking technique known as clay pot cooking
using a common terra cotta flowerpot and saucer.
You can spend over $100 on a clay cooker at a
gourmet kitchen gadget store, or about $20 at a
garden supply. You choose. Some of you may
already have the pot lying in your yard, garage or
shed. Once you try this you will probably be
cooking all kinds of things in it!

tomatoes (Flowerpot Chicken)

?:
Step 1: Prepping the Vegetables.
The first step is to have all the Vegetables prepped and ready to go in the
pan, so finely dice the Garlic, onions and Peppers. Don't worry about mixing
them up in the bowl, all of these items are going to be sauteed in a small
amount of oil at the next stage. Picture 1. Finely dice up the Garlic, you want
it to be almost puree consistency. Picture 2. Finely dice up the Onions, this
doesn't need to be as fine as the garlic but you should ensure that they are
all roughly the same size. Picture 3. Lastly dice up the bell pepper, I show
you how i cut this in the video, but i will go over it quickly. Firstly i take off the
four walls of the pepper, flatten them then cut them in to strips, then simply
cut the other way so i have them diced.

tomatoes (Chilli Con Carne)
Step 1: Ingredients
...
pepperoni (I used what was left in a package which was enough for one
layer) 1/2 onion 2 roma tomatoes dried rosemary shredded mozarella and
parmesan fresh savory, basil, tarragon, and thyme 2 or 3 cloves of garlic
salt (sea or kosher salt are best) and pepper

Slice the tomatoes and onion as thin as is reasonable, slice the garlic as thin
as possible. Thoroughly wash the fresh herbs and pull the leaves from the
stems. Discard the stems.

tomatoes (Seven Layer Seven Grain Bread)
Step 1: Gather Your Ingredients...
...
1 teaspoon dried oregano, 1/8 teaspoon red pepper flakes (see step five for
a bit of humor on this note), 3/4 to 1 cup wine - Honestly, folks, don't be too
particular about the wine. Red or white is fine. (you may substitute chicken
broth, or even add broth in addition to the wine. Be creative!)(you may
substitute chicken broth, or even add broth in addition to the wine. Be
creative!) 1 - 28 ounce can diced tomatoes (save the juice!)
1/2 teaspoon dried Porcino mushrooms (Optional, see step #2)

tomatoes (How to Make Chicken Cacciatore)

Step 1:
This is absolutely mind-blowingly good. Goat
basically tastes like lamb, but is far leaner. (Lamb
is the fattiest of the red meats.) It's very popular in
a variety of different countries' cuisines, but for
some reason has yet to gain a real following in the
US. This recipe is inspired by the curried goat roti
from Penny's Caribbean Cafe. While Penny
doesn't share her secrets, this tastes awfully
similar. Go get yourself some goat (or lamb if you
must) and try it out!

water (Caribbean Curried Goat)
Step 4: Add Everything Else.
Add the rest of the curry powder and stir things
about. When it starts to stick again add the water
and deglaze again. Pour in just enough water to
cover the meat, and leave a cup full of water near
the pot to refill as it boils off. You want the meat to
stay wet during the entire cooking process.
In the picture below I've dropped in another
boullion cube because they didn't all make it in
with the onions. The details really don't matter too
much in this dish - it cooks long enough that
you've got LOTS of leeway to taste and modify..

:
water (Caribbean Curried Goat)

::
Step 1:
All that sounded logic to me, and instead of
looking on the net how others did it I started
thinking how Bricobart would build such a device -
I mean a bbq, not an anti-troll gun. And since I
didn't want to spend any money I decided to build
it from scratch.The project failed in the first trial,
but ran like a small dog chased by a beeswarm in
the second. Enjoy my poor men's vertical
birdcage-based bbq!

milk (Birdcage-BQ)

?:
Step 3: Cooking.
Melt the butter and add 1/3 cup chopped onions. When the onions are
cooked add the bacon bits. Now add the potatoes back to the pot and mash
the potato mixture. I use a potato masher or you can just use a fork. You still
want it lumpy but the potatoes will help thicken the soup. Pour the milk and
mix well. Add salt and pepper and heat until it is a slow boil. Remove from
the stove and add the cheese and stir until melted. If you add the cheese too
early it will go to the bottom and burn

milk (Potato Soup for One)
Step 2: Meat Sauce
Preheat oven to 180 degrees celsius. Brown off the mince in a large pan,
depending on the fat content of the meat, you may or may not need a little
oil. Drain the mince onto some paper towel to remove any oil and then place
back in the pan. Add 4 slices of chopped prosciutto (or bacon/pancetta) and
fry for a few minutes. Add beef stock, tomato sauce, nutmeg, bayleaf and
oregano. Simmer for at least 30 minutes.

milk (Family Size Lasagne)
Step 1: Potato Prep + Seasonings
Make sure all potatoes are peeled and cut into chunks.
In a saucepan over medium heat, drop in the tablespoon of butter, the red
pepper flakes and Italian seasoning. Let the butter melt and stir the
seasonings around until they start smelling nice. :)

milk (Potato Soup)

Figure 5: Step-aware entity representations can be used to discover the changes occurred in the states of the
ingredients between two different recipe steps. The difference vector between two entities can then be added to
other entities to find their next states. For instance, in the first example, the difference vector encodes the chopping
action done on onions. In the second example, it encodes the pouring action done on the water. When these vectors
are added to the representations of raw tomatoes and milk, the three most likely next states capture the semantics
of state changes in an accurate manner.

state. The main difference between our approach
and these works is that by utilizing relational mem-
ory core units we also allow memories to interact
with each other during each update.

Perez and Liu (2017) showed that similar ideas
can be used to compile supporting memories in
tracking dialogue state. Wang et al. (2017) has
shown the importance of coreference signals for
reading comprehension task. More recently, Dhin-
gra et al. (2018) introduced a specialized recur-
rent layer which uses coreference annotations for
improving reading comprehension tasks. On lan-
guage modeling task, Ji et al. (2017) proposed a
language model which can explicitly incorporate
entities while dynamically updating their represen-
tations for a variety of tasks such as language mod-
eling, coreference resolution, and entity prediction.

Our work builds upon and contributes to the
growing literature on tracking states changes in
procedural text. Bosselut et al. (2018) presented
a neural model that can learn to explicitly predict
state changes of ingredients at different points in
a cooking recipe. Dalvi et al. (2018) proposed an-
other entity-aware model to track entity states in
scientific processes. Tandon et al. (2018) demon-

strated that the prediction quality can be boosted by
including hard and soft constraints to eliminate un-
likely or favor probable state changes. In a follow-
up work, Du et al. (2019) exploited the notion of
label consistency in training to enforce similar pre-
dictions in similar procedural contexts. Das et al.
(2019) proposed a model that dynamically con-
structs a knowledge graph while reading the proce-
dural text to track the ever-changing entities states.
As discussed in the introduction, however, these
previous methods use a strong inductive bias and
assume that state labels are present during training.
In our study, we deliberately focus on unlabeled
procedural data and ask the question: Can multi-
modality help to identify and provide insights to
understanding state changes.

6 Conclusion

We have presented a new neural architecture called
Procedural Reasoning Networks (PRN) for multi-
modal understanding of step-by-step instructions.
Our proposed model is based on the successful
BiDAF framework but also equipped with an ex-
plicit memory unit that provides an implicit mecha-

449

nism to keep track of the changes in the states of
the entities over the course of the procedure. Our
experimental analysis on visual reasoning tasks in
the RecipeQA dataset shows that the model signifi-
cantly improves the results of the previous models,
indicating that it better understands the procedural
text and the accompanying images. Additionally,
we carefully analyze our results and find that our
approach learns meaningful dynamic representa-
tions of entities without any entity-level supervi-
sion. Although we achieve state-of-the-art results
on RecipeQA, clearly there is still room for im-
provement compared to human performance. We
also believe that the PRN architecture will be of
value to other visual and textual sequential reason-
ing tasks.

Acknowledgements

We thank the anonymous reviewers and area chairs
for their invaluable feedback. This work was sup-
ported by TUBA GEBIP fellowship awarded to E.
Erdem; and by the MMVC project via an Institu-
tional Links grant (Project No. 217E054) under the
Newton-Katip Çelebi Fund partnership funded by
the Scientific and Technological Research Council
of Turkey (TUBITAK) and the British Council. We
also thank NVIDIA Corporation for the donation
of GPUs used in this research.

References
Trapit Bansal, Arvind Neelakantan, and Andrew Mc-

Callum. 2017. RelNet: End-to-End Modeling of En-
tities & Relations. In NeurIPS Workshop on Auto-
mated Knowledge Base Construction (AKBC).

Antoine Bosselut, Corin Ennis, Omer Levy, Ari Holtz-
man, Dieter Fox, and Yejin Choi. 2018. Simulat-
ing Action Dynamics with Neural Process Networks.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A Thorough examination of the
CNN/Daily Mail Reading Comprehension Task. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages
2358–2367.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research,
12:2493–2537.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes

in procedural text: a challenge dataset and models
for process paragraph comprehension. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2019.
Building Dynamic Knowledge Graphs from Text us-
ing Machine Reading Comprehension. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. ImageNet: A Large-Scale
Hierarchical Image Database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William W
Cohen, and Ruslan Salakhutdinov. 2018. Neural
Models for Reasoning over Multiple Mentions using
Coreference. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Xinya Du, Bhavana Dalvi Mishra, Niket Tandon, An-
toine Bosselut, Wen-tau Yih, Peter Clark, and Claire
Cardie. 2019. Be consistent! improving procedural
text comprehension using label consistency. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT).

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Rearning for Image
Recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 770–778.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking The
World State with Recurrent Entity Networks. In Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching Machines to
Read and Comprehend. In Proceedings of the Ad-
vances in Neural Information Processing Systems
(NeurIPS), pages 1693–1701.

Schmidhuber J. Hochreiter, S. 1997. Long Short-Term
Memory. Neural computation, 9(8):1735–1780.

450

Mohit Iyyer, Varun Manjunatha, Anupam Guha, Yoga-
rshi Vyas, Jordan Boyd-Graber, Hal Daumé III, and
Larry Davis. 2017. The amazing mysteries of the
gutter: Drawing inferences between panels in comic
book narratives. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic Entity
Representations in Neural Language Models. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Robin Jia and Percy Liang. 2017. Adversarial Ex-
amples for Evaluating Reading Comprehension Sys-
tems. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Samira Ebrahimi Kahou, Adam Atkinson, Vincent
Michalski, Akos Kadar, Adam Trischler, and Yoshua
Bengio. 2017. FigureQA: An Annotated Figure
Dataset for Visual Reasoning. In Proceedings of
the International Conference on Learning Represen-
tations Workshop (ICLR Workshop).

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are You Smarter Than A Sixth
Grader? Textbook Question Answering for Multi-
modal Machine Comprehension. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas
Hynes, Amaia Salvador, Yusuf Aytar, Ingmar We-
ber, and Antonio Torralba. 2018. Recipe1M: A
Dataset for Learning Cross-Modal Embeddings for
Cooking Recipes and Food Images. arXiv preprint
arXiv:1810.06553.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic Differentiation in pytorch.
In NIPS-W.

Juan Pavez, Hector Allende, and Hector Allende-Cid.
2018. Working memory networks: Augmenting
memory networks with a relational reasoning mod-
ule. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 1000–1009.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

Julien Perez and Fei Liu. 2017. Dialog state tracking,
a machine reading approach using memory network.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 305–314.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 2227–2237.

Adam Santoro, Ryan Faulkner, David Raposo, Jack
Rae, Mike Chrzanowski, Theophane Weber, Daan
Wierstra, Oriol Vinyals, Razvan Pascanu, and Tim-
othy Lillicrap. 2018. Relational Recurrent Neural
Networks. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pages
7299–7310.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017a. Bidirectional Atten-
tion Flow for Machine Comprehension. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017b. Query-Reduction Networks for
Question Answering. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

R. K. Srivastava, K. Greff, and J. Schmidhuber. 2015.
Highway networks. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-To-End Memory Networks. In Proceed-
ings of the Advances in Neural Information Process-
ing Systems (NeurIPS), pages 2440–2448.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the Inception Architecture for Computer Vision.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
2818–2826.

Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih,
Antoine Bosselut, and Peter Clark. 2018. Reasoning
about actions and state changes by injecting com-
monsense knowledge. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

451

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen,
Antonio Torralba, Raquel Urtasun, and Sanja Fidler.
2016. MovieQA: Understanding Stories in Movies
Through Question-Answering. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4631–4640.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), pages
5998–6008.

Hai Wang, Takeshi Onishi, Kevin Gimpel, and David
McAllester. 2017. Emergent predication structure
in hidden state vectors of neural readers. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP, pages 26–36, Vancouver, Canada. As-
sociation for Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards AI-Complete
Question Answering: A Set of Prerequisite Toy
Tasks. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory Networks. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na-
zli Ikizler-Cinbis. 2018. RecipeQA: A Challenge
Dataset for Multimodal Comprehension of Cook-
ing Recipes. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Yummly. 2015. Kaggle Whats Cooking? https:
//www.kaggle.com/c/whats-cooking/data.
[Accessed: 2018-05-31].

https://www.kaggle.com/c/whats-cooking/data
https://www.kaggle.com/c/whats-cooking/data

