@inproceedings{sakuma-yoshinaga-2019-multilingual,
title = "Multilingual Model Using Cross-Task Embedding Projection",
author = "Sakuma, Jin and
Yoshinaga, Naoki",
editor = "Bansal, Mohit and
Villavicencio, Aline",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/K19-1003/",
doi = "10.18653/v1/K19-1003",
pages = "22--32",
abstract = "We present a method for applying a neural network trained on one (resource-rich) language for a given task to other (resource-poor) languages. We accomplish this by inducing a mapping from pre-trained cross-lingual word embeddings to the embedding layer of the neural network trained on the resource-rich language. To perform element-wise cross-task embedding projection, we invent locally linear mapping which assumes and preserves the local topology across the semantic spaces before and after the projection. Experimental results on topic classification task and sentiment analysis task showed that the fully task-specific multilingual model obtained using our method outperformed the existing multilingual models with embedding layers fixed to pre-trained cross-lingual word embeddings."
}
Markdown (Informal)
[Multilingual Model Using Cross-Task Embedding Projection](https://preview.aclanthology.org/fix-sig-urls/K19-1003/) (Sakuma & Yoshinaga, CoNLL 2019)
ACL