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Abstract

This paper describes the systems submit-
ted by IIT (BHU), Varanasi/IIIT Hyderabad
(IITBHU–IIITH) for Task 1 of CoNLL–
SIGMORPHON 2018 Shared Task on Uni-
versal Morphological Reinflection (Cotterell
et al., 2018). The task is to generate the in-
flected form given a lemma and set of morpho-
logical features. The systems are evaluated on
over 100 distinct languages and three different
resource settings (low, medium and high). We
formulate the task as a sequence to sequence
learning problem. As most of the characters
in inflected form are copied from the lemma,
we use Pointer-Generator Network (See et al.,
2017) which makes it easier for the system
to copy characters from the lemma. Pointer-
Generator Network also helps in dealing with
out-of-vocabulary characters during inference.
Our best performing system stood 4th among
28 systems, 3rd among 23 systems and 4th
among 23 systems for the low, medium and
high resource setting respectively.

1 Introduction

Morphological Inflection is the process of inflect-
ing a lemma according to a set of morphologi-
cal features so that the lemma becomes in accor-
dance with other words in the sentence. It is useful
for alleviating data sparsity, especially in morpho-
logically rich languages during Natural Language
Generation. For example, Minkov et al. (2007)
translate words from the source language to lem-
mas in the target language and then use Morpho-
logical Inflection as a post-processing step to make
the words of the output sentence in agreement with
each other. Not only their approach reduces the
data sparsity by decreasing the number of candi-
date words while translating, it also gives better
results.

∗This research was conducted during the authors intern-
ship at IIIT Hyderabad.

CoNLL–SIGMORPHON 2018 Shared Task on
Universal Morphological Reinflection consisted of
two tasks. Participants could compete in either or
both of the tasks. We participated in Task 1 only.
The task was to build a system which could inflect
a lemma given a set of morphological tags. The
systems were evaluated on over 100 distinct lan-
guages, out of which 10 were surprise languages.
An example showing input and the expected out-
put of the system is given below.

(touch,V;V.PTCP;PRS)→ touching

To assess the system’s ability to generalize in dif-
ferent resource settings, three varying amounts of
labeled training data (low, medium, high) were
given. The systems were evaluated separately for
each language and the three data quantity con-
ditions. Accuracy (the fraction of correctly pre-
dicted forms) and the average Levenshtein dis-
tance between the prediction and the truth across
all predictions were used as metrics. An aggre-
gated performance measure separate for each of
the resource setting was obtained by averaging the
results for individual languages.

Morphological Inflection is accomplished by
different morphological processes such as prefixa-
tion, infixation, suffixation (attaching bound mor-
pheme in front, within and at the end of stem re-
spectively) and ablaut depending on the language.
As the systems were evaluated on over 100 dis-
tinct languages, we were motivated to use neural
network based approaches because they do not re-
quire any manual feature engineering. But neu-
ral networks require a lot of training data to work.
We try to address this challenge by designing neu-
ral network architectures which work well even on
the low resource setting of the task.

Our system is based on attention based encoder-
decoder models (Bahdanau et al., 2014). The
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Figure 1: Neural network architecture for our system. The two encoders are shown at the top, while the decoder is
shown at the bottom. At each time step, the decoder computes attention distribution over both the lemma and the
tags separately. Attention mechanism is shown by the dotted lines (darker colour corresponds to more weight). A
scalar - generation probability pgen ∈ [0, 1] (shown as the square, the lighter the colour the less the value) is also
calculated at each time step, which corresponds to how likely a character will be generated from the vocabulary
instead of a character being copied from the lemma.

lemma and the tags are encoded using two sepa-
rate encoders. While decoding, the decoder reads
relevant parts of the lemma and the tags using at-
tention mechanism. As most of the characters in
the inflected form are copied from the lemma, it is
necessary to design a system with strong tendency
to copy. We use Pointer-Generator Network (See
et al., 2017) which facilitates copying of charac-
ters of lemma and tackles the problem of out-of-
vocabulary tokens during prediction. Compared
to other similar performing systems, our system is
trained end-to-end, doesn’t require data augmen-
tation techniques and uses soft attention over hard
monotonic attention which makes it more flexible.

Our best performing system outperforms the
baseline by 14.21%, 22.41% and 19.13% for the
low, medium and high resource settings respec-
tively. It stood 4th among 28 systems, 3rd among
23 systems and 4th among 23 systems for the low,
medium and high data conditions respectively.

The remainder of this paper is organized as fol-
lows. We present prior work on Morphological In-
flection in Section 2. We describe our system in
Section 3. The results of the shared task are pre-
sented in Section 4. In Section 5, we present ab-
lation studies and discuss the contribution of the
specific design decisions we made to the perfor-
mance of our systems. We conclude the paper with
Section 6.

2 Background

Traditional approaches for morphological inflec-
tion involve crafting hand-engineered rules. Al-
though these rules offer high accuracy, they are

very expensive to create.
Machine learning based approaches treat mor-

phological inflection as a string transduction task
(Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015). These
approaches extract rules automatically from the
data, but they still require language specific fea-
ture engineering.

Neural network based approaches successfully
solve this problem. These approaches require
no feature engineering and the same architecture
works for different languages. Faruqui et al.
(2016) were the first to formulate morphological
inflection as neural sequence to sequence learn-
ing problem (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2014). Kann and Schütze
(2016) improved on their approach by using a sin-
gle model instead of separate models for each mor-
phological feature. They fed morphological tags
into the encoder along with the sequence of char-
acters of lemma. They also used attention mecha-
nism (Bahdanau et al., 2014). Aharoni and Gold-
berg (2017) present an alternative to the soft at-
tention in form of hard monotonic attention which
models the almost monotonic alignment between
characters in lemma and the inflected form.

The best performing system (Makarov et al.,
2017) of the previous edition of this shared task
extended the hard monotonic attention model of
Aharoni and Goldberg (2017) with a copy mech-
anism (HACM model). To deal with low training
data especially in the low and medium resource
settings, some teams used data augmentation tech-
niques (Kann and Schütze, 2017; Bergmanis et al.,
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2017; Silfverberg et al., 2017; Zhou and Neubig,
2017; Nicolai et al., 2017).

3 System Description

In this section, we describe our system in de-
tail. We report the neural network architecture, the
training process, the hyperparameters and our sub-
missions.

3.1 Neural network architecture
Our neural network architecture is based on
Pointer-Generator Network (See et al., 2017) with
some subtle differences.

Characters of the lemma ci along with the ad-
ditional start and stop characters are fed one by
one into a bidirectional LSTM encoder producing
a sequence of hidden states hli . Similarly, using a
separate bidirectional LSTM encoder, the tags tgi
are encoded and another sequence of hidden states
htgi is obtained.

We use a unidirectional LSTM as the decoder.
The decoder’s hidden state si is initialised by ap-
plying an affine transformation on the concatena-
tion of the last hidden states of the lemma and the
tag encoders. As the input and output sequences
have different semantics, this affine transforma-
tion gives the model the ability to learn transfor-
mation of semantics from input to output (Faruqui
et al., 2016).

s0 =Winitial[hlN ;htgN ] + b (1)

While decoding, at each time step t, the decoder
computes an attention distribution over the lemma
and the tag separately denoted as atl and attg (Bah-
danau et al., 2014).

etli = vT tanh(Whl
hli +Wslst−1 + bl) (2)

ettgi = vT tanh(Whtghtgi +Wstgst−1 + btg)

(3)

atl = softmax(etl) (4)

attg = softmax(ettg) (5)

The context vectors h∗l and h∗tg are computed as
the weighted sum over the encoder hidden states
hli and htgi with the attention distribution mass atl
and attg as weights.

h∗lt =
∑

i

atlihli (6)

h∗tgt =
∑

i

attgihtgi (7)

The combined context vector is obtained by sim-
ply concatenating the lemma and the tag context
vector.

h∗t = [h∗lt ;h
∗
tgt

] (8)

The combined context vector h∗t and the embed-
ding of character predicted at the previous time
step, yt−1 (while training to speed up convergence
we use the ground truth label y∗t−1 instead) is given
as input to the decoder. At the first time step, start
character is given as input in place of yt−1.

st = f(st−1, h∗t , yt−1) (9)

where f is a nonlinear function.
A probability distribution over the characters in

the vocabulary is calculated which corresponds to
how likely will a particular character be generated
(if a character is generated at all).

Pvocab = softmax(V [st;h
∗] + b) (10)

At each time step, a generation probability
pgen ∈ [0, 1] is calculated. The generation prob-
ability determines if the decoder will generate a
character from the vocabulary or copy a character
from the lemma.

pgen = σ(whh
∗
t + wsst + wyyt−1 + b) (11)

Note that here pgen is calculated using yt−1
(the embedding of output produced at the previ-
ous time step) instead of the decoder input xt as in
See et al. (2017).

The probability of predicting a character c is
computed as the sum of probability of generating
c weighted by the generation probability pgen and
the total attention distribution over c weighted by
the probability of copying it (1− pgen) .

P (c) = pgenPvocab(c)+(1−pgen)
∑

i:ci=c

atli (12)

The decoder keeps predicting characters until the
stop character is predicted or a fixed number of
time steps are reached.

3.2 Training

We use negative log likelihood to compute the
loss. The loss for time step t, where c∗t is the target
character is given by,

losst = − logP (c∗t ) (13)
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low medium high
embedding size 100 100 300

hidden units 100 100 100
dropout probability (p) 0.5 0.5 0.3

initial epochs (e1) 300 80 60
extended epochs (e2) 100 20 10

Table 1: Hyperparameters for low, medium and high
resource settings.

The loss for the overall sequence is,

loss =
1

T

T∑

t=0

losst (14)

We use Adam Optimiser (Kingma and Ba,
2014) with initial learning rate 0.001 and batch
size 32 to train the neural network. To deal with
exploding gradient problem, we clip the norm
computed over all the gradients together to 3. We
apply dropout (Srivastava et al., 2014) with prob-
ability p over embeddings and the encoder hidden
states.

We use early stopping to prevent overfitting. A
portion of the development set is used as the val-
idation set. After each epoch, performance on
validation set is calculated. Initially the model
is trained on e1 epochs. If the highest perfor-
mance on validation set is obtained within e2 re-
cent epochs, the model is further trained for e2
epochs. This goes on until performance on vali-
dation set stops improving.

Single layer LSTMs were used as encoders and
decoders to reduce number of parameters. Opti-
mal size of embeddings and the number of hidden
units in LSTMs were determined based on the per-
formance of the model on a subset of languages in
development set.

The values for hyperparameters p, e1, e2, em-
bedding size and hidden units of LSTM are given
in Table 1.

We used PyTorch for implementing the net-
work. The code for the system is available at
https://github.com/abhishek0318/
conll-sigmorphon-2018.

3.3 Submissions
We made a total of two submissions. For the first
submission, we trained only one system for each
language and data resource setting pair. We used
ensembling technique for the second submission.
We trained 5, 3 and 1 system(s) for each language

System 1 System 2 Baseline
low 49.79% 52.60% 38.20%

medium 82.90% 84.19% 61.78%
high 94.43% 94.43% 75.30%

Table 2: Average accuracy of the system on the test
set over all the languages for low, medium and high
resource settings respectively.

in low, medium and high data resource settings re-
spectively. Their predictions were combined using
hard voting.

4 Results

Average accuracy of the system over all the lan-
guages in a data resource setting is presented in
Table 2.

Our best performing system outperforms the
baseline by very large margins - 14.21%, 22.41%
and 19.13% for the low, medium and high resource
settings respectively.

We observe that using ensembling technique (in
the second submission) gives a boost of few per-
centage points in the accuracy over the first sub-
mission, where ensembling is not used.

5 Ablation Studies

In this section, we investigate how difference sys-
tem design choices influenced the performance of
the system. As reasonable performances were ob-
tained for medium and high resource settings in
previous editions of the shared task, we focus our
attention to the low resource setting and compare
models on this setting.

5.1 Pointer Generator Network
We examine the performance gain obtained by
using Pointer-Generator Network, the essence of
our system. We compare the performance of
a simple attention based neural encoder-decoder
model with and without using ideas from Pointer-
Generator Network.

Consider the architecture proposed by Kann and
Schütze (2016) for the task of morphological in-
flection. The architecture is based on simple atten-
tion based encoder-decoder model. The source se-
quence si consists of the characters of the lemma
followed by the tags.

We include ideas from Pointer-Generator Net-
work into this model. At each time step, the de-
coder calculates generation probability pgen (See

108



et al., 2017). The network uses the computed at-
tention distribution to determine which character
from the lemma it should copy. Because there is
only a single encoder, the attention distribution is
over both the lemma and the tags. The tags there-
fore have some attention over them. To use Equa-
tion 12, we must normalise the attention weights
of the characters, so that we have a new attention
distribution over the set of characters.

P (c) = pgenPvocab(c) + (1− pgen)
∑

i:si=c a
t
i∑

i:si∈C a
t
i

(15)
We use modified form of Equation 12 as shown
above to calculate P (c). Here C is the set of char-
acters.

For the same hyperparameters, the architecture
used in Kann and Schütze (2016) gives 21.99%
average accuracy as compared to the architecture
including ideas from Pointer-Generator Network,
which gives 44.02% average accuracy tested on
development set over all the languages for low
resource setting. Thus using Pointer Generator
Network increases the performance of the system
tremendously for low resource setting.

5.2 Separate Encoder for Tags

We investigate the benefit of using a separate en-
coder for the tags, instead of encoding them using
a same encoder as in Kann and Schütze (2016).

Consider the neural network architecture with
two separate encoders for the lemma and the tags.
At each timestep while decoding, attention distri-
bution is computed over the lemma. The last hid-
den state of the tag encoder is used as the represen-
tation of the set of tags. It along with the context
vector of the lemma is fed to the decoder at each
time step. We compare the performance of this
architecture, to the architecture described in Sec-
tion 5.1 (which uses single encoder for the lemma
and tags and Pointer-Generator Network). The ar-
chitecture with a single encoder obtains 44.02%
average accuracy, while the one with two separate
encoders achieves 48.18% average accuracy tested
on the development set for low resource setting.

A possible explanation for the difference in the
performance is that the lemma and the tags are
completely separate entities and a single encoder
can’t encode them correctly. We were motivated
to represent the tags using embeddings as embed-
dings have more representational power compared
to zeros and ones in case of one hot encoding. As

the number of tags vary for each example, using
LSTM to encode them seemed apt. Note that the
representation obtained using this approach is not
order invariant. Using order invariant representa-
tions (Vinyals et al., 2016; Zaheer et al., 2017) is
left as future work.

5.3 Attention over Tags
We inspect whether using attention over the se-
quence of tags as compared to using a fixed vec-
tor representation gives better results. We consider
the architecture introduced in Section 5.2. Instead
of using last hidden state of the encoder to rep-
resent the tags, we use attention over tags too and
compare the performance. Note this is same archi-
tecture we described in 3.1. Using attention over
tags leads to average accuracy of 49.08% as com-
pared to 48.18% on the development set for low
resource setting.

This can explained as by using attention mech-
anism, the model doesn’t need to compress the in-
formation of all the tags into a single vector. It can
attend to a specific tag based on the decoder state.

5.4 Hierarchical Attention
We investigate if using Hierarchical Attention (Li-
bovický and Helcl, 2017) instead of just concate-
nating the two context vectors for lemma and the
tags as done in Equation 8 proves advantageous.
Libovický and Helcl (2017) proposed Hierarchi-
cal Attention technique for combining the context
vectors in case of multiple source sequences.

ah = σ(v tanh(wh∗
l
h∗l + wh∗

tg
h∗tg + wsst + b))

(16)

h∗t = ahh
∗
lt + (1− ah)h∗tgt (17)

After computing the individual context vectors, a
scalar ah ∈ [0, 1] is calculated. This scalar cor-
responds to how the attention should be divided
between the lemma and the tag. The combined
context vector is obtained by taking the weighted
average, as shown above.

Compared to the concatenating the context vec-
tors (as done in our submission), using hierarchi-
cal attention gives worse results (46.60% average
accuracy as compared to 49.08% average accuracy
on development set for low resource setting). This
is possibly because of the increase in number of
parameters to learn and the additional non lineari-
ties such as sigmoid and tanh which lead to van-
ishing gradient problem.
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6 Conclusion

In this paper, we described IITBHU–IIITH sys-
tem for Task 1 of CoNLL–SIGMORPHON 2018
Shared Task. Our system is one of the top per-
forming systems in this edition of the shared task
and beats the baseline by large margins. Even
though our approach was completely based on
neural networks, our system works very well for
low resource setting.

We conclude that neural network architectures
with explicit copying mechanism (like Pointer-
Generator Network) perform well in Morpholog-
ical Inflection task even on low resource setting.
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