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Abstract
This paper presents the submissions by
the University of Zurich to the CoNLL–
SIGMORPHON 2018 Shared Task on Univer-
sal Morphological Reinflection. Our system is
based on the prior work on neural transition-
based transduction (Makarov and Clematide,
2018b; Aharoni and Goldberg, 2017). Unlike
the prior work, we train the model in a fully
end-to-end fashion—without the need for an
external character aligner—within the frame-
work of imitation learning. In the type-level
morphological inflection generation challenge
(Task I), our five-strong ensemble outperforms
all competitors in all three data-size settings.
In the token-level inflection generation chal-
lenge (Task II), our single model achieves the
best results on three out of four sub-tasks that
we have participated in.

1 Introduction

The CoNLL–SIGMORPHON 2018 Shared Task
on Universal Morphological Reinflection (Cot-
terell et al., 2018) focuses on inflection generation
at the type level (Task I) and in context (Task II).
Both tasks feature three settings depending on
the maximum number of training examples: low,
medium, and high. The team from the University
of Zurich has taken part in both tasks with sub-
missions featuring neural transition-based trans-
ducers (Aharoni and Goldberg, 2017; Makarov
and Clematide, 2018b). The model transduces a
string by a sequence of traditional character edit
operations. The neuralized transducer, which con-
ditions edits on the entire input string and cap-
tures unbounded dependencies in the output, has
proven very effective in the past editions of the
SIGMORPHON shared task (Aharoni et al., 2016;
Makarov et al., 2017). Typically, this model is
trained by maximizing the likelihood of gold ac-
tion sequences that come from a separate charac-
ter aligner. This year, we train with an imitation

learning method (Makarov and Clematide, 2018a)
that enforces optimal alignment in the loss and
additionally supports action-space exploration and
the optimization of a task-specific objective. Our
method entirely eliminates the need for a char-
acter aligner and results in substantially stronger
models, at the expense of slight increase in train-
ing time. The resulting models evaluate favorably
on both CoNLL–SIGMORPHON 2018 tasks. On
Task I, our five-strong ensemble uzh-02 outper-
forms the nearest competitor by over 1% absolute
accuracy in the high setting (24.4% error reduc-
tion) and over 2% absolute in the medium setting
and 4% absolute in the low setting (13.9% and
8.6% error reduction, respectively). The larger
ensemble uzh-01 further improves the result
slightly in the high and medium settings (1% and
2% error reduction, respectively). For Task II,
we submit a single model to only the low and
medium settings. The single model dominates the
low setting, being also the only system that beats
the predict-the-lemma baseline. The model comes
second in the track 1 medium setting with almost
4% absolute accuracy behind the winner (8.5% er-
ror increase), and is the best in the track 2 medium
setting with almost 4% absolute above the runner-
up (6.7% error reduction).

2 Task description

The now classic Task I requires mapping a
lemma form (e.g. “Schlüssel” meaning “key” in
Swiss German) to an inflected form (“Schlüssle”)
given a morpho-syntactic description (N;DAT;PL).
The new Task II requires mapping a lemma
(“Schlüssel”) to an inflected form (“Schlüssle”)
given sentential context (“Du muesch de
Sorg gäh.” / “You need to take care of the keys.”).

This year’s edition of Task I features an un-
precedented 102 languages. As in 2017, the low
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setting offers just 100 training samples per lan-
guage, and it is at most 1,000 and 10,000 samples
in the medium and high settings, respectively.

Task II features six Indo-European languages
(German, English, Swedish; Spanish, French;
Russian) and one Uralic language, Finnish.
Track 1 of Task II additionally provides the
morpho-syntactic specifications of all context
words.

3 State of the Art

Over the past two years, type-level inflection
generation in the high setting has been dom-
inated by general sequence-to-sequence models
(seq2seq) with soft attention (Kann and Schütze,
2016; Bergmanis et al., 2017). Neuralized coun-
terparts of traditional transition-based transducers
have proven highly competitive, being particularly
effective in lower-resource settings (Aharoni et al.,
2016; Makarov et al., 2017). Inflection generation
in context is a novel SIGMORPHON challenge
and, generally, a less studied problem. Recently,
Wolf-Sonkin et al. (2018) propose a context-aware
deep generative graphical model that generates se-
quences of inflected words.

4 Methods

Our model is a version of the transition-
based transducer with a designated copy action
(Makarov and Clematide, 2018b). The model ed-
its the lemma into the inflected form by a sequence
of single-character edit actions (DELETE, COPY,
INSERT(c) for any output character c). Through
the use of a recurrent neural network, the choice
of edit is conditioned on the globally contextual-
ized representation of an input character and the
full history of edits. Concretely, at timestep t, the
probability distribution over edits at is computed
with a softmax classifier:

P (at | a<t,x) = softmax
(
W · st + b

)
, (1)

where W and b are classifier weights and st is
the output of the long short-term memory cell
(Hochreiter and Schmidhuber, 1997, LSTM):

st = LSTM(ct−1,
[
E(at−1);hi; f

]
). (2)

Vector ct−1 denotes the previous hidden state,
E(at−1) is the embedding of the previous edit, f
is the embedding of the morpho-syntactic descrip-
tion (MSD), and hi is the encoding of an input

character xi with a bidirectional LSTM (Graves
and Schmidhuber, 2005). Given the set {fh}Hh=1

of all morpho-syntactic features seen at training,
we compute the embedding f of an MSD as a
concatenation of individual feature embeddings
[F (f1); . . . ;F (fH)] where we use a designated
embedding F (0) instead of F (fh) if fh does not
occur in the MSD. Also, we use the same embed-
ding for input character c and action INSERT(c).

Our submission differs from the previous work
in the way we train this model.

4.1 Task I: Type-level Inflection Generation

The transducer is typically trained to maximize
the conditional likelihood of a gold edit action
sequence given a lemma (Aharoni and Goldberg,
2017). Gold actions are generated by a charac-
ter alignment algorithm, such as minimal edit dis-
tance (Levenshtein, 1966), applied to lemma-word
pairs. The performance of the transducer, there-
fore, hinges on the quality of character alignments
that, in turn, might depend on the amount of train-
ing data (e.g. if we employ a statistical alignment
model such as a Bayesian nonparametric aligner).
On the one hand, it is unsatisfactory to have to
choose aligners for different settings. On the other,
multiple edit sequences are often equally likely,
and yet the choice of a single gold sequence does
not depend on the MSD. This leads to the learning
of a suboptimal transducer.

Our solution, therefore, is to remove the aligner
entirely and instead optimize a sequence-level loss
that enforces optimal alignment. Concretely, our
loss is a weighted sum of (i) the minimal edit dis-
tance between the target word y and prediction
ŷ and (ii) the cost of the sequence of edits from
lemma x to prediction ŷ:

`(a,x,y) = β distance(y, ŷ) + cost(a) (3)

The first term is the task objective. The sec-
ond term pushes the model to achieve the objec-
tive with the least number of edits. To compute
the terms, we use unit costs for DELETE and IN-
SERT(c) for any output character c and zero cost
for COPY. β ≥ 1 is a penalty for unit distance.

While there exist many techniques that mini-
mize a non-differentiable loss, most of them re-
quire initialization with a pretrained model (Ran-
zato et al., 2016; Bahdanau et al., 2017; Shen
et al., 2016). They assume that at each specific
timestep, the gold transition is unknown. Training
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signal comes from the entire sequence of transi-
tions, which is typically too sparse for a cold start
(Leblond et al., 2018). This assumption is not
valid for morphological string transduction, and
it is easy to design an efficient procedure that re-
turns edits that result in the lowest sequence-level
loss (assuming that all future transitions are, too,
selected optimally). Specifically, such a proce-
dure should return an edit that leads to the com-
pletion of the suffix of target y using a transi-
tion sequence with the lowest edit cost. For ex-
ample, if the partial prediction ŷ for the lemma-
word pair (“Schlüssel”, “Schlüssle”) is “Schlüss”
and the model attends to x6 = e, the procedure
returns DELETE. Using this technique, we collect
per-timestep losses that reflect the impact of single
edits on the sequence-level loss.

Our training method is thus an instance of im-
itation learning (Daumé III et al., 2009; Ross
et al., 2011; Chang et al., 2015), also familiar
from transition-based dependency parsing (Gold-
berg and Nivre, 2012). For the submission, we
train the model by maximizing the marginal log-
likelihood (Riezler et al., 2000; Goldberg, 2013;
Ballesteros et al., 2016) with a variant of stochas-
tic gradient ascent:

L(x,y,Θ) =
m∑

t=1

log
∑

a∈At

P (a |a<t,x,Θ) (4)

Θ are the model parameters andAt is the set of op-
timal edits at timestep t. To train with exploration,
which addresses the exposure bias, we use a roll-in
schedule and model roll-outs (Chang et al., 2015).
In the roll-in phase, the next edit at+1 is either
sampled uniformly at random from the set At of
optimal edits (expert roll-in) or from the current
model’s distribution over valid edits (model roll-
in). This choice is controlled by a Bernoulli ran-
dom variable that depends on the training epoch
η. We use a roll-in schedule that gradually adds
sampling from the model as training proceeds. In
the roll-out phase, we estimate the future effect
of some next action at+1 on the sequence-level
loss l(a,x,y) by either using the optimal proce-
dure outlined above (expert roll-out) or running
the model for the rest of the input (model roll-out).
Again, this choice is controlled by a Bernoulli ran-
dom variable. The purpose of β from Eq. 3 is to
cut down the number of expensive model roll-outs:
In case at+1 results in accuracy error (e.g. by in-
serting a letter that does not occur in the target y),

Hyperparameter Value
char. & action embedding (E) 100
feature embedding (F ) 20
context char. embedding (Task II) 20
context feat. embedding (Task II) 10
batch size 1
epochs / patience (high) 30 / 5
epochs / patience (medium) 50 / 15
epochs / patience (low) 60 / 20
optimization ADADELTA
β 5
roll-in k

k+exp(η/k) , k = 12

roll-out 0.5
beam width 4

Table 1: Model hyperparameters.

we set the sequence-level loss associated with this
edit to β.

The model hyperparameters and optimization
details are given in Table 1.

4.2 Task II: Inflection Generation in Context

Our submission involves a minor change to the
model described above. Similar in spirit to the
baseline of Task II, we compress the immediate
context into context vector g and use it in place
of the feature vector. For track 2 of Task II, the
context vector is a concatenation of the character
LSTM encodings of the words to the immediate
right and left. For track 1 of Task II, the con-
text vector also includes the embeddings of their
MSDs, which we compute just as the feature vec-
tor f in the type-level model. We use smaller di-
mensions in the computation of context vectors
(Table 1). We also considered larger context win-
dows. For French and Swedish in the medium set-
ting, our submission uses as context two words to
the left and two words to the right since we ob-
serve substantial gains in accuracy over the two-
word context window.

Following the baseline, we train on verbs,
nouns, and adjectives for track 1 and all words
paired with lemmas for track 2. We do not ex-
ploit any knowledge of the development and test
sets1 and assume that test sentences contain mul-
tiple gaps as in the development set. We do, how-
ever, use the fact that the official evaluation script
ignores case distinctions. We lowercase all the

1At least for some languages (e.g. Russian and English),
the development and test sets differ in the types of lexical
categories to be predicted.
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Task I
uzh-01 uzh-02 # avg baseline compet.

development set
H 96.18 96.29 10 94.98 78.12 –
M 87.60 87.87 12 85.66 63.05 –
L 57.52 58.30 15 54.73 38.81 –

test set
H 96.00 95.97 – 77.42 94.66
M 86.64 86.38 – 63.53 84.19
L 57.18 57.21 – 38.89 53.22

Table 2: Overview of Task I results. H, M, L=high,
medium, low settings; #=number of models that the av-
erage is taken over; compet.=nearest competitor.

low-setting data, which results in an improvement.

4.3 uzh-01 and uzh-02: Ensembling
Strategies for Task I

Ensembling addresses the effects of random ini-
tialization when the objective function is not con-
cave (Reimers and Gurevych, 2017). Both our
Task I submissions are majority-vote ensembles.
For each language, we compute 15 models for the
low setting, 12 for the medium setting, and 10 for
the high setting. For each language, run uzh-02
is an ensemble over five models with the highest
development set accuracies. Run uzh-01 is an
ensemble over all computed models. Ties are bro-
ken at random.

The Task II submission contains only a single
model for each language.

All models are decoded with beam search.

5 Results and Discussion

5.1 Task I Results and Discussion

In Task I, our five-model majority-vote en-
semble (uzh-02) outperforms the nearest
competitor in the high setting (mbe-02) by
1.3% absolute accuracy (24.4% error reduction),
and by 2.2% absolute in the medium setting
(iitbhu-iiith-02) and 4.0% in the low set-
ting (ua-08) (13.8% and 8.5% error reduction,
respectively). The larger ensemble uzh-01 is
somewhat stronger in the medium and high set-
tings than uzh-02 and only marginally weaker
in the low setting (Table 2). Ensembling adds
consistent improvement over the single-model
average, which suggests an uncomplicated way to
improve our Task II results.

We also compare the performance of uzh-02
to the highest accuracy achieved for each language

Task II
UZH--01--2 baseline predict lemma compet.

development set
M 1 53.05 41.44

35.09

–
M 2 49.53 33.55 –
L 1 41.75 1.61 –
L 2 38.40 1.58 –

test set
M 1 53.02 44.09

36.62

56.70
M 2 48.88 38.56 45.18
L 1 42.42 1.85 29.86
L 2 38.60 2.19 33.38

Table 3: Overview of Task II results.

and data setting by any of our competitors (Fig-
ure 1).2 In the low setting, uzh-02 is occasion-
ally much behind the best achieved result (e.g. for
Latin, Old English, Hebrew, Norwegian, and Dan-
ish) and behind the average 59.22% with a 4.9%
relative error increase. For low-setting Lithua-
nian, uzh-02 fails to improve over the baseline
whereas ua-08 and ua-06 beat it by a large mar-
gin. In the medium and high settings, there are
very few languages in which uzh-02 is beaten by
a competitor. uzh-02 is more accurate on aver-
age (86.38% vs 84.79% in the medium setting and
95.97% vs 95.43% in the high setting) with error
reductions of 10.4% and 12.0%, respectively.

Thus, with an appropriate training method, the
neural transition-based model can be very strong
in the high data setting. This is in line with
the results for the SIGMORPHON 2016 dataset
in Makarov and Clematide (2018a). On the
other hand, we expect that gains can be made
with the general soft-attention seq2seq model
(or any latent-alignment model), by applying the
same training method or other existing alternatives
(Edunov et al., 2017).

Following a reviewer’s request, we also com-
pare the performance of the new model to that
of the copy-enhanced variant of the hard attention
model trained by maximizing the conditional like-
lihood of separately derived gold edits (Makarov
and Clematide, 2018a, CA). (This model out-
performed all competitors in last year’s low set-
ting.) Due to limited resources, we only com-
pute low-setting CA models. The new model
makes substantial gains: uzh-01 and uzh-02
achieve 8.5% and 7.8% error reduction over their
CA ensemble counterparts (53.21% vs 57.18%
and 53.62% vs 57.21%, respectively). This is con-

2Thus, this does not include the results from run uzh-01.
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Figure 1: Test set accuracies for all languages and data-size settings of Task I: uzh-02 (blue), the best result by
any of the competitors (orange), and the official baseline (green).

sistent with the improvements that Makarov and
Clematide demonstrate with the new model on the
2017 SIGMORPHON shared task data.

5.2 Task II Results and Discussion

We submit one model (UZH--02--1) to only
the medium and low settings. The model comes
second in the medium setting (track 1), be-
hind COPENHAGEN--01--2 with an absolute
accuracy difference of 3.7% and an error in-
crease of 8.5%. It outperforms by 3.7% ab-
solute accuracy and an error reduction of 6.7%
the nearest competitor (COPENHAGEN--01--2)
in the medium setting (track 2) and by 12.6%
(track 1, CUBoulder--02--2) and 5.2% abso-
lute (track 2, NYU--01--2) in the low setting
(17.9% and 7.8% error reduction, respectively)
(Table 3).

Our model is the only system in the low setting
that beats the baseline that makes prediction by
copying over the lemma string (“predict lemma”
in Table 3). Moreover, for individual languages,
it is always as good as or better than this base-
line, with the largest improvements for Spanish
(8.8% and 6.7% absolute accuracy in tracks 1 and
2), French (11.2% in track 1), and Russian (18.6%
and 5.9%).

We take a closer look at the Russian and French
data to better understand the task that our sys-
tem solves. About 98% of the gaps in the Rus-
sian development data correspond to nouns, and it
is 100% verbs for French. We sample uniformly

at random 100 development set examples with
MSDs (track 1) for each language and limit the
context to two words to the left and two words to
the right. A native speaker (with a linguistic back-
ground) attempts to predict the correct word form;
additionally, they indicate whether their prediction
is fully determined by the local context (and the
MSD).

Human accuracy is 78% for Russian and 72%
for French. Local context determines exactly 39%
and 29% of examples. A good choice of the de-
fault prediction can be very effective: The upper
bound formed by predicting based on local con-
text and otherwise copying over the lemma is 57%
for Russian (and 29% for French, which is unsur-
prising since the French infinitive is a relatively
infrequent verb form). Except for long-range de-
pendencies (e.g. conjunction, sequence of tenses),
whose frequency is fairly low for nominal cate-
gories, bridging the gap to human performance
primarily requires the knowledge of the word’s
lexical properties (e.g. being an uncountable
noun) and usage, rather than morpho-syntactic in-
formation about other words in the sentence.

6 Conclusion

We use an imitation learning method to train a
neural transition-based transduction model, which
has previously been shown to be highly compet-
itive on inflection generation and other morpho-
logical tasks and particularly strong in the limited-
resource setting. The new training method elimi-
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nates the need for an external character aligner, in-
tegrating alignment into the training objective and
thereby avoiding error propagation due to subopti-
mal alignments. Further improvement comes from
optimizing the task metric and performing action-
space exploration. Importantly, the new training
method produces very strong models in the high
data-size setting, which has previously been dom-
inated by general soft-attention seq2seq models.
In type-level inflection generation, our five-model
majority-vote ensemble outperforms all competi-
tors in all three data settings. Our single model
submission comes out on top in three out of six
challenges in inflection generation in context.
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Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.
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