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Preface

This volume contains the system description papers associated with the CoNLL-SIGMORPHON shared
task in morphological reinflection held at CoNLL 2018, in Brussels, Belgium. This is the second in a
two-year series of shared tasks that address supervised learning of morphology. The origin of these
two tasks was the SIGMORPHON shared task in 2016, which was subsequently expanded in both
2017 and 2018, called the CoNLL-SIGMORPHON shared tasks. While the first two iterations focused
on learning inflectional patterns from examples, we this year introduced a new task similar to a cloze
test—a format familiar from L2-learner exams—where participants we asked to inflect words in their
sentential context in a morphosyntactically appropriate way.

To support the inflection task 1 this year, we collected and curated inflection table data from 103
languages, representing a typologically and genealogically diverse data set against which to evaluate
performance of the systems. We evaluated the ability to learn to inflect nouns, andjectives, and verbs
from their lemmata (citation forms) into a desired target form.

For task 2, we collected annotated text data for 7 languages from the Universal Dependencies resources,
and matched tokens to their UniMorph inflection tables, so that each word form would be associated
with an inflection table representing all the possible forms of that word. Following this, we annotated
the target words to be completed by learning algorithms with all their plausible grammatically well-
formed variants for fine-grained evaluation.

Both tasks were evaluated under three different training data conditions: low, medium, and high.

A total of 15 teams with members from 17 institutions participated in the shared task with a total of 33
system submissions. Task 1 received 27 submissions and task 2 received 6. Consistent with previous
SIGMORPHON and CoNLL-SIGMORPHON shared task results, neural network models performed
very well in each data condition, including with a very low-resource training set.

The creation of several components in the shared task received support from DARPA I20 in the program
Low Resource Languages for Emergent Incidents (LORELEI). We wish to thank the organizers of
CoNLL 2018 and the parallel Universal Dependencies CoNLL shared task (Multilingual Parsing from
Raw Text to Universal Dependencies) for their support and help. We also want to thank the participants
and other members of the community who actively participated by providing useful commentary,
advice, and feedback on the organization and structure of the tasks.

We hope the data sets, which are now available, will serve as a useful resource to develop further
techniques and research to address various challenges in the learning of morphology.

MANS HULDEN & RYAN COTTERELL, on behalf of the shared task organizers
September 2018
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Judit Ács . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



Conference Program

Wednesday, October 31st, 2018

11:00–11:30 The CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Rein-
flection
Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina
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Abstract

The CoNLL-SIGMORPHON 2018 shared
task on supervised learning of morphological
generation featured data sets from 103 typo-
logically diverse languages. Apart from ex-
tending the number of languages involved in
earlier supervised tasks of generating inflected
forms, this year the shared task also featured
a new second task which asked participants to
inflect words in sentential context, similar to
a cloze task. This second task featured seven
languages. Task 1 received 27 submissions
and task 2 received 6 submissions. Both tasks
featured a low, medium, and high data condi-
tion. Nearly all submissions featured a neu-
ral component and built on highly-ranked sys-
tems from the earlier 2017 shared task. In
the inflection task (task 1), 41 of the 52 lan-
guages present in last year’s inflection task
showed improvement by the best systems in
the low-resource setting. The cloze task (task
2) proved to be difficult, and few submissions
managed to consistently improve upon both a
simple neural baseline system and a lemma-
repeating baseline.

1 Introduction

Some of a word’s syntactic and semantic prop-
erties are expressed on the word form through
a process termed morphological inflection. For
example, each English count noun has both
singular and plural forms (robot/robots,
process/processes), known as the inflected
forms of the noun. Some languages display little
inflection, while others possess a proliferation of
forms. A Polish verb can have nearly 100 inflected
forms and an Archi verb has thousands (Kibrik,
1998).

Natural language processing systems must be
able to analyze and generate these inflected forms.
Fortunately, inflected forms tend to be systemati-
cally related to one another. This is why English

Lang Lemma Inflection Inflected form

en
hug V;PST hugged
spark V;V.PTCP;PRS sparking

es
liberar V;IND;FUT;2;SG liberarás
descomponer V;NEG;IMP;2;PL no descompongáis

de
aufbauen V;IND;PRS;2;SG baust auf
Ärztin N;DAT;PL Ärztinnen

Table 1: Example training data from task 1. Each training
example maps a lemma and inflection to an inflected form,
The inflection is a bundle of morphosyntactic features. Note
that inflected forms (and lemmata) can encompass multiple
words. In the test data, the last column (the inflected form)
must be predicted by the system.

speakers can usually predict the singular form
from the plural and vice versa, even for words they
have never seen before: given a novel noun wug,
an English speaker knows that the plural is wugs.

We conducted a competition on generating in-
flected forms. This “shared task” consisted of two
separate scenarios. In Task 1, participating sys-
tems must inflect word forms based on labeled
examples. In English, an example of inflection
is the conversion of a citation form1 run to its
present participle, running. The system is pro-
vided with the source form and the morphosyntac-
tic description (MSD) of the target form, and must
generate the actual target form. Task 2 is a harder
version of Task 1, where the system must infer the
appropriate MSD from a sentential context. This
is essentially a cloze task, asking participants to
provide the correct form of a lemma in context.

2 Tasks and Evaluation

2.1 Task 1: Inflection
The first task was identical to sub-task 1 from the
CoNLL-SIGMORPHON 2017 shared task (Cot-
terell et al., 2017), but the language selection was
extended from 52 languages to 103. The data

1In this work we use the terms citation form and lemma
interchangeably.
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sets for the overlapping languages between 2017
and 2018 were also resampled and are not iden-
tical. The task consists of morphological genera-
tion with sparse training data, something that can
be practically useful for MT and other downstream
tasks in NLP. Here, participants were given exam-
ples of inflected forms as shown in Table 1. Each
test example asked participants to produce some
other inflected form when given a lemma and a
bundle of morphosyntactic features as input.

The training data was sparse in the sense that
it included only a few inflected forms from each
lemma. That is, as in human L1 learning, the
learner does not necessarily observe any complete
paradigms in a language where the paradigms are
large (e.g., dozens of inflected forms per lemma).2

Key points:

1. The task is inflection: Given an input lemma
and desired output tags, participants had to
generate the correct output inflected form (a
string).

2. The supervised training data consisted of
individual forms (see Table 1) that were
sparsely sampled from a large number of
paradigms.

3. Forms that are empirically more frequent
were more likely to appear in both training
and test data (see §3 for details).

4. Systems were evaluated after training on
102 (low), 103 (medium), and 104 (high)
lemma/MSD/inflected form triplets.

2.2 Task 2: Inflection in Context
The cloze test is a common exercise in an L2 in-
struction setting. In the cloze test, a number of
words are deleted from a text and students are re-
quired to fill in the gaps with contextually plau-
sible forms, often working from the knowledge
about which lemma should be inflected. The sec-
ond task of the morphology shared task presents
two variations of this traditional cloze test in two
tracks specifically aimed at data-driven morphol-
ogy learning.

2 Of course, human L1 learners do not get to observe ex-
plicit morphological feature bundles for the types that they
observe. Rather, they analyze inflected tokens in context to
discover both morphological features (including inherent fea-
tures such as noun gender (Arnon and Ramscar, 2012)) and
paradigmatic structure (number of forms per lemma, number
of expressed featural contrasts such as tense, number, per-
son. . . ).

Solving a cloze test well requires integration
of many types of evidence beyond the pure ca-
pacity to inflect a word on demand. Since our
training sets were gathered from actual textual re-
sources, a good solver that accurately determines
the most plausible form must implicitly combine
knowledge of morphology, morphosyntax, seman-
tics, and pragmatics. Potentially, even textual reg-
ister and genre may affect the choice of correct
form. Hence, the task is both intrinsically inter-
esting from a linguistic point of view and carries
potential to support many downstream NLP appli-
cations.

TRACK 1:

TRACK 2:

the/DT be/AUX+PRES+3PL bark/V+V.PTCP
The ___ are barking

dog

The ___ are barking.
dog

Figure 1: Test examples for tracks 1 and 2 in the cloze task.
The objective is to inflect the target lemma dog in a contextu-
ally appropriate form, which in this case is dogs. Competi-
tors observe context word forms, their lemmata and MSDs in
track 1, whereas they only observe the context word forms in
track 2.

As shown in Figure 1, both tracks supply the
lemma of the omitted target word form and ask
the competitors to inflect the lemma in a contex-
tually appropriate way. In the first track, the com-
petitors additionally see the lemmata and MSDs
for all context words, whereas in the second track
only the context words are available. In contrast to
task 1, the MSD for the target lemma is never ob-
served in either the first or the second track. This
means that successful inflection requires the com-
petitors to identify relevant contextual cues.

TRACK 1:

TRACK 2:

the/DT be/AUX+PRES+3PL bark/V+V.PTCP
The dogs are barking

dog/N+PL

The dogs are barking.
dog

Figure 2: Training examples for tracks 1 and 2 in the cloze
task. Track 1 supplies a full morphosyntactically annotated
corpus as training data, whereas track 2 only supplies lem-
mata for a number of selected training tokens. Remaining
tokens lack annotation altogether.

As training data, the first track supplies a
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full morphosyntactically annotated corpus of sen-
tences: every token is annotated with a lemma and
MSD as shown in Figure 2. In the second track,
the training data identifies a number of target to-
kens. Lemmata are supplied for these tokens but
the remaining tokens receive no MSD annotation.

Similarly to task 1, both tracks in task 2 pro-
vide three different training data settings provid-
ing varying amounts of data: low (ca. 103 tokens),
medium (ca. 104 tokens) and high (ca. 105 to-
kens). The token counts refer to the total number
of tokens in the training sets. In the first track,
this allows competitors to train their systems on
all available tokens. In the second track, however,
only a number of tokens supply the input lemma
as explained above. Thus, the effective number
of training examples is smaller in the second track
than in the first track. In both tracks, competitors
were restricted to using only the provided training
sets. For example, semi-supervised training using
external data was forbidden.

Key points:

1. The task is inflection in context. Given an in-
put lemma in sentential context, participants
generate the correct inflected output form.

2. Two degrees of supervision are provided. In
track 1, participants see context word forms
and their lemmata, as well as their MSDs.
In track 2, participants only witness context
word forms.

3. The supervised training data, the develop-
ment data, and the test data consist of sam-
pled sentences from Universal Dependencies
(UD) treebanks (Nivre et al., 2017) together
with UD-provided lemmata as well as MSDs,
which were converted to the UniMorph for-
mat, in track 1.

3 Data

3.1 Data for Task 1

Languages The data for the shared task was
highly multilingual, comprising 103 unique lan-
guages. Of these, 52 were shared with the 2017
shared task (Cotterell et al., 2017). As with all
but 5 of the 2017 languages (Khaling, Kurmanji
Kurdish, Sorani Kurdish, Haida, and Basque), the
34 remaining 2018 languages were sourced from
the English edition of Wiktionary, a large multi-

lingual crowd-sourced dictionary containing mor-
phological paradigms for many lemmata.3

The shared task language set is genealogi-
cally diverse, including languages from ∼20 lan-
guage stocks. Although the majority of the lan-
guages are Indo-European, we also include two
language isolates (Haida and Basque) along with
languages from Athabaskan (Navajo), Kartvelian
(Georgian), Quechua, Semitic (Arabic, Hebrew),
Sino-Tibetan (Khaling), Turkic (Turkish), and
Uralic (Estonian, Finnish, Hungarian, and North-
ern Sami) language families. The shared task lan-
guage set is also diverse in terms of morpholog-
ical structure, with languages which use primar-
ily prefixes (Navajo), suffixes (Quechua and Turk-
ish), and a mix, with Spanish exhibiting internal
vowel variations along with suffixes and Geor-
gian using both infixes and suffixes. The language
set also exhibits features such as templatic mor-
phology (Arabic, Hebrew), vowel harmony (Turk-
ish, Finnish, Hungarian), and consonant harmony
(Navajo) which require systems to learn non-local
alternations. Finally, the resource level of the
languages in the shared task set varies greatly,
from major world languages (e.g. Arabic, English,
French, Spanish, Russian) to languages with few
speakers (e.g. Haida, Khaling). Typologically, the
majority of the languages are agglutinating or fu-
sional, with three polysynthetic languages; Haida,
Greenlandic, and Navajo.4

Data Format For each language, the basic data
consists of triples of the form (lemma, feature bun-
dle, inflected form), as in Table 1. The first fea-
ture in the bundle always specifies the core part of
speech (e.g., verb).

All features in the bundle are coded according to
the UniMorph Schema, a cross-linguistically con-
sistent universal morphological feature set (Sylak-
Glassman et al., 2015a,b).

Extraction from Wiktionary For each of the
Wiktionary languages, Wiktionary provides a
number of tables, each of which specifies the
full inflectional paradigm for a particular lemma.
These tables were extracted using a template anno-
tation procedure described in (Kirov et al., 2018).

Within a language, different paradigms may

3https://en.wiktionary.org/ (08-2016 snap-
shot)

4Although, some linguists (Baker, 1996) would exclude
Navajo from the polysynthetic languages due to its lack of
noun incorporation.
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have different shapes. To prepare the shared task
data, each language’s parsed tables from Wik-
tionary were grouped according to their tabular
structure and number of cells. Each group repre-
sents a different type of paradigm (e.g., verb). We
used only groups with a large number of lemmata,
relative to the number of lemmata available for the
language as a whole. For each group, we asso-
ciated a feature bundle with each cell position in
the table, by manually replacing the prose labels
describing grammatical features (e.g. “accusative
case”) with UniMorph features (e.g. ACC). This
allowed us to extract triples as described in the
previous section. The dataset produced by this
process was sampled to create appropriately-sized
data for the shared task, as described in §3.1.5 The
dataset sizes by language are given in Table 2 and
Table 3.

Sampling the Train-Dev-Test Splits. From
each language’s collection of paradigms, we sam-
pled the training, development, and test sets as fol-
lows.6

Our first step was to construct probability distri-
butions over the (lemma, feature bundle, inflected
form) triples in our full dataset. For each triple, we
counted how many tokens the inflected form has
in the February 2017 dump of Wikipedia for that
language. To distribute the counts of an observed
form over all the triples that have this token as its
form, we use the syncretism resolution method of
Cotterell et al. (2018), training a neural network
on unambiguous forms to estimate the distribution
over all, even ambiguous, forms. We then sam-
pled 12,000 triples without replacement from this
distribution. The first 100 were taken as the low-
resource training set for sub-task 1, the first 1,000
as the medium-resource training set, and the first
10,000 as the high-resource training set. Note that
these training sets are nested, and that the highest-
count triples tend to appear in the smaller training
sets.

The final 2,000 triples were randomly shuffled
and then split in half to obtain development and
test sets of 1,000 forms each. The final shuffling
was performed to ensure that the development set
is similar to the test set. By contrast, the devel-
opment and test sets tend to contain lower-count

5Full, unsampled Wiktionary parses are made available at
unimorph.org on a rolling basis.

6These datasets can be obtained from https://
sigmorphon.github.io/sharedtasks/2018/

triples than the training set.7 Note that for lan-
guages that do not have enough triples for this
process, we settle for omitting the higher-resource
training regimes and scale down the other sizes.
Details for all languages are found in Tables 2
and 3.

3.2 Data for Task 2

All task 2 data sets are based on Universal De-
pendencies (UD) v2 treebanks (Nivre et al., 2017).
We used the data sets aimed for the 2017 CoNLL
shared task on Multilingual Dependency Parsing
(Zeman et al., 2017) because those were available
before the official UD v2 data sets.8 For contextual
inflection data sets, we retained only word forms,
lemmata, part-of-speech tags and morphosyntactic
feature descriptions. Dependency trees were dis-
carded along with all other annotations present in
the treebanks.

Task 2 submissions are evaluated with regard to
two distinct criteria: (1) the ability of the system
to reconstruct the original word form in the UD
test set and (2) the ability of the system to find
a contextually plausible form even if the form dif-
fers from the original one. Evaluation on plausible
forms is based on manually identifying the set of
contextually plausible forms for each test exam-
ple. Because of the need for manual annotation,
task 2 covers a more limited set of languages than
task 1. In total, there are seven languages: En-
glish, Finnish, French, German, Russian, Spanish
and Swedish. Token counts for the training, devel-
opment and test sets are given in Table 4.

Data Conversion Some of the UD treebanks re-
quired slight modifications in order to be suitable
for reinflection. In the Finnish data sets, lemmata
for compound words included morpheme bound-
aries, for example muisti#kapasiteetti
‘memory capacity’. The morpheme boundary
symbols were deleted. In the Russian treebanks,

7This is a realistic setting, since supervised training is
usually employed to generalize from frequent words that ap-
pear in annotated resources to less frequent words that do not.
Unsupervised learning methods also tend to generalize from
more frequent words (which can be analyzed more easily by
combining information from many contexts) to less frequent
ones.

8The German 2017 CoNLL UD shared task data set is
problematic: (1) there are many sentence fragments, (2) some
words have complete MSDs while others are lacking MSD al-
together. Therefore, we eventually decided to use the official
v2 UD data sets for the German test data. These problems are
not present in the official UD distribution.
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Language Family Lemmata / Forms High Medium Low Dev Test

Adyghe Caucasian 1666 / 20475 1664/10000 760/1000 99/100 763/1000 749/1000
Albanian Indo-European 589 / 33483 588/10000 375/1000 84/100 377/1000 373/1000
Arabic Semitic 4134 / 140003 3204/10000 832/1000 99/100 807/1000 813/1000
Armenian Indo-European 7033 / 338750 4658/10000 903/1000 98/100 880/1000 900/1000
Asturian Romance 436 / 29797 432/10000 361/1000 90/100 368/1000 365/1000
Azeri Iranian 340 / 8004 340/6488 290/1000 79/100 73/100 81/100
Bashkir Turkic 1084 / 12168 1084/10000 662/1000 94/100 657/1000 651/1000
Basque Isolate 45 / 12663 45/10000 42/1000 24/100 41/1000 43/1000
Belarusian Slavic 1027 / 16113 1027/10000 616/1000 98/100 628/1000 630/1000
Bengali Indo-Aryan 136 / 4443 136/4243 134/1000 65/100 65/100 68/100
Breton Celtic 44 / 2294 44/1983 44/1000 40/100 38/100 39/100
Bulgarian Slavic 2468 / 55730 2133/10000 716/1000 98/100 742/1000 744/1000
Catalan Romance 1547 / 81576 1545/10000 746/1000 95/100 738/1000 738/1000
Classical-Syriac Semitic 160 / 3652 160/2396 160/1000 74/100 70/100 73/100
Cornish Celtic 9 / 469 — 9/346 9/100 9/50 9/50
Crimean-Tatar Turkic 1230 / 7514 1230/7314 704/1000 94/100 95/100 95/100
Czech Slavic 5125 / 134527 3908/10000 848/1000 97/100 848/1000 849/1000
Danish Germanic 3193 / 25508 3137/10000 877/1000 100/100 866/1000 853/1000
Dutch Germanic 4993 / 55467 4161/10000 913/1000 100/100 898/1000 894/1000
English Germanic 22765 / 120004 8367/10000 989/1000 100/100 985/1000 984/1000
Estonian Uralic 886 / 38215 886/10000 587/1000 94/100 553/1000 577/1000
Faroese Germanic 3077 / 45474 2959/10000 857/1000 99/100 852/1000 865/1000
Finnish Uralic 57642 / 2490377 8643/10000 985/1000 100/100 983/1000 987/1000
French Romance 7535 / 367732 5592/10000 936/1000 98/100 948/1000 941/1000
Friulian Romance 168 / 8071 168/7871 168/1000 76/100 79/100 79/100
Galician Romance 486 / 36801 486/10000 421/1000 91/100 421/1000 423/1000
Georgian Kartvelian 3782 / 74412 3537/10000 861/1000 100/100 872/1000 874/1000
German Germanic 15060 / 179339 6797/10000 961/1000 100/100 945/1000 962/1000
Greek Hellenic 10581 / 186663 5130/10000 897/1000 98/100 915/1000 908/1000
Greenlandic Inuit 23 / 368 — 23/268 23/100 21/50 21/50
Haida Isolate 41 / 7040 41/6840 41/1000 40/100 34/100 38/100
Hebrew Semitic 510 / 13818 510/10000 470/1000 95/100 431/1000 453/1000
Hindi Indo-Aryan 258 / 54438 258/10000 252/1000 85/100 254/1000 255/1000
Hungarian Uralic 13989 / 503042 7123/10000 963/1000 100/100 973/1000 978/1000
Icelandic Germanic 4775 / 76945 4115/10000 894/1000 100/100 898/1000 906/1000
Ingrian Uralic 50 / 1099 — 50/999 45/100 30/50 31/50
Irish Celtic 7464 / 107298 5040/10000 906/1000 99/100 913/1000 893/1000
Italian Romance 10009 / 509574 6389/10000 948/1000 100/100 942/1000 944/1000
Kabardian Caucasian 250 / 3092 250/2892 246/1000 81/100 82/100 81/100
Kannada Dravidian 159 / 6402 159/4383 147/1000 54/100 53/100 59/100
Karelian Uralic 20 / 682 — 20/582 20/100 17/50 18/50
Kashubian Slavic 37 / 509 — 37/402 34/100 27/50 28/50
Kazakh Turkic 26 / 357 — 26/257 26/100 22/50 25/50
Khakas Turkic 75 / 1200 — 52/732 44/100 31/50 32/50
Khaling Sino-TIbetan 591 / 156097 584/10000 426/1000 92/100 411/1000 422/1000
Kurmanji Iranian 15083 / 216370 7046/10000 945/1000 100/100 949/1000 958/1000
Ladin Romance 180 / 7656 180/7456 179/1000 80/100 81/100 75/100
Latin Romance 17214 / 509182 6517/10000 943/1000 100/100 939/1000 945/1000

Table 2: Total number of lemmata and forms available for sampling, and number of distinct lemmata and forms present in each
data condition in Task 1. Data permitting, there were 10000,1000, and 100 forms in the High, Medium, and Low conditions,
respectively, and 1000 forms in each Dev and Test set.
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Language Family Lemmata / Forms High Medium Low Dev Test

Latvian Baltic 7548 / 136998 5268/10000 930/1000 99/100 922/1000 923/1000
Lithuanian Baltic 1458 / 34130 1443/10000 632/1000 96/100 664/1000 639/1000
Livonian Uralic 203 / 3987 203/3787 203/1000 71/100 70/100 70/100
Lower-Sorbian Slavic 994 / 20121 993/10000 616/1000 96/100 621/1000 631/1000
Macedonian Slavic 10313 / 168057 6107/10000 951/1000 99/100 943/1000 956/1000
Maltese Semitic 112 / 3584 112/1560 112/1000 68/100 71/100 69/100
Mapudungun Araucanian 26 / 783 — 26/602 26/100 22/50 23/50
Middle-French Romance 603 / 36970 603/10000 480/1000 92/100 491/1000 505/1000
Middle-High-German Germanic 29 / 708 — 29/594 27/100 19/50 22/50
Middle-Low-German Germanic 52 / 1513 — 52/988 43/100 30/50 34/50
Murrinhpatha Australian 29 / 1110 — 29/973 28/100 24/50 24/50
Navajo Athabaskan 674 / 12354 674/10000 489/1000 92/100 491/1000 494/1000
Neapolitan Romance 40 / 1808 40/1568 40/1000 36/100 38/100 37/100
Norman Romance 5 / 280 — 5/180 5/100 5/50 5/50
North-Frisian Germanic 51 / 3204 51/2256 51/1000 42/100 43/100 44/100
Northern-Sami Uralic 2103 / 62677 1977/10000 750/1000 97/100 717/1000 730/1000
Norwegian-Bokmaal Germanic 5527 / 19238 5041/10000 925/1000 100/100 928/1000 930/1000
Norwegian-Nynorsk Germanic 4689 / 16563 4420/10000 922/1000 99/100 903/1000 912/1000
Occitan Romance 174 / 8316 174/8116 173/1000 76/100 81/100 75/100
Old-Armenian Indo-European 4300 / 93085 3413/10000 837/1000 100/100 802/1000 822/1000
Old-Church-Slavonic Slavic 152 / 4148 152/2961 151/1000 78/100 70/100 76/100
Old-English Germanic 1867 / 42425 1795/10000 688/1000 96/100 708/1000 701/1000
Old-French Romance 1700 / 123374 1666/10000 745/1000 96/100 769/1000 722/1000
Old-Irish Celtic 49 / 1078 — 49/851 38/100 27/50 26/50
Old-Saxon Germanic 863 / 22287 861/10000 514/1000 85/100 535/1000 494/1000
Pashto Iranian 395 / 6945 395/6340 289/1000 82/100 77/100 78/100
Persian Iranian 273 / 37128 273/10000 269/1000 82/100 268/1000 267/1000
Polish Slavic 10185 / 201024 5922/10000 935/1000 99/100 938/1000 942/1000
Portuguese Romance 4001 / 305961 3657/10000 905/1000 98/100 868/1000 865/1000
Quechua Quechuan 1006 / 180004 957/10000 515/1000 91/100 492/1000 506/1000
Romanian Romance 4405 / 80266 3351/10000 858/1000 99/100 854/1000 828/1000
Russian Slavic 28068 / 473481 8241/10000 973/1000 100/100 985/1000 977/1000
Sanskrit Indo-Aryan 917 / 33847 917/10000 548/1000 91/100 585/1000 558/1000
Scottish-Gaelic Celtic 73 / 781 — 73/681 57/100 36/50 39/50
Serbo-Croatian Slavic 24419 / 840799 6726/10000 963/1000 99/100 965/1000 945/1000
Slovak Slavic 1046 / 14796 1046/10000 625/1000 95/100 590/1000 633/1000
Slovene Slavic 2535 / 60110 2368/10000 757/1000 99/100 760/1000 793/1000
Sorani Iranian 274 / 22990 263/10000 197/1000 74/100 198/1000 199/1000
Spanish Romance 5460 / 383390 4621/10000 906/1000 99/100 902/1000 922/1000
Swahili Bantu 100 / 10092 100/8800 88/1000 49/100 50/100 42/100
Swedish Germanic 10552 / 78407 6508/10000 952/1000 100/100 954/1000 970/1000
Tatar Turkic 1283 / 7832 1283/7632 736/1000 98/100 95/100 95/100
Telugu Dravidian 127 / 1548 — — 18/61 16/50 16/50
Tibetan Sino-Tibetan 65 / 353 — 63/158 56/100 38/50 38/50
Turkish Turkic 3579 / 275460 2876/10000 821/1000 98/100 849/1000 840/1000
Turkmen Turkic 68 / 810 — 68/710 51/100 35/50 35/50
Ukrainian Slavic 1493 / 20904 1491/10000 722/1000 99/100 745/1000 736/1000
Urdu Indo-Aryan 182 / 12572 182/10000 113/1000 53/100 105/1000 107/1000
Uzbek Turkic 15 / 1260 15/1060 15/1000 15/100 15/100 15/100
Venetian Romance 368 / 18227 368/10000 339/1000 88/100 341/1000 340/1000
Votic Uralic 55 / 1430 55/1230 55/1000 50/100 48/100 47/100
Welsh Celtic 183 / 10641 183/10000 181/1000 78/100 76/100 80/100
West-Frisian Germanic 85 / 1429 85/1078 85/1000 53/100 62/100 61/100
Yiddish Germanic 803 / 7986 803/7356 581/1000 96/100 90/100 93/100
Zulu Bantu 566 / 39607 566/10000 450/1000 90/100 449/1000 443/1000

Table 3: Total number of lemmata and forms available for sampling, and number of distinct lemmata and forms present in each
data condition in Task 1. Data permitting, there were 10000,1000, and 100 forms in the High, Medium, and Low conditions,
respectively, and 1000 forms in each Dev and Test set.
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Language Train Dev Test
low medium high

English 1,009 10,016 100,031 22,509 22,765
Finnish 1,001 10,009 100,003 16,543 15,452
French 1,016 10,004 100,001 28,304 14,992
German 1,005 10,001 79,439 3,752 22,903
Russian 1,003 10,020 75,964 11,292 27,935
Spanish 1,017 10,035 100,000 35,209 27,807
Swedish 1,007 10,009 66,645 7,999 20,808

Table 4: Token counts of the training, development and test
sets for task 2.

Language Dev Test

English 2,489 993
Finnish 1,881 787
French 1,655 491
German 333 989
Russian 1,181 996
Spanish 2,268 713
Swedish 573 940

Table 5: Counts of target lemmata to be inflected in the de-
velopment and test sets for task 2.

all lemmata were written completely in upper case
letters. These were converted to lower case.9

Manual annotation To produce the complete
list of “plausible forms” annotators were given
complete UniMorph inflection tables for the cen-
ter lemma for each sentence and were asked to
check off all forms that are “grammatically plausi-
ble” in the particular context. For example, given
an original sentence We saw the dog, the form
dogs would be contextually plausible and would
be annotated into the test set. For pro-drop lan-
guages and short sentences, it is sometimes the
case that all or most indicative, conditional, and
future forms of a verb are acceptable when the
subject is omitted and agreement is unknown. For
example, consider the Spanish sentence from the
test data:

la mejor de Primera
ser
‘to be’ ‘the’ ‘best’ ‘of’ ‘premier (league)’

Obviously, almost any person, tense, and aspect
of the verb ‘to be’ will be appropriate for this lim-
ited context (serı́a ‘I would be’, fue ‘he/she/it
was’, eres ‘you are’, . . . ). Of course, depend-
ing on the genre of the text, some would be highly

9We used the Python3 function string.lower.

implausible, but the annotation intends to capture
morphosyntactic rather than semantic and prag-
matic felicity.

We had one annotator for each test set, with the
exception of French, in which, due to practical dif-
ficulties in finding a native speaker annotator, we
did not annotate the plausible forms and instead
used the original sentences.

When forming the final test sets, all test exam-
ples with more than 5 contextually plausible word
form alternatives were filtered out. This was done
because a large number of plausible word forms
was deemed to raise the risk of annotation errors.
A threshold of 5 plausible forms was chosen be-
cause it means that all languages have test sets
greater than 700 examples. The test set for French
is smaller but this is not due to manual annotations.

So what happened ?
ADV PRO V

IND
PST
FIN

PUNCT

So what happened ?
ADV PRON VERB

Mood=Ind
Tense=Past
VerbForm=Fin

PUNCT

UD:

UniMorph:

Figure 3: A morphosyntactically annotated sentence from
the original UD treebank for English and the result of an au-
tomatic conversion into the UniMorph annotation schema.

Sampling examples The data sets for each lan-
guage are based on UD treebanks for the given
language. We preserved UD splits into training,
development and test data.

For each UD treebank, we first formed sets
of training, development and test candidate sen-
tences. A sentence was a candidate for the shared
task data set if it contained a token found in the
UniMorph resource for the relevant language; or
more precisely, a token whose word form, lemma
and MSD occur in a same UniMorph inflection ta-
ble.

We limited target tokens to tokens present in the
UniMorph resource in order to facilitate manual
annotation of data sets. In particular, we limited
the set of possible target MSDs to MSDs which
occur in the Unimorph resource. This was nec-
essary to avoid a prohibitively large number of
contextually plausible inflections in certain lan-
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guages. For example, Finnish includes a number
of clitics (ko/kä, kin, han/hän, pa/pä, s,
kaan/kään) which can be appended relatively
freely to word forms. Combinations of clitics are
also possible. This easily leads to hundreds of
word forms which can be contextually plausible.
Restricting the MSDs of a possible output form
to the more limited set of MSDs occurring in the
UniMorph resource made the selection of plausi-
ble forms far more manageable from an annotation
perspective.

Training data sets were formed from candidate
sentences simply by sampling a suitable number
of sentences from the candidate sets in order to
achieve the desired token counts 103, 104, and 105

for the low, medium, and high data settings, re-
spectively. For German and Russian, all candidate
sentences were used in the high data setting, al-
though this was not sufficient to create a training
set of 104 tokens. The training sets for German
and Russian are, therefore, smaller than those for
the other languages. For the development sets, we
used all available candidate sentences for all of the
languages.

For the test data, we first formed a set of can-
didate sentences so that the combined number of
target tokens in the test sets was 1,000.10 Target
tokens in these initial test sets were then manu-
ally annotated with additional contextually plausi-
ble word forms.

MSD conversion Sampling of training, devel-
opment and test examples was based on compar-
ing UD word forms, lemmata and MSDs to equiv-
alents in UniMorph paradigms. Therefore, it was
necessary to convert the morphosyntactic anno-
tation in the UD data sets into UniMorph mor-
phosyntactic annotation. We used deterministic
tag conversion rules to accomplish this. An ex-
ample of a source UD sentence and a target Uni-
Morph sentence is shown in Figure 3.

Since the selection of languages in task 2 is
small and we do not attempt to correct annota-
tion errors in the UD source materials, conver-
sion between UD and UniMorph morphosyntactic
descriptions is generally straightforward.11 How-
ever, UD descriptions are more fine-grained than

10For French, there were only 491 target tokens in the en-
tire UD test data set. Those were used as the test data.

11McCarthy et al. (2018) present more principled and far
more complete work on conversion between the UD and Uni-
Morph resources for the full range of languages at the inter-
section of UD and UniMorph resources.

their UniMorph equivalents. For example, UD de-
notes lexical features such as noun gender which
are inherent features of a lexeme possessed by
all of its word forms. Such inherent features are
missing from UniMorph which exclusively anno-
tates inflectional morphology (McCarthy et al.,
2018). Therefore, UD features which lack corre-
spondents in the UniMorph tagging schema were
simply dropped during conversion.

4 Baselines

4.1 Task 1 Baseline

The baseline system provided for task 1 was based
on the observation that, for a large number of lan-
guages, producing an inflected form from an in-
put citation form can often be done by memoriz-
ing the suffix changes that occur in doing so, as-
suming enough examples are seen (Liu and Mao,
2016). For example, in witnessing a Finnish in-
flection of the noun koti ‘home’ in the singular
elative case as kodista, a number of transfor-
mation rules can be extracted that may apply to
previously unseen nouns:

$koti$
$kodista$ N;IN+ABL;SG

In this example, the following transformation
rules are extracted:

$→ sta$ i$→ ista$
ti$→ dista$ oti$→ odista$
koti$→ kodista$

Such rules are then extracted from each exam-
ple inflection in the training data. At generation
time, the longest matching left hand side of a
rule is identified and applied to the citation form.
For example, if the Finnish noun luoti ‘bullet’
were to be inflected in the elative (N;IN+ABL;SG)
using only the extracted rules given above, the
transformation oti$→ odista$ would be trig-
gered, producing the output luodista. In case
there are multiple candidate rules of equally long
left hand sides that all match, ties are broken by
frequency—i.e. the rule that has been witnessed
most times in the training data applies.

Since languages may also use prefixation as a
inflectional strategy, a similar process is applied to
any identified prefix changes. Identifying which
parts of a change in a word form correspond to a
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prefix and which are considered suffixes requires
alignment of the citation form and the output form,
which is performed as a preliminary step. We refer
the reader to Cotterell et al. (2017) for a detailed
description of the baseline system.

4.2 Task 2 Baseline

Neural Baseline The neural baseline system is
an encoder-decoder reinflection system with atten-
tion inspired by Kann and Schütze (2016). The
crucial difference is that the reinflection is condi-
tioned on sentence context. This is accomplished
by conditioning the encoder on embeddings of
context words in track 2 and context words, their
lemmata and their MSDs in track 1.

The
d o g

are

d

o

g

s

<E>

barking

s1 s2 s3

dog

Figure 4: The neural baseline system for track 2 of task 2:
A bidirectional LSTM encoder, conditioned on embeddings
of the left context word The, right context word are and a
whole token embedding of the lemma dog, is used to encode
the character sequence (d, o, g) into representation vectors
s1, s2 and s3. An LSTM decoder with an attention mecha-
nism generates the contextually appropriate output word form
dogs. The neural baseline system for track 1 is very similar
but the encoder is conditioned on embeddings of the context
words, context lemmata and context MSDs.

The neural baseline system takes as input

1. A lemma l = l1, ..., lm,

2. a left and right context word form wL and
wR, respectively.

3. a left and right context lemma lL and lR, re-
spectively (only in track 1) and

4. a left and right context MSD mL and mR, re-
spectively (only in track 1).

The neural baseline system produces an inflected
form w = w1, ..., wn of the lemma as output.

The input characters li are first embedded: li 7→
E(li). Then, context words (wL and wR) for both
tracks, as well as context lemmata (lL and lR) and
MSDs (mL and mR) for track 1 are also embed-
ded: wX 7→ E(wX), lX 7→ E(lX) and mX 7→
E(mX). The system also a uses the whole token
embedding of the input lemma l: l 7→ E(l).

A bidirectional LSTM encoder is used to en-
code the lemma into representation vectors. In or-
der to condition the encoder on the sentence con-
text of the lemma, the encoder input vector ei for
character li is

1. a concatenation of embeddings for the con-
text word forms, context lemmata, con-
text MSDs, input lemma and input char-
acter: ei = [E(wL); E(lL); E(mL); E(l);
E(wR); E(lR); E(mR); E(li)] for track 1, and

2. a concatenation of embeddings for the con-
text word forms, input lemma and input char-
acter: ei = [E(wL); E(l); E(wR); E(li)] for
track 2.

The input vectors e1, ..., em are then encoded
into representations s1, ..., sm by a bidirectional
LSTM encoder. Finally, a decoder with additive
attention (Vaswani et al., 2017) is used for gener-
ating the output word form w = w1, ..., wn based
on the representations s1, ..., sm.

The baseline system uses 100-dimensional em-
beddings and the LSTM hidden dimension for
both the encoder and decoder is of size 100. Both
encoder and decoder LSTM networks are single
layer networks. The additive attention network is a
2-layer feed-forward network with hidden dimen-
sion 100 and tanh nonlinearity.

The baseline system is trained for 20 epochs in
both tracks and under all data settings using Adam
(Kingma and Ba, 2014). During training, 30%
dropout is applied on all input and recurrent con-
nections in the encoder and decoder LSTM net-
works. Whole token embeddings for the input
lemma, context word forms, lemmata and MSDs
are dropped with a probability of 10%.

Copy Baseline The second baseline is very
straightforward. It simply copies the input lemma
into the output. The system is based on the ob-
servation that in many languages the lemma form
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is quite common. In some languages, such as En-
glish, this baseline is in fact quite difficult to beat
when the training set is small.

5 Results

The CoNLL-SIGMORPHON 2018 shared task re-
ceived submissions from 15 teams with members
from 17 universities or institutes (Table 7). Many
of the teams submitted more than one system,
yielding a total of 33 unique systems entered—27
for task 1, and 6 for task 2. In addition, baseline
systems provided by the organizers for both tasks
were also evaluated.

5.1 Task 1 Results

The relative system performance is described in
Table 8, which show the average per-language ac-
curacy of each system by resource condition. The
table reflects the fact that some teams submit-
ted more than one system (e.g. UZH-1 & UZH-
2 in the table). Learning curves for each lan-
guage across conditions are shown in Tables 9
and 10, which indicates the best per-form accuracy
achieved by a submitted system. Full results can
be found in Appendix A. Newer approaches led to
better overall results in 2018 compared to 2017.
In the low-resource condition, 41 (80%) of the 52
languages shared across years saw improvement in
top system performance.

In the lower data conditions, encoder-decoder
models are known to perform worse than the base-
line model due to data sparsity. One way to
work around this weakness is to learn sequences
of edit operations instead of a standard string-to-
string transductions, a strategy which was used
by teams last year and this year (AX SEMAN-
TICS, UZH, UHH, MSU, RACAI). Another strat-
egy is to create artificial training data that bi-
ases the neural model toward copying (Kann and
Schütze, 2017; Bergmanis et al., 2017; Silfver-
berg et al., 2017; Zhou and Neubig, 2017; Nico-
lai et al., 2017), which was also employed this
year (TUEBINGEN-OSLO, WASEDA). Learning
edit sequences requires input/output alignment,
often as a preliminary step. The UZH submis-
sions, which attained the highest average accu-
racy on the higher data conditions, built upon ideas
in their last year’s submission (Makarov et al.,
2017), which had used such a separate alignment
step followed by the application of an edit se-
quence. Their 2018 submission included edit dis-

tance alignment as part of the training loss func-
tion in the model, producing an end-to-end model.
Another alternative to the edit sequence model is
to use pointer generator networks, introduced by
(See et al., 2017) for text summarization, which
also allow for copying parts of the input. This was
employed by IITBHU. BME used a modified at-
tention model that attended to both the lemma se-
quence and the tag sequence, which worked well
in the high data condition, but, being without mod-
els of data augmentation or edit sequences, it suf-
fered in the low data setting. In general, systems
that included edit sequence generation or data aug-
mentation fared significantly better in the low data
settings. The HAMBURG submission attempted
to learn similarities between characters based on
rendering them visually using a font, with the in-
tent to discover similarities such as those between
a and ä, where the former is usually a low back
vowel, and the latter a fronted version. Ensem-
bling was also a popular choice to improve system
performance. The UA system combined multiple
models, both neural and non-neural, and focused
on performance in the low data setting.

Even though the top-ranked systems used some
form of ensembling to improve performance,
different teams relied on different overall ap-
proaches. As a result, submissions may contain
some amount of complementary information, so
that a global ensemble may improve accuracy. As
in 2017, we present an upper bound on the pos-
sible performance of such an ensemble. Table 8
includes an “Ensemble Oracle” system (oracle-e)
that gives the correct answer if any of the sub-
mitted systems is correct. The oracle performs
significantly better than any one system in both
the Medium (∼10%) and Low (∼25%) conditions.
This suggests that the different strategies used by
teams to “bias” their systems in an effort to make
up for sparse data lead to substantially different
generalization patterns.

As in 2017, we also present a second “Fea-
ture Combination” Oracle (oracle-fc) that gives
the correct answer for a given test triple iff its fea-
ture bundle appeared in training (with any lemma).
Thus, oracle-fc provides an upper bound on the
performance of systems that treat a feature bundle
such as V;SBJV;FUT;3;PL as atomic. In the low-
data condition, this upper bound was 77%, mean-
ing that 23% of the test bundles had never been
seen in training data. Nonetheless, systems should
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predict MSD subword context context RNN context attention multilingual beam search

BME-HAS (Ács, 2018) – 3 3 – – –
COPENHAGEN (Kementchedjhieva et al., 2018) 3 – 3 – 3 –
CUBoulder (Liu et al., 2018) 3 – – – – –
NYU (Kann et al., 2018) – 3 3 3 – –
UZH (Makarov and Clematide, 2018) – 3 – – – 3

Table 6: Features of Task 2 systems.

Team Institute(s) System Description Paper

AXSEMANTICS1 AX Semantics Madsack et al. (2018)
BME1/BME-HAS2 Budapest University of Technology and Economics / Hungarian Academy of Sciences Ács (2018)
COPENHAGEN2 University of Copenhagen Kementchedjhieva et al. (2018)
CUBoulder2 University of Colorado, Boulder Liu et al. (2018)
HAMBURG1 Universität Hamburg Schröder et al. (2018)
IITBHU1 IIT (BHU) Varanasi / IIIT Hyderabad Sharma et al. (2018)
IIT-VARANASI1 Indian Institute of Technology (BHU) Varanasi Jain and Singh (2018)
KUCST1 University of Copenhagen, Centre for Language Technology Agirrezabal (2018)
MSU1 Moscow State University Sorokin (2018)
NYU2 New York University Kann et al. (2018)
RACAI1 Romanian Academy Dumitrescu and Boros (2018)
TUEBINGEN-OSLO1 University of Oslo / University of Tübingen Rama and Çöltekin (2018)
UA1 University of Alberta Najafi et al. (2018)
UZH1,2 University of Zurich Makarov and Clematide (2018)
WASEDA1 Waseda University Fam and Lepage (2018)

Table 7: Participating teams, member institutes, and the corresponding system description papers. In the results and the main
text, team submissions have an additional integer index to distinguish between multiple submissions by one team. The numbers
at each abbreviated team name show whether teams participated in task 1, task 2, or both.

be able to make some accurate predictions on this
23% by decomposing each test bundle into indi-
vidual morphological features such as FUT (fu-
ture) and PL (plural), and generalizing from train-
ing examples that involve those features. For ex-
ample, a particular feature or sub-bundle might
be realized as a particular affix. For systems to
succeed at this type of generalization, they must
treat each individual feature separately, rather than
treating feature bundles as holistic. In the medium
data condition for some languages, some submis-
sions far surpassed oracle-fc. As in 2017, the most
notable example of this is Basque, where oracle-
fc produced a 44% accuracy while six of the sub-
mitted systems produced an accuracy of 80% or
above. Basque is an extreme example with very
large paradigms for the few verbs that inflect in the
language, so the problem of generalizing correctly
to unseen feature combinations is amplified.

5.2 Task 2 Results

All systems submitted for task 2 were neural sys-
tems. All but one of the systems were encoder-
decoder systems reminiscent of Kann and Schütze
(2016). The exception, Makarov and Clematide
(2018), used a neural transition-based transducer
with a designated copy action, which edits the in-
put lemma into an output form. Table 6 details
some of the design features in task 2 systems.

Predict MSD systems predicted the MSD of the
target word form based on contextual cues and
used the MSD to improve performance. The sys-
tem by Kementchedjhieva et al. (2018) used MSD
prediction as an auxiliary task. The system by Liu
et al. (2018) instead converted the contextual rein-
flection problem into ordinary morphological re-
inflection. They first predicted the MSD of the
target word form based on sentence context and
then generated the target word form using the in-
put lemma and the predicted MSD.

Several systems improved upon the context
model in the neural baseline system. Three sys-
tems (BME-HAS, NYU, and ZHU) used subword
context models, for example, character-level mod-
els to encode context word forms, lemmata and
MSDs. Many systems (Ács, 2018; Kementched-
jhieva et al., 2018; Kann et al., 2018) also used
a context RNN for encoding sentence context ex-
ceeding the immediate neighboring words. Kann
et al. (2018) used context attention which refers
to an attention mechanisms directed at contextual
information.

The system by Kementchedjhieva et al. (2018)
was multilingual in the sense that it combined
training data for all task 2 languages. Finally, the
system by Makarov and Clematide (2018) used
beam search for decoding.
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High Medium Low

uzh-01 96.00 / 0.08 86.64 / 0.26 57.18 / 1.00
uzh-02 95.97 / 0.08 86.38 / 0.27 57.21 / 1.02
bme-02 94.66 / 0.11 67.26 / 0.88 2.43 / 6.91
iitbhu-iiith-01 94.43 / 0.11 82.90 / 0.34 49.79 / 1.18
iitbhu-iiith-02 94.43 / 0.11 84.19 / 0.32 52.60 / 1.10
bme-03 93.97 / 0.12 67.36 / 0.75 3.63 / 6.75
bme-01 93.88 / 0.12 67.43 / 0.75 3.74 / 6.72
msu-04 91.87 / 0.23 76.40 / 0.55 31.40 / 2.16
iit-varanasi-01 91.73 / 0.16 70.17 / 0.66 23.33 / 2.40
waseda-01 91.12 / 0.19 77.38 / 0.67 44.09 / 1.68
msu-03 90.52 / 0.25 75.74 / 0.55 25.86 / 2.38
axsemantics-01 84.19 / 0.40 58.00 / 1.10 72.00 / 0.96
msu-02 82.68 / 0.41 69.45 / 0.79 41.61 / 1.86
racai-01 79.93 / 0.43 — / — — / —
hamburg-01 77.53 / 0.44 74.03 / 0.54 40.28 / 1.45
axsemantics-02 74.77 / 0.68 60.00 / 1.03 14.89 / 3.89
msu-01 74.33 / 0.78 64.57 / 0.93 — / —
tuebingen-oslo-03 63.05 / 1.15 30.98 / 2.25 1.39 / 5.70
tuebingen-oslo-02 56.60 / 1.34 29.72 / 2.36 4.43 / 5.06
kucst-01 54.37 / 1.57 32.28 / 2.23 2.79 / 5.28
tuebingen-oslo-01 49.52 / 1.67 20.97 / 2.81 0.00 / 7.94
ua-08 — / — — / — 53.22 / 1.35
ua-05 — / — — / — 50.53 / 1.34
ua-06 — / — — / — 49.73 / 1.46
ua-03 — / — — / — 44.82 / 1.45
ua-02 — / — — / — 41.61 / 2.47
ua-07 — / — — / — 39.52 / 1.76
ua-01 — / — — / — 38.22 / 2.02
ua-04 — / — — / — 21.25 / 3.43

baseline 77.42 / 0.51 63.53 / 0.90 38.89 / 1.88

oracle-fc 99.87 / – 98.27 / – 77.23 / –
oracle-e 98.90 / – 93.74 / – 74.88 / –

Table 8: Task 1 results: Per-form accuracy (in percentage
points) and average Levenshtein distance from the correct
form (in characters), averaged across the 103 languages with
all languages weighted equally. The columns represent the
different training size conditions. Rows are sorted by accu-
racy under the “High” condition. Numbers in bold are the
best accuracy in their category. Greyed-out cells represent
partial submissions that did not provide output for every lan-
guage, and thus do not have comparable mean scores. The
per-language performance of these systems can be found in
the Appendix.

Overall performance for all data settings in
tracks 1 and 2 of task 2 is described in Table 11.
For evaluation with regard to original forms, the
evaluation criterion is accuracy; that is, how of-
ten a system correctly predicted the original UD
form. For evaluation with regard to plausible
forms, the evaluation criterion is relaxed accuracy
given the set of contextually plausible forms. In
other words, we measure how often the predic-
tion was one of the variants in the set of plausible
forms.

In track 1, the COPENHAGEN system is the
clear winner in the high and medium data set-
tings, wherea, the UZH system is the clear win-
ner in the low data setting. In fact, UZH is the
only system which can beat the lemma copying

baseline COPY-BL in the low setting. In track 2,
the COPENHAGEN system and the neural base-
line system NEURAL-BL deliver comparable per-
formance in the high data setting. In the medium
and low setting, the UZH system is the clear win-
ner. Once again, the UZH system is the only sys-
tem which can beat the lemma copying baseline
COPY-BL in the low setting.

Table 11 shows that the best track 1 system out-
performs the best track 2 system for every data
setting, meaning that the additional supervision
offered by context lemmata and MSDs is useful.
Moreover, this effect seems to strengthen with in-
creasing amounts of training data: the difference
in performance between the best track 1 and track
2 systems for original forms in the low data setting
is 3.8%-points, in the medium setting 7.8%-points,
and in the high setting 13.6%-points. A further
observation is that it seems to be more difficult
to deliver improvements over the neural baseline
system NEURAL-BL in the high setting in track
2, where NEURAL-BL in fact is one of the top
two systems. This may be a result of the relatively
small training sets: even in the high data setting,
the training sets only contain approximately 105

tokens.

The results on original and plausible forms
show strong agreement. In all but one case, the
same systems deliver the strongest performance
for both evaluation criteria. The only exception
is the Track 2 high setting where COPENHAGEN
is the top system with regard to original forms
and NEURAL-BL with regard to plausible forms.
However, the performance of these systems is very
similar. This strong agreement indicates that eval-
uation on plausible forms might not be necessary.

The best-performing systems for each language,
track, and data setting in task 2 are given in Ta-
ble 12. In track 1, COPENHAGEN achieves the
strongest results for most languages in the high
and medium data settings, whereas UZH deliv-
ers the best performance on all languages in the
low setting. In track 2, COPENHAGEN and
NEURAL-BL deliver the best performance on an
equal number of languages in the high setting,
whereas UZH delivers best performance for most
languages in the low and medium settings, and
COPENHAGEN performs best for the remaining
languages.
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Task 1 - Part 1
High Medium Low

Adyghe 100.00(uzh-2) 94.40(uzh-1) 90.60(ua-8)
Albanian 98.90(bme-2) 88.80(iitbhu-iiith-2) 36.40(uzh-1)
Arabic 93.70(uzh-1) 79.40(uzh-1) 45.20(uzh-1)
Armenian 96.90(bme-2) 92.80(uzh-1) 64.90(uzh-1)
Asturian 98.70(uzh-1) 92.40(iitbhu-iiith-2) 74.60(uzh-2)
Azeri 100.00(axsemantics-2) 96.00(iitbhu-iiith-2) 65.00(iitbhu-iiith-2)
Bashkir 99.90(uzh-2) 97.30(uzh-2) 77.80(iitbhu-iiith-1)
Basque 98.90(bme-2) 88.10(iitbhu-iiith-2) 13.30(uzh-1)
Belarusian 94.90(uzh-1) 70.40(uzh-1) 33.40(ua-8)
Bengali 99.00(bme-3) 99.00(uzh-2) 72.00(uzh-2)
Breton 100.00(waseda-1) 96.00(uzh-2) 72.00(uzh-1)
Bulgarian 98.30(uzh-2) 83.80(uzh-2) 62.90(ua-8)
Catalan 98.90(uzh-2) 92.80(waseda-1) 72.50(ua-8)
Classical-syriac 100.00(axsemantics-1) 100.00(axsemantics-2) 96.00(uzh-2)
Cornish — 70.00(uzh-1) 40.00(ua-4)
Crimean-tatar 100.00(iit-varanasi-1) 98.00(uzh-2) 91.00(iitbhu-iiith-2)
Czech 94.70(uzh-1) 87.20(uzh-1) 46.50(uzh-2)
Danish 95.50(uzh-1) 80.40(uzh-1) 87.70(ua-6)
Dutch 97.90(uzh-1) 85.70(uzh-1) 69.30(ua-6)
English 97.10(uzh-2) 94.50(uzh-1) 91.80(ua-8)
Estonian 98.40(uzh-2) 81.60(uzh-1) 35.20(uzh-1)
Faroese 87.10(bme-2) 72.60(uzh-1) 49.80(ua-8)
Finnish 95.40(uzh-1) 82.80(uzh-1) 25.70(uzh-1)
French 90.40(uzh-2) 80.90(uzh-2) 66.60(uzh-2)
Friulian 99.00(axsemantics-2) 97.00(iitbhu-iiith-1) 79.00(uzh-2)
Galician 99.50(uzh-1) 90.80(uzh-1) 61.10(uzh-2)
Georgian 99.10(uzh-1) 94.00(uzh-2) 88.20(ua-8)
German 90.20(uzh-2) 80.10(uzh-1) 67.10(ua-3)
Greek 91.70(uzh-1) 75.50(uzh-2) 32.30(uzh-1)
Greenlandic — 98.00(uzh-2) 80.00(iitbhu-iiith-1)
Haida 100.00(axsemantics-2) 94.00(uzh-2) 63.00(uzh-2)
Hebrew 99.50(uzh-1) 85.40(uzh-1) 56.70(ua-8)
Hindi 100.00(axsemantics-1) 97.60(uzh-2) 78.00(uzh-2)
Hungarian 87.20(uzh-1) 74.50(iitbhu-iiith-2) 48.20(ua-8)
Icelandic 91.30(uzh-1) 73.80(uzh-1) 56.20(ua-8)
Ingrian — 92.00(uzh-2) 46.00(iitbhu-iiith-2)
Irish 91.50(uzh-2) 77.10(uzh-1) 37.70(uzh-1)
Italian 98.00(uzh-2) 95.10(uzh-2) 57.40(uzh-2)
Kabardian 100.00(hamburg-1) 100.00(bme-2) 92.00(uzh-1)
Kannada 100.00(bme-3) 94.00(uzh-2) 61.00(uzh-1)
Karelian — 100.00(uzh-2) 94.00(ua-5)
Kashubian — 88.00(bme-2) 68.00(ua-5)
Kazakh — 88.00(iitbhu-iiith-2) 86.00(uzh-2)
Khakas — 98.00(bme-3) 86.00(iitbhu-iiith-2)
Khaling 99.70(uzh-1) 86.00(iitbhu-iiith-1) 33.80(ua-8)
Kurmanji 94.60(uzh-1) 93.20(uzh-1) 87.40(uzh-2)
Ladin 99.00(uzh-2) 95.00(uzh-2) 72.00(uzh-1)
Latin 78.90(bme-2) 53.30(uzh-1) 33.10(ua-6)

Table 9: Best per-form accuracy (and corresponding system) by language. First 50 languages.
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Task 1 - Part 2
High Medium Low

Latvian 98.20(uzh-2) 90.60(uzh-1) 57.30(ua-6)
Lithuanian 95.50(uzh-2) 63.90(uzh-1) 32.60(ua-6)
Livonian 100.00(uzh-2) 82.00(uzh-1) 35.00(ua-8)
Lower-sorbian 97.80(uzh-1) 85.10(uzh-1) 54.30(ua-6)
Macedonian 97.40(uzh-1) 91.60(uzh-1) 68.80(ua-6)
Maltese 97.00(uzh-2) 95.00(uzh-1) 49.00(ua-6)
Mapudungun — 100.00(uzh-2) 86.00(ua-4)
Middle-french 99.30(uzh-2) 94.50(uzh-2) 84.50(uzh-2)
Middle-high-german — 100.00(uzh-2) 84.00(uzh-2)
Middle-low-german — 100.00(iitbhu-iiith-1) 54.00(uzh-1)
Murrinhpatha — 96.00(uzh-2) 38.00(ua-8)
Navajo 91.00(bme-2) 54.30(uzh-1) 20.80(uzh-1)
Neapolitan 99.00(uzh-2) 99.00(uzh-2) 89.00(uzh-2)
Norman — 88.00(iitbhu-iiith-1) 66.00(ua-4)
North-frisian 96.00(bme-1) 91.00(uzh-1) 45.00(iitbhu-iiith-2)
Northern-sami 98.30(uzh-1) 76.10(uzh-1) 35.80(ua-8)
Norwegian-bokmaal 92.10(uzh-2) 84.10(uzh-1) 90.10(ua-6)
Norwegian-nynorsk 94.90(uzh-2) 67.10(uzh-1) 83.60(ua-8)
Occitan 99.00(bme-2) 96.00(waseda-1) 77.00(uzh-2)
Old-armenian 90.40(uzh-2) 80.20(uzh-1) 42.00(uzh-2)
Old-church-slavonic 97.00(uzh-2) 93.00(uzh-2) 53.00(iitbhu-iiith-2)
Old-english 88.70(uzh-1) 65.60(uzh-1) 46.50(ua-8)
Old-french 92.40(uzh-1) 79.30(uzh-1) 46.20(uzh-2)
Old-irish — 40.00(uzh-1) 8.00(baseline)
Old-saxon 98.30(uzh-1) 80.90(uzh-2) 46.60(ua-6)
Pashto 100.00(waseda-1) 85.00(uzh-1) 48.00(uzh-2)
Persian 99.90(bme-2) 93.40(uzh-2) 67.60(uzh-2)
Polish 93.40(uzh-2) 82.40(uzh-2) 49.40(ua-6)
Portuguese 98.60(uzh-2) 94.80(uzh-2) 75.80(uzh-2)
Quechua 99.90(uzh-2) 98.90(uzh-1) 70.20(uzh-2)
Romanian 89.00(uzh-2) 77.60(uzh-1) 46.20(uzh-1)
Russian 94.40(uzh-2) 86.90(uzh-1) 53.50(uzh-1)
Sanskrit 96.50(uzh-1) 85.90(uzh-2) 58.00(uzh-1)
Scottish-gaelic — 94.00(iitbhu-iiith-1) 74.00(iitbhu-iiith-2)
Serbo-croatian 92.40(uzh-2) 86.10(uzh-1) 44.80(ua-3)
Slovak 97.10(uzh-1) 78.60(uzh-1) 51.80(uzh-2)
Slovene 97.40(uzh-1) 86.20(uzh-1) 58.00(uzh-2)
Sorani 90.60(uzh-2) 80.20(iitbhu-iiith-2) 40.10(uzh-1)
Spanish 98.10(uzh-2) 92.00(iitbhu-iiith-2) 73.20(ua-8)
Swahili 100.00(bme-3) 99.00(uzh-2) 72.00(iitbhu-iiith-2)
Swedish 93.30(uzh-1) 79.80(uzh-1) 79.00(ua-8)
Tatar 99.00(axsemantics-1) 98.00(uzh-2) 90.00(ua-8)
Telugu — — 96.00(ua-8)
Tibetan — 56.00(uzh-2) 58.00(iitbhu-iiith-1)
Turkish 98.50(uzh-2) 90.70(uzh-1) 39.50(iitbhu-iiith-2)
Turkmen — 98.00(iitbhu-iiith-1) 90.00(uzh-2)
Ukrainian 96.20(uzh-2) 81.40(uzh-1) 57.10(ua-6)
Urdu 100.00(iitbhu-iiith-1) 96.80(uzh-2) 72.50(uzh-2)
Uzbek 100.00(axsemantics-1) 100.00(axsemantics-2) 92.00(uzh-1)
Venetian 99.20(uzh-2) 95.10(uzh-2) 78.80(uzh-2)
Votic 90.00(uzh-2) 88.00(uzh-2) 34.00(ua-7)
Welsh 95.00(bme-3) 85.00(bme-2) 55.00(uzh-2)
West-frisian 99.00(uzh-1) 98.00(uzh-2) 56.00(uzh-1)
Yiddish 100.00(uzh-2) 94.00(uzh-2) 87.00(ua-8)
Zulu 99.80(uzh-1) 87.30(uzh-2) 33.00(uzh-1)

Table 10: Best per-form accuracy (and corresponding system) by language. Remaining 53 languages.
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Track 1 Track 2
Original Plausible Original Plausible

High Medium Low High Medium Low High Medium Low High Medium Low

BME-HAS 65.69 45.71 29.34 73.21 51.28 32.98 51.83 36.82 24.71 60.15 43.80 31.18
COPENHAGEN 68.51 56.70 24.40 76.10 63.24 26.24 54.93 45.18 29.38 60.50 51.36 33.77
CUBoulder–1 59.73 46.27 23.16 66.22 52.52 25.59 48.97 38.29 23.76 55.63 43.33 26.83
CUBoulder–2 50.32 42.08 29.86 53.89 46.85 34.85 - - - - - -
NYU - - - - - - - - 33.38 - - 38.62
UZH - 53.02 42.42 - 61.02 48.49 - 48.88 38.60 - 55.67 45.09

NEURAL-BL 62.41 44.09 1.85 69.53 48.81 2.63 54.48 38.56 2.19 60.79 46.74 3.11
COPY-BL 36.62 36.62 36.62 42.00 42.00 42.00 36.62 36.62 36.62 42.00 42.00 42.00

Table 11: Overall accuracies (in %-points) for Tracks 1 and 2 in Task 2 for different training data settings. Results are
presented separately with regard to the original forms in the UD test data sets and the manually annotated sets of plausible
forms. NEURAL-BL refers to the baseline encoder-decoder system and COPY-BL to the “lemma copying” baseline system.
Note that the output of the COPY-BL is independent of the training data and therefore results for the high, medium and low
data setting are the same.

Track 1
Original Plausible

High Medium Low High Medium Low

de 73.21 (BME-HAS) 63.90 (UZH) 60.06 (UZH) 77.55 (BME-HAS) 67.34 (UZH) 62.39 (UZH)
en 77.84 (CPH) 68.08 (CBL) 68.08 (UZH) 86.81 (CPH) 76.23 (CPH) 74.02 (UZH)
es 56.24 (CPH) 51.33 (CPH) 34.78 (UZH) 67.88 (CPH) 60.59 (CPH) 42.08 (UZH)
fi 55.27 (CPH) 35.71 (CPH) 24.90 (UZH) 63.02 (CPH) 43.07 (CPH) 28.97 (UZH)
fr 70.67 (CPH) 60.29 (CPH) 35.03 (UZH) - - -
ru 77.91 (CPH) 63.05 (CPH) 40.76 (UZH) 81.53 (CPH) 66.57 (CPH) 43.47 (UZH)
sv 69.26 (CPH) 57.66 (CPH) 33.30 (UZH) 80.32 (CPH) 67.23 (CPH) 40.00 (UZH)

Track 2
Original Plausible

High Medium Low High Medium Low

de 65.72 (NBL) 60.26 (UZH) 59.15 (UZH) 69.97 (NBL) 64.21 (UZH) 61.38 (UZH)
en 71.90 (CPH) 68.08 (UZH) 68.08 (UZH) 79.86 (CPH) 75.63 (CPH) 74.02 (UZH)
es 51.05 (NBL) 42.50 (CPH) 32.68 (UZH) 59.19 (NBL) 51.75 (CPH) 37.31 (CPH)
fi 34.82 (NBL) 27.06 (UZH) 24.40 (UZH) 41.17 (NBL) 31.89 (UZH) 28.21 (UZH)
fr 61.51 (CPH) 45.62 (CPH) 29.53 (CPH) - - -
ru 56.73 (BME-HAS) 54.02 (UZH) 28.11 (UZH) 60.04 (BME-HAS) 56.53 (UZH) 30.42 (UZH)
sv 55.96 (CPH) 47.87 (UZH) 32.77 (UZH) 66.06 (CPH) 56.17 (UZH) 39.36 (UZH)

Table 12: Best accuracies (in %-points) and the for all tracks, settings and languages in task 2. The best performing system
is given in parentheses. “CPH” refers to “COPENHAGEN”, “NBL” to the neural baseline system and “CBL” to the “lemma
copying” baseline system. Note, that there are no results for French with regard to plausible forms because this gold standard
data set was not annotated for plausible forms (see Section 3.2).
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6 Future Directions

In the case of inflection an interesting future topic
could involve departing from orthographic repre-
sentation and using more IPA-like representations,
i.e. transductions over pronunciations. Different
languages, in particular those with idiosyncratic
orthographies, may offer new challenges in this re-
spect.12

Neither task this year included unannotated
monolingual corpora. Using such data is well-
motivated from an L1-learning point of view, and
may affect the performance of low-resource data
settings, especially for the cloze task. In the in-
flection task, some results from last year (Zhou
and Neubig, 2017) did not see significant gains by
using extra data.

Only one team tried to learn inflection in a mul-
tilingual setting—i.e. to use all training data to
train one model. Such transfer learning is an in-
teresting avenue of future research, but evaluation
could be difficult. Whether any cross-language
transfer is actually being learned vs. whether hav-
ing more data better biases the networks to copy
strings is an evaluation step to disentangle.13

Creating new data sets that accurately reflect
learner exposure (whether L1 or L2) is also an im-
portant consideration in the design of future shared
tasks.

The results for task 2 show that evaluation
against the original test form versus against set of
plausible forms results in a very similar ranking
of systems, justifying the use of the former, much
simpler, method for future shared tasks. No man-
ual annotation would then be required for the cre-
ation of test sets, allowing the inclusion of a wider
variety of languages.

In track 2 of task 2, it turned out to be diffi-
cult to achieve clear improvements over the neu-
ral baseline system. This may be a consequence
of the limited amount of training data. Increasing
the amount of training data is an obvious solution,
but encouraging the use of external datasets for
semi-supervised learning could also be an inter-
esting direction to pursue. Such semi-supervised
methods could take the form of pretrained embed-
dings from monolingual corpora or more expres-

12Although some recent research suggests that working
with IPA or phonological distinctive features in this con-
text yields very similar results to working with graphemes
(Wiemerslage et al., 2018).

13This has been recently addressed by Jin and Kann
(2017).

sive models dedicated to improving morphologi-
cal inflection, e.g., Wolf-Sonkin et al. (2018).

7 Conclusion

The CoNLL-SIGMORPHON 2018 shared task in-
troduced a new cloze-test task with data sets for 7
languages, as well as extended the existing inflec-
tion task to include 103 languages. In task 1 (in-
flection) 27 systems were submitted, while 6 sys-
tems were submitted in task 2 (cloze test). Neural
network models prevailed in both, although signif-
icant modifications to standard architectures were
required to beat a simple baseline in the low data
settings in both tasks.

As in previous years, we compared inflection
system performance to oracle ensembles, showing
that systems possessed complementary strengths.
We released the training, development, and test
sets for each task, and expect these to be useful for
future endeavors in morphological learning, both
in sentential context and in the case of isolated
word inflection.
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Fynn Schröder, Marcel Kamlot, Gregor Billing, and
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A Detailed Task 1 Results

This section contains detailed results for each submitted system on each language. Systems are ordered
by average per-form accuracy for each sub-task and data condition. Three metrics are presented for each
system/language combination.

1. Per-Form Accuracy: Percentage of test forms inflected correctly.

2. Levenshtein Distance: Average Levenshtein distance of system-predicted form from gold inflected
form.

Scores in bold include the highest scoring non-oracle system for each language as well as any other sys-
tems that did not differ significantly in terms of per-form accuracy according to a sign test (p >= 0.05).
Scores marked with a † indicate submissions that were significantly better than the feature combination
oracle (p < 0.05), showing per-feature generalization. Scores marked with ‡ did not differ significantly
from the ensemble oracle, suggesting minimal complementary information across systems.
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oracle-fc oracle-e uzh-01 uzh-02 bme-02 iitbhu-iiith-01 iitbhu-iiith-02 bme-03 bme-01 msu-04 iit-varanasi-01 waseda-01

Adyghe 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 97.90/0.02 99.90/0.00‡ 99.90/0.00‡ 99.40/0.01 99.20/0.01 99.30/0.01 99.80/0.00‡ 95.00/0.07
Albanian 100.00/* 99.60/* 97.70/0.08 96.50/0.12 98.90/0.02 98.00/0.04 98.00/0.04 97.50/0.05 97.50/0.05 95.00/0.14 96.50/0.05 88.80/0.41
Arabic 100.00/* 97.40/* 93.70/0.28 93.50/0.28 92.20/0.30 93.30/0.26 93.30/0.26 90.30/0.32 90.60/0.37 0.00/9.16 84.40/0.45 90.20/0.34
Armenian 100.00/* 99.60/* 96.40/0.07 96.80/0.05 96.90/0.05 96.10/0.07 96.10/0.07 94.70/0.09 94.70/0.09 94.90/0.12 93.70/0.10 94.30/0.10
Asturian 99.20/* 99.80/* 98.70/0.02 98.50/0.03 98.00/0.04 98.60/0.03 98.60/0.03 97.80/0.04 97.80/0.04 98.40/0.03 98.50/0.03 98.40/0.03
Azeri 100.00/* 100.00/* 98.00/0.02‡ 98.00/0.02‡ 97.00/0.05‡ 99.00/0.01‡ 99.00/0.01‡ 98.00/0.02‡ 98.00/0.02‡ 98.00/0.02‡ 99.00/0.02‡ 93.00/0.10
Bashkir 100.00/* 100.00/* 99.90/0.00‡ 99.90/0.00‡ 99.80/0.00‡ 99.80/0.00‡ 99.80/0.00‡ 99.80/0.00‡ 99.80/0.00‡ 99.80/0.00‡ 99.70/0.01‡ 93.20/0.11
Basque 99.00/* 99.70/* 98.90/0.02 98.70/0.03 98.90/0.02 98.60/0.03 98.60/0.03 98.30/0.03 98.10/0.07 95.10/0.09 98.00/0.04 97.20/0.06
Belarusian 100.00/* 98.90/* 94.90/0.09 94.70/0.09 93.10/0.14 92.10/0.14 92.10/0.14 92.90/0.12 92.60/0.12 92.70/0.14 88.40/0.20 85.60/0.31
Bengali 100.00/* 99.00/* 99.00/0.03‡ 99.00/0.03‡ 99.00/0.05‡ 99.00/0.02‡ 99.00/0.02‡ 99.00/0.05‡ 99.00/0.05‡ 98.00/0.06‡ 99.00/0.05‡ 98.00/0.06‡
Breton 94.00/* 100.00/* 97.00/0.05‡ 98.00/0.06‡ 92.00/0.22 99.00/0.03‡ 99.00/0.03‡ 93.00/0.17 93.00/0.17 96.00/0.08‡ 93.00/0.17 100.00/0.00†‡
Bulgarian 100.00/* 99.40/* 98.10/0.04 98.30/0.04 96.40/0.06 96.80/0.05 96.80/0.05 95.40/0.08 94.90/0.08 96.20/0.06 94.50/0.10 91.90/0.21
Catalan 100.00/* 99.60/* 98.70/0.04 98.90/0.03 98.40/0.04 97.70/0.04 97.70/0.04 98.20/0.05 98.20/0.05 98.40/0.04 98.00/0.05 98.50/0.04
Classical-syriac 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 98.00/0.02‡ 97.00/0.04‡ 100.00/0.00‡ 100.00/0.00‡ 98.00/0.02‡
Crimean-tatar 100.00/* 100.00/* 98.00/0.04‡ 98.00/0.04‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 100.00/0.00‡ 97.00/0.05‡
Czech 99.80/* 97.90/* 94.70/0.10 94.50/0.11 93.20/0.12 91.10/0.16 91.10/0.16 92.00/0.14 92.00/0.14 93.10/0.12 88.00/0.23 90.70/0.21
Danish 100.00/* 98.50/* 95.50/0.07 94.60/0.08 90.40/0.16 91.50/0.13 91.50/0.13 89.40/0.17 89.40/0.17 91.80/0.12 91.30/0.13 90.70/0.15
Dutch 100.00/* 99.20/* 97.90/0.03 97.70/0.04 96.80/0.05 95.30/0.09 95.30/0.09 94.60/0.08 94.60/0.08 96.00/0.06 93.10/0.12 95.60/0.07
English 100.00/* 99.20/* 97.00/0.06 97.10/0.06 96.70/0.06 96.30/0.07 96.30/0.07 96.10/0.07 95.80/0.08 94.30/0.11 95.80/0.07 95.40/0.08
Estonian 100.00/* 99.60/* 98.30/0.05 98.40/0.05 97.00/0.07 97.30/0.06 97.30/0.06 96.90/0.07 96.90/0.07 94.40/0.11 95.90/0.09 91.50/0.21
Faroese 100.00/* 97.50/* 85.60/0.29 86.40/0.26 87.10/0.26 83.90/0.33 83.90/0.33 83.80/0.33 85.30/0.27 84.80/0.33 81.10/0.37 81.30/0.37
Finnish 100.00/* 98.90/* 95.40/0.09 94.90/0.09 93.30/0.11 92.30/0.15 92.30/0.15 92.00/0.15 92.00/0.15 89.80/0.19 76.40/0.47 84.40/0.36
French 100.00/* 96.60/* 90.20/0.16 90.40/0.16 88.10/0.19 87.60/0.21 87.60/0.21 86.40/0.22 86.40/0.22 88.50/0.20 81.10/0.32 84.80/0.25
Friulian 100.00/* 99.00/* 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡ 99.00/0.03‡
Galician 100.00/* 99.80/* 99.50/0.01‡ 99.30/0.01‡ 99.30/0.01‡ 98.90/0.01 98.90/0.01 99.20/0.01 99.20/0.01 97.90/0.04 98.70/0.02 98.60/0.03
Georgian 100.00/* 99.60/* 99.10/0.01‡ 98.80/0.01 98.00/0.05 98.10/0.02 98.10/0.02 97.10/0.05 96.60/0.05 97.50/0.04 97.30/0.04 97.80/0.04
German 100.00/* 96.70/* 89.70/0.25 90.20/0.23 88.50/0.27 87.60/0.26 87.60/0.26 86.20/0.29 86.20/0.29 88.30/0.24 83.70/0.33 87.50/0.27
Greek 100.00/* 97.30/* 91.70/0.16 91.00/0.17 89.10/0.24 88.20/0.23 88.20/0.23 86.60/0.26 86.60/0.26 88.60/0.22 80.80/0.38 83.70/0.31
Haida 100.00/* 100.00/* 99.00/0.02‡ 99.00/0.02‡ 99.00/0.02‡ 93.00/0.23 93.00/0.23 100.00/0.00‡ 100.00/0.00‡ 99.00/0.02‡ 100.00/0.00‡ 66.00/0.73
Hebrew 100.00/* 99.70/* 99.50/0.01‡ 99.30/0.01‡ 99.30/0.01‡ 98.80/0.02 98.80/0.02 98.50/0.02 98.50/0.02 98.20/0.02 97.30/0.03 98.40/0.02
Hindi 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 99.70/0.01‡ 99.70/0.01‡ 99.90/0.00‡ 100.00/0.00‡ 99.90/0.00‡ 99.40/0.01 73.60/0.71
Hungarian 100.00/* 94.30/* 87.20/0.31 86.60/0.31 85.50/0.34 85.90/0.34 85.90/0.34 83.70/0.38 83.70/0.38 84.30/0.36 82.30/0.41 79.60/0.47
Icelandic 100.00/* 96.90/* 91.30/0.18 91.10/0.18 87.00/0.27 85.00/0.29 85.00/0.29 86.00/0.27 86.00/0.27 86.10/0.30 83.90/0.32 81.90/0.34
Irish 100.00/* 96.90/* 91.40/0.28 91.50/0.27 91.10/0.27 87.60/0.39 87.60/0.39 87.70/0.37 88.80/0.33 87.20/0.36 67.20/0.99 77.80/0.72
Italian 100.00/* 98.80/* 98.00/0.04 98.00/0.04 97.40/0.04 97.50/0.06 97.50/0.06 96.30/0.07 96.70/0.06 97.40/0.04 95.70/0.08 97.40/0.04
Kabardian 100.00/* 100.00/* 99.00/0.01‡ 96.00/0.04‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 98.00/0.02‡ 98.00/0.02‡ 97.00/0.03‡ 99.00/0.01‡ 95.00/0.09‡
Kannada 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 98.00/0.02‡ 98.00/0.02‡ 100.00/0.00‡ 99.00/0.01‡ 99.00/0.01‡ 100.00/0.00‡ 99.00/0.02‡
Khaling 100.00/* 100.00/* 99.70/0.01‡ 99.60/0.01‡ 99.60/0.00‡ 99.50/0.01‡ 99.50/0.01‡ 99.00/0.02 99.60/0.01‡ 93.90/0.08 98.40/0.03 99.40/0.01
Kurmanji 100.00/* 98.90/* 94.60/0.06 94.40/0.07 93.60/0.12 93.80/0.11 93.80/0.11 92.80/0.11 92.80/0.11 93.40/0.08 93.50/0.08 89.60/0.21
Ladin 100.00/* 100.00/* 98.00/0.03‡ 99.00/0.01‡ 97.00/0.06‡ 98.00/0.03‡ 98.00/0.03‡ 97.00/0.07‡ 94.00/0.10 97.00/0.07‡ 98.00/0.03‡ 98.00/0.05‡
Latin 100.00/* 94.40/* 75.90/0.35 74.60/0.39 78.90/0.32 73.70/0.42 73.70/0.42 77.40/0.37 77.40/0.37 72.40/0.42 61.50/0.60 65.40/0.55
Latvian 100.00/* 99.70/* 97.70/0.03 98.20/0.02 96.00/0.07 96.10/0.07 96.10/0.07 94.00/0.12 94.00/0.12 95.80/0.07 92.80/0.16 94.90/0.09
Lithuanian 100.00/* 98.90/* 95.40/0.07 95.50/0.07 91.60/0.13 91.80/0.15 91.80/0.15 87.50/0.19 90.90/0.14 88.90/0.16 88.10/0.19 88.10/0.23
Livonian 100.00/* 100.00/* 98.00/0.03‡ 100.00/0.00‡ 87.00/0.24 98.00/0.03‡ 98.00/0.03‡ 92.00/0.15 92.00/0.15 92.00/0.12 97.00/0.06‡ 94.00/0.11
Lower-sorbian 100.00/* 99.30/* 97.80/0.05 97.50/0.06 96.60/0.07 96.30/0.07 96.30/0.07 96.40/0.06 96.40/0.06 95.60/0.09 94.30/0.11 95.40/0.10
Macedonian 100.00/* 99.00/* 97.40/0.04 97.10/0.04 95.30/0.07 96.50/0.06 96.50/0.06 94.40/0.10 94.30/0.09 95.30/0.07 94.60/0.08 88.30/0.16
Maltese 99.00/* 98.00/* 96.00/0.09‡ 97.00/0.07‡ 94.00/0.08‡ 95.00/0.10‡ 95.00/0.10‡ 90.00/0.15 88.00/0.15 83.00/0.27 69.00/0.56 95.00/0.08‡
Middle-french 99.90/* 99.80/* 99.20/0.01 99.30/0.02‡ 99.00/0.02 98.70/0.02 98.70/0.02 98.60/0.03 98.60/0.03 99.00/0.02 96.70/0.08 98.70/0.03
Navajo 100.00/* 97.00/* 88.10/0.29 87.40/0.33 91.00/0.21 83.50/0.44 83.50/0.44 86.70/0.32 86.70/0.32 87.50/0.28 75.30/0.53 83.70/0.39
Neapolitan 99.00/* 99.00/* 99.00/0.02‡ 99.00/0.02‡ 98.00/0.06‡ 97.00/0.06‡ 97.00/0.06‡ 97.00/0.09‡ 97.00/0.09‡ 97.00/0.04‡ 97.00/0.06‡ 95.00/0.13‡
North-frisian 100.00/* 99.00/* 94.00/0.15‡ 95.00/0.14‡ 95.00/0.10‡ 96.00/0.05‡ 96.00/0.05‡ 94.00/0.15‡ 96.00/0.06‡ 87.00/0.35 96.00/0.12‡ 92.00/0.14
Northern-sami 100.00/* 99.10/* 98.30/0.04 98.10/0.05 96.20/0.07 96.90/0.06 96.90/0.06 95.20/0.10 95.80/0.08 96.10/0.07 92.60/0.12 94.50/0.11
Norwegian-bokmaal 99.90/* 98.60/* 92.00/0.13 92.10/0.13 88.30/0.19 89.00/0.18 89.00/0.18 88.20/0.19 88.20/0.19 88.60/0.18 89.00/0.17 90.50/0.17
Norwegian-nynorsk 100.00/* 98.90/* 94.60/0.09 94.90/0.08 85.30/0.26 84.60/0.26 84.60/0.26 90.80/0.15 90.80/0.15 86.80/0.23 82.60/0.29 83.40/0.28
Occitan 100.00/* 99.00/* 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 98.00/0.03‡ 98.00/0.03‡ 97.00/0.04‡ 97.00/0.04‡ 99.00/0.01‡ 99.00/0.01‡ 98.00/0.02‡
Old-armenian 99.80/* 97.50/* 90.40/0.19 90.40/0.19 89.30/0.21 89.10/0.21 89.10/0.21 87.70/0.23 87.70/0.23 88.60/0.20 87.30/0.25 88.80/0.22
Old-church-slavonic 100.00/* 99.00/* 97.00/0.04‡ 97.00/0.04‡ 94.00/0.10‡ 96.00/0.07‡ 96.00/0.07‡ 94.00/0.10‡ 93.00/0.11 93.00/0.12 97.00/0.04‡ 97.00/0.04‡
Old-english 100.00/* 97.20/* 88.70/0.20 87.90/0.22 88.20/0.23 86.00/0.25 86.00/0.25 87.10/0.23 87.10/0.23 84.50/0.27 83.40/0.30 83.70/0.28
Old-french 99.60/* 98.00/* 92.40/0.13 91.70/0.15 91.40/0.17 89.90/0.20 89.90/0.20 91.50/0.15 91.50/0.16 90.30/0.18 86.50/0.25 88.40/0.22
Old-saxon 100.00/* 99.60/* 98.30/0.03 97.80/0.04 97.20/0.05 97.00/0.06 97.00/0.06 96.10/0.07 96.30/0.06 95.40/0.07 96.30/0.06 95.10/0.08
Pashto 100.00/* 100.00/* 98.00/0.04‡ 97.00/0.05‡ 98.00/0.03‡ 99.00/0.01‡ 99.00/0.01‡ 94.00/0.09 93.00/0.14 97.00/0.07‡ 100.00/0.00‡ 100.00/0.00‡
Persian 100.00/* 100.00/* 99.80/0.00‡ 99.80/0.00‡ 99.90/0.00‡ 99.70/0.00‡ 99.70/0.00‡ 99.60/0.01‡ 99.50/0.01‡ 98.60/0.02 98.90/0.01 62.90/1.14
Polish 100.00/* 97.80/* 93.00/0.16 93.40/0.14 90.80/0.25 88.70/0.26 88.70/0.26 89.30/0.25 89.30/0.25 87.30/0.25 82.80/0.40 89.30/0.24
Portuguese 100.00/* 99.40/* 98.60/0.02 98.60/0.02 98.20/0.03 98.00/0.04 98.00/0.04 97.90/0.03 97.90/0.03 97.80/0.04 98.50/0.02 97.90/0.04
Quechua 100.00/* 99.90/* 99.90/0.00‡ 99.90/0.00‡ 99.60/0.01‡ 99.50/0.01‡ 99.50/0.01‡ 99.30/0.01 99.30/0.01 99.30/0.01 99.40/0.01‡ 95.10/0.10
Romanian 100.00/* 96.80/* 88.30/0.35 89.00/0.34 87.90/0.39 85.80/0.40 85.80/0.40 84.10/0.50 85.20/0.46 84.60/0.42 79.00/0.58 83.20/0.52
Russian 100.00/* 97.90/* 94.00/0.15 94.40/0.13 92.00/0.28 91.00/0.27 91.00/0.27 90.40/0.27 90.40/0.27 92.00/0.21 85.40/0.35 88.40/0.34
Sanskrit 100.00/* 99.30/* 96.50/0.05 96.30/0.06 93.00/0.12 94.40/0.09 94.40/0.09 93.80/0.10 93.80/0.10 93.50/0.10 92.10/0.12 87.10/0.20
Serbo-croatian 100.00/* 96.80/* 92.10/0.16 92.40/0.15 91.30/0.17 91.30/0.18 91.30/0.18 90.00/0.18 90.00/0.18 87.80/0.25 84.10/0.36 85.50/0.28
Slovak 100.00/* 99.70/* 97.10/0.04 96.90/0.04 94.20/0.09 92.50/0.14 92.50/0.14 93.30/0.10 93.30/0.10 93.10/0.12 92.80/0.13 90.80/0.16
Slovene 100.00/* 99.60/* 97.40/0.05 97.30/0.05 94.90/0.10 94.80/0.08 94.80/0.08 94.10/0.11 94.90/0.10 33.30/0.77 95.30/0.08 95.60/0.07
Sorani 100.00/* 99.30/* 90.60/0.11 90.60/0.11 88.90/0.13 89.50/0.13 89.50/0.13 89.50/0.14 89.50/0.14 89.30/0.13 89.00/0.13 88.30/0.14
Spanish 100.00/* 99.90/* 97.90/0.03 98.10/0.02 97.90/0.03 97.70/0.03 97.70/0.03 96.20/0.06 96.20/0.06 97.70/0.03 93.40/0.13 97.20/0.04
Swahili 100.00/* 100.00/* 99.00/0.01‡ 99.00/0.01‡ 100.00/0.00‡ 99.00/0.01‡ 99.00/0.01‡ 100.00/0.00‡ 99.00/0.01‡ 98.00/0.02‡ 100.00/0.00‡ 98.00/0.02‡
Swedish 100.00/* 98.50/* 93.30/0.12 93.10/0.12 89.30/0.19 88.10/0.23 88.10/0.23 88.40/0.21 88.40/0.21 89.10/0.20 87.20/0.21 88.10/0.22
Tatar 100.00/* 99.00/* 98.00/0.02‡ 98.00/0.02‡ 98.00/0.02‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 99.00/0.01‡ 96.00/0.04‡
Turkish 100.00/* 99.40/* 98.10/0.03 98.50/0.02 97.80/0.03 97.10/0.07 97.10/0.07 97.30/0.04 97.30/0.04 97.40/0.04 97.30/0.04 89.50/0.21
Ukrainian 100.00/* 98.70/* 96.00/0.06 96.20/0.06 91.40/0.16 92.80/0.14 92.80/0.14 91.60/0.14 91.70/0.16 93.40/0.12 92.50/0.13 89.10/0.18
Urdu 100.00/* 100.00/* 99.50/0.01‡ 99.50/0.01‡ 99.30/0.01 100.00/0.00‡ 100.00/0.00‡ 99.20/0.01 99.40/0.01 99.20/0.01 99.70/0.01‡ 97.30/0.04
Uzbek 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 98.00/0.03‡ 93.00/0.28
Venetian 99.60/* 99.50/* 99.00/0.02‡ 99.20/0.01‡ 98.80/0.02 98.80/0.02 98.80/0.02 98.40/0.03 98.70/0.02 99.00/0.02‡ 99.10/0.02‡ 99.00/0.02‡
Votic 100.00/* 97.00/* 88.00/0.15 90.00/0.13 84.00/0.29 82.00/0.26 82.00/0.26 85.00/0.25 79.00/0.48 84.00/0.23 66.00/0.53 80.00/0.31
Welsh 100.00/* 98.00/* 94.00/0.10‡ 93.00/0.11‡ 94.00/0.10‡ 94.00/0.09‡ 94.00/0.09‡ 95.00/0.10‡ 95.00/0.10‡ 95.00/0.06‡ 94.00/0.09‡ 90.00/0.19
West-frisian 100.00/* 100.00/* 99.00/0.01‡ 98.00/0.02‡ 91.00/0.26 91.00/0.23 91.00/0.23 93.00/0.22 93.00/0.22 89.00/0.23 74.00/0.55 92.00/0.18
Yiddish 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 99.00/0.01‡ 100.00/0.00‡ 100.00/0.00‡ 99.00/0.01‡ 98.00/0.02‡ 97.00/0.04‡ 99.00/0.06‡ 98.00/0.04‡
Zulu 99.90/* 99.90/* 99.80/0.00‡ 99.70/0.01‡ 99.00/0.02 99.30/0.01 99.30/0.01 99.20/0.02 98.10/0.04 96.00/0.08 97.20/0.05 98.90/0.01

Table 13: Task 1 High Condition Part 1.

21



msu-03 axsemantics-01 msu-02 racai-01 hamburg-01 baseline axsemantics-02 msu-01 tuebingen-oslo-03 tuebingen-oslo-02 kucst-01 tuebingen-oslo-01

Adyghe 96.70/0.03 99.00/0.01 99.00/0.01 92.00/0.08 93.90/0.07 91.60/0.08 99.60/0.00‡ 95.40/0.05 97.40/0.04 88.20/0.16 98.30/0.02 88.90/0.24
Albanian 92.70/0.17 88.90/0.53 92.40/0.20 95.60/0.11 79.90/0.54 79.60/0.69 40.90/2.66 83.80/0.60 17.90/5.12 10.20/5.87 13.80/3.68 11.60/5.88
Arabic 0.00/9.25 58.20/1.38 0.00/4.70 88.50/0.40 74.70/0.76 47.10/1.49 34.00/2.42 0.00/7.79 79.40/0.67 68.70/1.05 0.00/10.78 0.10/7.55
Armenian 95.40/0.08 90.30/0.17 91.30/0.15 — 87.60/0.20 86.70/0.25 73.40/0.84 90.10/0.15 52.70/1.85 47.10/2.06 47.60/1.36 33.60/2.38
Asturian 98.60/0.03 95.30/0.11 94.60/0.12 95.40/0.13 96.20/0.07 95.10/0.11 91.10/0.13 97.00/0.07 84.20/0.24 82.70/0.34 88.80/0.26 69.70/0.56
Azeri 98.00/0.06‡ 94.00/0.15 95.00/0.05‡ 90.00/0.19 88.00/0.24 71.00/0.86 100.00/0.00‡ 66.00/0.76 91.00/0.14 88.00/0.24 47.00/1.07 79.00/0.50
Bashkir 98.90/0.03 99.80/0.00‡ 99.10/0.02 — 99.10/0.01 90.50/0.26 99.80/0.00‡ 96.50/0.11 97.10/0.05 90.90/0.17 62.80/0.72 91.60/0.18
Basque 94.50/0.10 8.20/2.45 13.40/3.17 86.80/0.35 46.90/1.24 7.60/3.37 5.40/2.28 24.30/2.85 6.20/2.85 9.60/2.58 73.20/0.51 8.10/2.58
Belarusian 86.40/0.24 47.30/1.25 81.60/0.62 3.80/2.73 57.20/1.28 40.80/1.56 52.80/1.23 68.20/1.66 69.00/1.22 53.30/1.68 62.60/0.78 57.40/1.61
Bengali 99.00/0.05‡ 96.00/0.12‡ 96.00/0.09‡ 99.00/0.03‡ 93.00/0.14 81.00/0.26 78.00/0.27 90.00/0.23 55.00/0.75 72.00/0.52 82.00/0.48 65.00/0.60
Breton 95.00/0.14‡ 80.00/0.55 79.00/0.68 — 91.00/0.17 73.00/0.85 85.00/0.22 82.00/0.38 48.00/1.05 70.00/0.66 67.00/0.56 48.00/1.03
Bulgarian 95.80/0.07 88.70/0.21 91.70/0.14 77.80/0.38 79.60/0.31 89.00/0.18 75.60/0.82 95.30/0.08 63.70/1.31 46.90/1.83 59.70/0.80 51.40/1.89
Catalan 98.00/0.04 95.90/0.12 95.00/0.12 89.40/0.14 87.60/0.21 95.60/0.10 92.10/0.14 96.30/0.09 91.60/0.15 76.90/0.43 87.90/0.20 56.00/0.96
Classical-syriac 99.00/0.01‡ 100.00/0.00‡ 99.00/0.01‡ 87.00/0.18 100.00/0.00‡ 97.00/0.03‡ 99.00/0.01‡ 88.00/0.16 76.00/0.30 65.00/0.40 80.00/0.23 94.00/0.06
Crimean-tatar 94.00/0.14 98.00/0.04‡ 99.00/0.03‡ 94.00/0.09 98.00/0.04‡ 95.00/0.08‡ 98.00/0.04‡ 98.00/0.04‡ 97.00/0.06‡ 92.00/0.12 96.00/0.07‡ 95.00/0.09‡
Czech 92.40/0.15 89.20/0.23 85.90/0.26 90.20/0.20 82.40/0.35 90.50/0.20 83.00/0.69 79.90/0.50 67.40/1.50 55.00/1.55 31.90/2.07 43.60/2.18
Danish 90.40/0.15 92.70/0.13 79.50/0.32 91.80/0.13 76.00/0.36 86.70/0.25 90.40/0.14 66.40/1.04 85.00/0.27 73.30/0.45 64.50/0.81 66.60/0.73
Dutch 94.20/0.11 85.10/0.34 87.20/0.24 92.20/0.13 82.30/0.26 87.70/0.22 88.60/0.22 86.70/0.24 77.00/0.50 59.40/0.90 — 53.20/1.20
English 96.40/0.06 95.80/0.07 85.30/0.22 93.80/0.11 94.70/0.08 95.90/0.06 96.50/0.06 91.60/0.12 88.50/0.27 88.00/0.26 — 70.90/0.70
Estonian 93.30/0.14 87.70/0.33 88.60/0.21 93.80/0.12 67.20/0.65 78.40/0.38 64.10/1.24 81.20/0.84 45.80/2.64 33.30/2.82 42.40/1.35 37.00/3.21
Faroese 79.20/0.42 79.60/0.44 72.90/0.54 76.30/0.52 56.30/0.84 75.90/0.49 76.80/0.39 40.10/1.90 56.60/0.87 56.80/0.91 27.60/1.50 48.40/1.18
Finnish 92.40/0.14 77.00/0.65 73.70/0.43 87.20/0.24 43.80/0.88 78.60/0.34 52.00/2.18 83.30/0.44 23.20/4.90 19.30/5.04 1.40/5.87 14.10/5.66
French 87.90/0.22 85.30/0.27 78.00/0.36 84.30/0.26 72.50/0.48 82.80/0.29 79.60/0.40 51.50/1.60 61.80/0.84 62.20/0.87 — 60.20/0.91
Friulian 97.00/0.05‡ 97.00/0.08‡ 97.00/0.07‡ 78.00/0.24 85.00/0.17 96.00/0.09‡ 99.00/0.03‡ 88.00/0.26 81.00/0.31 89.00/0.15 95.00/0.09‡ 83.00/0.27
Galician 97.60/0.04 96.70/0.08 94.90/0.09 89.90/0.12 93.90/0.10 95.10/0.09 95.00/0.08 97.50/0.04 86.60/0.23 74.30/0.45 91.10/0.13 62.40/0.78
Georgian 97.90/0.03 95.10/0.13 93.50/0.12 97.80/0.04 95.10/0.06 94.10/0.12 95.40/0.15 96.10/0.06 79.00/0.46 77.60/0.53 80.60/0.41 82.30/0.46
German 87.40/0.24 82.30/0.44 78.90/0.46 37.40/1.11 77.10/0.49 81.00/0.58 82.30/0.43 68.20/0.69 60.50/1.06 52.70/1.44 — 46.50/1.77
Greek 88.10/0.22 78.20/0.82 81.00/0.45 81.10/0.36 58.90/0.95 78.40/0.40 54.80/1.58 81.40/0.48 40.50/2.64 27.30/3.44 20.70/2.39 31.20/3.22
Haida 96.00/0.05‡ 93.00/0.17 95.00/0.09‡ 96.00/0.06‡ 15.00/1.95 66.00/0.73 100.00/0.00‡ 95.00/0.12‡ 90.00/0.22 77.00/0.69 21.00/3.72 60.00/1.60
Hebrew 98.20/0.02 84.30/0.30 86.10/0.20 85.70/0.15 83.70/0.22 53.70/0.57 54.50/0.70 61.20/0.50 23.10/1.57 28.80/1.45 77.80/0.30 30.40/1.32
Hindi 99.70/0.01‡ 100.00/0.00‡ 99.80/0.00‡ 89.40/0.14 98.70/0.02 93.00/0.08 80.00/0.43 98.80/0.03 65.60/1.43 73.40/1.16 83.50/0.83 2.50/3.01
Hungarian 82.10/0.40 76.90/0.54 78.60/0.47 79.50/0.46 59.20/0.79 69.50/0.68 80.90/0.39 77.30/0.53 64.80/0.84 50.20/1.25 16.20/2.93 38.40/1.99
Icelandic 81.10/0.36 80.90/0.41 72.80/0.54 80.60/0.37 55.20/0.78 77.10/0.46 79.30/0.36 50.90/1.16 63.60/0.69 43.60/1.26 37.00/1.44 46.80/1.24
Irish 89.10/0.33 67.20/1.16 71.20/0.79 81.80/0.48 56.30/1.17 53.00/1.13 34.10/2.88 59.00/1.50 16.90/4.39 14.70/5.28 14.10/3.00 8.50/6.09
Italian 97.30/0.05 94.20/0.16 94.20/0.12 90.00/0.15 88.80/0.17 77.50/0.69 63.70/1.30 96.00/0.07 63.10/0.91 52.30/1.63 32.60/1.73 58.80/1.50
Kabardian 94.00/0.06 99.00/0.01‡ 98.00/0.02‡ 92.00/0.12 100.00/0.00‡ 86.00/0.14 99.00/0.01‡ 89.00/0.13 82.00/0.26 82.00/0.28 96.00/0.05‡ 94.00/0.11
Kannada 96.00/0.08‡ 90.00/0.36 74.00/0.92 99.00/0.01‡ 91.00/0.20 66.00/0.75 97.00/0.03‡ 52.00/1.85 38.00/2.21 36.00/1.77 — 50.00/2.02
Khaling 93.00/0.11 72.00/0.89 73.50/0.36 44.70/0.82 77.30/0.37 53.70/0.87 17.10/1.80 51.70/1.16 8.50/3.46 15.60/2.53 87.50/0.20 18.40/2.57
Kurmanji 94.50/0.06 92.60/0.12 94.60/0.07 90.40/0.17 94.00/0.08 93.00/0.08 87.80/0.36 93.90/0.07 70.00/0.98 69.40/1.10 66.40/0.99 59.30/1.47
Ladin 96.00/0.08‡ 93.00/0.17 94.00/0.12 86.00/0.23 79.00/0.29 92.00/0.18 87.00/0.18 90.00/0.17 88.00/0.29 84.00/0.28 93.00/0.16 74.00/0.53
Latin 69.80/0.46 46.20/1.28 56.70/0.67 16.20/1.97 18.10/2.05 48.00/0.81 37.20/1.43 51.30/1.06 55.20/0.95 32.20/1.52 9.10/3.15 36.10/1.57
Latvian 96.10/0.06 93.20/0.21 90.70/0.15 92.90/0.11 91.10/0.15 92.80/0.17 90.20/0.29 93.40/0.11 71.50/0.74 66.10/0.85 50.20/1.30 56.50/1.26
Lithuanian 84.80/0.21 70.60/0.68 80.90/0.28 65.20/0.41 41.70/1.11 64.10/0.48 52.00/0.85 79.00/0.41 68.90/0.59 48.10/1.17 36.20/1.68 41.20/1.41
Livonian 92.00/0.16 82.00/0.40 77.00/0.59 87.00/0.31 68.00/0.62 67.00/0.75 76.00/0.60 74.00/0.66 60.00/1.43 50.00/1.56 56.00/0.95 40.00/2.16
Lower-sorbian 94.00/0.11 94.20/0.13 91.30/0.17 93.70/0.13 83.50/0.30 88.30/0.22 95.50/0.09 72.60/0.59 72.70/0.48 70.60/0.50 74.20/0.40 61.20/0.71
Macedonian 95.60/0.07 92.70/0.12 89.10/0.17 91.90/0.10 88.90/0.16 91.20/0.15 94.20/0.10 85.80/0.22 75.80/0.56 65.30/0.70 50.20/0.97 60.50/1.07
Maltese 85.00/0.26 63.00/0.72 66.00/0.61 4.00/3.00 89.00/0.20 16.00/1.85 28.00/1.43 48.00/0.92 21.00/2.13 12.00/2.33 41.00/1.32 8.00/2.62
Middle-french 98.90/0.02 97.00/0.07 96.50/0.07 96.70/0.05 93.50/0.09 95.10/0.10 95.40/0.16 98.50/0.02 90.30/0.26 80.20/0.47 80.90/0.42 79.60/0.49
Navajo 86.50/0.29 43.60/2.19 49.30/1.78 79.00/0.54 25.80/2.25 38.60/2.06 6.80/3.25 37.10/1.93 12.40/3.11 10.70/3.31 27.20/1.80 9.20/3.75
Neapolitan 96.00/0.06‡ 94.00/0.24‡ 95.00/0.14‡ — 52.00/0.66 95.00/0.13‡ 95.00/0.09‡ 72.00/0.72 79.00/0.33 73.00/0.41 54.00/1.72 76.00/0.63
North-frisian 90.00/0.21 80.00/0.41 59.00/1.44 15.00/4.44 83.00/0.40 36.00/2.70 33.00/2.23 45.00/3.17 17.00/3.91 16.00/3.64 — 7.00/4.53
Northern-sami 96.30/0.08 61.70/1.17 74.30/0.44 90.70/0.15 47.50/1.16 62.70/0.70 75.50/0.35 69.50/1.05 67.10/0.60 51.70/1.00 47.20/1.29 46.40/1.27
Norwegian-bokmaal 85.90/0.20 90.80/0.15 79.20/0.31 88.90/0.19 81.70/0.28 90.50/0.17 87.20/0.20 77.80/0.34 72.20/0.57 70.90/0.53 49.80/1.13 66.50/0.68
Norwegian-nynorsk 82.40/0.28 82.80/0.30 70.40/0.55 79.40/0.34 56.60/0.71 74.70/0.42 88.00/0.20 57.00/0.81 76.60/0.43 50.00/1.03 39.00/1.35 45.10/0.97
Occitan 97.00/0.05‡ 94.00/0.15‡ 95.00/0.07‡ 83.00/0.27 83.00/0.17 96.00/0.07‡ 92.00/0.09 94.00/0.17‡ 86.00/0.21 85.00/0.25 96.00/0.06‡ 75.00/0.63
Old-armenian 88.00/0.22 84.90/0.33 82.80/0.35 80.40/0.36 68.00/0.62 78.90/0.46 82.20/0.36 58.40/1.10 57.80/0.91 64.70/0.79 62.60/0.68 58.90/0.98
Old-church-slavonic 82.00/0.35 92.00/0.15 93.00/0.15 9.00/2.10 93.00/0.10 81.00/0.45 88.00/0.16 52.00/1.20 67.00/0.58 66.00/0.59 33.00/0.97 71.00/0.47
Old-english 84.20/0.27 69.30/0.59 65.40/0.55 28.20/1.18 50.90/0.84 40.60/0.92 34.30/1.30 63.90/0.77 58.30/0.86 56.60/0.94 — 43.80/1.23
Old-french 89.80/0.18 80.80/0.48 82.40/0.37 — 61.80/0.78 80.80/0.40 82.00/0.39 55.10/1.26 75.90/0.51 62.90/0.81 54.10/0.88 57.00/0.87
Old-saxon 94.50/0.10 87.30/0.28 77.70/0.39 54.50/0.66 72.30/0.46 59.90/0.67 54.00/0.67 64.30/0.94 72.80/0.49 68.70/0.53 76.70/0.33 42.90/1.24
Pashto 89.00/0.19 92.00/0.11 82.00/0.47 84.00/0.25 87.00/0.16 71.00/0.63 78.00/0.42 56.00/1.41 31.00/1.63 37.00/1.46 82.00/0.29 30.00/1.81
Persian 98.20/0.03 63.70/1.50 90.80/0.20 95.60/0.08 90.80/0.17 80.70/0.53 62.60/1.38 98.20/0.03 56.60/2.63 50.50/2.48 29.30/3.33 3.70/4.30
Polish 88.60/0.23 87.60/0.33 82.40/0.37 87.80/0.26 76.40/0.45 87.00/0.26 82.90/0.56 80.40/0.62 61.60/1.33 44.60/1.82 — 49.00/1.78
Portuguese 96.90/0.05 97.30/0.06 95.10/0.08 84.00/0.23 87.80/0.14 96.60/0.06 94.60/0.08 98.50/0.02 88.30/0.19 77.40/0.41 76.40/0.42 55.50/0.96
Quechua 99.00/0.02 99.80/0.00‡ 99.00/0.02 96.80/0.05 81.00/0.32 95.10/0.10 98.80/0.04 99.30/0.02 91.30/0.20 9.70/3.79 43.60/12.02 78.40/0.56
Romanian 81.20/0.49 82.60/0.53 77.70/0.58 82.00/0.49 69.20/0.75 79.70/0.54 62.40/1.33 56.40/1.87 44.90/2.34 41.40/2.65 40.40/1.83 33.80/2.76
Russian 91.90/0.20 88.00/0.33 82.20/0.45 86.80/0.40 85.20/0.35 86.50/0.44 76.10/0.70 86.70/0.62 63.80/1.38 53.20/1.64 — 46.00/2.20
Sanskrit 89.70/0.16 92.80/0.12 87.50/0.22 76.60/0.38 79.20/0.36 80.40/0.35 93.70/0.09 50.40/1.43 70.70/0.65 71.70/0.51 53.80/1.31 74.40/0.48
Serbo-croatian 87.60/0.24 87.40/0.29 84.50/0.32 88.00/0.27 75.20/0.46 83.10/0.36 69.10/1.13 61.90/1.50 35.50/2.94 44.70/2.54 26.20/2.35 33.20/2.84
Slovak 92.70/0.12 91.50/0.13 82.90/0.29 88.80/0.17 73.90/0.44 83.30/0.28 91.10/0.14 51.40/1.25 67.60/0.54 66.00/0.55 61.60/0.67 59.20/0.68
Slovene 33.00/0.79 7.00/1.61 17.80/1.18 93.40/0.10 84.80/0.24 84.90/0.24 90.90/0.16 40.80/0.74 88.30/0.21 72.20/0.49 0.70/8.23 33.90/1.66
Sorani 87.90/0.15 76.00/0.53 80.90/0.27 86.80/0.18 59.30/0.60 63.60/0.68 27.60/2.22 53.20/1.49 12.60/3.06 16.40/2.83 28.50/1.81 12.70/2.95
Spanish 96.80/0.05 94.40/0.17 93.10/0.13 72.70/0.34 93.60/0.11 92.40/0.20 81.30/0.64 95.60/0.07 72.80/0.93 64.90/1.27 59.30/0.85 46.80/1.44
Swahili 98.00/0.02‡ 98.00/0.06‡ 99.00/0.01‡ 98.00/0.02‡ 98.00/0.02‡ 71.00/0.44 1.00/3.15 94.00/0.09 5.00/3.22 5.00/2.74 88.00/0.19 4.00/2.73
Swedish 89.50/0.18 88.00/0.22 59.90/0.80 85.20/0.27 75.60/0.42 85.00/0.27 88.50/0.23 84.50/0.27 72.70/0.61 60.70/0.94 33.10/2.01 49.50/1.34
Tatar 97.00/0.03‡ 99.00/0.01‡ 99.00/0.01‡ 95.00/0.06‡ 97.00/0.03‡ 96.00/0.04‡ 97.00/0.03‡ 99.00/0.01‡ 97.00/0.03‡ 86.00/0.17 45.00/1.73 93.00/0.08
Turkish 97.00/0.04 87.90/0.26 93.90/0.09 79.30/0.44 75.40/0.53 73.20/0.70 95.90/0.08 97.30/0.04 77.20/0.54 59.50/1.14 23.30/2.88 51.50/1.62
Ukrainian 91.60/0.15 93.10/0.15 83.70/0.30 90.50/0.20 76.10/0.41 86.20/0.29 87.20/0.25 82.50/0.48 76.70/0.44 62.80/0.75 36.10/1.36 65.30/0.71
Urdu 98.40/0.03 99.30/0.01 99.10/0.02 43.50/0.78 99.00/0.01 95.90/0.05 83.70/0.38 95.10/0.21 74.40/1.11 72.70/1.10 97.00/0.04 5.90/3.60
Uzbek 96.00/0.10‡ 100.00/0.00‡ 100.00/0.00‡ — 100.00/0.00‡ 96.00/0.04‡ 99.00/0.01‡ 44.00/2.20 61.00/0.66 61.00/0.81 8.00/2.87 76.00/0.51
Venetian 97.90/0.03 98.50/0.03 97.60/0.05 98.50/0.03 98.20/0.03 93.10/0.11 97.60/0.04 98.40/0.03 89.20/0.18 87.10/0.20 87.60/0.46 77.80/0.43
Votic 77.00/0.37 37.00/1.37 52.00/0.85 — 41.00/0.83 37.00/1.35 66.00/0.47 12.00/2.46 48.00/0.88 49.00/0.90 23.00/1.53 34.00/1.58
Welsh 92.00/0.16 82.00/0.47 79.00/0.43 92.00/0.13 72.00/0.47 72.00/0.54 88.00/0.16 82.00/0.44 75.00/0.41 85.00/0.29 90.00/0.15 52.00/0.96
West-frisian 84.00/0.27 82.00/0.51 72.00/0.70 — 92.00/0.10 67.00/0.78 67.00/0.56 47.00/1.17 54.00/1.02 45.00/1.07 17.00/1.73 33.00/1.52
Yiddish 95.00/0.05‡ 97.00/0.10‡ 98.00/0.07‡ 92.00/0.19 96.00/0.07‡ 94.00/0.14 99.00/0.01‡ 94.00/0.13 94.00/0.06 84.00/0.31 80.00/0.29 86.00/0.29
Zulu 96.90/0.06 93.80/0.16 95.60/0.11 73.30/0.40 98.50/0.02 68.30/0.64 2.50/3.03 87.60/0.28 2.70/2.88 2.50/3.63 72.30/0.62 2.40/3.55
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oracle-fc oracle-e uzh-01 uzh-02 iitbhu-iiith-02 iitbhu-iiith-01 waseda-01 msu-04 msu-03 hamburg-01 iit-varanasi-01 msu-02

Adyghe 100.00/* 97.20/* 94.40/0.06 94.20/0.06 93.40/0.07 93.40/0.07 87.80/0.16 80.60/0.46 93.50/0.07 92.10/0.08 92.90/0.08 94.00/0.06
Albanian 100.00/* 95.00/* 88.10/0.30 87.20/0.33 88.80/0.24 87.30/0.27 72.70/1.29 78.80/0.54 77.20/0.58 79.00/0.59 39.20/1.63 72.80/1.01
Arabic 98.40/* 86.90/* 79.40/0.65 78.60/0.68 78.30/0.71 74.40/0.81 66.70/1.02 0.00/10.73 0.00/9.77 63.80/1.03 38.80/1.90 0.00/4.70
Armenian 97.00/* 97.10/* 92.80/0.13 92.40/0.13 90.80/0.16 88.70/0.19 85.30/0.26 86.80/0.23 86.80/0.24 88.20/0.19 67.40/0.80 80.50/0.47
Asturian 97.10/* 96.20/* 91.60/0.17 92.00/0.17 92.40/0.17 91.80/0.18 91.80/0.18 90.30/0.19 89.40/0.22 91.70/0.19 90.00/0.20 88.40/0.27
Azeri 99.00/* 99.00/* 95.00/0.11‡ 94.00/0.15‡ 96.00/0.08‡ 92.00/0.14 84.00/0.34 96.00/0.11‡ 92.00/0.16 89.00/0.19 94.00/0.14‡ 80.00/0.37
Bashkir 100.00/* 99.30/* 96.70/0.08 97.30/0.06 96.50/0.08 95.00/0.11 87.20/0.24 92.00/0.22 92.40/0.24 94.10/0.13 95.40/0.09 88.30/0.25
Basque 43.90/* 95.50/* 88.00/0.23† 86.00/0.27† 88.10/0.25† 86.50/0.28† 80.50/0.45† 59.50/0.91† 51.60/1.11† 33.10/1.66 69.20/0.58† 2.70/6.01
Belarusian 100.00/* 84.50/* 70.40/0.97 69.50/0.97 64.30/1.23 63.20/1.23 53.60/1.44 61.30/1.47 56.40/1.50 54.00/1.45 45.80/1.71 59.50/1.41
Bengali 100.00/* 99.00/* 99.00/0.05‡ 99.00/0.05‡ 97.00/0.11‡ 96.00/0.12‡ 96.00/0.14‡ 88.00/0.29 95.00/0.15‡ 92.00/0.22 97.00/0.10‡ 84.00/0.31
Breton 93.00/* 97.00/* 95.00/0.11‡ 96.00/0.10‡ 92.00/0.25‡ 90.00/0.29 93.00/0.17‡ 93.00/0.18‡ 91.00/0.14 88.00/0.22 94.00/0.20‡ 77.00/0.80
Bulgarian 100.00/* 92.70/* 83.30/0.26 83.80/0.25 81.00/0.29 78.00/0.33 80.80/0.31 76.90/0.37 77.80/0.33 78.80/0.35 35.00/1.36 72.20/0.48
Catalan 100.00/* 96.80/* 92.10/0.15 92.20/0.15 92.10/0.16 91.80/0.17 92.80/0.17 90.00/0.21 90.50/0.19 84.40/0.27 83.80/0.28 85.40/0.34
Classical-syriac 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 99.00/0.01‡ 99.00/0.01‡ 100.00/0.00‡ 99.00/0.01‡ 96.00/0.04‡ 97.00/0.03‡ 99.00/0.01‡ 97.00/0.04‡
Cornish 92.00/* 88.00/* 70.00/0.74 66.00/0.76 70.00/0.76 70.00/0.74 46.00/2.44 58.00/0.86 36.00/1.62 52.00/1.00 66.00/0.70 10.00/2.78
Crimean-tatar 100.00/* 99.00/* 98.00/0.04‡ 98.00/0.04‡ 97.00/0.06‡ 97.00/0.06‡ 92.00/0.11 91.00/0.21 93.00/0.12 96.00/0.06‡ 98.00/0.04‡ 95.00/0.07‡
Czech 97.20/* 93.80/* 87.20/0.26 86.60/0.28 80.40/0.37 79.00/0.39 82.30/0.46 79.40/0.42 78.60/0.47 82.00/0.38 61.10/0.94 76.30/0.53
Danish 100.00/* 93.60/* 80.40/0.30 80.00/0.31 79.20/0.33 78.60/0.34 79.60/0.32 78.80/0.34 76.10/0.37 79.00/0.32 75.70/0.36 68.80/0.50
Dutch 100.00/* 96.20/* 85.70/0.22 85.60/0.21 82.00/0.28 81.90/0.28 77.10/0.37 80.40/0.31 84.00/0.25 77.80/0.38 71.00/0.49 65.90/0.52
English 100.00/* 97.20/* 94.50/0.10 94.20/0.10 94.20/0.10 93.50/0.11 91.50/0.14 92.70/0.13 94.40/0.09 90.20/0.14 90.90/0.15 86.40/0.25
Estonian 100.00/* 90.80/* 81.60/0.30 81.50/0.31 78.20/0.34 76.20/0.37 72.20/0.50 71.30/0.51 65.60/0.63 63.10/0.77 46.50/1.20 67.50/0.54
Faroese 100.00/* 86.60/* 72.60/0.59 71.70/0.60 69.10/0.61 68.00/0.62 68.20/0.72 68.00/0.68 66.20/0.71 56.10/0.84 48.90/1.02 60.10/0.78
Finnish 97.10/* 91.50/* 82.80/0.27 82.30/0.29 73.80/0.43 71.10/0.47 65.10/0.64 58.10/0.83 57.00/0.84 35.90/1.22 22.00/2.55 41.90/1.98
French 100.00/* 89.40/* 80.20/0.33 80.90/0.32 78.60/0.35 78.20/0.35 73.10/0.47 75.70/0.42 76.50/0.41 71.80/0.50 69.30/0.60 73.90/0.46
Friulian 100.00/* 99.00/* 96.00/0.06‡ 96.00/0.06‡ 97.00/0.05‡ 97.00/0.05‡ 96.00/0.06‡ 95.00/0.07‡ 93.00/0.09 81.00/0.24 92.00/0.14 92.00/0.12
Galician 99.90/* 95.70/* 90.80/0.16 90.40/0.17 88.90/0.18 88.40/0.18 88.90/0.18 85.80/0.27 82.90/0.29 86.00/0.23 82.50/0.29 82.80/0.33
Georgian 96.20/* 96.00/* 93.90/0.14 94.00/0.14 93.50/0.17 93.40/0.17 93.20/0.17 91.20/0.21 92.30/0.20 92.60/0.17 91.20/0.22 84.40/0.29
German 100.00/* 89.20/* 80.10/0.48 79.50/0.48 76.80/0.56 76.70/0.56 74.00/0.64 74.10/0.60 74.40/0.56 70.90/0.65 65.50/0.71 68.00/0.72
Greek 97.40/* 84.40/* 75.30/0.53 75.50/0.55 71.50/0.56 69.10/0.61 60.50/1.73 67.00/0.71 62.00/0.83 58.40/0.98 29.90/1.99 62.00/1.65
Greenlandic 100.00/* 100.00/* 98.00/0.02‡ 98.00/0.02‡ 88.00/0.20 86.00/0.22 74.00/2.40 68.00/0.38 80.00/0.22 68.00/0.40 84.00/0.22 70.00/0.38
Haida 100.00/* 96.00/* 94.00/0.12‡ 94.00/0.12‡ 87.00/0.32 85.00/0.36 62.00/1.98 91.00/0.19‡ 92.00/0.20‡ 16.00/2.15 90.00/0.19 81.00/0.38
Hebrew 100.00/* 96.10/* 85.40/0.19 84.50/0.20 84.50/0.21 83.10/0.23 76.90/0.32 81.70/0.25 80.10/0.26 77.90/0.30 64.70/0.52 64.40/0.47
Hindi 99.70/* 98.90/* 97.50/0.03 97.60/0.03 96.20/0.07 96.00/0.08 95.60/0.05 94.80/0.07 95.00/0.07 94.20/0.07 87.70/0.32 90.90/0.16
Hungarian 100.00/* 86.50/* 73.70/0.53 73.40/0.55 74.50/0.51 72.00/0.56 53.80/0.96 65.90/0.68 68.80/0.65 51.60/0.91 57.10/0.85 64.50/0.65
Icelandic 100.00/* 88.00/* 73.80/0.52 73.60/0.52 65.90/0.67 63.50/0.70 62.40/0.78 64.60/0.69 59.20/0.78 54.60/0.79 45.70/1.03 55.70/0.87
Ingrian 100.00/* 96.00/* 92.00/0.14‡ 92.00/0.12‡ 90.00/0.24‡ 90.00/0.18‡ 68.00/1.56 88.00/0.20‡ 86.00/0.22‡ 58.00/0.66 88.00/0.18‡ 56.00/0.68
Irish 99.10/* 87.30/* 77.10/0.67 75.60/0.70 68.80/0.89 64.70/0.97 54.30/1.22 60.80/1.12 57.10/1.19 59.60/1.13 18.80/3.40 52.20/1.43
Italian 100.00/* 97.60/* 94.90/0.09 95.10/0.09 93.20/0.13 91.70/0.15 91.90/0.16 88.90/0.19 92.50/0.16 85.90/0.25 68.90/0.78 85.80/0.32
Kabardian 100.00/* 100.00/* 97.00/0.03‡ 98.00/0.02‡ 98.00/0.02‡ 98.00/0.02‡ 92.00/0.11 86.00/0.27 92.00/0.10 95.00/0.06‡ 97.00/0.03‡ 97.00/0.03‡
Kannada 100.00/* 99.00/* 94.00/0.12‡ 94.00/0.12‡ 92.00/0.14 91.00/0.15 93.00/0.11 87.00/0.26 87.00/0.23 86.00/0.24 85.00/0.26 64.00/1.19
Karelian 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 96.00/0.08‡ 94.00/0.08‡ 78.00/1.92 92.00/0.08‡ 92.00/0.12‡ 82.00/0.28 96.00/0.06‡ 76.00/0.28
Kashubian 100.00/* 96.00/* 88.00/0.20‡ 88.00/0.26‡ 86.00/0.22‡ 82.00/0.26 66.00/1.96 84.00/0.26 78.00/0.38 82.00/0.34 84.00/0.24 72.00/0.48
Kazakh 100.00/* 96.00/* 84.00/0.16 82.00/0.18 88.00/0.12‡ 84.00/0.16 70.00/1.76 76.00/0.26 74.00/0.28 86.00/0.16‡ 50.00/0.50 82.00/0.20
Khakas 100.00/* 98.00/* 98.00/0.04‡ 98.00/0.04‡ 98.00/0.04‡ 98.00/0.04‡ 64.00/1.54 98.00/0.04‡ 98.00/0.02‡ 96.00/0.06‡ 98.00/0.04‡ 98.00/0.04‡
Khaling 90.90/* 94.40/* 83.20/0.29 82.40/0.30 85.60/0.23 86.00/0.23 85.70/0.25 41.40/1.18 43.40/1.23 68.30/0.65 59.40/0.80 20.10/2.61
Kurmanji 97.20/* 97.30/* 93.20/0.10 92.30/0.11 91.10/0.18 90.60/0.19 88.30/0.32 74.20/0.55 87.20/0.21 90.00/0.13 86.10/0.34 91.00/0.22
Ladin 97.00/* 98.00/* 93.00/0.16‡ 95.00/0.11‡ 92.00/0.13 93.00/0.11‡ 93.00/0.13‡ 80.00/0.27 87.00/0.21 76.00/0.26 91.00/0.10 89.00/0.29
Latin 100.00/* 74.30/* 53.30/0.75 51.70/0.80 46.20/0.89 44.80/0.94 37.90/1.16 38.20/1.17 40.80/1.10 21.40/1.94 31.30/1.37 37.50/1.26
Latvian 99.60/* 94.90/* 90.60/0.15 89.80/0.19 88.00/0.24 86.50/0.27 88.20/0.26 85.30/0.31 84.40/0.31 86.30/0.26 73.70/0.55 86.50/0.25
Lithuanian 98.90/* 78.80/* 63.90/0.52 63.00/0.55 55.60/0.75 53.40/0.78 52.00/0.70 45.90/0.88 48.10/0.87 40.80/1.13 46.80/0.96 55.00/0.77
Livonian 99.00/* 94.00/* 82.00/0.35 79.00/0.42 75.00/0.45 77.00/0.40 74.00/0.50 67.00/0.61 63.00/0.68 70.00/0.59 62.00/0.75 54.00/1.14
Lower-sorbian 100.00/* 95.00/* 85.10/0.26 84.20/0.29 84.00/0.28 82.30/0.30 81.40/0.34 78.20/0.39 80.80/0.35 78.60/0.40 69.80/0.50 78.90/0.39
Macedonian 98.40/* 97.20/* 91.60/0.11 91.50/0.12 90.10/0.13 88.50/0.15 88.10/0.16 86.40/0.19 84.30/0.21 87.40/0.17 75.10/0.38 84.20/0.24
Maltese 99.00/* 98.00/* 95.00/0.10‡ 94.00/0.11‡ 91.00/0.20 90.00/0.19 89.00/0.22 77.00/0.35 84.00/0.25 82.00/0.38 85.00/0.24 59.00/0.73
Mapudungun 100.00/* 100.00/* 98.00/0.04‡ 100.00/0.00‡ 96.00/0.04‡ 96.00/0.04‡ 76.00/1.46 90.00/0.12‡ 88.00/0.14 100.00/0.00‡ 98.00/0.04‡ 92.00/0.08‡
Middle-french 99.80/* 97.50/* 94.30/0.11 94.50/0.12 93.30/0.14 92.60/0.16 93.20/0.13 92.90/0.15 92.70/0.15 89.00/0.19 89.40/0.23 90.80/0.19
Middle-high-german 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 96.00/0.08‡ 96.00/0.08‡ 80.00/1.20 92.00/0.12‡ 92.00/0.14‡ 96.00/0.10‡ 92.00/0.14‡ 90.00/0.14‡
Middle-low-german 100.00/* 100.00/* 98.00/0.02‡ 98.00/0.02‡ 98.00/0.02‡ 100.00/0.00‡ 72.00/1.50 94.00/0.06‡ 82.00/0.36 96.00/0.04‡ 92.00/0.16‡ 68.00/0.78
Murrinhpatha 100.00/* 100.00/* 96.00/0.04‡ 96.00/0.04‡ 90.00/0.20‡ 86.00/0.22 70.00/1.34 76.00/0.52 78.00/0.50 88.00/0.22 96.00/0.10‡ 44.00/1.26
Navajo 99.50/* 69.60/* 54.30/1.20 54.00/1.27 44.60/1.60 43.00/1.66 40.80/1.81 42.40/1.63 42.00/1.61 24.20/2.74 19.50/2.68 33.80/2.65
Neapolitan 99.00/* 99.00/* 99.00/0.03‡ 99.00/0.03‡ 98.00/0.05‡ 98.00/0.05‡ 95.00/0.08‡ 96.00/0.06‡ 93.00/0.11 49.00/0.71 98.00/0.06‡ 94.00/0.20‡
Norman 100.00/* 94.00/* 84.00/0.38‡ 86.00/0.34‡ 88.00/0.24‡ 88.00/0.24‡ 66.00/2.08 38.00/1.10 34.00/1.28 58.00/0.94 26.00/1.62 46.00/2.04
North-frisian 100.00/* 94.00/* 91.00/0.24‡ 89.00/0.27‡ 88.00/0.29 89.00/0.27‡ 87.00/0.30 78.00/0.67 70.00/0.74 75.00/0.61 85.00/0.39 49.00/1.98
Northern-sami 100.00/* 90.30/* 76.10/0.42 75.20/0.44 70.20/0.52 66.10/0.58 60.30/0.78 56.70/0.85 57.80/0.81 31.30/1.66 39.40/1.26 34.60/1.30
Norwegian-bokmaal 99.30/* 93.60/* 84.10/0.24 84.00/0.24 83.50/0.27 81.50/0.30 81.30/0.30 80.40/0.31 82.70/0.28 79.00/0.34 81.50/0.29 66.60/0.47
Norwegian-nynorsk 99.80/* 90.00/* 67.10/0.55 65.90/0.57 64.20/0.60 62.90/0.63 60.50/0.65 61.10/0.65 61.00/0.63 53.90/0.77 57.50/0.72 49.30/0.88
Occitan 100.00/* 97.00/* 94.00/0.10‡ 95.00/0.11‡ 94.00/0.10‡ 94.00/0.10‡ 96.00/0.10‡ 92.00/0.12‡ 89.00/0.22 81.00/0.22 93.00/0.12‡ 89.00/0.23
Old-armenian 99.00/* 91.80/* 80.20/0.39 79.20/0.41 78.10/0.44 77.10/0.46 72.70/0.58 66.00/0.67 69.70/0.61 65.90/0.66 57.30/0.82 71.40/0.63
Old-church-slavonic 100.00/* 99.00/* 93.00/0.11 93.00/0.11 87.00/0.24 87.00/0.23 90.00/0.16 83.00/0.29 78.00/0.34 89.00/0.18 87.00/0.19 80.00/0.35
Old-english 100.00/* 83.90/* 65.60/0.58 65.00/0.58 62.70/0.64 60.30/0.69 56.30/0.72 52.90/0.77 58.30/0.70 45.70/0.93 42.40/1.13 33.50/1.20
Old-french 95.90/* 89.30/* 79.30/0.41 77.90/0.45 74.10/0.51 72.20/0.54 71.30/0.58 68.10/0.59 68.50/0.62 62.60/0.72 60.60/0.74 66.60/0.73
Old-irish 84.00/* 50.00/* 40.00/1.66‡ 34.00/2.14 26.00/2.58 22.00/2.78 16.00/3.40 12.00/2.62 26.00/2.42 6.00/3.78 24.00/2.52 16.00/3.88
Old-saxon 97.60/* 92.40/* 80.70/0.34 80.90/0.33 74.90/0.39 74.10/0.41 70.30/0.49 70.90/0.49 71.10/0.47 67.40/0.55 64.70/0.60 47.60/1.04
Pashto 100.00/* 97.00/* 85.00/0.31 83.00/0.28 85.00/0.23 81.00/0.28 77.00/0.50 73.00/0.55 75.00/0.49 80.00/0.31 73.00/0.36 68.00/0.72
Persian 100.00/* 97.20/* 93.40/0.10 93.40/0.10 91.70/0.13 90.70/0.14 87.00/0.24 84.50/0.24 86.20/0.23 82.60/0.37 70.90/0.71 77.30/0.63
Polish 98.20/* 89.50/* 82.20/0.40 82.40/0.38 76.10/0.54 73.40/0.58 75.90/0.55 72.30/0.58 74.50/0.56 75.10/0.58 55.10/1.09 74.10/0.61
Portuguese 100.00/* 97.20/* 94.70/0.08 94.80/0.08 92.00/0.12 92.00/0.12 93.80/0.10 90.40/0.14 91.30/0.13 84.90/0.21 37.30/1.41 90.40/0.18
Quechua 85.90/* 99.60/* 98.90/0.02† 98.70/0.03† 98.60/0.03† 98.20/0.03† 70.90/1.49 96.70/0.06† 95.30/0.11† 78.40/0.40 77.30/0.55 73.30/1.45
Romanian 100.00/* 88.20/* 77.60/0.57 77.10/0.58 73.00/0.77 72.20/0.83 71.50/0.89 68.30/0.73 68.40/0.79 68.70/0.73 48.50/1.51 68.80/0.73
Russian 99.70/* 92.70/* 86.90/0.30 86.80/0.28 80.10/0.57 78.20/0.60 79.50/0.56 76.40/0.50 76.20/0.50 77.30/0.47 59.90/0.97 72.20/0.77
Sanskrit 99.30/* 93.20/* 85.90/0.23 85.90/0.23 85.50/0.25 84.70/0.26 79.10/0.36 78.50/0.36 77.70/0.39 79.80/0.33 68.80/0.54 79.60/0.36
Scottish-gaelic 100.00/* 96.00/* 92.00/0.10‡ 92.00/0.14‡ 94.00/0.12‡ 94.00/0.08‡ 72.00/1.66 84.00/0.28 72.00/0.50 88.00/0.18‡ 86.00/0.18‡ 88.00/0.24‡
Serbo-croatian 95.10/* 93.00/* 86.10/0.27 85.20/0.27 82.50/0.34 81.90/0.36 76.30/0.45 75.50/0.47 73.30/0.54 72.30/0.58 43.40/1.49 66.80/0.83
Slovak 100.00/* 92.40/* 78.60/0.37 77.90/0.39 73.90/0.45 72.30/0.47 73.90/0.47 71.00/0.46 68.90/0.50 70.30/0.51 58.70/0.67 68.40/0.54
Slovene 99.80/* 94.30/* 86.20/0.22 85.80/0.23 85.00/0.25 83.60/0.28 84.10/0.24 40.90/0.79 27.10/0.99 84.70/0.26 65.60/0.52 7.60/1.51
Sorani 97.40/* 93.00/* 79.60/0.32 79.20/0.33 80.20/0.30 77.80/0.34 72.00/0.49 64.20/0.61 64.40/0.61 49.30/0.81 55.90/0.90 56.40/1.19
Spanish 100.00/* 95.60/* 91.40/0.14 91.10/0.15 92.00/0.14 91.20/0.16 91.50/0.15 88.60/0.19 89.30/0.18 88.30/0.23 75.70/0.64 85.10/0.40
Swahili 100.00/* 99.00/* 99.00/0.01‡ 99.00/0.01‡ 97.00/0.05‡ 95.00/0.07‡ 92.00/0.14 85.00/0.22 84.00/0.28 95.00/0.09‡ 87.00/0.29 92.00/0.13
Swedish 99.40/* 93.10/* 79.80/0.35 79.50/0.35 77.80/0.40 78.30/0.40 76.80/0.41 77.80/0.37 74.30/0.43 71.90/0.48 31.40/1.41 65.40/0.57
Tatar 100.00/* 99.00/* 97.00/0.03‡ 98.00/0.02‡ 95.00/0.05‡ 95.00/0.05‡ 92.00/0.11 94.00/0.06‡ 95.00/0.07‡ 93.00/0.09 96.00/0.04‡ 94.00/0.07‡
Tibetan 100.00/* 72.00/* 52.00/0.78 56.00/0.64 50.00/0.90 40.00/1.00 38.00/1.36 44.00/0.86 44.00/0.94 46.00/0.74 22.00/1.36 52.00/0.80
Turkish 94.10/* 95.90/* 90.70/0.17 90.30/0.17 90.00/0.27 88.20/0.31 69.20/0.78 82.50/0.39 81.20/0.45 68.60/0.70 79.20/0.47 65.40/1.21
Turkmen 100.00/* 98.00/* 94.00/0.08‡ 94.00/0.08‡ 98.00/0.02‡ 98.00/0.02‡ 74.00/1.72 94.00/0.06‡ 94.00/0.06‡ 90.00/0.18‡ 96.00/0.04‡ 98.00/0.02‡
Ukrainian 99.30/* 93.50/* 81.40/0.35 80.40/0.38 77.60/0.42 76.00/0.43 74.00/0.49 73.00/0.46 71.70/0.47 77.50/0.41 46.60/0.85 69.80/0.50
Urdu 98.70/* 98.70/* 96.70/0.04 96.80/0.04 96.70/0.04 96.40/0.05 93.90/0.10 94.10/0.10 92.20/0.14 94.70/0.07 87.50/0.25 89.40/0.20
Uzbek 100.00/* 100.00/* 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 96.00/0.04‡ 100.00/0.00‡ 94.00/0.10 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡
Venetian 99.30/* 98.10/* 94.40/0.08 95.10/0.08 92.80/0.10 92.30/0.11 91.80/0.10 93.10/0.10 91.60/0.11 92.10/0.11 91.90/0.12 88.50/0.17
Votic 100.00/* 96.00/* 86.00/0.16 88.00/0.14 86.00/0.18 83.00/0.22 74.00/0.43 67.00/0.53 71.00/0.44 42.00/0.82 78.00/0.32 49.00/0.90
Welsh 100.00/* 90.00/* 84.00/0.29 83.00/0.30 82.00/0.30 82.00/0.30 81.00/0.33 77.00/0.39 71.00/0.48 67.00/0.63 81.00/0.34 67.00/0.61
West-frisian 100.00/* 100.00/* 97.00/0.05‡ 98.00/0.04‡ 89.00/0.25 86.00/0.30 96.00/0.14‡ 90.00/0.11 74.00/0.43 91.00/0.21 94.00/0.07 73.00/0.68
Yiddish 100.00/* 99.00/* 92.00/0.10 94.00/0.10‡ 89.00/0.16 89.00/0.16 91.00/0.18 85.00/0.19 89.00/0.15 92.00/0.13 88.00/0.23 89.00/0.18
Zulu 96.90/* 94.60/* 87.20/0.28 87.30/0.27 85.20/0.35 82.80/0.40 82.80/0.38 70.40/0.68 68.40/0.70 81.80/0.39 52.60/1.14 71.60/0.70
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bme-01 bme-03 bme-02 msu-01 baseline axsemantics-02 axsemantics-01 kucst-01 tuebingen-oslo-03 tuebingen-oslo-02 tuebingen-oslo-01

Adyghe 90.80/0.12 90.50/0.13 93.10/0.11 88.90/0.13 84.80/0.15 91.90/0.08 — 66.10/0.86 55.00/1.28 34.60/1.96 47.10/1.70
Albanian 46.20/1.41 46.20/1.41 46.30/1.38 65.50/1.01 60.70/1.44 26.50/3.21 — 10.50/3.78 3.30/6.25 3.40/6.60 2.00/7.59
Arabic 47.00/1.63 47.00/1.63 37.20/2.76 0.00/7.80 39.50/1.83 22.60/3.23 — 0.00/10.78 5.10/3.63 22.30/2.85 0.00/8.80
Armenian 58.70/1.00 58.70/1.00 58.00/1.13 77.40/0.53 71.00/0.55 63.40/1.06 — 12.30/3.18 9.80/3.67 8.30/4.11 8.00/4.29
Asturian 87.80/0.22 88.60/0.22 86.40/0.27 89.60/0.21 89.10/0.25 82.50/0.35 — 49.70/1.01 40.10/1.26 51.80/0.89 26.20/1.68
Azeri 56.00/0.89 56.00/0.89 65.00/0.83 81.00/0.40 50.00/1.91 89.00/0.20 — 11.00/2.36 54.00/1.10 46.00/1.34 34.00/1.74
Bashkir 92.40/0.14 91.50/0.17 93.20/0.21 93.70/0.13 72.30/0.66 93.90/0.12 — 65.40/0.84 59.40/1.03 51.40/1.17 45.20/1.53
Basque 37.70/1.38 37.70/1.38 34.20/1.60 10.40/3.73 1.80/5.63 0.70/3.17 — 49.40/1.17† 1.40/4.21 2.70/3.82 2.40/4.11
Belarusian 52.40/1.41 52.40/1.41 45.40/1.69 41.60/2.03 21.70/2.09 16.60/2.82 — 13.00/2.84 26.90/2.59 20.60/2.82 15.40/3.25
Bengali 87.00/0.32 87.00/0.32 85.00/0.39 83.00/0.37 76.00/0.33 72.00/0.37 — 66.00/0.82 43.00/1.04 45.00/1.09 46.00/1.04
Breton 88.00/0.33 90.00/0.26 93.00/0.20‡ 70.00/0.69 67.00/1.09 81.00/0.33 — 66.00/0.67 42.00/1.21 55.00/0.71 30.00/1.59
Bulgarian 58.00/0.71 58.00/0.71 59.70/0.86 75.80/0.36 70.60/0.49 52.60/1.27 — 32.10/2.05 22.90/2.80 17.10/3.20 20.60/3.11
Catalan 84.50/0.29 84.20/0.33 88.10/0.21 86.10/0.27 85.70/0.31 79.50/0.37 — 23.30/1.99 37.30/1.47 43.40/1.28 14.10/2.36
Classical-syriac 98.00/0.03‡ 98.00/0.03‡ 96.00/0.05‡ 91.00/0.09 99.00/0.01‡ 100.00/0.00‡ — 81.00/0.26 67.00/0.45 71.00/0.30 90.00/0.11
Cornish 20.00/2.20 28.00/1.96 32.00/1.80 — 12.00/2.94 32.00/1.54 2.00/3.54 34.00/1.70 20.00/1.76 26.00/1.70 10.00/3.46
Crimean-tatar 94.00/0.11‡ 92.00/0.11 94.00/0.19‡ 90.00/0.19 78.00/0.31 97.00/0.05‡ — 61.00/0.93 50.00/1.31 52.00/1.17 58.00/1.11
Czech 35.50/1.47 35.70/1.73 32.90/1.69 69.00/0.70 79.70/0.48 61.10/1.09 — 7.20/4.19 10.50/3.61 17.40/3.13 8.60/4.20
Danish 72.10/0.46 71.90/0.45 71.50/0.56 70.90/0.47 77.60/0.37 72.00/0.41 — 31.30/1.97 24.00/2.65 30.80/2.39 27.90/2.21
Dutch 66.40/0.53 66.40/0.53 66.10/0.72 73.90/0.42 72.70/0.45 61.20/0.69 — — 16.30/2.73 25.60/2.21 14.30/2.85
English 90.40/0.15 90.40/0.15 89.60/0.16 92.60/0.11 90.50/0.15 89.00/0.15 — — 29.30/2.05 28.10/2.32 26.10/2.14
Estonian 31.70/1.57 31.70/1.57 27.00/1.98 59.90/0.81 62.70/0.77 36.10/1.82 — 8.30/3.48 14.60/3.86 3.40/4.84 3.70/5.09
Faroese 48.90/1.04 46.80/1.11 50.70/1.05 45.80/1.28 65.30/0.77 47.00/1.01 — 12.50/2.67 13.10/2.72 19.80/2.38 13.80/2.64
Finnish 31.70/1.88 31.70/1.88 26.20/2.34 51.20/1.04 44.20/1.53 21.40/3.01 — 0.00/8.23 0.20/7.52 1.20/7.45 1.10/8.10
French 73.40/0.47 73.40/0.47 74.60/0.45 74.60/0.46 73.10/0.47 66.90/0.66 — — 14.50/2.58 29.80/2.04 22.30/2.39
Friulian 91.00/0.11 91.00/0.11 91.00/0.12 56.00/0.93 92.00/0.11 94.00/0.11‡ — 74.00/0.47 62.00/0.58 66.00/0.50 48.00/1.01
Galician 84.40/0.27 81.40/0.30 81.50/0.33 77.50/0.41 82.80/0.34 78.90/0.43 — 40.60/1.26 46.20/1.01 43.50/1.11 26.70/1.77
Georgian 90.20/0.31 90.20/0.31 91.50/0.33 91.10/0.22 92.10/0.21 91.40/0.30 — 35.40/1.72 30.50/2.09 43.90/1.53 28.10/2.33
German 67.50/0.79 67.50/0.79 66.00/0.95 73.50/0.57 71.60/0.71 67.60/0.80 — — 12.10/3.72 14.10/3.58 11.90/3.64
Greek 14.90/2.65 15.10/2.34 16.40/3.21 52.90/1.16 59.30/1.03 34.40/2.27 — 4.20/4.51 5.90/4.82 4.50/5.21 4.90/5.45
Greenlandic 80.00/0.22 74.00/0.40 78.00/0.24 — 70.00/0.42 82.00/0.24 54.00/0.90 22.00/1.50 70.00/0.42 42.00/0.96 22.00/1.86
Haida 80.00/1.02 84.00/0.91 71.00/1.47 75.00/1.08 61.00/1.02 81.00/0.46 — 21.00/4.58 78.00/0.69 58.00/1.58 28.00/2.49
Hebrew 76.60/0.30 76.60/0.30 79.00/0.28 67.90/0.44 38.10/0.98 33.00/1.22 — 22.20/1.45 11.90/1.97 8.10/2.07 12.10/2.10
Hindi 87.40/0.30 87.40/0.30 86.40/0.47 94.80/0.08 87.20/0.18 74.40/0.53 — 71.80/1.02 47.30/1.68 52.20/1.54 0.80/3.28
Hungarian 58.60/0.83 58.60/0.83 51.10/1.35 65.30/0.77 44.40/1.42 56.80/0.82 — 1.50/4.83 5.90/4.34 7.80/3.95 2.40/4.92
Icelandic 51.70/0.94 51.70/0.94 49.90/1.06 44.20/1.15 58.80/0.83 44.90/1.04 — 10.80/2.79 11.60/3.04 16.30/2.64 9.70/2.99
Ingrian 78.00/0.36 88.00/0.30‡ 84.00/0.30 — 46.00/0.86 80.00/0.30 44.00/1.28 68.00/0.54 46.00/0.88 36.00/1.00 24.00/1.40
Irish 45.40/1.75 45.40/1.75 43.30/1.92 47.90/1.68 44.10/1.57 19.50/3.79 — 3.00/5.48 1.70/6.88 3.70/6.84 4.20/7.16
Italian 77.50/0.44 78.30/0.43 79.10/0.45 87.30/0.23 72.50/0.81 50.60/1.56 — 10.90/3.02 13.20/3.08 1.50/5.54 11.40/3.74
Kabardian 99.00/0.01‡ 99.00/0.01‡ 100.00/0.00‡ 42.00/1.31 83.00/0.17 97.00/0.03‡ — 46.00/0.74 81.00/0.27 79.00/0.29 75.00/0.41
Kannada 73.00/0.64 74.00/0.81 78.00/0.61 59.00/1.26 55.00/1.30 81.00/0.30 — — 20.00/2.64 19.00/2.22 20.00/2.90
Karelian 96.00/0.12‡ 96.00/0.12‡ 96.00/0.10‡ — 42.00/1.00 98.00/0.02‡ 62.00/0.90 60.00/1.24 58.00/0.80 50.00/0.82 26.00/1.42
Kashubian 78.00/0.30 78.00/0.30 88.00/0.20‡ — 68.00/0.58 60.00/0.64 76.00/0.38 6.00/2.12 74.00/0.38 56.00/0.70 32.00/1.36
Kazakh 24.00/1.42 24.00/1.42 4.00/5.68 — 48.00/1.14 86.00/0.14‡ 44.00/1.08 16.00/1.74 0.00/4.34 44.00/0.66 38.00/0.88
Khakas 98.00/0.02‡ 98.00/0.02‡ 98.00/0.04‡ — 84.00/0.36 96.00/0.06‡ 96.00/0.06‡ 32.00/1.56 62.00/0.60 60.00/0.50 66.00/0.54
Khaling 62.20/0.97 53.80/1.33 56.20/1.28 15.30/2.59 18.00/2.01 5.30/2.56 — 27.20/2.09 5.50/3.65 6.80/3.42 5.40/3.86
Kurmanji 80.30/0.76 80.30/0.76 83.30/0.89 88.70/0.21 85.10/0.28 86.70/0.43 — 26.30/2.38 20.30/2.71 32.40/2.40 15.70/3.12
Ladin 92.00/0.14 88.00/0.25 90.00/0.17 79.00/0.33 86.00/0.35 77.00/0.37 — 62.00/0.57 67.00/0.53 63.00/0.63 24.00/1.77
Latin 22.60/2.05 22.60/2.05 22.60/2.32 27.90/1.63 37.90/1.16 11.20/2.31 — 2.60/3.91 2.90/4.00 5.20/3.40 3.20/4.18
Latvian 72.60/0.65 72.60/0.65 64.40/0.98 82.40/0.38 85.50/0.26 79.90/0.54 — 9.70/3.25 19.50/2.77 23.30/2.41 6.40/3.68
Lithuanian 26.70/1.77 26.50/1.64 23.60/2.13 39.50/1.17 52.00/0.70 25.20/1.59 — 3.60/3.36 18.20/2.29 12.20/2.56 3.40/3.54
Livonian 46.00/1.14 46.00/1.14 44.00/1.25 59.00/1.04 51.00/1.36 52.00/1.23 — 23.00/2.13 42.00/1.68 5.00/4.25 13.00/3.21
Lower-sorbian 69.30/0.54 69.30/0.54 65.70/0.64 57.90/0.88 68.90/0.60 68.60/0.52 — 15.50/2.06 27.30/1.61 29.70/1.38 20.30/1.85
Macedonian 71.50/0.47 71.50/0.47 71.50/0.50 73.80/0.37 82.60/0.32 79.50/0.32 — 14.20/2.38 18.00/2.38 20.40/2.43 21.20/2.37
Maltese 83.00/0.33 83.00/0.33 90.00/0.15 57.00/0.90 21.00/1.71 24.00/1.61 — 57.00/0.88 18.00/2.27 17.00/2.29 4.00/3.16
Mapudungun 98.00/0.02‡ 98.00/0.02‡ 98.00/0.02‡ — 82.00/0.20 98.00/0.02‡ 90.00/0.24‡ 94.00/0.12‡ 52.00/0.86 54.00/0.78 32.00/1.38
Middle-french 85.40/0.32 85.40/0.32 90.20/0.22 93.10/0.14 90.20/0.18 86.00/0.32 — 54.70/1.09 61.30/0.97 19.90/2.51 31.40/1.74
Middle-high-german 66.00/0.72 66.00/0.72 96.00/0.04‡ — 54.00/0.66 52.00/0.88 84.00/0.26 78.00/0.34 40.00/1.00 48.00/0.84 30.00/1.40
Middle-low-german 86.00/0.30 86.00/0.30 98.00/0.04‡ — 38.00/1.44 30.00/1.38 76.00/0.64 — 58.00/1.10 60.00/1.06 36.00/1.92
Murrinhpatha 84.00/0.38 90.00/0.26‡ 90.00/0.26‡ — 22.00/2.04 4.00/1.86 54.00/1.14 62.00/0.94 6.00/2.88 4.00/3.10 8.00/2.68
Navajo 30.30/2.13 30.30/2.13 33.60/2.26 29.60/2.10 30.40/2.49 4.30/5.01 — 9.10/3.40 3.00/4.36 3.10/4.41 0.80/5.44
Neapolitan 98.00/0.06‡ 98.00/0.06‡ 98.00/0.06‡ 93.00/0.14 94.00/0.17‡ 96.00/0.09‡ — 76.00/0.65 78.00/0.38 65.00/0.56 39.00/1.18
Norman 32.00/1.98 32.00/1.98 44.00/1.70 — 46.00/2.02 34.00/1.56 28.00/2.62 14.00/2.58 30.00/1.80 24.00/1.86 6.00/2.88
North-frisian 72.00/0.59 72.00/0.59 69.00/0.72 42.00/2.73 33.00/2.85 29.00/2.52 — — 14.00/4.07 20.00/3.61 3.00/5.09
Northern-sami 44.60/1.22 44.60/1.22 47.50/1.42 33.00/2.02 34.90/1.38 23.10/1.72 — 8.30/3.63 13.10/2.61 8.20/2.70 2.60/3.85
Norwegian-bokmaal 77.00/0.38 77.00/0.38 77.30/0.43 81.40/0.29 80.50/0.31 77.30/0.34 — 26.70/2.13 28.50/2.33 28.30/2.36 29.40/1.84
Norwegian-nynorsk 56.90/0.70 56.90/0.70 58.60/0.70 57.20/0.71 60.50/0.65 54.40/0.77 — 15.20/2.40 18.00/2.54 19.80/2.64 20.60/2.08
Occitan 82.00/0.35 82.00/0.35 69.00/0.61 79.00/0.44 92.00/0.16‡ 84.00/0.24 — 41.00/1.26 62.00/0.69 59.00/0.60 14.00/2.14
Old-armenian 42.10/1.32 42.20/1.23 43.30/1.27 41.00/1.41 67.30/0.71 55.00/0.93 — 13.00/2.34 14.00/2.31 24.40/1.95 17.20/2.40
Old-church-slavonic 87.00/0.22 87.00/0.22 86.00/0.22 63.00/0.85 77.00/0.51 83.00/0.22 — 39.00/0.94 54.00/0.67 49.00/0.67 47.00/0.82
Old-english 37.70/1.27 35.30/1.63 37.30/1.52 46.10/1.04 27.70/1.29 18.00/1.88 — — 23.60/2.06 24.00/1.98 10.70/2.57
Old-french 60.50/0.83 58.60/0.77 62.60/0.78 56.00/0.98 63.00/0.74 55.80/0.89 — 20.20/2.02 27.40/1.79 27.10/1.80 18.40/2.17
Old-irish 6.00/3.26 6.00/3.26 6.00/3.46 — 16.00/3.80 8.00/2.94 8.00/2.82 6.00/3.26 8.00/3.22 6.00/3.50 4.00/3.96
Old-saxon 61.50/0.65 61.50/0.65 48.80/1.06 38.30/1.27 39.10/1.02 31.60/1.25 — 19.40/1.88 21.50/1.78 18.80/1.87 11.10/2.31
Pashto 65.00/0.67 65.00/0.67 70.00/0.59 46.00/1.51 68.00/0.71 57.00/0.77 — 43.00/1.02 18.00/1.82 7.00/3.29 18.00/2.46
Persian 72.60/0.73 72.60/0.73 76.30/0.52 80.40/0.35 66.50/1.01 49.90/1.80 — 48.80/1.63 37.50/2.83 29.40/3.38 1.30/5.04
Polish 49.70/1.21 49.70/1.21 49.40/1.20 62.60/0.90 73.50/0.64 60.80/0.99 — — 9.50/3.61 7.50/3.92 9.60/3.73
Portuguese 89.30/0.17 88.60/0.19 80.80/0.31 89.10/0.18 92.40/0.13 84.30/0.24 — 26.30/1.78 35.60/1.50 11.90/2.76 22.90/1.98
Quechua 80.80/0.53 80.80/0.53 79.70/0.60 69.30/1.13 70.90/1.49 95.90/0.09† — 21.00/3.08 48.60/1.33 1.90/6.31 21.70/2.92
Romanian 61.40/1.03 61.40/1.03 59.70/1.04 56.60/1.14 69.30/0.75 47.20/1.72 — 12.70/3.34 13.70/3.68 15.90/3.51 5.60/4.20
Russian 51.70/1.16 51.70/1.16 51.80/1.47 66.70/0.72 76.40/0.52 56.70/1.09 — — 8.50/4.04 1.80/5.44 9.60/4.14
Sanskrit 64.80/0.70 64.80/0.70 65.30/0.71 36.50/2.33 60.10/0.76 76.30/0.37 — 14.10/2.48 21.70/2.05 21.50/1.76 26.50/1.98
Scottish-gaelic 90.00/0.16‡ 90.00/0.16‡ 88.00/0.22‡ — 50.00/0.74 50.00/1.30 70.00/0.74 56.00/0.74 48.00/0.96 52.00/0.88 36.00/1.66
Serbo-croatian 38.60/1.26 38.60/1.26 30.30/1.87 58.10/1.01 68.20/0.77 47.20/1.58 — 7.70/4.18 10.90/4.20 10.80/4.16 5.00/4.55
Slovak 56.60/0.73 56.60/0.73 58.00/0.85 53.50/0.95 71.30/0.53 62.30/0.64 — 10.50/2.12 21.80/1.72 26.90/1.46 17.60/1.79
Slovene 68.70/0.56 68.70/0.56 55.00/1.01 43.60/0.76 72.30/0.46 73.30/0.47 — 0.20/8.25 29.90/1.86 34.40/1.60 8.30/3.26
Sorani 40.30/1.35 40.10/1.44 46.10/1.19 28.40/2.35 52.10/1.05 15.50/2.66 — 30.70/1.80 6.40/3.58 6.60/3.70 1.60/4.42
Spanish 82.30/0.38 82.30/0.38 79.40/0.51 85.70/0.26 86.50/0.35 73.10/0.85 — 28.10/2.04 25.20/2.52 21.90/2.95 20.10/2.63
Swahili 84.00/0.34 86.00/0.27 85.00/0.35 77.00/0.42 73.00/0.37 1.00/3.21 — 72.00/0.59 1.00/3.35 3.00/3.30 1.00/4.16
Swedish 68.70/0.53 69.10/0.53 70.00/0.54 76.20/0.36 76.40/0.41 69.50/0.50 — 11.10/3.05 13.90/3.48 2.70/4.93 19.00/2.99
Tatar 92.00/0.10 92.00/0.10 90.00/0.17 95.00/0.05‡ 90.00/0.14 92.00/0.08 — 53.00/1.30 62.00/1.12 57.00/1.11 52.00/1.34
Tibetan 26.00/1.30 26.00/1.30 30.00/1.40 — 36.00/1.00 42.00/1.00 44.00/0.88 24.00/1.32 26.00/1.24 38.00/1.04 42.00/0.94
Turkish 38.30/2.06 38.30/1.78 36.50/2.31 80.50/0.55 32.20/2.95 73.70/0.51 — 9.30/4.03 20.70/2.92 18.90/3.18 12.60/4.37
Turkmen 96.00/0.04‡ 94.00/0.06‡ 96.00/0.06‡ — 68.00/0.64 94.00/0.06‡ 96.00/0.04‡ 48.00/0.68 70.00/0.36 82.00/0.22 66.00/0.62
Ukrainian 66.80/0.62 66.80/0.62 61.10/0.72 69.20/0.61 74.00/0.49 62.70/0.66 — 14.50/2.20 19.10/2.10 25.20/1.94 20.40/2.23
Urdu 85.90/0.42 82.90/0.53 83.90/0.54 87.20/0.46 87.00/0.23 78.20/0.46 — 80.70/0.80 53.60/1.55 45.50/1.58 2.70/3.38
Uzbek 100.00/0.00‡ 100.00/0.00‡ 100.00/0.00‡ 89.00/0.18 96.00/0.04‡ 100.00/0.00‡ — 14.00/3.03 63.00/0.62 59.00/0.73 66.00/0.93
Venetian 86.40/0.18 81.10/0.31 82.20/0.28 70.60/0.40 88.90/0.16 89.80/0.17 — 45.40/1.27 56.00/0.74 58.40/0.69 20.10/1.81
Votic 78.00/0.37 79.00/0.38 79.00/0.37 19.00/2.05 37.00/1.39 64.00/0.48 — 59.00/0.78 45.00/0.94 39.00/1.03 21.00/1.62
Welsh 81.00/0.38 79.00/0.36 85.00/0.29‡ 56.00/0.98 58.00/1.01 62.00/0.68 — 23.00/1.80 41.00/1.06 46.00/1.03 9.00/2.20
West-frisian 91.00/0.27 91.00/0.25 92.00/0.26 60.00/0.79 65.00/0.81 67.00/0.53 — 76.00/0.44 48.00/1.13 53.00/0.96 28.00/1.56
Yiddish 79.00/0.37 80.00/0.30 84.00/0.28 80.00/0.31 87.00/0.22 78.00/0.39 — 62.00/0.87 56.00/1.01 63.00/0.96 39.00/1.51
Zulu 60.00/0.93 60.00/0.93 54.00/1.05 67.40/0.78 53.60/0.98 1.70/3.34 — 15.80/2.42 1.20/3.73 1.50/4.41 0.80/5.04
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oracle-fc oracle-e axsemantics-01 uzh-02 uzh-01 ua-08 iitbhu-iiith-02 ua-05 iitbhu-iiith-01 ua-06 ua-03 waseda-01

Adyghe 98.30/* 98.40/* — 90.30/0.10 90.00/0.10 90.60/0.14 89.10/0.17 82.10/0.22 85.50/0.21 88.90/0.17 81.00/0.23 73.10/0.51
Albanian 54.80/* 54.90/* — 35.70/1.89 36.40/1.87 20.50/4.00 29.70/2.00 21.80/4.35 26.40/2.20 20.30/4.02 18.90/3.03 24.40/4.82
Arabic 54.20/* 57.40/* — 44.30/1.80 45.20/1.77 35.80/2.24 35.20/2.04 19.80/5.28 31.90/2.19 35.50/2.23 0.10/6.27 27.60/3.33
Armenian 55.30/* 76.20/* — 64.60/0.82† 64.90/0.77† 49.10/1.73 54.40/0.92 50.50/1.51 51.60/1.02 43.30/1.91 49.90/1.53 37.00/2.18
Asturian 65.20/* 82.80/* — 74.60/0.47† 72.50/0.52† 58.00/0.95 70.30/0.55† 67.90/0.83 66.30/0.62 56.80/1.00 57.00/1.05 58.60/1.06
Azeri 71.00/* 79.00/* — 62.00/0.82 62.00/0.86 46.00/1.31 65.00/0.76 48.00/1.17 63.00/0.81 24.00/2.62 36.00/1.63 39.00/1.35
Bashkir 98.00/* 94.90/* — 70.10/0.51 67.20/0.53 77.50/0.48 77.20/0.44 42.90/1.10 77.80/0.44 61.90/1.42 42.10/1.11 39.40/1.84
Basque 5.60/* 31.20/* — 12.70/3.05† 13.30/2.98† 11.40/3.29† 11.80/3.02† 6.70/3.88 9.60/3.13† 10.50/3.34† 3.30/3.96 6.50/3.70
Belarusian 86.30/* 54.80/* — 30.20/2.18 30.00/2.16 33.40/1.97 22.90/2.35 16.20/2.52 21.20/2.45 31.30/2.04 16.20/2.52 10.30/2.72
Bengali 83.00/* 91.00/* — 72.00/0.49 71.00/0.53 68.00/1.00 58.00/0.83 62.00/0.63 55.00/0.88 64.00/1.16 59.00/0.90 52.00/0.76
Breton 74.00/* 86.00/* — 71.00/0.76 72.00/0.78 69.00/0.92 61.00/0.95 69.00/0.85 61.00/0.93 67.00/0.99 66.00/0.90 61.00/0.99
Bulgarian 66.10/* 80.90/* — 58.50/0.70 58.20/0.70 62.90/1.02 54.00/0.81 50.40/0.97 51.50/0.89 62.40/1.02 49.30/0.98 50.00/0.90
Catalan 86.90/* 87.40/* — 69.90/0.57 68.50/0.60 72.50/0.65 64.40/0.65 62.80/0.79 61.80/0.70 71.60/0.68 60.50/0.82 60.80/0.86
Classical-syriac 95.00/* 98.00/* — 96.00/0.04‡ 96.00/0.04‡ 94.00/0.06‡ 92.00/0.09 95.00/0.06‡ 91.00/0.10 93.00/0.07‡ 94.00/0.06‡ 94.00/0.06‡
Cornish 68.00/* 58.00/* — 24.00/1.82 28.00/1.56 38.00/1.40 30.00/1.68 40.00/1.56 22.00/1.82 6.00/2.80 14.00/2.90 12.00/3.62
Crimean-tatar 98.00/* 98.00/* — 89.00/0.15 89.00/0.15 89.00/0.17 91.00/0.14 81.00/0.25 89.00/0.17 85.00/0.21 71.00/0.39 67.00/0.43
Czech 56.70/* 58.30/* — 46.50/1.97 46.50/1.80 40.00/2.09 37.00/1.51 42.30/1.80 33.80/1.68 40.00/2.09 39.80/1.83 39.30/2.14
Danish 96.20/* 91.10/* — 69.90/0.51 70.00/0.50 87.20/0.24 65.20/0.58 68.20/0.49 65.80/0.58 87.70/0.24 68.10/0.48 64.70/0.67
Dutch 95.20/* 80.80/* — 55.20/0.71 56.00/0.70 68.90/0.60 58.60/0.62 56.00/0.70 57.60/0.65 69.30/0.62 55.30/0.74 53.70/0.86
English 100.00/* 92.90/* — 90.30/0.14 90.30/0.14 91.80/0.16 86.50/0.20 89.80/0.15 81.30/0.28 91.80/0.16 89.90/0.15 80.80/0.26
Estonian 70.30/* 62.20/* — 33.60/1.49 35.20/1.36 33.30/2.17 33.00/1.59 28.70/1.73 29.00/1.72 31.80/2.22 29.00/1.74 30.80/1.79
Faroese 85.70/* 68.90/* — 43.40/1.18 45.90/1.12 49.80/1.20 33.00/1.37 43.10/1.14 27.60/1.51 49.30/1.22 39.20/1.25 39.70/1.50
Finnish 58.10/* 39.80/* — 24.90/2.05 25.70/2.01 20.00/3.29 19.90/2.31 21.30/2.90 19.00/2.37 19.30/3.31 20.80/2.91 19.50/2.59
French 85.50/* 78.50/* — 66.60/0.61 65.20/0.61 60.80/1.03 55.00/0.83 59.00/0.96 53.10/0.90 58.90/1.08 55.60/0.76 58.90/0.97
Friulian 89.00/* 85.00/* — 79.00/0.39 79.00/0.36 70.00/0.41 72.00/0.64 75.00/0.59 70.00/0.63 69.00/0.52 68.00/0.64 70.00/0.52
Galician 73.00/* 72.40/* — 61.10/0.72 60.80/0.70 47.60/1.17 48.40/0.94 53.70/1.21 43.50/1.09 41.80/1.39 50.30/1.24 53.00/1.22
Georgian 93.80/* 92.40/* — 84.50/0.35 84.00/0.34 88.20/0.30 80.40/0.41 83.00/0.38 77.70/0.46 87.50/0.33 83.40/0.38 70.60/0.58
German 79.60/* 85.60/* — 62.00/0.78 62.40/0.76 55.00/1.14 57.00/0.93 59.30/0.83 53.50/1.00 55.00/1.14 67.10/0.69 52.00/1.04
Greek 57.70/* 49.00/* — 32.20/1.93 32.30/1.83 23.90/2.89 27.10/1.96 28.90/2.32 26.10/2.01 23.40/2.90 26.90/2.36 25.10/2.71
Greenlandic 100.00/* 96.00/* — 74.00/0.48 74.00/0.42 68.00/0.48 72.00/0.36 68.00/0.42 80.00/0.30 66.00/0.42 64.00/0.50 52.00/2.74
Haida 45.00/* 77.00/* — 63.00/1.42† 60.00/1.77† 20.00/4.47 57.00/1.45 49.00/2.07 48.00/1.86 20.00/4.47 10.00/4.94 29.00/5.64
Hebrew 82.40/* 71.80/* — 39.90/1.02 39.10/1.02 56.70/0.91 34.30/1.12 35.40/1.04 32.40/1.19 56.40/0.92 37.20/1.03 26.00/1.46
Hindi 38.80/* 85.80/* — 78.00/0.79† 78.00/0.68† 45.80/1.57† 75.90/0.89† 70.80/1.17† 75.10/0.90† 39.60/1.66 49.40/1.22† 59.60/1.19†
Hungarian 78.90/* 65.40/* — 41.30/1.19 40.30/1.18 48.20/1.41 39.20/1.35 33.10/1.37 33.50/1.54 47.90/1.42 28.00/1.58 25.90/1.83
Icelandic 92.20/* 71.80/* — 48.90/1.04 48.20/1.01 56.20/0.94 31.70/1.39 42.60/1.16 29.30/1.49 55.50/0.95 40.60/1.19 38.90/1.49
Ingrian 100.00/* 66.00/* — 36.00/1.58 36.00/1.34 20.00/1.78 46.00/1.10 32.00/1.14 34.00/1.32 38.00/0.92 26.00/1.36 4.00/2.88
Irish 82.70/* 50.40/* — 37.60/2.18 37.70/2.09 35.30/2.40 26.00/2.58 34.80/2.11 22.30/2.74 35.50/2.38 35.10/2.13 34.10/3.03
Italian 82.80/* 73.80/* — 57.40/1.02 57.00/1.17 47.80/1.64 47.30/1.07 42.20/2.06 45.40/1.09 46.50/1.71 38.40/1.97 42.20/2.05
Kabardian 99.00/* 100.00/* — 90.00/0.10 92.00/0.08 88.00/0.21 87.00/0.13 86.00/0.18 84.00/0.16 86.00/0.25 84.00/0.20 75.00/0.32
Kannada 74.00/* 78.00/* — 60.00/0.80 61.00/0.79 38.00/2.14 57.00/0.89 57.00/1.10 55.00/0.92 37.00/2.14 31.00/2.40 36.00/2.10
Karelian 88.00/* 98.00/* — 88.00/0.20‡ 88.00/0.16‡ 70.00/0.60 92.00/0.14‡ 94.00/0.10‡ 90.00/0.18‡ 56.00/0.78 64.00/0.70 46.00/2.54
Kashubian 100.00/* 82.00/* — 64.00/0.72 66.00/0.72 44.00/1.16 58.00/0.88 68.00/0.70 52.00/1.14 58.00/0.76 54.00/1.08 56.00/0.90
Kazakh 100.00/* 92.00/* — 86.00/0.14‡ 80.00/0.20 62.00/0.50 78.00/0.22 76.00/0.30 84.00/0.16‡ 34.00/1.48 42.00/0.94 38.00/2.18
Khakas 100.00/* 92.00/* — 78.00/0.26 78.00/0.28 70.00/0.64 86.00/0.16‡ 56.00/0.54 80.00/0.24 42.00/0.92 54.00/0.56 36.00/1.96
Khaling 22.00/* 53.20/* — 22.30/2.13 23.00/2.04 33.80/2.32† 24.50/1.83 15.50/2.14 19.20/2.01 30.50/2.44† 15.50/2.14 12.10/2.89
Kurmanji 90.20/* 89.20/* — 87.40/0.64 87.10/0.34 84.00/0.44 80.80/0.55 87.20/0.35 75.20/0.64 84.00/0.44 86.70/0.35 86.20/0.43
Ladin 77.00/* 83.00/* — 71.00/0.55 72.00/0.52 59.00/0.80 68.00/0.62 67.00/1.03 64.00/0.68 58.00/0.80 55.00/0.89 58.00/0.96
Latin 52.30/* 42.00/* — 17.10/2.42 17.70/2.32 33.00/1.84 15.30/2.48 16.90/2.46 14.00/2.52 33.10/1.84 17.40/2.44 16.10/2.84
Latvian 80.10/* 70.90/* — 54.50/1.00 54.50/1.16 55.90/0.97 35.90/1.43 56.00/1.41 36.40/1.43 57.30/0.96 52.00/1.04 52.80/0.87
Lithuanian 65.40/* 44.30/* — 20.70/1.84 20.40/1.78 32.40/1.97 16.90/1.91 23.20/1.87 14.50/2.03 32.60/1.97 19.20/2.15 23.00/1.89
Livonian 73.00/* 53.00/* — 33.00/1.69 32.00/1.69 35.00/1.60 33.00/1.86 30.00/1.67 32.00/1.88 34.00/1.73 29.00/1.68 29.00/2.21
Lower-sorbian 75.90/* 77.00/* — 45.60/1.04 46.20/1.02 54.20/1.08 40.90/1.15 48.70/0.98 37.50/1.23 54.30/1.10 50.50/0.97 36.30/1.38
Macedonian 79.20/* 85.90/* — 59.80/0.61 60.20/0.60 67.60/0.63 57.40/0.60 56.50/0.68 53.70/0.65 68.80/0.62 54.20/0.76 49.80/0.89
Maltese 99.00/* 69.00/* — 40.00/1.16 39.00/1.12 48.00/1.02 32.00/1.31 18.00/1.64 24.00/1.43 49.00/0.96 18.00/1.64 20.00/1.96
Mapudungun 88.00/* 100.00/* — 78.00/0.34 80.00/0.36 84.00/0.38 84.00/0.28 86.00/0.24 84.00/0.28 70.00/0.60 76.00/0.46 68.00/1.64
Middle-french 86.70/* 93.40/* — 84.50/0.32 83.10/0.34 74.50/0.66 83.10/0.34 81.40/0.36 82.60/0.39 68.80/0.67 74.20/0.55 76.90/0.49
Middle-high-german 94.00/* 90.00/* — 84.00/0.30‡ 82.00/0.34‡ 58.00/0.80 70.00/0.62 36.00/2.46 70.00/0.62 32.00/0.98 38.00/0.94 52.00/1.76
Middle-low-german 92.00/* 64.00/* — 50.00/1.34 54.00/1.28‡ 24.00/2.26 42.00/1.44 34.00/1.32 36.00/1.50 30.00/1.54 34.00/1.32 18.00/2.84
Murrinhpatha 98.00/* 64.00/* — 36.00/1.48 36.00/1.36 38.00/1.68 34.00/1.66 38.00/1.58 36.00/1.66 26.00/1.72 38.00/1.58 34.00/2.24
Navajo 88.90/* 30.00/* — 19.80/3.42 20.80/2.96 12.10/3.75 10.30/3.46 8.00/6.97 8.80/3.58 12.00/3.75 13.70/3.99 16.10/3.75
Neapolitan 90.00/* 90.00/* — 89.00/0.28‡ 86.00/0.31‡ 80.00/0.59 80.00/0.41 83.00/0.32 76.00/0.50 80.00/0.66 81.00/0.59 79.00/0.59
Norman 88.00/* 84.00/* — 52.00/0.92 54.00/0.88 58.00/1.16 64.00/0.70 66.00/0.66 64.00/1.00 32.00/1.62 40.00/1.72 44.00/2.34
North-frisian 85.00/* 61.00/* — 42.00/2.23 40.00/2.29 31.00/2.39 45.00/2.11 31.00/2.69 38.00/2.12 20.00/4.53 27.00/2.80 36.00/2.25
Northern-sami 69.10/* 50.70/* — 20.70/2.02 21.10/1.90 35.80/2.29 15.40/2.33 16.80/2.35 12.30/2.48 34.00/2.34 14.80/2.54 16.40/2.35
Norwegian-bokmaal 99.30/* 94.10/* — 79.10/0.32 78.70/0.33 89.30/0.21 69.60/0.47 78.30/0.35 68.40/0.51 90.10/0.20 76.80/0.37 73.30/0.40
Norwegian-nynorsk 98.30/* 89.30/* — 56.70/0.73 56.80/0.74 83.60/0.39 54.80/0.79 57.30/0.70 52.30/0.85 82.90/0.42 56.50/0.72 54.60/0.81
Occitan 91.00/* 82.00/* — 77.00/0.49‡ 76.00/0.52 68.00/0.72 72.00/0.55 71.00/1.24 69.00/0.61 66.00/0.84 68.00/0.76 72.00/0.82
Old-armenian 47.40/* 59.70/* — 42.00/1.32 41.80/1.30 32.90/1.50 29.70/1.58 36.10/1.70 24.30/1.77 31.10/1.53 31.20/1.46 30.50/1.79
Old-church-slavonic 97.00/* 76.00/* — 48.00/1.06 46.00/1.08 50.00/0.88 53.00/0.78 42.00/1.11 50.00/0.87 50.00/0.92 34.00/1.20 40.00/1.14
Old-english 81.00/* 64.80/* — 24.10/1.58 24.70/1.54 46.50/1.11 23.10/1.62 29.00/1.34 20.70/1.75 46.40/1.11 29.00/1.34 17.60/1.72
Old-french 65.80/* 68.70/* — 46.20/1.10 46.10/1.05 36.30/1.48 39.50/1.23 34.90/1.67 36.70/1.32 34.80/1.53 32.90/1.78 36.00/1.31
Old-irish 46.00/* 16.00/* — 8.00/3.62‡ 8.00/3.84‡ 0.00/6.94 4.00/3.80 6.00/4.28‡ 4.00/3.84 4.00/3.90 4.00/4.54 8.00/4.34‡
Old-saxon 68.30/* 64.50/* — 30.00/1.32 31.40/1.29 46.50/1.06 25.10/1.52 29.30/1.38 22.20/1.61 46.60/1.06 28.70/1.41 22.80/1.84
Pashto 59.00/* 65.00/* — 48.00/1.25 48.00/1.29 36.00/1.59 35.00/1.30 37.00/1.70 33.00/1.34 36.00/1.57 33.00/1.75 31.00/2.26
Persian 54.70/* 81.10/* — 67.60/0.59† 67.50/0.55† 35.30/2.25 61.60/0.81† 34.80/2.98 56.20/0.94 25.50/2.87 28.10/2.77 36.60/1.78
Polish 75.90/* 66.20/* — 45.30/1.43 44.60/1.47 49.10/1.87 32.50/1.72 44.60/1.49 29.00/1.83 49.40/1.86 43.60/1.50 42.00/1.72
Portuguese 73.70/* 87.00/* — 75.80/0.40 73.80/0.43 62.50/0.72 59.20/0.69 63.90/0.80 57.80/0.69 61.70/0.74 56.50/1.01 62.60/0.83
Quechua 21.40/* 88.70/* — 70.20/0.90† 69.00/0.93† 62.00/1.21† 61.60/1.02† 50.80/1.42† 56.50/1.10† 36.20/2.98† 26.40/2.79† 33.50/2.35†
Romanian 79.40/* 65.10/* — 46.00/1.34 46.20/1.34 45.00/1.94 35.50/1.83 45.80/1.48 32.80/1.94 45.40/1.94 40.40/1.58 44.70/1.52
Russian 80.20/* 71.50/* — 53.20/1.09 53.50/1.07 49.90/1.33 42.10/1.36 47.40/1.14 39.20/1.42 50.20/1.34 44.60/1.18 47.00/1.27
Sanskrit 68.90/* 74.20/* — 56.80/0.90 58.00/0.93 43.50/1.53 52.20/1.07 46.20/1.23 51.40/1.08 39.20/1.73 46.00/1.33 42.40/1.24
Scottish-gaelic 100.00/* 84.00/* — 68.00/0.62 70.00/0.58 58.00/0.98 74.00/0.50‡ 50.00/0.82 60.00/0.78 62.00/0.94 46.00/0.82 38.00/2.50
Serbo-croatian 34.50/* 62.80/* — 43.00/1.50† 43.50/1.53† 29.50/2.38 35.10/1.56 43.80/1.69† 34.20/1.68 28.70/2.40 44.80/1.70† 29.30/1.88
Slovak 90.00/* 71.00/* — 51.80/0.96 51.10/0.97 48.00/1.06 42.30/1.11 51.30/1.00 39.30/1.18 48.00/1.06 49.00/1.02 48.40/1.09
Slovene 70.80/* 79.70/* — 58.00/0.73 57.50/0.74 54.10/0.82 48.60/0.88 46.00/0.96 42.90/0.96 53.10/0.84 30.80/1.19 34.10/1.27
Sorani 38.20/* 55.00/* — 38.90/1.55 40.10/1.32 28.60/2.16 26.40/1.70 24.80/2.38 22.90/1.83 27.50/2.20 24.20/2.39 19.90/3.35
Spanish 82.70/* 79.10/* — 68.90/0.80 67.80/0.66 73.20/0.80 57.20/0.79 68.60/0.76 53.50/0.87 72.50/0.81 64.90/0.81 61.80/1.08
Swahili 39.00/* 80.00/* — 58.00/0.70† 58.00/0.73† 36.00/1.49 72.00/0.51† 33.00/1.57 69.00/0.56† 33.00/1.59 33.00/1.57 70.00/0.51†
Swedish 95.00/* 86.90/* — 68.40/0.51 67.90/0.52 79.00/0.40 61.40/0.70 62.00/0.67 58.50/0.75 77.70/0.42 60.30/0.72 61.70/0.62
Tatar 98.00/* 96.00/* — 86.00/0.16 88.00/0.14 90.00/0.14 85.00/0.26 72.00/0.35 79.00/0.32 89.00/0.15 66.00/0.44 67.00/0.44
Telugu 86.00/* 98.00/* 72.00/0.96 96.00/0.12‡ 92.00/0.24‡ 96.00/0.12‡ 96.00/0.16‡ 96.00/0.06‡ 94.00/0.22‡ 82.00/0.74 82.00/0.42 54.00/2.90
Tibetan 100.00/* 82.00/* — 52.00/0.78 52.00/0.76 36.00/1.10 48.00/0.80 34.00/0.98 58.00/0.62 54.00/0.66 38.00/0.84 34.00/1.02
Turkish 39.60/* 55.10/* — 38.10/2.04 39.00/1.89 22.60/2.99 39.50/2.09 27.50/2.53 37.50/2.13 11.80/5.16 12.20/3.67 26.70/2.79
Turkmen 100.00/* 96.00/* — 90.00/0.14‡ 86.00/0.20‡ 60.00/1.00 80.00/0.28 86.00/0.20‡ 78.00/0.34 68.00/0.46 72.00/0.44 50.00/2.06
Ukrainian 85.40/* 71.40/* — 48.90/0.92 49.40/0.92 56.50/0.92 38.10/1.05 47.70/0.98 30.70/1.22 57.10/0.92 47.50/1.01 46.60/0.99
Urdu 41.30/* 82.80/* — 72.50/0.48† 71.90/0.48† 50.70/1.56† 69.60/0.60† 66.50/0.74† 65.90/0.66† 33.90/1.67 44.90/1.07† 58.90/0.84†
Uzbek 75.00/* 98.00/* — 90.00/0.12† 92.00/0.10† 85.00/0.29† 91.00/0.14† 77.00/0.31 90.00/0.14† 43.00/2.01 46.00/1.13 63.00/0.78
Venetian 88.50/* 88.80/* — 78.80/0.35 78.40/0.37 76.80/0.42 75.90/0.38 73.80/0.35 74.10/0.40 76.40/0.43 71.50/0.56 71.80/0.55
Votic 94.00/* 55.00/* — 26.00/1.56 26.00/1.56 32.00/1.47 26.00/1.60 21.00/1.55 23.00/1.69 29.00/1.54 19.00/1.57 17.00/1.88
Welsh 88.00/* 75.00/* — 55.00/1.08 55.00/1.01 50.00/1.40 50.00/1.12 48.00/1.11 45.00/1.27 51.00/1.35 43.00/1.17 42.00/1.25
West-frisian 100.00/* 72.00/* — 53.00/1.04 56.00/1.01 46.00/1.13 51.00/1.05 51.00/1.17 48.00/1.08 47.00/1.12 40.00/1.26 50.00/1.23
Yiddish 100.00/* 96.00/* — 82.00/0.31 83.00/0.30 87.00/0.23 71.00/0.39 82.00/0.30 68.00/0.44 82.00/0.29 78.00/0.35 78.00/0.38
Zulu 43.50/* 54.10/* — 32.10/1.52 33.00/1.49 29.30/1.62 29.80/1.60 20.10/1.91 27.70/1.73 29.30/1.62 20.10/1.91 31.00/1.53
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msu-02 ua-02 hamburg-01 ua-07 baseline ua-01 msu-04 msu-03 iit-varanasi-01 ua-04 axsemantics-02 tuebingen-oslo-02

Adyghe 82.50/0.23 — 82.00/0.22 83.20/0.26 59.00/0.46 59.00/0.46 52.00/0.94 3.70/3.21 57.80/0.66 40.00/1.61 13.40/1.47 0.90/5.25
Albanian 25.40/4.57 12.60/7.09 16.10/2.69 13.50/7.10 22.00/4.37 22.00/4.37 5.50/4.88 4.40/5.10 0.80/6.08 2.90/6.88 0.00/12.09 0.00/8.87
Arabic 1.20/4.39 25.50/4.04 23.50/2.52 20.40/2.99 25.60/2.98 25.60/2.98 0.10/25.85 0.00/22.93 0.80/5.30 0.40/6.74 0.00/10.78 0.30/6.16
Armenian 37.70/2.27 47.70/2.28 39.80/1.44 37.80/2.09 37.00/2.18 37.00/2.18 16.60/2.33 18.20/2.48 5.80/3.80 4.10/4.28 10.70/2.87 0.10/6.56
Asturian 58.00/1.08 58.90/0.96 64.50/0.64 45.80/1.03 58.60/1.06 58.60/1.06 51.10/1.02 43.00/1.18 23.90/1.62 22.30/2.39 9.80/1.96 1.80/4.14
Azeri 43.00/1.96 48.00/1.19 37.00/1.40 47.00/1.27 24.00/2.84 24.00/2.84 26.00/2.11 34.00/1.55 28.00/2.10 12.00/2.98 24.00/1.74 1.00/4.77
Bashkir 45.50/1.07 — 58.20/0.76 75.40/0.50 39.40/1.84 39.40/1.84 27.20/2.08 14.50/3.16 35.80/1.35 24.50/2.08 22.30/1.26 0.20/4.96
Basque 0.10/6.56 0.50/5.48 1.70/4.06 6.20/3.53 0.10/6.52 0.10/6.52 0.90/4.72 0.10/5.43 0.50/4.71 6.70/3.88 0.00/10.18 0.20/5.45
Belarusian 20.60/2.38 6.50/3.47 17.10/2.44 17.80/3.07 6.80/2.44 6.80/2.44 17.20/2.50 12.30/2.61 2.90/3.68 3.40/3.90 0.00/8.99 0.30/5.72
Bengali 51.00/1.22 59.00/0.71 48.00/1.13 45.00/1.27 50.00/1.24 50.00/1.24 26.00/1.76 23.00/1.85 26.00/2.25 27.00/2.47 4.00/2.44 1.00/3.40
Breton 21.00/2.73 62.00/1.02 34.00/1.31 52.00/0.96 20.00/2.58 20.00/2.58 29.00/1.60 27.00/2.04 30.00/1.52 50.00/1.13 1.00/3.27 10.00/2.82
Bulgarian 31.00/1.92 27.50/2.59 38.50/1.24 33.80/1.98 30.90/1.69 30.90/1.69 21.90/1.96 13.30/2.08 9.70/2.85 13.80/2.96 4.70/2.98 0.00/6.02
Catalan 59.20/1.01 55.20/0.83 54.60/0.84 58.10/0.83 60.80/0.86 60.80/0.86 51.00/1.15 29.60/1.33 25.70/1.62 17.10/2.28 0.00/9.15 0.80/5.16
Classical-syriac 93.00/0.08‡ 93.00/0.08‡ 92.00/0.09 55.00/0.70 94.00/0.06‡ 94.00/0.06‡ 86.00/0.17 73.00/0.34 62.00/0.47 55.00/0.75 71.00/0.39 19.00/1.82
Cornish 12.00/4.02 8.00/3.94 22.00/2.40 38.00/1.40 10.00/4.10 10.00/4.10 4.00/3.12 8.00/2.74 32.00/1.56 40.00/1.56 0.00/7.76 4.00/3.58
Crimean-tatar 78.00/0.30 78.00/0.28 80.00/0.25 77.00/0.34 57.00/0.73 57.00/0.73 70.00/0.51 64.00/0.61 51.00/0.75 31.00/1.64 59.00/0.52 0.00/4.88
Czech 38.70/2.13 33.80/2.88 31.80/1.86 — 38.50/2.08 38.50/2.08 24.60/2.35 20.10/2.40 8.10/3.28 0.00/9.74 8.80/2.81 0.00/7.13
Danish 61.70/0.61 66.70/0.54 65.10/0.55 63.20/0.56 58.30/0.76 58.30/0.76 58.40/0.74 58.60/0.68 40.90/0.99 26.40/2.17 33.10/1.04 0.10/6.28
Dutch 47.50/0.84 49.80/0.88 43.00/1.01 44.20/1.05 50.80/0.73 50.80/0.73 40.70/1.17 34.60/1.22 8.90/2.54 12.10/2.73 19.80/1.51 0.10/5.72
English 81.60/0.32 87.60/0.18 90.40/0.14 42.70/1.21 77.60/0.39 77.60/0.39 75.30/0.49 74.10/0.40 61.80/0.60 42.70/1.21 45.50/0.69 0.20/5.39
Estonian 22.30/2.61 16.80/5.18 13.40/2.47 17.50/3.60 21.50/2.60 21.50/2.60 7.20/3.49 8.80/3.91 2.60/4.12 0.60/10.40 0.00/10.34 0.00/8.92
Faroese 40.90/1.23 38.90/1.33 23.80/1.56 25.70/1.56 34.40/1.45 34.40/1.45 19.60/1.82 18.00/1.75 9.60/2.49 4.50/3.51 9.20/2.13 0.00/5.82
Finnish 16.30/4.29 14.70/8.11 12.40/2.87 7.40/5.36 17.20/3.98 17.20/3.98 4.50/5.56 4.20/5.83 0.60/6.86 0.00/14.30 2.90/5.65 0.00/11.02
French 54.90/1.14 56.60/0.92 51.80/0.98 50.70/0.98 58.90/0.97 58.90/0.97 43.60/1.30 41.30/1.27 13.40/2.33 9.00/3.17 16.30/1.97 0.00/7.53
Friulian 73.00/0.70 73.00/0.60 55.00/0.68 59.00/0.81 70.00/0.52 70.00/0.52 69.00/0.55 46.00/0.97 39.00/1.13 26.00/1.71 36.00/1.16 8.00/2.67
Galician 53.00/1.32 48.30/1.15 47.50/1.09 42.90/1.16 53.00/1.22 53.00/1.22 42.10/1.21 32.70/1.45 15.30/2.06 5.40/3.78 5.80/2.26 0.40/4.50
Georgian 63.90/0.67 75.30/1.02 70.70/0.58 75.20/0.54 70.60/0.58 70.60/0.58 58.20/0.86 59.50/0.80 23.80/1.69 22.80/1.86 47.50/0.83 0.10/5.23
German 50.40/1.09 53.20/0.93 44.70/1.04 41.50/1.25 49.20/1.18 49.20/1.18 39.40/1.20 37.90/1.24 19.90/1.81 11.40/3.03 18.70/1.99 0.00/6.72
Greek 23.80/3.12 22.40/4.31 23.60/2.30 12.70/4.48 25.10/2.71 25.10/2.71 17.90/2.61 16.90/2.81 2.40/4.61 0.00/10.32 9.70/3.49 0.00/8.82
Greenlandic 48.00/0.92 48.00/0.88 42.00/0.78 68.00/0.48 50.00/0.78 50.00/0.78 48.00/0.88 34.00/1.14 60.00/0.58 68.00/0.58 30.00/1.16 24.00/1.30
Haida 27.00/5.89 44.00/2.25 0.00/5.01 35.00/3.03 29.00/5.64 29.00/5.64 8.00/4.74 2.00/7.43 12.00/3.69 47.00/2.30 0.00/17.05 3.00/5.14
Hebrew 27.80/1.30 20.10/2.01 24.20/1.42 20.50/1.53 24.40/1.31 24.40/1.31 16.20/1.71 14.70/1.82 5.20/2.44 5.20/2.66 4.20/2.15 0.10/3.85
Hindi 31.50/3.92 70.10/1.26† 68.70/0.88† 34.20/2.94 31.80/3.87 31.80/3.87 41.10/1.98 33.40/2.89 23.20/2.55 18.50/3.33 8.20/2.82 4.20/4.78
Hungarian 28.20/1.74 32.30/1.42 21.60/1.82 24.40/1.70 17.50/2.28 17.50/2.28 10.00/2.64 10.90/2.69 4.70/2.87 1.70/4.66 2.20/2.72 0.00/8.30
Icelandic 36.60/1.45 36.60/1.25 31.00/1.38 29.20/1.48 35.10/1.54 35.10/1.54 23.20/1.73 21.90/1.74 8.50/2.53 4.90/3.66 12.80/2.27 0.00/5.83
Ingrian 26.00/1.80 28.00/1.72 14.00/1.90 20.00/1.78 20.00/1.78 20.00/1.78 20.00/1.82 20.00/1.82 24.00/1.54 26.00/1.46 6.00/2.94 2.00/3.64
Irish 32.70/2.46 18.20/6.13 30.40/2.43 11.40/4.79 30.30/2.80 30.30/2.80 20.00/2.99 26.70/2.65 1.30/6.82 5.00/5.08 14.70/4.68 0.00/9.73
Italian 43.90/1.87 40.40/2.53 43.10/1.44 29.90/2.31 40.50/2.16 40.50/2.16 28.50/1.82 22.60/1.79 11.00/3.49 9.00/3.91 0.00/11.23 0.10/6.90
Kabardian 89.00/0.13 — 83.00/0.19 86.00/0.18 72.00/0.30 72.00/0.30 62.00/0.65 52.00/1.29 56.00/0.64 47.00/1.25 42.00/0.83 12.00/2.85
Kannada 37.00/1.95 56.00/1.08 37.00/1.41 34.00/2.04 33.00/2.09 33.00/2.09 14.00/2.38 24.00/1.98 29.00/2.55 27.00/3.21 0.00/6.95 0.00/5.39
Karelian 44.00/1.14 66.00/0.62 48.00/0.90 70.00/0.60 24.00/2.14 24.00/2.14 56.00/0.96 26.00/3.64 80.00/0.30 88.00/0.24‡ 42.00/1.00 18.00/1.66
Kashubian 58.00/0.72 60.00/0.96 52.00/1.04 44.00/1.16 60.00/0.70 60.00/0.70 56.00/0.88 52.00/1.00 46.00/0.86 52.00/0.98 8.00/1.82 6.00/2.00
Kazakh 64.00/0.46 78.00/0.24 60.00/0.58 62.00/0.50 26.00/1.72 26.00/1.72 48.00/1.28 22.00/2.66 68.00/0.34 64.00/0.44 42.00/0.74 20.00/1.04
Khakas 62.00/0.42 — 60.00/0.52 70.00/0.64 26.00/2.42 26.00/2.42 68.00/0.58 50.00/0.88 62.00/0.54 36.00/1.70 42.00/0.64 16.00/2.40
Khaling 2.30/4.71 0.10/5.36 13.60/2.67 22.10/2.38 3.20/4.37 3.20/4.37 0.80/4.39 0.90/5.03 2.20/3.51 8.80/3.03 0.00/7.90 0.00/5.86
Kurmanji 82.90/0.46 86.00/1.11 80.30/0.40 14.50/2.95 82.70/0.45 82.70/0.45 71.40/0.66 49.30/1.01 25.40/1.76 14.50/2.95 63.10/0.81 0.20/5.57
Ladin 53.00/1.03 62.00/1.17 53.00/0.75 51.00/1.01 58.00/0.96 58.00/0.96 30.00/1.32 41.00/1.15 33.00/1.41 28.00/1.88 24.00/1.51 6.00/3.85
Latin 14.40/3.09 12.10/2.65 9.30/2.77 1.10/4.82 16.10/2.84 16.10/2.84 8.50/2.89 8.10/2.91 1.00/4.35 1.10/4.82 0.00/10.23 0.00/7.37
Latvian 48.30/1.01 51.50/1.63 40.50/1.16 26.80/1.86 52.80/0.87 52.80/0.87 35.60/1.25 31.00/1.41 9.00/2.68 5.40/3.68 5.40/2.14 0.00/6.39
Lithuanian 19.10/2.10 14.00/2.90 10.80/2.29 9.20/2.56 23.00/1.89 23.00/1.89 6.60/2.52 8.40/2.31 2.80/3.29 1.60/4.09 0.00/9.02 0.10/5.98
Livonian 29.00/2.10 24.00/3.00 24.00/2.01 16.00/2.35 28.00/2.14 28.00/2.14 14.00/2.67 11.00/2.72 6.00/3.40 8.00/4.01 10.00/3.10 0.00/5.68
Lower-sorbian 35.70/1.24 35.90/1.25 31.60/1.35 28.60/1.66 32.60/1.29 32.60/1.29 13.90/1.92 8.00/2.10 9.90/2.38 5.00/3.33 4.90/2.17 1.00/4.33
Macedonian 45.50/1.03 49.10/0.79 44.40/0.86 44.70/0.88 49.80/0.89 49.80/0.89 16.70/1.85 25.10/1.42 16.70/1.69 15.20/2.52 10.30/1.75 0.10/5.45
Maltese 18.00/1.97 7.00/8.76 14.00/2.03 17.00/2.22 10.00/2.37 10.00/2.37 16.00/1.90 14.00/1.85 8.00/2.78 7.00/3.81 3.00/3.73 0.00/3.60
Mapudungun 68.00/0.80 76.00/0.42 60.00/0.66 84.00/0.38 64.00/0.68 64.00/0.68 64.00/0.54 42.00/0.90 74.00/0.36 86.00/0.24 44.00/1.00 0.00/4.56
Middle-french 77.30/0.55 76.70/0.59 76.30/0.50 66.50/0.89 76.90/0.49 76.90/0.49 71.90/0.66 61.90/0.82 32.80/1.47 30.00/1.98 5.20/2.14 1.40/4.62
Middle-high-german 56.00/0.62 60.00/0.60 66.00/0.52 58.00/0.80 38.00/0.84 38.00/0.84 66.00/0.58 44.00/0.86 56.00/0.70 0.00/6.20 20.00/1.66 24.00/1.52
Middle-low-german 16.00/1.86 14.00/2.70 36.00/1.52 24.00/2.26 18.00/1.76 18.00/1.76 26.00/1.52 20.00/1.96 14.00/2.76 0.00/7.16 6.00/2.72 10.00/3.16
Murrinhpatha 14.00/2.40 0.00/8.04 20.00/2.00 38.00/1.68 6.00/2.72 2.00/4.22 20.00/2.00 10.00/2.12 28.00/1.72 36.00/1.80 2.00/2.94 0.00/3.98
Navajo 17.10/3.72 8.50/5.96 8.70/3.69 3.40/4.51 17.80/3.39 0.00/7.76 9.40/3.65 6.20/3.63 0.90/5.37 1.80/5.12 0.00/8.96 0.00/7.20
Neapolitan 79.00/0.94 84.00/0.29 36.00/0.94 59.00/0.96 79.00/0.59 79.00/0.59 61.00/0.76 45.00/0.98 45.00/1.02 59.00/0.79 24.00/1.47 6.00/3.04
Norman 30.00/2.48 48.00/0.96 40.00/1.42 58.00/1.16 30.00/2.22 30.00/2.22 34.00/1.50 8.00/2.32 52.00/1.10 66.00/0.74 22.00/2.16 20.00/2.60
North-frisian 29.00/3.24 15.00/32.10 34.00/2.36 29.00/2.39 29.00/3.34 29.00/3.34 17.00/3.86 13.00/4.05 18.00/3.01 27.00/2.82 12.00/5.22 1.00/6.29
Northern-sami 11.70/2.80 8.40/2.90 6.20/3.10 18.30/2.27 16.40/2.35 16.40/2.35 5.30/3.20 2.00/3.38 1.50/3.99 5.40/3.65 0.00/9.29 0.20/5.89
Norwegian-bokmaal 72.30/0.40 71.40/0.46 71.60/0.45 70.40/0.46 68.70/0.49 68.70/0.49 7.60/1.78 9.30/1.68 40.80/0.96 28.60/1.95 45.90/0.79 0.20/5.26
Norwegian-nynorsk 37.40/1.17 50.20/0.95 42.00/1.02 46.80/0.96 50.20/0.89 50.20/0.89 29.60/1.38 29.00/1.35 22.00/1.63 14.60/2.68 10.70/1.46 0.00/6.06
Occitan 68.00/0.99 68.00/1.31 60.00/0.77 62.00/0.85 72.00/0.82 72.00/0.82 56.00/0.92 49.00/1.19 31.00/1.44 21.00/2.11 1.00/2.76 5.00/3.59
Old-armenian 31.00/1.75 29.50/2.01 23.30/1.73 17.90/1.96 30.70/1.74 30.70/1.74 16.50/2.01 16.00/2.07 1.90/3.40 0.90/5.64 0.00/7.40 0.10/5.09
Old-church-slavonic 35.00/1.22 32.00/1.26 31.00/1.28 25.00/1.55 40.00/1.14 40.00/1.14 35.00/1.18 18.00/1.61 21.00/1.72 11.00/2.61 9.00/2.17 10.00/2.91
Old-english 12.10/2.15 12.60/2.17 13.70/1.94 15.30/2.10 17.60/1.72 17.60/1.72 12.60/2.04 10.70/2.15 8.60/2.75 6.70/4.17 3.60/2.74 0.60/4.63
Old-french 28.00/1.97 27.20/1.58 23.50/1.79 26.90/2.03 32.50/1.65 32.50/1.65 20.30/1.94 15.70/2.05 7.00/2.86 7.30/2.97 1.10/3.12 0.10/5.12
Old-irish 8.00/4.30‡ 6.00/6.08‡ 6.00/3.86‡ — 8.00/4.06‡ 8.00/4.06‡ 4.00/3.74 2.00/4.06 2.00/4.04 0.00/6.94 2.00/4.68 0.00/5.68
Old-saxon 17.10/2.16 20.90/1.90 12.90/1.97 15.70/1.99 22.80/1.84 22.80/1.84 10.90/2.29 9.50/2.23 5.60/2.79 5.90/3.27 4.60/2.51 0.60/4.41
Pashto 34.00/2.09 27.00/2.80 34.00/1.47 19.00/2.27 35.00/1.91 35.00/1.91 27.00/1.87 17.00/2.29 11.00/2.64 8.00/3.56 15.00/2.34 0.00/4.52
Persian 29.50/3.15 33.10/3.07 39.60/1.57 31.60/2.35 26.50/3.17 26.50/3.17 17.20/3.29 15.40/4.55 6.30/3.91 13.10/3.99 0.00/11.63 1.00/6.19
Polish 40.20/1.70 32.90/2.46 23.10/1.92 16.90/3.04 40.40/1.60 40.40/1.60 19.50/2.07 11.30/2.21 4.70/3.29 2.40/6.75 0.00/9.64 0.00/7.83
Portuguese 62.60/0.96 66.90/0.66 57.30/0.72 35.00/1.36 62.60/0.83 62.60/0.83 44.90/1.08 41.10/1.08 19.90/1.72 14.90/2.22 5.70/2.59 0.20/5.25
Quechua 15.60/6.47 50.70/1.42† 14.20/3.09 58.50/1.27† 15.90/6.46 15.90/6.46 10.50/4.34 6.10/4.69 15.00/3.19 22.20/3.49 0.00/13.64 0.00/10.05
Romanian 44.30/1.60 29.50/3.01 27.80/1.97 19.50/2.77 44.70/1.52 44.70/1.52 26.10/2.08 18.90/2.53 4.60/3.83 3.80/4.67 6.30/3.27 0.00/6.49
Russian 45.20/1.27 37.00/2.46 25.10/1.65 16.50/2.23 43.40/1.13 43.40/1.13 17.50/1.77 8.90/1.95 7.50/3.02 0.00/10.26 — 0.00/7.56
Sanskrit 41.80/1.52 43.80/1.27 23.60/1.87 32.80/1.66 33.70/1.50 33.70/1.50 12.60/2.80 17.30/2.37 6.70/3.04 6.00/3.92 6.60/2.90 0.00/6.36
Scottish-gaelic 58.00/0.70 42.00/1.68 62.00/0.70 54.00/1.34 46.00/0.96 46.00/0.96 54.00/0.92 46.00/1.08 48.00/1.40 46.00/1.38 32.00/1.70 40.00/2.14
Serbo-croatian 20.70/2.70 24.70/2.67 28.50/1.85 19.10/3.56 22.10/2.66 22.10/2.66 11.40/2.93 10.90/2.99 4.10/4.05 0.00/7.99 0.00/10.54 0.00/7.13
Slovak 44.80/1.10 42.20/1.15 39.20/1.09 — 37.70/1.15 37.70/1.15 25.70/1.48 16.60/1.62 9.60/2.23 0.00/6.89 11.60/1.71 0.10/4.69
Slovene 6.10/1.79 44.80/1.28 32.10/1.12 34.20/1.16 32.30/1.17 32.30/1.17 12.50/1.80 11.30/1.85 14.00/2.04 13.20/2.75 7.90/1.77 2.30/4.62
Sorani 19.50/3.58 7.00/4.32 16.00/2.07 13.20/2.52 19.90/3.35 19.90/3.35 1.90/4.46 1.30/4.63 1.30/4.08 2.20/4.17 0.80/4.55 0.10/5.54
Spanish 59.70/1.28 55.80/1.50 60.40/0.85 55.30/1.11 61.80/1.08 61.80/1.08 45.30/1.31 41.70/1.28 13.00/2.67 14.80/2.95 5.80/2.48 0.10/6.00
Swahili 35.00/2.48 0.00/4.73 41.00/1.09 20.00/2.08 32.00/2.51 0.00/6.10 9.00/2.74 2.00/3.27 4.00/2.79 32.00/1.82 0.00/4.48 2.00/4.55
Swedish 49.40/0.84 56.90/0.69 58.90/0.70 52.90/0.83 51.10/0.89 51.10/0.89 54.90/0.83 50.40/0.86 32.80/1.19 16.90/2.61 13.90/1.83 0.00/6.67
Tatar 72.00/0.35 79.00/0.28 66.00/0.44 74.00/0.39 50.00/0.85 50.00/0.85 37.00/1.34 52.00/0.95 44.00/0.95 20.00/2.22 53.00/0.73 0.00/5.42
Telugu 70.00/1.18 — 86.00/0.24 96.00/0.12‡ 70.00/1.14 70.00/1.14 82.00/0.82 78.00/0.62 94.00/0.18‡ 96.00/0.06‡ 46.00/1.56 60.00/0.88
Tibetan 46.00/0.84 40.00/1.10 48.00/0.82 36.00/1.10 34.00/1.02 34.00/1.02 46.00/0.98 44.00/0.94 36.00/1.12 46.00/0.92 38.00/1.24 26.00/1.38
Turkish 17.50/4.42 27.50/2.53 13.90/3.14 22.50/3.00 13.30/4.56 13.30/4.56 9.70/3.79 4.40/4.49 10.70/3.66 2.70/5.85 3.80/3.81 0.00/8.73
Turkmen 86.00/0.20‡ 78.00/0.28 64.00/0.54 60.00/1.00 34.00/1.98 34.00/1.98 62.00/0.86 44.00/1.44 64.00/0.52 64.00/0.78 64.00/0.42 28.00/1.60
Ukrainian 43.30/0.99 36.50/1.41 30.00/1.27 30.40/1.23 38.70/0.99 38.70/0.99 26.00/1.36 22.00/1.40 9.00/2.28 9.30/3.62 13.40/1.54 0.00/5.79
Urdu 32.00/4.13 61.90/0.95† 62.50/0.80† 47.70/1.66† 32.70/4.08 32.70/4.08 49.10/1.45† 44.40/1.40 32.60/1.87 37.80/2.21 0.00/10.84 4.70/3.64
Uzbek 54.00/1.75 — 69.00/0.66 83.00/0.33 52.00/1.77 52.00/1.77 67.00/0.78 19.00/3.09 82.00/0.29 90.00/0.23† 41.00/0.88 26.00/1.74
Venetian 70.90/0.58 71.50/0.38 67.50/0.45 59.90/0.69 71.80/0.55 71.80/0.55 66.00/0.51 59.00/0.77 31.10/1.32 26.30/1.77 23.20/1.43 4.10/3.43
Votic 18.00/2.03 13.00/1.89 14.00/2.04 34.00/1.51 17.00/1.88 17.00/1.88 11.00/2.43 12.00/2.32 20.00/1.91 22.00/1.86 6.00/2.66 3.00/3.52
Welsh 27.00/1.78 51.00/1.22 32.00/1.83 28.00/1.79 30.00/1.45 30.00/1.45 17.00/2.14 20.00/2.04 11.00/2.66 14.00/2.75 0.00/8.39 0.00/4.76
West-frisian 47.00/1.41 43.00/1.39 33.00/1.32 31.00/1.62 50.00/1.23 50.00/1.23 29.00/1.58 39.00/1.44 26.00/1.67 27.00/1.86 22.00/1.83 18.00/2.40
Yiddish 80.00/0.36 72.00/0.44 79.00/0.29 55.00/0.87 78.00/0.38 78.00/0.38 55.00/0.84 67.00/0.63 33.00/1.65 26.00/3.12 41.00/1.03 0.00/5.65
Zulu 17.90/2.49 1.30/7.43 15.50/2.00 — 15.70/2.35 0.00/7.12 2.40/3.59 1.00/4.17 1.10/4.96 0.00/8.77 0.20/4.79 0.00/6.39
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bme-01 bme-03 kucst-01 bme-02 tuebingen-oslo-03 tuebingen-oslo-01

Adyghe 0.00/69.64 0.00/69.64 0.70/5.96 0.00/8.29 0.00/5.89 0.00/9.97
Albanian 0.00/8.93 0.00/8.93 0.00/9.40 0.00/9.88 0.00/9.93 0.00/10.98
Arabic 0.00/8.96 0.00/8.96 0.00/10.78 0.00/8.72 0.10/6.19 0.00/10.67
Armenian 0.00/8.20 0.00/8.20 0.10/7.32 0.00/10.20 0.00/7.07 0.00/9.34
Asturian 2.40/3.32 2.40/3.32 0.60/4.89 0.00/7.15 0.10/5.03 0.00/7.83
Azeri 0.00/5.65 0.00/6.11 0.00/5.07 0.00/6.75 0.00/5.72 0.00/8.63
Bashkir 0.00/7.63 0.00/7.63 0.50/5.17 0.00/7.81 0.00/5.58 0.00/7.52
Basque 0.10/6.66 0.10/6.66 0.50/5.01 0.10/6.03 0.00/6.05 0.00/8.44
Belarusian 0.10/5.66 0.10/5.66 0.20/5.96 0.10/7.43 0.00/6.88 0.00/7.71
Bengali 0.00/5.10 0.00/5.14 2.00/4.22 0.00/5.65 0.00/4.58 0.00/7.63
Breton 13.00/2.27 13.00/2.27 1.00/2.98 5.00/3.16 9.00/2.68 0.00/5.89
Bulgarian 0.00/8.20 0.00/8.20 0.00/6.47 0.00/8.23 0.00/7.86 0.00/8.24
Catalan 0.00/7.66 0.00/7.66 0.10/6.10 0.00/7.56 0.00/6.16 0.00/7.98
Classical-syriac 24.00/1.07 24.00/1.07 4.00/2.73 10.00/3.33 11.00/2.18 0.00/5.83
Cornish 12.00/3.16 6.00/3.12 14.00/3.04 6.00/3.42 0.00/2.82 0.00/6.96
Crimean-tatar 0.00/5.41 0.00/5.41 0.00/5.09 0.00/7.06 0.00/5.30 0.00/6.91
Czech 0.00/7.87 0.00/7.87 0.10/7.30 0.00/9.27 0.00/7.71 0.00/8.87
Danish 0.00/7.12 0.00/7.12 0.80/5.97 0.00/7.80 0.00/6.56 0.00/7.12
Dutch 0.00/7.24 0.00/7.24 — 0.00/7.17 0.00/6.60 0.00/7.28
English 0.00/7.63 0.00/7.63 — 0.00/7.56 0.00/6.03 0.00/7.64
Estonian 0.00/9.58 0.00/9.58 0.10/7.39 0.00/9.13 0.00/7.86 0.00/8.99
Faroese 0.00/6.87 0.00/6.87 0.30/5.50 0.00/6.95 0.00/6.18 0.00/7.18
Finnish 0.00/13.42 0.00/13.42 0.00/13.84 0.00/18.49 0.00/10.61 0.00/12.50
French 0.00/8.91 0.00/8.91 — 0.00/8.24 0.00/7.19 0.00/8.50
Friulian 12.00/2.60 16.00/1.87 3.00/3.59 11.00/4.41 1.00/4.19 0.00/6.64
Galician 1.10/3.62 1.10/3.62 0.20/5.16 0.00/7.08 0.00/5.92 0.00/7.51
Georgian 0.00/7.52 0.00/7.52 0.00/5.97 0.00/7.62 0.00/5.76 0.00/8.95
German 0.00/8.25 0.00/8.25 — 0.00/8.30 0.00/7.13 0.00/7.83
Greek 0.00/10.67 0.00/10.67 0.10/8.17 0.00/9.58 0.00/9.33 0.00/10.33
Greenlandic 14.00/1.80 14.00/1.80 6.00/2.52 24.00/1.54 0.00/3.40 0.00/8.06
Haida 3.00/8.06 1.00/8.57 0.00/7.63 3.00/7.95 0.00/8.49 0.00/13.62
Hebrew 0.40/3.50 0.40/3.50 0.40/3.56 0.00/4.76 0.00/4.07 0.00/5.57
Hindi 0.00/9.66 0.00/9.66 2.20/6.46 0.00/9.28 0.00/6.07 0.00/11.32
Hungarian 0.00/11.30 0.00/11.30 0.00/8.40 0.00/16.28 0.00/8.83 0.00/9.92
Icelandic 0.00/6.51 0.00/6.51 0.10/5.74 0.00/7.16 0.00/6.33 0.00/7.28
Ingrian 4.00/2.56 10.00/2.24 0.00/2.76 6.00/2.52 0.00/4.04 0.00/5.96
Irish 0.00/10.39 0.00/10.39 0.00/9.54 0.00/10.24 0.00/9.31 0.00/10.81
Italian 0.00/18.32 0.00/18.32 0.00/6.99 0.00/10.11 0.00/8.17 0.00/9.76
Kabardian 9.00/2.83 9.00/2.83 3.00/3.94 6.00/4.68 1.00/4.40 0.00/8.04
Kannada 6.00/5.82 6.00/5.82 — 0.00/5.95 0.00/5.55 0.00/7.34
Karelian 4.00/2.44 4.00/2.44 4.00/2.82 6.00/2.24 2.00/2.66 0.00/7.90
Kashubian 14.00/2.34 14.00/2.34 8.00/2.52 16.00/2.32 2.00/3.34 0.00/7.22
Kazakh 28.00/1.20 28.00/1.20 2.00/2.14 0.00/7.74 26.00/1.02 0.00/7.68
Khakas 14.00/2.16 14.00/2.16 0.00/3.04 10.00/2.60 2.00/3.54 0.00/6.88
Khaling 0.10/5.48 0.00/5.56 0.80/4.86 0.10/5.76 0.00/5.62 0.00/7.18
Kurmanji 0.00/7.80 0.00/7.80 0.00/6.41 0.00/14.05 0.00/6.30 0.00/7.04
Ladin 1.00/2.89 3.00/3.42 5.00/3.72 0.00/6.33 0.00/4.61 0.00/6.90
Latin 0.00/9.16 0.00/9.16 0.00/7.40 0.00/9.10 0.00/7.79 0.00/9.07
Latvian 0.00/7.99 0.00/7.99 0.30/6.80 0.00/8.04 0.00/7.79 0.00/8.61
Lithuanian 0.00/8.84 0.00/8.84 0.20/6.50 0.00/7.70 0.00/7.20 0.00/8.19
Livonian 0.00/6.91 0.00/6.91 0.00/5.42 0.00/7.16 0.00/6.16 0.00/7.68
Lower-sorbian 0.20/4.80 0.20/4.80 1.40/4.68 0.00/5.99 0.00/5.46 0.00/6.37
Macedonian 0.00/7.62 0.00/7.62 0.20/5.84 0.00/7.58 0.00/6.02 0.00/7.78
Maltese 4.00/3.24 4.00/3.24 2.00/3.70 0.00/5.17 0.00/4.20 0.00/6.13
Mapudungun 40.00/1.36 40.00/1.36 14.00/2.10 34.00/1.74 0.00/3.10 0.00/6.52
Middle-french 1.20/4.68 1.20/4.68 0.40/5.26 0.20/7.37 0.00/5.87 0.00/8.03
Middle-high-german 16.00/2.12 16.00/2.12 24.00/1.42 10.00/2.68 8.00/2.06 0.00/5.38
Middle-low-german 10.00/3.28 6.00/4.00 — 12.00/3.86 8.00/3.08 0.00/5.68
Murrinhpatha 16.00/2.48 16.00/2.48 20.00/2.42 12.00/2.88 4.00/2.80 0.00/4.76
Navajo 0.00/6.31 0.00/6.31 0.50/6.16 0.00/7.33 0.00/6.83 0.00/8.49
Neapolitan 17.00/3.25 13.00/2.70 2.00/3.52 16.00/2.53 0.00/4.79 0.00/8.88
Norman 20.00/2.38 20.00/2.38 8.00/3.44 12.00/3.18 4.00/2.54 0.00/7.22
North-frisian 4.00/4.42 4.00/4.30 — 4.00/4.60 1.00/5.46 0.00/6.96
Northern-sami 0.30/5.45 0.30/5.45 0.20/6.38 0.00/8.17 0.00/7.74 0.00/8.21
Norwegian-bokmaal 0.00/7.08 0.00/7.08 0.80/5.04 0.00/7.15 0.00/6.81 0.00/6.77
Norwegian-nynorsk 0.00/7.22 0.00/7.22 0.50/5.62 0.00/7.64 0.00/6.30 0.00/7.02
Occitan 7.00/2.54 7.00/2.54 2.00/4.38 1.00/6.01 0.00/4.68 0.00/7.36
Old-armenian 0.00/5.85 0.00/5.85 0.40/5.33 0.00/6.38 0.00/6.02 0.00/6.44
Old-church-slavonic 11.00/2.43 11.00/2.43 9.00/2.93 3.00/5.19 1.00/4.00 0.00/6.23
Old-english 0.00/6.59 0.00/6.59 — 0.00/6.55 0.00/5.55 0.00/6.40
Old-french 0.00/7.57 0.00/7.57 0.30/5.66 0.00/7.89 0.00/6.19 0.00/7.63
Old-irish 0.00/4.68 0.00/4.68 0.00/4.72 0.00/5.24 0.00/5.16 0.00/6.80
Old-saxon 0.00/6.03 0.00/6.03 0.90/4.70 0.00/6.34 0.10/5.34 0.00/6.92
Pashto 0.00/5.17 0.00/5.17 3.00/3.77 0.00/5.31 0.00/4.49 0.00/6.16
Persian 0.00/11.69 0.00/11.69 0.00/10.08 0.00/9.85 0.00/6.76 0.00/11.34
Polish 0.00/8.63 0.00/8.63 — 0.00/8.67 0.00/7.77 0.00/8.57
Portuguese 0.00/8.19 0.00/8.19 0.20/5.58 0.00/8.13 0.00/6.12 0.00/8.31
Quechua 0.00/6.95 0.00/8.16 0.10/7.54 0.00/10.77 0.00/7.99 0.00/12.01
Romanian 0.00/11.83 0.00/11.83 0.00/6.83 0.00/8.81 0.00/8.03 0.00/8.12
Russian 0.00/9.24 0.00/9.24 — 0.00/9.10 0.00/8.33 0.00/9.46
Sanskrit 0.20/5.93 0.20/5.93 0.80/5.64 0.10/6.84 0.00/6.43 0.00/8.11
Scottish-gaelic 18.00/3.38 18.00/3.38 28.00/2.34 2.00/6.28 10.00/3.78 0.00/8.34
Serbo-croatian 0.00/9.44 0.00/9.44 0.00/8.19 0.00/9.49 0.00/8.64 0.00/9.18
Slovak 0.00/6.29 0.00/6.29 0.80/4.68 0.00/6.23 0.00/5.12 0.00/6.33
Slovene 0.00/7.00 0.00/7.00 0.00/8.28 0.00/7.23 1.50/4.95 0.00/7.51
Sorani 0.00/7.01 0.00/7.01 0.20/5.72 0.00/6.87 0.00/5.46 0.00/7.88
Spanish 0.00/8.48 0.00/8.48 0.20/6.65 0.00/8.51 0.00/6.90 0.00/8.84
Swahili 3.00/3.88 3.00/3.88 4.00/3.68 2.00/5.54 0.00/5.07 0.00/7.38
Swedish 0.00/8.47 0.00/8.47 0.20/6.89 0.00/8.86 0.00/7.50 0.00/8.32
Tatar 0.00/7.30 0.00/7.30 1.00/5.37 0.00/7.42 0.00/6.09 0.00/7.29
Telugu 28.00/1.58 28.00/1.58 24.00/2.40 26.00/1.74 6.00/2.82 0.00/10.74
Tibetan 0.00/3.66 0.00/3.66 32.00/1.18 0.00/3.68 22.00/1.64 0.00/4.06
Turkish 0.00/8.69 0.00/8.69 0.10/8.64 0.00/16.38 0.00/9.48 0.00/10.71
Turkmen 2.00/2.38 2.00/2.38 2.00/2.68 2.00/4.38 0.00/4.66 0.00/7.00
Ukrainian 0.00/6.24 0.00/6.24 1.40/5.14 0.00/6.74 0.00/6.29 0.00/7.05
Urdu 8.40/3.76 8.40/3.76 3.90/4.82 1.60/9.69 0.20/5.54 0.00/10.49
Uzbek 7.00/2.75 7.00/2.75 0.00/3.96 5.00/2.95 20.00/1.59 0.00/9.48
Venetian 0.00/5.58 0.00/5.58 2.10/4.07 0.00/5.99 0.00/4.73 0.00/6.78
Votic 2.00/2.96 2.00/3.10 1.00/3.21 1.00/3.51 0.00/4.50 0.00/6.16
Welsh 0.00/5.76 0.00/5.76 1.00/4.91 0.00/7.30 0.00/5.65 0.00/7.92
West-frisian 8.00/3.09 1.00/3.47 6.00/2.71 3.00/3.74 3.00/2.95 0.00/4.99
Yiddish 0.00/11.50 0.00/11.50 0.00/4.50 0.00/6.76 0.00/5.59 0.00/8.03
Zulu 0.00/7.44 0.00/7.44 0.30/5.57 0.00/7.68 0.00/6.91 0.00/7.88

Table 19: Task 1 Low Condition Part 3.
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Abstract

In this paper we describe our sequence-to-
sequence model for morphological inflection.
We have constructed a common Encoder-
Decoder network that encodes the input
lemma into a dense vector to translate it to
an inflected form, based on input morpholog-
ical tags. The main novelty of the model is
that the input lemma is encoded in three dif-
ferent directions: left-to-right, right-to-left and
boundaries-to-center. In this paper we report
the accuracies of the model compared to the
same bidirectional approach.

1 Introduction

In this work we present the neural network ar-
chitecture prepared for the task of morphological
inflection in the CoNLL–SIGMORPHON 2018
Shared Task (Cotterell et al., 2018). Both morpho-
logical analysis and morphological inflection are
crucial in end-to-end Natural Language Process-
ing pipelines, as they are one of the initial steps
performed before solving more high-level prob-
lems such as Named-Entity Recognition, Senti-
ment Analysis, or others.

2 Task

In the CoNLL–SIGMORPHON 2018 Shared Task
there were two tasks to solve. In this work we
present a possible solution for the first task, in
which word-forms have to be built without consid-
ering the context. The input in the task is a lemma
and a list morphological tags. The system should
be then able to produce the corresponding word
form. The following is an example from the Span-
ish dataset

jaquear
V ;COND; 1;PL

↓
jaquearamos

in which the input lemma is jaquear and its mor-
phological tags state that the word form should be
a verb (V) in conditional tense (COND), first per-
son (1) in plural (PL). The output word form is
jaquearamos.

The models can be trained and tested in over
100 languages and in three different settings, low-,
medium- and high-resource scenarios (100, 1,000
or 10,000 training instances, respectively).

2.1 Dataset
As mentioned above we trained and tested our
models in the provided dataset, which contains
morphological inflections for over 100 languages.
The information is encoded using Unicode and
morphological tags follow the UniMorph tagging
schema (Kirov et al., 2018).

3 Method

Following previous successful attempts to mor-
phological inflection (Kann and Schütze, 2016),
we built a model based on Neural Networks,
specifically an Encoder-Decoder network (Cho
et al., 2014) with an attention mechanism (Bah-
danau et al., 2014). Furthermore, instead of con-
structing a linguistically inspired model, we have
shortly explored an engineering approach. The
main novelty of our model is in the way the input
is encoded.

In Lample et al. (2016) it is stated that recurrent
architectures such as Recurrent Neural Networks
are capable of encoding very long sequences, but
the representation is biased towards the last ex-
plored items. Because of that, a bidirectional RNN
could be expected to represent well the structure of
a word, as it models both the ending (suffix) and
the beginning (prefix) by the use of a forward en-
coder and a backward encoder, respectively.

Our model explores whether this architecture
can be improved adding another encoder that en-
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codes the word starting at the boundaries and end-
ing in the center, capturing in that way the central
structure of the word. The architecture is shown in
Figure 1.

Each input is encoded with three different en-
coders, left-to-right, right-to-left and boundaries-
to-center, and those encoded representations are
concatenated. Then, a many-hot encoding rep-
resentation of the morphological tags is concate-
nated at the end. In this way, we generate the rep-
resentation of our source lemma with its morpho-
logical information. This representation goes to
the decoder so that the output word is generated
character by character.

4 Model configuration

The implementation is based on a Machine Trans-
lation model created using the Pytorch framework.
It encodes sentences using three Recurrent Neural
Networks with 128 GRU cells in each encoder. In
order to train the decoder, we use a teacher forcing
ratio of 0.5. We started training all the models for
10 epochs, but we could observe that the models
from the low-resource scenario did not converge
and the ones in the high-resource scenario did not
improve results after the fifth epoch. Because of
that, we train our models for 20, 15 and 5 epochs
in the low-, medium- and high-resource scenarios,
respectively.

5 Results

We tested a bidirectional and a tridirectional
model and our expectations were that the tridirec-
tional one would show a better performance in the
development set. As you can see in Table 1, the
mean accuracy is slightly better than in the bidirec-
tional model with the same exact configuration,1

although these differences are not significant ac-
cording to a bootstrap test.

In Table 2 you can see the accuracies for each
language in each setting with the tridirectional ap-
proach2. In Figure 2 we plotted these accuracies
together with the accuracies of the bidirectional
model. In some cases, our tridirectional approach
is sufficiently more accurate than the bidirectional

1Same number of epochs, same cell types, and same size
of hidden memory size. We are aware, although, that the
tridirectional approach has more parameters because it has
three encoders instead of two.

2In order to make it more interpretable, we marked in bold
results that are better than the current baseline presented for
the shared task.

Mean accuracies

low medium high

Bidirectional model 2.3 28.4 54.8
Tridirectional model 2.8 32.4 55.6

Mean Levenshtein distances

low medium high

Bidirectional model 5.25 2.30 1.28
Tridirectional model 5.21 2.11 1.41

Table 1: Average results for the bidirectional and tridi-
rectional approaches in three different settings.

one, such as in Crimean-Tatar, Galician, Quechua
and welsh in the high setting, or Bashkir, Crimean-
Tatar, Ingrian, Napolitan, Tatar and Urdu in the
medium setting. There are other cases, although,
that the bidirectional approach shows a higher ac-
curacy. Check, for instance, Persian and Tatar in
the high setting or Kabardian in the medium set-
ting.

low medium high

Adyghe 0.3 65.2 99.0
Albanian 0.2 11.9 13.4
Arabic 0.0 7.1 41.9
Armenian 0.0 13.0 48.0
Asturian 1.0 48.3 87.1
Azeri 1.0 11.0 44.0
Bashkir 1.0 68.3 62.9
Basque 0.3 44.6 69.9
Belarusian 0.5 13.0 65.5
Bengali 1.0 75.0 78.0
Breton 5.0 68.0 60.0
Bulgarian 0.0 33.2 58.1
Catalan 0.2 24.1 85.8
Classical-Syriac 0.0 67.0 76.0
Cornish 18.0 46.0 -
Crimean-Tatar 0.0 54.0 99.0
Czech 0.2 7.8 34.1
Danish 0.2 32.7 64.8
Estonian 0.1 7.1 43.3
Faroese 0.5 9.0 25.7
Finnish 0.0 0.0 1.5
Friulian 1.0 73.0 98.0
Galician 0.6 40.4 92.0
Georgian 0.2 36.2 82.2
Greek 0.2 4.2 21.2
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COND 1

PL

h1 h2 h3 h4 h5 h6 /h7 // /h8 h9 h10 h11

j a q u e a r a m o s

Figure 1: Architecture of our Tridirectional Encoder-Decoder model.

low medium high

Greenlandic 4.0 22.0 -
Haida 0.0 14.0 18.0
Hebrew 0.4 24.3 77.9
Hindi 1.1 73.2 84.6
Hungarian 0.1 1.0 12.9
Icelandic 0.4 11.1 41.4
Ingrian 4.0 58.0 -
Irish 0.2 3.6 13.8
Italian 0.0 12.8 34.9
Kabardian 6.0 58.0 96.0
Karelian 2.0 40.0 -
Kashubian 8.0 20.0 -
Kazakh 0.0 22.0 -
Khakas 2.0 22.0 -
Khaling 1.0 28.8 88.7
Kurmanji 0.0 30.6 68.1
Ladin 5.0 60.0 93.0
Latin 0.0 3.5 9.6
Latvian 0.2 8.3 50.9
Lithuanian 0.2 3.9 37.3
Livonian 1.0 25.0 57.0
Lower-Sorbian 0.8 13.7 72.6
Macedonian 0.0 14.8 52.8
Maltese 4.0 57.0 47.0
Mapudungun 30.0 96.0 -
Middle-French 1.1 52.8 83.1

low medium high

Middle-High-German 12.0 90.0 -
Murrinhpatha 14.0 76.0 -
Navajo 0.4 9.7 28.1
Neapolitan 7.0 70.0 56.0
Norman 6.0 12.0 -
Northern-Sami 0.1 9.4 46.0
Norwegian-Bokmaal 0.8 26.2 47.8
Norwegian-Bynorsk 0.4 17.6 37.7
Occitan 1.0 40.0 99.0
Old-Armenian 0.0 11.8 60.7
Old-Church-Slavonic 7.0 33.0 29.0
Old-French 0.0 18.2 53.9
Old-Irish 2.0 6.0 -
Old-Saxon 0.6 15.1 77.1
Pashto 2.0 48.0 85.0
Persian 0.2 47.3 29.3
Portuguese 0.2 25.9 72.6
Quechua 0.2 18.0 43.0
Romanian 0.2 13.2 41.1
Sanskrit 0.9 14.4 52.7
Scottish-Gaelic 16.0 54.0 -
Serbo-Croatian 0.1 5.4 26.3
Slovak 0.7 10.6 59.3
Slovene 1.2 21.2 59.3
Sorani 0.3 28.0 29.3
Spanish 0.2 26.8 58.5
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low medium high

Swahili 4.0 70.0 90.0
Swedish 0.3 11.2 31.8
Tatar 1.0 53.0 44.0
Telugu 38.0 - -
Tibetan 24.0 24.0 -
Turkish 0.0 7.9 23.4
Turkmen 6.0 36.0 -
Ukrainian 0.7 12.3 32.6
Urdu 4.4 79.8 95.9
Uzbek 2.0 16.0 8.0
Venetian 2.3 46.9 88.9
Votic 1.0 55.0 23.0
Welsh 0.0 23.0 91.0
West-Frisian 3.0 88.0 13.0
Yiddish 0.0 60.0 82.0
Zulu 0.3 16.2 72.7

Mean 2.8 32.4 55.6

Table 2: Accuracies for all languages in the low-,
medium- and high-resource scenario using the tridirec-
tioal Encoder-Decoder model. The last row shows the
average accuracy for each resource scenario.

6 Conclusion and Future work

In this experiment we tried to approach morpho-
logical inflection using a slightly more complex
Encoder-Decoder architecture, by encoding the
lemmas in three different directions (left-to-right,
right-to-left and boundaries-to-center).

Although the model works quite well in some
cases, there is plenty room for improvement.
The main improvement that must be done is to
continue experimenting with more parameters to
check whether the addition of parameters im-
proves results. Both in the medium- and high-
resource settings, there are some languages that
show very bad performance, especially Finnish,
Hungarian and Latin. We feel that there is a need
of carefully analyzing their outputs so that to bet-
ter understand the motivation for these low results.

Data augmentation techniques were success-
fully used in the last CoNLL–SIGMORPHON
2018 Shared Task (Bergmanis et al., 2017; Kann
and Schütze, 2017; Nicolai et al., 2017; Silfver-
berg et al., 2017) and thus, we think that our model
could see its results improved in the low- and
the medium-resource setting by adding artificially
generated data.

We expect that using external resources, such

as Wikipedia, would have a positive effect. We
could even analyze how much effect does a spe-
cific amount of text have in this task pretraining
character embeddings with, for instance, 10,000,
50,000 or 100,000 characters.
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Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. Med: The
lmu system for the sigmorphon 2016 shared task on
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy, pages 62–70.

Katharina Kann and Hinrich Schütze. 2017. The lmu
system for the conll-sigmorphon 2017 shared task
on universal morphological reinflection. Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, pages
40–48.

31



Figure 2: Accuracies of both the bidirectional and tridirectional models. As it can be seen in the figure, results
from the two models are not very different as it was initially expected.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
Graldine Walther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sebastian Mielke, Arya D. Mc-
Carthy, Sandra Kbler, David Yarowsky, Jason Eis-
ner, and Mans Hulden. 2018. UniMorph 2.0: Uni-
versal Morphology. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Garrett Nicolai, Bradley Hauer, Mohammad Motallebi,
Saeed Najafi, and Grzegorz Kondrak. 2017. If you
can’t beat them, join them: the university of alberta
system description. Proceedings of the CoNLL SIG-
MORPHON 2017 Shared Task: Universal Morpho-
logical Reinflection, pages 79–84.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and
Lingshuang Jack Mao. 2017. Data augmentation
for morphological reinflection. Proceedings of the
CoNLL SIGMORPHON 2017 Shared Task: Univer-
sal Morphological Reinflection, pages 90–99.

32



Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 33–42,
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

IPS-WASEDA system at CoNLL–SIGMORPHON 2018 Shared Task on
morphological inflection

Rashel Fam Yves Lepage
Graduate School of Information, Production, and Systems

Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakyushu-shi, 808-0135 Fukuoka-ken, Japan

{fam.rashel@fuji., yves.lepage@}waseda.jp

Abstract

This paper presents the system submitted
by IPS-WASEDA University for CoNLL–
SIGMORPHON 2018 Shared Task 1: Type
level inflection. We develop a system based
on a holistic approach which considers whole-
word form as a unit, instead of breaking them
into smaller pieces (e,g. morphemes) like the
baseline systems does. We also implement an
encoder-decoder model which has recently be-
come the new standard in many natural lan-
guage processing (NLP) tasks. The results
show that the neural approach outperforms the
baseline and our holistic approach on bigger
resources settings. The use of data augmenta-
tion helps to improve the performance of the
model in lower resources settings, although
it still cannot beat the other systems. In the
end, for the low resources setting, our holistic
approach performs best in comparison to the
baseline and the neural approach (even with
data augmentation).

1 Introduction

Lemma: illustrate
Target MSDs: V;V.PTCP;PRS

Target form: illustrating

Figure 1: An example of inflection task in English:
given the lemma illustrate, we are asked to generate
the present participle form illustrating.

We address the problem of inflection task: given
a lemma (e.g. the dictionary form of a word) and
the target form’s morphosyntactic descriptions
(MSD), generate a target inflected form. Figure 1
shows an example of inflection task in English.

Many NLP tasks, like machine translation, re-
quire analysis and generation of morphological
word forms, even previously unseen ones. Dif-
ferent languages exhibit different richness of mor-
phology. This makes the task an interesting prob-

lem. Dreyer and Eisner (2011) show that data
sparsity is a common issue for language with rich
morphology which usually leads to poor generali-
sations in machine learning.

There are three main approaches at the problem:

• The hand-engineered rule-based approach
offers a high accuracy but costs time during
construction. It usually faces the world cov-
erage problem and is language-dependent.

• The supervised approach automatically in-
duces the rules from a given training data
and applies the best rules to generate the tar-
get forms by using some classification tech-
niques (Ahlberg et al., 2015). It is practically
language independent and relatively easier to
build. However, the data sparsity is an issue.

• The neural approach is the model which
triumphed in the task recently, especially
the RNN encoder-decoder model (Kann and
Schütze, 2016; Makarov et al., 2017). Some
drawbacks of this approach are very long
training times and the need for a large amount
of training data.

This paper describes the systems we developed
for the CoNLL–SIGMORPHON 2018 Shared
Task 1 (Cotterell et al., 2018). The recent success
of neural approach encouraged us to implement
a sequence-to-sequence (seq2seq) model to solve
the task. Knowing that the neural approach tends
to need a large amount of training data, we also
consider another approach as a back-off, which is
a holistic approach. We treat the task of generat-
ing target forms as the task of solving analogical
equations between words.

2 Languages and data

Task 1 consists of 93 different languages. 10 addi-
tional surprise languages are given in the middle of
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Feature
low medium high

Avg Min Max Avg Min Max Avg Min Max
# of characters (train) 29 14 51 33 14 63 40 19 86
# of unseen characters (dev) 4 0 21 1 0 8 0 0 4
# of lemmata (train) 77 5 100 487 5 989 2,308 15 8,643
# of unseen lemmata (dev) 414 0 984 295 0 960 98 0 743
# of MSDs (train) 22 5 43 23 5 48 25 7 48
# of unseen MSDs (dev) 1 0 8 0 0 2 0 0 1
# of MSD patterns (train) 45 4 95 94 4 726 126 5 1,649
# of unseen MSD patterns (dev) 44 0 695 8 0 414 0 0 6
# of rules (train) 98 26 100 838 147 1,000 5,642 815 9,842
# of unseen rules (dev) 561 12 997 504 30 995 398 22 971

Table 1: Statistics on the dataset given. Number of rules and unseen rules are based on rule extraction method
explained in Section 5.3.1.

the development phase. The languages vary from
Germanic, Celtic and Slavic languages, which are
mainly used in Europe, to Indo-Aryan, Iranian,
etc. The dataset consists of lines of triplet. A
triplet consists of a lemma, a target form, and a tar-
get MSD pattern separated by tabulation charac-
ters. The MSDs are morphological tags presented
in Unimorph Schema (Kirov et al., 2018).

The provided resources are categorized into:

• train: this dataset is the dataset which can
be manipulated by the participant to solve the
task. It consists of three different sizes:

low : 100 word forms
medium : 1,000 word forms
high : 10,000 word forms

Telugu has only the low training dataset.
Some languages have only low and medium
training datasets: Cornish, Greenlandic,
Inggrian, Karelian, Kashubian, Kazakh,
Khakas, Mapudungun, Middle-Low-
German, Middle-High-German, Murrinh-
patha, Norman, Old-Irish, Scottish-Gaelic,
Tibetan, Turkmen.

• dev: this dataset is given to evaluate the per-
formance of our system during the develop-
ment phase. It consists of 1,000 word forms.

• test: this dataset is given at the test phase.
This dataset does not contain the target forms.
It consists of 1,000 word forms, similar to dev
dataset.

For some languages, the size of the dataset is
smaller than the one mentioned above.

Let us now look at some statistics on the given
dataset shown in Table 1. Overall, we can observe
a non-decreasing phenomenon from low to high
for all of the number of pieces of information (fea-
tures) found in the training dataset. On the oppo-
site, we found a non-increasing pattern for the un-
seen information contained in the dev dataset rel-
atively to training dataset. This shows that bigger
resources gradually cover the unseen data encoun-
tered in the smaller ones.

Norman, Telugu, Cornish, and Uzbek are lan-
guages with a smaller number of lemmata in the
training dataset. However, these languages tend
to have less, even zero for some languages, un-
seen lemmata relatively to the dev dataset. They
also have a smaller number of unseen charac-
ters. On the other hand, languages like Finnish,
Russian, English, French, and German have the
biggest number of unseen lemmata despite hav-
ing the biggest number of lemmata in the training
dataset compared to other languages.

Let us now turn to the number of MSDs and
MSD patterns. These numbers can be interpreted
as how large or complex the paradigm for that par-
ticular language is. Basque, Quechua, Turkish,
Zulu are languages with a higher variety of unique
MSD patterns. Basque, in particular, has astonish-
ingly more than 1,600 patterns in comparison to
the average of around 126 patterns per language
in high datasets. The same thing can be seen for
low and medium data. Almost all of the lines are
associated with different MSD patterns in the low
training dataset. Furthermore, Basque also topped
as the language with the highest number of unseen
MSD patterns for all dataset sizes.
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(substring, replacement, #_of_occurrences)
’-ε’ ’-ing’ 1,121
’-e’ ’-ing’ 832

’-ize’ ’-izing’ 162
...

...
...

’show’ ’showing’ 1
...

...
...

Figure 2: Excerpt of affixes remembered by the base-
line system from the training data. It memorizes all
changes from lemma into target form in various char-
acter length.

We also count the number of rules found in the
dataset (see the last two rows in Table 1). These
rules are not the morphological rules defined by
linguists but the one extracted from the method
explained in Section 5.3.1. For all languages and
all datasets, we count how many unique rules can
be extracted and relatively unseen to the respec-
tive dev dataset. Telugu, Tatar, and Swahili are the
languages with the lowest number of unseen rules.
We expect to have good performance in these lan-
guages because it means that most of the trans-
formations from lemma into the target form are
present in the training data.

3 Baseline system: morpheme-based

The CoNLL–SIGMORPHON 2018 organizers
provide a baseline system which is a morpheme-
based approach. For each language, it determines
whether the language is biased towards prefixing
or suffixing. The string will be reversed if the lan-
guage is biased to prefixing.

For each instance in the training data, it aligns
the lemma and target form using Levenshtein dis-
tance to cut the word into three categories of can-
didate: prefix, stem, and suffix. Prefixing and
suffixing rules are then extracted and grouped ac-
cording to the given MSD pattern. The rules are
stored as a knowledge in a list of triplets: sub-
string to replace, string replacement, and the num-
ber of occurrences. Figure 2 illustrates how the
baseline system stores the suffixing rules for En-
glish present participle.

In the generation step, it filters the candidate
rules by the given target MSD pattern. First, the
longest common suffixing rule with the highest
number of occurrences is applied. Then the most
frequent prefixing rule is applied in the succession
to generate the predicted target form.

4 Holistic approach

Another view on the problem is to see that word
forms are connected with other word forms sys-
tematically. Based on this observation, we can
treat the inflection task as the task of solving ana-
logical equation on words1:

lemmat : formt :: lemmaq : x ⇒ x = formq

4.1 Proportional analogy
Analogy is a relationship between four objects: A,
B, C, and D usually noted as A : B :: C : D . It
states that A is to B as C is to D where the ratio
between A and B is the same as the ratio between
C and D. Here, we consider analogy as a possi-
ble way to explain derivation between words as it
is already used from the ancient Greek and Latin
grammatical tradition up to recent works on com-
putational linguistics, like (Hathout, 2008, 2009).

Various formalisations of analogy have been
proposed in (Yvon, 2003; Lepage, 2004; Stroppa
and Yvon, 2005). In this work, we select the fol-
lowing definition2.

A : B :: C : D ⇒





d(A,B) = d(C,D)
d(A,C) = d(B,D)
|A|a + |D|a = |B|a + |C|a,
∀a

(1)
We can construct analogical grids (Fam and

Lepage, 2017b, 2018) to give a compact view of
different analogies that emerge from a set of words
contained in a corpus. An analogical grid is a MxN
matrix of words. The special property of this ma-
trix is that any four words from two rows and two
columns is an analogy (see Formula 2).

P 1
1 :P 2

1 : · · · :Pm
1

P 1
2 :P 2

2 : · · · :Pm
2

...
...

...
P 1
n :P 2

n : · · · :Pm
n

∆⇐⇒
∀(i, k) ∈ {1, . . . , n}2,
∀(j, l) ∈ {1, . . . ,m}2,
P j
i : P l

i :: P
j
k : P l

k

(2)

4.2 Solving analogical equation to generate
word form

In contrast to the baseline system which uses a
morpheme-based approach, our holistic approach

1 Both lemmat and formt are a pair of lemma and target
form found in the training data; lemmaq is the lemma given
in the question; and formq is the predicted target form.

2 d(A,B) stands for the value of the LCS edit distance
between two strings A and B that uses only insertions and
deletions with cost of 1. |A|c is the number of occurrences of
character c in string A.
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Training data

lemma inflected morph. features
show showed V;PST
show showing V;V.PTCP;PRS
release released V;PST
release releasing V;V.PTCP;PRS
schmear schmeared V;PST
...

...
...

Question

Lemma: illustrate
Target MSDs: V;V.PTCP;PRS

LEMMA : V;V.PTCP;PRS : V;PST

release : releasing :: illustrate : x
⇒

x = illustrating

release : releasing : released
revise : revising : revised
age : aging : aged
bake : baking :

show : showing :: illustrate : x
⇒

x = illustrateing

show : showing : showed
enter : : entered

reason : reasoning : reasoned
schmear : : schmeared

Figure 3: How to generate target form (present participle) of the given lemma illustrate as solving analogical
equation. Different analogical grids may generate different target forms.

does not break words in pieces (Singh, 2000;
Singh and Ford, 2000; Neuvel and Singh, 2001).
We generate the target form by solving analogi-
cal equation based on the evidence observed in the
given training data.

First, the relevant analogical grid is selected ac-
cording to the given target MSD pattern. If sev-
eral candidates of analogical equation exist, we
use some heuristic features to select the analog-
ical equation. These heuristics are edit distance,
longest common subsequence, longest common
suffix, and longest common prefix, between the
given lemma and lemmata existed in the training
dataset. If there are still several candidates after
using heuristic features, we solve all of the possi-
ble analogical equations to generate all the possi-
ble predicted target form. The most frequent an-
swer is chosen as the predicted target form.

For example, Figure 3 illustrates how to gener-
ate the target form for the example given in Fig-
ure 1. Let us say that we are able to get two ana-
logical grids according to the given MSD pattern.
We construct the analogical equation as follows:

lemmat : formt :: illustrate : formq

taken from the first and second column of the ana-
logical grids according to the given MSD pattern.
Based on longest common suffix, we choose to use
the one in the top which produces the word form

illustrating instead of the bottom one which pro-
duces illustrateing.

5 Neural approach

Following the recent success of neural approach
in previous evaluation campaign, we implement a
common architecture of seq2seq model. We treat
the inflection task as the problem of translating the
given target MSDs and lemma into target form.
Thus, the input string for the example given in Fig-
ure 1 will be as follows.

V V.PTCP PRS i l l u s t r a t e

5.1 Seq2seq model

Our model is a standard seq2seq model with at-
tention mechanism inspired from the one which is
used for machine translation (Luong et al., 2015).
The difference is that we consider a character or
MSD as one token, instead of a word. Each token
(character) is represented by a continuous vector
representation learned in the embedding layer.

We use a bi-directional Gated Recurrent Unit
(GRU) cell (Cho et al., 2014) which is a vari-
ation of Long Short-Term Memory (LSTM)
cell (Hochreiter and Schmidhuber, 1997) that tries
to solve the vanishing gradient problem. Our de-
coder is two layers of uni-directional GRU cell
with attention mechanism. There are various im-
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plementations of attention mechanism like (Bah-
danau et al., 2015; Luong et al., 2015). In this
work, we use the one that has the weight normal-
ization (Salimans and Kingma, 2016) to help the
model converges faster.

To handle the unseen tokens, we remember
them in a First-In-First-Out (FIFO) list and replace
them with a special token <UNK> before feeding
them into our model. These special tokens are re-
verted back to the character contained in the list
after the decoding phase.

5.2 Hyperparameters

We fixed our hyperparameters for all languages
and amounts of resources after doing some prelim-
inary experiments. The number of hidden units is
fixed to 100 for each layer in the encoder and de-
coder. The size of the embedding is 300. We op-
timize the model using ADAM (Kingma and Ba,
2015) with learning rate of 5 × 104 during train-
ing. To make the training process faster, we use
mini-batch size of 20.

We trained the model using early-stop mecha-
nism of 30 epochs without improvement on valida-
tion data which is a set of lines randomly selected
from the original training data.

5.3 Simple data augmentation

Preliminary results show that the neural approach
suffers from the lack of data. To tackle this
problem, we perform a simple data augmenta-
tion which artificially creates additional training
data from evidences seen in the original train-
ing data. Additional training data is expected
to bring improvement to the performance of our
model, especially on low data situation (Kann and
Schütze, 2017; Bergmanis et al., 2017; Silfverberg
et al., 2017; Zhou and Neubig, 2017; Nicolai et al.,
2017).

5.3.1 Rule extraction
We find the longest common substring between
lemma and target form. The left part is assumed as
prefix candidate, while the right part is assumed as
suffix candidate. Figure 4 shows several examples
of rules extracted from the training data in three
different languages.

To capture situational affixing where the next
or previous character influences the changes, we
added the first character from the longest common
substring to the extracted prefix candidate and the
last character for the suffix candidate. This, for

• Insertion

Language: Irish
Lemma: fótaidhé-óid

Target MSDs: N;NOM;PL;DEF
Target form: na fótaidhé-óidí

prefix root suffix
lemma fótaidhé-óid
target form na fótaidhé-óid í

• Substitution

Language: French
Lemma: amoindrir

Target MSDs: V;SBJV;PST;3;SG
Target form: amoindrît

prefix root suffix
lemma amoindr ir
target form amoindr ît

• Insertion and substitution at the same time

Language: German
Lemma: einschließen

Target MSDs: V;SBJV;PST;2;SG
Target form: schlössest ein

prefix root suffix
lemma ein schl ießen
target form schl össest ein

Figure 4: Illustrations of rules extraction for data
augmentation: simple insertion (Irish); substitution
(French); insertion and substitution at the same time
(German).

example, happens for regular past form in English
where you add only -d as suffix for lemmata ended
with e, instead of adding -ed

At a glance, it looks similar to how the base-
line system extracts the affix rules. However, we
only memorize the left (prefix candidate) and right
part (suffix candidate), not all of the possible affix
combinations with the stem as the baseline sys-
tem does. It simplifies the rules extraction, and
thus, gives us a smaller number of extracted rules
in comparison to the baseline system.

5.3.2 Creating additional training data
For each rule which appears less than 10 times in
the training data, we artificially create 5 instances
of additional training data. The additional training
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Method
Accuracy

low medium high
Baseline 39.3 63.4 77.1
Holistic 39.6 64.5 77.3
Seq2seq 13.1 71.3 90.9
Seq2seq+Aug 36.9 78.5 89.1

Table 2: Average accuracy scores on dev dataset.

data is constructed by using a random string with
the length of random integer between 1 to 4. Here,
we do not employ any language model to asses the
probability of the character sequence like the one
described in (Silfverberg et al., 2017). For exam-
ple, we can create the following additional training
instance for the examples given in Figure 4. Char-
acters written in boldface are patterns from the ex-
tracted rules.

Irish: fbsód =⇒ na fbsódí
French: aifrir =⇒ aifrît

German: einsraftließen =⇒ sraftlössest ein

6 Experiment Protocol

We evaluate the performance of the systems using
average on accuracy. Accuracy is the ratio of cor-
rectly predicted target forms by the total number
of questions. Please refer to Formula 3 for the ex-
act definition3.

Accuracy =

∑N
i=1 δ(predictedi = correcti)

N
×100

(3)
We carry experiments using training dataset and

measure the accuracies on dev dataset for all the
languages for all training dataset sizes. The sys-
tem which has the highest score will be picked as
our representative system in the test phase for that
particular language and dataset size.

7 Results

Table 2 shows the average accuracy in all lan-
guages for each of the systems. Our holistic ap-
proach is able to perform as good as the base-
line system, even slightly better under all of the
three dataset sizes. This is the same observation
found in (Fam and Lepage, 2017a) on previous
year dataset.

The results show that the neural approach us-
ing seq2seq model left behind both the baseline

3 N is the total number of questions. δ(A = B) equals to
1 if the two strings A and B are same, or else it is 0.

system and the holistic approach on medium and
high data situation. The gap is around 15 accu-
racy points. However, the lack of training data
exhibits the drawback of the neural approach as
it performs poorly under low data situation. Fur-
thermore, the use of data augmentation improves
the performance in most cases. We can see an im-
provement of around 3 times better accuracy on
low dataset although it still cannot overcome the
performance of either the baseline nor the holistic
approach.

The baseline system and the holistic approach
shine over the neural approach particularly for lan-
guages like Albanian, Czech, Haida, Neapolitan,
Norwegian-Bokmaal, and Uzbek. Our seq2seq
model seems to struggle even on high data sit-
uation for some of these languages. On the
other hand, our seq2seq model gets better accu-
racy than the baseline system or holistic approach
even on low data situation in some languages
like Azeri, Basque, Breton, Cornish, Greenlandic,
Hindi, Karelian, Khaling, Maltese, Middle-Low-
German, Middle-High-German, Murrinhpatha,
Norman, North-Frisian, Persian, Swahili, Turkish,
Turkmen, Welsh, Zulu.

The same trend can be seen on the results for
similar languages, like Romance (Catalan, Gali-
cian, Portuguese, and Spanish), Semitic (Arabic
and Hebrew), and Baltic (Latvian and Lithuanian)
languages. The baseline system leads the score on
low dataset size before started to be outperformed
by our seq2seq model on the dataset with big-
ger sizes. For other language families like Indo-
Aryan (Bengali, Hindi, Urdu), Finnic (Estonian
and Finnish), and Turkic (Turkish and Turkmen)
languages, our seq2seq model steadily leads the
score for all dataset sizes. Please refer to Table 3
for detail results per language.

8 Discussion

The results for the baseline system and our holistic
approach show the absence of necessity to break
down the words into morpheme. The derivation
between lemma and target form can also be ac-
quired through analogy. However, selecting the
candidates for constructing the analogical equa-
tion is a crucial thing. Thus, we need to improve
our selection method or use better heuristic fea-
tures. To handle the problem of unseen MSD pat-
terns, the use of formal concept analysis (Ganter
and Wille, 1999) is worth to consider.
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Accuracy
Language low medium high

B H S S+Aug B H S S+Aug B H S S+Aug
adyghe 59.8 71.6 35.5 73.8 85.5 88.1 88.0 89.5 94.8 93.6 95.6 95.2
albanian 22.7 24.5 0.6 11.6 60.2 71.5 44.8 65.2 77.2 86.4 81.1 80.5
arabic 22.9 24.7 0.1 21.0 37.0 46.2 61.1 67.9 42.8 59.1 93.0 91.7
armenian 37.9 35.7 1.2 34.2 72.4 76.9 76.5 83.7 88.6 89.6 94.1 90.9
asturian 59.8 58.6 19.7 53.1 87.9 88.0 87.4 89.7 95.5 95.4 97.8 97.2
azeri 21.0 28.0 13.0 37.0 48.0 57.0 69.0 67.0 69.0 72.0 81.0 82.0
bashkir 38.8 38.6 11.5 35.9 73.8 71.8 87.0 81.0 89.1 86.7 94.1 92.6
basque 0.1 0.2 1.9 8.6 1.9 2.5 67.0 79.2 8.4 9.8 97.4 96.9
belarusian 7.2 10.7 4.6 5.7 22.5 25.3 44.6 55.4 41.4 42.3 85.3 80.9
bengali 44.0 43.0 14.0 49.0 75.0 74.0 94.0 96.0 84.0 84.0 98.0 99.0
breton 20.0 17.0 18.0 61.0 51.0 59.0 83.0 88.0 55.0 61.0 91.0 92.0
bulgarian 32.7 33.0 4.3 49.8 74.4 76.9 70.6 82.1 90.6 89.5 95.4 94.3
catalan 54.3 51.2 4.6 32.6 82.2 81.2 85.0 92.3 94.3 94.2 98.1 95.9
classical-syriac 89.0 87.0 41.0 72.0 98.0 98.0 94.0 98.0 98.0 97.0 98.0 100.0
cornish 2.0 0.0 7.5 22.5 4.0 2.0 47.5 57.5
crimean-tatar 53.0 66.0 16.0 63.0 74.0 76.0 95.0 89.0 93.0 92.0 99.0 98.0
czech 38.1 38.4 1.6 26.1 78.8 79.4 51.1 76.6 89.0 89.5 85.5 86.3
danish 57.4 65.2 30.2 53.0 78.1 79.7 74.3 69.8 88.9 88.8 91.3 85.8
estonian 22.6 21.7 0.7 28.4 62.4 60.6 60.0 70.3 76.2 77.0 90.6 88.0
faroese 35.6 38.3 3.3 16.6 61.0 63.0 51.0 60.6 74.2 74.5 79.8 74.5
finnish 15.4 15.4 0.7 18.7 43.5 43.3 42.6 69.9 79.3 77.2 84.1 82.0
friulian 51.0 48.0 25.0 49.0 86.0 85.0 89.0 94.0 94.0 93.0 98.0 99.0
galician 52.5 51.9 9.1 30.7 82.3 81.2 77.9 88.9 93.7 93.2 98.4 97.4
georgian 71.8 70.5 17.2 58.9 89.7 90.0 82.9 92.5 93.8 94.0 98.5 98.4
greek 27.7 27.0 2.0 12.0 61.0 63.0 44.3 56.6 77.4 77.6 81.7 83.3
greenlandic 36.0 42.0 27.5 57.5 74.0 60.0 75.0 85.0
haida 43.0 28.0 5.0 23.0 59.0 59.0 50.0 52.0 71.0 68.0 53.0 52.0
hebrew 27.9 29.8 4.1 13.8 40.0 49.0 76.3 76.3 55.9 60.7 98.1 97.2
hindi 34.9 31.8 23.9 65.6 86.1 83.9 94.3 95.1 93.6 93.5 98.6 97.5
hungarian 14.9 22.0 0.9 12.1 39.9 46.7 47.3 53.1 68.7 69.7 77.5 63.5
icelandic 35.8 38.1 6.5 14.9 60.4 63.6 52.3 61.3 77.2 77.1 84.3 78.7
ingrian 20.0 12.0 27.5 20.0 46.0 42.0 80.0 75.0
irish 31.8 35.7 3.7 20.9 44.7 49.2 42.6 57.7 54.3 58.1 83.0 77.2
italian 43.3 44.4 3.3 41.3 70.5 83.1 81.3 91.1 77.2 93.1 97.9 95.4
kabardian 78.0 74.0 51.0 83.0 90.0 87.0 95.0 95.0 90.0 86.0 96.0 96.0
karelian 40.0 34.0 20.0 67.5 48.0 48.0 95.0 97.5
kashubian 56.0 64.0 12.5 57.5 74.0 68.0 85.0 92.5
kazakh 44.0 50.0 52.5 47.5 64.0 62.0 72.5 77.5
khakas 36.0 48.0 27.5 65.0 92.0 92.0 85.0 92.5
khaling 3.9 1.6 4.6 11.2 18.4 17.8 77.3 86.4 53.8 48.0 99.6 98.4
kurmanji 82.1 85.8 0.0 58.4 84.7 88.9 83.7 88.2 91.9 91.4 92.8 91.4
ladin 59.0 53.0 30.0 52.0 85.0 86.0 88.0 95.0 92.0 91.0 98.0 98.0
latin 16.0 12.6 0.8 5.4 36.8 28.5 25.2 36.2 45.6 37.1 70.1 55.5
latvian 53.4 50.9 4.1 18.3 85.8 86.6 60.5 82.4 92.0 91.2 94.8 94.8
lithuanian 23.5 19.4 0.8 5.6 53.0 50.3 33.7 51.6 64.7 63.6 86.2 84.1
livonian 25.0 27.0 1.0 27.0 47.0 47.0 69.0 77.0 58.0 59.0 92.0 92.0
lower-sorbian 30.7 35.8 2.9 19.3 70.4 79.3 64.1 81.4 88.1 87.9 95.2 94.8
macedonian 51.4 47.4 5.1 37.7 83.8 88.2 75.7 89.8 93.2 93.5 96.4 95.3
maltese 11.0 19.0 0.0 23.0 21.0 29.0 87.0 93.0 25.0 29.0 97.0 98.0
mapudungun 62.0 60.0 57.5 95.0 80.0 88.0 97.5 97.5
middle-french 78.7 76.1 10.1 67.2 90.8 91.3 89.2 93.0 95.8 95.1 98.8 96.3
middle-high-german 44.0 48.0 35.0 67.5 54.0 60.0 97.5 97.5
murrinhpatha 2.0 4.0 25.0 35.0 14.0 10.0 95.0 90.0
navajo 14.3 14.6 2.0 13.8 31.8 31.2 35.8 41.5 40.0 40.5 82.5 76.0
neapolitan 83.0 81.0 25.0 65.0 94.0 93.0 91.0 95.0 99.0 98.0 95.0 95.0
norman 38.0 34.0 45.0 60.0 60.0 52.0 77.5 80.0
northern-sami 17.8 13.1 2.1 11.6 38.8 35.0 43.2 60.7 64.5 62.4 93.4 88.0
norwegian-bokmaal 69.0 73.2 13.8 54.8 79.8 81.0 78.0 76.5 90.6 90.3 88.9 77.0
norwegian-nynorsk 51.4 53.7 11.9 37.6 61.6 61.1 52.5 57.0 74.7 75.1 84.0 75.8
occitan 79.0 77.0 15.0 55.0 87.0 87.0 94.0 98.0 94.0 92.0 100.0 100.0
old-armenian 27.6 28.8 1.5 14.8 64.9 68.0 48.9 69.3 76.7 79.3 86.0 85.1
old-church-slavonic 34.0 32.0 11.0 29.0 65.0 65.0 74.0 78.0 64.0 57.0 92.0 96.0
old-french 30.4 27.6 4.9 35.4 61.3 65.2 65.0 68.9 79.7 79.5 87.5 84.8
old-irish 12.0 12.0 5.0 5.0 20.0 18.0 20.0 32.5
old-saxon 25.3 19.0 2.7 5.2 41.7 35.6 63.0 68.0 60.5 56.0 95.3 94.6
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Accuracy
Language low medium high

B H S S+Aug B H S S+Aug B H S S+Aug
pashto 41.0 41.0 8.0 21.0 71.0 73.0 69.0 75.0 77.0 77.0 100.0 98.0
persian 27.1 29.3 2.8 35.7 67.3 71.7 82.1 85.7 81.0 83.7 96.0 95.4
portuguese 65.7 64.3 6.9 31.0 92.2 91.8 78.2 92.5 97.1 97.2 97.6 97.5
quechua 17.1 11.7 3.2 31.2 71.5 52.1 52.0 55.9 95.2 89.6 56.3 56.0
romanian 44.1 42.8 3.2 30.3 70.2 73.0 59.7 72.3 80.4 78.5 84.6 83.1
sanskrit 30.0 37.5 4.8 42.7 57.9 77.8 67.9 80.7 78.7 83.4 88.0 88.3
scottish-gaelic 42.0 38.0 25.0 50.0 46.0 44.0 80.0 90.0
serbo-croatian 22.8 20.9 1.3 25.4 67.3 65.4 52.9 74.1 84.0 85.0 85.2 86.9
slovak 37.7 46.3 3.3 23.8 71.0 72.9 61.3 70.6 82.5 82.8 90.0 89.9
slovene 35.2 37.4 13.7 25.9 73.5 75.2 63.4 86.0 87.3 85.7 95.2 93.8
sorani 20.5 18.8 1.2 15.6 52.8 52.1 60.3 71.4 64.3 60.1 88.0 87.7
spanish 62.4 57.7 4.9 46.7 85.9 84.9 84.3 90.3 91.5 93.6 97.1 95.8
swahili 29.0 29.0 27.0 66.0 71.0 76.0 94.0 93.0 72.0 82.0 100.0 100.0
swedish 55.6 62.8 7.8 39.9 75.2 76.8 62.2 68.0 85.8 85.6 86.1 76.2
tatar 57.0 68.0 17.0 53.0 85.0 88.0 94.0 87.0 91.0 91.0 100.0 99.0
telugu 80.0 80.0 40.0 82.5
tibetan 54.0 42.0 32.5 42.5 48.0 50.0 37.5 52.5
turkish 11.8 12.3 1.1 28.5 32.1 40.1 71.4 68.3 72.3 74.4 91.8 87.0
turkmen 30.0 54.0 37.5 60.0 70.0 76.0 87.5 92.5
ukrainian 39.4 44.6 6.7 23.3 72.7 71.8 55.3 71.3 84.8 84.3 89.9 87.1
urdu 29.9 27.4 24.9 57.8 86.8 85.7 91.5 95.0 96.0 95.7 97.4 97.6
uzbek 53.0 35.0 47.0 74.0 93.0 92.0 78.0 78.0 93.0 94.0 78.0 78.0
venetian 69.0 68.3 16.6 42.3 89.5 89.0 91.6 93.1 93.7 92.1 99.6 99.0
votic 15.0 12.0 11.0 13.0 38.0 39.0 68.0 76.0 41.0 39.0 78.0 78.0
welsh 26.0 23.0 11.0 30.0 55.0 56.0 83.0 88.0 71.0 70.0 95.0 95.0
west-frisian 47.0 44.0 8.0 40.0 66.0 64.0 86.0 93.0 66.0 62.0 91.0 95.0
yiddish 70.0 68.0 6.0 60.0 80.0 79.0 83.0 92.0 88.0 83.0 98.0 99.0
zulu 19.2 18.4 11.0 33.3 56.5 65.8 81.6 86.7 71.0 81.1 99.2 97.7
dutch 53.2 54.2 7.8 24.1 72.0 72.8 73.5 79.4 88.9 87.3 96.2 95.1
english 77.2 81.7 28.5 56.4 90.8 91.4 85.7 88.0 94.9 94.7 95.6 93.6
french 56.8 54.5 3.9 37.7 74.1 73.7 71.9 71.6 81.9 81.0 83.7 73.5
german 51.4 54.2 10.7 11.5 74.2 77.8 66.0 71.1 83.1 85.8 88.4 82.0
kannada 31.0 36.0 9.0 27.0 58.0 64.0 83.0 90.0 66.0 62.0 95.0 95.0
middle-low-german 20.0 18.0 22.5 25.0 34.0 30.0 90.0 92.5
north-frisian 23.0 23.0 11.0 27.0 33.0 32.0 85.0 82.0 31.0 32.0 94.0 95.0
old-english 16.7 11.8 4.3 12.7 28.2 22.1 38.3 53.3 44.2 35.8 83.8 79.5
polish 40.7 42.8 1.8 13.9 73.6 76.9 60.0 76.1 88.4 88.6 88.1 89.5
russian 41.4 41.6 1.8 11.5 75.7 77.8 54.4 76.5 85.2 85.7 89.2 87.7
Average 39.3 39.6 13.1 36.9 63.4 64.5 71.3 78.5 77.1 77.3 90.9 89.1

Table 3: Accuracy scores on development set (dev) in each language for baseline system (B), holistic approach(H),
our seq2seq model without data augmentation (S) and with data augmentation (S+Aug).

The improvement shown by using data augmen-
tation seems promising. One may think to in-
crease the amount of the artificially created ad-
ditional training data. However, there is a trade-
off between performance and training time. An-
other thing to consider is how many more addi-
tional training data should be created. We can see
that the data augmentation seems not to improve
the performance on high data situation anymore.
In addition, the current method to extract the affix
rules is very simple. Although it may capture cir-
cumfixes, it is still strongly biased to prefixing and
suffixing only. A better method is expected to also
capture other phenomena, such as parallel infix-
ing (Arabic), repetition (Greek), and reduplication
(Malay, Indonesian).

9 Conclusion

We developed several systems for morphological
inflection task. The first one is based on a holistic
approach. We generate the target forms by solving
analogical equations on words. The second one is
a seq2seq neural network model. A simple data
augmentation is also implemented to help on low
data situation. We evaluated their performance on
the development dataset and choose the best sys-
tem on each language and dataset size as our rep-
resentative system for the submission.

Experimental results show that the neural ap-
proach using seq2seq model has the best perfor-
mance in most cases on medium and high data sit-
uation. However, both baseline and our holistic
approach are toe-to-toe on low data situation.
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Abstract
This paper describes the AX Semantics sub-
mission to the SIGMORPHON 2018 shared
task on morphological reinflection.

We implemented two systems, both solving
the task for all languages in one codebase,
without any underlying language specific fea-
tures. The first one is a classifier, that chooses
the best paradigms to inflect the lemma; the
second system is a neural sequence model
trained to generate a sequence of copy, insert
and delete actions. Both provide reasonably
strong scores on solving the task in nearly all
103 languages.

1 Introduction

This paper describes our implementation and re-
sults for Task 1 of the CoNLL-SIGMORPHON
2018 Shared Task: Universal Morphological Rein-
flection (Cotterell et al., 2018). The task is to gen-
erate inflected word forms given the lemma and a
feature specification (Kirov et al., 2018). See Fig-
ure 1 for an example in German.

sehen (V;IND;PST;3;PL)→ sahen

Figure 1: Task 1 Example, German: putting the verb
”sehen” into 3rd person past tense.

Including the surprise languages the task con-
sists of 103 languages. Three differently-sized
training sets were made available, namely a low
dataset containing only 100 samples, a medium
set with 1000, and a high set with 10000 sam-
ples. Most of the languages had all three sizes (89
languages), some only low and medium (13 lan-
guages), and one language only low.

We tackled the problem with two very differ-
ent approaches. System 1 is training a classifier to
predict an abstract paradigm according to which
the inflected form is created and the system 2 is a
character-based recurrent neural network.

2 System 1 - Paradigm classification

Our first approach to solve the task is based on the
system proposed by Sorokin (2016), which partic-
ipated in the SIGMORPHON-2016 Shared Task
(Cotterell et al., 2016). It realizes the automatic
inflection of word forms via the classification of
abstract paradigms created through the method of
longest common subsequence (LCS).

The idea of abstract paradigms was introduced
in Ahlberg et al. (2014) and implies the repre-
sentation of a lemma and an inflected form as
a list of patterns, where common parts of both
words are replaced by variables. Given e.g. the
lemma write and the target form writing the ab-
stract paradigm is 1+e#1+ing. In order to create
such a paradigm the LCS of both words has to be
determined, which later will be replaced by vari-
ables. Such a representation suggests that the LCS
is the stem of both words and the symbols not in
the LCS characterize the inflection.

Unlike Sorokin (2016) and Ahlberg et al.
(2014), who applied a finite state machine to ex-
tract the LCS and Ahlberg et al. (2015) who used
an SVM classifier, we made use of a sequence
alignment function provided by Biopython1. With
the input parameters write and writing the method
returns the alignment shown in Figure 2, based on
which the LCS and later the paradigm can be con-
structed. Another system searching for best edit
pairs is Morfette (Grzegorz Chrupala and van Gen-
abith, 2008), which in contrast to our approach
first reverses the strings to find the shortest se-
quence of insert and delete commands instead of
the LCS.

If multiple alignments and hence LCS exist,
we rate the options based on a set of rules and
thereafter choose the alignment with the minimum
score. More specifically, 0.5 points are given for a

1https://github.com/biopython/biopython

43



write__

writing
| | | | . . .

Figure 2: Formatted output of the pairwise2 function in
Biopython for the strings write and writing

gap (specified by ) in one of both words, 1 point is
given for each unequal character in the alignment
(specified by .), and an additional amount of 100 is
added to the score if the alignment creates follow-
ing variables in the part of the abstract paradigm
representing the lemma. The latter part is espe-
cially important as the value of subsequent vari-
ables, the common part in both words they stand
for, can’t be determined unambiguously. This
poses a problem when the target form has to be
constructed based on the variables in the lemma
paradigm. We will discuss this issue in more de-
tail in the last part of this section.

Following the procedure described above we
created an abstract paradigm for each lemma and
inflected form provided in the maximum avail-
able training set (if no high set was available we
used the medium or low one respectively) for each
language and predicted the corresponding proper
test data. Thereupon we could train a classifier
to predict the correct abstract paradigm given a
lemma and the morphosyntactic description (e.g.
N;NOM;PL) of its inflected form. Apart from
the morphosyntactic description (MSD), we used
3 prefixes, as well as 5 suffixes of the lemma as
input features for the classification. We applied
one-hot-encoding on the features, creating a sparse
matrix consisting of only 0s and 1s (Table 1) and
eliminated all pre- and suffixes that occurred less
than three times in the lemmas of the training set.
This type of feature selection is the main differ-
ence between our system and the one described in
Sorokin (2016), which apart from excluding the
features seen less than 3 times only kept 10% of
all features according to an ambiguity measure.

en sch rite ite e .. PST NOM
1 0 0 0 1 .. 1 0
0 0 1 1 0 .. 0 1
.. .. .. .. .. .. .. ..

Table 1: Abstract illustration of a feature matrix used
for the classification

In order to find the best performing classifier
we inspected several algorithms available in the

sklearn library for Python and conducted a ran-
domized search for the best hyperparameters of
each classifier. For 90 out of 103 languages a
neural network yielded the best results on the
development-set followed by the Decision Tree
(8 languages), Support Vector Machines (3 lan-
guages), Random Forest (1 language), and Logis-
tic Regression (1 language) algorithm.

After the classification of an abstract paradigm
for a lemma and a MSD, the only task left is
constructing the inflected form based on the ab-
stract paradigm and the lemma. The basic pro-
cedure for the generation is to first identify the
value of the variables in the abstract paradigm
and then to insert these letter sequences into the
abstract pardigm representing the inflected target
form. However, as previously indicated, this pro-
cedure does not always deliver an unambiguous
result. For example for the German lemma se-
hen (to see) and the MSD V;IND;PST;3;PL,
which would be the target form sahen (they saw),
the classifier should correctly predict the abstract
paradigm 1+e+2#1+a+2. Now there are two fit-
ting value combinations, which would reconstruct
the lemma, namely 1=s, 2=hen and 1=seh,
2=n, and hence two possible target forms exist
(sahen and sehan), only one of which is the right
target. The depicted example is fairly simple,
but more complex samples, especially when the
lemma paradigm consists of subsequent variables,
could produce an even larger number of possible
targets. The fraction of samples that yields more
than one combination and the number of combi-
nations if this is the case depends heavily on the
language of interest. English e.g. has only one
possible target form for 995 out of 1000 test sam-
ples and two possibilities for the remaining five,
whereas Arabic produces a much more compli-
cated result (1 combination = 5698 times, 2 com-
binations = 2677 times, 3 combinations = 1205
times, 4 combinations = 267 times, 5 combina-
tions = 43 times, 6 combinations = 1 times).

To address the problem of multiple possible
combinations we constructed a set of decision hi-
erarchy based on which one combination is cho-
sen. For each sample in the training set we
recorded the value combination that led to the in-
flected form. A combination was coded as the in-
dex of the fitting value of a variable in the list of all
possible values sorted by length. Then we could
identify the combination that most frequently led
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i npu t_1 :  Inpu tLayer

e m b e d d i n g _ 1 :  E m b e d d i n g

inpu t_2 :  Inpu tLayer

e m b e d d i n g _ 2 :  E m b e d d i n g

dropou t_1 :  Dropou t d ropou t_2 :  Dropou t

c o n c a t e n a t e _ 1 :  C o n c a t e n a t e

bidirect ional_1(gru_1):  Bidirect ional(GRU)

repea t_vec to r_1 :  Repea tVec to r

bidirect ional_2(gru_2):  Bidirect ional(GRU)

t ime_dis t r ibu ted_1(dense_1) :  T imeDis t r ibu ted(Dense)

act ivat ion_1:  Act ivat ion

Figure 3: Sequence model for System 2

to the correct target for a specific set of variables
with a specific number of possible values for each
variable. In the example above we have two vari-
ables, 1 = [s, she] and 2 = [hen, n],
with two possible values each. For this specific
case we can now look up the index of the val-
ues that most often led to a correct target during
training and choose the combination which con-
sists of these values for the generation of the in-
flected form.

3 System 2 - Sequence Neural Model

Our second system is based on the paper by
(Makarov et al., 2017) which participated in the
SIGMORPHON2017 Shared Task (Cotterell et al.,
2017).

We used hamming distance (similar to the base-
line code given by the organizers) to align the
lemma and the expected result. On this alignment
we generated Copy, Delete and Insert oper-
ations to transfer the lemma to the inflected form
(analogous to Makarov et al. (2017, chaper 4.1)).
For each language we trained a different model
with a different charmap only consisting of the
characters in the given language. This charmap
is used for Insert operations. The sequence model
is implemented using keras and Tensorflow. See
model overview in Figure 3. The character based
lemma input and the feature matrix are both en-

coded in their own embeddings. The feature ma-
trix is a list of all possible features in all languages.
This list is the same as the one for System 1.

The hyperparameters of the model are a dropout
of 0.2, the number of features is 370, lemma in-
put and output lengths are 100, and length of fea-
ture sequence is set to 20. The 2 bidirectional
GRUs (Chung et al., 2015) have 256 hidden units.
The activation function used is softmax as the out-
put is a sequence of Stop, Copy, Delete and
Insert of a character from the charmap. Ev-
ery time the full sequence accuracy improved the
model is saved. The full sequence accuracy is de-
fined by the fact that all characters in a sequence
are correct. The optimizer used is adam (Kingma
and Ba, 2014).

4 Results

The performance of the presented systems on the
test data is shown in Table 2 and Table 3 (on
page 4). It can be seen that the first system yields
slightly better results compared to the second sys-
tem. The paradigm model outperforms the base-
line in 77 cases whereas the sequence model beats
the baseline in 53 out of 103 languages. Over-
all, both systems do fairly well compared to the
baseline in nearly all languages, whereas when the
baseline comes close the difference is only a mi-
nor fractions of the accuracy percentages. Regard-
ing the paradigm model it has to be stated that the
displayed values are probably lower than the clas-
sification accuracy, meaning that in some cases the
correct paradigm may have been predicted, but the
right target could not be constructed. We can’t
verify this assumption for the test data, but on
the development data we observed that for some
languages the classification performance was a lot
better than the final accuracy. Irish e.g. had a clas-
sification accuracy of nearly 78% for the abstract
paradigms, but the final performance amounted
only to ca. 68% due to the mistakes made dur-
ing the target creation. Improving the method of
handling multiple possible targets could therefore
further enhance the performance of the paradigm
model.

Unsurprisingly, languages that provided lower
numbers of data size don’t perform very well over-
all.

For comparison of the error intensity of the two
systems we calculated the Levenshtein distance
between the system results and the expected in-
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Figure 4: Levenshtein distance histogram for Persian.
Errors left for system 1; right for system 2. Distances
without error are removed.

language data size system 1 system 2 baseline
cornish medium 2 32 12
greenlandic medium 54 82 72
karelian medium 62 98 42
kashubian medium 76 60 68
kazakh medium 44 86 50
khakas medium 96 96 84
mapudungun medium 90 98 82
middle-high-german medium 84 52 54
middle-low-german medium 76 30 38
murrinhpatha medium 54 4 0
norman medium 28 34 46
old-irish medium 8 8 16
scottish-gaelic medium 70 50 50
telugu low 72 46 70
tibetan medium 44 42 36
turkmen medium 96 94 68

Table 2: Results for test data compared to baseline
(medium and low)

flected forms. Of course if the system has a better
accuracy on the task, it makes fewer errors than the
other system. This calculation is not very conclu-
sive, but allows for some basic predicates, see Fig-
ure 4 for a histogram of error distributions. When
both systems are equally strong the sums of the
distances are not that divergent. For example for
Persian the sum of Levenshtein distances for sys-
tem 1 is 919 and for system 2 it is 804 but for
Georgian the distance for system 1 is 40 and for
system 2 it is 55.

5 Conclusion

Our goal is to improve our morphology system
component in our Natural Language Generation
SaaS (Weißgraeber and Madsack, 2017). The two
systems described herewithin compete against a
handcrafted morphology and a reasonable lexicon.
The handcrafted morphology and the lexicon is al-
ways better on very regular POS types (i.e. Ger-
man adjectives). So all three systems (the two
described in this paper and the handcrafted one)
are evaluated for every language and POS type,
and can be combined into a best-of-breed selection
scheme by preferring the most appropriate system
for each POS type and language combination.

language data size system 1 system 2 baseline
adyghe high 99.0 99.6 91.6
albanian high 88.9 40.9 79.5
arabic high 58.2 34.0 4.1
armenian high 90.3 73.4 86.6
asturian high 95.3 91.1 95.2
azeri high 94.0 100.0 70.0
bashkir high 99.8 99.8 90.7
basque high 8.2 5.4 7.3
belarusian high 47.3 52.8 41.0
bengali high 96.0 78.0 81.0
breton high 80.0 85.0 73.0
bulgarian high 88.7 75.6 89.0
catalan high 95.9 92.1 95.7
classical-syriac high 100.0 99.0 97.0
crimean-tatar high 98.0 98.0 95.0
czech high 89.2 83.0 90.6
danish high 92.7 90.4 87.0
dutch high 85.1 88.6 87.7
english high 95.8 96.5 95.9
estonian high 87.7 64.1 78.0
faroese high 79.6 76.8 76.1
finnish high 77.0 52.0 78.0
french high 85.3 79.6 83.0
friulian high 97.0 99.0 96.0
galician high 96.7 95.0 95.1
georgian high 95.1 95.4 93.9
german high 82.3 82.3 81.1
greek high 78.2 54.8 78.3
haida high 93.0 100.0 66.0
hebrew high 84.3 54.5 53.7
hindi high 100.0 80.0 93.0
hungarian high 76.9 80.9 68.8
icelandic high 80.9 79.3 76.9
ingrian high 44.0 80.0 46.0
irish high 67.2 34.1 53.0
italian high 94.2 63.7 77.5
kabardian high 99.0 99.0 86.0
kannada high 90.0 97.0 66.0
khaling high 72.0 17.1 53.7
kurmanji high 92.6 87.8 92.9
ladin high 93.0 87.0 92.0
latin high 46.2 37.2 47.6
latvian high 93.2 90.2 92.8
lithuanian high 70.6 52.0 64.2
livonian high 82.0 76.0 67.0
lower-sorbian high 94.2 95.5 88.1
macedonian high 92.7 94.2 91.2
maltese high 63.0 28.0 16.0
middle-french high 97.0 95.4 95.1
navajo high 43.6 6.8 0.0
neapolitan high 94.0 95.0 95.0
northern-sami high 61.7 75.5 62.3
north-frisian high 80.0 33.0 37.0
norwegian-bokmaal high 90.8 87.2 91.0
norwegian-nynorsk high 82.8 88.0 74.8
occitan high 94.0 92.0 96.0
old-armenian high 84.9 82.2 79.2
old-church-slavonic high 92.0 88.0 80.0
old-english high 69.3 34.3 40.9
old-french high 80.8 82.0 80.7
old-saxon high 87.3 54.0 60.1
pashto high 92.0 78.0 72.0
persian high 63.7 62.6 80.7
polish high 87.6 82.9 87.1
portuguese high 97.3 94.6 96.7
quechua high 99.8 98.8 95.1
romanian high 82.6 62.4 79.8
russian high 88.0 76.1 86.5
sanskrit high 92.8 93.7 80.6
serbo-croatian high 87.4 69.1 83.0
slovak high 91.5 91.1 83.1
slovene high 7.0 90.9 79.7
sorani high 76.0 27.6 63.6
spanish high 94.4 81.3 92.4
swahili high 98.0 1.0 0.0
swedish high 88.0 88.5 84.7
tatar high 99.0 97.0 95.0
turkish high 87.9 95.9 73.2
ukrainian high 93.1 87.2 86.3
urdu high 99.3 83.7 95.9
uzbek high 100.0 99.0 96.0
venetian high 98.5 97.6 93.0
votic high 37.0 66.0 34.0
welsh high 82.0 88.0 72.0
west-frisian high 82.0 67.0 67.0
yiddish high 97.0 99.0 94.0
zulu high 93.8 2.5 0.2

Table 3: Results for test data compared to baseline
(high)46



Of course, all three systems have pros and
cons. The handcrafted one fails on completely
new words (or even rare words), that are not reg-
ularly inflected. The paradigm system is in some
languages better compared to the sequence model
and the errors of the paradigm system are not that
disturbing, since they are usually more plausible,
whereas the sequence model tends to make more
arbitrary errors.

On error the sequence model may return for ex-
ample something like this: gerksent for murksen
V.PTCP;PST (German, correct form: gemurkst).
An examplary major error for the paradigm system
would be kiefen for kaufen V;PST;3;PL (correct
form: kauften), where a native speaker can see the
relation to the inflection of laufen, where the past
form is liefen. This kind of errors are greatly re-
duced by training with a lot more data.

In the future we will try to improve especially
the sequence model for the languages we use on
our platform.
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Abstract

We present a system for the task of morpho-
logical inflection, i.e., finding a target morpho-
logical form, given a lemma and a set of tar-
get tags. System is trained on datasets of three
sizes: low, medium and high. The system uses
a simple Long Short-Term Memory (LSTM)
based encoder-decoder based model. The per-
formance for low size dataset is poor in general
while it improves significantly for medium and
high sized training dataset. The average per-
formance over all languages is poor as com-
pared to baseline for low dataset, it is com-
parable for medium dataset, and significantly
more for high dataset.

1 Introduction

The CoNLL-SIGMOPRHON 2018 shared task
consists of two subtasks out of which we partic-
ipate only in the first subtask, which involves gen-
erating a target inflected form from a given lemma
with its morphosyntactic descriptions (MSDs)
provided as a set of features. For instance, the
word thinking is the present continuous inflected
form of the lemma think. The models were trained
on three differently-sized datasets. The low-sized
datasets had around 100 training samples, the
medium-sized datasets had around 1000 training
samples and the high-sized datasets had around
10000 samples for most languages. Datasets were
provided for a total of 103 languages including
surprise data.

2 Background

Prior to neural network based approaches to mor-
phological reinflection, most systems used a 3-
step approach to solve the problem:
1) String alignment between the lemma and the
target (morphologically transformed form),
2) Rule extraction from spans of the aligned

strings and
3) Rule application to previously unseen lemmas
to transform them.
(Durrett and DeNero, 2013) and (Ahlberg et al.,
2014, 2015) used the above approaches, with each
of them using different string alignment algo-
rithms and different models to extract rules from
these alignment tables. However, in these kinds of
systems, the types of rules to be generated must
be specified, which should also be engineered to
take into account language-specific transforma-
tional behaviour.

(Faruqui et al., 2016) proposed a neural network
based system which abstracts away the above steps
by modeling the problem as one of generating a
character sequence, character-by-character. (Kann
and Schütze, 2016) proposed a highly competetive
implementation in previous year tasks (Cotterell
et al., 2016, 2017).

Akin to machine translation systems, this sys-
tem uses an encoder-decoder LSTM model as pro-
posed by (Hochreiter and Schmidhuber, 1997).
The encoder is a bidirectional LSTM, while the
decoder LSTM feeds into a softmax layer for ev-
ery character position in the target string. Decoder
predicts the output sequence character by charac-
ter using feedback until stop is predicted. This
model takes into account the fact that the target
and the root word are similar, except for the parts
that have been changed due to inflection, by feed-
ing the root word directly to the decoder as well.
A separate neural net is trained for every language.

3 System Description

We have modelled our system based on the system
proposed by (Faruqui et al., 2016), as described
in the previous section. However we have made
some modifications to the above system, to ac-
count for the three different sizes of datasets and to
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account for the behaviour of morphological trans-
formations of independent languages.

In the model, some structural and hyper-
parameter features remain the same. The charac-
ters in the root word and morphological features
of the tatrget word are represented using one hot
vectors. The major change in our model is the size
of LSTM layers which is kept variable (depend-
ing on vocabulary size) as opposed to fixed as in
system proposed by (Faruqui et al., 2016) based
on assumption that bigger vocabulary would re-
quire bigger layers to extract features and system
is trained for more epochs.

The embedding size for each language is differ-
ent depending upon the alphabet set of that lan-
guage available in the given dataset and similarly
for morphological tags which are split into indi-
vidual components. We use a bidirectional en-
coder to which we feed the input word embed-
dings. The output of the encoder, concatenated
with the root word embedding and morphological
features, feeds into the decoder. All recurrent units
have variable hidden layer dimensions depending
upon the embedding size of root word and mor-
phological features. Over the decoder layer is a
softmax layer that is used to predict the character
that must occur at each character position of the
target word. In order to maintain a constant word
length, we use paddings of 0 characters. All mod-
els use categorical cross-entropy as the loss func-
tion and the RMSProp optimizer for optimization.

The model was trained for 100 epochs for each
size. Keras API (Chollet et al., 2015) was used for
writing neural networks. For low dataset, batch
size of 10 was used, for medium 100, and for high
250/500 depending of hardware limitations.

Submission

Following are tables showing top 5 accuracies ob-
tained by our system on test data as opposed to
baseline model.

3.1 Low-sized Dataset

Language Baseline Enc-Dec
Telugu 70 94
Uzbek 52 82

Karelian 24 80
Mapudungun 64 74

Kazakh 26 68

Table 1: Top 5 Accuracies for languages for low data

3.2 Medium-sized Dataset
Language Baseline Enc-Dec

Uzbek 96 100
Classical-syriac 99 99
Crimean-tatar 78 98

Khakas 84 98
Mapudungun 82 98

Table 2: Top 5 Accuracies for languages for medium data

3.3 High-sized Dataset

Language Baseline Enc-Dec
Classical-syriac 97 100
Crimean-tatar 95 100

Haida 66 100
Swahili N/A 100

Kannada 66 100

Table 3: Top 5 Accuracies for languages for high data

Figure 1: C1, .., Cn represent characters of the root word
while O1, ..,On represent characters of the output word.

4 Evaluation

4.1 Results on Test Set

The evaluation results were obtained using the
evaluation script and the test set provided by the
shared task organizers.
The best five baseline accuracies, accuracies for
the first submission and accuracies for the second
submission can be found in Table 1, Table 2 and
Table 3 for each of the three dataset sizes: low,
medium and high respectively.
The complete set of accuracies and Levenshtein
distances for all languages have been included in
Appendix (tables 4 to 6).
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4.2 Observations

We performed some experiments, where the
choice of hyperparameters was guided by intu-
itions developed from analysis of the dataset and
results obtained on smaller subsets of the data. We
have presented some key observations from our
analysis in the ensuing sub-sections.

4.2.1 Number of layers
We observed that increasing number of layers does
not result in significant increase in performance,
even reduced performance in some cases whereas
increased computation time significantly. So in-
stead of adding more layers, adding more com-
plexity and features in current layer is bound to
improve performance.

4.2.2 Embedding of Morphological features
Multiple types of embedding to represent morpho-
logical features was tried some of which were: bi-
nary vectors, one hot vectors, integer vectors. One
hot vectors resulted in best performance for our
model.

4.2.3 Size of encoder layer
Increasing size of encoder after certain multiple of
total embedding size (∼5) results in saturation of
performance.

4.2.4 Hyperparameter Optimization
Various hyperparameters need to be optimized
such as batch-size, dropout rate, number of epochs
etc. which may be different for each language, to
obtain optimal performance.

5 Conclusions

There are two main conclusions. One is that differ-
ent configurations of deep neural networks work
well for different languages. The second is that
deep learning may not be the right approach for
low-sized data or some other pre-processing and
post-processing may need to be done to increase
performance. Data augmentation is one alterna-
tive to deal with low resource languages.
Results for low-size were poor for almost all lan-
guages. So, deep learning cannot extract features
adequately from low resources without data aug-
mentation. It is to be noted that we used purely
deep learning. If deep learning is augmented with
other transduction, rule-based or knowledge-based
methods, the results for low-size could perhaps be
improved.

Very high accuracies (>95%) are observed for
some languages in high sized datasets, neural net-
works is probably the best choice for processing
such languages.
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A Appendix

In Tables 4 to 6 (on this page and the next), BA stands for baseline accuracy, L.D. for Levenshtein
Distance, Acc for Accuracy, dev for development data.

Table 4: Results for all languages for low data.

languages BA Acc - dev Avg. L.D. -dev Acc -test
adyghe 59 56.9 0.908 57.8
albanian 22.3 0.9 6.736 0.8
arabic 25.6 0.5 5.489 0
armenian 37 5 4.575 5.8
asturian 58.6 24 1.882 23.9
azeri 24 22 2.3 28
bashkir 39.4 37.5 1.468 35.8
basque 0.1 1 4.949 0.5
belarusian 6.8 4.9 4.062 2.9
bengali 50 22 2.43 26
breton 20 36 1.49 30
bulgarian 30.7 9.3 3.162 9.7
catalan 60.8 20.7 1.867 25.7
classical-syriac 94 63 0.54 62
cornish 10 28 1.9 32
crimean-tatar 56 48 0.81 51
czech 38.5 7.3 3.294 8.1
danish 58.3 42.1 1.159 40.9
estonian 21.5 2.3 4.851 2.6
faroese 34.4 10.5 2.915 9.6
finnish 17.3 0.4 7.573 0.6
friulian 70 38 1.37 39
galician 53 17.3 2.349 15.3
georgian 70.6 23.1 2.087 23.8
greek 25.3 2.8 4.75 2.4
greenlandic 50 54 0.72 60
haida 29 20 4.66 12
hebrew 24.4 4.8 2.556 5.2
hindi 31.8 23.5 2.603 23.2
hungarian 17.4 4.3 3.166 4.7
icelandic 35.6 8 2.647 8.5
ingrian 20 18 2.14 24
irish 30.3 1.6 7.413 1.3
italian 40.5 10.7 3.916 11
kabardian 72 54 1.13 56
karelian 24 60 0.58 80
kashubian 60 46 0.9 46
kazakh 26 78 0.3 68
khakas 26 72 0.44 62
khaling 3.1 2.7 3.872 2.2
kurmanji 82.7 25.6 1.927 25.4
ladin 58 32 1.41 33
latin 16 0.5 4.697 1
latvian 52.2 8.1 2.757 9
lithuanian 23.3 2.5 3.789 2.8
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livonian 28 6 3.51 6
lower-sorbian 32.1 7.1 2.705 9.9
macedonian 49.8 16.1 1.884 16.7
maltese 9 4 2.73 8
mapudungun 64 82 0.3 74
middle-french 76.9 33.3 1.728 32.8
middle-high-german 38 60 0.86 56
murrinhpatha 2 26 1.98 28
navajo 0 0.6 5.847 0.9
neapolitan 79 46 1.27 45
norman 30 62 0.9 52
northern-sami 16.4 2.2 4.433 1.5
norwegian-bokmaal 67.8 43.7 1.012 40.8
norwegian-nynorsk 48.9 22.4 1.749 22
occitan 72 43 1.5 31
old-armenian 31 2 3.7 1.9
old-church-slavonic 39 24 1.95 21
old-french 32.5 6 3.315 7
old-irish 8 4 3.68 2
old-saxon 22.8 3.7 3.016 5.6
pashto 35 7 2.64 11
persian 26.3 6.4 4.253 6.3
portuguese 62.6 20 1.981 19.9
quechua 15.9 15.9 3.963 15
romanian 44.8 4.3 4.352 4.6
sanskrit 33.7 6 3.339 6.7
scottish-gaelic 46 38 2.02 48
serbo-croatian 21.7 3.9 4.542 4.1
slovak 37.7 9.8 2.241 9.6
slovene 32.3 12.2 2.064 0.4
sorani 19.3 2.5 4.466 1.3
spanish 61.8 12.2 3.076 13
swahili 0 6 3.06 4
swedish 51.1 33.2 1.383 32.8
tatar 52 40 1.07 44
telugu 70 100 0 94
tibetan 34 36 1.2 36
turkish 13.2 9.4 4.398 10.7
turkmen 34 62 0.68 64
ukrainian 38.7 8.6 2.485 9
urdu 32.7 30.9 2.203 32.6
uzbek 52 83 0.36 82
venetian 71.8 29 1.457 31.1
votic 17 20 1.92 20
welsh 30 9 3.04 11
west-frisian 50 22 2.14 26
yiddish 78 29 2.15 33
zulu 0.1 1.3 5.114 1.1
dutch 50.8 9 2.665 8.9
english 77.6 58.9 0.78 61.8
french 59 11.6 2.772 13.4
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german 49.2 19.6 1.991 19.9
kannada 33 17 3.65 29
middle-low-german 18 24 2.5 14
north-frisian 31 14 3.65 18
old-english 17.6 7.1 2.879 8.6
polish 40.4 4.5 3.403 4.7
russian 43.4 6.5 3.398 7.5

Table 5: Results for all languages for medium data.

languages BA Acc - dev Avg. L.D. -dev Acc -test
adyghe 84.8 94.2 0.11 92.9
albanian 61.8 39.2 1.901 39.2
arabic 39.5 39.4 2.108 1.6
armenian 70.4 62.8 1.085 67.4
asturian 89.1 87.9 0.26 90
azeri 50 89 0.35 94
bashkir 72.6 94.3 0.118 95.4
basque 1.9 66.7 0.83 69.2
belarusian 21.5 45.9 1.997 45.8
bengali 76 94 0.17 97
breton 67 86 0.37 94
bulgarian 70.8 36.6 1.524 35
catalan 85.6 83.2 0.391 83.8
classical-syriac 99 97 0.03 99
cornish 12 64 0.58 66
crimean-tatar 78 94 0.06 98
czech 79.9 61 1.07 61.1
danish 77.8 76.3 0.478 75.7
estonian 62.9 49.8 1.442 46.5
faroese 65.2 47.1 1.159 48.9
finnish 44.1 19.8 3.105 22
friulian 92 92 0.15 92
galician 82.8 81.3 0.385 82.5
georgian 92.1 87.8 0.348 91.2
greek 59.3 33.8 2.15 29.9
greenlandic 72 66 0.54 84
haida 61 93 0.16 90
hebrew 38.1 61.9 0.714 64.7
hindi 86.5 88.2 0.315 87.7
hungarian 44.4 56.7 0.89 57.1
icelandic 58.9 47 1.101 45.7
ingrian 46 84 0.4 88
irish 44 20.7 3.73 18.8
italian 72.5 67.1 0.948 68.9
kabardian 83 99 0.01 97
karelian 42 96 0.08 96
kashubian 68 80 0.22 84
kazakh 50 62 0.46 50
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khakas 84 94 0.1 98
khaling 17.9 60.6 0.956 59.4
kurmanji 85.2 85.4 0.401 86.1
ladin 86 91 0.15 91
latin 37.6 28.3 1.56 31.3
latvian 85.5 73.7 0.591 73.7
lithuanian 52.2 44.9 1.216 46.8
livonian 51 60 0.84 62
lower-sorbian 68.9 65.7 0.644 69.8
macedonian 82.6 77.6 0.408 75.1
maltese 20 90 0.17 85
mapudungun 82 100 0 98
middle-french 90.3 91.2 0.242 89.4
middle-high-german 54 98 0.08 92
murrinhpatha 0 96 0.08 96
navajo 0 16.4 3.227 19.5
neapolitan 94 98 0.02 98
norman 46 20 2.18 26
northern-sami 34.8 41.6 1.554 39.4
norwegian-bokmaal 80.7 80.5 0.321 81.5
norwegian-nynorsk 61.1 56 0.746 57.5
occitan 92 94 0.15 93
old-armenian 67.3 53.7 1.168 57.3
old-church-slavonic 76 83 0.32 87
old-french 63.1 61.5 0.989 60.6
old-irish 16 30 1.7 24
old-saxon 39 63.2 0.715 64.7
pashto 69 70 0.68 73
persian 65.7 70.1 0.899 70.9
portuguese 92.4 33.5 1.858 37.3
quechua 70.9 76.7 0.693 77.3
romanian 69.4 48 1.752 48.5
sanskrit 59.7 65.9 0.645 68.8
scottish-gaelic 50 80 0.5 86
serbo-croatian 68.2 39.1 1.866 43.4
slovak 71.1 58 0.76 58.7
slovene 72.3 68 0.575 9.9
sorani 51.7 52.4 1.22 55.9
spanish 86.3 76.6 0.744 75.7
swahili 0 87 0.36 87
swedish 76.5 32 1.572 31.4
tatar 89 93 0.07 96
tibetan 36 30 1.42 22
turkish 32.8 78.9 0.661 79.2
turkmen 68 92 0.16 96
ukrainian 74.1 44.6 1.041 46.6
urdu 87.6 88.7 0.306 87.5
uzbek 96 100 0 100
venetian 89.1 92.3 0.116 91.9
votic 34 81 0.32 78
welsh 58 85 0.32 81
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west-frisian 65 95 0.12 94
yiddish 87 83 0.47 88
zulu 0.1 57 1.387 52.6
dutch 72.4 69.4 0.644 71
english 90.5 90.1 0.205 90.9
french 73.2 68.2 0.881 69.3
german 71.7 69.7 0.827 65.5
kannada 55 92 0.21 85
middle-low-german 38 94 0.06 92
north-frisian 33 85 0.36 85
old-english 27.8 41.4 1.3 42.4
polish 73.5 56.9 1.151 55.1
russian 76.4 60.7 1.212 59.9

Table 6: Results for all languages for high data.

languages BA Acc - dev Avg. L.D. -dev Acc -test
adyghe 91.6 99.6 0.008 99.8
albanian 79.5 97.5 0.044 96.5
arabic 47.1 84.5 0.538 2.9
armenian 86.6 94.4 0.133 93.7
asturian 95.2 98.3 0.037 98.5
azeri 70 99 0.01 99
bashkir 90.7 99.8 0.003 99.7
basque 7.3 98.4 0.033 98
belarusian 41 88.4 0.235 88.4
bengali 81 98 0.05 99
breton 73 89 0.24 93
bulgarian 89 93.9 0.115 94.5
catalan 95.7 97.6 0.062 98
classical-syriac 97 100 0 100
crimean-tatar 95 100 0 100
czech 90.6 88.4 0.26 88
danish 87 91.2 0.158 91.3
estonian 78 97.2 0.075 95.9
faroese 76.1 80 0.437 81.1
finnish 78 76 0.603 76.4
friulian 96 100 0 99
galician 95.1 98.7 0.02 98.7
georgian 93.9 97.7 0.058 97.3
greek 78.3 82.6 0.407 80.8
haida 66 100 0 100
hebrew 53.7 97 0.063 97.3
hindi 93 99.6 0.006 99.4
hungarian 68.8 82.7 0.392 82.3
icelandic 76.9 86.5 0.297 83.9
irish 53 68.9 1.062 67.2
italian 77.5 95.5 0.106 95.7
kabardian 86 100 0 99
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khaling 53.7 99.3 0.016 98.4
kurmanji 92.9 92.1 0.127 93.5
ladin 92 98 0.07 98
latin 47.6 59.6 0.652 61.5
latvian 92.8 92.8 0.162 92.8
lithuanian 64.2 86.7 0.234 88.1
livonian 67 92 0.2 97
lower-sorbian 88.1 95.9 0.078 94.3
macedonian 91.2 96.1 0.111 94.6
maltese 16 80 0.37 69
middle-french 95.1 98.6 0.038 96.7
navajo 0 79.9 0.603 75.3
neapolitan 95 98 0.02 97
northern-sami 62.3 94 0.145 92.6
norwegian-bokmaal 91 90.1 0.159 89
norwegian-nynorsk 74.8 83.6 0.295 82.6
occitan 96 100 0 99
old-armenian 79.2 84.1 0.381 87.3
old-church-slavonic 80 94 0.11 97
old-french 80.7 83.8 0.431 86.5
old-saxon 60.1 97.1 0.055 96.3
pashto 72 100 0 100
persian 80.7 98.5 0.028 98.9
portuguese 96.7 97.7 0.06 98.5
quechua 95.1 99.4 0.009 99.4
romanian 79.8 80.8 0.742 79
sanskrit 80.6 92.4 0.151 92.1
serbo-croatian 83 83.4 0.439 84.1
slovak 83.1 91.3 0.164 92.8
slovene 84.9 94.5 0.113 34.6
sorani 63.6 88.4 0.206 89
spanish 92.4 93.2 0.166 93.4
swahili 0 87 0.36 100
swedish 84.7 85.2 0.325 87.2
tatar 95 100 0 99
turkish 73.2 97.4 0.088 97.3
ukrainian 86.3 91.1 0.151 92.5
urdu 95.9 99.7 0.004 99.7
uzbek 96 99.3 0.012 98
venetian 93 95 0.14 99.1
votic 34 68 0.58 66
welsh 72 96 0.08 94
west-frisian 67 80 0.43 74
yiddish 94 98 0.08 99
zulu 0.2 97.8 0.055 97.2
dutch 87.7 94.8 0.102 93.1
english 95.9 94.7 0.133 95.8
french 83 80 0.514 81.1
german 81.1 85.8 0.395 83.7
kannada 66 99 0.01 100
north-frisian 37 93 0.15 96
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old-english 40.9 84.9 0.307 83.4
polish 87.1 85.5 0.379 82.8
russian 86.5 84.4 0.509 85.4
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Abstract

This paper describes the NYU submission to
the CoNLL–SIGMORPHON 2018 shared task
on universal morphological reinflection. Our
system participates in the low-resource setting
of Task 2, track 2, i.e., it predicts morphologi-
cally inflected forms in context: given a lemma
and a context sentence, it produces a form of
the lemma which might be used at an indicated
position in the sentence. It is based on the stan-
dard attention-based LSTM encoder-decoder
model, but makes use of multiple encoders to
process all parts of the context as well as the
lemma. In the official shared task evaluation,
our system obtains the second best results out
of 5 submissions for the competition it entered
and strongly outperforms the official baseline.

1 Introduction

The extreme type sparsity in text in a morpho-
logically rich language, i.e., a language which
relies strongly on changes in the surface form
of words to express properties like gender, tense
or number, requires natural language process-
ing (NLP) systems which are able to handle in-
flected words in a systematic way. The SIGMOR-
PHON and CoNLL–SIGMORPHON shared tasks
on morphological reinflection, which have been
held since 2016 (Cotterell et al., 2016, 2017a), en-
courage the development of computational models
for inflection in a large number of languages.

This year’s edition (Cotterell et al., 2018) fea-
tures two different tasks. The datasets for Task
1 consist of triplets of lemma, morphological tag
(also called the “target tag”) and the correspond-
ing inflected form, which is given for training and
should be produced at test time. This is the stan-
dard inflection setup which has also been subject
of the shared tasks in the last years. Task 2, in
contrast, is again split into two different subtasks
(called “tracks”). Both are focused on inflection in

context. Here, a sentence is given, in the context of
which the inflected form of which only the lemma
is known should be used. The setup of the first
subtask assumes that the lemmas and tags of all
surrounding words are available and can be used
for predicting. These might be used as desired,
e.g., the tags of the previous and next words are
often strong indicators for the tag of the form to be
produced, which is unknown. Track 2, on the other
hand, requires systems to produce inflected forms
only from their lemma and the inflected context
words; no tags or lemmas are given for the context.
Thus, track 2 is both a more realistic and a harder
version of track 1. All tasks and tracks feature 3
different settings: a low-resource setting (LOW), a
medium-resource setting (MEDIUM) and a high-
resource setting (HIGH).

In this paper, we describe the New York
University (NYU) submission to the CoNLL–
SIGMORPHON 2018 shared task on universal
morphological reinflection. The system we sub-
mitted was exclusively designed for Task 2, track
2, LOW. Thus, we only focus on this particu-
lar competition and do not report numbers for
other setups (though, in theory, every system
which works for track 2 of Task 2 can also pro-
duce output for track 1; the same holds true for
LOW/MEDIUM/HIGH). Overall, our system ob-
tains the second highest test accuracy out of 5 sub-
mitted systems and outperforms the official shared
task baseline by a wide margin.

2 Morphological Inflection in Context

The system presented in this paper is designed for
morphological inflection in context, i.e., predict-
ing an inflected form which fits an indicated posi-
tion in a sentence, given its lemma. Here, we will
describe the task in a more formal way.

Let T be the set of morphological tags being
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expressed in a language and w a lemma in the
same language. We then define the morphologi-
cal paradigm π of w as follows:

π(w) =
{(
fk[w], tk

)}
k∈T (w)

(1)

Here, fk[w] denotes the inflected form which cor-
responds to tag tk, and both w and fk[w] are
strings consisting of letters from an alphabet Σ.
Note that, even though we follow the convention to
describe word forms as functions of the lemma, in
the huge majority of the cases, each inflected form
is uniquely defined given any other word form of
the same paradigm together with its morphologi-
cal tag.

The task of morphological inflection consists of
predicting a target form fi[w] from a paradigm,
given the lemma w, as well as the tag ti of the
target form.

Building on this, the task of morphological in-
flection in context consists of predicting a target
form fi[w] from the lemma w, as well as the con-
text c, i.e., the sentence surrounding the target
form. For the track of the shared task we are inter-
ested in, the context consists of inflected forms.
Further, this task is ambiguous: for many lan-
guages, usually several morphological tags and,
thus, inflected forms are acceptable for any given
context.

3 Model Description

Our model is based on the standard LSTM
encoder-decoder model with an attention mecha-
nism (Bahdanau et al., 2015). Following several
previous approaches (cf. Section 5), we apply it
at the character level, i.e., the input to the system
is the character sequence of the input lemma, rep-
resented by embeddings. The output is the (pre-
dicted) character sequence of the inflected form.

Additionally, we include the sentence con-
text as follows: Given a sentence s =
[w1, w2, . . . , wi−1, l, wi+1, . . . , wn], where l is the
lemma of the inflected form of interest, and
w1, . . . , wn with n 6= i are the surrounding con-
text words, we split the past context cprev =
[w1, w2, . . . , wi−1] and the future context cfut =
[wi+1, . . . , wn] into subword units using byte pair
encoding (BPE, Sennrich et al. (2016)). We then
use two additional encoders to encode the se-
quences of subword units of both contexts.

Using bidirectional encoders, the final hidden
states produced by each encoder are concatena-

tions of the respective forward and backward hid-
den states:

hi = [
−→
hi ,
←−
hi ] (2)

with
−→
hi = LSTM(emb1, . . . , embi), and (3)
←−
hi = LSTM(embz, . . . , embi) (4)

emb = emb1, . . . , embz represents the respective
sequence of embeddings, i.e., either the embed-
dings of the lemma’s characters or the embeddings
of the subword units of either context.

Our model then uses 3 attention mechanisms—
one for each encoder—to produce a context vector
for each output position: Ht for the lemma, Hp

t

for the past context and Hf
t for the future context.

The input to the decoder LSTM at each timestep
is the concatenation of all contexts and the em-
bedding of the last output character. Embeddings
are shared between the character encoder and the
decoder, BPE embeddings are shared between the
two context encoders.

An overview of our model architecture is shown
in Figure 1. Our final system in an ensemble of 5
random restarts of the model, combined via ma-
jority voting.

3.1 Training and Hyperparameters
Using the shared task development sets, we de-
cide on the following hyperparameters: We em-
ploy 100-dimensional BPE and character embed-
dings, and the encoder and decoder hidden states
are 300-dimensional. Dropout (Srivastava et al.,
2014) is used with a probability of 0.5 for all hid-
den states when used as input to the next layer, as
well as for the embedding layer. For training, we
employ ADAM (Kingma and Ba, 2014). When-
ever performance does not improve for 20 steps,
we halve the learning rate and restart from the best
performing model. Training stops when the learn-
ing rate gets below 0.0001; the best performing
model is used for the final predictions. We do not
use batching, since it hurts performance in our ex-
periments on the development sets.

For decoding, we apply beam search with a
beam of width 5.

4 Official System Evaluation

4.1 Datasets
The data for Task 2, track 2, LOW consists of
sentences taken from the Universal Dependencies

59



. . .

Lemma (characters)

Attention mechanism

Decoder (characters)

. . .

Past context (BPE)

Attention mechanism

. . .

Future context (BPE)

Attention mechanism

Figure 1: Overview of our employed model architecture.

(UD) treebanks (Nivre et al., 2017). All context
forms, as well as the lemma of the target inflected
form are given for each sentence. Training and
development sets feature exactly one correct tar-
get form, while, for the test set, additional plausi-
ble target forms have been manually given by the
shared task organizers (Cotterell et al., 2018).

The languages we experiment on are German,
English, Spanish, Finnish, French, Russian and
Swedish.

4.2 Baseline System
The official baseline system of the shared task is
a character-level LSTM encoder-decoder model
with attention (Bahdanau et al., 2015). The main
input to the system is the lemma of the inflected
form which is to be generated. Further, the con-
text is taken into account: each character of the
lemma is concatenated with 7 additional embed-
dings representing (i) the lemma of the word at the
previous position in the sentence, (ii) the previous
word itself, (iii) the tag of the previous word, (iv)

the lemma of the word at the next position in the
sentence, (v) the next word itself, (vi) the tag of the
next word, (vii) the lemma of the inflected form to
generate and given to the encoder. Note that, since
no tags or lemmas are available for track 2 of Task
2, but the architecture is identical to that used for
track 1 of the same task, all embeddings but those
for the previous and the next word, as well as the
lemma are set to default vectors.

Given the character embedding-context repre-
sentations produced by the encoder, the LSTM de-
coder generates the character sequence of the out-
put inflected form, using an attention mechanism.

More details on the shared task baseline system
can be found in Cotterell et al. (2018).

4.3 Official Test Results
Two official results are reported. First, system
performance is calculated by just taking the gold
solution into account, i.e., all generated inflected
forms that do not match the UD gold standard are
counted as wrong. Second, performance is com-
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BL BME-HAS CPH CUB NYU UZH

de 0.10 27.81 18.91 11.02 44.08 59.15
en 2.22 56.90 59.42 58.91 66.57 68.08
es 8.98 27.77 31.84 27.91 27.49 32.68
fi 0.38 8.89 12.33 7.88 15.37 24.40
fr 0.00 9.57 29.53 23.01 26.48 25.05
ru 2.71 19.68 22.69 21.08 22.09 28.11
sv 0.96 22.34 30.96 16.49 31.60 32.77

av. 2.19 24.71 29.38 23.76 33.38 38.60

Table 1: Test accuracies when considering only the
gold solution; BL = BASELINE; CPH = COPEN-
HAGEN; CUB = CUBoulder. Best results per language
in bold; our results in italic.

BL BME-HAS CPH CUB NYU UZH

de 0.10 31.14 21.54 11.53 48.43 61.38
en 2.92 62.64 66.87 66.36 72.21 74.02
es 11.08 33.52 37.31 31.42 31.98 37.17
fi 0.89 11.18 16.14 10.04 18.68 28.21
ru 2.71 21.29 24.40 22.59 23.29 30.42
sv 0.96 27.34 36.38 19.04 37.13 39.36

av. 3.11 31.18 33.77 26.83 38.62 45.09

Table 2: Test accuracies when counting all plausible
forms as correct; BL = BASELINE; CPH = COPEN-
HAGEN; CUB = CUBoulder. Best results per language
in bold; our results in italic.

puted by taking all plausible target inflected forms
into account, i.e., all forms that could be correct
in any way of reading the sentence are accepted as
correct. The final results for all systems are shown
in Tables 1 and 2, respectively.

As can be seen, the baseline performs poorly
in the low-resource setting we consider here. In
particular, its accuracy is far worse than that of any
participating system.

Looking at our system’s performance, we can
see that it is the second best one for German, En-
glish, Finnish, French, and Slovene, as well as on
average, when only considering the gold solution.
Taking all plausible forms into account, our sys-
tems obtains the second highest accuracy for Ger-
man, English, Finnish, and Slovene, as well as on
average.1

The best performing system on average is UZH,
and CPH outperforms our model for Spanish,
French and Russian for gold solutions, and Span-
ish and Russian for all plausible forms. BME-
HAS and CUB perform worse than our system for
all languages.

A final observation is that the accuracy differ-
1No results with all plausible forms are available for

French.

ence between the evaluation with the gold solu-
tion and the evaluation with all plausible forms is
0.92− 6.49, depending on the system.

5 Related Work

Most recent work on morphological reinflec-
tion was done in the context of the SIGMOR-
PHON 2016 and the CoNLL–SIGMORPHON
2017 shared tasks.

The first edition of the shared task in 2016 (Cot-
terell et al., 2016) resulted in 3 different types
of systems: “pipeline approaches” (unsupervised
alignment algorithms applied to the source-target
pairs, followed by a model which predicts edit
operations), “neural approaches”, and “linguisti-
cally inspired systems”. The winning system was
a neural network, namely a character-based RNN
encoder-decoder model with attention, similar to
the one we use here (Kann and Schütze, 2016).
Hence, neural models gained popularity in the
2017 edition of the shared task (Cotterell et al.,
2017a). In 2017, explicit low-resource settings
were first introduced to the shared task. These
settings demonstrated the effectiveness of hard at-
tention in neural sequence-to-sequence models if
training data are limited (Makarov et al., 2017).

Research not immediately done for the shared
tasks included papers on multi-source reinflec-
tion (Cotterell et al., 2017b; Kann et al., 2017a),
cross-lingual transfer for reinflection (Kann et al.,
2017b), or first intents of neural inflection sys-
tems which make use of context for lemmatization
(Bergmanis and Goldwater, 2018).

Older work on morphological inflection in-
cludes Ahlberg et al. (2014); Durrett and DeNero
(2013); Nicolai et al. (2015); Faruqui et al. (2016),
inter alia.

6 Conclusion

We presented the NYU system for Task 2, track
2, LOW of the CoNLL–SIGMORPHON 2018
shared task on universal morphological reinflec-
tion. The system was designed for the task of
morphological inflection in context: it predicts an
inflected form for an indicated position in a sen-
tence, given the sentence context and the lemma.
In the official evaluation, which consisted of ex-
periments in German, English, Spanish, Finnish,
French, Russian and Slovene, our system was the
second best performing one out of 5 submissions.
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Gonzáles Saavedra, Matias Grioni, Normunds
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Romanian Academy
13 September, no. 13, Bucharest, Romania

sdumitrescu@racai.ro, tibi@racai.ro

Abstract

We present RACAI’s Entry for the CoNLL-
SIGMORPHON 2018 shared task on univer-
sal morphological reinflection. The system
is based on an attention-free encoder-decoder
neural architecture with a bidirectional LSTM
for encoding the input sequence and a uni-
directional LSTM for decoding and produc-
ing the output. Instead of directly applying a
sequence-to-sequence model at character-level
we use a dynamic algorithm to align the input
and output sequences. Based on these align-
ments we produce a series of special symbols
which are similar to those of a finite-state-
transducer (FST).

1 Introduction

Languages with rich morphology convey mor-
phological attributes such as gender, case, num-
ber, obliqueness through character/grapheme vari-
ations applied to the dictionary form of the word
(lemma). It is often the case where these variations
are obtained by suffixing the word rather than al-
tering random characters, but this does not hold
for all languages or irregular word forms. Sill, the
variations inside the lemma are usually small, re-
quiring the system just to replace an average of 2.3
letters for the irregular word forms.

In our approach we exploit this property and
employ an encoder-decoder sequence-to-sequence
model that doesn’t require an attention mecha-
nism. This mitigates attention issues such as re-
peating or skipping character sequences and re-
duces the need for models with high representa-
tional capacity.

We exploit the property that alignments be-
tween the input and output character sequences
are monotonic: for example wordform men and
lemma man share two letters (alignments) in the
same order, without inversions. The standard
attention mechanism is well-suited for machine

learning tasks; however, when it comes to mono-
tonic alignments it sometimes fails to achieve sat-
isfactory results, in most cases due to the fact that
repeated characters or character sequences in the
input sequence confuse the attention mechanism
making it generate loops or skip characters.

There are several proposed methods that try to
solve this task with attention mechanisms such as
guided attention (Tachibana et al., 2017), location-
sensitive attention (Chorowski et al., 2015) and
other variations. Still, given the particularities of
morphological reinflection, we argue that there is
no need for an explicit attention mechanism. In-
stead we train the decoder to focus on a single
input symbol at each time-step and “self-attend”
by shifting the input cursor with one position at
a time. This method, though developed indepen-
dently, closely resembles that of Makarov et al.
(2017).

In our previous experiments we used this ar-
chitecture to perform lemmatization (the opposite
task of morphological reinflection) and we ob-
tained state-of-the-art results.

In what follows, we will present the attention-
free encoder-decoder architecture (Section 2), we
show our experimental results (Section 3) and fi-
nally we draw conclusions (Section 4).

2 Attention-free encoder-decoder

The architecture of our neural network is fairly
simple. We use an encoder that “sees” the se-
quence in both directions and a decoder which
is conditioned to produce the output sequence
using focused encoder states (see below for
details) concatenated with trainable embeddings
computed on morphological attributes.

As mentioned before, the classical attention
mechanism is not well suited for tasks where
the alignments between the input and output se-
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quences are monotonic. Instead, connectionist
temporal classification (CTC) (Graves et al., 2006)
provides better results in these cases. However,
CTC requires that the number of input time-steps
is much higher than the number of output labels.
This renders CTC unsuitable for morphological
reinflection as the number of output labels is al-
most always greater than the number of input char-
acters.

Instead, we propose a simpler algorithm that
reduces the model complexity and computational
load. Our method requires preexisting alignments
between the input and output sequences. These
alignments are easy to obtain by exploiting a ba-
sic property of morphological reinflection, which
also holds for lemmatization: regardless of the
language and irregularity of the word-form, the
lemma and the inflected word form share many
symbols.

This implies a high likelihood of aligning iden-
tical input and output symbols and does not re-
quire Expectation Maximization (EM) for com-
puting alignment probabilities. With this in mind,
we propose the following algorithm that:

1. Computes an alignment matrix using dy-
namic programming;

2. Reads the two sequences in reverse and uses
the previously computed matrix, favoring di-
agonal alignments over other alignments;

3. Generates alignment pairs, whenever the in-
put and output symbols are identical.

Figure 1 describes our approach step-by-step.
The algorithm is a slightly modified dynamic

algorithm in the sense that (a) it favors diago-
nal alignments (to cope with repeating consecu-
tive letters) and (b) it only considers an alignment
pair (i, j) if the characters from the source (s) and
destination (d) at the two indexes are identical (i.e.
si = dj).

Next, we use the produced alignments to gener-
ate the training data for our attention-free encoder-
decoder model. For our algorithm to work, we
need the decoder to keep track of the focused-on
character in the input sequence. This is achieved
by simulating a FST using neural networks. Given
the input sequence s, the decoder must produce
an output sequence d′ which is composed of three
specialized labels and arbitrary characters in the
vocabulary. The output symbols are:

s - input sequence of size n
d - output sequence of size m

a <− z e r o s ( n +1 , m+1)
# i n i t i a l i z a t i o n
f o r i = (0 , n ) : a [ i ,0]<− i
f o r i = (0 ,m) : a [ 0 , i ]<− i

f o r i = (1 , n ) :
f o r j = (1 ,m) :
i f s [ i −1]==d [ j −1]:

c o s t<−0
e l s e :

c o s t<−1
a [ i , j ]<− c o s t +

min ( a [ i −1, j −1] ,
a [ i −1, j ] ,
a [ i , j −1])

a l i g n m e n t s ={} ; p i<−n ; pj<−m
w h i l e i !=1 or j ! = 1 :

i f i ==1: j<−j−1
e l s e i f j ==1: i<−i−1
e l s e :

i f a [ i −1, j−1]<=a [ i −1, j ] and
a [ i −1][ j−1]<=a [ i , j −1]:

i<−i −1; j<−j−1
e l s e i f a [ i −1][ j ]<a [ i ] [ j −1]:

i<−i−1
e l s e :

j<−j−1
i f s [ i ]== d [ j ] :

a l i g n m e n t s<−
a l i g n m e n t s +( i −1, j −1)

r e t u r n a l i g n m e n t s

Figure 1: Alignment algorithm

• Special symbol INC : This means that the
current focus-index of the input sequence
must be incremented by 1;

• Special Symbol COPY : The character at
the current focus-index must be “copied” in
order to compose the final sequence;

• Special Symbol EOS : The output se-
quence is complete and the algorithm stops;

• Any arbitrary character in the vocabu-
lary: This means that the final sequence must
be obtained by adding this character.

At runtime we start by setting the focus-index at
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0 and the final sequence to the void string (“”) and
we follow the instructions of the decoder output
in order to construct the final sequence. During
training, it is highly important to do sanity checks
on the current focus-index to avoid index out-of-
bounds exceptions during the first training epochs
when the model has not yet converged. Once the
loss is small enough, we found that the model
rarely generates these exceptions. However, it is
still recommended to keep these checks in place.

To obtain the output sequence d′ on which we
train our network we use a fixed-oracle algorithm
that is summarized as:

1. Take every symbol in the output sequence
and check if it aligns with a symbol in the in-
put sequence (based on the alignments pro-
duced by the algorithm in Figure 1);

2. If the output symbol does not align with any
character, instruct the decoder to generate it
(the case of the arbitrary character in the vo-
cabulary);

3. If the output symbol aligns, instruct the de-
coder to generate INC symbols until the
focus-index would reach the corresponding
input character, and then generate an COPY
symbol;

4. When the sequence is completely generated,
instruct the decoder to generate an EOS
symbol.

Because English reinflection is fairly simple,
we chose an entry from the Romanian dataset for
which we present a step-by-step example.

Assume the lemma is “face” (en. “to do”)
and is has to be reinflected for the morphological
description V;IND;PST;3;PL;IPFV. The decoder
has to generate word form “făceau” (en. “they
were doing”). This means that the inflected form
is obtained by replacing the character ‘a’ with the
character ‘ă’ and by adding the suffix “au”.

Figure 2 shows the alignments obtained via dy-
namic programming between the characters of the
lemma (up) and the characters of the word form
(down). The dashed lines correspond to align-
ments where the characters in the source and desti-
nation are not identical. The final alignments pairs
are (according to the straight lines): (0,0), (2,2)
and (3,3).

Based on these alignments, the FST sym-
bols generated by the fixed-oracle algorithm are:

COPY , ‘Ă’, INC , INC , COPY , INC ,
COPY , ‘A’, ‘U’, EOS . Notice that after copy-

ing the first symbol (‘F’) to the output, the oracle
immediately generates the vocabulary item ‘Ă’,
because it is not aligned with any symbol in the
source lemma. However, the next (3rd) symbol in
the destination string is aligned with a character in
the source string and the index is incremented with
two INC commands. The rest of the sequence is
generated in a similar fashion.

Figure 2: Alignment example

Note 1: Fixed-oracle training is known to pro-
duce suboptimal results, when compared with
dynamic-oracle training. However, we did not
have time to experiment with the later mentioned
training method and leave this for future work.

3 Training details and experimental
results

For our implementation is based on DyNET (Neu-
big et al., 2017), which is a dynamic computation
graph network framework. That means that we do
not require any padding when we prepare mini-
batches.

We evaluated our approach on the data provided
during the SIGMORPHON 2018 Shared Task on
morphological reinflection (Cotterell et al., 2018).
During the evaluation campaign, each language
was provided with 3 datasets of different sizes
(high, medium and low). Because, neural ap-
proaches traditionally require more training data
to generalize better, we only built models for the
“high” datasets, which were composed of 10K
training examples for each language.

Our model was trained using ADAM optimiza-
tion (Kingma and Ba, 2014), with the default pa-
rameters α = 1e−3, β1 = 0.9 and β2 = 0.999. We
used a mini-batch size of 1K words and we used
trained each model until the accuracy on the de-
velopment set stopped improving for 20 iterations.
At the end, we used the best performing model for
each languages.
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Language Acc. Acc.* Language Acc. Acc.* Language Acc. Acc.*
adyghe 92.00 97.90 irish 81.80 86.90 sanskrit 76.60 94.10
albanian 95.60 97.10 italian 90.00 91.10 serbo-croatian 88.00 90.70
arabic 88.50 90.00 kabardian 92.00 94.00 slovak 88.80 92.60
armenian 0.00 93.90 khaling 44.70 45.40 slovene 93.40 94.10
asturian 95.40 97.00 kurmanji 90.40 92.10 sorani 86.80 89.00
azeri 90.00 99.00 ladin 86.00 90.00 spanish 72.70 75.00
bashkir 0.00 98.10 latin 16.20 16.20 swahili 98.00 99.00
basque 86.80 96.40 latvian 92.90 97.40 swedish 85.20 92.10
belarusian 3.80 5.10 lithuanian 65.20 66.20 tatar 95.00 97.00
bengali 99.00 99.00 livonian 87.00 97.00 turkish 79.30 80.20
breton 0.00 82.00 lower-sorbian 93.70 96.30 ukrainian 90.50 94.80
bulgarian 77.80 79.90 macedonian 91.90 94.60 urdu 43.50 44.30
catalan 89.40 89.70 maltese 4.00 91.00 uzbek 0.00 36.00
classical-syriac 87.00 98.00 middle-french 96.70 96.30 venetian 98.50 98.70
crimean-tatar 94.00 96.00 navajo 79.00 84.00 votic 0.00 73.00
czech 90.20 92.50 neapolitan 0.00 40.00 welsh 92.00 92.00
danish 91.80 94.90 northern-sami 90.70 93.10 west-frisian 0.00 93.00
estonian 93.80 97.00 nor-bokmaal 88.90 92.50 yiddish 92.00 99.00
faroese 76.30 88.80 nor-nynorsk 79.40 93.10 zulu 73.30 74.40
finnish 87.20 92.20 occitan 83.00 83.00 dutch 92.20 94.80
friulian 78.00 79.00 old-armenian 80.40 82.30 english 93.80 95.10
galician 89.90 91.10 old-church-slv. 9.00 74.00 french 84.30 89.80
georgian 97.80 98.40 old-french 0.00 00.00 german 37.40 42.50
greek 81.10 85.90 old-saxon 54.50 54.80 kannada 99.00 98.00
haida 96.00 93.00 pashto 84.00 89.00 north-frisian 15.00 69.00
hebrew 85.70 87.20 persian 95.60 97.70 old-english 28.20 30.00
hindi 89.40 90.60 portuguese 84.00 84.50 polish 87.80 90.40
hungarian 79.50 86.50 quechua 96.80 98.30 russian 86.80 91.40
icelandic 80.60 89.90 romanian 82.00 88.00 Average 72.49 83.77

Table 1: Accuracy figures for all languages in the SIGMORPHON Shared Task 2018

For all languages we used a two-layer encoder
with 200 LSTM cells (in each direction - total 400
cells per layer) and a two-layer decoder of 200 uni-
directional cells. Each character in the vocabulary
is embedded as a 100-dimensional vector. We also
use a 100-dimensional embedding size for each
unique morphological descriptor.

Table 1 summarizes the testset results for all
languages in the SIGMORPHON Challenge 2018.
During the official evaluation campaign, our sys-
tem was affected by a bug which caused all
weights belonging to non-recurrent cells to be con-
stant (not trainable during backprop). This issue
had a strong negative impact on the results. Af-
ter this, we retrained our models and we include
the unofficial results in the same table, under the
“Acc.*” column. For almost all languages, af-
ter correcting the bug, the accuracy strongly in-

creased; for Welsh we observed no increase, and
only for 2 languages did we observe a less than
1 point decrease (probably due to weight initial-
ization compounded by small models where the
LSTMs overcame the fixed random weights of the
dense layers). Overall, we observed a strong re-
sult increase, from an average of 72.49 to 83.77.
For example, for West Frisian where initially the
model would not converge (0.00), we now obtain
93.00; similarly, for Armenian, we have gone from
0.00 to 93.9.

4 Conclusions

We introduced a specially designed attention-free
encoder-decoder model for morphological rein-
flection. Aside for mitigating standard atten-
tion issues, such as repeated or skipped charac-
ter sequences, this approach allows training sim-
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pler models. This is mainly (a) because our
model introduces the COPY operation and re-
duces the representational load of the encoder-
decoder model and (b) and because we keep track
of the focus-index externally.

Also, we reduce the computational complexity
of the model by completely removing calculation
involved in the soft attention mechanism (n ∗ m
matrix multiplications, where n is the size of the
input sequence and m the size of the output se-
quence).

Moreover, the fact that the decoder does not re-
quire taking the previous output and embedding it
as input for the next step, demonstrates that there
is far less representational overhead involved in
generating the output sequence.

As a side note, in our previous experiments with
lemmatization, we observed that using this model
yields a 2-5% absolute increase in accuracy over
the standard soft-attention sequence-to-sequence
model.
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Abstract
This paper presents the submissions by
the University of Zurich to the CoNLL–
SIGMORPHON 2018 Shared Task on Univer-
sal Morphological Reinflection. Our system is
based on the prior work on neural transition-
based transduction (Makarov and Clematide,
2018b; Aharoni and Goldberg, 2017). Unlike
the prior work, we train the model in a fully
end-to-end fashion—without the need for an
external character aligner—within the frame-
work of imitation learning. In the type-level
morphological inflection generation challenge
(Task I), our five-strong ensemble outperforms
all competitors in all three data-size settings.
In the token-level inflection generation chal-
lenge (Task II), our single model achieves the
best results on three out of four sub-tasks that
we have participated in.

1 Introduction

The CoNLL–SIGMORPHON 2018 Shared Task
on Universal Morphological Reinflection (Cot-
terell et al., 2018) focuses on inflection generation
at the type level (Task I) and in context (Task II).
Both tasks feature three settings depending on
the maximum number of training examples: low,
medium, and high. The team from the University
of Zurich has taken part in both tasks with sub-
missions featuring neural transition-based trans-
ducers (Aharoni and Goldberg, 2017; Makarov
and Clematide, 2018b). The model transduces a
string by a sequence of traditional character edit
operations. The neuralized transducer, which con-
ditions edits on the entire input string and cap-
tures unbounded dependencies in the output, has
proven very effective in the past editions of the
SIGMORPHON shared task (Aharoni et al., 2016;
Makarov et al., 2017). Typically, this model is
trained by maximizing the likelihood of gold ac-
tion sequences that come from a separate charac-
ter aligner. This year, we train with an imitation

learning method (Makarov and Clematide, 2018a)
that enforces optimal alignment in the loss and
additionally supports action-space exploration and
the optimization of a task-specific objective. Our
method entirely eliminates the need for a char-
acter aligner and results in substantially stronger
models, at the expense of slight increase in train-
ing time. The resulting models evaluate favorably
on both CoNLL–SIGMORPHON 2018 tasks. On
Task I, our five-strong ensemble uzh-02 outper-
forms the nearest competitor by over 1% absolute
accuracy in the high setting (24.4% error reduc-
tion) and over 2% absolute in the medium setting
and 4% absolute in the low setting (13.9% and
8.6% error reduction, respectively). The larger
ensemble uzh-01 further improves the result
slightly in the high and medium settings (1% and
2% error reduction, respectively). For Task II,
we submit a single model to only the low and
medium settings. The single model dominates the
low setting, being also the only system that beats
the predict-the-lemma baseline. The model comes
second in the track 1 medium setting with almost
4% absolute accuracy behind the winner (8.5% er-
ror increase), and is the best in the track 2 medium
setting with almost 4% absolute above the runner-
up (6.7% error reduction).

2 Task description

The now classic Task I requires mapping a
lemma form (e.g. “Schlüssel” meaning “key” in
Swiss German) to an inflected form (“Schlüssle”)
given a morpho-syntactic description (N;DAT;PL).
The new Task II requires mapping a lemma
(“Schlüssel”) to an inflected form (“Schlüssle”)
given sentential context (“Du muesch de
Sorg gäh.” / “You need to take care of the keys.”).

This year’s edition of Task I features an un-
precedented 102 languages. As in 2017, the low
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setting offers just 100 training samples per lan-
guage, and it is at most 1,000 and 10,000 samples
in the medium and high settings, respectively.

Task II features six Indo-European languages
(German, English, Swedish; Spanish, French;
Russian) and one Uralic language, Finnish.
Track 1 of Task II additionally provides the
morpho-syntactic specifications of all context
words.

3 State of the Art

Over the past two years, type-level inflection
generation in the high setting has been dom-
inated by general sequence-to-sequence models
(seq2seq) with soft attention (Kann and Schütze,
2016; Bergmanis et al., 2017). Neuralized coun-
terparts of traditional transition-based transducers
have proven highly competitive, being particularly
effective in lower-resource settings (Aharoni et al.,
2016; Makarov et al., 2017). Inflection generation
in context is a novel SIGMORPHON challenge
and, generally, a less studied problem. Recently,
Wolf-Sonkin et al. (2018) propose a context-aware
deep generative graphical model that generates se-
quences of inflected words.

4 Methods

Our model is a version of the transition-
based transducer with a designated copy action
(Makarov and Clematide, 2018b). The model ed-
its the lemma into the inflected form by a sequence
of single-character edit actions (DELETE, COPY,
INSERT(c) for any output character c). Through
the use of a recurrent neural network, the choice
of edit is conditioned on the globally contextual-
ized representation of an input character and the
full history of edits. Concretely, at timestep t, the
probability distribution over edits at is computed
with a softmax classifier:

P (at | a<t,x) = softmax
(
W · st + b

)
, (1)

where W and b are classifier weights and st is
the output of the long short-term memory cell
(Hochreiter and Schmidhuber, 1997, LSTM):

st = LSTM(ct−1,
[
E(at−1);hi; f

]
). (2)

Vector ct−1 denotes the previous hidden state,
E(at−1) is the embedding of the previous edit, f
is the embedding of the morpho-syntactic descrip-
tion (MSD), and hi is the encoding of an input

character xi with a bidirectional LSTM (Graves
and Schmidhuber, 2005). Given the set {fh}Hh=1

of all morpho-syntactic features seen at training,
we compute the embedding f of an MSD as a
concatenation of individual feature embeddings
[F (f1); . . . ;F (fH)] where we use a designated
embedding F (0) instead of F (fh) if fh does not
occur in the MSD. Also, we use the same embed-
ding for input character c and action INSERT(c).

Our submission differs from the previous work
in the way we train this model.

4.1 Task I: Type-level Inflection Generation

The transducer is typically trained to maximize
the conditional likelihood of a gold edit action
sequence given a lemma (Aharoni and Goldberg,
2017). Gold actions are generated by a charac-
ter alignment algorithm, such as minimal edit dis-
tance (Levenshtein, 1966), applied to lemma-word
pairs. The performance of the transducer, there-
fore, hinges on the quality of character alignments
that, in turn, might depend on the amount of train-
ing data (e.g. if we employ a statistical alignment
model such as a Bayesian nonparametric aligner).
On the one hand, it is unsatisfactory to have to
choose aligners for different settings. On the other,
multiple edit sequences are often equally likely,
and yet the choice of a single gold sequence does
not depend on the MSD. This leads to the learning
of a suboptimal transducer.

Our solution, therefore, is to remove the aligner
entirely and instead optimize a sequence-level loss
that enforces optimal alignment. Concretely, our
loss is a weighted sum of (i) the minimal edit dis-
tance between the target word y and prediction
ŷ and (ii) the cost of the sequence of edits from
lemma x to prediction ŷ:

`(a,x,y) = β distance(y, ŷ) + cost(a) (3)

The first term is the task objective. The sec-
ond term pushes the model to achieve the objec-
tive with the least number of edits. To compute
the terms, we use unit costs for DELETE and IN-
SERT(c) for any output character c and zero cost
for COPY. β ≥ 1 is a penalty for unit distance.

While there exist many techniques that mini-
mize a non-differentiable loss, most of them re-
quire initialization with a pretrained model (Ran-
zato et al., 2016; Bahdanau et al., 2017; Shen
et al., 2016). They assume that at each specific
timestep, the gold transition is unknown. Training
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signal comes from the entire sequence of transi-
tions, which is typically too sparse for a cold start
(Leblond et al., 2018). This assumption is not
valid for morphological string transduction, and
it is easy to design an efficient procedure that re-
turns edits that result in the lowest sequence-level
loss (assuming that all future transitions are, too,
selected optimally). Specifically, such a proce-
dure should return an edit that leads to the com-
pletion of the suffix of target y using a transi-
tion sequence with the lowest edit cost. For ex-
ample, if the partial prediction ŷ for the lemma-
word pair (“Schlüssel”, “Schlüssle”) is “Schlüss”
and the model attends to x6 = e, the procedure
returns DELETE. Using this technique, we collect
per-timestep losses that reflect the impact of single
edits on the sequence-level loss.

Our training method is thus an instance of im-
itation learning (Daumé III et al., 2009; Ross
et al., 2011; Chang et al., 2015), also familiar
from transition-based dependency parsing (Gold-
berg and Nivre, 2012). For the submission, we
train the model by maximizing the marginal log-
likelihood (Riezler et al., 2000; Goldberg, 2013;
Ballesteros et al., 2016) with a variant of stochas-
tic gradient ascent:

L(x,y,Θ) =
m∑

t=1

log
∑

a∈At

P (a |a<t,x,Θ) (4)

Θ are the model parameters andAt is the set of op-
timal edits at timestep t. To train with exploration,
which addresses the exposure bias, we use a roll-in
schedule and model roll-outs (Chang et al., 2015).
In the roll-in phase, the next edit at+1 is either
sampled uniformly at random from the set At of
optimal edits (expert roll-in) or from the current
model’s distribution over valid edits (model roll-
in). This choice is controlled by a Bernoulli ran-
dom variable that depends on the training epoch
η. We use a roll-in schedule that gradually adds
sampling from the model as training proceeds. In
the roll-out phase, we estimate the future effect
of some next action at+1 on the sequence-level
loss l(a,x,y) by either using the optimal proce-
dure outlined above (expert roll-out) or running
the model for the rest of the input (model roll-out).
Again, this choice is controlled by a Bernoulli ran-
dom variable. The purpose of β from Eq. 3 is to
cut down the number of expensive model roll-outs:
In case at+1 results in accuracy error (e.g. by in-
serting a letter that does not occur in the target y),

Hyperparameter Value
char. & action embedding (E) 100
feature embedding (F ) 20
context char. embedding (Task II) 20
context feat. embedding (Task II) 10
batch size 1
epochs / patience (high) 30 / 5
epochs / patience (medium) 50 / 15
epochs / patience (low) 60 / 20
optimization ADADELTA
β 5
roll-in k

k+exp(η/k) , k = 12

roll-out 0.5
beam width 4

Table 1: Model hyperparameters.

we set the sequence-level loss associated with this
edit to β.

The model hyperparameters and optimization
details are given in Table 1.

4.2 Task II: Inflection Generation in Context

Our submission involves a minor change to the
model described above. Similar in spirit to the
baseline of Task II, we compress the immediate
context into context vector g and use it in place
of the feature vector. For track 2 of Task II, the
context vector is a concatenation of the character
LSTM encodings of the words to the immediate
right and left. For track 1 of Task II, the con-
text vector also includes the embeddings of their
MSDs, which we compute just as the feature vec-
tor f in the type-level model. We use smaller di-
mensions in the computation of context vectors
(Table 1). We also considered larger context win-
dows. For French and Swedish in the medium set-
ting, our submission uses as context two words to
the left and two words to the right since we ob-
serve substantial gains in accuracy over the two-
word context window.

Following the baseline, we train on verbs,
nouns, and adjectives for track 1 and all words
paired with lemmas for track 2. We do not ex-
ploit any knowledge of the development and test
sets1 and assume that test sentences contain mul-
tiple gaps as in the development set. We do, how-
ever, use the fact that the official evaluation script
ignores case distinctions. We lowercase all the

1At least for some languages (e.g. Russian and English),
the development and test sets differ in the types of lexical
categories to be predicted.
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Task I
uzh-01 uzh-02 # avg baseline compet.

development set
H 96.18 96.29 10 94.98 78.12 –
M 87.60 87.87 12 85.66 63.05 –
L 57.52 58.30 15 54.73 38.81 –

test set
H 96.00 95.97 – 77.42 94.66
M 86.64 86.38 – 63.53 84.19
L 57.18 57.21 – 38.89 53.22

Table 2: Overview of Task I results. H, M, L=high,
medium, low settings; #=number of models that the av-
erage is taken over; compet.=nearest competitor.

low-setting data, which results in an improvement.

4.3 uzh-01 and uzh-02: Ensembling
Strategies for Task I

Ensembling addresses the effects of random ini-
tialization when the objective function is not con-
cave (Reimers and Gurevych, 2017). Both our
Task I submissions are majority-vote ensembles.
For each language, we compute 15 models for the
low setting, 12 for the medium setting, and 10 for
the high setting. For each language, run uzh-02
is an ensemble over five models with the highest
development set accuracies. Run uzh-01 is an
ensemble over all computed models. Ties are bro-
ken at random.

The Task II submission contains only a single
model for each language.

All models are decoded with beam search.

5 Results and Discussion

5.1 Task I Results and Discussion

In Task I, our five-model majority-vote en-
semble (uzh-02) outperforms the nearest
competitor in the high setting (mbe-02) by
1.3% absolute accuracy (24.4% error reduction),
and by 2.2% absolute in the medium setting
(iitbhu-iiith-02) and 4.0% in the low set-
ting (ua-08) (13.8% and 8.5% error reduction,
respectively). The larger ensemble uzh-01 is
somewhat stronger in the medium and high set-
tings than uzh-02 and only marginally weaker
in the low setting (Table 2). Ensembling adds
consistent improvement over the single-model
average, which suggests an uncomplicated way to
improve our Task II results.

We also compare the performance of uzh-02
to the highest accuracy achieved for each language

Task II
UZH--01--2 baseline predict lemma compet.

development set
M 1 53.05 41.44

35.09

–
M 2 49.53 33.55 –
L 1 41.75 1.61 –
L 2 38.40 1.58 –

test set
M 1 53.02 44.09

36.62

56.70
M 2 48.88 38.56 45.18
L 1 42.42 1.85 29.86
L 2 38.60 2.19 33.38

Table 3: Overview of Task II results.

and data setting by any of our competitors (Fig-
ure 1).2 In the low setting, uzh-02 is occasion-
ally much behind the best achieved result (e.g. for
Latin, Old English, Hebrew, Norwegian, and Dan-
ish) and behind the average 59.22% with a 4.9%
relative error increase. For low-setting Lithua-
nian, uzh-02 fails to improve over the baseline
whereas ua-08 and ua-06 beat it by a large mar-
gin. In the medium and high settings, there are
very few languages in which uzh-02 is beaten by
a competitor. uzh-02 is more accurate on aver-
age (86.38% vs 84.79% in the medium setting and
95.97% vs 95.43% in the high setting) with error
reductions of 10.4% and 12.0%, respectively.

Thus, with an appropriate training method, the
neural transition-based model can be very strong
in the high data setting. This is in line with
the results for the SIGMORPHON 2016 dataset
in Makarov and Clematide (2018a). On the
other hand, we expect that gains can be made
with the general soft-attention seq2seq model
(or any latent-alignment model), by applying the
same training method or other existing alternatives
(Edunov et al., 2017).

Following a reviewer’s request, we also com-
pare the performance of the new model to that
of the copy-enhanced variant of the hard attention
model trained by maximizing the conditional like-
lihood of separately derived gold edits (Makarov
and Clematide, 2018a, CA). (This model out-
performed all competitors in last year’s low set-
ting.) Due to limited resources, we only com-
pute low-setting CA models. The new model
makes substantial gains: uzh-01 and uzh-02
achieve 8.5% and 7.8% error reduction over their
CA ensemble counterparts (53.21% vs 57.18%
and 53.62% vs 57.21%, respectively). This is con-

2Thus, this does not include the results from run uzh-01.
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Figure 1: Test set accuracies for all languages and data-size settings of Task I: uzh-02 (blue), the best result by
any of the competitors (orange), and the official baseline (green).

sistent with the improvements that Makarov and
Clematide demonstrate with the new model on the
2017 SIGMORPHON shared task data.

5.2 Task II Results and Discussion

We submit one model (UZH--02--1) to only
the medium and low settings. The model comes
second in the medium setting (track 1), be-
hind COPENHAGEN--01--2 with an absolute
accuracy difference of 3.7% and an error in-
crease of 8.5%. It outperforms by 3.7% ab-
solute accuracy and an error reduction of 6.7%
the nearest competitor (COPENHAGEN--01--2)
in the medium setting (track 2) and by 12.6%
(track 1, CUBoulder--02--2) and 5.2% abso-
lute (track 2, NYU--01--2) in the low setting
(17.9% and 7.8% error reduction, respectively)
(Table 3).

Our model is the only system in the low setting
that beats the baseline that makes prediction by
copying over the lemma string (“predict lemma”
in Table 3). Moreover, for individual languages,
it is always as good as or better than this base-
line, with the largest improvements for Spanish
(8.8% and 6.7% absolute accuracy in tracks 1 and
2), French (11.2% in track 1), and Russian (18.6%
and 5.9%).

We take a closer look at the Russian and French
data to better understand the task that our sys-
tem solves. About 98% of the gaps in the Rus-
sian development data correspond to nouns, and it
is 100% verbs for French. We sample uniformly

at random 100 development set examples with
MSDs (track 1) for each language and limit the
context to two words to the left and two words to
the right. A native speaker (with a linguistic back-
ground) attempts to predict the correct word form;
additionally, they indicate whether their prediction
is fully determined by the local context (and the
MSD).

Human accuracy is 78% for Russian and 72%
for French. Local context determines exactly 39%
and 29% of examples. A good choice of the de-
fault prediction can be very effective: The upper
bound formed by predicting based on local con-
text and otherwise copying over the lemma is 57%
for Russian (and 29% for French, which is unsur-
prising since the French infinitive is a relatively
infrequent verb form). Except for long-range de-
pendencies (e.g. conjunction, sequence of tenses),
whose frequency is fairly low for nominal cate-
gories, bridging the gap to human performance
primarily requires the knowledge of the word’s
lexical properties (e.g. being an uncountable
noun) and usage, rather than morpho-syntactic in-
formation about other words in the sentence.

6 Conclusion

We use an imitation learning method to train a
neural transition-based transduction model, which
has previously been shown to be highly compet-
itive on inflection generation and other morpho-
logical tasks and particularly strong in the limited-
resource setting. The new training method elimi-
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nates the need for an external character aligner, in-
tegrating alignment into the training objective and
thereby avoiding error propagation due to subopti-
mal alignments. Further improvement comes from
optimizing the task metric and performing action-
space exploration. Importantly, the new training
method produces very strong models in the high
data-size setting, which has previously been dom-
inated by general soft-attention seq2seq models.
In type-level inflection generation, our five-model
majority-vote ensemble outperforms all competi-
tors in all three data settings. Our single model
submission comes out on top in three out of six
challenges in inflection generation in context.
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In ACL.

Lawrence Wolf-Sonkin, Jason Naradowsky, Sebas-
tian J Mielke, and Ryan Cotterell. 2018. A struc-
tured variational autoencoder for contextual mor-
phological inflection. In ACL.

75



Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 76–85,
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

Finding the way from ä to a:
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Abstract
In this paper we describe the sys-
tem submitted by UHH to the CoNLL–
SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection. We pro-
pose a neural architecture based on the
concepts of UZH (Makarov et al., 2017),
adding new ideas and techniques to their
key concept and evaluating different com-
binations of parameters. The resulting sys-
tem is a language-agnostic network model
that aims to reduce the number of learned
edit operations by introducing equivalence
classes over graphical features of individ-
ual characters. We try to pinpoint ad-
vantages and drawbacks of this approach
by comparing different network configura-
tions and evaluating our results over a wide
range of languages.

1 Introduction

The system described in this paper1 was submit-
ted for the CoNLL–SIGMORPHON 2018 Shared
Task (Cotterell et al., 2018), part 1 only. This as-
signment challenges the participants to design sys-
tems that generate inflected forms based on an input
lemma and feature set as shown in Figure 1.

Training data is usually provided in three differ-
ent volumes (see Table 1), all conforming to the
UniMorph standard proposed by Kirov et al. (2018).
The entire data set comprises 103 languages, al-
though not every training volume is available for
every language. In addition, some languages have
significantly less training samples than the maxi-
mum depicted in Table 1.

With such a high count of diverse languages, our
system is not tailored towards specific linguistic

∗These authors contributed equally
1Source code available at https://gitlab.com/

nats/sigmorphon18

bungas N;INST;PL
⇓

bungām

Figure 1: An example for word inflection in Lat-
vian, ”a drum/drums”

# of Samples

Volume max avg

low 100 99.6
medium 1.000 934.5
high 10.000 8553.6

Table 1: Maximum training data volumes

features of a language, but instead learns transition-
based character actions to transform a lemma into
its inflected form. We try to limit the number of
output actions that our network has to learn by
grouping certain characters into common groups
based on graphical features like accents or symbol
modifiers. Lastly, we propose a method to enhance
the training data of the low setting without the use
of external resources.

2 String Transducer

The inflection process itself is realized in our sys-
tem through a finite set of edit actions, resulting
in a standard transducer process. An input string
is traversed left-to-right via an index pointer that
indicates which symbol is currently being regarded.
The following actions are available:
• EMIT s (for any symbol s): Appends s to the

output string, irrespective of pointer symbol
• COPY: Append the pointer symbol to the out-

put string
• PATCH x: Apply the graphical patch matrix
x (cf. Section 3) to the pointer symbol and
append the result to the output string
• MOVE: Increment the pointer to continue

76



traversing the input word
• EOW (end of word): Stop traversing the string

and consider the current output string as the
final inflection result

2.1 Alignment
We chose to implement our own mechanism to
align input lemma and output strings, to accommo-
date for our patch concept.

The aligner itself is based on plain Levenshtein
metrics (Levenshtein, 1966), with the additional
constraint that two symbols a, b are considered
equal (cost 0) if there is a patch that transforms
a into b. We then pick the alignment with the low-
est cost according to this customized Levenshtein
metric to encourage our system to learn COPY and
PATCH actions as much as possible.

2.2 Oracle Algorithm
The actions needed to transform an input lemma
w into the inflected target form t are generated
through a deterministic algorithm that acts as static
oracle gold standard. This algorithm works with an
aligned pair (w′, t′) as input, where the original w
and t are filled with arbitrary characters not appear-
ing in the original strings. The exact procedure can
be seen in algorithm 1 with #-symbols being used
as gap fill characters.

Algorithm 1 Deriving oracle actions gold standard
from aligned input strings

for all (cw, ct) in alignment do
if cw = # then
actions.append(EMIT ct)

else if ct = # then
actions.append(MOVE)

else if cw = ct then
actions.append(COPY)
actions.append(MOVE)

else if patchtable.contains(cw, ct) then
actions.append(PATCH cw to ct)
actions.append(MOVE)

else if cw 6= ct then
actions.append(EMIT ct)
actions.append(MOVE)

end if
end for
actions.append(EOW)
return actions

Lemma Inflection Features

Baumhaus Baumhäuser N;ACC;PL
Kanarienvogel Kanarienvögeln N;DAT;PL
Milchkuh Milchkühen N;DAT;PL

Table 2: German noun declension examples: tree
house, Canary bird, (milk-)cow

Lemma Inflection Features

chacer chaçons V;POS;IMP;1;PL
évincer évinçant V.PTCP;PRS
concevoir conçusse V;SBJV;PST;1;SG

Table 3: French verb conjugation examples: to
hunt, to cut up, to conceive (of)

3 Patches

An essential part of our system concept is to intro-
duce so-called patches that act as string transducer
actions. A patch in this context is a shortcut oper-
ation between two graphically similar characters
(see Figure 2), like the acute accent that transforms
the letter a into the letter á. It acts as a partial func-
tion p(x), so that the same patch can be applied to
the letter e to yield p(e) = é — however it does
not produce a valid result character when applied
to the letter b for example.

Figure 2: Example patch generated from o to ô (on
the right)

3.1 Idea and Motivation
The basic idea for these patches comes from the
tendency of some languages to slightly modify the
root of the word during inflection. This can ei-
ther be due to phonological requirements (Kendris,
2001) or historical linguistic influences (Wiese,
2009; Wunderlich, 1999). Two examples for inflec-
tion in German (note the added Umlaut symbols
for the inflected forms) and French (with added
cedilla marks) can be seen in Table 2 and 3, respec-
tively. The underlying intention is to capture this
modification to the word stem while retaining the
idea that it still is based on the same letter or group
of letters. A plain transducer would identify n and
ñ as different symbols, and consequently generate
EMIT actions the same way it would for f and g.
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Another motivation was the previous work per-
formed on machine translation systems by Liu et al.
(2017). They achieved promising results by explor-
ing visual features on the sub-character level for
machine translation, and their ideas and implemen-
tations proved useful as a starting ground for the
concept presented in this section.

3.2 Generation
To calculate meaningful patches, we render all
unique and distinct symbols contained in a given
training set into binary 2D pixel matrices that con-
tain information whether a pixel is set/black or not.
The resulting matrices are then compared with an
element-wise XOR operation that yields all pixels
different between the two images. We furthermore
only consider patch matrices that are based on the
same ASCII character and that don’t surpass a cer-
tain heuristic threshold of set pixels. Through these
checks, patches from i.e. x to m get discarded be-
cause although possible, it does not produce any
advantage to use them in the transducing compo-
nent. The resulting effect would be the exact same
as a straight-forward EMIT action.

The only non-intuitive heuristic involves the let-
ter i, which contains a dot on top of a vertical bar
that ”disappears” when applying typical patches
like accents. To counter this effect, we introduced
a hard-coded set of replacement rules where the
letter i is effectively replaced by the Turkish dot-
less ı in graphical representations, in order to fool
the system into correctly applying modifications.
A similar principle might apply to other symbols
in languages unknown to the authors, so the pro-
posed architecture is capable of extending to more
symbol exceptions if desired.

3.3 NFD Unicode Decomposition
The Unicode standard proposes normalization
forms2 that are capable of converting between com-
posite symbols and their integral parts. In particu-
lar, the NFD normalization achieves an effect very
similar to our patch concept.

However, when designing the system we con-
sciously decided against the use of such a feature,
mostly because we were not aware of the complex
NFD standard and coding a similar system by hand
was not a viable alternative at all.

2see http://www.unicode.org/reports/
tr15/

3.4 Font Choice and Rendering
The font choice for our system has to focus on two
main aspects:

1. It has to always render all characters in the
exact same position

2. It should have high Unicode coverage to be
able to render as many foreign alphabets’ sym-
bols as possible

Regarding point 1, we only considered mono-space
fonts and examined 14 of them. Most of them were
appropriate, only two of them still had issues with
pixel-perfect alignment of the target symbols on
several occasions. Regarding Point 2, we did not
find a single font that covered all alphabets in use
for this Shared Task, so we had to take some draw-
backs and accept rendering of ”unknown symbol”
placeholders for some languages.

The symbol rendering is handled through the
pygame3 library. More sophisticated alternatives
perform anti-aliasing that nullifies the desired effect
of pixel-based comparison. An anti-aliased letter a
looks slightly different than the same letter ä with
German Umlaut added on top, and the resulting
patch would contain this noise and therefore be
different from the one between e.g. o and ö.

3.5 Equivalence Classes
After rendering, all resulting patch matrices are
grouped by pixel similarity, resulting in a finite
number of equivalence classes that can later be
used as actions for the transducer. These actions
are symmetrical, so that irrespective of lemma and
inflection order we define p(p(c)) = c.

Once the patches are grouped, the original pixel
representation is discarded so that our data can be
arranged as a simple lookup table where patches
are represented by numerical indices – as can be
seen in Table 4.

We deal with unseen characters during predic-
tion by populating the lookup table over a big por-
tion of the entire Unicode plane, and then filtering
the result based on a given input alphabet: We keep
all rows of any patch p in the pre-populated table
if at least one example of p was observed in the
input alphabet. Although this computation is quite
costly, we can still keep runtime demands at a min-
imum because the whole overview only has to be
computed once. Individual languages can then be
filtered out ”on demand” while holding a complete

3see https://www.pygame.org/docs/ref/
font.html
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Symbol Patch Result

e 3 è
a 3 à

· · ·
o 17 ø

Table 4: Symbol patch lookup table

copy of the Unicode-based lookup table in memory.

4 Enhancing Training Data

To improve our training on low data quantities, our
system can enhance training data by generating ar-
tificial samples based only on the existing data. By
detecting patterns in words with the same features
and generating more data with the same patterns,
we assumed that this would aid the network in
detecting and applying patterns, such as common
prefix and suffix changes.

Similar approaches were taken by submis-
sions for previous CoNLL–SIGMORPHON Shared
Tasks. The winning submission (Kann and Schütze,
2016) of the 2016 Shared Task employed data
enhancement for the low resource setting. The
team of the 2017 submission from Bergmanis et al.
(2017) used two variants of a sequence autoen-
coder, with one using lemmas and target forms
as inputs and the other using randomly generated
strings. The additional training data proved to in-
crease the average performance on development
sets. Kann and Schütze (2017) used several aug-
mentation methods, including a rule based system.
Silfverberg et al. (2017) employ a data augmen-
tation system splitting a word in three parts - in-
flectional prefix, word stem and inflectional suffix -
and then generating new words using existing pre-
and suffixes. Further works using data augmenta-
tion are provided by Zhou and Neubig (2017) and
Nicolai et al. (2017).

4.1 Basic Enhancement Process
To generate artificial training samples for a data
set, our system sorts the input data into groups of
inflections that share the same features. Within
each group, it aligns and compares each pair of
lemma and inflected form with every other pair,
only retaining the common characters at the aligned
positions. The different characters are replaced
semi-randomly using a language model based on
n-grams with one gap each. Finally, these gaps are
filled with letters from the dataset based on their

n-gram Letter Frequency p

?ad r 433 0.4446
p 182 0.1869
t 107 0.1099

. . . . . . . . .

?ade r 265 0.5311
p 91 0.1824
n 46 0.0922

. . . . . . . . .

Table 5: Excerpt from the language model for
swedish (low volume)

frequency (an example is discussed in Section 4.2),
using the same letters for both the artificial lemma
and inflected form. If there are still any gaps left,
more characters are selected based on n-grams from
the language model.

The system produces a specified number of
words per alignment match. While creating the sys-
tem we found that more than five enhanced words
per match is not beneficial to the end result, with
one word generated per match being the best option
for most languages. We have also tried adding a
constraint regarding the minimum number of occur-
rences of a pattern necessary to produce artificial
words, but found no improvement overall by speci-
fying this minimum support during development.

4.2 Language Model Example
In Table 6, after inserting iomm, one more gap
(symbolized by #) is left to fill. To find an appro-
priate letter, the current word is compared to the
language model’s n-grams, starting with n = 5
and reducing n while shifting the beam from left
to right until an n-gram with the corresponding gap
is found in the language model. In this case, the
longest n-gram found is the 4-gram ?ade that can
also be seen in Table 5. Through using each let-
ter’s probability (the frequency of the n-gram in the
dataset where the letter replaced the ?-symbol) the
letter to replace the ? gets chosen; in this example
it is p.

Theoretically, this system improves with bigger
data sets as there are potentially more patterns to be
discovered. Unfortunately this also means that for
low quantities of data, where enhancement would
be most beneficial, the quality of the enhanced data
is lower than for higher quantities of data, where it
is not as needed.
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skapad skappade
#fixad ##fixade

####ad #####ade
⇓ ⇓

iommad iomm#ade
⇓ ⇓

iommad iommpade

Table 6: An example for creating artifical data for
skapad – skapade (ADJ;DEF), ”created”

5 System Architecture

The system proposed in this work is an encoder-
decoder recurrent neural network combined with
hard attention and the string-based transducer
shown in Section 2. The architecture is displayed in
Figure 3. After processing the inputs through both
encoder and decoder the resulting action sequence
is applied on the lemma string by the transducer to
produce the inflected word.

5.1 Baseline
The baseline system that was distributed along with
the details for this Shared Task by the organizers is
based on pattern matching in strings. It is heavily
inspired by the methods proposed in the research
of Liu and Mao (2016).

For any given pair of aligned input lemma and
output form, the baseline extracts prefix and suffix
rules throughout the entire string, and then greedily
applies them on a new input lemma that is to be
inflected. The replacement rules are derived incre-
mentally, so that if multiple rules would match a
new sample, the longest one gets applied to pro-
duce the most accurate results possible.

Further details about the baseline system can
be found in the proceedings of last year’s Shared
Task (Cotterell et al., 2017), as the architecture is
virtually identical.

5.2 Neural Network Model
We use the same neural network architecture across
all 103 languages and training set sizes (low,
medium, high). The neural network acts as an ora-
cle for the string transducer shown in Section 2. Its
inputs are the lemma of a word and the features of
the inflected target form. The outputs correspond
to the defined transducer actions (COPY, PATCH p,
MOVE, EMIT s and EOW).

We use an encoder-decoder architecture (Cho
et al., 2014; Sutskever et al., 2014) to transform

Decoder 

Transducer

Encoder 

Inputs

embedding

bi-dir. GRU

concatenation

GRU

linear

softmax

apply action

output string

final inflected word

predicted action

output

outputshidden
state

feature
tensor

lemma
tensor

lemma
string

hidden
state

embedding

attention
pointer

Result

loop
over each

predicted action
until EOW

Figure 3: System architecture

a sequence of characters into a sequence of trans-
ducer actions. The decoder uses hard monotonic at-
tention which has been found beneficial for the task
of morphological inflection (Aharoni and Goldberg,
2016; Aharoni et al., 2016) and allows our system
to meaningfully perform COPY and PATCH opera-
tions.

Both encoder and decoder contain a single gated
recurrent unit (GRU) introduced by Cho et al.
(2014) and character embeddings to obtain a dense
numerical representation from each input symbol.
The encoder is using a bi-directional GRU whose
outputs are summed up from both directions. Since
the encoder is uni-directional we only use the for-
ward path of the hidden encoder state to start the
decoder. The decoder concatenates the character
embedding, attention context and feature tensor as
a combined input to the GRU. The decoder GRU
output is fed into a linear transform followed by a
log softmax layer to obtain the log-likelihoods for
each transducer action.

Biases and weights for the GRUs and linear lay-
ers are initialized randomly from a uniform dis-
tribution U(−

√
1/s,

√
1/s) where s is the size of

the hidden layer (GRU) or number of input features
(linear layer). The embedding weights are initial-
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ized randomly from a normal distribution N (0, 1).
The input lemma is processed at once by the en-

coder, generating output representations for every
input character and hidden state representations for
the whole input sequence. By using an external
loop the decoder produces one transducer action
per step. In each step the previous hidden state
and output action, inflection features, as well as
the attended encoder output is put into the decoder.
Which encoder output is being attended is con-
trolled by the index pointer of the transducer. If the
network outputs a MOVE action, the index pointer
is increased so that the decoder will see the next
encoder output in the following loop iteration. Ac-
tions moving the index pointer beyond the input
lemma are discarded.

To improve the prediction performance we im-
plemented a beam-search decoding process. This
results in multiple paths out of which the path with
the highest probability is selected to produce the
final inflected word. An additional transducer state
object stores the decoder hidden state, predicted ac-
tion and its log-likelihood plus the resulting output
string for each step and path in the beam.

5.3 Training
As the network outputs a sequence of transducer
actions, the training targets are not the inflected
words but an action sequence which produces the
correct inflected form when applied on the lemma.
This action sequence is generated by looping over
the aligned lemma and inflection word in lockstep.
For each character combination the corresponding
actions are appended to the new output sequence.
The detailed algorithm is described in Section 2.2.

Training updates are performed via backpropa-
gation with the Adam optimizer (Kingma and Ba,
2014) using the following parameters: Learning
rate α = 0.005, momentum decays β1 = 0.9,
β2 = 0.999, numerical stabilizer ε = 10−8 and
a weight decay (L2 penalty) of 0.001.

The beam-decoding allows a global normaliza-
tion of the model according to Andor et al. (2016).
Unfortunately, training the model with global nor-
malization in beam-search failed to converge. An-
dor et al. (2016) used pre-training with local nor-
malization to overcome this difficulty, but since we
could not find a robust way to switch local to global
normalization during training for all 103 languages,
we used local normalization only. Once the correct
path falls out of the beam, the log-likelihoods of

the correct path build the basis of our custom loss
function.

The loss function shown in eq. (1) is based on
the locally normalized path probability presented
in eq. (4) of Andor et al. (2016). It calculates the
negated sum over the log-likelihood l of the correct
action in each step of the path. Dividing by the nat-
ural logarithm of the sequence length s results in
a consistent loss magnitude, thus helping the train-
ing process to converge more easily. We assume
this is the case because we sum up the error across
all steps, also punishing the correct predictions if
the system was not 100% confident. The resulting
loss L is used to perform the training update back
through the entire network.

L = −
∑s

i li
ln (1 + s)

(1)

Although local normalization restored conver-
gence of learning, we could not find a significant
advantage in using multiple beams during training.
One explanation why our model did not benefit
from beam-search might be that it requires many
training updates. Punishing the correct steps in the
decoding process leads to many updates while with
beam-search updates may be too infrequent.

Our final training and evaluation is done with
a beam-size of 1. However, the architecture is
prepared to utilize both beam-search and global
normalization in the future. Training with a single
beam and evaluating with multiple beams to find
better predictions is also supported. Due to the
complex implementation of beam search and com-
bined batching the system works on single training
samples by using a batch size of 1.

5.4 Comparison to previous architectures
Although our approach follows the ”Align and
Copy” idea of Makarov et al. (2017) the architec-
tures differ. Makarov et al. proposed two different
models: Hard attention model with copy mecha-
nism (HACM) and hard attention model over edit
actions (HAEM). Both contain an encoder-decoder
with LSTMs. HACM uses a mixture of character
generation and copying probability distribution to
implement the copy mechanism.

Our architecture is more similar to HAEM. The
latter uses additional LSTMs storing representa-
tions of the predicted inflected form, action history
and deleted lemma characters. The decoder feeds
a concatenation of the feature vector, currently at-
tended encoder output and extra representations
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through a rectified linear unit followed by a soft-
max to produce outputs like COPY, WRITE and
DELETE.

6 Tuning and Evaluation

While we used the same architecture for all lan-
guages and training set sizes, we performed individ-
ual hyperparameter optimization for each language-
size-pair. The parameters tested are the hidden size
of encoder/decoder (32, 64, 128), size of the char-
acter embeddings (8, 16), whether to use patches
or not and what amount of additional training data
to hallucinate with the enhancer (1×, 5×).

During the development we noticed that the re-
sults are strongly influenced by the random ini-
tialization of the network weights. We therefore
tested every parameter combination with five differ-
ent random seeds to mitigate this issue. Our final
evaluation on the test set used the best parameters
we found during the hyperparameter search on the
development set for each language-size-pair.

Furthermore, we observed our model sometimes
fails to output EOW and instead either tries to copy
non-existent lemma characters or endlessly EMITs
the same character. The string transducer includes
fixes for these issues when the pointer has moved
beyond the input lemma. In this case COPY and
PATCH do not modify the output sequence at all
and EMIT actions cannot append the previously
written character again. However, this results in a
few missing characters at the end of inflected forms
in some corner cases.

7 Results and Discussion

Compared to the other CoNLL–SIGMORPHON
2018 Shared Tasksubmissions, our system proved
to be in the mid-range (top 59%-67%). By average
accuracy, it improved the most over other submis-
sions for the medium volume datasets. While the
average accuracy increased from 40.3% on the low
set by 33.7 points to 74.0% on the medium set, it
improved by only 3.5 more points from the medium
set to 77.5% on the high set.

An overview over the results on the medium data
set is shown in Table 7. It shows that this system
is working exceptionally well on some languages
compared to the baseline, such as Swahili or Mur-
rinhpatha. Likewise, this system performs remark-
ably worse on some languages, such as Haida and
Neapolitan.

Language Ours BL

Top languages Uzbek 100.0 96.0
Mapudungun 100.0 82.0
Classical-Syriac 97.0 99.0

Worst languages Old-Irish 6.0 16.0
Haida 16.1 61.0
Latin 21.4 37.6

max(Ours - BL) Swahili 95 0.0
Murrinhpatha 88.0 0.0
Zulu 81.8 0.1

max(BL - Ours) Neapolitan 49.0 94.0
Haida 16.0 61.0
Latin 21.4 37.6

Above baseline: 73 avg. diff.: 20.2
Below baseline: 29 avg. diff.: −7.7

Table 7: Results for our system compared to the
baseline. Languages with the best and worst accu-
racies and languages that were the furthest above
and below the baseline, trained on the medium set
and evaluated on the test set.

7.1 Patches
Our system is generally able to deduce a meaning-
ful set of patches (that is, a lookup table with more
than one trivial entry) for about one third of all
languages. While the precise numbers differ per
training volume, the overall performance is justi-
fied given the font choice discussed in Section 3.4.
We could possibly achieve a higher coverage by
combining different fonts for different languages,
but for us the manual tuning process did not out-
weigh the work efforts this selection would have
required.

We can still observe that out of 42 languages
with patches, our hyperparameter tuning algorithm
opted to use patches in 17 cases on the low en-
vironment. While 17

42 = 40, 4% clearly signifies
little to no global improvement, the same fraction
rises to 29

42 = 69% when evaluating on the medium
environment.

In other words, the usefulness of patches rises
(among languages that use patches at all) when
training our system on larger quantities of data.
However at the same time, the selection of which
languages actually use patches to achieve maxi-
mum accuracy partially differs. Only slightly more
than half of the 17 positively patching languages in
the low environment also apply patches on medium,
so it is imperative to consider the actual linguistical
structures behind the data in order to maximise the
benefit of this method.

Lastly, one could combine the NFD system ex-
plored in Section 3.3 with the already implemented
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font rendering to achieve hybrid patch generation
in an effort to maximise its effectiveness. This idea
was not pursued further by us and is left open as
future work.

7.2 Data Enhancer
On low volume, the accuracy on the development
set increased for 42 of the enhanced data sets (best
of enhancement by 1 / by 5) when compared to the
accuracy on the regular data set. For 53 sets they
decreased, no matter the enhancement proportion.
The probability of these being random observances
is 0.3049 (Zar, 1998). However, by testing the
accuracy of the enhanced and the regular training
data for each language on the development set, we
can select which languages will be enhanced and
which will not. This is part of the hyperparameter
search from Section 6. On the low development
set, the enhancer is leading to a total improvement
of 1.245% in accuracy and a negligible 0.044 char-
acters in Levenshtein distance, with improvements
for single languages of up to 10.8% (french). The
average improvement is 3.6667%.

7.3 Network Hiccups
Our system’s accuracy is poor on Haida and
Neapolitan compared to other submissions and the
baseline. The reason is that for both languages the
post-processing used to combat a missing EOW is
often triggered erroneously. The example below
shows our system missing the last character in the
output because the transducer discards the second
identical action to EMIT an a in this case.
• ñı́iyä→ ñı́iyä’wa (prediction)
• ñı́iyä→ ñı́iyä’waa (target)

As the inflected words are almost correct, the Lev-
enshtein distance is much lower than the accuracy
might indicate. For Haida the Levenshtein dis-
tance is even significantly lower than the baseline
results. In hindsight, it would have been better to
replace non-ending predictions with the lemma in-
stead of trying to clean the output as the negative
side-effects most likely outweigh any benefits. In
the future, a better approach would be to improve
the training process by using a dynamic oracle for
the target sequence and correctly implementing
global normalization with beam-search decoding.
These changes are likely to eliminate the need for
any post-processing.

Another weakness of our system is the inability
to transform a prefix into a suffix or vice versa as
shown in the following German language example:

-9.0 -6.4 -3.9 -1.3 1.3 3.9 6.4 9.0
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Figure 4: Histogram showing the effect of beam
size 16 compared to size 1 on the test set (trained
on low)

• abstellen→ stellt (prediction)
• abstellen→ stellt ab (target)

This behavior is expected as our neural network
works with hard monotonic attention. It would
need to store the information within the hidden-
state over the whole sequence as it cannot attend the
encoder outputs from the beginning again. A cure
for this symptom would be to use a model with soft
attention – which in turn cannot meaningfully use
COPY or PATCH operations on the input lemma.

7.4 Beam-Decoding
While we did not use beam-decoding for the offi-
cial results, we experimented with the evaluation
performance after the submission. Figure 4 shows
the number of languages for which beam-decoding
with 16 beams makes a difference in comparison
to greedy decoding. For half of the languages there
are either no or only negligible differences in ac-
curacy. About one third shows a small positive
effect. Some languages show a larger accuracy
increase while only few languages show a small
accuracy decrease. A binomial test shows that the
probability of the increase being random is as low
as 2.4× 10−10. Beam-decoding therefore clearly
leads to an increase in accuracy which matches
the intuition of beam-decoding producing better or
equal results compared to greedy decoding.
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Abstract

This paper describes two systems for the sec-
ond subtask of CoNLL-SIGMORPHON 2018
shared task on universal morphological re-
inflection submitted by the University of Col-
orado Boulder team. Both systems are imple-
mentations of RNN encoder-decoder models
with soft attention. The first system is simi-
lar to the baseline system with minor differ-
ences in architecture and parameters, and is
implemented using PyTorch. It works for both
track 1 and track 2 of the subtask and generally
outperforms the baseline at low data settings
in both tracks. The second system predicts
the morphosyntactic description (MSD) of the
lemma to be inflected using an MSD predic-
tion model. The data for subtask 2 is processed
and reformatted to subtask 1 data format to
train an inflection model. Then the inflection
model predicts the inflected form for the tar-
get lemma given the predicted MSD. This sys-
tem achieves higher accuracies than the first
system when the training data is the most lim-
ited, though it does not perform better when
the training data is abundant.

1 Introduction

Several natural language processing tasks can ben-
efit from representational power in a computa-
tional model at the level of morphology. The task
of morphological inflection has been explored re-
cently in great depth (Cotterell et al., 2016, 2017),
resulting in several effective models for that task.
Of particular note is an architecture proposed by
Kann and Schütze (2016), which is modeled after
an encoder-decoder model that found success in
machine translation (Cho et al., 2014).

A related, but relatively unexplored task is that
of morphological inflection in context. This paper
documents the University of Colorado Boulder’s
system for that task (subtask2) in the CoNLL-
SIGMORPHON 2018 shared task. We experi-

mented with a model very similar to the provided
baseline, which computes the context for a given
inflection as the concatenation of word and MSD
embeddings to the left and right of the word that
is to be inflected. During encoding of an input se-
quence, the context vector is concatenated with the
character embedding at each time step.

We also experimented with an encoder compris-
ing of three separate LSTMs whose output states
are concatenated and used to predict the MSD for
the lemma to be inflected. We then use a sec-
ond encoder-decoder network to perform inflec-
tion over the given lemma according to that MSD,
thus formulating the second portion into the prob-
lem in task1 where the training data are pairs of
lemma, inflected word form, and the MSD for the
inflection and the task is to predict the inflected
word form given the lemma and MSD.

We find that the first system described here
outperforms the second one when there is ample
training data, whereas the latter performs better
when the training data is scarce.

2 Task and data description

The shared task is broken into 2 subtasks. This
paper presents systems that participated only in
subtask2. There are seven languages for this task:
German, English, Spanish, Finnish, French, Rus-
sian, and Swedish; and 3 data settings: low (< 100
sentence examples), medium (< 900 sentence ex-
amples), and high (< 8000 sentence examples).
Each data setting varies across languages with re-
gard to the number of training sentence examples.

Within subtask 2 there are two tracks. Both
tracks present each problem in context, that is,
given some lemma and the word forms surround-
ing it in a sentence, the goal is to generate the cor-
rectly inflected form of that lemma. In track one,
the MSD and lemma for each word in the sentence
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is available, whereas in track 2 only the inflected
word form is available. For testing in both tracks,
only the lemma of the form that should be inflected
is provided. More details about the tasks and data
can be found in Cotterell et al. (2018).

3 System description

3.1 System 1

Our first system is similar to the subtask 2 base-
line system provided by the shared task orga-
nizers (Cotterell et al., 2018) but with a few
changes in the architecture and parameters. It is an
encoder-decoder model with soft attention (Bah-
danau et al., 2015) implemented with PyTorch
based on the PyTorch tutorial of translation with a
sequence to sequence network and attention,1 and
it works for both track 1 and track 2.

Architecture The encoder is a single layer Gated
Recurrent Unit (GRU) (Cho et al., 2014). It takes
as input the concatenation of the context embed-
ding and the embedded characters in the lemma,
and outputs a sequence of state vectors, which are
then translated into a sequence of embeddings by
a one-layer GRU decoder using an attention mech-
anism. The embeddings are then transformed into
output characters by a log softmax layer. For
track 1, the context embedding is the concatena-
tion of word embeddings for the previous inflected
word form, previous lemma, previous MSD, cur-
rent lemma, next inflected word form, next lemma,
and next MSD. If a word is at the beginning of
the sentence, we add a special symbol 〈SOS〉 as its
history context, and if a word is at the end of the
sentence, we add another special symbol 〈EOS〉
as its future context. The context embedding for
track 1 is illustrated in the bottom part of Figure
1. For track 2, the context embedding is the con-
catenation of word embeddings for the previous
inflected word form, current lemma, and next in-
flected word form as is shown in Figure 2. Special
symbols indicating the beginning and end of sen-
tences are also used. For the character embedding
of lemmas, we also used 〈SOS〉 and 〈EOS〉 to indi-
cate the beginning and end of the lemma.

The decoder starts decoding with input as 〈SOS〉
and hidden state as the last hidden state of the en-
coder. An attention mechanism is implemented to

1https://pytorch.org/tutorials/
intermediate/seq2seq_translation_
tutorial.html
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Figure 1: Architecture of system 1 with track 1 context
embedding

allow the decoder network to focus on different
parts of the encoder’s outputs at each step of gen-
eration. It is implemented as another feed-forward
layer which takes as its input the decoder’s input
and hidden states and calculates a set of attention
weights. We multiply the attention weights with
the encoder output vectors to create a weighted
combination. This weighted combination will go
through a non-linear ReLU layer before going to
the GRU process. In addition, a dropout layer is
added to the decoder input to deal with overfitting.
The dropout rate is 0.1. The decoding process
stops when the end symbol 〈EOS〉 is generated. It
may also stop early when a maximum prediction
length has been reached. The maximum predic-
tion length is set at 50. The overall architecture of
this system as to track 1 is shown in Figure 1. For
track 2, only the context embedding is different,
i.e. the context is the concatenation of the previ-
ous inflected word form, the target lemma and next
inflected word form embeddings.

Data To train the model for track 1, the model is
trained to make predictions for only entries whose
part-of-speech (POS) are verbs, nouns, or adjec-
tives. For track 2, the model is trained to make
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Bush made _ to leave .<SOS> <EOS>

_ make plan _ leave __ _

_ _ _ _ _ __ _

E(CONTEXT)

E(plan)

E(to)E(made)

+
+

+

Figure 2: Context embedding for system 1 at track 2

predictions for entries where the lemma form is
provided.

Settings and Hyper-parameters The model is
trained to minimize the negative log likelihood
loss (NLLLoss) on the training data. The opti-
mization method is the Adam algorithm (Kingma
and Ba, 2015) with a learning rate of 0.00005. As
to other hyper-parameters, we use an embedding
size of 100 for the character, lemma, word-form
and MSD embeddings. The hidden size is 800 for
track 1 and 400 for track 2.

3.2 System 2: MSD prediction and inflection

In our second approach we reformulate the task
2 problem as a task 1 problem. This approach
involves predicting the morphosyntactic descrip-
tions of the lemma in question, given the inflected
word forms, the lemmas and the MSDs for the
rest of the sentence. Once we have the predicted
MSDs, we use a task 1 inflection model to get the
inflected form. This section describes the archi-
tecture for the MSD prediction model followed by
the inflection model. This system is only for track
1 as it relies on the morphosyntactic descriptions.

3.2.1 MSD prediction model
The MSD prediction model uses a many-to-one
encoder-decoder neural network to predict the
MSDs of the lemma to be inflected.

Architecture The encoder uses three separate
single-layer bidirectional LSTMs (LSTMleft,
LSTMbase and LSTMright) to encode the input
into a fixed length vector c. It is based on Vylo-
mova et al. (2017). LSTMleft takes as input the
sequence that is to the left of the current lemma
in the sentence and computes the hidden states
h
(t)
l ∈ RH .

h
(t)
l = fl(x

(t), h
(t−1)
l )

Figure 3: Architecture of the MSD prediction model

where x(t) ∈ R3E is a concatenation of
the inflected word form embedding e(wt), the
lemma embedding e(lt) and the MSD embed-
ding e(msdt) for some word t in the sentence;
e(wt), e(lt), e(msdt) ∈ RE , where E is the di-
mension of the embedding layer.

In a similar fashion, LSTMright takes as in-
put the sequence that is to the right of the current
lemma in the sentence.

h(t)r = fr(x
(t), h(t−1)

r )

LSTMbase takes as input the sequence of char-
acter embeddings, e(ct), concatenated with the
lemma embedding, e(l), for every character c in
the lemma.

h
(t)
b = fb(x

(t)
b , h

(t−1)
b )

The input to the decoder is the vector c ∈ R3H

which is the concatenation of the final states from
the three encoder LSTMs.

c = [h
(Tl)
l ;h(Tr)

r ;h
(Tb)
b ]

The decoder acts as a classifier that classifies the
input into one of the possible MSD combinations.

hd = fd(c, h
(0)
d )

Pmsd = softmax(W.hd + b)

The high level architecture of the model is
shown in Figure 3.

Data To train the MSD prediction model,
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we used only lemmas whose POS are verbs,
nouns or adjectives.

Settings and Hyper-parameters We used a
hidden size of 100 and an embedding size of
100 for the character, lemma, word and MSD
embeddings. We used Adam as the optimizer with
a learning rate of 0.0005.

3.2.2 Inflection model
The Inflection model outputs the inflected
word-form given a lemma and its associated
morphosyntactic features (for example, touch +
V;V.PTCP;PRS ⇒ touching). It is an encoder-
decoder soft-attention based neural network that
takes as input the sequence of lemma charac-
ters and the morphosyntactic descriptions, and
produces a sequence of characters as output.
The Inflection model is based on University
of Colorado Boulder’s submission to CoNLL-
SIGMORPHON 2017 Shared Task (Silfverberg
et al., 2017).

Architecture The encoder is a single layer
bi-directional GRU that takes as input the
embeddings e(.) of lemma characters and the
morphosyntactic descriptions, and produces a
sequence of state vectors. The decoder then uses
this sequence of state vectors to generate the
sequence of output embeddings. At each stage
in the decoding process, the decoder uses the
following to compute the current state vector:

• the previous decoder hidden state.

• the previous output embedding.

• A weighted sum of all the encoder states.

The decoding process starts with the embedding
for the word boundary symbol 〈EOS〉 and a ran-
domly initialized hidden state h0. The weights for
the encoder states is computed using an Attention
mechanism which uses the previous decoder state
as input. The weights are normalized using a soft-
max function. The overall architecture of the in-
flection model is shown in Figure 4.

Data The data to train the inflection model was
generated from the task2 training data by taking
out entries of verbs, nouns or adjectives and
putting them into task 1 data format. The amount
of training data we get in this way is comparable

Attn

E E E E E E

E(p) E(l) E(a) E(n) E(N)

p l a n N

p l a n <EOS>s

E(<PL>)

PL

E(<EOS>)

<EOS>

h1 h2 h3 h4 h5

Encoder
Bidirectional

GRU

Decoder
GRU

E(<EOS>)

<EOS>

E

<EOS>

h0

Figure 4: Architecture of the inflection model

to the data size of task 1 at different data settings
for all the 7 languages; more than 10000 examples
for the high data setting, more than 2000 examples
for the medium data setting, and more than 250
examples for the low data setting.

Settings and Hyper-parameters The inflec-
tion model uses an embedding size of 100 and
a hidden state of size 100 for the encoder and
the decoder. The data is processed in batches of
20. Masking is used to mask part of the input
sequences which are shorter than the maximum
length in the batch. Stochastic Gradient De-
scent (SGD) with gradient clipping is used for
optimization and the loss function is NLLLoss.

4 Experiments

4.1 Exploratory experiment: lemma copying

As the first exploration of the task and an evalua-
tion of task complexity, we experimented by copy-
ing the lemma directly. In other words, we sim-
ply guess that the inflected form of a lemma in the
context is the lemma itself. This experiment will
be referred to as the copy system going further.

4.2 System 1

We tuned the architecture and the parameters for
the first system on track 1 and finally settled on
the architecture and parameters described in sec-
tion 3.1 for track 1 and track 2. For both tracks,
we train the model for 50 epochs at the low data
setting and 40 epochs at medium and high data
settings, and use the model at the epoch which
gets the highest accuracy on the development set
to make predictions on the test set.
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HIGH MEDIUM LOW

LANGUAGE COPY SYS 1 SYS 2 BASELINE COPY SYS 1 SYS 2 BASELINE COPY SYS 1 SYS 2 BASELINE

DE 58.95 63.3 62.49 64.51 58.95 55.11 55.11 54.4 58.95 10.41 32.15 0.2
EN 62.64 76.23 68.58 72.91 62.64 65.16 66.57 60.02 62.64 57.6 59.62 1.81
ES 25.53 51.75 36.75 53.44 25.53 41.8 32.68 23.14 25.53 25.53 27.77 8.98
FI 22.36 43.07 30.24 49.05 22.36 23.38 23 28.21 22.36 7.12 11.44 0.76
FR 23.63 58.04 60.9 63.54 23.63 44.2 42.16 45.01 23.63 25.66 26.88 0
RU 18.37 65.16 55.52 71.18 18.37 44.58 40.46 50.3 18.37 15.06 22.09 0
SV 32.45 60.53 37.77 62.23 32.45 49.68 34.57 47.55 32.45 20.74 29.04 1.17
AVERAGE 34.85 59.73 50.32 62.41 34.85 46.27 42.08 44.09 34.85 23.16 29.86 1.85

Table 1: Track 1 accuracies for original form of the copy system, system 1, system2, and baseline

HIGH MEDIUM LOW

LANGUAGE COPY SYS 1 SYS 2 BASELINE COPY SYS 1 SYS 2 BASELINE COPY SYS 1 SYS 2 BASELINE

DE 58.95 59.96 - 65.72 58.95 49.54 - 56.93 58.95 11.02 - 0.1
EN 62.64 70.8 - 70.39 62.64 61.53 - 57.6 62.64 58.91 - 2.22
ES 25.53 45.86 - 51.05 25.53 35.34 - 41.23 25.53 27.91 - 8.98
FI 22.36 24.02 - 34.82 22.36 17.15 - 19.19 22.36 7.88 - 0.38
FR 23.63 48.27 - 58.45 23.63 36.05 - 21.38 23.63 23.01 - 0
RU 18.37 39.76 - 46.89 18.37 27.21 - 30.52 18.37 21.08 - 2.71
SV 32.45 54.15 - 54.04 32.45 41.17 - 43.09 32.45 16.49 - 0.96
AVERAGE 34.85 48.97 - 54.48 34.85 38.29 - 38.56 34.85 23.76 - 2.19

Table 2: Track 2 accuracies for original form of the copy system, system 1, system2, and baseline

4.3 System 2

In our experiments for System 2, we train the
MSD prediction model for 10 epochs on all data
settings. To train the inflection model we used 200
epochs for the low data setting and 100 epochs
for the medium and high data settings. We also
experimented with higher embedding and hidden
sizes of 200 for the MSD prediction model and we
found no significant improvements.

5 Results and discussion

The evaluation result as to original forms for track
1 is shown in Table 1. In general, our first system
(SYS 1) outperforms the second system (SYS 2)
in both high and medium data settings, though nei-
ther of them get a higher averaged accuracy than
the baseline system when the training data size is
high and the first system is only marginally bet-
ter than the baseline when the training data is of
medium size. For the four systems summarized in
the table, our first system performs the best only
with English at high data setting, and it achieves
the highest accuracies with Spanish and Swedish
at medium data setting. The second system out-
performs the other three systems with English at
medium data setting. However, when the train-
ing data is the most limited, i.e. at the low data
setting, the second system outperforms both the
first system and the baseline as to average accu-

racy over the seven languages, though it is still
worse than the copy system. To be specific, direct
lemma copy produces the best results for German,
English, Finnish and Swedish among the four sys-
tems at the low data setting. The second system
outperforms the other three systems with Spanish,
French, and Russian.

Table 2 provides the evaluation results for the
baseline system, our first system and the copy sys-
tem, as to original forms for track 2. Our second
system relies on the prediction of MSDs and does
not work for track 2. For this track, we see the pat-
tern of the system performance is similar to that
of track 1. That is, the baseline system generally
outperforms our first system and the copy system
at the high data setting and gets very close to the
first system in terms of averaged accuracies at the
medium data setting, and our first system outper-
forms the baseline by a large margin at the low
data setting though it is still worse than the copy
system.

When the training data is the most limited, com-
paring the results of system 1 for track 1 and track
2, shows that track 1 results are not better than
track 2 results, indicating that the MSD and lemma
information does not really help with the perfor-
mance of the first system when a limited amount
of data is available. However, the second system
outperforms the first system on track 1 for all lan-
guages, and the results of SYS 2 on track 1 are
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higher than the results of SYS 1 on track 2 on most
languages (except Spanish, for which SYS 2 track
1 is a mere 0.14% lower). This suggests that, when
training data is very limited, the MSDs introduce
a lot of ambiguity if only used as contextual in-
formation. On the other hand, if we first predict
the MSD as our second system does, the ambigu-
ity is reduced and thus the system generates bet-
ter predictions. German is the language where the
second system is most significantly better than the
first system on the track 1 low data setting. Ger-
man is a language with much ambiguity in its in-
flected forms. For a German word form, there can
be as many as 40 different readings (Müller and
Schütze, 2015). This fact also supports the ambi-
guity explanation for the difference in the perfor-
mance of our first and second systems.

In the low setting, Finnish, German and Russian
have the lowest scores for our first model. Finnish
and Russian are the two languages with the most
complex inflection systems in the sense that they
have the highest number of distinct MSDs. In
the high data setting, counting only the parts-
of-speech the model is supposed to predict, i.e.
nouns, verbs and adjectives, there are 346 distinct
MSDs in Finnish training data and 345 in Rus-
sian training data. The rich inflection requires
more data for the model to learn. Though Ger-
man has less distinct MSDs than Finnish and Rus-
sian, its inflection is also complex in the sense that
it’s less predictable: Unlike Russian and Finnish
which use almost exclusively suffixes, German is
not primarily suffixing but employs prefixing, cir-
cumfixing, and umlauting. Its inflectional rules are
less regular than Finnish or Russian. A qualitative
analysis of the predictions in the low data setting,
finds that our first model tends to make changes in
the stem for German though not for Finnish and
Russian, and the wrong changes in the stem cause
wrong predictions for German words while for
Finnish and Russian the errors are mainly wrong
suffixation. This agrees with the distinct features
of their inflection systems.

The intuition behind just copying the lemma
when the training data is limited, is the linguis-
tic observation that the lemma form is usually the
most frequently used form and thus any uninfor-
mative inflection tends to be less likely than the
lemma.

6 Conclusion

For this task, we explored the performance of
RNN encoder-decoder models with soft attention
as to predicting the inflected forms of a lemma
in context. We developed two systems by imple-
menting the encoder-decoder model in different
ways. We found that when the training data is
very limited, morpho-syntactic descriptions con-
tribute to better prediction results. Though both
of our systems outperform the baseline at the low
data setting, none of the systems are better than
the blind guess of the inflected form being the
lemma itself. However, when the training data is
abundant, neural network systems outperform the
lemma copying approach.
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Abstract

This paper documents the Team Copenhagen
system which placed first in the CoNLL–
SIGMORPHON 2018 shared task on univer-
sal morphological reinflection, Task 2 with an
overall accuracy of 49.87. Task 2 focuses on
morphological inflection in context: generat-
ing an inflected word form, given the lemma of
the word and the context it occurs in. Previous
SIGMORPHON shared tasks have focused on
context-agnostic inflection—the “inflection in
context” task was introduced this year. We ap-
proach this with an encoder-decoder architec-
ture over character sequences with three core
innovations, all contributing to an improve-
ment in performance: (1) a wide context win-
dow; (2) a multi-task learning approach with
the auxiliary task of MSD prediction; (3) train-
ing models in a multilingual fashion.

1 Introduction

This paper describes our approach and results
for Task 2 of the CoNLL–SIGMORPHON 2018
shared task on universal morphological reinflec-
tion (Cotterell et al., 2018). The task is to generate
an inflected word form given its lemma and the
context in which it occurs.

Morphological (re)inflection from context is of
particular relevance to the field of computational
linguistics: it is compelling to estimate how well
a machine-learned system can capture the mor-
phosyntactic properties of a word given its con-
text, and map those properties to the correct sur-
face form for a given lemma.

There are two tracks of Task 2 of CoNLL–
SIGMORPHON 2018: in Track 1 the context is
given in terms of word forms, lemmas and mor-
phosyntactic descriptions (MSD); in Track 2 only
word forms are available. See Table 1 for an ex-
ample. Task 2 is additionally split in three settings
based on data size: high, medium and low, with

high-resource datasets consisting of up to 70K in-
stances per language, and low-resource datasets
consisting of only about 1K instances.

The baseline provided by the shared task organ-
isers is a seq2seq model with attention (similar
to the winning system for reinflection in CoNLL–
SIGMORPHON 2016, Kann and Schütze (2016)),
which receives information about context through
an embedding of the two words immediately adja-
cent to the target form. We use this baseline im-
plementation as a starting point and achieve the
best overall accuracy of 49.87 on Task 2 by intro-
ducing three augmentations to the provided base-
line system: (1) We use an LSTM to encode the
entire available context; (2) We employ a multi-
task learning approach with the auxiliary objective
of MSD prediction; and (3) We train the auxiliary
component in a multilingual fashion, over sets of
two to three languages.

In analysing the performance of our system, we
found that encoding the full context improves per-
formance considerably for all languages: 11.15
percentage points on average, although it also
highly increases the variance in results. Multi-task
learning, paired with multilingual training and
subsequent monolingual finetuning, scored high-
est for five out of seven languages, improving ac-
curacy by another 9.86% on average.

2 System Description

Our system is a modification of the provided
CoNLL–SIGMORPHON 2018 baseline system,
so we begin this section with a reiteration of the
baseline system architecture, followed by a de-
scription of the three augmentations we introduce.

93



WORD FORMS We were � to feel very welcome .
LEMMAS we be make to feel very welcome .

MSD TAGS PRO;NOM;PL;1 AUX;IND;PST;FIN � PART V;NFIN ADV ADJ PUNCT

Table 1: Example input sentence. Context MSD tags and lemmas, marked in gray, are only available in Track
1. The cyan square marks the main objective of predicting the word form made. The magenta square marks the
auxiliary objective of predicting the MSD tag V;PST;V.PTCP;PASS.

2.1 Baseline
The CoNLL–SIGMORPHON 2018 baseline1 is
described as follows:

The system is an encoder-decoder on
character sequences. It takes a lemma
as input and generates a word form.
The process is conditioned on the con-
text of the lemma [. . . ] The baseline
treats the lemma, word form and MSD
of the previous and following word as
context in track 1. In track 2, the
baseline only considers the word forms
of the previous and next word. [. . . ]
The baseline system concatenates em-
beddings for context word forms, lem-
mas and MSDs into a context vector.
The baseline then computes character
embeddings for each character in the in-
put lemma. Each of these is concate-
nated with a copy of the context vector.
The resulting sequence of vectors is en-
coded using an LSTM encoder. Subse-
quently, an LSTM decoder generates the
characters in the output word form using
encoder states and an attention mecha-
nism.

To that we add a few details regarding model
size and training schedule:

• the number of LSTM layers is one;

• embedding size, LSTM layer size and atten-
tion layer size is 100;

• models are trained for 20 epochs;

• on every epoch, training data is subsampled
at a rate of 0.3;

• LSTM dropout is applied at a rate 0.3;

• context word forms are randomly dropped at
a rate of 0.1;

• the Adam optimiser is used, with a default
learning rate of 0.001; and

1Code available at:
https://github.com/sigmorphon/conll2018

m

a

d

e

We were to ... m a k e

Main 
Task 

Auxiliary 
Task 

V

PST 

V.PTCP

PASS 

Figure 1: Schematic representation of our approach.
The focus here is on the prediction of the final char-
acter, e, of the word form made. The attention matrix
indicates that this character should be based on the final
state of the encoder, which contains information about
the final character of the input form, and the past and
future context. The input and output of the auxiliary
decoder are marked in magenta.

• trained models are evaluated on the develop-
ment data (the data for the shared task comes
already split in train and dev sets).

2.2 Our system

Here we compare and contrast our system2 to the
baseline system. A diagram of our system is
shown in Figure 1.

2.2.1 Entire Context Encoded with LSTMs
The idea behind this modification is to provide the
encoder with access to all morpho-syntactic cues
present in the sentence. In contrast to the baseline,
which only encodes the immediately adjacent con-
text of a target word, we encode the entire con-
text. All context word forms, lemmas, and MSD

2Code available at: https://github.com/
YovaKem/inflection_in_context
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Track 1 Track 2
base our base our

DE 64.51 72.40 65.72 64.81
EN 72.91 77.84 70.39 71.90
ES 53.44 56.24 51.05 48.95

high FI 49.05 55.27 34.82 32.40
FR 63.54 70.67 58.45 61.51
RU 71.18 77.91 46.89 49.00
SV 62.23 69.26 54.04 55.96

DE 54.40 62.18 56.93 57.33
EN 60.02 66.67 57.60 66.67
ES 23.14 51.33 41.23 42.50

med. FI 28.21 35.71 19.19 22.24
FR 45.01 60.29 21.38 45.62
RU 50.30 63.05 30.52 35.94
SV 47.55 57.66 43.09 45.96

DE 0.20 4.85 0.10 18.91
EN 1.81 33.84 2.22 59.42
ES 8.98 31.42 8.98 31.84

low FI 0.76 12.83 0.38 12.33
FR 0.00 34.42 0.00 29.53
RU 0.00 25.90 2.71 22.69
SV 1.17 27.55 0.96 30.96

Table 2: Official shared task test set results.

tags (in Track 1) are embedded in their respective
high-dimensional spaces as before, and their em-
beddings are concatenated. However, we now re-
duce the entire past context to a fixed-size vector
by encoding it with a forward LSTM, and we sim-
ilarly represent the future context by encoding it
with a backwards LSTM.

2.2.2 Auxiliary Task: MSD of the Target
Form

We introduce an auxiliary objective that is meant
to increase the morpho-syntactic awareness of the
encoder and to regularise the learning process—
the task is to predict the MSD tag of the target
form. MSD tag predictions are conditioned on the
context encoding, as described in 2.2.1. Tags are
generated with an LSTM one component at a time,
e.g. the tag PRO;NOM;SG;1 is predicted as a se-
quence of four components, 〈PRO, NOM, SG, 1〉.

For every training instance, we backpropagate
the sum of the main loss and the auxiliary loss
without any weighting.

As MSD tags are only available in Track 1, this
augmentation only applies to this track.

2.2.3 Multilinguality
The parameters of the entire MSD (auxiliary-task)
decoder are shared across languages.

Since a grouping of the languages based on lan-
guage family would have left several languages
in single-member groups (e.g. Russian is the sole
representative of the Slavic family), we experi-
ment with random groupings of two to three lan-
guages. Multilingual training is performed by
randomly alternating between languages for every
new minibatch. We do not pass any information
to the auxiliary decoder as to the source language
of the signal it is receiving, as we assume abstract
morpho-syntactic features are shared across lan-
guages.

Finetuning After 20 epochs of multilingual
training, we perform 5 epochs of monolingual
finetuning for each language. For this phase, we
reduce the learning rate to a tenth of the original
learning rate, i.e. 0.0001, to ensure that the models
are indeed being finetuned rather than retrained.

2.2.4 Model Size and Training Schedule
We keep all hyperparameters the same as in the
baseline. Training data is split 90:10 for train-
ing and validation. We train our models for 50
epochs, adding early stopping with a tolerance of
five epochs of no improvement in the validation
loss. We do not subsample from the training data.

2.2.5 Ensemble Prediction
We train models for 50 different random com-
binations of two to three languages in Track 1,
and 50 monolingual models for each language in
Track 2. Instead of picking the single model that
performs best on the development set and thus
risking to select a model that highly overfits that
data, we use an ensemble of the five best mod-
els, and make the final prediction for a given target
form with a majority vote over the five predictions.

3 Results and Discussion

Test results are listed in Table 2. Our system
outperforms the baseline for all settings and lan-
guages in Track 1 and for almost all in Track 2—
only in the high resource setting is our system not
definitively superior to the baseline.

Interestingly, our results in the low resource set-
ting are often higher for Track 2 than for Track 1,
even though contextual information is less explicit
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in the Track 2 data and the multilingual multi-
tasking approach does not apply to this track. We
interpret this finding as an indicator that a simpler
model with fewer parameters works better in a set-
ting of limited training data. Nevertheless, we fo-
cus on the low resource setting in the analysis be-
low due to time limitations. As our Track 1 results
are still substantially higher than the baseline re-
sults, we consider this analysis valid and insight-
ful.

3.1 Ablation Study

We analyse the incremental effect of the differ-
ent features in our system, focusing on the low-
resource setting in Track 1 and using development
data.

Entire Context Encoded with LSTMs Encod-
ing the entire context with an LSTM highly in-
creases the variance of the observed results. So we
trained fifty models for each language and each ar-
chitecture. Figure 2 visualises the means and stan-
dard deviations over the trained models. In addi-
tion, we visualise the average accuracy for the five
best models for each language and architecture, as
these are the models we use in the final ensemble
prediction. Below we refer to these numbers only.

The results indicate that encoding the full con-
text with an LSTM highly enhances the perfor-
mance of the model, by 11.15% on average. This
observation explains the high results we obtain
also for Track 2.

Auxiliary Task: MSD of the Target Form
Adding the auxiliary objective of MSD prediction
has a variable effect: for four languages (DE, EN,
ES, and SV) the effect is positive, while for the
rest it is negative. We consider this to be an issue
of insufficient data for the training of the auxil-
iary component in the low resource setting we are
working with.

Multilinguality We indeed see results improv-
ing drastically with the introduction of multi-
lingual training, with multilingual results being
7.96% higher than monolingual ones on average.

We studied the five best models for each lan-
guage as emerging from the multilingual training
(listed in Table 3) and found no strong linguistic
patterns. The EN–SV pairing seems to yield good
models for these languages, which could be ex-
plained in terms of their common language family

DE FI SV FI, SV RU, FR FR, FI

EN RU, SV RU, FI RU,FR SV, ES SV, FR

ES DE FI SV, DE SV,EN SV,FR

FI DE ES FR, ES EN,RU RU,SV

FR SV,EN EN,ES DE,FI SV,EN EN,SV

RU SV DE,FR EN,SV SV,FR EN,FI

SV EN,DE FI,EN FR,RU ES,EN RU, EN

Table 3: Five best multilingual models for each lan-
guage.

and similar morphology. The other natural pair-
ings, however, FR–ES, and DE–SV, are not so fre-
quent among the best models for these pairs of lan-
guages.

Finally, monolingual finetuning improves accu-
racy across the board, as one would expect, by
2.72% on average.

Overall The final observation to be made based
on this breakdown of results is that the multi-
tasking approach paired with multilingual train-
ing and subsequent monolingual finetuning out-
performs the other architectures for five out of
seven languages: DE, EN, FR, RU and SV. For
the other two languages in the dataset, ES and
FI, the difference between this approach and the
approach that emerged as best for them is less
than 1%. The overall improvement of the multi-
lingual multi-tasking approach over the baseline
is 18.30%.

3.2 Error analysis

Here we study the errors produced by our sys-
tem on the English test set to better understand
the remaining shortcomings of the approach. A
small portion of the wrong predictions point to
an incorrect interpretation of the morpho-syntactic
conditioning of the context, e.g. the system pre-
dicted plan instead of plans in the context Our
include raising private capital. The majority of
wrong predictions, however, are nonsensical, like
bomb for job, fify for fixing, and gnderrate for un-
derstand. This observation suggests that gener-
ally the system did not learn to copy the charac-
ters of lemma into inflected form, which is all it
needs to do in a large number of cases. This issue
could be alleviated with simple data augmentation
techniques that encourage autoencoding (see, e.g.,
Bergmanis et al., 2017).
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Figure 2: Mean (•) and standard deviation (error bars) over 100 models trained for each language and architecture,
and average (×) over the 5 best models. LSTM Enc refers to a model that encodes the full context with an LSTM;
Multi-task builds on LSTM Enc with an auxiliary objective of MSD prediction; Multilingual refers to a model with
an auxiliary component trained in a multilingual fashion; Finetuned refers to a multilingual model topped with
monolingual finetuning.

Figure 3: Accuracy on the auxiliary task of MSD pre-
diction with different models. See the caption of Fig-
ure 2 for more details.

3.3 MSD prediction

Figure 3 summarises the average MSD-prediction
accuracy for the multi-tasking experiments dis-
cussed above.3 Accuracy here is generally higher
than on the main task, with the multilingual fine-
tuned setup for Spanish and the monolingual setup
for French scoring best: 66.59% and 65.35%, re-
spectively. This observation illustrates the added
difficulty of generating the correct surface form
even when the morphosyntactic description has
been identified correctly.

We observe some correlation between these
numbers and accuracy on the main task: for DE,
EN, RU and SV, the brown, pink and blue bars
here pattern in the same way as the correspond-
ing ×’s in Figure 2. One notable exception to this

3As MSD tags are not available for target forms in the de-
velopment data, the accuracy of MSD prediction is measured
over all other nouns, adjectives and verbs in the dataset.

pattern is FR where inflection gains a lot from mul-
tilingual training, while MSD prediction suffers
greatly. Notice that the magnitude of change is
not always the same, however, even when the gen-
eral direction matches: for RU, for example, mul-
tilingual training benefits inflection much more
than in benefits MSD prediction, even though the
MSD decoder is the only component that is actu-
ally shared between languages. This observation
illustrates the two-fold effect of multi-task train-
ing: an auxiliary task can either inform the main
task through the parameters the two tasks share,
or it can help the main task learning through its
regularising effect.

4 Related Work

Our system is inspired by previous work on multi-
task learning and multi-lingual learning, mainly
building on two intuitions: (1) jointly learning re-
lated tasks tends to be beneficial (Caruana, 1997;
Søgaard and Goldberg, 2016; Plank et al., 2016;
Bjerva et al., 2016; Bjerva, 2017b); and (2) jointly
learning related languages in an MTL-inspired
framework tends to be beneficial (Bjerva, 2017a;
Johnson et al., 2017; de Lhoneux et al., 2018). In
the context of computational morphology, multi-
lingual approaches have previously been em-
ployed for morphological reinflection (Bergma-
nis et al., 2017) and for paradigm completion
(Kann et al., 2017). In both of these cases,
however, the available datasets covered more lan-
guages, 40 and 21, respectively, which allowed for
linguistically-motivated language groupings and
for parameter sharing directly on the level of char-
acters. De Lhoneux et al. (2018) explore param-
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eter sharing between related languages for depen-
dency parsing, and find that sharing is more bene-
ficial in the case of closely related languages.

5 Conclusions

In this paper we described our system for the
CoNLL–SIGMORPHON 2018 shared task on
Universal Morphological Reinflection, Task 2,
which achieved the best performance out of all
systems submitted, an overall accuracy of 49.87.
We showed in an ablation study that this is due to
three core innovations, which extend a character-
based encoder-decoder model: (1) a wide con-
text window, encoding the entire available con-
text; (2) multi-task learning with the auxiliary task
of MSD prediction, which acts as a regulariser;
(3) a multilingual approach, exploiting informa-
tion across languages. In future work we aim to
gain better understanding of the increase in vari-
ance of the results introduced by each of our mod-
ifications and the reasons for the varying effect of
multi-task learning for different languages.
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Abstract

This paper investigates the attempts to augment
neural-based inflection models with character-
based language models. We found that in most
cases this slightly improves performance, how-
ever, the effect is marginal. We also propose
another language-model based approach that
can be used as a strong baseline in low-resource
setting.

1 Introduction

Morphological inflection is a task of automatic
reconstruction of surface word form given its
source form, called lemma, and morphological
characteristic of required form. For example, in
Spanish the input word contar together with fea-
tures v;fin;ind;imp;pst;3;pl should be transformed
to contaban. The obvious way to solve such a
task is to handcode transformations using finite-
state rules. However, this approach requires an
expert knowledge of the language under consid-
eration and can be extremely time-consuming for
the languages with complex morphology. There-
fore a machine learning algorithm should be devel-
oped to efficiently solve this task for any language.
Such an algorithm must be able to generalize from
known lemma-features-word triples to previously
unseen ones, mimicking human behaviour when
inflecting a neologism in its native language or
an unknown word in a foreign one. In this set-
ting automatic inflection becomes an instance of
string transduction problem, which makes condi-
tional random fields a natural baseline model as
suggested in (Nicolai et al., 2015). Another pop-
ular approach is to predict transformation pattern,
either as a pair of prefix and suffix changes as
used in the baseline model for Sigmorphon 2018
Shared Task (Cotterell et al., 2018). For example,
consider a Czech adjective krásný and its superla-
tive form nejkrášnejšı́. The inflection pattern can

be encoded as a pair of prefix rule $ → $nej and
a suffix rule ý→ ejšı́. Such encoding is, however,
too weak to deal with infixation and root vowel al-
terations, required, for example, for Spanish verb
volver and its +Pres+Sg+1 form vuelvo. An ab-
stract paradigm approach (Ahlberg et al., 2015;
Sorokin, 2016) compresses this transformation to
1+o+2+er#1+ue+2+o, where digits stand for vari-
ables (the parts of verb stem), and constant frag-
ments define the paradigm. In both cases in order
to predict the inflected word form one suffices to
guess the transformation pattern, thus solving a
standard classification problem. Both mentioned
models (CRFs and abstract paradigms) were quite
successful in Sigmorphon 2016 Shared Task (Cot-
terell et al., 2016), however, they were clearly out-
performed by neural network approaches.
Indeed, string transduction problems are suc-

cessfully solved using neural methods, for exam-
ple, inmachine translation. Thework of (Kann and
Schütze, 2016) adopts the seq2seq model with soft
attention of (Bahdanau et al., 2014). It defeated
not only non-neural systems mentioned earlier, but
also other neural approaches. It shows that at-
tention mechanism is crucial for word inflection.
However, in contrast tomachine translation, a sym-
bol of output word is less prone to depend from
multiple input symbols, than a translated word
from multiple source words. Consequently, the at-
tention weight is usually concentrated on a single
source symbol, being more a pointer than a dis-
tributed probability mass. Moreover, this pointer
traverses the source word from left to right in order
to generate the inflected form. All that motivated
the hard attention model of (Aharoni and Gold-
berg, 2017), which outperformed the soft attention
approaches. The key feature of this model is that
it predicts not only the output word, but also the
alignment between source and target using an ad-
ditional step symbol which shifts the pointer to the
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next symbol. This model was further improved
by (Makarov et al., 2017), whose system was the
winner of Sigmorphon 2017 evaluation campaign
(Cotterell et al., 2017). The approach of Makarov
et al. was especially successful in low and medium
resource setting, while in high resource setting it
achieves an impressive accuracy of over 95%1.

Does it mean that no further research is re-
quired and hard attention method equipped with
copy mechanism is the final solution for auto-
matic inflection problem? Actually, not, since the
quality of the winning approach was much lower
on medium (about 85%) and low (below 50%)
datasets. This lower quality is easy to explain
since in low resource setting the system might
even see no examples of the required form2 or
observe just one or two inflection pairs which do
not cover all possible paradigms for this partic-
ular form. For example, Russian verbs has sev-
eral tens of variants to produce the +Pres+Sg+1
form. Consequently, to improve the inflection ac-
curacy the system should extract more information
from the whole language, not only the instances
of the given form. This task is easier for aggluti-
native languages with regular inflection paradigm:
to predict, say, the +Pres+Sg+1 form in Turkish,
the system has just to observe several singular verb
form (not necessarily of the first person) to extract
the singular suffix and several first person form
(of any number and tense). In presence of fusion,
like in Russian and other Slavonic languages, the
decomposition is not that easy or even impossible.
However, this decomposition is already realised

in model of (Makarov et al., 2017) since the gram-
matical features are treated as a list of atomic ele-
ments, not as entire label. A new source of infor-
mation about the whole language are the laws of
its phonetics. For example, to detect the vowel in
the suffix of the Turkish verb one do not need to
observe any verbs at all, but to extract the vowel
harmony patterns from the inflection of nouns. A
natural way to capture the phonetic patterns are
character language models. They were already
applied to the problem of inflection in (Sorokin,
2016) and produced a strong boost over the base-
line system. The work of Sorokin used simple
ngram models, however, neural language models

1Averaged over all languages of (Cotterell et al., 2017)
dataset

2it was provided with 100 inflection pairs for entire lan-
guage, which is often several times lower than the number of
possible grammeme combinations

(Tran et al., 2016) has shown their superiority over
earlier approaches for various tasks.
Summarizing, our approach was to enrich the

model of (Makarov et al., 2017) with the language
model component. We followed the architecture
of (Gulcehre et al., 2017), whose approach is sim-
ply to concatenate the state of the neural decoder
with the state of the neural language model before
passing it to the output projection layer. We ex-
pected to improve performance especially in low
and medium resource setting, however, our ap-
proach does not have clear advantages: our joint
system is only slightly ahead the baseline system of
(Makarov et al., 2017) for most of the languages.
We conclude that the languagemodel job is already
executed by the decoder. However, given the vi-
tality of language model approach in other areas
of modern NLP (Peters et al., 2018), we describe
our attempts in detail to give other researchers the
ideas for future work in this direction.

2 Model structure

2.1 Baseline model
As the state-of-the-art baseline we choose the
model of Makarov et al. (Makarov et al., 2017),
the winner of previous Sigmorphon Shared Task.
This system is based on earlier work of Aharoni
and Goldberg (Aharoni and Goldberg, 2017). We
briefly describe the structure of baselinemodel (we
call it AGM-model further) and refer the reader to
these two papers for more information. AGM-
model consists of encoder and decoder, where an
encoder is just a bidirectional LSTM. Each ele-
ment of the input sequence contains a 0-1 encod-
ing of a current letter and two LSTMs traverse this
sequence in opposite directions. After encoding,
each element of obtained sequence contains infor-
mation about current letter and its context.
Themain feature of the encoder is that it operates

on the level on alignments, not on the level of letter
sequences. Assume a pair volver-vuelvo appears in
the training set. The natural alignment is

v o l v e r

v u e l v o

It is transformed to the source-target pair in Fig-
ure 1. Here the step symbol denotes pointer shift,
for precise algorithm of transformation see (Aha-
roni and Goldberg, 2017):
The decoder is one-directional LSTM. It obtains
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begin v step u e step l step v step o step step end
begin v v o o o l l v v e e r end

Figure 1: Transformation of alignment to source-target pair.

as input the lower string of Figure 1. Let i be the
number of current timestep and j be current posi-
tion in the input string. On i-th step the decoder
takes a concatenation of 3 vectors: xj — the j-th
element in the output of the encoder, f̃ = Wfeatf
— the embedding of the grammatical feature vec-
tor and gi =Wembyi−1 —the embedding of previ-
ous output symbol. The feature vector is obtained
as 0/1-encoding of the list of grammatical features.
We actually take the concatenation of output vec-
tors for d ≥ 1 previous output symbols as yi−1, in
our experiments d was set to 4.

On each step the decoder produces a vector zi
as output and propagates updated hidden state vec-
tor hi to the next timestep. zi is then passed to a
two-layer perceptron with ReLU activation on the
intermediate layer and softmax activation on the
output layer, which produces the output distribu-
tion pi over output letters, formally:

ẑi = max (Wpzi + bp, 0),
pi = softmax(Woẑi + bo),
yi = argmaxk pik

If yi is the index of step symbol, we move the
pointer to the next input letter. We also use the copy
gate from (Makarov et al., 2017): since the neural
network copies the vast majority of its symbols,
the output distribution p̂i is obtained as a weighted
sumof singleton distributionwhich outputs current
input symbol and the preliminary distribution pi
specified above. The weight σi is the output of
another one-layer perceptron:

σi = sigmoid(Wσzi + bσ),
p̂i = σiI(k = cj) + (1− σi)pi,
yi = argmaxk p̂ik

2.2 Character-based model
Our proposal is to explicitly equip the decoder with
the information from the character-based language
model. We suppose it will help the model to avoid
outputting phonetically implausible sequences of
letters. We choose the simplest possible architec-
ture of the language model, namely, on each step it
takes a concatenation of d previous symbol embed-
dings ui = [gi−d, . . . , gi−1] and applies an LSTM

cell to obtain a vector vi and update LSTM hid-
den state hi. vi is propagated through a two-layer
perceptron to predict the next output symbol anal-
ogously to the output layer of the baseline model:

ûi = max (WLM
p ui + bLMp , 0),

pLMi = softmax(WLM
o ûi + bLMo ),

yi = argmaxk p
LM
ik

The model is trained to predict next output sym-
bol separately from the basic model. In principle,
one can use more complex neural architectures,
for example, a multilayer LSTM or apply atten-
tion mechanism. However, our preliminary ex-
periments have shown that attention over recent
history as in (Tran et al., 2016) leads to slightly
worse performance.
To join the baseline model and the language

model we concatenate the decoder output zi with
the analogous vector from the language model
zLMi . The language model is conditioned over
previously output vectors (excluding step symbol).
That is the fusion mechanism as used in (Gulcehre
et al., 2017). We also experimented with concate-
nating the pre-output vectors ẑi, ẑLMi , however, the
former variant leads to slightly better performance.
To avoid exposure bias we mask language model
state with all zeros with the probability of 0.4 (it
teaches the model to recover from language model
errors).

3 Data and implementation

3.1 Implementation
The initial alignment was obtained using longest
common subsequence (LCS) method. Then this
alignment was optimized using Chinese Restau-
rant process as in (Cotterell et al., 2016). The
optimization phase did 5 passes over training data.
The aligner trained on the training set was also
used to align the validation data.
We implemented our model using Keras library

with Tensorflow backend3. For all the setting we
used the encoder with 96 hidden units in each di-
rection, the decoder contained 128 units and the

3https://github.com/AlexeySorokin/
Sigmorphon2018SharedTask
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pre-output projection layer was of dimension 96.
Morphological features were embedded to 48 di-
mensions. We used batch size of 32when training,
the batches contained the words of approximately
the same size to reduce the amount of padding. We
trained the model for 100 epochs with Adam opti-
mizer, training was stopped when the accuracy on
the validation data did not improve for 15 epochs.
During decoding, the beam search of width 10was
applied.
When learning the weights of a language model,

we used the same training and validation sets as for
inflection network. The language model used his-
tory of 5 symbols and contained 64 units in LSTM
layers. The number of layers was set to 2. The
rate of dropout was the same as for basic model.
The model was trained for 20 epochs, training was
stopped when perplexity on validation set did not
improve for 5 epochs.

3.2 Dataset
We tested our model in Sigmorphon 2018 Shared
Task (Cotterell et al., 2018). For an extended de-
scription we refer the reader to this papers. The
dataset contained three subsets: high, medium and
low. The size of the training dataset was 10000
words in the high subset4, 1000 in medium and
100 in low. The dataset also contained a devel-
opment set containing 1000 instances most of the
time, for all languages we used this subset as val-
idation data. Overall, there were 86 languages in
the high setting, 102 in medium and 103 in low.

4 Results and discussion

We submitted three systems, one replicating the
algorithm of (Makarov et al., 2017), the second
equipped with language models. The third one
used only the language models: we extracted all
possible abstract inflection paradigms for a given
set of grammatical features and created a set of pos-
sible candidate forms applying all paradigms to the
lemma. For example, consider the word делать
and paradigms 1+ать#1+ет, 1+ать#1+ит, 1+ь#1
and 1+чь#1+жет; the first three produce the forms
делает, делит, делат, while the fourth yields
nothing since the given word does not end in -чь.
Then all these forms are ranked using sum of log-
arithmic probabilities from forward and backward
language models.

4For several languages it was smaller, but exceeded 1000
instances

Our results are mostly negative, since our
language-model based architecture produced only
marginal improvement over the model of Makarov
et al. which it is based on. Moreover, for the low-
resource setting the performance of both system
was mediocre, even our third paradigm-based sys-
tem was able to overperform them despite its obvi-
ous weakness. The results are presented in Table
15, M1 stands for the baseline model and M2 – for
the LM-based one. The numbers in brackets count
the number of large gaps (more than 2% for high
dataset, 3% for medium and 5% for low).
We observe that the influence of language mod-

els is marginal, the strength of this effect grows
with the size of training data, which contradicts
our expectations. In low and medium setting we
expected slightly higher performance, which prob-
ably implies that our choice of hyperparameters is
suboptimal. We made several observations when
comparing our two models: first, the LM-based
one demonstrates the highest quality after reduc-
ing output history of the baseline model from 4 to
2 and setting LM state dropout to 0.4. It shows
that memory containing last output symbols plays
the role of a languagemodel for local dependencies
and the memory of LSTM encoder – for global and
often there is no need to duplicate them. However,
most of the time LM-based variant convergesmuch
faster which implies that language model learns to
throw out incorrect sequences of letters, but seems
to overfit in the same time. In any case, these
questions require future investigation.
However, language models demonstrate its util-

ity even when little training data is available. The
results for low subtask (see 2) demonstrate that
they are powerful enough to discriminate between
correct and incorrect variants proposed by the ab-
stract paradigm generator. This is especially im-
pressive since this method simply returns the input
form in case it has not seen the given set of gram-
matical features. So it cannot recover the value
of missing paradigm cells generalizing other ele-
ments of the paradigm table, which clearly limits
its performance. Moreover, even for an observed
grammatical values a small training set does not
cover all possible inflection patterns, either due to
their irregularity and multiplicity, like in case of
Arabic or Latin, or complex phonetic rules as in
case of Navajo. Nevertheless, this approach clearly

5We measured accuracy on the test subset of the dataset
and averaged the scores over all languages.
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Dataset M1 M2 M1 > M2 M2 > M1

high 94.23 94.56 27(2) 45(6)
medium 79.37 79.51 40(8) 47(12)
low 39.13 39.18 49(7) 50(10)

Table 1: Comparison of baseline and LM-equipped models

beats our neural models since it requires less data
when the number of possible inflection patterns is
small.

So language models are actually good in rank-
ing inflection variants even in case of little data
available. What remains is to generate enough
candidate forms to improve their recall. We tried
to solve this problem by adding top 10 candidates
proposed by the neural network model to the list
of possible outputs. However, this approach fails:
for most languages the results fall below the level
of neural models themselves. Doing a quick error
analysis, we found that in low setting neural net-
works often are not able to discriminate between
different forms, predicting a correct variant for an-
other tense or person. The language model also
does not learn enough well to distinguish differ-
ent inflectional affixes due to the same lack of data.
Therefore it favors either a shorter form or the end-
ings it has observed more frequently, even if these
endings does not refer to the set of features under
consideration. On the contrary, abstract paradigms
simply do not produce these variants, making the
choice more easy. A possible workaround may be
to predict the set of grammatical features for the
generated form, however, we have not implemented
this method due to the lack of time.
This reranking approach appears to be less suc-

cessful for medium and high datasets. In this case
the number of proposed candidate paradigms be-
comes too high. Some of these paradigms gener-
ate phonetically plausible forms but are applicable
only in particular conditions not satisfied by a given
word. For example, consider the Russian input
делать;v;prs;ind;3;sg; the paradigm 1+ать#1+ит
produces the form делит, which is correct, but
for another verb делить. Therefore the applica-
tion of language models in case of more training
data looks problematic: we tried to use them to fil-
ter out forms generated by neural models without
reranking remaining candidates. That marginally
improved performance for complex languages like
Navajo and Latin but had a slight negative effect in
most other cases.
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5 Conclusion

We investigated the applications of character lan-
guage models to automatic reinflection. Despite
their usefulness for other task, they do not pro-
duce significant boost, though improve the quality
for all the settings. However, reranking-based ap-
proach, which also uses language models, reaches
slightly higher scores in case of low amount of
training data. In case of larger training sets the
phonetic plausibility is effectively checked by the
neural decoder itself without applying additional
mechanisms. The relative success of paradigm-
based approach in low-resource setting implies that
neural networks lack control mechanism provided
by abstract paradigms. Therefore the combina-
tion of neural networks with finite state techniques
seems a perspective direction of study. Another
promising direction not touched in the currentwork
are different methods of data augmentation, either
by training on data from related languages, or by
generating additional training instances. At least
for the second approach character language mod-
els seem useful to check the quality of generated
source-target pairs.
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Abstract

This paper describes the systems submit-
ted by IIT (BHU), Varanasi/IIIT Hyderabad
(IITBHU–IIITH) for Task 1 of CoNLL–
SIGMORPHON 2018 Shared Task on Uni-
versal Morphological Reinflection (Cotterell
et al., 2018). The task is to generate the in-
flected form given a lemma and set of morpho-
logical features. The systems are evaluated on
over 100 distinct languages and three different
resource settings (low, medium and high). We
formulate the task as a sequence to sequence
learning problem. As most of the characters
in inflected form are copied from the lemma,
we use Pointer-Generator Network (See et al.,
2017) which makes it easier for the system
to copy characters from the lemma. Pointer-
Generator Network also helps in dealing with
out-of-vocabulary characters during inference.
Our best performing system stood 4th among
28 systems, 3rd among 23 systems and 4th
among 23 systems for the low, medium and
high resource setting respectively.

1 Introduction

Morphological Inflection is the process of inflect-
ing a lemma according to a set of morphologi-
cal features so that the lemma becomes in accor-
dance with other words in the sentence. It is useful
for alleviating data sparsity, especially in morpho-
logically rich languages during Natural Language
Generation. For example, Minkov et al. (2007)
translate words from the source language to lem-
mas in the target language and then use Morpho-
logical Inflection as a post-processing step to make
the words of the output sentence in agreement with
each other. Not only their approach reduces the
data sparsity by decreasing the number of candi-
date words while translating, it also gives better
results.

∗This research was conducted during the authors intern-
ship at IIIT Hyderabad.

CoNLL–SIGMORPHON 2018 Shared Task on
Universal Morphological Reinflection consisted of
two tasks. Participants could compete in either or
both of the tasks. We participated in Task 1 only.
The task was to build a system which could inflect
a lemma given a set of morphological tags. The
systems were evaluated on over 100 distinct lan-
guages, out of which 10 were surprise languages.
An example showing input and the expected out-
put of the system is given below.

(touch,V;V.PTCP;PRS)→ touching

To assess the system’s ability to generalize in dif-
ferent resource settings, three varying amounts of
labeled training data (low, medium, high) were
given. The systems were evaluated separately for
each language and the three data quantity con-
ditions. Accuracy (the fraction of correctly pre-
dicted forms) and the average Levenshtein dis-
tance between the prediction and the truth across
all predictions were used as metrics. An aggre-
gated performance measure separate for each of
the resource setting was obtained by averaging the
results for individual languages.

Morphological Inflection is accomplished by
different morphological processes such as prefixa-
tion, infixation, suffixation (attaching bound mor-
pheme in front, within and at the end of stem re-
spectively) and ablaut depending on the language.
As the systems were evaluated on over 100 dis-
tinct languages, we were motivated to use neural
network based approaches because they do not re-
quire any manual feature engineering. But neu-
ral networks require a lot of training data to work.
We try to address this challenge by designing neu-
ral network architectures which work well even on
the low resource setting of the task.

Our system is based on attention based encoder-
decoder models (Bahdanau et al., 2014). The
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Figure 1: Neural network architecture for our system. The two encoders are shown at the top, while the decoder is
shown at the bottom. At each time step, the decoder computes attention distribution over both the lemma and the
tags separately. Attention mechanism is shown by the dotted lines (darker colour corresponds to more weight). A
scalar - generation probability pgen ∈ [0, 1] (shown as the square, the lighter the colour the less the value) is also
calculated at each time step, which corresponds to how likely a character will be generated from the vocabulary
instead of a character being copied from the lemma.

lemma and the tags are encoded using two sepa-
rate encoders. While decoding, the decoder reads
relevant parts of the lemma and the tags using at-
tention mechanism. As most of the characters in
the inflected form are copied from the lemma, it is
necessary to design a system with strong tendency
to copy. We use Pointer-Generator Network (See
et al., 2017) which facilitates copying of charac-
ters of lemma and tackles the problem of out-of-
vocabulary tokens during prediction. Compared
to other similar performing systems, our system is
trained end-to-end, doesn’t require data augmen-
tation techniques and uses soft attention over hard
monotonic attention which makes it more flexible.

Our best performing system outperforms the
baseline by 14.21%, 22.41% and 19.13% for the
low, medium and high resource settings respec-
tively. It stood 4th among 28 systems, 3rd among
23 systems and 4th among 23 systems for the low,
medium and high data conditions respectively.

The remainder of this paper is organized as fol-
lows. We present prior work on Morphological In-
flection in Section 2. We describe our system in
Section 3. The results of the shared task are pre-
sented in Section 4. In Section 5, we present ab-
lation studies and discuss the contribution of the
specific design decisions we made to the perfor-
mance of our systems. We conclude the paper with
Section 6.

2 Background

Traditional approaches for morphological inflec-
tion involve crafting hand-engineered rules. Al-
though these rules offer high accuracy, they are

very expensive to create.
Machine learning based approaches treat mor-

phological inflection as a string transduction task
(Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015). These
approaches extract rules automatically from the
data, but they still require language specific fea-
ture engineering.

Neural network based approaches successfully
solve this problem. These approaches require
no feature engineering and the same architecture
works for different languages. Faruqui et al.
(2016) were the first to formulate morphological
inflection as neural sequence to sequence learn-
ing problem (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2014). Kann and Schütze
(2016) improved on their approach by using a sin-
gle model instead of separate models for each mor-
phological feature. They fed morphological tags
into the encoder along with the sequence of char-
acters of lemma. They also used attention mecha-
nism (Bahdanau et al., 2014). Aharoni and Gold-
berg (2017) present an alternative to the soft at-
tention in form of hard monotonic attention which
models the almost monotonic alignment between
characters in lemma and the inflected form.

The best performing system (Makarov et al.,
2017) of the previous edition of this shared task
extended the hard monotonic attention model of
Aharoni and Goldberg (2017) with a copy mech-
anism (HACM model). To deal with low training
data especially in the low and medium resource
settings, some teams used data augmentation tech-
niques (Kann and Schütze, 2017; Bergmanis et al.,
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2017; Silfverberg et al., 2017; Zhou and Neubig,
2017; Nicolai et al., 2017).

3 System Description

In this section, we describe our system in de-
tail. We report the neural network architecture, the
training process, the hyperparameters and our sub-
missions.

3.1 Neural network architecture
Our neural network architecture is based on
Pointer-Generator Network (See et al., 2017) with
some subtle differences.

Characters of the lemma ci along with the ad-
ditional start and stop characters are fed one by
one into a bidirectional LSTM encoder producing
a sequence of hidden states hli . Similarly, using a
separate bidirectional LSTM encoder, the tags tgi
are encoded and another sequence of hidden states
htgi is obtained.

We use a unidirectional LSTM as the decoder.
The decoder’s hidden state si is initialised by ap-
plying an affine transformation on the concatena-
tion of the last hidden states of the lemma and the
tag encoders. As the input and output sequences
have different semantics, this affine transforma-
tion gives the model the ability to learn transfor-
mation of semantics from input to output (Faruqui
et al., 2016).

s0 =Winitial[hlN ;htgN ] + b (1)

While decoding, at each time step t, the decoder
computes an attention distribution over the lemma
and the tag separately denoted as atl and attg (Bah-
danau et al., 2014).

etli = vT tanh(Whl
hli +Wslst−1 + bl) (2)

ettgi = vT tanh(Whtghtgi +Wstgst−1 + btg)

(3)

atl = softmax(etl) (4)

attg = softmax(ettg) (5)

The context vectors h∗l and h∗tg are computed as
the weighted sum over the encoder hidden states
hli and htgi with the attention distribution mass atl
and attg as weights.

h∗lt =
∑

i

atlihli (6)

h∗tgt =
∑

i

attgihtgi (7)

The combined context vector is obtained by sim-
ply concatenating the lemma and the tag context
vector.

h∗t = [h∗lt ;h
∗
tgt

] (8)

The combined context vector h∗t and the embed-
ding of character predicted at the previous time
step, yt−1 (while training to speed up convergence
we use the ground truth label y∗t−1 instead) is given
as input to the decoder. At the first time step, start
character is given as input in place of yt−1.

st = f(st−1, h∗t , yt−1) (9)

where f is a nonlinear function.
A probability distribution over the characters in

the vocabulary is calculated which corresponds to
how likely will a particular character be generated
(if a character is generated at all).

Pvocab = softmax(V [st;h
∗] + b) (10)

At each time step, a generation probability
pgen ∈ [0, 1] is calculated. The generation prob-
ability determines if the decoder will generate a
character from the vocabulary or copy a character
from the lemma.

pgen = σ(whh
∗
t + wsst + wyyt−1 + b) (11)

Note that here pgen is calculated using yt−1
(the embedding of output produced at the previ-
ous time step) instead of the decoder input xt as in
See et al. (2017).

The probability of predicting a character c is
computed as the sum of probability of generating
c weighted by the generation probability pgen and
the total attention distribution over c weighted by
the probability of copying it (1− pgen) .

P (c) = pgenPvocab(c)+(1−pgen)
∑

i:ci=c

atli (12)

The decoder keeps predicting characters until the
stop character is predicted or a fixed number of
time steps are reached.

3.2 Training

We use negative log likelihood to compute the
loss. The loss for time step t, where c∗t is the target
character is given by,

losst = − logP (c∗t ) (13)
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low medium high
embedding size 100 100 300

hidden units 100 100 100
dropout probability (p) 0.5 0.5 0.3

initial epochs (e1) 300 80 60
extended epochs (e2) 100 20 10

Table 1: Hyperparameters for low, medium and high
resource settings.

The loss for the overall sequence is,

loss =
1

T

T∑

t=0

losst (14)

We use Adam Optimiser (Kingma and Ba,
2014) with initial learning rate 0.001 and batch
size 32 to train the neural network. To deal with
exploding gradient problem, we clip the norm
computed over all the gradients together to 3. We
apply dropout (Srivastava et al., 2014) with prob-
ability p over embeddings and the encoder hidden
states.

We use early stopping to prevent overfitting. A
portion of the development set is used as the val-
idation set. After each epoch, performance on
validation set is calculated. Initially the model
is trained on e1 epochs. If the highest perfor-
mance on validation set is obtained within e2 re-
cent epochs, the model is further trained for e2
epochs. This goes on until performance on vali-
dation set stops improving.

Single layer LSTMs were used as encoders and
decoders to reduce number of parameters. Opti-
mal size of embeddings and the number of hidden
units in LSTMs were determined based on the per-
formance of the model on a subset of languages in
development set.

The values for hyperparameters p, e1, e2, em-
bedding size and hidden units of LSTM are given
in Table 1.

We used PyTorch for implementing the net-
work. The code for the system is available at
https://github.com/abhishek0318/
conll-sigmorphon-2018.

3.3 Submissions
We made a total of two submissions. For the first
submission, we trained only one system for each
language and data resource setting pair. We used
ensembling technique for the second submission.
We trained 5, 3 and 1 system(s) for each language

System 1 System 2 Baseline
low 49.79% 52.60% 38.20%

medium 82.90% 84.19% 61.78%
high 94.43% 94.43% 75.30%

Table 2: Average accuracy of the system on the test
set over all the languages for low, medium and high
resource settings respectively.

in low, medium and high data resource settings re-
spectively. Their predictions were combined using
hard voting.

4 Results

Average accuracy of the system over all the lan-
guages in a data resource setting is presented in
Table 2.

Our best performing system outperforms the
baseline by very large margins - 14.21%, 22.41%
and 19.13% for the low, medium and high resource
settings respectively.

We observe that using ensembling technique (in
the second submission) gives a boost of few per-
centage points in the accuracy over the first sub-
mission, where ensembling is not used.

5 Ablation Studies

In this section, we investigate how difference sys-
tem design choices influenced the performance of
the system. As reasonable performances were ob-
tained for medium and high resource settings in
previous editions of the shared task, we focus our
attention to the low resource setting and compare
models on this setting.

5.1 Pointer Generator Network
We examine the performance gain obtained by
using Pointer-Generator Network, the essence of
our system. We compare the performance of
a simple attention based neural encoder-decoder
model with and without using ideas from Pointer-
Generator Network.

Consider the architecture proposed by Kann and
Schütze (2016) for the task of morphological in-
flection. The architecture is based on simple atten-
tion based encoder-decoder model. The source se-
quence si consists of the characters of the lemma
followed by the tags.

We include ideas from Pointer-Generator Net-
work into this model. At each time step, the de-
coder calculates generation probability pgen (See
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et al., 2017). The network uses the computed at-
tention distribution to determine which character
from the lemma it should copy. Because there is
only a single encoder, the attention distribution is
over both the lemma and the tags. The tags there-
fore have some attention over them. To use Equa-
tion 12, we must normalise the attention weights
of the characters, so that we have a new attention
distribution over the set of characters.

P (c) = pgenPvocab(c) + (1− pgen)
∑

i:si=c a
t
i∑

i:si∈C a
t
i

(15)
We use modified form of Equation 12 as shown
above to calculate P (c). Here C is the set of char-
acters.

For the same hyperparameters, the architecture
used in Kann and Schütze (2016) gives 21.99%
average accuracy as compared to the architecture
including ideas from Pointer-Generator Network,
which gives 44.02% average accuracy tested on
development set over all the languages for low
resource setting. Thus using Pointer Generator
Network increases the performance of the system
tremendously for low resource setting.

5.2 Separate Encoder for Tags

We investigate the benefit of using a separate en-
coder for the tags, instead of encoding them using
a same encoder as in Kann and Schütze (2016).

Consider the neural network architecture with
two separate encoders for the lemma and the tags.
At each timestep while decoding, attention distri-
bution is computed over the lemma. The last hid-
den state of the tag encoder is used as the represen-
tation of the set of tags. It along with the context
vector of the lemma is fed to the decoder at each
time step. We compare the performance of this
architecture, to the architecture described in Sec-
tion 5.1 (which uses single encoder for the lemma
and tags and Pointer-Generator Network). The ar-
chitecture with a single encoder obtains 44.02%
average accuracy, while the one with two separate
encoders achieves 48.18% average accuracy tested
on the development set for low resource setting.

A possible explanation for the difference in the
performance is that the lemma and the tags are
completely separate entities and a single encoder
can’t encode them correctly. We were motivated
to represent the tags using embeddings as embed-
dings have more representational power compared
to zeros and ones in case of one hot encoding. As

the number of tags vary for each example, using
LSTM to encode them seemed apt. Note that the
representation obtained using this approach is not
order invariant. Using order invariant representa-
tions (Vinyals et al., 2016; Zaheer et al., 2017) is
left as future work.

5.3 Attention over Tags
We inspect whether using attention over the se-
quence of tags as compared to using a fixed vec-
tor representation gives better results. We consider
the architecture introduced in Section 5.2. Instead
of using last hidden state of the encoder to rep-
resent the tags, we use attention over tags too and
compare the performance. Note this is same archi-
tecture we described in 3.1. Using attention over
tags leads to average accuracy of 49.08% as com-
pared to 48.18% on the development set for low
resource setting.

This can explained as by using attention mech-
anism, the model doesn’t need to compress the in-
formation of all the tags into a single vector. It can
attend to a specific tag based on the decoder state.

5.4 Hierarchical Attention
We investigate if using Hierarchical Attention (Li-
bovický and Helcl, 2017) instead of just concate-
nating the two context vectors for lemma and the
tags as done in Equation 8 proves advantageous.
Libovický and Helcl (2017) proposed Hierarchi-
cal Attention technique for combining the context
vectors in case of multiple source sequences.

ah = σ(v tanh(wh∗
l
h∗l + wh∗

tg
h∗tg + wsst + b))

(16)

h∗t = ahh
∗
lt + (1− ah)h∗tgt (17)

After computing the individual context vectors, a
scalar ah ∈ [0, 1] is calculated. This scalar cor-
responds to how the attention should be divided
between the lemma and the tag. The combined
context vector is obtained by taking the weighted
average, as shown above.

Compared to the concatenating the context vec-
tors (as done in our submission), using hierarchi-
cal attention gives worse results (46.60% average
accuracy as compared to 49.08% average accuracy
on development set for low resource setting). This
is possibly because of the increase in number of
parameters to learn and the additional non lineari-
ties such as sigmoid and tanh which lead to van-
ishing gradient problem.
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6 Conclusion

In this paper, we described IITBHU–IIITH sys-
tem for Task 1 of CoNLL–SIGMORPHON 2018
Shared Task. Our system is one of the top per-
forming systems in this edition of the shared task
and beats the baseline by large margins. Even
though our approach was completely based on
neural networks, our system works very well for
low resource setting.

We conclude that neural network architectures
with explicit copying mechanism (like Pointer-
Generator Network) perform well in Morpholog-
ical Inflection task even on low resource setting.
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Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Abstract

In this paper, we describe our three submis-
sions to the inflection track of SIGMORPHON
shared task. We experimented with three
models: namely, sequence to sequence model
(popularly known as seq2seq), seq2seq model
with data augmentation, and a multilingual
multi-tasking seq2seq model that is multilin-
gual in nature. Our results with the multilin-
gual model are below the baseline in the case
of both high and medium datasets.

1 Introduction

Morphological inflection is the task of predicting
the target inflected form from a lemma and a bun-
dle of inflectional features. For instance, given the
Norwegian lemma hus “house” and the morpho-
logical features N, DEF, PL the task is to pre-
dict husene “houses”.

The SIGMORPHON shared task for 2018 (Cot-
terell et al., 2018) provided three data scenarios
consisting of high (10000), medium (1000), and
low (100) examples. This paper described the
three systems that we submitted to the inflection
track in the SIGMORPHON shared task. All our
models are based on encoder-decoder model intro-
duced by Faruqui et al. (2016) for the morpholog-
ical inflection task. We trained our models on all
the data sizes and tested on the test datasets pro-
vided by the organizers.

2 Background

The morphological (re)inflection task has been
studied mainly in last two SIGMORPHON shared
tasks (Cotterell et al., 2016, 2017). Most of the
morphological inflection models are variants of
sequence to sequence models applied by Faruqui
et al. (2016) to morphological reinflection.

The input to the model is the source word
prepended with relevant morphological tags, the

output of the model is the target word for the in-
flection task. For re-inflection task, the input in-
cludes the target tags as well. The success of the
system seems to depend highly on ‘training data
enhancement’. For different tracks (with differ-
ent restrictions on data used) of the 2016 shared
task, Kann and Schütze (2016) developed new
techniques to increase the number of training in-
stances. The methods used mostly work well for
re-inflection task, since the re-inflection task is
symmetric, and one can invert the source and tar-
get forms. In the subsequent year’s shared task
for 2017 (Cotterell et al., 2017), multiple authors
explored new data enhancement techniques (Kann
and Schütze, 2017; Bergmanis et al., 2017; Sil-
fverberg et al., 2017) to improve the performance
of the seq2seq models in medium and low resource
scenarios. The work presented in this paper is
based on the work of the simple encoder-decoder
system of Faruqui et al. (2016).

3 Models

In this section, we describe the three different
models and the feature representations used in our
experiments.

Morphological features In this paper, we enu-
merated all the possible features in Unimorph
(Kirov et al., 2018) and encoded the feature bundle
as multi-hot feature vector. We experimented with
both one-hot feature vectors and multi-hot fea-
ture vectors. In our development experiments, we
found that multi-hot feature vectors have lower di-
mension than one-hot feature vectors and yielded
similar results.

Seq2seq-baseline This model consists of two
parts: bidirectional encoder and decoder. In this
model, each character is represented as a one-hot
vector whereas the morphological features are rep-
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resented as multi-hot feature bundle. The encoder
consists of LSTM cells that transform a sequence
into a continuous vector. The final time step’s hid-
den state and the cell state are used to initialize
the decoder LSTM network. The decoder LSTM
network predicts a character at each time step by
passing the output of the decoder LSTM through
a softmax layer. The output of the softmax layer
is a predicted character that is input along with the
multi-hot morphological feature vector to the next
timestep. We intended this model to be the base-
line model in our experiments.

Augment-Seq2seq This model is a variation of
the baseline encoder-decoder model where the
training data is augmented with random strings
generated with weights proportional to the charac-
ter probabilities. This model is similar to the data
augmentation model of Silfverberg et al. (2017)
who generate new training instances by randomly
sampling characters from unigram distributions.
In our model, we generate a training instance of
the same length as the original training instance.
We also experimented with

Seq2seq-MTL-global In this model, we train a
single encoder-decoder model which is trained to
perform both language identification and language
modeling as auxiliary tasks apart from generating
the target inflection. The encoder LSTM is trained
to predict the next character in the source word at
each time step. The final hidden state of the en-
coder is trained to predict the language of the ex-
ample. This model differs from the other seq2seq
models in that the model is multilingual (or global)
and attempts to predict target inflections for all
the languages in the test dataset. The seq2seq-
mtl-global model is similar to the model of Kann
et al. (2018) and Bergmanis et al. (2017) who train
their attention enhanced encoder-decoder model
using an auxiliary autoencoder objective. In con-
trast, our model uses both prediction of subse-
quent character and language prediction as auxil-
iary tasks.

3.1 Experimental settings
We trained our models at all the three resource set-
tings: high, medium, and low. In all our experi-
ments, the maximum length of both source and tar-
get strings are fixed to 30 and padded with zeroes
at the end. Both the encoder and decoder LSTM
units consisted of 256 hidden units. All the models
were trained with Adam (Kingma and Ba, 2014)

with minibatches of size 32 or 128 depending on
the size of the data; and, used a early-stop with a
patience of 5 to prevent overfitting.

4 Results

Participating in the competition with less than
three weeks at hand, we did not have much time
to explore the hyperparameter settings required
to tune our models. In our development experi-
ments, we found that the baseline seq2seq model
performed the best among the tested models. We
observed similar results with the test dataset also.
We present the average accuracies of all the mod-
els at high and medium datasets in table 1. Our re-
sults are lower than the baseline system. We also
present the top-5 and the bottom-5 languages’ ac-
curacies of the three models on high and medium
data sizes in table 2. We did not present the results
for low sized datasets since all the models had ac-
curacies lower than 5%. Both the seq2seq and
augmented-seq2seq systems performed the worst
on languages such as Zulu, Swahili, and Basque.
On the other hand, the MTL system seemed to
perform worse on the languages that have close
orthography and substantial amount of borrowing
such as Hindi, Urdu, and Persian.

Data size Seq2seq Augment-seq2seq Seq2seq-MTL-global

High 63.048 56.598 49.521
Medium 30.979 29.722 20.973

Table 1: Average accuracies for high and medium
datasets with three different models.

5 Conclusion

In conclusion, our global multi-tasking model re-
quires more effort to improve the results for lan-
guages with low accuracies. As part of future
work, we plan to work on incorporating embed-
dings and attention which are part of the winning
systems from the shared tasks of 2016 and 2017.
We observed that the multi-tasking model’s auxil-
iary objective was easier to achieve than the main
objective. Therefore, we need to explore ways to
regularize the network, for instance, by weighing
the individual loss components. Finally, the output
softmax layer of the decoder has to be made sensi-
tive to the language of the example in the training
data to prevent softmax from yielding low values
due to the high dimension of the target of the soft-
max.
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High

Seq2seq Augment-Seq2seq Seq2seq-MTL-global

Adyghe 97.4 Crimean-Tatar 92 Crimean-Tatar 95
Bashkir 97.1 Bashkir 90.9 Kabardian 94
Crimean-Tatar 97 Friulian 89 Classical-Syriac 94
Tatar 97 Adyghe 88.2 Tatar 93
Yiddish 94 Azeri 88 Bashkir 91.6

Navajo 12.4 Albanian 10.2 Swahili 4
Khaling 8.5 Quechua 9.7 Persian 3.7
Basque 6.2 Basque 9.6 Hindi 2.5
Swahili 5 Swahili 5 Zulu 2.4
Zulu 2.7 Zulu 2.5 Arabic 0.1

Medium

Kabardian 81 Turkmen 82 Classical-Syriac 90
Haida 78 Kabardian 79 Kabardian 75
Neapolitan 78 Classical-Syriac 71 Turkmen 66
Kashubian 74 Friulian 66 Khakas 66
Greenlandic 70 Neapolitan 65 Uzbek 66

Basque 1.4 Quechua 1.9 Swahili 1
Zulu 1.2 Russian 1.8 Hindi 0.8
Swahili 1 Italian 1.5 Navajo 0.8
Finnish 0.2 Zulu 1.5 Zulu 0.8
Kazakh 0 Finnish 1.2 Arabic 0

Table 2: Top-5 and bottom-5 languages at which the three models perform the best and worse for high and medium
datasets.
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Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sebastian Mielke, Arya D.
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Abstract

We describe our systems and results in the
type-level low-resource setting of the CoNLL–
SIGMORPHON 2018 Shared Task on Univer-
sal Morphological Reinflection. We test non-
neural transduction models, as well as more
recent neural methods. We also investigate
the effect of leveraging unannotated corpora to
improve the performance of selected methods.
Our best system obtains the highest accuracy
on 34 out of 103 languages.

1 Introduction

In this system paper, we discuss our submissions
to the CoNLL–SIGMORPHON 2018 Shared Task
on Universal Morphological Reinflection (Cot-
terell et al., 2018). We focus on the sub-task of
type-level inflection under the low-resource sce-
nario, in which the training data is limited to 100
labelled examples. Because of the sheer number
of tested languages, we attempted no language-
specific modifications. The results demonstrate
that our non-neural transduction models perform
better on average than our neural models. How-
ever, combining neural and non-neural models
yields the highest accuracy.

In addition to standard submissions, we test
novel methods of leveraging additional monolin-
gual corpora, from which we derive target lan-
guage models and/or word lists. We show that
substantial gains in accuracy can be obtained in
the way. Again, a combination of neural and non-
neural systems produces the best non-standard re-
sults.

The paper has the following structure. In Sec-
tion 2, we describe four standard systems, as
well as our weighted-voting method of combining
them. Our two non-standard systems and their lin-
ear combination are introduced in Section 3. Sec-
tion 4 discusses the results.

2 Standard Systems

In this section, we briefly describe the four in-
dividual standard systems that we experimented
with, followed by our voting method for combin-
ing them.

2.1 BASELINE (UA-01)

The shared task organizers have provided a base-
line system for the type-level sub-task.1 For each
training instance, the baseline system aligns the in-
put and output forms, and uses leading and trail-
ing null alignments to identify prefix and suffix
boundaries. Thus, the input and output are each
divided into a prefix, stem, and suffix, with the
prefix and suffix possibly being empty. The pairs
of aligned characters from the suffix, and option-
ally a trailing substring of the stem, are recorded
as suffixing rules for the morphological tag of the
instance in question. Prefixing rules are identified
in an analogous way. In this way, a series of inflec-
tion rules are generated from aligned training pairs
for each morphological tag attested in the training
data.

To perform reinflection on an unseen instance,
the longest applicable suffixing rule for the given
tag is selected and applied, as is the most frequent
prefixing rule. Since some languages tend to pre-
fer prefixing over suffixing, a heuristic is used to
detect which of the two types of affixation is pre-
dominant. If a preference for prefixing is detected,
all input and output strings for that language are
reversed. During development, we found that the
output files produced by the BASELINE system for
these languages had the lemmas reversed; we rec-
tified this issue for our experiments and submis-
sions.

1https://github.com/sigmorphon/conll2018/tree/master/
task1/baseline
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2.2 HAEM (UA-02)

The hard attention model over edit actions
(HAEM) of Makarov et al. (2017) performed very
well in the low-resource setting of the 2017 edi-
tion of the shared task. We use the implementation
made available by the authors.2 The method learns
a neural state-transition model with hard mono-
tonic attention. It produces sequences of insertion
and deletion operations on the lemma that trans-
duce it into the appropriate inflected form. The
system that achieved the top results in the 2017
shared task was an ensemble of up to 15 different
models, each trained with multiple seeds. Because
of time constraints, and the difficulties with using
the implementation, we derive only a single transi-
tion inflector model for each language, eschewing
the complex ensemble procedures described in the
original paper.

The process of compiling and running the pro-
vided code was non-trivial. In particular, libraries
required by the provided code had been supplanted
by newer versions, which lacked backwards com-
patibility. Since the versions used in 2017 are no
longer readily available, we had to adapt the code
to the new versions. Further modifications were
necessary to account for the different format of
the test data this year. Even with these modifi-
cations, the code failed to run properly on several
languages, resulting in 0% accuracy.

2.3 DIRECTL+ (UA-03)

We perform string transduction with a modified
version3 of DIRECTL+, a tool originally designed
for grapheme-to-phoneme conversion (Jiampoja-
marn et al., 2008). DIRECTL+ is a feature-
rich, discriminative character string transducer
that searches for a model-optimal sequence of
character transformation rules for its input. The
core of the engine is a dynamic programming al-
gorithm capable of transducing many consecutive
characters in a single operation. Using a structured
version of the MIRA algorithm (McDonald et al.,
2005), training attempts to assign weights to each
feature so that its linear model separates the gold-
standard derivation from all others in its search
space. We perform source-target pair alignment
with a modified version4 of the M2M aligner (Ji-
ampojamarn et al., 2007), which applies the EM to

2https://gitlab.cl.uzh.ch/makarov/sigmorphon2017
3https://github.com/GarrettNicolai/DTL
4https://github.com/GarrettNicolai/m2m

M2M-aligner
source side target side maximum tag
{1-2} {1-2} {2-4}

DIRECTL+
n-gram context size joint m-gram
{1-5} {3-11} {1-10}

Table 1: The tuning ranges for hyper-parameters.

maximize the conditional likelihood of its aligned
source and target pairs.

We apply the tag splitting and particle handling
techniques described in our 2017 system paper
Nicolai et al. (2017). In particular, we split the
tags into subtags, and append them at both the be-
ginning and end of the lemma. We decided not
apply any subtag reordering techniques this year,
due to the large number of languages.

We tune hyper-parameters for each language us-
ing grid search. Table 1 specifies the tuning ranges
for both the aligner and the transducer. The list of
the actual hyper-parameter settings for each lan-
guage is available on request.

2.4 AC-RNN (UA-04)

AC-RNN is our novel implementation of the
encoder-decoder RNN model, which is special-
ized to the sequence-labelling task, and trains with
an Actor-Critic reinforcement-learning objective
(Najafi et al., 2018a). The implementation is fur-
ther modified to incorporate soft-general attention
mechanism, and adapted to the task of morpholog-
ical reinflection.5 In an initial experiment, we val-
idated AC-RNN using the high-resource French
dataset from the 2017 shared task, obtaining the
test accuracy of 89.7%, compared to 89.5% of the
best-performing 2017 ensemble system.

2.5 Standard Combination (UA-05)

In our development experiments, we observed that
no system described in this section strictly domi-
nates the others in terms of accuracy on every lan-
guage; rather, different systems perform well on
different languages. Furthermore, we often found
instances where incorrect predictions were made
by the top-performing system for the language in
question, but the correct output was produced by
other systems. These observations motivated our
attempt to combine the strengths of the four sys-
tems.

5https://gitlab.com/SaeedNajafi/ac-morph
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Our standard combination approach is based on
weighted voting. The top prediction from each of
the four individual systems6 is assigned a score
equal to the system’s accuracy on the development
set for that language. The prediction with the high-
est total score is returned.

This system favors predictions from the top-
performing system on a given language, while al-
lowing errors to be corrected when other systems
agree on a different prediction. If one system
achieves an accuracy greater than the sum of the
accuracies of all other systems, it dominates the
voting, and the output of the combination is iden-
tical to the output of that system. This scenario
occurred for only seven languages.

3 Non-standard Systems

Large monolingual raw text corpora, which are
freely available for a wide variety of languages,
offer the possibility of improving the accuracy
of transduction models trained on small amounts
of source-target pairs. Many of the target forms
are observed in raw text corpora. In addition,
character-level language models derived from
monolingual corpora can reduce the number of
output forms that violate the phonotactic con-
straints of a language. Target language modelling
is particularly important in low-data scenarios,
where the limited transduction models often pro-
duce many ill-formed output candidates. In this
section, we describe the sources of the text cor-
pora, and two novel methods that attempt to lever-
age the additional information.

3.1 Additional Data

The monolingual corpora come from one of two
sources. The UniMorph project (Kirov et al.,
2018) contains corpora for 46 out of 103 lan-
guages.7 For 42 languages that are not represented
in Unimorph, we instead use the target side of
the high-resource training data in this shared task.
For the 15 remaining languages that lack either of
these resources, we simply back off to the standard
version of each system. Note that we use only the
target-side forms of the high-resource training data
(if applicable), so that there is no overlap between
the training and testing sets.

The principal use of the additional data is to

6We had no access to additional top-n predictions from
the BASELINE and HAEM systems.

7https://unimorph.github.io

construct a list of all word types, with counts, into
a target word list. The idea is to bias the sys-
tem predictions towards forms that are actually ob-
served in a monolingual corpus. In this shared
task, our word list sizes vary between 115 for Ara-
bic and 22,371 for Slovene.

The second use of the unannotated corpora is
to derive a target character-level n-gram language
model. For this purpose, we employ the CMU lan-
guage modeling toolkit.8

3.2 DTLM (UA-06)

Nicolai et al. (2018) present DTLM, a new system
that combines discriminative transduction with
character and word language models derived from
large unannotated corpora. DTLM is an exten-
sion of DIRECTL+ (Section 2.3), whose target
language modeling is limited to a set of binary n-
gram features, which are based exclusively on the
target sequences from the parallel training data.
DTLM avoids the error propagation problem that
is inherent in pipeline approaches by incorporat-
ing the language-model features directly into the
transducer.

In addition, DTLM bolsters the quality of trans-
duction by employing a novel alignment method,
which is referred to as precision alignment. The
idea is to allow null substrings on the source side
during the alignment of the training data, and then
apply a separate aggregation algorithm to merge
them with adjoining non-empty substrings. This
alignment method results in substantially higher
transduction accuracy.9

3.3 AC-RNN with Word Lists (UA-07)

We also indirectly leverage the target word lists
(ignoring the counts) in the AC-RNN model (Sec-
tion 2.4). The neural network is trained with each
of these external words as both input and output.
We pre-train AC-RNN with this copying proce-
dure for 50 epochs. (Bergmanis et al. (2017) use
a similar technique with randomly-generated se-
quences.) We then fine-tune the model on the ac-
tual low-resource dataset. This approach is helpful
in a several different ways: it biases the network
towards copying input characters in the output,
guides the attention parameters towards learning a
monotonic alignment, and improves the randomly

8http://www.speech.cs.cmu.edu/SLM/toolkit.html
9DTLM was also succesfully used in the NEWS 2018

shared task on transliteration (Najafi et al., 2018b).
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Method Dev Test
Standard

BASELINE 39.3 38.2
HAEM 40.5 39.2

DIRECTL+ 47.2 44.8
AC-RNN 21.4 21.3

Combination 52.5 50.5
Non-Standard

AC-RNN + WL 38.7 38.0
DTLM 51.4 49.7

Combination 54.4 53.2

Table 2: The average accuracy across all languages.

initialized character embeddings by pre-training
them on external data.

We also experimented with two different ideas
to re-rank predictions of AC-RNN. The first
idea was to train a separate RNN-based language
model to re-score predictions. The second idea
was to learn a reverse model that would gener-
ate the input lemma from the inflected form and
tag, for the purpose of re-scoring the n-best lists
of AC-RNN. Unfortunately, neither of these ap-
proaches outperformed the copying procedure out-
lined in the previous paragraph.

3.4 Non-standard Combination (UA-08)

We take advantage of the ability of both DTLM
and AC-RNN to produce n-best lists of predic-
tions by combining the lists via a linear combina-
tion of their confidence scores. The scores from
each model are normalized, and the linear coeffi-
cients are tuned separately for each language on
the provided development sets. The top scoring
output for each input instance is returned.

4 Results

Table 2 shows the average accuracy over 103 lan-
guages for our eight submitted systems in the low-
resource setting. The ranking of the systems is
the same for both the development and test sets.10

The best performing individual standard system
is DIRECTL+, followed by HAEM, BASELINE,
and AC-RNN. We conclude that 100 training in-
stances are insufficient for the soft-attention based
neural models like AC-RNN. Moreover, we were
not able to replicate the superior results of HAEM
reported in the 2017 shared task, which we at-
tribute to the reasons outlined in Section 2.2. Our

10Detailed results on all languages are available on request.

None +LM +LM +WL
High-Resource 38.6 42.6 28.6

Unimorph 38.6 45.4 49.7

Table 3: The average accuracy of DTLM on the devel-
opment sets of 46 languages with additional data.

weighted-voting combination of all four systems
substantially improves over each individual sys-
tem. In the development experiments, we ob-
served that all individual systems, including AC-
RNN, contributed to the accuracy of the combina-
tion system.

Among the non-standard systems, the DTLM
model easily outperforms DIRECTL+. The copy
pre-training approach on the target word lists al-
most doubles the accuracy of AC-RNN, but it is
not sufficient to even reach the BASELINE. Nev-
ertheless, the linear combination of the two non-
standard systems is clearly the best of our submis-
sions, obtaining the highest accuracy on 34 lan-
guages in the shared task.

In order to shed light on the effect of additional
data on the DTLM results, we ran experiments
on 46 languages that have both the Unimorph and
high-resource data (Table 3). It is clear that incor-
porating a target language model from either data
source improves the overall accuracy. The results
also suggest that the Unimorph corpora are better
for the purpose of deriving the language models
than the high-resource training data. The addition
of the target word lists from Unimorph further im-
proves the results. However, the word lists from
the high-resource data are detrimental. Since there
is no overlap between the training and develop-
ment data, there are no useful targets in the word
lists to help guide the model outputs.

5 Conclusion

We described the details of the systems that we
tested on 103 languages in the low-resource set-
ting of the shared task. In particular, we exper-
imented with combining diverse systems, apply-
ing reinforcement learning to neural models, and
leveraging target corpora for reinflection. Our
results suggest that these techniques lead to im-
provements in accuracy with respect to the base
systems. We hope that this report will serve as a
useful reference for future experiments involving
the datasets from this shared task.
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Abstract
This paper presents an encoder-decoder neu-
ral network based solution for both subtasks
of the CoNLL–SIGMORPHON 2018 Shared
Task: Universal Morphological Reinflection.
All of our models are sequence-to-sequence
neural networks with multiple encoders and a
single decoder.

1 Introduction

Morphological inflection is the task of inflecting
a lemma given either a target form or some con-
textual information. Morphology has traditionally
been solved by finite state transducers (FST) that
employ a large number of handcrafted rules. The
discrete nature of such processes makes it diffi-
cult to directly translate transducers into neural
networks and to effectively train them using back-
propagation. There have been various attempts to
replace parts of the FST paradigm with neural net-
works (Aharoni and Goldberg, 2016).

SIGMORPHON first organized a shared task on
morphological inflection in 2016 (Cotterell et al.,
2016) which involved both inflection (inflect a
word given its lemma) and reinflection (inflect a
word given another inflected form of the same
lemma). The winning solution (Kann and Schütze,
2016) used a character sequence-to-sequence net-
work with Bahdanau’s attention (Bahdanau et al.,
2015). In the second edition of the shared task
(Cotterell et al., 2017) most teams used similar set-
tings.

2 Task formulation

In this section we briefly describe the objective of
the task and provide examples for each subtask.
A more comprehensive explanation is available on
the shared task’s website1 and in task description
paper (Cotterell et al., 2018).

1https://sigmorphon.github.io/sharedtasks/2018/

2.1 Task1: Type-level inflection
Inflection aims to find an inflected word given its
lemma and a set of morphological tags in Uni-
Morph MSD(Kirov et al., 2018). A few examples
are shown below (the second column is the target):
release releasing V;V.PTCP;PRS
deodourize deodourize V;NFIN
outdance outdancing V;V.PTCP;PRS
misrepute misrepute V;NFIN
vanquish vanquished V;PST
resterilize resterilizes V;3;SG;PRS

The shared task features over 100 languages
and 10 additional surprise language were released
before the submission deadline. Most languages
had three data settings: high (10 000 samples),
medium (1 000 samples) and low (100 samples),
except some low-resource languages that did not
have enough samples for high or medium settings.
Each language had a development set of 1 000 or
less samples.

2.2 Task2: Inflection in context
Task2 is a cloze task. We were given a sentence
with a number of missing word forms (usually 1
or 2) and our task is to inflect the word given its
lemma and context. Task2 two had two tracks: in
Track1 all the lemmas and morphosyntactic de-
scription are given in the sentence context (the
morphosyntactic description of the covered word
is covered too), and in Track2 only the word forms
of the context are given. Below are examples from
Track1:
Les le DET;DEF;FEM;PL
compagnies compagnie N;FEM;PL
aériennes aérien ADJ;FEM;PL
à à ADP
bas bas ADJ;MASC;SG
coût coût N;MASC;SG
ne ne ADV;NEG
_ connaı̂tre _
pas pas ADV;NEG
la le DET;DEF;FEM;SG
crise crise N;FEM;SG
. . PUNCT
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Figure 1: Two-headed attention model used for Task1.
The figure illustrates the first timestep of decoding.
The output of this step is fed back to the decoder in
the next timestep. Modules are colored gray, attention
heads yellow, inputs are purple, outputs are teal and en-
coder output matrices are salmon. Dotted arrows rep-
resent copy operations and dashed arrows represent at-
tention summaries. The color scheme is borrowed from
colorbrewer2.org

and the same sentence for Track2:

Les _ _
compagnies _ _
aériennes _ _
à _ _
bas _ _
coût _ _
ne _ _
_ connaı̂tre _
pas _ _
la _ _
crise _ _
. _ _

Both examples are taken from the development
sets. The training sets have no covered words, and
we generated training examples by covering a sin-
gle word at a time, and using the rest as its sen-
tence context.

Task2 also featured low, medium and high re-
source settings with roughly 1 000, 10 000 and
100 000 tokens respectively.

3 Task1 model: two-headed attention

In this section we describe our system for Task 1:
Type-level inflection. We explain our experimen-
tal setup and the random hyperparameter search,
and finally we list three slightly different submis-
sions and their results.

3.1 Two-headed attention seq2seq

Inflection can be formulated as a mapping of two
sequences, namely a lemma and a sequence of
tags, to one sequence, the inflected word form.
The lemma and the inflected word forms are char-
acter sequences that usually share a common al-
phabet while the tags are a sequence of language-
specific morphological codes. Figure 1 illustrates
our architecture. We use separate encoders for
the lemma and the morphological tags and a sin-
gle decoder. Both encoders employ character/tag
embeddings and bidirectional LSTMs, where the
outputs are summed over the two directions. The
two encoders’ hidden states are then linearly pro-
jected to the decoder’s hidden dimension and used
to initialize the decoder’s hidden state. This allows
using different hidden dimensions in each mod-
ule. Decoding is done in an autoregressive fash-
ion, one character at a time. At each timestep the
decoder reads a single character: SOS (start-of-
sequence) at first, the ground truth during training
(teacher forcing) and the previous output during
inference. The decoder uses a character level em-
bedding, which may or may not be shared with the
lemma encoder (c.f. 3.2), then it passes the embed-
ded symbol to a unidirectional LSTM. Its output
is used by two attention modules, hence the name
two-headed attention, to compute a context vec-
tor using Luong’s attention (Luong et al., 2015).
The lemma and tag context vectors are concate-
nated with the decoder output, then passed through
a tanh, an output projection and finally a sigmoid
layer which produces a distribution over the char-
acter vocabulary of the language. Greedy decod-
ing is used.

3.2 Experimental setup

All experiments were implemented in Python 3.6
and PyTorch 0.4. We used three different Debian
servers, two with NVIDIA GTX TITAN GPUs
(12GB) and one with a GTX 980 (4GB). We cre-
ated our own experiment framework that allows
running and logging a large number of experi-
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ments. The framework is available on Github2 and
the configurations and scripts used for this shared
task are available in a separate repository3. The
latter repository contains all best configurations
including the random seeds (we generate the ran-
dom seeds at the beginning of each experiments,
then save them for reproducibility).

All experiments shared a number of configura-
tion options while the others were randomly op-
timized. We list the ones we fixed here and the
others in 3.3. Each experiment used a batch size
of 128 for both training and evaluation except the
ones on the Kurmanji language because the de-
velopment dataset contained very long sequences
and we had to reduce the batch size to 16 to fit
into memory (12GB). We used the Adam opti-
mizer with learning rate 0.001 and we stopped
each experiment when the development loss did
not decrease on average in the last 5 epochs com-
pared to the previous 5 epochs. We ran at least 20
epochs before stopping even if the early stopping
condition was satisfied to avoid early overfitting,
which happened in about 10% of the experiments.
We also set a hard upper limit for the number of
epochs (200) but this was reached only two times
out of 1 886 experiments. The average number of
epochs before reaching the early stopping condi-
tion was 51 and only 2.7% of experiments ran for
more than 100 epochs. After each epoch, we saved
the model if its development loss was lower than
the previous minimum. We used cross entropy as
the loss function.

3.3 Random parameter search

Our initial experiments suggested that the model
is very sensitive to random initialization and the
same configuration can result in models with very
different performance. This is probably due to
the limited training data even in high setting and
the large number of parameters of the model. We
chose three languages, Breton, Latin and Lithua-
nian, and ran a large number of experiments with
random configuration on them. The reason these
were chosen is that the development accuracy on
these were in the mid-ranges among all the lan-
guage during our initial experiments. The follow-
ing random experiments were all run on the high
training sets. Common parameters (c.f. 3.2) were
loaded from a base configuration and some param-

2https://github.com/juditacs/deep-morphology
3https://github.com/juditacs/sigmorphon2018

Table 1: Parameter ranges

Parameter Values

dropout 0.1, 0.3, 0.4, 0.6
share vocab true, false

inflected embedding size 10, 20, 30, 50
inflected hidden size 128, 256, 512, 1024
inflected num layers 1, 2

lemma embedding size 10, 20, 30, 50
lemma hidden size 128, 256, 512, 1024
lemma num layers 1, 2, 3, 4

tag embedding size 5, 10, 20
tag hidden size 64, 128, 256
tag num layers 1, 2, 3, 4

eters were overriden with a value uniformly sam-
pled from a predefined set. The range of values
are listed in Table 1. Both encoders (lemma and
tag) and the decoder (listed as inflected) have three
varying parameters: the size of the embedding,
the number of hidden LSTM cells and the num-
ber of LSTM layers. We also varied the dropout
rate for both the embedding and the LSTMs and
the whether to share the vocabulary and the em-
bedding among the lemma and the decoder or not.

The running time of an experiment is dependent
on the average length of the input sequences and
the size of the vocabulary. It turns out that these
vary greatly among the languages in the dataset.
As listed in Table 2 Breton is much ”smaller” in
both alphabet and sequence length than Lithuanian
or Latin and this was evident from the difference
in average running time.

Table 3 summarizes the results of our random
parameter search. Since the average running time
of different language experiments is very differ-
ent, we ended up running many more Breton ex-
periments in roughly the same time. The standard
deviation of results is quite large, especially for
Breton, which we attribute to the small alphabet,
the short sequences and the small number of lem-
mas (44) as opposed to Latin (6517) or Lithuanian
(1443).

We observed that models with the same param-
eters often result in very different word accuracy.
To test this, we took the best performing config-
uration for each language and trained 20 models
(by language) with identical parameters but differ-
ent random seeds. Table 4 shows that identical pa-
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Table 2: Dataset statistics.
Breton Latin Lithuanian

alphabet size 27 55 58
inflected maxlen 14 23 32
inflected types 1790 9896 9463
lemma maxlen 11 19 28
lemma types 44 6517 1443
tag types 20 33 34
tags maxlen 9 7 6

Table 3: Summary of the parameter search. The run-
ning time is given in minutes.

Breton Latin Lithuanian

experiments 1033 610 243

dev acc
mean 70.92 62.32 80.25
max 93.00 78.90 88.40
std 28.70 11.30 8.37

time mean 0.83 5.42 8.61

rameters can result in models with very different
performance.

3.4 Submission

We took the 5 highest scoring model for each lan-
guage and trained a model with those parameters
for each language and each data size, thus training
15 models per dataset. Our first submission is sim-
ply the model with the highest development word
accuracy. The second submission is the result of
majority voting by all 15 models. The third one is
the same as the first one but we changed the evalu-
ation batch size from 128 to 16. This results fewer
pad symbols on average. Table 5 lists the mean
performance of each submission.

Table 4: Accuracy statistics of 20 models trained with
the same parameters but different random seed.

Breton Latin Lithuanian

train acc mean 96.29 92.58 96.69
std 1.39 3.21 2.25
min 94.30 84.57 90.51
max 99.04 97.14 99.08

dev acc mean 87.35 74.73 86.95
std 2.41 3.17 2.32
min 84.00 69.00 81.80
max 92.00 79.10 90.60

Table 5: The mean accuracy of our Task1 submissions.

Subm Data size Accuracy Ranking

#1
High 93.884884 7
Medium 67.430392 8
Low 3.742718 22

#2
High 94.662791 3
Medium 67.258824 10
Low 2.429126 25

#3
High 93.973256 6
Medium 67.357843 9
Low 3.634951 23

4 Task2: Inflection in Context

In this section we describe our system for Task2
- Track1, then explain how the model for Track2
differs from the model for Track1.

The development datasets for Task2 have two
versions: covered and uncovered. An example is
provided in 2.2.

Figure 2 illustrates the model at a single
timestep (decoding one character). The model has
several inputs (colored purple):

target lemma The lemma of the target word. The
inflected form of this lemma is the expected
output.

left/right token context The other (inflected) to-
kens in the sentence. Left context refers to
the tokens preceding the covered token and
right context refers to the ones succeeding it.

left/right lemma context The lemmas of the pre-
ceding and succeeding tokens.

left/right tag context The corresponding tags of
the preceding and succeeding tokens.

previously decoded symbol Start-of-sequence at
the first timestep, then the last symbol pro-
duced by greedy decoding.

The left and right contexts are encoded sepa-
rately in the following way. Each token and lemma
are encoded by a bidirectional character LSTM,
preceded by a character embedding, and the tag
sequence of the corresponding token are encoded
by a separate biLSTM and tag embedding. The
lemma and the token share their alphabet and our
experiments showed that sharing the encoder re-
sults in a slight improvement in accuracy. By tak-
ing the last output of each of the three encoders,
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Figure 2: Task2 architecture. The figure illustrates the first timestep of decoding. The output of this step is fed
back to the decoder in the next timestep. The target lemma encoder’s hidden state is used to initialize the decoder
hidden state (not pictured for the sake of clarity). The same coloring scheme is used as in 1.

we acquire three fixed dimensional vector repre-
sentation for each token. We concatenate these
and use another biLSTM (context LSTM) to cre-
ate a single vector representation of the left/right
context. The context LSTM is shared by the left
and the right context. The target lemma is en-
coded by the same encoder as the other lemmas
and inflected tokens and the output is used by the
attention mechanism. The last hidden state of the
encoder is used to initialize the hidden state of the
decoder. Decoding is similar to the autoregressive
process used in Task1 but there is only one atten-
tion mechanism and it attends to the target lemma
encoder outputs. Attention weights are computed
using the concatenation of the decoder output at a
single timestep and the left and right context vec-
tors. The output of the attention module is con-
catenated with the decoder output, passed through
a tanh and an output projection and finally a soft-
max layer outputs a distribution over the character
alphabet of the language. Similarly to our Task1
model, the ground truth is fed to the decoder at
training time and the greedily decoded character
at inference time. The cross entropy of the output
distributions and the ground truth is used as a loss
function.

Our model for Track2 is very similar to the
model for Track1, except the left and right lemma

and tag encoders are missing and the context vec-
tors are derived only from the left and right tokens.

4.1 Experimental setup

Since our experiments for Task2 were significantly
slower than the ones for Task1, we were unable to
run extensive parameter search. We did perform a
smaller version of the same random search using
the parameter ranges listed in Table 6. We chose
the French dataset with medium setting, which is
about 10 000 tokens. The average length of one
experiment was 100 minutes and we were able to
run 38 experiments. We ran the best configuration
of the 38 on each language and each data size at
least once. Since our parameter search was very
limited, we also varied the parameters manually
and tried other combinations. The exact configu-
rations are available on the GitHub repository. All
experiments were run on NVIDIA GTX TITAN X
GPUs (12GB), since they did not fit into the mem-
ory of the smaller cards (4GB).

Task2 uses a subset of the parameters that Task1
uses, so we were able to train the ”same” config-
uration emerged as the best one during the limited
hyperparameter search. We also tried using 2 lay-
ers instead of 1 layer in every encoder and decoder.
Unfortunately time constraints did not allow run-
ning more experiments.
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Table 6: Predefined parameter ranges used for Task2
parameter search.

Parameter Values

batch size 8, 16, 32, 64
dropout 0.0, 0.2
early stopping window 5, 10
char embedding size 30, 40, 50
context hidden size 64, 128, 256
context num layers 1, 2
decoder num layers 1
tag embedding size 10, 20, 30
tag num layers 1, 2
word hidden size 64, 128, 256
word num layers 1, 2

Table 7: Task2 results.
Track1 Track2

high med low high med low

de 73.21 56.83 30.64 64.61 52.17 27.81
en 76.23 66.77 61.33 69.89 64.05 56.90
es 56.10 42.50 29.17 41.65 32.12 27.77
fi 53.75 22.11 10.29 30.24 17.15 8.89
fr 67.21 51.12 26.27 45.42 23.63 9.57
ru 67.67 38.76 21.59 56.73 33.73 19.68
sv 65.64 41.91 26.06 54.26 34.89 22.34

4.2 Submission and results

For both Track1 and Track2 we only submitted
one system, the output of the highest scoring
model on the development dataset. In both tracks,
we finished in 2nd place. Table 7 lists our detailed
results.

5 Conclusion

We presented our submissions for the
CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection. We em-
ployed variations of sequence-to-sequence or
encoder-decoder networks with Luong attention.
Our experiments for Task1 suggest that at the
current data size, the model is very sensitive to
random initialization, so we used an ensemble
of many systems, which placed 2nd of all teams
in the high data setting. We also placed 2nd in
both tracks of Task2. Our code and configuration
files including the random seeds are available on
Github.
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Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
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Ács, Judit, 121
Agirrezabal, Manex, 28
Augenstein, Isabelle, 93

Billing, Gregor, 76
Bjerva, Johannes, 93
Boros, Tiberiu, 64

Cavallo, Alessia, 43
Cho, Kyunghyun, 58
Clematide, Simon, 69
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