
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 92–102
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2009

92

IBM Research at the CoNLL 2018 Shared Task on Multilingual Parsing

Hui Wan Tahira Naseem Young-Suk Lee Vittorio Castelli Miguel Ballesteros
IBM Research AI

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
hwan,tnaseem,ysuklee,vittorio@us.ibm.com

miguel.ballesteros@ibm.com

Abstract

This paper presents the IBM Research AI
submission to the CoNLL 2018 Shared
Task on Parsing Universal Dependen-
cies. Our system implements a new
joint transition-based parser, based on
the Stack-LSTM framework and the Arc-
Standard algorithm, that handles tokeniza-
tion, part-of-speech tagging, morpholog-
ical tagging and dependency parsing in
one single model. By leveraging a com-
bination of character-based modeling of
words and recursive composition of par-
tially built linguistic structures we quali-
fied 13th overall and 7th in low resource.
We also present a new sentence segmen-
tation neural architecture based on Stack-
LSTMs that was the 4th best overall.

1 Introduction

The CoNLL 2018 Shared Task on Parsing Uni-
versal dependencies consists of parsing raw text
from different sources and domains into Univer-
sal Dependencies (Nivre et al., 2016, 2017a) for
more than 60 languages and domains.1 The task
includes extremely low resource languages, like
Kurmanji or Buriat, and high-resource languages
like English or Spanish. The competition there-
fore invites to learn how to make parsers for low-
resource language better by exploiting resources
available for the high-resource languages. The
task also includes languages from almost all lan-
guage families, including Creole languages like
Nigerian Pidgin2 and completely different scripts
(i.e. Chinese, Latin alphabet, Cyrillic alphabet, or

1This is the second run of the task, please refer to (Zeman
et al., 2017) for the 2017 Shared Task.

2https://en.wikipedia.org/wiki/
Nigerian_Pidgin

Arabic). For further description of the task, data,
framework and evaluation please refer to (Nivre
et al., 2018, 2017b; Zeman et al., 2018; Potthast
et al., 2014; Nivre and Fang, 2017).

In this paper we describe the IBM Research AI
submission to the Shared Task on Parsing Uni-
versal Dependencies. Our starting point is the
Stack-LSTM3 parser (Dyer et al., 2015; Balles-
teros et al., 2017) with character-based word rep-
resentations (Ballesteros et al., 2015), which we
extend to handle tokenization, POS tagging and
morphological tagging. Additionally, we apply
the ideas presented by Ammar et al. (2016) to all
low resource languages since they benefited from
high-resource languages in the same family. Fi-
nally, we also present two different ensemble algo-
rithms that boosted our results (see Section 2.4).

Participants are requested to obtain parses from
raw texts. This means that, sentence segmentation,
tokenization, POS tagging and morphological tag-
ging need to be done besides parsing. Participants
can choose to use the baseline pipeline (UDPipe
1.2 (Straka et al., 2016)) for those steps besides
parsing, or create their own implementation. We
choose to use our own implementation for most of
the languages. However, in a few treebanks with
very hard tokenization, like Chinese and Japanese,
we rely on UDPipe 1.2 and a run of our base parser
(section 2.1), since this produces better results.

For the rest of languages, we produce parses
from raw text that may be in documents (and thus
we need to find the sentence markers within those
documents); for some of the treebanks we adapted
Ballesteros and Wanner (2016) punctuation pre-
diction system (which is also based in the Stack-
LSTM framework) to predict sentence markers.
Given that the text to be segmented into sentences

3We use the dynamic neural network library Dynet -
http://dynet.io/ - (Neubig et al., 2017) to implement
our parser.

https://en.wikipedia.org/wiki/Nigerian_Pidgin
https://en.wikipedia.org/wiki/Nigerian_Pidgin
http://dynet.io/

93

can be of a significant length, we implemented a
sliding-window extension of the punctuation pre-
diction system where the Stack-LSTM is reinitial-
ized and primed when the window is advanced
(see Section 3 for details).

Our system ranked 13th overall, 7th for low re-
source languages and 4th in sentence segmenta-
tion. It was also the best qualifying system in
low resource language, Kurmanji, evidencing the
effectiveness of our adaptation of Ammar et al.
(2016) approach (see Section 2.3).

2 Our Parser

In this Section we present our base parser (see Sec-
tion 2.1), our joint architecture (see Section 2.2)
and our cross-lingual approach (see Section 2.3).

2.1 Stack-LSTM Parser
Our base model is the Stack-LSTM parser (Dyer
et al., 2015; Ballesteros et al., 2017) with
character-based word representations (Ballesteros
et al., 2015). This parser implements the Arc-
Standard with SWAP parsing algorithm (Nivre,
2004, 2009) and it uses Stack-LSTMs to model
three data structures: a buffer B initialized with
the sequence of words to be parsed, a stack S con-
taining partially built parses, and a list A of actions
previously taken by the parser. This parser expects
tokenized input and a unique POS tag associated
with every token.

We use Ballesteros et al. (2015) version of the
parser which means that we compute character-
based word vectors using bidirectional LSTMs
(Graves and Schmidhuber, 2005); but, in addition,
we also add pretrained word embeddings for all
languages. The intention is to improve in morpho-
logically rich languages and compensate for the
rest of languages in which modeling characters is
not that important.

2.2 Joint tokenization, tagging and
dependency parsing

Inspired by joint models like the ones by Bohnet
et al. (2013), Zhang and Clark (2008), Ra-
sooli and Tetreault (2013); Alberti et al. (2015);
Swayamdipta et al. (2016), among others, we ex-
tend the transition-based parser presented in 2.1
with extra actions that handle tokenization, UPOS
tagging and morphological tagging.

Actions: Actions RIGHT-ARC(r) , LEFT-ARC(r)
and SWAP remain unchanged, where r represents

the label assigned to the arc. The following actions
are modified or added for the joint transition-based
system.

1. SHIFT is extended to SHIFT(p, f) in which p
is the UPOS tag assigned to the token being
shifted, f is the Morphological tag. This is
the same as in (Bohnet et al., 2013).

2. A new action TOKENIZE(i) is added to
handle tokenization within the sentence.
TOKENIZE(i) tokenizes the string at the top
of the buffer at offset i. The resulted two to-
kens are put at the top of the buffer. When
a string needs to be tokenized into more than
two tokens, a series of TOKENIZE and SHIFT

actions will do the work.

3. A new action SPLIT is added to handle split-
ting of a string which is more complicated
than inserting whitespace, for example, the
word "des" in French is splitted into "de" and
"les", as shown in Figure 2. SPLIT splits the
top of the buffer token into a list of new to-
kens. The resulted tokens are then put at the
top of the buffer.

4. A new action MERGE is added to handle
the "compound" form of token that appears
sometimes in training data. For example,
in the French treebank, “200 000” (with a
whitespace) is often treated as one token.
In our parser, this is obtained by applying
MERGE when “200” is at the top of stack, and
“000” is at the top of buffer.

Figure 1 describes 1) parser transitions applied
to the stack and buffer and 2) the resulting stack
and buffer states. Figure 2 gives an example of
transition sequence in our joint system.

Modules: Our joint system extends the
transition-based parser in Section 2.1 with
extra modules to handle tokenization, UPOS and
morphological tagging. The final loss function is
the sum of the loss functions from the parser itself
and these extra modules. Due to time limitation
we did not introduce weights in the sum.

1. Tokenization module. When a string ap-
pears at buffer top, for each offset inside the
string, predict whether to tokenize here. If
tokenization happens at some offset i, apply
TOKENIZE(i) and transit to next state accord-
ingly. If no tokenization happens, predict an

94

Stackt Buffert Action Stackt+1 Buffert+1 Dependency
S, (u, u), (v, v) B RIGHT-ARC(r) S, (gr(u,v), u) B u

r→ v

S, (u, u), (v, v) B LEFT-ARC(r) S, (gr(v,u), v) B u
r← v

S, (u, u), (v, v) (w, w), B SWAP S, (v, v) (u, u), (w, w), B —
S (u, u), B SHIFT(p, f) S, (u, u) B —
S (w, w), B TOKENIZE(i) S (w1, w1), (w2, w2), B —
S (w, w), B SPLIT(w1 , ...,wn) S (w1, w1), ..., (wn, wn), B —

S, (u, u) (v, v), B MERGE S (g(u,v), “u v”), B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting state. Bold symbols indicate
(learned) embeddings of words and relations, script symbols indicate the corresponding words and relations. gr and g are
compositions of embeddings. w1 and w2 are obtained by tokenizing w at offset i. “u v” is the “compound" form of word.

Transition Stack Buffer Dependency Tags
[] [Le-1, canton-2, des-3, Ulis-4, compte-5,

25-6, 785-7, habitants.-8]
SHIFT(Le, DET) [Le-1] [canton-2, des-3, Ulis-4, compte-5,

25-6, 785-7, habitants.-8] (Le, DET)
SHIFT(canton, NOUN) [Le-1, canton-2] [des-3, Ulis-4, compte-5, 25-6, 785-7, habitants.-8] (canton, NOUN)
SPLIT(des, de les) [Le-1, canton-2] [de-3, les-4, Ulis-5, compte-6, 25-7,

785-8, habitants.-9]
LEFTARC(det) [canton-2] [de-3, les-4, Ulis-5, compte-6, 25-7,

785-8, habitants.-9] Le det←−− canton
SHIFT(de, ADP) [canton-2, de-3] [les-4, Ulis-5, compte-6, 25-7, 785-8, habitants.-9] (de, ADP)
SHIFT(les, DET) [canton-2, de-3, les-4] [Ulis-5, compte-6, 25-7, 785-8, habitants.-9] (les, DET)
SHIFT(Ulis, PROPN) [canton-2, de-3, les-4, Ulis-5] [compte-6, 25-7, 785-8, habitants.-9] (Ulis, PROPN)

LEFTARC(det) [canton-2, de-3, Ulis-5] [compte-6, 25-7, 785-8, habitants.-9] les det←−− Ulis
LEFTARC(case) [canton-2, Ulis-5] [compte-6, 25-7, 785-8, habitants.-9] de case←−−− Ulis

RIGHTARC(nmod) [canton-2] [compte-6, 25-7, 785-8, habitants.-9] canton nmod−−−−→ Ulis
SHIFT(compte, VERB) [canton-2, compte-6] [25-7, 785-8, habitants.-9] (compte, VERB)

LEFTARC(nsubj) [compte-6] [25-7, 785-8, habitants.-9] canton
nsubj←−−−− compte

SHIFT(25, NUM) [compte-6, 25-7] [785-8, habitants.-9] (25, NUM)
MERGE [compte-6] [25 785-7, habitants.-8]
SHIFT(25 785, NUM) [compte-6, 25 785-7] [habitants.-8] (25 785, NUM)
TOKENIZE(offset=9) [compte-6, 25 785-7] [habitants-8, .-9]
SHIFT(habitants, NOUN) [compte-6, 25 785-7, habitants-8] [.-9] (habitants, NOUN)

LEFTARC(nummod) [compte-6, habitants-8] [.-9] compte nummod←−−−−−− 25 785

RIGHTARC(obj) [compte-6] [.-9] compte
obj−−→ habitants

SHIFT(., PUNCT) [compte-6, .-9] [] (., PUNCT)

RIGHTARC(punct) [compte-6] [] compte
punct−−−−→ .

Figure 2: Transition sequence for “Le canton des Ulis compte 25 785 habitants.” with the joint model in Section 2.2. “habitants.-
8” means that “habitants.” is the 8th token in the current token stream. Morphological tags are omitted in this figure.

action from the set of other (applicable) ac-
tions, and transit accordingly.

2. Tagging module. If SHIFT is predicted as the
next action, a sub-routine will call classifiers
to predict POS and morph-features. The joint
system could also predict lemma, but exper-
iment results lead to the decision of not pre-
dicting lemma.

3. Split module. If SPLIT is predicted as the next
action, a sub-routine will call classifiers to
predict the output of SPLIT.

Word embeddings: Parser state representation
is composed by three Stack-LSTM’s: stack, buffer,
actions, as in (Ballesteros et al., 2017). To rep-
resent each word in the stack and the buffer,
we use character-based word embeddings together
with pretrained embeddings and word embeddings
trained in the system. The character-based word
embeddings are illustrated in Figure 3. For tok-
enization module, we deployed a character-based

embeddings to represent not only the string to to-
kenize, but also the offset, as illustrated in Figure
4.

Figure 3: Character-based embeddings from bi-LSTMs to
represent the token “its”.

95

Figure 4: Character-based embeddings from bi-LSTMs to
represent the string “ok.” and the offset 2 in consideration.

2.3 Cross-Lingual Parser

We adapted cross-lingual architecture of Ammar
et al. (2016) (also based in the Stack-LSTM parser)
in our joint model presented in Section 2.2 to han-
dle low-resource and zero-shot languages. This ar-
chitecture enables effective training of the Stack-
LSTM parser on multilingual training data. Words
in each language are represented by multilingual
word embeddings to allow cross-lingual sharing;
whereas language specific characteristics are cap-
tured by means of language embeddings. Ammar
et al. (2016) experiment with a) pre-specified lan-
guage embeddings based on linguistic features and
b) language embeddings learned jointly with the
other parameters. The former requires external
linguistic knowledge and the latter can be trained
only when all languages in the set have enough an-
notated training data. We take a third approach –
we pretrain language embeddings on raw text (ex-
plained in next section) and then keep them fixed
during parser training. In our implementation,
pretrained language embeddings are concatenated
with word representation and with parser state.

We use cross-lingual version of our parser
for all zero-shot languages (these are: Breton,
Naija, Faroese and Thai), most low resource lan-
guages (these are: Buryat, Kurmanji, Kazakh, Sor-
bian Upper, Armenian, Irish, Vietnamese, North-
ern Sami and Uyghur), and some other lan-
guages in which we observed strong improve-
ments on development data when parsing with a
cross-lingual model trained in the same language
family (these are: Ancient Greek – grc_proiel
and grc_perseus, Swedish – sv_pud, Norwegian

Nearest Neighbors
Character Word Sub-Word

German Dutch Swedish Afrikaans
Portuguese Galician Galician Galician
Ukrainian Bulgarian Bulgarian Russian
Hindi Hebrew Urdu Urdu
Kazakh Ukrainian Buryat Buryat
Kurmanji Turkish Urdu Naija
Persian Arabic Uyghur Uyghur

Table 1: Nearest neighbors of a variety of languages based on
language vectors learned via models of varying granularities:
Characters, Words and Sub-Word units (BPEs)

Nynorsk – no_nynorsklia).
In zero-shot setup, we observed that language

embeddings in fact hurt parser performance4. This
is consistent with the findings of Ammar et al.
(2016) for a similar setup as noted in footnote 30.
In such cases, we trained multilingual parser with-
out language embeddings, relying only on multi-
lingual word embeddings.

Language embeddings: Ammar et al. (2016)
architecture utilizes language embeddings that
capture language nuances and allow generaliza-
tion. We adapt the method of Östling and Tiede-
mann (2017) to pretrain language embeddings.
This method is essentially a character-level lan-
guage model, where a 2-layered LSTM predicts
next character at each time step given previous
character inputs. A language vector is concate-
nated to each input as well as the hidden layer be-
fore final softmax. The model is trained on a raw
corpus containing texts from different languages.
Language vectors are shared within the same lan-
guage.

The model of Östling and Tiedemann (2017)
operates at the level of characters; They restrict
their experiments to the languages that are written
in Latin, Cyrillic or Greek scripts. However, the
shared task data spanned a variety of languages
with scripts not included in this set. Moreover,
there are languages in the shared task that are
closely related yet written in different scripts –
examples include Hindi-Urdu and Hebrew-Arabic
pairs. In preliminary experiments, we found that
the language vectors learned via the character-
based model, fail to capture language similarities
when the script is different. We therefore em-
ploy three variations of Östling and Tiedemann
(2017) model that differ in granularity of input

4We performed this experiment in an off-line, artificiality
created zero-shot setup.

96

units: we use 1) characters, 2) words and 3) sub-
word units (Byte Pair Encodings, BPEs, Sennrich
et al. (2015)) as inputs. Table 1 shows the near-
est neighbors of a variety of languages based on
the language vectors from each model. Notice that
the nearest neighbor of Hindi is Urdu only when
model operates on word and sub-word levels. The
vectors learned from the three versions are con-
catenated to form final language embeddings.

This method requires a multilingual corpus for
training. We take the first 20K tokens from each
training corpus – for the corpora that had fewer
tokens, additional raw text is taken from OPUS re-
sources. For BPE inputs, we limit the size of BPE
vocabulary to 100,000 symbols.

Multilingual word embeddings: The cross-
lingual parser of Ammar et al. (2016) requires
word vectors for each language to be in the same
universal space. To this end, we use alignment
matrices provided by Smith et al. (2017) for Bo-
janowski et al. (2017) word embeddings. However,
for several low-resource languages, pre-computed
alignment matrices were not available. These in-
clude Naija, Faroese, Kurmanji, Northern Sami,
Uyghur, Buryat and Irish. For these languages,
to map monolingual embeddings to multilingual
space, we seed the mapping algorithm of Smith
et al. (2017) with freely available dictionaries5

combined with shared vocabulary with one of the
already mapped languages.

2.4 Sentence-based Ensemble and MST
Ensemble

2.4.1 Graph-based ensemble

We adapt Sagae and Lavie (2006) ensemble
method to our Stack-LSTM only models (see Sec-
tion 2.1) to obtain the final parses of Chinese,
Japanese, Hebrew, Hungarian, Turkish and Czech.
Kuncoro et al. (2016) already tried an ensemble
of several Stack-LSTM parser models achieving
state-of-the-art in English, German and Chinese,
which motivated us to improve the results of our
greedy decoding method.6

5Bilingual dictionaries used for multilingual mapping of
word embeddings,
https://people.uta.fi/ km56049/same/svocab.html
https://github.com/apertium/apertium-kmr-eng
https://github.com/apertium/apertium-fao-nor

6Kuncoro et al. (2016) developed ensemble distillation
into a single model which we did not attempt to try for the
Shared Task but we leave for future developments.

2.4.2 Model Rescoring: Sentence Level
Ensemble

For all of the languages and treebank combinations
except for Chinese, Japanese, Hebrew, Hungarian,
Turkish and Czech, we apply a sentence-level en-
semble technique to obtain the final parses.

We train 10-20 parsing models per language-
treebank (see Section 4.2). For an input sen-
tence, with each model we generate a parsing out-
put and a parsing score by adding up the scores
of all the actions along the transition sequence
(see Figure 1) . Then for each input sentence,
we choose the parsing output with the highest
model score. The joint model handles tokeniza-
tion before considering other parsing actions, and
makes tokenization decision on every offset; this
means that we need to include the normalized
score for each tokenization decision. The score
assigned to tokenizing a string S at offset n is
(
∑

i=1...n−1 Scorekeep(S, i)+Scoretok(S, n))/n,
and the score assigned to keeping S as a whole is
(
∑

i=1...len(S) Scorekeep(S, i))/len(S).
This simple technique worked fairly well, lead-

ing to significant LAS F1 improvement compared
with the single model output. From 77.53 LAS
in average on single model output of 58 tree-
banks dev set, 10-model ensemble improves LAS
to 78.75 and 20-model ensemble improves LAS to
79.79. Due to time limitation, we only ran a 20-
model sentence-level ensemble on 15 treebanks
(ar_padt, ca_ancora, cs_fictree, cu_proiel, da_ddt,
el_gdt, en_ewt, fr_sequoia, fro_srcmf, gl_ctg,
hi_hdtb, ko_gsd, ko_kaist, pl_sz, pt_bosque)
while in the rest we ran a 10-model ensemble.

In multi-lingual setting, we ran 5-model ensem-
ble in most cases except grc_proiel, grc_perseus
and sv_lines where 10-models ensembles were
used for decoding and no_nynorsklia where a sin-
gle model was used for decoding.

3 Sentence Segmentation

For sentence segmentation we adapted the punc-
tuation prediction system by Ballesteros and Wan-
ner (2016). This model is derived from the Stack-
LSTM parser introduced in Section 2.1 and it
uses the same architecture (including a stack, a
buffer and a stack containing the transitions al-
ready taken) but it is restricted to two distinct tran-
sitions, either SHIFT or BREAK (which adds a
sentence marker between two tokens). The sys-
tem is therefore context dependent and it makes

97

decisions about sentence boundaries regardless of
punctuation symbols or other typical indicative
markers.7

We only applied our sentence segmentation sys-
tem for the datasets in which we surpassed the de-
velopment sets baseline numbers provided by the
organizers of the Shared Task by a significant mar-
gin, these are: bg_btb, es_ancora, et_edt, fa_seraji,
id_gsd, it_postwita, la_proiel, and ro_rrt.

Handling document segmentation: In 58 of
the 73 datasets with training data, the train.txt
file contains less than 10 paragraphs, and 53 of
these contain no paragraph breaks. Thus, if we
assumed (incorrectly) that paragraph breaks oc-
cur at sentence boundaries and naı̈vely used para-
graphs as training units for the sentence break de-
tector, we would face a huge computational hurdle:
we would accumulate the loss over hundreds of
thousands of words before computing backprop-
agation. We addressed this issue by adopting a
sliding window approach. The data is segmented
into windows containing W words with an overlap
of O words. Each window is treated as a training
unit, where the loss is computed, the optimizer is
invoked and the stack LSTM state is reset. The
main challenge of a sliding window approach is to
compensate for edge effects: a trivial implementa-
tion would ignore the right and left context, which
results in diminished ability of detecting sentence
breaks near the beginning and the end of the win-
dow. Since we desire to keep W to a manageable
size, we cannot ignore edge effects. We use two
different approaches to provide left and right con-
text to the stack LSTM. The right context is pro-
vided by the last O words of the window (with
the obvious exception of the last window). Thus,
the sentence segmentation algorithm predicts sen-
tence breaks for the first W − O words. To pro-
vide left context, we snapshot the stack and action
buffer after the last prediction in the window, we
slide the window to the right by W − O words,
we reset the LSTM state, and we prime the in-
put buffer with the L words to the left of the new
window, the action buffer with the most recent L
actions, and the stack with the L topmost entries
from the snapshot. We explored using different pa-
rameter for the window overlap and the size of the
left context, and concluded that asymmetric ap-

7We again used character-based word representations
(Ballesteros et al., 2015) and pretrained word embeddings in
the same way as the system described in Section 2.1.

proaches did not provide an advantage over select-
ing L = O. The parameters for the system used
for the evaluation are W = 100, L = O = 30.

4 Models

4.1 Stack-LSTM

For 6 treebanks (cs_pdt, he_htb, ja_gsd,
hu_szeged, tr_imst, zh_gsd), we trained 20
baseline Stack-LSTM models for parsing (uti-
lizing UDPipe pre-processing for sentence
segmentation, tokenization and UPOS tagging)
per treebank. And the 20 parsing model outputs
are rescored with graph-based ensemble (see
Section 2.4.2). Independent LSTM models are
trained on each treebank for labeling.

All models for the 6 treebanks are trained with
dimension 200. Except for ja_gsd and zh_gsd, the
models are trained with character embeddings.

We utilized diverse set of word embeddings
for Stack-LSTM and graph-based models: cs_pdt,
he_htb and tr_imst (CoNLL2017 embedding with
dimension 100), ja_gsd (in-house cross-lingual
embeddings with dimension 300), hu_szeged and
zh_gsd (Facebook embeddings with dimension
300).

4.2 Joint Models

We set input and hidden-layer dimension to 100
and action vector dimension to 20. CoNLL
2017 pretrained embeddings (dimension 100)
were used wherever available. We used Facebook
embeddings (dimension 300) for af_afribooms,
got_proiel and sr_set.

For en_pud and fi_pud where no training and
dev set is available, the models trained from the
biggest treebank in the same language (en_ewt and
fi_tdt) are used to parse the testset. ru_syntagrus
model is used to parse ru_taiga testset because of
higher score. For gl_treegal and la_perseus where
no development data is available, 1/10 of training
data is set aside as development set.

We use sentence-based ensemble (see Section
2.4.2) for all models since the parser presented in
Section 2.2 may produce a different number of to-
kens in the output due to tokenization.

4.3 Cross Lingual

Cross-lingual models are trained with input and
hidden layers of dimension 100 each, and action
vectors of dimension 20. Pretrained multilingual

98

Target Treebank Set of Training Treebanks
pcm_nsc en_ewt, pt_bosque
fo_oft no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
br_keb af_afribooms, en_ewt, nl_alpino, de_gsd, got_proiel, ga_idt
th_pud id_gsd, vi_vtb
kmr_mg hi_hdtb, ur_udtb, fa_seraji, kmr_mg
vi_vtb id_gsd, vi_vtb, hu_szeged
bxr_bdt ug_udt, bxr_bdt, fa_seraji, tr_imst
ug_udt ug_udt, bxr_bdt, fa_seraji, tr_imst
kk_ktb uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb
hsb_ufal uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb
sme_giella no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
ga_idt af_afribooms, en_ewt, nl_alpino, de_gsd, got_proiel, ga_idt
hy_armtdp grc_perseus, grc_proiel, el_gdt, hy_armtdp
grc_perseus grc_perseus, grc_proiel, el_gdt, hy_armtdp
grc_proiel grc_perseus, grc_proiel, el_gdt, hy_armtdp
sv_pud no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
no_nyrosklia no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
sl_sst uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb

Table 2: For each target treebank (left column), the parser was trained on a set of related languages’ treebanks (right column).
Top section contains zero-shot languages (no training data at all), middle section lists low resource languages (with small
amounts of training data) and the bottom section lists the test treebanks for which little or no in-domain training data was
provided but a different training treebank of the same language was available.

word embeddings are of dimension 300 and pre-
trained language embeddings are of dimension
192 (concatenation of three 64 length vectors).

For each target language, cross-lingual parser
is trained on a set of treebanks from related lan-
guages. Table 2 details the sets of source treebanks
used to train the parser for each target treebank. In
the case of low resource languages, training algo-
rithm is modified to sample from each language
equally often. This is to ensure that the parser is
still getting most of its signal from the language of
interest. In all cross-lingual experiments, sentence
level ensemble (see Section 2.4.2) is used.

4.4 Segmentation

Sentence segmentation models have hidden layer
dimension equal to 100. It relies on the fast-
Text embeddings (Bojanowski et al., 2017), which
have dimension equal to 300. The sliding window
width is of 100 words, and the overlap between ad-
jacent windows is 30 words.

5 Results

Table 4 presents the average F1 LAS results
grouped by treebank size and type of our system
compared to the baseline UDPipe 1.2 (Straka and
Straková, 2017). Table 3 presents the F1 LAS re-
sults for all languages compared to the baseline
UDPipe 1.2. Our system substantially surpassed
the baseline but it is far from the best system of
the task in most cases. Some exceptions are the

low resource languages like kmr_mg in which our
system is the best, bxr_bdt in which it is the second
best and hsb_ufal in which it is the 3rd best; proba-
bly due to our cross-lingual approach (see Section
2.3). In ko_gsd and ko_kaist our scores are 17.61
and 13.56 higher than the baseline UDPipe 1.2 as
a result of character-based embeddings (similar re-
sult as (Ballesteros et al., 2015)), but still far from
the best system.

It is worth noting that, on most treebanks our
system used joint model to do tokenization in one
pass together with parsing, and we trained with no
more than UD-2.2 training data. Our overall tok-
enization score is 97.30, very close (-0.09) to the
baseline UDPipe 1.2, our tokenization score on big
treebanks is 99.24, the same as the baseline.

For sentence segmentation, as explained in Sec-
tion 3, we only used our system for the treebanks
in which it performed better than the baseline in
the development set. We ranked 4th, 0.5 above the
baseline and 0.36 below the top-ranking system.
Table 5 shows the results of our system for the 8
treebanks for which we submitted a run with our
own sentence segmenter. For the other treebanks
we used the baseline UDPipe 1.2. We remark
that for la_projel, where no punctuation marks are
available, our system outperformed UDPipe Fu-
ture by 3.79 and UDPipe 1.2 by 3.99. Finally, for
it_postwita, a dataset where the punctuation is as
indicative of sentence breaks and other character
patterns, our system outperformed UDPipe future

99

Treebank Baseline Ours Treebank Baseline Ours
af_afribooms 77.88% 80.53% (13) ar_padt 66.41% 69.13% (15)
bg_btb 84.91% 86.83% (15) br_keb 10.25% 9.45% (18)
bxr_bdt 12.61% 19.22% (2) ca_ancora 85.61% 87.60% (16)
cs_cac 83.72% 87.08% (15) cs_fictree 82.49% 85.83% (15)
cs_pdt 83.94% 87.08% (14) cs_pud 80.08% 83.00% (12)
cu_proiel 65.46% 69.65% (10) da_ddt 75.43% 77.87% (15)
de_gsd 70.85% 73.91% (16) el_gdt 82.11% 84.37% (13)
en_ewt 77.56% 78.37% (16) en_gum 74.20% 76.11% (17)
en_lines 73.10% 74.31% (16) en_pud 79.56% 81.13% (13)
es_ancora 84.43% 86.90% (16) et_edt 75.02% 79.89% (15)
eu_bdt 70.13% 75.09% (15) fa_seraji 79.10% 82.71% (15)
fi_ftb 75.64% 81.33% (13) fi_pud 80.15% 83.49% (12)
fi_tdt 76.45% 79.79% (15) fo_oft 25.19% 38.84% (7)
fr_gsd 81.05% 84.32% (13) fro_srcmf 79.27% 83.49% (11)
fr_sequoia 81.12% 82.79% (15) fr_spoken 65.56% 65.34% (17)
ga_idt 62.93% 61.45% (19) gl_ctg 76.10% 76.81% (17)
gl_treegal 66.16% 62.44% (12) got_proiel 62.16% 63.52% (11)
grc_perseus 57.75% 66.23% (11) grc_proiel 67.57% 71.77% (13)
he_htb 57.86% 60.17% (15) hi_hdtb 87.15% 89.72% (14)
hr_set 78.61% 82.64% (15) hsb_ufal 23.64% 42.33% (3)
hu_szeged 66.76% 67.25% (16) hy_armtdp 21.79% 19.25% (20)
id_gsd 74.37% 77.03% (15) it_isdt 86.26% 87.14% (18)
it_postwita 66.81% 73.85% (5) ja_gsd 72.32% 73.29% (15)
ja_modern 22.71% 22.74% (7) kk_ktb 24.21% 23.72% (12)
kmr_mg 23.92% 30.41% (1) ko_gsd 61.40% 79.01% (13)
ko_kaist 70.25% 83.81% (15) la_ittb 75.95% 82.43% (15)
la_perseus 47.61% 43.40% (19) la_proiel 59.66% 64.69% (14)
lv_lvtb 69.43% 73.17% (14) nl_alpino 77.60% 81.43% (15)
nl_lassysmall 74.56% 76.49% (17) no_bokmaal 83.47% 86.64% (16)
no_nynorsk 82.13% 85.31% (16) no_nynorsklia 48.95% 58.28% (8)
pcm_nsc 12.18% 13.03% (12) pl_lfg 87.53% 90.42% (15)
pl_sz 81.90% 82.81% (17) pt_bosque 82.07% 84.12% (16)
ro_rrt 80.27% 82.87% (14) ru_syntagrus 84.59% 87.79% (15)
ru_taiga 55.51% 63.00% (9) sk_snk 75.41% 77.91% (16)
sl_ssj 77.33% 82.22% (13) sl_sst 46.95% 48.36% (11)
sme_giella 56.98% 55.97% (18) sr_set 82.07% 83.84% (16)
sv_lines 74.06% 75.90% (16) sv_pud 70.63% 76.65% (9)
sv_talbanken 77.91% 80.63% (16) th_pud 0.70% 0.67% (12)
tr_imst 54.04% 57.19% (16) ug_udt 56.26% 60.25% (14)
uk_iu 74.91% 77.74% (14) ur_udtb 77.29% 79.80% (15)
vi_vtb 39.63% 43.48% (7) zh_gsd 57.91% 60.63% (16)

Table 3: Final F1 LAS results of our system compared with the baseline. We show our ranking for the particular treebank
between parenthesis next to our score.

by 29.84 and UDPipe 1.2 by 36.99.
The 2018 edition of the Extrinsic Parser Eval-

uation Initiative (EPE 2018) (Fares et al., 2018)
runs in collaboration with the 2018 Shared Task
on Multilingual Parsing. Parsers are evaluated
against the three EPE downstream systems: bio-
logical event extraction, fine-grained opinion anal-
ysis, and negation resolution. This provides op-

portunities for correlating intrinsic metrics with
downstream effects on the three relevant applica-
tions. Our system qualified 12th overall, being
10th in event extraction, 13th in negation resolu-
tion and 14th in opinion analysis.

100

Treebank Baseline Ours
All 65.80% 69.11% (13)
Big treebanks 74.14% 77.55% (15)
PUD treebanks 66.63% 69.40% (10)
Small treebanks 55.01% 56.13% (18)
Low resource 17.17% 21.88% (7)

Table 4: Average F1 LAS results (grouped by treebank size
and type) of our system compared with the baseline. We show
our ranking in the same category between parenthesis next to
our score.

Treebank Baseline Ours (Rank)
bg_btb 92.85 92.24 (24)
es_ancora 98.26 97.89 (24)
et_edt 90.02 91.29 (6)
fa_seraji 98.74 98.09(24)
id_gsd 92.00 92.03 (6)
it_postwita 21.80 58.79 (2)
la_proiel 35.16 39.15 (2)
ro_rrt 93.72 94.40 (5)

Table 5: Sentence segmentation F1 and rank, compared to
baseline. We only include the results in which our system
surpassed the baseline in the development set.

6 Conclusion

We presented the IBM Research submission to the
CoNLL 2018 Shared Task on Universal Depen-
dency Parsing. We presented a new transition-
based algorithm for joint (1) tokenization, (2) tag-
ging and (3) parsing that extends the arc-standard
algorithm with new transitions. In addition, we
also used the same Stack-LSTM framework for
sentence segmentation achieving good results.

Acknowledgments

We thank Radu Florian, Todd Ward and Salim
Roukos for useful discussions.

References
Chris Alberti, David Weiss, Greg Coppola, and Slav

Petrov. 2015. Improved transition-based parsing and
tagging with neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1354–1359.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and
Noah A. Smith. 2017. Greedy transition-based de-
pendency parsing with stack lstms. Computational
Linguistics, 43(2):311–347.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with LSTMs. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
349–359.

Miguel Ballesteros and Leo Wanner. 2016. A neu-
ral network architecture for multilingual punctua-
tion generation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1048–1053. Association for Com-
putational Linguistics.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajič. 2013.
Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Association
for Computational Linguistics, 1:415–428.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 334–343.

Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari
Björne, and Richard Johansson. 2018. The 2018
Shared Task on Extrinsic Parser Evaluation. On
the downstream utility of English Universal Depen-
dency parsers. In Proceedings of the 22nd Confer-
ence on Natural Language Learning, Brussels, Bel-
gia.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5-6):602–610.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1744–1753. Association for Com-
putational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

101

Joakim Nivre. 2004. Inductive dependency parsing.
Technical Report 04070, Växjö University, School
of Mathematics and Systems Engineering.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP (ACL-
IJCNLP), pages 351–359.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victo-
ria Bobicev, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Aljoscha Burchardt, Marie
Candito, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
Giuseppe G. A. Celano, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Silvie Cinková, Çağrı
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Peter Dirix, Kaja Do-
brovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Tomaž Erjavec,
Richárd Farkas, Hector Fernandez Alcalde, Jennifer
Foster, Cláudia Freitas, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Ma-
tias Grioni, Normunds Grūzı̄tis, Bruno Guillaume,
Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ,
Kim Harris, Dag Haug, Barbora Hladká, Jaroslava
Hlaváčová, Florinel Hociung, Petter Hohle, Radu
Ion, Elena Irimia, Tomáš Jelínek, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hi-
roshi Kanayama, Jenna Kanerva, Tolga Kayade-
len, Václava Kettnerová, Jesse Kirchner, Natalia
Kotsyba, Simon Krek, Veronika Laippala, Lorenzo
Lambertino, Tatiana Lando, John Lee, Phương
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, Nikola Ljubešić, Olga Loginova, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Cătălina Mărănduc, David Mareček, Katrin Marhei-
necke, Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonça, Niko Miekka, Anna Missilä, Cătălin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shinsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Kaili
Müürisep, Pinkey Nainwani, Anna Nedoluzhko,
Gunta Nešpore-Bērzkalne, Lương Nguyễn Thị,
Huyền Nguyễn Thị Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Robert Östling,
Lilja Øvrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Martin
Popel, Lauma Pretkalniņa, Prokopis Prokopidis, Ti-

ina Puolakainen, Sampo Pyysalo, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Vinit
Ravishankar, Livy Real, Siva Reddy, Georg Rehm,
Larissa Rinaldi, Laura Rituma, Mykhailo Roma-
nenko, Rudolf Rosa, Davide Rovati, Benoı̂t Sagot,
Shadi Saleh, Tanja Samardžić, Manuela Sanguinetti,
Baiba Saulı̄te, Sebastian Schuster, Djamé Seddah,
Wolfgang Seeker, Mojgan Seraji, Mo Shen, At-
suko Shimada, Dmitry Sichinava, Natalia Silveira,
Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, An-
tonio Stella, Milan Straka, Jana Strnadová, Alane
Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji,
Takaaki Tanaka, Trond Trosterud, Anna Trukhina,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Lars Wallin, Jonathan North
Washington, Mats Wirén, Tak-sum Wong, Zhuoran
Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017a. Universal dependen-
cies 2.1. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal dependency evaluation. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 86–95.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Dan Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC).

Joakim Nivre et al. 2017b. Universal Dependen-
cies 2.0 – CoNLL 2017 shared task development
and test data. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguis-
tics, Charles University, Prague, http://hdl.
handle.net/11234/1-2184.

Joakim Nivre et al. 2018. Universal Dependencies 2.2.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University,
Prague, http://hdl.handle.net/11234/.

Robert Östling and Jörg Tiedemann. 2017. Continuous
multilinguality with language vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 644–649. Association
for Computational Linguistics.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s

http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/

102

shared tasks: Plagiarism detection, author identi-
fication, and author profiling. In Information Ac-
cess Evaluation meets Multilinguality, Multimodal-
ity, and Visualization. 5th International Conference
of the CLEF Initiative (CLEF 14), pages 268–299,
Berlin Heidelberg New York. Springer.

Mohammad Sadegh Rasooli and Joel Tetreault. 2013.
Joint parsing and disfluency detection in linear time.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
124–129, Seattle, Washington, USA. Association for
Computational Linguistics.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 129–132.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. CoRR, abs/1702.03859.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion.

Milan Straka and Jana Straková. 2017. Tokenizing, pos
tagging, lemmatizing and parsing ud 2.0 with ud-
pipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 88–99. Association for
Computational Linguistics.

Swabha Swayamdipta, Miguel Ballesteros, Chris
Dyer, and Noah A. Smith. 2016. Greedy, joint
syntactic-semantic parsing with stack lstms. CoRR,
abs/1606.08954.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 1–
20. Association for Computational Linguistics.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–20, Brussels, Belgium.
Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. Joint word seg-
mentation and POS tagging using a single percep-
tron. In Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 888–896.

