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Abstract

We propose a novel neural network model
for joint part-of-speech (POS) tagging and
dependency parsing. Our model extends
the well-known BIST graph-based depen-
dency parser (Kiperwasser and Goldberg,
2016) by incorporating a BiLSTM-based
tagging component to produce automati-
cally predicted POS tags for the parser. On
the benchmark English Penn treebank, our
model obtains strong UAS and LAS scores
at 94.51% and 92.87%, respectively, pro-
ducing 1.5+% absolute improvements to
the BIST graph-based parser, and also ob-
taining a state-of-the-art POS tagging ac-
curacy at 97.97%. Furthermore, experi-
mental results on parsing 61 “big” Univer-
sal Dependencies treebanks from raw texts
show that our model outperforms the base-
line UDPipe (Straka and Straková, 2017)
with 0.8% higher average POS tagging
score and 3.6% higher average LAS score.
In addition, with our model, we also obtain
state-of-the-art downstream task scores for
biomedical event extraction and opinion
analysis applications.

Our code is available together with all pre-
trained models at: https://github.
com/datquocnguyen/jPTDP.

1 Introduction

Dependency parsing – a key research topic in nat-
ural language processing (NLP) in the last decade
(Buchholz and Marsi, 2006; Nivre et al., 2007a;
Kübler et al., 2009) – has also been demonstrated
to be extremely useful in many applications such
as relation extraction (Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005), semantic parsing

(Reddy et al., 2016) and machine translation (Gal-
ley and Manning, 2009). In general, dependency
parsing models can be categorized as graph-based
(McDonald et al., 2005) and transition-based (Ya-
mada and Matsumoto, 2003; Nivre, 2003). Most
traditional graph- or transition-based models de-
fine a set of core and combined features (McDon-
ald and Pereira, 2006; Nivre et al., 2007b; Bohnet,
2010; Zhang and Nivre, 2011), while recent state-
of-the-art models propose neural network archi-
tectures to handle feature-engineering (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017; Ma and Hovy, 2017).

Most traditional and neural network-based pars-
ing models use automatically predicted POS tags
as essential features. However, POS taggers are
not perfect, resulting in error propagation prob-
lems. Some work has attempted to avoid using
POS tags for dependency parsing (Dyer et al.,
2015; Ballesteros et al., 2015; de Lhoneux et al.,
2017), however, to achieve the strongest parsing
scores these methods still require automatically
assigned POS tags. Alternatively, joint POS tag-
ging and dependency parsing has also attracted a
lot of attention in NLP community as it could help
improve both tagging and parsing results over in-
dependent modeling (Li et al., 2011; Hatori et al.,
2011; Lee et al., 2011; Bohnet and Nivre, 2012;
Zhang et al., 2015; Zhang and Weiss, 2016; Yang
et al., 2018).

In this paper, we present a novel neural
network-based model for jointly learning POS tag-
ging and dependency paring. Our joint model ex-
tends the well-known BIST graph-based depen-
dency parser (Kiperwasser and Goldberg, 2016)
with an additional lower-level BiLSTM-based tag-
ging component. In particular, this tagging com-
ponent generates predicted POS tags for the parser
component. Evaluated on the benchmark English
Penn treebank test Section 23, our model pro-

https://github.com/datquocnguyen/jPTDP
https://github.com/datquocnguyen/jPTDP
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Figure 1: Illustration of our new model for joint POS tagging and graph-based dependency parsing.

duces a 1.5+% absolute improvement over the
BIST graph-based parser with a strong UAS score
of 94.51% and LAS score of 92.87%; and also ob-
taining a state-of-the-art POS tagging accuracy of
97.97%. In addition, multilingual parsing exper-
iments from raw texts on 61 “big” Universal De-
pendencies treebanks (Zeman et al., 2018) show
that our model outperforms the baseline UDPipe
(Straka and Straková, 2017) with 0.8% higher av-
erage POS tagging score, 3.1% higher UAS and
3.6% higher LAS. Furthermore, experimental re-
sults on downstream task applications (Fares et al.,
2018) show that our joint model helps produce
state-of-the-art scores for biomedical event extrac-
tion and opinion analysis.

2 Our joint model

This section presents our model for joint POS tag-
ging and graph-based dependency parsing. Fig-
ure 1 illustrates the architecture of our joint model
which can be viewed as a two-component mix-
ture of a tagging component and a parsing compo-
nent. Given word tokens in an input sentence, the
tagging component uses a BiLSTM to learn “la-
tent” feature vectors representing these word to-
kens. Then the tagging component feeds these fea-
ture vectors into a multilayer perceptron with one

hidden layer (MLP) to predict POS tags. The pars-
ing component then uses another BiLSTM to learn
another set of latent feature representations, based
on both the input word tokens and the predicted
POS tags. These latent feature representations are
fed into a MLP to decode dependency arcs and an-
other MLP to label the predicted dependency arcs.

2.1 Word vector representation

Given an input sentence s consisting of n word
tokens w1, w2, ..., wn, we represent each ith word
wi in s by a vector ei. We obtain ei by concate-
nating word embedding e

(W)
wi and character-level

word embedding e
(C)
wi :

ei = e(W)
wi
◦ e(C)

wi
(1)

Here, each word type w in the training data is rep-
resented by a real-valued word embedding e

(W)
w .

Given the word type w consisting of k charac-
ters w = c1c2...ck where each jth character in w
is represented by a character embedding cj , we
use a sequence BiLSTM (BiLSTMseq) to learn its
character-level vector representation (Ballesteros
et al., 2015; Plank et al., 2016). The input to
BiLSTMseq is the sequence of k character em-
beddings c1:k, and the output is a concatenation
of outputs of a forward LSTM (LSTMf) reading
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the input in its regular order and a reverse LSTM
(LSTMr) reading the input in reverse:

e
(C)
w = BiLSTMseq(c1:k) = LSTMf(c1:k) ◦ LSTMr(ck:1)

2.2 Tagging component
We feed the sequence of vectors e1:n with an ad-
ditional context position index i into another BiL-
STM (BiLSTMpos), resulting in latent feature vec-
tors v(pos)

i each representing the ith word wi in s:

v
(pos)
i = BiLSTMpos(e1:n, i) (2)

We use a MLP with softmax output (MLPpos)
on top of the BiLSTMpos to predict POS tag of
each word in s. The number of nodes in the output
layer of this MLPpos is the number of POS tags.
Given v

(pos)
i , we compute an output vector as:

ϑi = MLPpos(v
(pos)
i ) (3)

Based on output vectors ϑi, we then com-
pute the cross-entropy objective loss LPOS(t̂, t),
in which t̂ and t are the sequence of predicted POS
tags and sequence of gold POS tags of words in the
input sentence s, respectively (Goldberg, 2016).
Our tagging component thus can be viewed as a
simplified version of the POS tagging model pro-
posed by Plank et al. (2016), without their addi-
tional auxiliary loss for rare words.

2.3 Parsing component
Assume that p1, p2, ..., pn are the predicted POS
tags produced by the tagging component for the
input words. We represent each ith predicted POS
tag by a vector embedding e

(P)
pi . We then create a

sequence of vectors x1:n in which each xi is pro-
duced by concatenating the POS tag embedding
e
(P)
pi and the word vector representation ei:

xi = e(P)
pi ◦ ei = e(P)

pi ◦ e
(W)
wi
◦ e(C)

wi
(4)

We feed the sequence of vectors x1:n with an
additional index i into a BiLSTM (BiLSTMdep),
resulting in latent feature vectors vi as follows:

vi = BiLSTMdep(x1:n, i) (5)

Based on latent feature vectors vi, we follow a
common arc-factored parsing approach to decode
dependency arcs (McDonald et al., 2005). In par-
ticular, a dependency tree can be formalized as a
directed graph. An arc-factored parsing approach
learns the scores of the arcs in the graph (Kübler

et al., 2009). Here, we score an arc by using a
MLP with a one-node output layer (MLParc) on
top of the BiLSTMdep:

scorearc(i, j) (6)

= MLParc

(
vi ◦ vj ◦ (vi ∗ vj) ◦ |vi − vj |

)
where (vi ∗ vj) and |vi − vj | denote the element-
wise product and the absolute element-wise differ-
ence, respectively; and vi and vj are correspond-
ingly the latent feature vectors associating to the
ith and jth words in s, computed by Equation 5.

Given the arc scores, we use the Eisner (1996)’s
decoding algorithm to find the highest scoring pro-
jective parse tree:

score(s) = argmax
ŷ∈Y(s)

∑
(h,m)∈ŷ

scorearc(h,m) (7)

where Y(s) is the set of all possible dependency
trees for the input sentence s while scorearc(h,m)
measures the score of the arc between the head hth

word and the modifier mth word in s.
Following Kiperwasser and Goldberg (2016),

we compute a margin-based hinge loss LARC with
loss-augmented inference to maximize the mar-
gin between the gold unlabeled parse tree and the
highest scoring incorrect tree.

For predicting dependency relation type of a
head-modifier arc, we use another MLP with soft-
max output (MLPrel) on top of the BiLSTMdep.
Here, the number of the nodes in the output layer
of this MLPrel is the number of dependency rela-
tion types. Given an arc (h,m), we compute an
output vector as:

v(h,m) (8)

= MLPrel

(
vh ◦ vm ◦ (vh ∗ vm) ◦ |vh − vm|

)
Based on output vectors v(h,m), we also com-

pute another cross-entropy objective loss LREL for
relation type prediction, using only the gold la-
beled parse tree.

Our parsing component can be viewed as an
extension of the BIST graph-based dependency
model (Kiperwasser and Goldberg, 2016), where
we additionally incorporate the character-level
vector representations of words.

2.4 Joint model training
The training objective loss of our joint model is the
sum of the POS tagging loss LPOS, the structure
loss LARC and the relation labeling loss LREL:

L = LPOS + LARC + LREL (9)
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The model parameters, including word embed-
dings, character embeddings, POS embeddings,
three one-hidden-layer MLPs and three BiLSTMs,
are learned to minimize the sum L of the losses.

Most neural network-based joint models
for POS tagging and dependency parsing are
transition-based approaches (Alberti et al., 2015;
Zhang and Weiss, 2016; Yang et al., 2018),
while our model is a graph-based method. In
addition, the joint model JMT (Hashimoto et al.,
2017) defines its dependency parsing task as a
head selection task which produces a probability
distribution over possible heads for each word
(Zhang et al., 2017).

Our model is the successor of the joint model
jPTDP v1.0 (Nguyen et al., 2017) which is also a
graph-based method. However, unlike our model,
jPTDP v1.0 uses a BiLSTM to learn “shared” la-
tent feature vectors which are then used for both
POS tagging and dependency parsing tasks, rather
than using two separate layers. As mentioned
in Section 4, our model generally outperforms
jPTDP v1.0 with 2.5+% LAS improvements on
universal dependencies (UD) treebanks.

2.5 Implementation details

Our model is released as jPTDP v2.0, available at
https://github.com/datquocnguyen/
jPTDP. Our jPTDP v2.0 is implemented using
DYNET v2.0 (Neubig et al., 2017) with a fixed
random seed.1 Word embeddings are initialized
either randomly or by pre-trained word vectors,
while character and POS tag embeddings are
randomly initialized. For learning character-level
word embeddings, we use one-layer BiLSTMseq,
and set the size of LSTM hidden states to be equal
to the vector size of character embeddings.

We apply dropout (Srivastava et al., 2014) with
a 67% keep probability to the inputs of BiLSTMs
and MLPs. Following Iyyer et al. (2015) and
Kiperwasser and Goldberg (2016), we also apply
word dropout to learn an embedding for unknown
words: we replace each word token w appearing
#(w) times in the training set with a special “unk”
symbol with probability punk(w) = 0.25

0.25+#(w) .
This procedure only involves the word embedding
part in the input word vector representation.

We optimize the objective loss using Adam
(Kingma and Ba, 2014) with an initial learning
rate at 0.001 and no mini-batches. For training,

1https://github.com/clab/dynet

we run for 30 epochs, and restart the Adam opti-
mizer and anneal its initial learning rate at a pro-
portion of 0.5 every 10 epochs. We evaluate the
mixed accuracy of correctly assigning POS tag to-
gether with dependency arc and relation type on
the development set after each training epoch. We
choose the model with the highest mixed accuracy
on the development set, which is then applied to
the test set for the evaluation phase.

For all experiments presented in this pa-
per, we use 100-dimensional word embeddings,
50-dimensional character embeddings and 100-
dimensional POS tag embeddings. We also fix
the number of hidden nodes in MLPs at 100. Due
to limited computational resource, for experiments
presented in Section 3, we perform a minimal grid
search of hyper-parameters to select the number
of BiLSTMpos and BiLSTMdep layers from {1, 2}
and the size of LSTM hidden states in each layer
from {128, 256}. For experiments presented in
sections 4 and 5, we fix the number of BiLSTM
layers at 2 and the size of hidden states at 128.

3 Experiments on English Penn treebank

Experimental setup: We evaluate our model
using the English WSJ Penn treebank (Marcus
et al., 1993). We follow a standard data split
to use sections 02-21 for training, Section 22 for
development and Section 23 for test (Chen and
Manning, 2014), employing the Stanford conver-
sion toolkit v3.3.0 to generate dependency trees
with Stanford basic dependencies (de Marneffe
and Manning, 2008).

Word embeddings are initialized by 100-
dimensional GloVe word vectors pre-trained on
Wikipedia and Gigaword (Pennington et al.,
2014).2 As mentioned in Section 2.5, we per-
form a minimal grid search of hyper-parameters
and find that the highest mixed accuracy on the de-
velopment set is obtained when using 2 BiLSTM
layers and 256-dimensional LSTM hidden states
(in Table 1, we present scores obtained on the de-
velopment set when using 2 BiLSTM layers).

Main results: Table 2 compares our UAS and
LAS scores on the test set with previous published
results in terms of the dependency annotations.3

2
https://nlp.stanford.edu/projects/glove

3Choe and Charniak (2016) reported the highest UAS
score at 95.9% and LAS score at 94.1% to date on the test
set, using the Stanford conversion toolkit v3.3.0 to convert
the output constituent trees into dependency representations.

https://github.com/datquocnguyen/jPTDP
https://github.com/datquocnguyen/jPTDP
https://github.com/clab/dynet
https://nlp.stanford.edu/projects/glove
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#states With punctuations Without pun.
POS UAS LAS UAS LAS

128 97.64 93.68 92.11 94.42 92.61
256 97.63 93.89 92.33 94.63 92.82
Chen and Manning (2014) 92.0 89.7

Dyer et al. (2015) 93.2 90.9
BIST-graph [K&G16] 93.3 91.0

Zhang et al. (2017) 94.30 91.95
Ma and Hovy (2017) 94.77 92.66

Dozat and Manning (2017) 95.24 93.37

Table 1: Results on the development set. #states
and “Without pun.” denote the size of LSTM hid-
den states and the scores computed without punc-
tuations, respectively. “POS” indicates the POS
tagging accuracy. [K&G16] denotes results re-
ported in Kiperwasser and Goldberg (2016).

Model POS UAS LAS
Chen and Manning (2014) 97.3 91.8 89.6
Dyer et al. (2015) 97.3 93.1 90.9
Weiss et al. (2015) 97.44 93.99 92.05
BIST-graph [K&G16] 97.3 93.1 91.0
BIST-transition [K&G16] 97.3 93.9 91.9
Kuncoro et al. (2016) 97.3 94.26 92.06
Andor et al. (2016) 97.44 94.61 92.79
Zhang et al. (2017) 97.3 94.10 91.90
Ma and Hovy (2017) 97.3 94.88 92.98
Dozat and Manning (2017) 97.3 95.44 93.76
Dozat and Manning (2017) [•] 97.3 95.66 94.03
Bohnet and Nivre (2012) [?] 97.42 93.67 92.68
Alberti et al. (2015) 97.44 94.23 92.36
Zhang and Weiss (2016) 93.43 91.41
Hashimoto et al. (2017) 94.67 92.90
Yang et al. (2018) 97.54 94.18 92.26
Our model 97.97 94.51 92.87

Table 2: Results on the test set. POS tagging accu-
racies are computed on all tokens. UAS and LAS
are computed without punctuations. [•]: the tree-
bank was converted with the Stanford conversion
toolkit v3.5.0. [?]: the treebank was converted
with the head rules of Yamada and Matsumoto
(2003). For both [•] and [?], obtained parsing
scores are just for reference, not for comparison.

The first 11 rows present scores of dependency
parsers in which POS tags were predicted by using
an external POS tagger such as the Stanford tagger
(Toutanova et al., 2003). The last 6 rows present
scores for joint models. Clearly, our model pro-
duces very competitive parsing results. In particu-
lar, our model obtains a UAS score at 94.51% and
a LAS score at 92.87% which are about 1.4% and

1.9% absolute higher than UAS and LAS scores
of the BIST graph-based model (Kiperwasser and
Goldberg, 2016), respectively. Our model also
does better than the previous transition-based joint
models in Alberti et al. (2015), Zhang and Weiss
(2016) and Yang et al. (2018), while obtaining
similar UAS and LAS scores to the joint model
JMT proposed by Hashimoto et al. (2017).

We achieve 0.9% lower parsing scores than the
state-of-the-art dependency parser of Dozat and
Manning (2017). While also a BiLSTM- and
graph-based model, it uses a more sophisticated
attention mechanism “biaffine” for better decod-
ing dependency arcs and relation types. In future
work, we will extend our model with the biaffine
attention mechanism to investigate the benefit for
our model. Other differences are that they use a
higher dimensional representation than ours, but
rely on predicted POS tags.

We also obtain a state-of-the-art POS tagging
accuracy at 97.97% on the test Section 23, which
is about 0.4+% higher than those by Bohnet and
Nivre (2012), Alberti et al. (2015) and Yang et al.
(2018). Other previous joint models did not men-
tion their specific POS tagging accuracies.4

4 UniMelb in the CoNLL 2018 shared
task on UD parsing

Our UniMelb team participated with jPTDP v2.0
in the CoNLL 2018 shared task on parsing 82 tree-
bank test sets (in 57 languages) from raw text to
universal dependencies (Zeman et al., 2018). The
82 treebanks are taken from UD v2.2 (Nivre et al.,
2018), where 61/82 test sets are for “big” UD tree-
banks for which both training and development
data sets are available and 5/82 test sets are ex-
tra “parallel” test sets in languages where another
big treebank exists. In addition, 7/82 test sets are
for “small” UD treebanks for which development
data is not available. The remaining 9/82 sets are
in low-resource languages without training data or
with a few gold-annotation sample sentences.

For the 7 small treebanks without development
data available, we split training data into two parts
with a ratio 9:1, and then use the larger part for
training and the smaller part for development. For
each big or small treebank, we train a joint model
for universal POS tagging and dependency pars-
ing, using a fixed random seed and a fixed set

4Hashimoto et al. (2017) showed that JMT obtains a POS
tagging accuracy of 97.55% on WSJ sections 22-24.
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System All Big PUD Small Low
(82) (61) (5) (7) (9)

U
PO

S UDPipe 1.2 87.32 93.71 85.23 87.36 45.20
UniMelb 87.90 94.50 85.33 87.12 45.20
goldseg. 95.63 90.21 87.64

U
A

S UDPipe 1.2 71.64 78.78 71.22 63.17 30.08
UniMelb 74.16 81.83 73.17 64.71 30.08
goldseg. 85.01 81.81 67.46

L
A

S

UDPipe 1.2 65.80 74.14 66.63 55.01 17.17
UniMelb 68.65 77.69 68.72 56.12 17.17
goldseg. 80.68 75.03 58.65

Table 3: Official macro-average F1 scores com-
puted on all tokens for UniMelb and the baseline
UDPipe 1.2 in the CoNLL 2018 shared task on
UD parsing from raw texts (Zeman et al., 2018).
“UPOS” denotes the universal POS tagging score.
“All”, “Big”, “PUD”, “Small” and “Low” refer
to the macro-average scores over all 81, 61 big
treebank, 5 parallel, 7 small treebank and 9 low-
resource treebank test sets, respectively. “gold-
seg.” denotes the scores of our jPTDP v2.0 model
regarding gold segmentation, detailed in Table 4.

of hyper-parameters as mentioned in Section 2.5.5

We evaluate the mixed accuracy on the develop-
ment set after each training epoch, and select the
model with the highest mixed accuracy.

For parsing from raw text to universal de-
pendencies, we employ CoNLL-U test files pre-
processed by the baseline UDPipe 1.2 (Straka and
Straková, 2017). Here, we utilize the tokenization,
word and sentence segmentation predicted by UD-
Pipe 1.2. For 68 big and small treebank test files,
we use the corresponding trained joint models. We
use the joint models trained for cs pdt, en ewt,
fi tdt, ja gsd and sv talbanken to process 5 par-
allel test files cs pud, en pud, fi pud, ja modern
and sv pud, respectively. Since we do not focus
on low-resource languages, we employ the base-
line UDPipe 1.2 to process 9 low-resource tree-
bank test files. The final test runs are carried out
on the TIRA platform (Potthast et al., 2014).

Table 3 presents our results in the CoNLL 2018
shared task on multilingual parsing from raw texts
to universal dependencies (Zeman et al., 2018).
Over all 82 test sets, we outperform the baseline
UDPipe 1.2 with 0.6% absolute higher average
UPOS F1 score and 2.5+% higher average UAS

5We initialize word embeddings by 100-dimensional pre-
trained vectors from Ginter et al. (2017). For a language
where pre-trained word vectors are not available in Ginter
et al. (2017), word embeddings are randomly initialized.

and LAS F1 scores. In particular, for the “big”
category consisting of 61 treebank test sets, we ob-
tain 0.8% higher UPOS and 3.1% higher UAS and
3.6% higher LAS than UDPipe 1.2.

Our (UniMelb) official LAS-based rank is at
14th place while the baseline UDPipe 1.2 is at
18th place over total 26 participating systems.6

However, it is difficult to make a clear compari-
son between our jPTDP v2.0 and the parsing mod-
els used in other top systems. Several better par-
ticipating systems simply reuse the state-of-the-
art biaffine dependency parser (Dozat and Man-
ning, 2017; Dozat et al., 2017), constructing en-
semble models or developing treebank concatena-
tion strategies to obtain larger training data, which
is likely to produce better scores than ours (Zeman
et al., 2018).

Recall that the shared task focuses on parsing
from raw texts. Most higher-ranking systems aim
to improve the pre-processing steps of tokeniza-
tion7, word8 and sentence9 segmentation, result-
ing in significant improvements in final parsing
scores. For example, in the CoNLL 2017 shared
task on UD parsing (Zeman et al., 2017), UDPipe
1.2 obtained 0.1+% higher average tokenization
and word segmentation scores and 0.2% higher
average sentence segmentation score than UDPipe
1.1, resulting in 1+% improvement in the final av-
erage LAS F1 score while both UDPipe 1.2 and
UDPipe 1.1 shared exactly the same remaining
components. Utilizing better pre-processors, as
used in other participating systems, should like-
wise improve our final parsing scores.

In Table 3, we also present our average UPOS,
UAS and LAS accuracies with respect to (w.r.t.)
gold-standard tokenization, word and sentence
segmentation. For more details and future compar-
ison, Table 4 presents the UPOS, UAS and LAS
scores w.r.t. gold-standard segmentation, obtained
by jPTDP v2.0 on each UD v2.2–CoNLL 2018
shared task test set. Compared to the scores pre-
sented in Table 3 in Nguyen et al. (2017) on over-
lapped treebanks, our model jPTDP v2.0 generally
produces 2.5+% improvements in UAS and LAS
scores to jPTDP v1.0 (Nguyen et al., 2017).

6http://universaldependencies.org/
conll18/results.html

7http://universaldependencies.org/
conll18/results-tokens.html

8http://universaldependencies.org/
conll18/results-words.html

9http://universaldependencies.org/
conll18/results-sentences.html

http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results-tokens.html
http://universaldependencies.org/conll18/results-tokens.html
http://universaldependencies.org/conll18/results-words.html
http://universaldependencies.org/conll18/results-words.html
http://universaldependencies.org/conll18/results-sentences.html
http://universaldependencies.org/conll18/results-sentences.html
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Treebank Code UPOS UAS LAS Treebank Code UPOS UAS LAS
Afrikaans-AfriBooms af afribooms 95.73 82.57 78.89 Italian-ISDT it isdt 98.01 92.33 90.20
Ancient Greek-PROIEL grc proiel 96.05 77.57 72.84 Italian-PoSTWITA it postwita 95.41 84.20 79.11
Ancient Greek-Perseus grc perseus 88.95 65.09 58.35 Japanese-GSD ja gsd 97.27 94.21 92.02
Arabic-PADT ar padt 96.33 86.08 80.97 Japanese-Modern [p] ja modern 70.53 66.88 49.51
Basque-BDT eu bdt 93.62 79.86 75.07 Korean-GSD ko gsd 93.35 81.32 76.58
Bulgarian-BTB bg btb 98.07 91.47 87.69 Korean-Kaist ko kaist 93.53 83.59 80.74
Catalan-AnCora ca ancora 98.46 90.78 88.40 Latin-ITTB la ittb 98.12 82.99 79.96
Chinese-GSD zh gsd 93.26 82.50 77.51 Latin-PROIEL la proiel 95.54 74.95 69.76
Croatian-SET hr set 97.42 88.74 83.62 Latin-Perseus [s] la perseus 82.36 57.21 46.28
Czech-CAC cs cac 98.87 89.85 87.13 Latvian-LVTB lv lvtb 93.53 81.06 76.13
Czech-FicTree cs fictree 97.98 88.94 85.64 North Sami-Giella [s] sme giella 87.48 65.79 58.09
Czech-PDT cs pdt 98.74 89.64 87.04 Norwegian-Bokmaal no bokmaal 97.73 89.83 87.57
Czech-PUD [p] cs pud 96.71 87.62 82.28 Norwegian-Nynorsk no nynorsk 97.33 89.73 87.29
Danish-DDT da ddt 96.18 82.17 78.88 Norwegian-NynorskLIA [s] no nynorsklia 85.22 64.14 54.31
Dutch-Alpino nl alpino 95.62 86.34 82.37 Old Church Slavonic-PROIEL cu proiel 93.69 80.59 73.93
Dutch-LassySmall nl lassysmall 95.21 86.46 82.14 Old French-SRCMF fro srcmf 95.12 86.65 81.15
English-EWT en ewt 95.48 87.55 84.71 Persian-Seraji fa seraji 96.66 88.07 84.07
English-GUM en gum 94.10 84.88 80.45 Polish-LFG pl lfg 98.22 95.29 93.10
English-LinES en lines 95.55 80.34 75.40 Polish-SZ pl sz 97.05 90.98 87.66
English-PUD [p] en pud 95.25 87.49 84.25 Portuguese-Bosque pt bosque 96.76 88.67 85.71
Estonian-EDT et edt 96.87 85.45 82.13 Romanian-RRT ro rrt 97.43 88.74 83.54
Finnish-FTB fi ftb 94.53 86.10 82.45 Russian-SynTagRus ru syntagrus 98.51 91.00 88.91
Finnish-PUD [p] fi pud 96.44 87.54 84.60 Russian-Taiga [s] ru taiga 85.49 65.52 56.33
Finnish-TDT fi tdt 96.12 86.07 82.92 Serbian-SET sr set 97.40 89.32 85.03
French-GSD fr gsd 97.11 89.45 86.43 Slovak-SNK sk snk 95.18 85.88 81.89
French-Sequoia fr sequoia 97.92 89.71 87.43 Slovenian-SSJ sl ssj 97.79 88.26 86.10
French-Spoken fr spoken 94.25 79.80 73.45 Slovenian-SST sl sst [s] 89.50 66.14 58.13
Galician-CTG gl ctg 97.12 85.09 81.93 Spanish-AnCora es ancora 98.57 90.30 87.98
Galician-TreeGal [s] gl treegal 93.66 77.71 71.63 Swedish-LinES sv lines 95.51 83.60 78.97
German-GSD de gsd 94.07 81.45 76.68 Swedish-PUD [p] sv pud 92.10 79.53 74.53
Gothic-PROIEL got proiel 93.45 79.80 71.85 Swedish-Talbanken sv talbanken 96.55 86.53 83.01
Greek-GDT el gdt 96.59 87.52 84.64 Turkish-IMST tr imst 92.93 70.53 62.55
Hebrew-HTB he htb 96.24 87.65 82.64 Ukrainian-IU uk iu 95.24 83.47 79.38
Hindi-HDTB hi hdtb 96.94 93.25 89.83 Urdu-UDTB ur udtb 93.35 86.74 80.44
Hungarian-Szeged hu szeged 92.07 76.18 69.75 Uyghur-UDT ug udt 87.63 76.14 63.37
Indonesian-GSD id gsd 93.29 84.64 77.71 Vietnamese-VTB vi vtb 87.63 67.72 58.27
Irish-IDT [s] ga idt 89.74 75.72 65.78 Average 94.49 83.11 78.18

Table 4: UPOS, UAS and LAS scores computed on all tokens of our jPTDP v2.0 model regarding gold-
standard segmentation on 73 CoNLL-2018 shared task test sets “Big”, “PUD” and “Small” – UD v2.2
(Nivre et al., 2018). [p] and [s] denote the “PUD” extra parallel and small test sets, respectively. For
each treebank, a joint model is trained using a fixed set of hyper-parameters as mentioned in Section 2.5.

5 UniMelb in the EPE 2018 campaign

Our UniMelb team also participated with jPTDP
v2.0 in the 2018 Extrinsic Parser Evaluation (EPE)
campaign (Fares et al., 2018).10 The EPE 2018
campaign runs in collaboration with the CoNLL
2018 shared task, which aims to evaluate depen-
dency parsers by comparing their performance
on three downstream tasks: biomedical event ex-
traction (Björne et al., 2017), negation resolution
(Lapponi et al., 2017) and opinion analysis (Jo-
hansson, 2017). Here, participants only need to
provide parsing outputs of English raw texts used
in these downstream tasks; the campaign orga-
nizers then compute end-to-end downstream task

10http://epe.nlpl.eu

scores. General background can be also found in
the first EPE edition 2017 (Oepen et al., 2017).

Unlike EPE 2017, the EPE 2018 campaign lim-
ited the training data to the English UD treebanks
only. We unfortunately were unaware of this re-
striction during development of our model. Thus,
we trained a jPTDP v2.0 model on dependency
trees generated with the Stanford basic dependen-
cies on a combination of the WSJ treebank, sec-
tions 02-21, and the training split of the GENIA
treebank (Tateisi et al., 2005). We used the fixed
set of hyper-parameters as used for the CoNLL
2018 shared task as mentioned in Section 2.5.11

We then submitted the parsing outputs by run-
11Word embeddings are initialized by the 100-dimensional

pre-trained GloVe word vectors.

http://epe.nlpl.eu
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Task Development set Evaluation set
Pre. Rec. F1 SP17 Pre. Rec. F1 SP17

Event extraction 57.87 51.20 54.331 52.6754.59 58.52 49.43 53.591 50.2950.23
Negation resolution 100.0 44.51 61.603 64.8565.37 100.0 41.83 58.993 65.1366.16
Opinion analysis 69.12 64.65 66.811 66.6368.53 66.67 62.88 64.721 63.7265.14

Average 60.911 61.3862.83 59.101 59.7160.51

Table 5: Downstream task scores Precision (Prec.), Recall (Rec.) and F1 for our UniMelb team. The
subscript in the F1 column denotes the unofficial rank of UniMelb over 17 participating teams at EPE
2018 (Fares et al., 2018). “SP17” denotes the F1 scores obtained by the EPE 2017 system Stanford-Paris
(Schuster et al., 2017) with respect to (w.r.t.) the Stanford basic dependencies. The subscript in the SP17
column denotes the F1 scores obtained by Stanford-Paris w.r.t. the UD-v1-enhanced type of dependency
representations, in which the average F1 score at 60.51 is the highest one at EPE 2017.

ning our trained model on the pre-processed to-
kenized and sentence-segmented data provided by
the campaign on the TIRA platform.

Table 5 presents the results we obtained for
three downstream tasks at EPE 2018 (Fares et al.,
2018). Since we employed external training data,
our obtained scores are not officially ranked. In
total 17 participating teams, we obtained the high-
est average F1 score over the three downstream
tasks (i.e., we ranked first, unofficially). In par-
ticular, we achieved the highest F1 scores for both
biomedical event extraction and opinion analysis.
Our results may be high because the training data
we used is larger than the English UD treebanks
used by other teams.

Table 5 also presents scores from the Stanford-
Paris team (Schuster et al., 2017)—the first-ranked
team at EPE 2017 (Oepen et al., 2017). Both
EPE 2017 and 2018 campaigns use the same
downstream task setups, therefore the downstream
task scores are directly comparable. Note that
Stanford-Paris employed the state-of-the-art bi-
affine dependency parser (Dozat et al., 2017) with
larger training data. In particular, Stanford-Paris
not only used the WSJ sections 02-21 and the
training split of the GENIA treebank (as we did),
but also included the Brown corpus. The down-
stream application of negation resolution requires
parsing of fiction, which is one the genres included
in the Brown corpus. Hence it is reasonable that
the Stanford-Paris team produced better negation
resolution scores than we did.

However, in terms of the Stanford basic depen-
dencies, while we employ a less accurate pars-
ing model with smaller training data, we obtain
higher downstream task scores for event extrac-
tion and opinion analysis than the Stanford-Paris

team. Consequently, better intrinsic parsing per-
formance does not always imply better extrin-
sic downstream application performance. Sim-
ilar observations on the biomedical event ex-
traction and opinion analysis tasks can also be
found in Nguyen and Verspoor (2018) and Gómez-
Rodrı́guez et al. (2017), respectively. Further in-
vestigations of this pattern requires much deeper
understanding of the architecture of the down-
stream task systems, which is left for future work.

6 Conclusion

In this paper, we have presented a novel neural
network model for joint POS tagging and graph-
based dependency parsing. On the benchmark
English WSJ Penn treebank, our model obtains
strong parsing scores UAS at 94.51% and LAS at
92.87%, and a state-of-the-art POS tagging accu-
racy at 97.97%.

We also participated with our joint model in
the CoNLL 2018 shared task on multilingual pars-
ing from raw texts to universal dependencies, and
obtained very competitive results. Specifically,
using the same CoNLL-U files pre-processed by
UDPipe (Straka and Straková, 2017), our model
produced 0.8% higher POS tagging, 3.1% higher
UAS and 3.6% higher LAS scores on average than
UDPipe on 61 big UD treebank test sets. Further-
more, our model also helps obtain state-of-the-art
downstream task scores for the biomedical event
extraction and opinion analysis applications.

We believe our joint model can serve as a new
strong baseline for both intrinsic POS tagging
and dependency parsing tasks as well as for ex-
trinsic downstream applications. Our code and
pre-trained models are available at: https://
github.com/datquocnguyen/jPTDP.

https://github.com/datquocnguyen/jPTDP
https://github.com/datquocnguyen/jPTDP


89

Acknowledgments

This work was supported by the ARC Discovery
Project DP150101550 and ARC Linkage Project
LP160101469.

References
Chris Alberti, David Weiss, Greg Coppola, and Slav

Petrov. 2015. Improved Transition-Based Parsing
and Tagging with Neural Networks. In Proceedings
of EMNLP. pages 1354–1359.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Nor-
malized Transition-Based Neural Networks. In Pro-
ceedings of ACL. pages 2442–2452.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved Transition-based Parsing by Mod-
eling Characters instead of Words with LSTMs. In
Proceedings of EMNLP. pages 349–359.

Jari Björne, Filip Ginter, and Tapio Salakoski. 2017.
EPE 2017: The Biomedical event extraction down-
stream application. In Proceedings of the EPE 2017
Shared Task. pages 17–24.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of COLING. pages 89–97.

Bernd Bohnet and Joakim Nivre. 2012. A Transition-
Based System for Joint Part-of-Speech Tagging and
Labeled Non-Projective Dependency Parsing. In
Proceedings of EMNLP-CoNLL. pages 1455–1465.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CoNLL. pages 149–164.

Razvan Bunescu and Raymond Mooney. 2005. A
Shortest Path Dependency Kernel for Relation Ex-
traction. In Proceedings of HLT/EMNLP. pages
724–731.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP. pages 740–750.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as Language Modeling. In Proceedings of EMNLP.
pages 2331–2336.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
Tree Kernels for Relation Extraction. In Proceed-
ings of ACL. pages 423–429.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From Raw Text to Universal
Dependencies - Look, No Tags! In Proceedings of
the CoNLL 2017 Shared Task. pages 207–217.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford Typed Dependencies Rep-
resentation. In Proceedings of the Workshop on
Cross-Framework and Cross-Domain Parser Eval-
uation. pages 1–8.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of ICLR.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s Graph-based Neural Dependency
Parser at the CoNLL 2017 Shared Task. In Proceed-
ings of the CoNLL 2017 Shared Task. pages 20–30.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of ACL-IJCNLP.
pages 334–343.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
Proceedings of COLING. pages 340–345.

Murhaf Fares, Stephan Oepen, Lilja vrelid, Jari
Björne, and Richard Johansson. 2018. The 2018
Shared Task on Extrinsic Parser Evaluation. On the
downstream utility of English universal dependency
parsers. In Proceedings of the CoNLL 2018 Shared
Task. page to appear.

Michel Galley and Christopher D. Manning. 2009.
Quadratic-Time Dependency Parsing for Machine
Translation. In Proceedings of ACL-IJCNLP. pages
773–781.
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Djamé Seddah. 2017. Paris and Stanford at EPE
2017: Downstream Evaluation of Graph-based De-
pendency Representations. In Proceedings of the
EPE 2017 Shared Task. pages 47–59.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Milan Straka and Jana Straková. 2017. Tokenizing,
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