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Abstract

This paper describes the system of our
team Phoenix for participating CoNLL
2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependen-
cies. Given the annotated gold standard
data in CoNLL-U format, we train the to-
kenizer, tagger and parser separately for
each treebank based on an open source
pipeline tool UDPipe. Our system reads
the plain texts for input, performs the pre-
processing steps (tokenization, lemmas,
morphology) and finally outputs the syn-
tactic dependencies. For the low-resource
languages with no training data, we use
cross-lingual techniques to build models
with some close languages instead. In
the official evaluation, our system achieves
the macro-averaged scores of 65.61%,
52.26%, 55.71% for LAS, MLAS and
BLEX respectively.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2016)
is a framework that provides cross-linguistically
consistent grammatical annotations for various
languages, which enables comparative evaluations
for some cross-lingual learning tasks. As a follow
up of CoNLL 2017 UD Shared Task (Zeman et al.,
2017), the goal of CoNLL 2018 UD Shared Task
(Zeman et al., 2018) is to develop multilingual de-
pendency parsers from raw text for many typolog-
ically different languages with training data from
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UD project. The task comprises 82 test sets from
57 languages. However, there are a category of
low-resource languages that have little or no train-
ing data, which requires cross-lingual techniques
(Zeman and Resnik, 2008; Tiedemann, 2015) with
the help of the data from other languages.

In this paper, we present the system of our
team Phoenix for multilingual universal depen-
dency parsing from raw text. The targeted task
is a challenging one in terms of deep learning
based natural language processing (Wu and Zhao,
2018; Bai and Zhao, 2018; Cai et al., 2018; Li
et al., 2018; Zhang et al., 2018; Zhang and Zhao,
2018; He et al., 2018; Wang et al., 2017; Qin
et al., 2017). We adopt the trainable open source
tool UDPipe 1.2 (Straka et al., 2016; Straka and
Straková, 2017) to train the dependency parser for
each test set with UD version 2.2 (Nivre et al.,
2018) treebanks as training data. There are three
main components of our model to perform, tok-
enization, Part-of-Speech (POS) tagging and de-
pendency parsing. When evaluated on the web in-
terface of TIRA (Potthast et al., 2014) platform,
the system reads the raw text for input and chooses
the corresponding model for a particular test set
with a model selector. After the tokenization and
tagging on the raw text, the system finally out-
puts the syntactic dependencies in the CoNLL-U
format. To deal with the low-resource languages
which have no training data, some cross-lingual
techniques are applied by training with other re-
lated or close languages. Our official submis-
sion obtains macro-averaged scores of 65.61%,
52.26%, 55.71% for LAS, MLAS and BLEX on
all treebanks.

The rest of this paper is organized as follows.
Section 2 introduces the architecture overview of
our system. Section 3 gives the implementation
details and the specific strategies applied for the
low-resource languages. Finally, we report and an-
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alyze the official results with the three main eval-
uation metrics in Section 4.

2 System Overview

Figure 1 illustrates the overall architecture of our
system for training and predicting. In the train-
ing procedure, the system takes as input the tree-
banks (training set) of CoNLL-U format and trains
a model for each of them. Every model has three
components, tokenizer, tagger and parser. As we
train the parser, pretrained word embeddings for
word forms in the word2vec format are applied. In
the predicting procedure, the system takes as input
the raw text (test set) and selects a model accord-
ing to the language code and treebank code. With
the selected model, the system outputs the syntac-
tic head and the type of the dependency relation
for each word.

2.1 Training Data

Our models are trained by using only UD 2.2 tree-
banks provided by the CoNLL 2018 UD Shared
Task without any other additional data. There are
82 test sets from 57 languages, and 61 of the 82
treebanks are large enough to provide training and
development sets. However, the other 21 tree-
banks lack of development data and some of them
even have no training data. Among these low-
resource treebanks, 7 have training data with still
reasonable size; 5 are extra test sets in languages
where another large treebank exists; 9 are low-
resource languages with no training data avail-
able (Breton, Faroese, Naija, Thai) or the train-
ing set being just a tiny sample (Armenian, Buryat,
Kazakh, Kurmanji, Upper Sorbian). For the tree-
banks that still have training data but without de-
velopment data, we split the last 10% of the train-
ing data as the development set to tune model hy-
perparameters even if the training set is very small.
To deal with those having no training data, we
train the parsers with the treebanks of the same
languages or related languages. The details will
be given in Section 3.4.

2.2 Word Embedding

We adopt pretrained embeddings for word forms
with the provided training data by word2vec
(Mikolov et al., 2013). The parameter settings
of word2vec are shown in Table 1. We use the
skip-gram model to train the word vectors with
a dimension of 50. The context window is set

to 10 words and the word will be dropped if
its frequency is less than twice. After convert-
ing CoNLL-U to the horizontal format (replacing
spaces within word forms with a Unicode charac-
ter), we train the word embeddings of each tree-
bank on the UD data for 15 iterations.

Parameters Value
algorithm skip-gram
size 50
window 10
min-count 2
iterations 15

Table 1: Parameters for training word embed-
dings.

2.3 Model Selector

Since we train models individually for every lan-
guages and treebanks, a model selector is needed
to decide which model to use when predicting.
The model selector in our system simply reads the
json file in the test file folder and assigns the corre-
sponding trained model for each test set according
to the language code and treebank code.

3 Model Description

3.1 Tokenizer

In our system pipeline, the first step is the sen-
tence segmentation and tokenization which is per-
formed jointly in UDPipe. A single-layer bidi-
rectional GRU network is used to train the tok-
enizer which predicts for each character whether
it is the last one in a sentence or the last one in a
token. In UD treebanks, the text is structured on
several levels: document, paragraph, sentence and
token. A MISC feature SpaceAfter=No is defined
to denote that a given token is not followed by a
space. Thus, the tokenizer is trained according to
the SpaceAfter=No features in the CoNLL-U files.

The parameters used for training the tokenizer
are listed in Table 2. The segmenter and tok-
enizer network employs character embeddings and
is trained using dropout both before and after the
recurrent units. The GRU dimension, dropout
probability and learning rate are tuned on the de-
velopment set. All the tokenizers are trained for
100 epochs. Other parameters like tokenize url
and allow spaces are set as default.
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Figure 1: System architecture

Parameters Value
tokenize url 1
allow spaces 1
batch size 50,100
dimension 24, 64
dropout 0.1, 0.2, 0.3
early stop 1
epochs 100
learning rate 0.002, 0.005, 0.01

Table 2: Parameters for training the tokenizers.

Parameters Value
models 2
templates 1 tagger
guesser suffix rules 1 4, 6, 8, 10, 12
guesser enrich dictionary 1 4, 5, 6
guesser prefixes max 1 0, 4
templates 2 lemmatizer
guesser suffix rules 2 4, 6, 8
guesser enrich dictionary 2 4, 5, 6
guesser prefixes max 2 0, 4
iterations 20
early stopping 1

Table 3: Parameters for training the taggers.

3.2 Tagger
The second step in our system pipeline is to gen-
erate some POS tags and other morphological fea-
tures for the tokenized data, which will be uti-
lized as the input for the final dependency parser.
We adopt the built-in tagger in UDPipe, which is

based on an open source morphological analysis
tool MorphoDita (Straková et al., 2014). In this
step, the tagger will produce the following out-
puts:

Lemma: Lemma or stem of word form.

UPOS: Universal POS tag.

XPOS: Language-specific POS tag.

FEATS: List of morphological features from the
universal feature inventory or from a defined
language-specific extension.

We use two MorphoDita models to produce dif-
ferent features, whose effectiveness has been veri-
fied in (Straka et al., 2016). The first model called
tagger generates the UPOS, XPOS and FEATS
tags while the second one called lemmatizer per-
forms lemmatization.

The tagger consists of a guesser and an averaged
perceptron. The guesser generates several triplets
(UPOS, XPOS, FEATS) for each word according
to its last four characters. The averaged percep-
tron with a fixed set of features disambiguates the
generated tags (Straka et al., 2016; Straková et al.,
2014).

The structure of the lemmatizer is similar to the
tagger. A guesser produces (lemma rule, UPOS)
tuples and an averaged perceptron performs dis-
ambiguation. The lemmatizer generates a lemma
from a word by stripping some affix and adding
new affix according to the last four characters of a
word and its prefix.



77

The training parameters of the two models for
different treebanks are provided in Table 3.

Parameters Value
embedding form 50
embedding upostag 20
embedding feats 20
embedding deprel 20
hidden layer 200
batch size 10
iterations 30
l2 0.3, 0.5
learning rate 0.01, 0.02
learning rate final 0.001
structured interval 0, 8, 10
transition oracle static, dynamic, static lazy
transition system projective, link2, swap
use gold tags 1

Table 4: Parameters for training the parsers.

3.3 Parser

The final parsing step is performed using Par-
sito (Straka et al., 2015), which is a transition-
based parser with a neural-network classifier. The
parser supports several transition systems includ-
ing a projective arc-standard system (Nivre, 2008),
a partially non-projective link2 system (Gómez-
Rodrı́guez et al., 2014) and a fully non-projective
swap system (Nivre, 2009). Meanwhile, the tran-
sition oracles can be configured into static oracles,
dynamic oracle for the arc-standard system (Gold-
berg et al., 2014) or a search-based oracle (Straka
et al., 2015).

We use the golden Lemmas, UPOS, XPOS and
FEATS tags for both the training and development
data when training the parser. The parser em-
ploys FORM embeddings of dimension 50, and
UPOS, FEATS, DEPREL embeddings of dimen-
sion 20. The FORM embeddings are pretrained
with word2vec using the training data, and the
other embeddings are initialized randomly. All the
embeddings are updated for each iteration during
training. The hidden layer size is set to 200 and the
batch size is limited to 30. All the parsing models
are trained for 10 iterations. The training param-
eters for different datasets are reported in Table 4.
The optimal parameters are chosen to maximize
the accuracy on the development set.

3.4 Low-resource Treebanks

In the UD 2.2 datasets provided by the shared task,
there are low-resource treebanks with little or even
no training data. As we have stated before, in this
work, we mainly focus on the strategy to deal with
the treebanks without any training data in this sec-
tion.

For the ones with other treebanks in the same
languages, we trained models both on the mix-
ture of all those treebanks and on the largest tree-
bank as the official baseline did. For those without
other treebanks in the same language, the direct
solution is to use other related treebanks as train-
ing data. Hence, we take advantage of the cross-
lingual knowledge and train the mixture models
with the treebanks of similar or related languages.
Specifically, we manually selected treebanks with
similar languages as the ingredients of a mixture
dataset according to many factors such as gram-
mar, morphology and vocabulary. The training
and development sets of the selected treebanks are
merged together on which we train and evaluate
the results. The no-training-data treebanks and
their corresponding training sets are shown in Ta-
ble 5.

4 Results

The final results are evaluated blindly on TIRA
platform. There are three main scoring metrics,
LAS, MLAS and BLEX. Our system ranks 19 in
LAS, 17 in MLAS and 13 in BLEX on the main
metric ranking board. The main evaluation scores
of our system on all treebanks, big treebanks, PUD
treebanks, small treebanks and low-resource lan-
guages are shown in Table 6. Overall, our sys-
tem gives a similar performance to the BASELINE
UDPipe 1.2 system, which is not surprising as we
closely followed the hyper-parameter settings and
data splitting of the baseline system on big and
small treebanks.

As described in Section 3.4, we select training
sets differently for the low-resource treebanks in-
cluding PUD treebanks and other treebanks with-
out training data. Table 7 shows the results com-
parison with the baseline system on those tree-
banks. Our system shows a consistent improve-
ment over the baseline model for all the three met-
rics on PUD treebanks, which suggests that en-
larging training data with different types of tree-
banks of the same language indeed helps building
a better model. Our system shows a slight ad-
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Low-resource Treebanks Training Treebanks
Czech PUD Czech PDT / Czech (PDT, CAC, FicTree)
English PUD English EWT / English (EWT, GUM, LinES)
Finnish PUD Finnish TDT / Finnish (TDT, FTB)
Japanese Modern Japanese GSD
Swedish PUD Swedish Talbanken / Swedish (Talbanken, LinES)
Breton KEB Irish (IDT), Latin (ITTB, Persus, PROIEL), Old French (SRCMF),

French (GSD, Sequoia, Spoken)
Faroese OFT Danish (DDT), Norwegian (Bokmaal, Nynorsk, NynorskLIA)
Naija NSC English (EWT, GUM, LinES), Portuguese (Bosque)
Thai PUD Hindi (HDTB), Vietnamese (VTB), Chinese (GSD),

English (EWT, GUM, LinES)

Table 5: The training data for the low-resource treebanks.

Target
Treebanks

LAS MLAS BLEX

Big treebanks 73.93 61.12 64.47
PUD treebanks 66.97 52.26 55.69
Small treebanks 54.63 38.38 40.72
Low-resource 16.99 3.02 8.00
All treebanks 65.61 52.26 55.71

Table 6: Evaluation scores of our system on dif-
ferent types of treebanks.

Metrics PUD Treebanks Low-resource
Ours Base Ours Base

LAS 66.97 66.63 16.99 17.17
MLAS 52.26 51.75 3.02 3.44
BLEX 55.69 54.87 8.00 7.63

Table 7: Comparison of our system (Ours) and
baseline system (Base) on PUD treebanks and
low-resource languages.

Target
Treebanks

Selected
Model

LAS Rank

cs pud cs pdt 80.34 16
en pud en all 79.69 16
fi pud fi tdt 80.19 14
ja modern ja gsd 22.90 6
sv pud sv all 71.75 15
Macro-average 66.97 13

Table 8: LAS F1 scores and rankings of our sys-
tem on PUD treebanks.

vantage over baseline on low-resource treebanks
in BLEX, which indicates that low-resource lan-
guages can be trained with similar languages.

Target
Treebanks

LAS Rank

bxr bdt 9.04 20
hsb ufal 23.43 21
hy armtdp 23.37 14
kk ktb 23.00 14
kmr mg 19.08 19
br keb 8.88 20
fo oft 29.13 12
pcm nsc 16.25 8
th pud 0.75 5
Macro-average 16.99 17

Table 9: LAS F1 scores and rankings of our sys-
tem on low-resource languages.

Table 8 shows the results on each PUD tree-
banks and our selected model for testing. The
models with suffix ‘ all’ represent those trained
with all treebanks of the same language. During
the test phase, we evaluated both models trained
with all treebanks of the same language and with
the largest treebank of that language, and com-
pared the rounded results to decide which one to
take for our final system. The model trained by
mixed English and Swedish treebanks with all data
of the same languages shows better performance
than those of the single largest treebank. How-
ever, the models trained by the largest Czech and
Finnish treebanks get a higher score. We conjec-
ture that more training data may provide more in-
formation for the modeling while too large train-
ing sets will also bring noise for a specific domain.
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Metrics F1 Score Rank
UAS 71.27 19
CLAS 60.62 19
UPOS 87.49 15
XPOS 84.83 13
Morphological features 83.87 11
All morphological tags 77.47 10
Lemmas 87.69 14
Sentence segmentation 82.91 17
Word segmentation 97.03 8
Tokenization 97.46 7

Table 10: Other metrics and rankings of our sys-
tem.

Table 9 shows the LAS F1 scores and rank-
ings of each low-resource language. Note that our
system has a good performance on pcm nsc and
th pud treebanks when most teams get an unsatis-
fying result. It also proves that our data selection
method is effective for improving the model per-
formance to some extent. Table 10 shows the F1
scores and our system rankings on other metrics.
In particular, our system ranks first in the Sentence
Segmentation F1 score of PUD treebanks.

5 Conclusion

In this paper, we describe our system to CoNLL
2018 UD Shared Task. In our system, we fo-
cus on the accuracy improvement of the low re-
source treebanks against the baseline. The re-
sults of the official blind test show that our sys-
tem achieves 65.61%, 52.26%, 55.71% in macro-
averaged LAS, MLAS and BLEX.
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Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
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