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Introduction

This volume contains papers describing systems submitted to the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, and two overview papers: one summarizing the main
task, its features, evaluation methodology for the main and additional metrics, and some interesting
observations about the submitted systems and the task as a whole; the other overview paper discusses a
complementary task focusing on Extrinsic Parser Evaluation (EPE).

This Shared Task (http://universaldependencies.org/conll18/) is an extension of the
CoNLL 2017 Shared Task, with certain important differences. Like in the previous year, the data
come from the Universal Dependencies project (http://universaldependencies.org), which
provides annotated treebanks for a large number of languages using the same annotation scheme. The
number of treebanks in the task (82) is similar to the previous year (81), but some treebanks from the 2017
task were not included in the present task, and some new treebanks were added instead. The datasets are
samples from 57 different languages (all languages from the previous year, and eight new languages). In
comparison to 2017, there were more low-resource languages with extremely little training data, calling
for cross-lingual transfer techniques. Unlike 2017, none of the low-resource languages were “surprise
languages”.

Participants had to process all the test sets. The TIRA platform has been used for evaluation, as was
the case already for the CoNLL 2015, 2016 and 2017 Shared Tasks, meaning that participants had to
provide their code on a designated virtual machine to be run by the organizers to produce official results.
However, test data have been published after the official evaluation period, and participants could run
their systems at home to produce additional results they were allowed to include in the system description
papers.

The systems were ranked according to three main evaluation metrics – LAS (Labeled Attachment Score),
MLAS (Morphology-aware Labeled Attachment Score), and BLEX (BiLEXical Dependency Score).
Like last year, participating systems minimally had to find labeled syntactic dependencies between
words. In addition, this year’s task featured new metrics that also scored a system’s capacity to predict
a morphological analysis of each word, including a part-of-speech tag, morphological features, and a
lemma. Regardless of metric, the assumption was that the input should be raw text, with no gold-
standard word or sentence segmentation, and no gold-standard morphological annotation. However, for
teams who wanted to concentrate on one or more subtasks, segmentation and morphology predicted by
a baseline system was made available.

The complementary EPE task seeks to provide better estimates of the relative utility of different parsers
for a variety of downstream applications that depend centrally on the analysis of grammatical structure,
viz. biomedical event extraction, negation resolution, and fine-grained opinion analysis. EPE 2018 was
organized as an optional add-on exercise to the core task: the submitted systems were applied to extra
texts, about 1.1 million tokens of English. It is interesting to see to what degree different intrinsic
evaluation metrics from the core task correlate with end-to-end EPE results, and comparison to earlier
EPE campaigns—with other types of dependency representations and additional sources of training
data—further helps to put the core task into perspective.

A total of 25 systems ran successfully and have been ranked (http://universaldependencies.
org/conll18/results.html); 17 teams submitted parser outputs for the EPE test set. While there
are clear overall winners in each of the evaluation metrics, we would like to thank all participants for
working hard on their submissions and adapting their systems not only to the datasets available, but also
to the evaluation platform. We would like to thank all of them for their effort, since it is the participants
who are the core of any shared task’s success.

iii



We would like to thank the CoNLL organizers for their support and the reviewers for helping to improve
the submitted system papers. Special thanks go to Martin Potthast of the TIRA platform for handling
such a large number of systems, running often for several hours each, and for being very responsive and
helpful to us and all system participants, round the clock during the evaluation phase and beyond. We
also thank to the 200+ people working on the Universal Dependencies project during the past four years,
without whom there would be no data.
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Abstract
Every year, the Conference on Com-
putational Natural Language Learning
(CoNLL) features a shared task, in which
participants train and test their learning
systems on the same data sets. In 2018,
one of two tasks was devoted to learn-
ing dependency parsers for a large num-
ber of languages, in a real-world setting
without any gold-standard annotation on
the input. All test sets followed the uni-
fied annotation scheme of Universal De-
pendencies (Nivre et al., 2016). This
shared task constitutes a 2nd edition—the
first one took place in 2017 (Zeman et al.,
2017); the main metric from 2017 was
kept, allowing for easy comparison, and
two new main metrics were introduced.
New datasets added to the Universal De-
pendencies collection between mid-2017
and the spring of 2018 contributed to the
increased difficulty of the task this year.
In this overview paper, we define the task
and the updated evaluation methodology,
describe data preparation, report and ana-
lyze the main results, and provide a brief
categorization of the different approaches
of the participating systems.

1 Introduction

The 2017 CoNLL shared task on universal depen-
dency parsing (Zeman et al., 2017) picked up the
thread from the influential shared tasks in 2006

and 2007 (Buchholz and Marsi, 2006; Nivre et al.,
2007) and evolved it in two ways: (1) the pars-
ing process started from raw text rather than gold
standard tokenization and part-of-speech tagging,
and (2) the syntactic representations were consis-
tent across languages thanks to the Universal De-
pendencies framework (Nivre et al., 2016). The
2018 CoNLL shared task on universal dependency
parsing starts from the same premises but adds a
focus on morphological analysis as well as data
from new languages.

Like last year, participating systems minimally
had to find labeled syntactic dependencies be-
tween words, i.e., a syntactic head for each word,
and a label classifying the type of the dependency
relation. In addition, this year’s task featured new
metrics that also scored a system’s capacity to pre-
dict a morphological analysis of each word, in-
cluding a part-of-speech tag, morphological fea-
tures, and a lemma. Regardless of metric, the as-
sumption was that the input should be raw text,
with no gold-standard word or sentence segmen-
tation, and no gold-standard morphological anno-
tation. However, for teams who wanted to con-
centrate on one or more subtasks, segmentation
and morphology predicted by the baseline UDPipe
system (Straka et al., 2016) was made available
just like last year.

There are eight new languages this year:
Afrikaans, Armenian, Breton, Faroese, Naija, Old
French, Serbian, and Thai; see Section 2 for more
details. The two new evaluation metrics are de-
scribed in Section 3.
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2 Data

In general, we wanted the participating systems to
be able to use any data that is available free of
charge for research and educational purposes (so
that follow-up research is not obstructed). We de-
liberately did not place upper bounds on data sizes
(in contrast to e.g. Nivre et al. (2007)), despite the
fact that processing large amounts of data may be
difficult for some teams. Our primary objective
was to determine the capability of current parsers
provided with large amounts of freely available
data.

In practice, the task was formally closed, i.e.,
we listed the approved data resources so that all
participants were aware of their options. How-
ever, the selection was rather broad, ranging from
Wikipedia dumps over the OPUS parallel corpora
(Tiedemann, 2012) to morphological transducers.
Some of the resources were proposed by the par-
ticipating teams.

We provided dependency-annotated training
and test data, and also large quantities of crawled
raw texts. Other language resources are available
from third-party servers and we only referred to
the respective download sites.

2.1 Training Data: UD 2.2

Training and development data came from the
Universal Dependencies (UD) 2.2 collection
(Nivre et al., 2018). This year, the official UD re-
lease immediately followed the test phase of the
shared task. The training and development data
were available to the participating teams as a pre-
release; these treebanks were then released exactly
in the state in which they appeared in the task.1

The participants were instructed to only use the
UD data from the package released for the shared
task. In theory, they could locate the (yet unre-
leased) test data in the development repositories
on GitHub, but they were trusted that they would
not attempt to do so.

82 UD treebanks in 57 languages were included
in the shared task;2 however, nine of the smaller
treebanks consisted solely of test data, with no
data at all or just a few sentences available for
training. 16 languages had two or more treebanks

1UD 2.2 also contains other treebanks that were not in-
cluded in the task for various reasons, and that may have been
further developed even during the duration of the task.

2Compare with the 81 treebanks and 49 languages in the
2017 task.

from different sources, often also from different
domains.3 See Table 1 for an overview.

61 treebanks contain designated development
data. Participants were asked not to use it
for training proper but only for evaluation, de-
velopment, tuning hyperparameters, doing error
analysis etc. Seven treebanks have reasonably-
sized training data but no development data;
only two of them, Irish and North Sámi, are
the sole treebanks of their respective languages.
For those treebanks cross-validation had to be
used during development, but the entire dataset
could be used for training once hyperparame-
ters were determined. Five treebanks consist
of extra test sets: they have no training or de-
velopment data of their own, but large train-
ing data exist in other treebanks of the same
languages (Czech-PUD, English-PUD, Finnish-
PUD, Japanese-Modern and Swedish-PUD, re-
spectively). The remaining nine treebanks are
low-resource languages. Their “training data” was
either a tiny sample of a few dozen sentences (Ar-
menian, Buryat, Kazakh, Kurmanji, Upper Sor-
bian), or there was no training data at all (Breton,
Faroese, Naija, Thai). Unlike in the 2017 task,
these languages were not “surprise languages”,
that is, the participants knew well in advance what
languages to expect. The last two languages are
particularly difficult: Naija is a pidgin spoken in
Nigeria; while it can be expected to bear some
similarity to English, its spelling is significantly
different from standard English, and no resources
were available to learn it. Even harder was Thai
with a writing system that does not separate words
by spaces; the Facebook word vectors were prob-
ably the only resource among the approved addi-
tional data where participants could learn some-
thing about words in Thai (Rosa and Mareček,
2018; Smith et al., 2018). It was also possible to
exploit the fact that there is a 1-1 sentence map-
ping between the Thai test set and the other four
PUD test sets.4

Participants received the training and develop-
ment data with gold-standard tokenization, sen-
tence segmentation, POS tags and dependency re-

3We distinguish treebanks of the same language by their
short names or acronyms. Hence, the two treebanks of An-
cient Greek are identified as Perseus and PROIEL, the three
treebanks of Latin are ITTB, Perseus and PROIEL, etc.

4While the test datasets were not available to the teams
when they developed their systems, the documentation of the
treebanks was supplied together with the training data, hence
the teams could learn that the PUD treebanks were parallel.
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Language Tbk Code 2017 TrWrds
Afrikaans af afribooms NA 34 K
Ancient Greek grc perseus grc 160 K
Ancient Greek grc proiel grc proiel 187 K
Arabic ar padt ar 224 K
Armenian hy armtdp NA 1 K
Basque eu bdt eu 73 K
Breton br keb NA 0 K
Bulgarian bg btb bg 124 K
Buryat bxr bdt bxr 0 K
Catalan ca ancora ca 418 K
Chinese zh gsd zh 97 K
Croatian hr set hr 154 K
Czech cs cac cs cac 473 K
Czech cs fictree NA 134 K
Czech cs pdt cs 1,173 K
Czech cs pud cs pud 0 K
Danish da ddt da 80 K
Dutch nl alpino nl 186 K
Dutch nl lassysmall nl lassysmall 75 K
English en ewt en 205 K
English en gum NA 54 K
English en lines en lines 50 K
English en pud en pud 0 K
Estonian et edt et 288 K
Faroese fo oft NA 0 K
Finnish fi ftb fi ftb 128 K
Finnish fi pud fi pud 0 K
Finnish fi tdt fi 163 K
French fr gsd fr 357 K
French fr sequoia fr sequoia 51 K
French fr spoken NA 15 K
Galician gl ctg gl 79 K
Galician gl treegal gl treegal 15 K
German de gsd de 264 K
Gothic got proiel got 35 K
Greek el gdt el 42 K
Hebrew he htb he 138 K
Hindi hi hdtb hi 281 K
Hungarian hu szeged hu 20 K
Indonesian id gsd id 98 K
Irish ga idt ga 14 K

Language Tbk Code 2017 TrWrds
Italian it isdt it 276 K
Italian it postwita NA 99 K
Japanese ja gsd ja 162 K
Japanese ja modern NA 0 K
Kazakh kk ktb kk 1 K
Korean ko gsd ko 57 K
Korean ko kaist NA 296 K
Kurmanji kmr mg kmr 0 K
Latin la ittb la ittb 270 K
Latin la perseus la 18 K
Latin la proiel la proiel 172 K
Latvian lv lvtb lv 81 K
Naija pcm nsc NA 0 K
North Sámi sme giella sme 17 K
Norwegian no bokmaal no bokmaal 244 K
Norwegian no nynorsk no nynorsk 245 K
Norwegian no nynorsklia NA 4 K
Old Church Slavonic cu proiel cu 37 K
Old French fro srcmf NA 136 K
Persian fa seraji fa 121 K
Polish pl lfg NA 105 K
Polish pl sz pl 63 K
Portuguese pt bosque pt 207 K
Romanian ro rrt ro 185 K
Russian ru syntagrus ru syntagrus 872 K
Russian ru taiga NA 10 K
Serbian sr set NA 66 K
Slovak sk snk sk 81 K
Slovenian sl ssj sl 113 K
Slovenian sl sst sl sst 19 K
Spanish es ancora es ancora 445 K
Swedish sv lines sv lines 48 K
Swedish sv pud sv pud 0 K
Swedish sv talbanken sv 67 K
Thai th pud NA 0 K
Turkish tr imst tr 38 K
Ukrainian uk iu uk 75 K
Upper Sorbian hsb ufal hsb 0 K
Urdu ur udtb ur 109 K
Uyghur ug udt ug 19 K
Vietnamese vi vtb vi 20 K

Table 1: Overview of the 82 test treebanks. TbkCode = Treebank identifier, consisting of the ISO 639
language code followed by a treebank-specific code. 2017 = Code of the corresponding treebank in
the 2017 task if applicable (“NA” otherwise). TrWrds = Size of training data, rounded to the nearest
thousand words.

lations; and for most languages also lemmas and
morphological features.

Cross-domain and cross-language training was
allowed and encouraged. Participants were free to
train models on any combination of the training
treebanks and apply it to any test set.

2.2 Supporting Data

To enable the induction of custom embeddings and
the use of semi-supervised methods in general,
the participants were provided with supporting re-
sources primarily consisting of large text corpora
for many languages in the task, as well as embed-
dings pre-trained on these corpora. In total, 5.9 M

sentences and 90 G words in 45 languages are
available in CoNLL-U format (Ginter et al., 2017);
the per-language sizes of the corpus are listed in
Table 2.

See Zeman et al. (2017) for more details on how
the raw texts and embeddings were processed.
Note that the resource was originally prepared for
the 2017 task and it was not extended to include
the eight new languages; however, some of the
new languages are covered by the word vectors
provided by Facebook (Bojanowski et al., 2016)
and approved for the shared task.
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Language Words
English (en) 9,441 M
German (de) 6,003 M
Portuguese (pt) 5,900 M
Spanish (es) 5,721 M
French (fr) 5,242 M
Polish (pl) 5,208 M
Indonesian (id) 5,205 M
Japanese (ja) 5,179 M
Italian (it) 5,136 M
Vietnamese (vi) 4,066 M
Turkish (tr) 3,477 M
Russian (ru) 3,201 M
Swedish (sv) 2,932 M
Dutch (nl) 2,914 M
Romanian (ro) 2,776 M
Czech (cs) 2,005 M
Hungarian (hu) 1,624 M
Danish (da) 1,564 M
Chinese (zh) 1,530 M
Norwegian-Bokmål (no) 1,305 M
Persian (fa) 1,120 M
Finnish (fi) 1,008 M
Arabic (ar) 963 M
Catalan (ca) 860 M
Slovak (sk) 811 M
Greek (el) 731 M
Hebrew (he) 615 M
Croatian (hr) 583 M
Ukrainian (uk) 538 M
Korean (ko) 527 M
Slovenian (sl) 522 M
Bulgarian (bg) 370 M
Estonian (et) 328 M
Latvian (lv) 276 M
Galician (gl) 262 M
Latin (la) 244 M
Basque (eu) 155 M
Hindi (hi) 91 M
Norwegian-Nynorsk (no) 76 M
Kazakh (kk) 54 M
Urdu (ur) 46 M
Irish (ga) 24 M
Ancient Greek (grc) 7 M
Uyghur (ug) 3 M
Kurdish (kmr) 3 M
Upper Sorbian (hsb) 2 M
Buryat (bxr) 413 K
North Sámi (sme) 331 K
Old Church Slavonic (cu) 28 K
Total 90,669 M

Table 2: Supporting data overview: Number of
words (M = million; K = thousand) for each lan-
guage.

2.3 Test Data: UD 2.2

Each of the 82 treebanks mentioned in Section 2.1
has a test set. Test sets from two different tree-
banks of one language were evaluated separately
as if they were different languages. Every test set
contains at least 10,000 words (including punctu-
ation marks). UD 2.2 treebanks that were smaller
than 10,000 words were excluded from the shared
task. There was no upper limit on the test data;
the largest treebank had a test set comprising 170K
words. The test sets were officially released as a
part of UD 2.2 immediately after the shared task.5

3 Evaluation Metrics

There are three main evaluation scores, dubbed
LAS, MLAS and BLEX. All three metrics reflect
word segmentation and relations between content
words. LAS is identical to the main metric of the
2017 task, allowing for easy comparison; the other
two metrics include part-of-speech tags, morpho-
logical features and lemmas. Participants who
wanted to decrease task complexity could concen-
trate on improvements in just one metric; however,
all systems were evaluated with all three metrics,
and participants were strongly encouraged to out-
put all relevant annotation, even if they just copy
values predicted by the baseline model.

When parsers are applied to raw text, the metric
must be adjusted to the possibility that the num-
ber of nodes in gold-standard annotation and in
the system output vary. Therefore, the evaluation
starts with aligning system nodes and gold nodes.
A dependency relation cannot be counted as cor-
rect if one of the nodes could not be aligned to a
gold node. See Section 3.4 and onward for more
details on alignment.

The evaluation software is a Python script that
computes the three main metrics and a number of
additional statistics. It is freely available for down-
load from the shared task website.6

3.1 LAS: Labeled Attachment Score

The standard evaluation metric of dependency
parsing is the labeled attachment score (LAS), i.e.,
the percentage of nodes with correctly assigned
reference to the parent node, including the label
(type) of the relation. For scoring purposes, only

5http://hdl.handle.net/11234/1-2837
6http://universaldependencies.org/

conll18/conll18_ud_eval.py
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Content nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl,
dislocated, advcl, advmod, discourse, nmod, appos, nummod,
acl, amod, conj, fixed, flat, compound, list, parataxis,
orphan, goeswith, reparandum, root, dep

Function aux, cop, mark, det, clf, case, cc
Ignored punct

Table 3: Universal dependency relations considered as pertaining to content words and function words,
respectively, in MLAS. Content word relations are evaluated directly; words attached via functional
relations are treated as features of their parent nodes.

Features PronType, NumType, Poss, Reflex, Foreign, Abbr, Gender,
Animacy, Number, Case, Definite, Degree, VerbForm, Mood,
Tense, Aspect, Voice, Evident, Polarity, Person, Polite

Table 4: Universal features whose values are evaluated in MLAS. Any other features are ignored.

universal dependency labels were taken into ac-
count, which means that language-specific sub-
types such as expl:pv (pronoun of a pronomi-
nal verb), a subtype of the universal relation expl
(expletive), were truncated to expl both in the
gold standard and in the system output before
comparing them.

In the end-to-end evaluation of our task, LAS is
re-defined as the harmonic mean (F1) of precision
P and recall R, where

P =
#correctRelations
#systemNodes

(1)

R =
#correctRelations

#goldNodes
(2)

LAS =
2PR

P +R
(3)

Note that attachment of all nodes including punc-
tuation is evaluated. LAS is computed separately
for each of the 82 test files and a macro-average of
all these scores is used to rank the systems.

3.2 MLAS: Morphology-Aware Labeled
Attachment Score

MLAS aims at cross-linguistic comparability of
the scores. It is an extension of CLAS (Nivre and
Fang, 2017), which was tested experimentally in
the 2017 task. CLAS focuses on dependencies be-
tween content words and disregards attachment of
function words; in MLAS, function words are not
ignored, but they are treated as features of content
words. In addition, part-of-speech tags and mor-
phological features are evaluated, too.

The idea behind MLAS is that function words
often correspond to morphological features in
other languages. Furthermore, languages with
many function words (e.g., English) have longer
sentences than morphologically rich languages
(e.g., Finnish), hence a single error in Finnish
costs the parser significantly more than an error
in English according to LAS.

The core part is identical to LAS (Section 3.1):
for aligned system and gold nodes, their respec-
tive parent nodes are considered; if the system
parent is not aligned with the gold parent, or if
the universal relation label differs, the word is not
counted as correctly attached. Unlike LAS, cer-
tain types of relations (Table 3) are not evaluated
directly. Words attached via such relations (in ei-
ther system or gold data) are not counted as inde-
pendent words. Instead, they are treated as fea-
tures of the content words they belong to. There-
fore, a system-produced word counts as correct if
it is aligned and attached correctly, its universal
POS tag and selected morphological features (Ta-
ble 4) are correct, all its function words are at-
tached correctly, and their POS tags and features
are also correct. Punctuation nodes are neither
content nor function words; their attachment is ig-
nored in MLAS.

3.3 BLEX: Bilexical Dependency Score

BLEX is similar to MLAS in that it focuses on
relations between content words. Instead of mor-
phological features, it incorporates lemmatization
in the evaluation. It is thus closer to semantic
content and evaluates two aspects of UD annota-
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tion that are important for language understand-
ing: dependencies and lexemes. The inclusion of
this metric should motivate the competing teams
to model lemmas, the last important piece of an-
notation that is not captured by the other metrics.
A system that scores high in all three metrics will
thus be a general-purpose language-analysis tool
that tackles segmentation, morphology and sur-
face syntax.

Computation of BLEX is analogous to LAS and
MLAS. Precision and recall of correct attachments
is calculated, attachment of function words and
punctuation is ignored (Table 3). An attachment
is correct if the parent and child nodes are aligned
to the corresponding nodes in gold standard, if the
universal dependency label is correct, and if the
lemma of the child node is correct.

A few UD treebanks lack lemmatization (or, as
in Uyghur, have lemmas only for some words and
not for others). A system may still be able to
predict the lemmas if it learns them in other tree-
banks. Such system should not be penalized just
because no gold standard is available; therefore,
if the gold lemma is a single underscore character
(“ ”), any system-produced lemma is considered
correct.

3.4 Token Alignment
UD defines two levels of token/word segmenta-
tion. The lower level corresponds to what is usu-
ally understood as tokenization. However, unlike
some popular tokenization schemes, it does not
include any normalization of the non-whitespace
characters. We can safely assume that any two tok-
enizations of a text differ only in whitespace while
the remaining characters are identical. There is
thus a 1-1 mapping between gold and system non-
whitespace characters, and two tokens are aligned
if all their characters match.

3.5 Syntactic Word Alignment
The higher segmentation level is based on the no-
tion of syntactic word. Some languages contain
multi-word tokens (MWT) that are regarded as
contractions of multiple syntactic words. For ex-
ample, the German token zum is a contraction of
the preposition zu “to” and the article dem “the”.

Syntactic words constitute independent nodes in
dependency trees. As shown by the example, it
is not required that the MWT is a pure concate-
nation of the participating words; the simple to-
ken alignment thus does not work when MWTs

are involved. Fortunately, the CoNLL-U file for-
mat used in UD clearly marks all MWTs so we
can detect them both in system output and in gold
data. Whenever one or more MWTs have overlap-
ping spans of surface character offsets, the longest
common subsequence algorithm is used to align
syntactic words within these spans.

3.6 Sentence Segmentation

Words are aligned and dependencies are evaluated
in the entire file without considering sentence seg-
mentation. Still, the accuracy of sentence bound-
aries has an indirect impact on attachment scores:
any missing or extra sentence boundary necessar-
ily makes one or more dependency relations incor-
rect.

3.7 Invalid Output

If a system fails to produce one of the 82 files or
if the file is not valid CoNLL-U format, the score
of that file (counting towards the system’s macro-
average) is zero.

Formal validity is defined more leniently than
for UD-released treebanks. For example, a non-
existent dependency type does not render the
whole file invalid, it only costs the system one in-
correct relation. However, cycles and multi-root
sentences are disallowed. A file is also invalid
if there are character mismatches that could make
the token-alignment algorithm fail.

3.8 Extrinsic Parser Evaluation

The metrics described above are all intrinsic mea-
sures: they evaluate the grammatical analysis task
per se, with the hope that better scores corre-
spond to output that is more useful for downstream
NLP applications. Nevertheless, such correlations
are not automatically granted. We thus seek to
complement our task with an extrinsic evaluation,
where the output of parsing systems is exploited
by applications like biological event extraction,
opinion analysis and negation scope resolution.

This optional track involves English only. It
is organized in collaboration with the EPE initia-
tive;7 for details see Fares et al. (2018).

4 TIRA: The System Submission
Platform

Similarly to our 2017 task and to some other re-
cent CoNLL shared tasks, we employed the cloud-

7http://epe.nlpl.eu/
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based evaluation platform TIRA (Potthast et al.,
2014),8 which implements the evaluation as a ser-
vice paradigm (Hanbury et al., 2015). Instead of
processing test data on their own hardware and
submitting the outputs, participants submit work-
ing software. Naturally, software submissions
bring about additional overhead for both organiz-
ers and participants, whereas the goal of an evalua-
tion platform like TIRA is to reduce this overhead
to a bearable level.

4.1 Blind Evaluation

Traditionally, evaluations in shared tasks are half-
blind (the test data are shared with participants
while the ground truth is withheld). TIRA en-
ables fully blind evaluation, where the software is
locked in a datalock together with the test data, its
output is recorded but all communication channels
to the outside are closed or tightly moderated. The
participants do not even see the input to their soft-
ware. This feature of TIRA was not too impor-
tant in the present task, as UD data is not secret,
and the participants were simply trusted that they
would not exploit any knowledge of the test data
they might have access to.

However, closing down all communication
channels also has its downsides, since participants
cannot check their running software; before the
system run completes, even the task moderator
does not see whether the system is really pro-
ducing output and not just sitting in an endless
loop. In order to alleviate this extra burden, we
made two modifications compared to the previ-
ous year: 1. Participants were explicitly advised
to invoke shorter runs that process only a subset
of the test files. The organizers would then stitch
the partial runs into one set of results. 2. Partici-
pants were able to see their scores on the test set
rounded to the nearest multiple of 5%. This way
they could spot anomalies possibly caused by ill-
selected models. The exact scores remained hid-
den because we did not want the participants to
fine-tune their systems against the test data.

4.2 Replicability

It is desirable that published experiments can be
re-run yielding the same results, and that the al-
gorithms can be tested on alternative test data in
the future. Ensuring both requires that a to-be-
evaluated software is preserved in working con-

8http://www.tira.io/

dition for as long as possible. TIRA supplies
participants with a virtual machine, offering a
range of commonly used operating systems. Once
deployed and tested, the virtual machines are
archived to preserve the software within.

In addition, some participants agreed to share
their code so that we decided to collect the respec-
tive projects in an open source repository hosted
on GitHub.9

5 Baseline System

We prepared a set of baseline models using UD-
Pipe 1.2 (Straka and Straková, 2017).

The baseline models were released together
with the UD 2.2 training data. For each of the
73 treebanks with non-empty training data we
trained one UDPipe model, utilizing training data
for training and development data for hyperparam-
eter tuning. If a treebank had no development data,
we cut 10% of the training sentences and consid-
ered it as development data for the purpose of tun-
ing hyperparameters of the baseline model (em-
ploying only the remainder of the original training
data for the actual training in that case).

In addition to the treebank-specific models, we
also trained a “mixed model” on samples from all
treebanks. Specifically, we utilized the first 200
training sentences of each treebank (or less in case
of small treebanks) as training data, and at most 20
sentences from each treebank’s development set as
development data.

The baseline models, together with all informa-
tion needed to replicate them (hyperparameters,
the modified train-dev split where applicable, and
pre-computed word embeddings for the parser) are
available from http://hdl.handle.net/11234/

1-2859.
Additionally, the released archive also contains

the training and development data with predicted
morphology. Morphology in development data
was predicted using the baseline models, morphol-
ogy in training data via “jack-knifing” (split the
training set into 10 parts, train a model on 9 parts,
use it to predict morphology in the tenth part, re-
peat for all 10 target parts). The same hyperparam-
eters were used as those used to train the baseline
model on the entire training set.

The UDPipe baseline models are able to recon-
struct nearly all annotation from CoNLL-U files
– they can generate segmentation, tokenization,

9https://github.com/CoNLL-UD-2018
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Treebank without Substitution
training data model

Breton KEB mixed model
Czech PUD Czech PDT
English PUD English EWT
Faroese OFT mixed model
Finnish PUD Finnish TDT
Japanese Modern Japanese GSD
Naija NSC mixed model
Swedish PUD Swedish Talbanken
Thai PUD mixed model

Table 5: Substitution models of the baseline sys-
tems for treebanks without training data.

multi-word token splitting, morphological annota-
tion (lemmas, UPOS, XPOS and FEATS) and de-
pendency trees. Participants were free to use any
part of the model in their systems – for all test sets,
we provided UDPipe processed variants in addi-
tion to raw text inputs.

Baseline UDPipe Shared Task System The
shared task baseline system employs the UDPipe
1.2 baseline models. For the nine treebanks with-
out their own training data, a substitution model
according to Table 5 was used.

6 Results

6.1 Official Parsing Results
Table 6 gives the main ranking of participating
systems by the LAS F1 score macro-averaged over
all 82 test files. The table also shows the perfor-
mance of the baseline UDPipe system; 17 of the
25 systems managed to outperform it. The base-
line is comparatively weaker than in the 2017 task
(only 12 out of 32 systems beat the baseline there).
The ranking of the baseline system by MLAS is
similar (Table 7) but in BLEX, the baseline jumps
to rank 13 (Table 8). Besides the simple explana-
tion that UDPipe 1.2 is good at lemmatization, we
could also hypothesize that some teams put less
effort in building lemmatization models (see also
the last column in Table 10).

Each ranking has a different winning system, al-
though the other two winners are typically closely
following. The same 8–10 systems occupy best
positions in all three tables, though with variable
mutual ranking. Some teams seem to have delib-
erately neglected some of the evaluated attributes:
Uppsala is rank 7 in LAS and MLAS, but 24 in

Team LAS
1. HIT-SCIR (Che et al.) 75.84
2. TurkuNLP (Kanerva et al.) 73.28
3. UDPipe Future (Straka) 73.11

LATTICE (Lim et al.) 73.02
ICS PAS (Rybak and Wróblewska) 73.02

6. CEA LIST (Duthoo and Mesnard) 72.56
7. Uppsala (Smith et al.) 72.37

Stanford (Qi et al.) 72.29
9. AntNLP (Ji et al.) 70.90

NLP-Cube (Boros, et al.) 70.82
11. ParisNLP (Jawahar et al.) 70.64
12. SLT-Interactions (Bhat et al.) 69.98
13. IBM NY (Wan et al.) 69.11
14. UniMelb (Nguyen and Verspoor) 68.66
15. LeisureX (Li et al.) 68.31
16. KParse (Kırnap et al.) 66.58
17. Fudan (Chen et al.) 66.34
18. BASELINE UDPipe 1.2 65.80
19. Phoenix (Wu et al.) 65.61
20. CUNI x-ling (Rosa and Mareček) 64.87
21. BOUN (Özateş et al.) 63.54
22. ONLP lab (Seker et al.) 58.35
23. iParse (no paper) 55.83
24. HUJI (Hershcovich et al.) 53.69
25. ArmParser (Arakelyan et al.) 47.02
26. SParse (Önder et al.) 1.95

Table 6: Ranking of the participating systems by
the labeled attachment F1-score (LAS), macro-
averaged over 82 test sets. Pairs of systems with
significantly (p < 0.05) different LAS are sepa-
rated by a line. Citations refer to the correspond-
ing system-description papers in this volume.

BLEX; IBM NY is rank 13 in LAS but 24 in
MLAS and 23 in BLEX.

While the LAS scores on individual treebanks
are comparable to the 2017 task, the macro aver-
age is not, because the set of treebanks is different,
and the impact of low-resource languages seems to
be higher in the present task.

We used bootstrap resampling to compute 95%
confidence intervals: they are in the range ±0.11
to ±0.16 (% LAS/MLAS/BLEX) for all systems
except SParse (where it is ±0.00).
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Team MLAS
1. UDPipe Future (Praha) 61.25
2. TurkuNLP (Turku) 60.99

Stanford (Stanford) 60.92
4. ICS PAS (Warszawa) 60.25
5. CEA LIST (Paris) 59.92
6. HIT-SCIR (Harbin) 59.78
7. Uppsala (Uppsala) 59.20
8. NLP-Cube (Bucureşti) 57.32
9. LATTICE (Paris) 57.01

10. AntNLP (Shanghai) 55.92
11. ParisNLP (Paris) 55.74
12. SLT-Interactions (Bengaluru) 54.52
13. LeisureX (Shanghai) 53.70

UniMelb (Melbourne) 53.62
15. KParse (İstanbul) 53.25
16. Fudan (Shanghai) 52.69
17. BASELINE UDPipe 1.2 52.42

Phoenix (Shanghai) 52.26
19. BOUN (İstanbul) 50.40

CUNI x-ling (Praha) 50.35
21. ONLP lab (Ra’anana) 46.09
22. iParse (Pittsburgh) 45.65
23. HUJI (Yerushalayim) 44.60
24. IBM NY (Yorktown Heights) 40.61
25. ArmParser (Yerevan) 36.28
26. SParse (İstanbul) 1.68

Table 7: Ranking of the participating systems by
MLAS, macro-averaged over 82 test sets. Pairs
of systems with significantly (p < 0.05) different
MLAS are separated by a line.

We used paired bootstrap resampling to com-
pute whether the difference between two neigh-
boring systems is significant (p < 0.05).10

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated
the systems along multiple other axes, which may
shed more light on their strengths and weaknesses.
This section provides an overview of selected sec-
ondary metrics for systems matching or surpassing
the baseline; a large number of additional results
are available at the shared task website.11

The website also features a LAS ranking of
unofficial system runs, i.e. those that were not

10Using Udapi (Popel et al., 2017) eval.Conll18, marked
by the presence or absence of horizontal lines in Tables 6–8.

11http://universaldependencies.org/
conll18/results.html

Team BLEX
1. TurkuNLP (Turku) 66.09
2. HIT-SCIR (Harbin) 65.33
3. UDPipe Future (Praha) 64.49

ICS PAS (Warszawa) 64.44
5. Stanford (Stanford) 64.04
6. LATTICE (Paris) 62.39

CEA LIST (Paris) 62.23
8. AntNLP (Shanghai) 60.91
9. ParisNLP (Paris) 60.70

10. SLT-Interactions (Bengaluru) 59.68
11. UniMelb (Melbourne) 58.67
12. LeisureX (Shanghai) 58.42
13. BASELINE UDPipe 1.2 55.80

Phoenix (Shanghai) 55.71
15. NLP-Cube (Bucureşti) 55.52
16. KParse (İstanbul) 55.26
17. CUNI x-ling (Praha) 54.07

Fudan (Shanghai) 54.03
19. BOUN (İstanbul) 53.45
20. iParse (Pittsburgh) 48.71
21. HUJI (Yerushalayim) 48.05
22. ArmParser (Yerevan) 39.18
23. IBM NY (Yorktown Heights) 32.55
24. Uppsala (Uppsala) 32.09
25. ONLP lab (Ra’anana) 28.29
26. SParse (İstanbul) 1.71

Table 8: Ranking of the participating systems by
BLEX, macro-averaged over 82 test sets. Pairs
of systems with significantly (p < 0.05) different
BLEX are separated by a line.

marked by their teams as primary runs, or were
even run after the official evaluation phase closed
and test data were unblinded. The difference from
the official results is much less dramatic than in
2017, with the exception of the team SParse, who
managed to fix their software and produce more
valid output files.

As an experiment, we also applied the 2017 sys-
tem submissions to the 2018 test data. This allows
us to test how many systems can actually be used
to produce new data without a glitch, as well as
to see to what extent the results change over one
year and two releases of UD. Here it should be
noted that not all of the 2018 task languages and
treebanks were present in the 2017 task, therefore
causing many systems fail due to an unknown lan-
guage or treebank code. The full results of this
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Team Toks Wrds Sents
1. Uppsala 97.60 98.18 83.80
2. HIT-SCIR 98.42 98.12 83.87
3. CEA LIST 98.16 97.78 82.79
4. CUNI x-ling 98.09 97.74 82.80
5. TurkuNLP 97.83 97.42 83.03
6. SLT-Interactions 97.51 97.09 83.01
7. UDPipe Future 97.46 97.04 83.64
8. Phoenix 97.46 97.03 82.91
9. BASELINE UDPipe 97.39 96.97 83.01

ParisNLP 97.39 96.97 83.01
AntNLP 97.39 96.97 83.01
UniMelb 97.39 96.97 83.01
BOUN 97.39 96.97 83.01
ICS PAS 97.39 96.97 83.01
LATTICE 97.39 96.97 83.01
LeisureX 97.39 96.97 83.01
KParse 97.39 96.97 83.01

18. Fudan 97.38 96.96 82.85
19. IBM NY 97.30 96.92 83.51
20. ONLP lab 97.28 96.86 83.00
21. NLP-Cube 97.36 96.80 82.55
22. Stanford 96.19 95.99 76.55
23. HUJI 94.95 94.61 80.84
24. ArmParser 79.75 79.41 13.33
25. iParse 78.45 78.11 68.37
26. SParse 2.32 2.32 2.34

Table 9: Tokenization, word segmentation and
sentence segmentation (ordered by word F1

scores; out-of-order scores in the other two
columns are bold).

experiment are available on the shared task web-
site.12

Table 9 evaluates detection of tokens, syntactic
words and sentences. About a third of the sys-
tems trusted the baseline segmentation; this is less
than in 2017. For most languages and in aggre-
gate, the segmentation scores are very high and
their impact on parsing scores is not easy to prove;
but it likely played a role in languages where seg-
mentation is hard. For example, HIT-SCIR’s word
segmentation in Vietnamese surpasses the second
system by a margin of 6 percent points; likewise,
the system’s advantage in LAS and MLAS (but
not in BLEX!) amounts to 7–8 points. Similarly,
Uppsala and ParisNLP achieved good segmenta-

12http://universaldependencies.org/
conll18/results-2017-systems.html

Team UPOS Feats Lemm
1. Uppsala 90.91 87.59 58.50
2. HIT-SCIR 90.19 84.24 88.82
3. CEA LIST 89.97 86.83 88.90
4. TurkuNLP 89.81 86.70 91.24
5. LATTICE 89.53 83.74 87.84
6. UDPipe Future 89.37 86.67 89.32
7. Stanford 89.01 85.47 88.32
8. ICS PAS 88.70 85.14 87.99
9. CUNI x-ling 88.68 84.56 88.96

10. NLP-Cube 88.50 85.08 81.21
11. SLT-Interactions 88.12 83.72 87.51
12. IBM NY 88.02 59.11 59.51
13. UniMelb 87.90 83.74 87.84
14. KParse 87.62 84.32 86.26
15. Phoenix 87.49 83.87 87.69
16. ParisNLP 87.35 83.74 87.84
17. BASELINE UDPipe 87.32 83.74 87.84

AntNLP 87.32 83.74 87.84
19. ONLP lab 87.25 83.67 57.10
20. Fudan 87.25 83.47 85.91
21. BOUN 87.19 83.73 87.68
22. LeisureX 87.15 83.46 87.77
23. HUJI 85.06 81.51 85.61
24. ArmParser 72.99 69.91 72.22
25. iParse 71.38 68.64 71.68
26. SParse 2.25 2.29 2.28

Table 10: Universal POS tags, features and lem-
mas (ordered by UPOS F1 scores; out-of-order
scores in the other two columns are bold).

tion scores (better than their respective macro-
averages) on Arabic. They were able to translate it
into better LAS, but not MLAS and BLEX, where
there were too many other chances to make an er-
ror.

The complexity of the new metrics, especially
MLAS, is further underlined by Table 10: Uppsala
is the clear winner in both UPOS tags and morpho-
logical features, but 6 other teams had better de-
pendency relations and better MLAS. Note that as
with segmentation, morphology predicted by the
baseline system was available, though only a few
systems seem to have used it without attempting
to improve it.

6.3 Partial Results

Table 11 gives the three main scores averaged over
the 61 “big” treebanks (training data larger than
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Team LAS MLAS BLEX
1. HIT-SCIR 84.37 70.12 75.05
2. Stanford 83.03 72.67 75.46
3. TurkuNLP 81.85 71.27 75.83
4. UDPipe Future 81.83 71.71 74.67
5. ICS PAS 81.72 70.30 74.42
6. CEA LIST 81.66 70.89 72.32
7. LATTICE 80.97 66.27 71.50
8. NLP-Cube 80.48 67.79 64.76
9. ParisNLP 80.29 65.88 70.95

10. Uppsala 80.25 68.81 36.02
11. SLT-Interactions 79.67 64.95 69.77
12. AntNLP 79.61 65.43 70.34
13. LeisureX 77.98 63.79 68.55
14. UniMelb 77.69 63.17 68.25
15. IBM NY 77.55 47.34 36.68
16. Fudan 75.42 62.28 62.90
17. KParse 74.84 62.40 63.84
18. BASELINE UDPipe 74.14 61.27 64.67
19. Phoenix 73.93 61.12 64.47
20. BOUN 72.85 60.00 62.99
21. CUNI x-ling 71.54 58.33 61.63
22. ONLP lab 67.08 55.20 33.08
23. iParse 66.55 55.37 58.80
24. HUJI 62.07 53.20 56.90
25. ArmParser 58.14 45.87 49.25
26. SParse 2.63 2.26 2.30

Table 11: Average LAS on the 61 “big” treebanks
(ordered by LAS F1 scores; out-of-order scores in
the other two columns are bold).

test data, development data available). Higher
scores reflect the fact that models for these test
sets are easier to learn: enough data is available,
no cross-lingual or cross-domain learning is nec-
essary (the extra test sets are not included here).
Regarding ranking, the Stanford system makes a
remarkable jump when it does not have to carry
the load of underresourced languages: from rank
8 to 2 in LAS, from 3 to 1 in MLAS and from 5 to
2 in BLEX.

Table 12 gives the LAS F1 score on the nine
low-resource languages only. Here we have a true
specialist: The team CUNI x-ling lives up to its
name and wins in all three scores, although in the
overall ranking they fall even slightly behind the
baseline. On the other hand, the scores are ex-
tremely low and the outputs are hardly useful for
any downstream application. Especially morphol-

Team LAS MLAS BLEX
1. CUNI x-ling 27.89 6.13 13.98
2. Uppsala 25.87 5.16 9.03
3. CEA LIST 23.90 3.75 10.99
4. HIT-SCIR 23.88 2.88 10.50
5. LATTICE 23.39 4.38 10.01
6. TurkuNLP 22.91 3.59 11.40
7. IBM NY 21.88 2.62 7.17
8. UDPipe Future 21.75 2.82 8.80
9. ICS PAS 19.26 1.89 6.17

10. AntNLP 18.59 3.43 8.61
11. KParse 17.84 3.32 6.58
12. SLT-Interactions 17.47 1.79 6.95
13. Stanford 17.45 2.76 7.63
14. BASELINE UDPipe 17.17 3.44 7.63

UniMelb 17.17 3.44 7.63
16. LeisureX 17.16 3.43 7.63
17. Phoenix 16.99 3.02 8.00
18. NLP-Cube 16.85 3.39 7.05
19. ParisNLP 16.52 2.53 6.75
20. ONLP lab 15.98 3.58 4.96
21. Fudan 15.45 2.98 6.61
22. BOUN 14.78 2.59 6.43
23. HUJI 8.53 0.92 2.77
24. ArmParser 7.47 1.86 3.54
25. iParse 2.82 0.23 0.97
26. SParse 0.00 0.00 0.00

Table 12: Average LAS, MLAS and BLEX on the
9 low-resource languages: Armenian (hy), Bre-
ton (br), Buryat (bxr), Faroese (fo), Kazakh (kk),
Kurmanji (kmr), Naija (pcm), Thai (th) and Upper
Sorbian (hsb) (ordered by LAS F1 scores; out-of-
order scores in the other two columns are bold).

ogy is almost impossible to learn from foreign lan-
guages, hence the much lower values of MLAS
and BLEX. BLEX is a bit better than MLAS,
which could be explained by cases where a word
form is identical to its lemma. However, there
are significant language-by-language differences;
the best LAS on Faroese and Upper Sorbian sur-
passing 45%. This probably owes to the presence
of many Germanic and Slavic treebanks in train-
ing data, including some of the largest datasets in
UD. Three languages, Buryat, Kurmanji and Up-
per Sorbian, were introduced in the 2017 task as
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Team LAS MLAS BLEX
1. HIT-SCIR 69.53 45.94 53.30
2. LATTICE 68.12 45.03 51.71
3. ICS PAS 66.90 49.24 54.89
4. TurkuNLP 64.48 47.63 53.54
5. UDPipe Future 64.21 47.53 49.53
6. AntNLP 63.73 42.24 48.31
7. Uppsala 63.60 46.00 29.25
8. ParisNLP 60.84 40.71 46.08
9. CEA LIST 57.34 39.97 43.39

10. KParse 57.32 39.20 43.61
11. NLP-Cube 56.78 37.13 38.30
12. SLT-Interactions 56.74 35.73 42.90
13. IBM NY 56.13 26.51 25.23
14. UniMelb 56.12 36.09 42.09
15. BASELINE UDPipe 55.01 38.80 41.06

LeisureX 55.01 38.80 41.06
17. Phoenix 54.63 38.38 40.72

Fudan 54.63 38.15 40.07
19. CUNI x-ling 54.33 38.10 40.70
20. BOUN 50.18 34.29 36.75
21. Stanford 48.56 34.86 38.55
22. ONLP lab 47.49 32.74 22.39
23. iParse 38.79 28.03 29.62
24. HUJI 36.74 24.47 27.70
25. ArmParser 34.54 22.94 25.26
26. SParse 0.00 0.00 0.00

Table 13: Average attachment score on the 7
small treebanks: Galician TreeGal, Irish, Latin
Perseus, North Sámi, Norwegian Nynorsk LIA,
Russian Taiga and Slovenian SST (ordered by
LAS F1 scores; out-of-order scores in the other
two columns are bold).

surprise languages and had higher scores there.13

This is because in 2017, the segmentation, POS
tags and morphology UDPipe models were trained
on the test data, applied to it via cross-validation,
and made available to the systems. Such an ap-
proach makes the conditions unrealistic, therefore
it was not repeated this year. Consequently, pars-
ing these languages is now much harder.

In contrast, the results on the 7 treebanks with
“small” training data and no development data
(Table 13) are higher on average, but again the
variance is significant. The smallest treebank

13The fourth surprise language, North Sámi, has now ad-
ditional training data and does not fall in the low-resource
category.

Team LAS MLAS BLEX
1. HIT-SCIR 74.20 55.52 62.34
2. Stanford 73.14 58.75 61.96
3. LATTICE 72.34 55.60 60.42
4. Uppsala 72.27 57.80 29.73
5. ICS PAS 72.18 58.07 60.97
6. TurkuNLP 71.78 57.54 63.25
7. UDPipe Future 71.57 57.93 61.52
8. CEA LIST 70.45 54.99 57.83
9. NLP-Cube 69.83 55.01 54.15

10. IBM NY 69.40 46.59 38.12
11. AntNLP 68.87 53.47 57.71
12. UniMelb 68.72 52.05 56.77
13. Phoenix 66.97 52.26 55.69
14. BASELINE UDPipe 66.63 51.75 54.87
15. KParse 66.55 51.29 54.45
16. SLT-Interactions 64.73 48.47 54.90
17. CUNI x-ling 64.70 49.71 52.72
18. ParisNLP 64.09 48.79 53.16
19. Fudan 63.54 45.54 50.73
20. LeisureX 61.05 41.95 50.60
21. BOUN 56.46 41.91 45.12
22. HUJI 56.35 46.52 50.10
23. iParse 44.20 33.43 38.18
24. ONLP lab 43.33 30.20 20.08
25. ArmParser 0.00 0.00 0.00

SParse 0.00 0.00 0.00

Table 14: Average attachment score on the 5 addi-
tional test sets for high-resource languages: Czech
PUD, English PUD, Finnish PUD, Japanese Mod-
ern and Swedish PUD (ordered by LAS F1 scores;
out-of-order scores in the other two columns are
bold).

in the group, Norwegian Nynorsk LIA, has only
3583 training words. There are two larger Nor-
wegian treebanks that could be used as additional
training sources. However, the LIA treebank con-
sists of spoken dialects and is probably quite dis-
similar to the other treebanks. The same can be
said about Slovenian SST and the other Slove-
nian treebank; SST is the most difficult dataset
in the group, despite of having almost 20K of its
own training words. Other treebanks, like Rus-
sian Taiga and Galician TreeGal, have much bet-
ter scores (74% LAS, about 61% MLAS and 64%
BLEX). There are also two treebanks that are the
sole representatives of their languages: Irish and
North Sámi. Their best LAS is around 70%: com-
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parable to Nynorsk LIA but much better than SST.
ICS PAS is the most successful system in the do-
main of small treebanks, especially when judged
by MLAS and BLEX.

Table 14 gives the average LAS on the 5 ex-
tra test sets (no own training data, but other tree-
banks of the same language exist). Four of them
come from the Parallel UD (PUD) collection in-
troduced in the 2017 task (Zeman et al., 2017).
The fifth, Japanese Modern, turned out to be one of
the toughest test sets in this shared task. There is
another Japanese treebank, GSD, with over 160K
training tokens, but the Modern dataset seems al-
most inapproachable with models trained on GSD.
A closer inspection reveals why: despite its name,
it is actually a corpus of historical Japanese, al-
though from the relatively recent Meiji and Taishō
periods (1868–1926). An average sentence in
GSD is about 1.3× longer than in Modern. GSD
has significantly more tokens tagged as auxiliaries,
but more importantly, the top ten AUX lemmas
in the two treebanks are completely disjoint sets.
Some other words are out-of-vocabulary because
their preferred spelling changed. For instance, the
demonstrative pronoun sore is written using hira-
gana in GSD, but a kanji character is used in Mod-
ern. Striking differences can be observed also in
dependency relations: in GSD, 3.7% relations are
nsubj (subject), and 1.2% are cop (copula). In
Modern, there is just 0.13% of subjects, and not a
single occurrence of a copula.

See Tables 15, 16 and 17 for a ranking of all
test sets by the best scores achieved on them by
any parser. Note that this cannot be directly inter-
preted as a ranking of languages by their parsing
difficulty: many treebanks have high ranks simply
because the corresponding training data is large.
Table 18 compares average LAS and MLAS for
each treebank.

Finally, Tables 19 and 20 show the treebanks
where word and sentence segmentation was ex-
tremely difficult (judged by the average parser
score). Not surprisingly, word segmentation is dif-
ficult for the low-resource languages and for lan-
guages like Chinese, Vietnamese, Japanese and
Thai, where spaces do not separate words. No-
tably the Japanese GSD set is not as difficult, but
whoever trusted it, crashed on the “Modern” set.
Sentence segmentation was particularly hard for
treebanks without punctuation, i.e., most of the
classical languages and spoken data.

Treebank LAS Best system Avg StDev
1. pl lfg 94.86 HIT-SCIR 85.89 ± 6.97
2. ru syntagrus 92.48 HIT-SCIR 79.68 ± 9.09
3. hi hdtb 92.41 HIT-SCIR 85.16 ± 5.32
4. pl sz 92.23 HIT-SCIR 81.47 ± 7.27
5. cs fictree 92.02 HIT-SCIR 82.10 ± 7.26
6. it isdt 92.00 HIT-SCIR 87.61 ± 4.12
7. cs pdt 91.68 HIT-SCIR 82.18 ± 6.91
8. ca ancora 91.61 HIT-SCIR 83.61 ± 6.01
9. cs cac 91.61 HIT-SCIR 82.69 ± 6.93

10. sl ssj 91.47 HIT-SCIR 75.00 ± 9.13
11. no bokmaal 91.23 HIT-SCIR 79.80 ± 7.29
12. bg btb 91.22 HIT-SCIR 82.52 ± 5.88
13. no nynorsk 90.99 HIT-SCIR 78.55 ± 7.88
14. es ancora 90.93 HIT-SCIR 82.84 ± 6.17
15. fi pud 90.23 HIT-SCIR 68.87 ±15.61
16. fr sequoia 89.89 LATTICE 80.55 ± 5.91
17. el gdt 89.65 HIT-SCIR 80.65 ± 6.05
18. nl alpino 89.56 HIT-SCIR 77.76 ± 7.42
19. sk snk 88.85 HIT-SCIR 76.53 ± 7.24
20. fi tdt 88.73 HIT-SCIR 73.55 ± 9.39
21. sr set 88.66 Stanford 79.84 ± 6.57
22. sv talbanken 88.63 HIT-SCIR 77.71 ± 6.50
23. fi ftb 88.53 HIT-SCIR 76.89 ± 7.60
24. uk iu 88.43 HIT-SCIR 72.47 ± 8.25
25. fa seraji 88.11 HIT-SCIR 78.71 ± 6.04
26. en pud 87.89 LATTICE 74.51 ± 8.28
27. pt bosque 87.81 Stanford 80.49 ± 5.46
28. hr set 87.36 HIT-SCIR 78.37 ± 6.42
29. fro srcmf 87.12 UDPipe Future 74.38 ±16.74
30. la ittb 87.08 HIT-SCIR 77.00 ± 7.42
31. ko kaist 86.91 HIT-SCIR 77.10 ± 8.72
32. fr gsd 86.89 HIT-SCIR 79.43 ± 5.47
33. ro rrt 86.87 HIT-SCIR 75.77 ± 7.66
34. nl lassysmall 86.84 HIT-SCIR 75.08 ± 6.59
35. da ddt 86.28 HIT-SCIR 75.02 ± 6.47
36. cs pud 86.13 HIT-SCIR 73.24 ± 9.97
37. af afribooms 85.47 HIT-SCIR 76.61 ± 6.17
38. et edt 85.35 HIT-SCIR 72.08 ± 8.71
39. ko gsd 85.14 HIT-SCIR 71.88 ±10.53
40. en gum 85.05 LATTICE 74.20 ± 6.27
41. en ewt 84.57 HIT-SCIR 75.99 ± 5.40
42. eu bdt 84.22 HIT-SCIR 72.08 ± 8.83
43. sv lines 84.08 HIT-SCIR 73.76 ± 5.98
44. lv lvtb 83.97 HIT-SCIR 67.76 ± 9.01
45. ur udtb 83.39 HIT-SCIR 75.89 ± 4.69
46. ja gsd 83.11 HIT-SCIR 73.68 ± 4.55
47. gl ctg 82.76 Stanford 72.46 ± 7.13
48. hu szeged 82.66 HIT-SCIR 67.05 ± 8.63
49. en lines 81.97 HIT-SCIR 72.28 ± 5.59
50. de gsd 80.36 HIT-SCIR 70.13 ± 7.14
51. sv pud 80.35 HIT-SCIR 67.02 ± 9.23
52. id gsd 80.05 HIT-SCIR 73.05 ± 4.69
53. it postwita 79.39 HIT-SCIR 64.95 ± 6.88
54. grc perseus 79.39 HIT-SCIR 59.01 ±15.56
55. grc proiel 79.25 HIT-SCIR 65.02 ±14.58
56. ar padt 77.06 Stanford 64.07 ± 6.41
57. zh gsd 76.77 HIT-SCIR 60.32 ± 6.14
58. he htb 76.09 Stanford 58.73 ± 5.29
59. fr spoken 75.78 HIT-SCIR 64.66 ± 5.35
60. cu proiel 75.73 Stanford 62.64 ± 6.98
61. gl treegal 74.25 UDPipe Future 64.65 ± 5.61
62. ru taiga 74.24 ICS PAS 56.27 ± 9.16
63. la proiel 73.61 HIT-SCIR 61.25 ± 6.87
64. la perseus 72.63 HIT-SCIR 46.91 ±11.12
65. ga idt 70.88 TurkuNLP 58.37 ± 7.05
66. no nynorsklia 70.34 HIT-SCIR 50.33 ± 9.28
67. sme giella 69.87 LATTICE 51.10 ±14.32
68. got proiel 69.55 Stanford 60.55 ± 4.93
69. ug udt 67.05 HIT-SCIR 54.27 ± 6.90
70. tr imst 66.44 HIT-SCIR 55.61 ± 6.49
71. sl sst 61.39 HIT-SCIR 47.07 ± 5.84
72. vi vtb 55.22 HIT-SCIR 40.40 ± 4.43
73. fo oft 49.43 CUNI x-ling 27.87 ± 9.75
74. hsb ufal 46.42 SLT-Interactions 26.48 ± 8.90
75. br keb 38.64 CEA LIST 13.27 ± 8.77
76. hy armtdp 37.01 LATTICE 22.39 ± 7.91
77. kk ktb 31.93 Uppsala 19.11 ± 6.34
78. kmr mg 30.41 IBM NY 20.27 ± 6.14
79. pcm nsc 30.07 CUNI x-ling 13.19 ± 5.76
80. ja modern 28.33 Stanford 18.92 ± 5.14
81. bxr bdt 19.53 AntNLP 11.45 ± 4.28
82. th pud 13.70 CUNI x-ling 1.38 ± 2.83

Table 15: Treebank ranking by best parser LAS
(Avg=average LAS over all systems, out-of-order
scores in bold).
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Treebank MLAS Best system Avg StDev
1. pl lfg 86.93 UDPipe Future 73.73 ± 7.29
2. ru syntagrus 86.76 UDPipe Future 71.63 ± 9.36
3. cs pdt 85.10 UDPipe Future 73.61 ± 6.32
4. cs fictree 84.23 ICS PAS 69.91 ± 7.77
5. ca ancora 84.07 UDPipe Future 74.62 ± 7.69
6. es ancora 83.93 Stanford 74.61 ± 7.43
7. it isdt 83.89 Stanford 77.14 ± 8.89
8. fi pud 83.78 Stanford 62.38 ±14.83
9. no bokmaal 83.68 UDPipe Future 70.75 ± 8.92

10. cs cac 83.42 UDPipe Future 71.39 ± 6.89
11. bg btb 83.12 UDPipe Future 73.18 ± 7.15
12. fr sequoia 82.55 Stanford 70.42 ± 9.04
13. sl ssj 82.38 Stanford 62.41 ± 9.18
14. no nynorsk 81.86 UDPipe Future 68.62 ± 9.45
15. ko kaist 81.29 HIT-SCIR 70.18 ± 9.36
16. ko gsd 80.85 HIT-SCIR 63.73 ±16.02
17. fi tdt 80.84 Stanford 65.27 ± 9.22
18. fa seraji 80.83 UDPipe Future 71.23 ± 7.77
19. pl sz 80.77 Stanford 64.80 ± 8.49
20. fro srcmf 80.28 UDPipe Future 65.19 ±16.58
21. la ittb 79.84 ICS PAS 67.77 ± 8.37
22. fi ftb 79.65 TurkuNLP 66.11 ± 8.86
23. sv talbanken 79.32 Stanford 68.05 ± 8.49
24. ro rrt 78.68 TurkuNLP 67.43 ± 7.24
25. el gdt 78.66 Stanford 64.29 ± 8.28
26. fr gsd 78.44 Stanford 69.33 ± 8.59
27. hi hdtb 78.30 UDPipe Future 68.48 ± 5.88
28. sr set 77.73 UDPipe Future 67.33 ± 5.96
29. da ddt 77.31 Stanford 65.00 ± 6.89
30. et edt 76.97 TurkuNLP 63.59 ± 8.34
31. nl alpino 76.52 Stanford 62.82 ± 9.81
32. en ewt 76.33 Stanford 66.84 ± 5.86
33. pt bosque 75.94 Stanford 66.22 ± 6.76
34. cs pud 75.81 UDPipe Future 60.47 ±11.36
35. af afribooms 75.67 UDPipe Future 63.76 ± 7.06
36. sk snk 75.01 Stanford 56.82 ± 8.32
37. en pud 74.86 Stanford 63.05 ± 7.89
38. nl lassysmall 74.11 Stanford 61.95 ± 9.12
39. hr set 73.44 Stanford 60.08 ± 7.07
40. en gum 73.24 ICS PAS 61.72 ± 7.69
41. ja gsd 72.62 HIT-SCIR 59.52 ± 6.20
42. uk iu 72.27 UDPipe Future 55.45 ± 8.08
43. en lines 72.25 ICS PAS 62.35 ± 8.04
44. eu bdt 71.73 UDPipe Future 58.49 ± 8.62
45. gl ctg 70.92 Stanford 57.92 ±14.10
46. ar padt 68.54 Stanford 53.28 ± 6.12
47. it postwita 68.50 Stanford 51.72 ± 8.80
48. id gsd 68.36 Stanford 61.03 ± 6.49
49. lv lvtb 67.89 Stanford 53.31 ± 7.96
50. hu szeged 67.13 UDPipe Future 53.08 ± 8.01
51. zh gsd 66.62 HIT-SCIR 50.42 ± 5.87
52. sv lines 66.58 Stanford 57.40 ± 7.43
53. fr spoken 64.67 HIT-SCIR 53.17 ± 5.61
54. he htb 63.38 Stanford 45.22 ± 4.94
55. cu proiel 63.31 Stanford 50.28 ± 6.69
56. ru taiga 61.59 ICS PAS 37.16 ± 7.53
57. gl treegal 60.63 UDPipe Future 47.35 ± 5.93
58. grc proiel 60.27 Stanford 47.62 ±11.82
59. la proiel 59.36 Stanford 47.79 ± 6.90
60. de gsd 58.04 TurkuNLP 39.13 ±10.35
61. ur udtb 57.98 TurkuNLP 49.64 ± 4.21
62. no nynorsklia 57.51 ICS PAS 37.08 ± 7.78
63. sme giella 57.47 TurkuNLP 38.29 ±12.37
64. got proiel 56.45 UDPipe Future 46.18 ± 5.36
65. tr imst 55.73 Stanford 45.26 ± 6.15
66. grc perseus 54.98 HIT-SCIR 35.65 ±12.31
67. sv pud 51.74 TurkuNLP 39.41 ± 7.78
68. la perseus 49.77 ICS PAS 28.67 ± 8.06
69. vi vtb 47.61 HIT-SCIR 32.45 ± 7.28
70. sl sst 45.93 ICS PAS 33.12 ± 5.33
71. ga idt 45.79 TurkuNLP 33.70 ± 5.18
72. ug udt 45.78 UDPipe Future 35.08 ± 5.96
73. br keb 13.91 Uppsala 1.52 ± 3.34
74. hy armtdp 13.36 CUNI x-ling 5.94 ± 2.92
75. ja modern 11.82 Uppsala 6.45 ± 2.59
76. hsb ufal 9.09 LATTICE 4.66 ± 2.37
77. kk ktb 8.93 CUNI x-ling 5.04 ± 2.34
78. kmr mg 7.98 IBM NY 4.01 ± 1.96
79. th pud 6.29 CUNI x-ling 0.42 ± 1.27
80. pcm nsc 5.30 KParse 3.00 ± 1.30
81. bxr bdt 2.98 AntNLP 1.33 ± 0.72
82. fo oft 1.07 CUNI x-ling 0.37 ± 0.21

Table 16: Treebank ranking by best parser MLAS.

Treebank BLEX Best system Avg StDev
1. pl lfg 90.42 TurkuNLP 72.81 ±16.96
2. ru syntagrus 88.65 TurkuNLP 68.57 ±18.07
3. cs pdt 87.91 HIT-SCIR 74.41 ±14.88
4. cs fictree 87.81 ICS PAS 71.10 ±16.26
5. cs cac 86.79 TurkuNLP 71.61 ±18.18
6. hi hdtb 86.74 HIT-SCIR 75.80 ± 9.28
7. pl sz 86.29 TurkuNLP 67.33 ±17.15
8. no bokmaal 85.82 UDPipe Future 69.52 ±13.54
9. ca ancora 85.47 UDPipe Future 72.60 ±12.31

10. es ancora 84.92 HIT-SCIR 72.10 ±12.71
11. it isdt 84.76 ICS PAS 75.42 ±10.72
12. fr sequoia 84.67 ICS PAS 70.63 ±11.66
13. no nynorsk 84.44 TurkuNLP 67.43 ±14.10
14. la ittb 84.37 TurkuNLP 68.10 ±17.85
15. bg btb 84.31 TurkuNLP 68.13 ±15.02
16. fro srcmf 84.11 UDPipe Future 70.46 ±16.40
17. sr set 83.28 TurkuNLP 65.62 ±17.61
18. sl ssj 83.23 Stanford 62.54 ±17.20
19. fi ftb 82.44 TurkuNLP 59.66 ±16.50
20. fi pud 82.44 TurkuNLP 52.25 ±18.50
21. sv talbanken 81.44 TurkuNLP 66.45 ±13.18
22. fi tdt 81.24 TurkuNLP 54.70 ±17.25
23. fr gsd 81.18 HIT-SCIR 69.61 ±10.58
24. ro rrt 80.97 TurkuNLP 63.53 ±15.84
25. sk snk 80.74 TurkuNLP 58.35 ±15.07
26. pt bosque 80.62 TurkuNLP 68.71 ±11.27
27. en pud 80.53 LATTICE 64.73 ±10.88
28. cs pud 80.53 ICS PAS 64.62 ±16.03
29. hr set 80.50 TurkuNLP 64.64 ±17.13
30. fa seraji 80.44 Stanford 68.38 ± 7.39
31. el gdt 80.09 TurkuNLP 63.26 ±15.60
32. ko kaist 79.55 TurkuNLP 57.32 ±20.78
33. et edt 79.37 TurkuNLP 57.06 ±16.14
34. nl alpino 79.15 HIT-SCIR 64.29 ±10.83
35. en ewt 78.44 HIT-SCIR 67.53 ± 8.47
36. uk iu 78.38 TurkuNLP 57.78 ±15.95
37. eu bdt 78.15 TurkuNLP 60.52 ±15.24
38. da ddt 78.07 TurkuNLP 63.16 ±11.41
39. sv lines 77.01 ICS PAS 63.13 ±11.72
40. id gsd 76.56 Stanford 62.52 ± 7.89
41. nl lassysmall 76.54 HIT-SCIR 60.92 ±11.93
42. af afribooms 76.44 TurkuNLP 63.87 ± 9.62
43. ko gsd 76.31 TurkuNLP 54.13 ±17.78
44. en lines 75.29 HIT-SCIR 62.29 ± 9.27
45. gl ctg 75.14 Stanford 60.86 ±10.82
46. ur udtb 73.79 TurkuNLP 62.93 ± 6.42
47. ja gsd 73.79 HIT-SCIR 60.87 ± 6.04
48. en gum 73.57 ICS PAS 61.02 ± 8.59
49. hu szeged 73.17 TurkuNLP 55.42 ±10.95
50. zh gsd 72.97 HIT-SCIR 55.66 ± 6.26
51. lv lvtb 72.40 TurkuNLP 53.42 ±14.56
52. de gsd 71.40 HIT-SCIR 54.86 ±14.99
53. cu proiel 71.31 Stanford 51.27 ±15.35
54. ar padt 70.06 Stanford 49.13 ±18.98
55. it postwita 69.34 HIT-SCIR 50.97 ± 8.76
56. grc proiel 69.03 TurkuNLP 48.58 ±19.91
57. la proiel 67.60 TurkuNLP 51.03 ±14.56
58. sv pud 66.12 TurkuNLP 50.20 ±11.30
59. fr spoken 65.63 HIT-SCIR 52.57 ± 7.29
60. he htb 65.04 Stanford 47.22 ± 6.60
61. ru taiga 64.36 ICS PAS 39.32 ±10.49
62. gl treegal 64.29 UDPipe Future 49.38 ± 8.18
63. got proiel 63.98 Stanford 48.79 ±13.77
64. no nynorsklia 60.98 ICS PAS 41.20 ± 8.64
65. tr imst 60.13 TurkuNLP 45.39 ±10.38
66. sme giella 60.10 TurkuNLP 35.76 ±12.68
67. grc perseus 58.68 TurkuNLP 36.48 ±16.03
68. ug udt 55.42 HIT-SCIR 41.64 ± 8.09
69. ga idt 55.18 TurkuNLP 37.83 ± 7.61
70. la perseus 52.75 ICS PAS 30.16 ±11.05
71. sl sst 50.94 ICS PAS 37.20 ± 6.87
72. vi vtb 44.02 Stanford 35.50 ± 3.74
73. pcm nsc 26.04 CUNI x-ling 12.07 ± 5.63
74. hsb ufal 21.09 LATTICE 11.26 ± 4.97
75. br keb 20.70 TurkuNLP 4.19 ± 4.93
76. hy armtdp 19.04 CUNI x-ling 10.68 ± 4.37
77. fo oft 14.40 CUNI x-ling 7.32 ± 3.33
78. ja modern 13.79 Stanford 7.70 ± 2.86
79. kmr mg 13.66 LATTICE 8.44 ± 3.11
80. kk ktb 11.33 CUNI x-ling 6.75 ± 2.95
81. th pud 10.77 CUNI x-ling 0.91 ± 2.11
82. bxr bdt 6.65 AntNLP 3.39 ± 1.61

Table 17: Treebank ranking by best parser BLEX.
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Treebank LAS MLAS Diff Language
1. de gsd 70.13 39.13 31.01 German
2. sv pud 67.02 39.41 27.61 Swedish
3. fo oft 27.87 0.37 27.50 Faroese
4. ur udtb 75.89 49.64 26.25 Urdu
5. ga idt 58.37 33.70 24.66 Irish
6. grc perseus 59.01 35.65 23.36 Ancient Greek
7. hsb ufal 26.48 4.66 21.82 Upper Sorbian
8. sk snk 76.53 56.82 19.71 Slovak
9. ug udt 54.27 35.08 19.20 Uyghur

10. ru taiga 56.27 37.16 19.12 Russian
11. hr set 78.37 60.08 18.29 Croatian
12. la perseus 46.91 28.67 18.24 Latin
13. grc proiel 65.02 47.62 17.40 Ancient Greek
14. gl treegal 64.65 47.35 17.30 Galician
15. uk iu 72.47 55.45 17.01 Ukrainian
16. hi hdtb 85.16 68.48 16.68 Hindi
17. pl sz 81.47 64.80 16.67 Polish
18. hy armtdp 22.39 5.94 16.45 Armenian
19. el gdt 80.65 64.29 16.36 Greek
20. sv lines 73.76 57.40 16.36 Swedish
21. kmr mg 20.27 4.01 16.26 Kurmanji
22. nl alpino 77.76 62.82 14.95 Dutch
23. gl ctg 72.46 57.92 14.55 Galician
24. lv lvtb 67.76 53.31 14.45 Latvian
25. got proiel 60.55 46.18 14.37 Gothic
26. pt bosque 80.49 66.22 14.27 Portuguese
27. ja gsd 73.68 59.52 14.16 Japanese
28. kk ktb 19.11 5.04 14.07 Kazakh
29. hu szeged 67.05 53.08 13.96 Hungarian
30. sl sst 47.07 33.12 13.95 Slovenian
31. eu bdt 72.08 58.49 13.59 Basque
32. he htb 58.73 45.22 13.51 Hebrew
33. la proiel 61.25 47.79 13.46 Latin
34. no nynorsklia 50.33 37.08 13.25 Norwegian
35. it postwita 64.95 51.72 13.22 Italian
36. nl lassysmall 75.08 61.95 13.14 Dutch
37. af afribooms 76.61 63.76 12.84 Afrikaans
38. sme giella 51.10 38.29 12.82 North Sámi
39. cs pud 73.24 60.47 12.77 Czech
40. sl ssj 75.00 62.41 12.59 Slovenian
41. sr set 79.84 67.33 12.50 Serbian
42. en gum 74.20 61.72 12.48 English
43. ja modern 18.92 6.45 12.47 Japanese
44. cu proiel 62.64 50.28 12.36 Old Church Slavonic
45. cs fictree 82.10 69.91 12.19 Czech
46. pl lfg 85.89 73.73 12.17 Polish
47. id gsd 73.05 61.03 12.02 Indonesian
48. br keb 13.27 1.52 11.75 Breton
49. fr spoken 64.66 53.17 11.49 French
50. en pud 74.51 63.05 11.46 English
51. cs cac 82.69 71.39 11.29 Czech
52. ar padt 64.07 53.28 10.79 Arabic
53. fi ftb 76.89 66.11 10.78 Finnish
54. it isdt 87.61 77.14 10.47 Italian
55. tr imst 55.61 45.26 10.34 Turkish
56. pcm nsc 13.19 3.00 10.19 Naija
57. fr sequoia 80.55 70.42 10.13 French
58. bxr bdt 11.45 1.33 10.12 Buryat
59. fr gsd 79.43 69.33 10.10 French
60. da ddt 75.02 65.00 10.02 Danish
61. no nynorsk 78.55 68.62 9.93 Norwegian
62. en lines 72.28 62.35 9.93 English
63. zh gsd 60.32 50.42 9.90 Chinese
64. sv talbanken 77.71 68.05 9.66 Swedish
65. bg btb 82.52 73.18 9.34 Bulgarian
66. la ittb 77.00 67.77 9.23 Latin
67. fro srcmf 74.38 65.19 9.18 Old French
68. en ewt 75.99 66.84 9.15 English
69. no bokmaal 79.80 70.75 9.05 Norwegian
70. ca ancora 83.61 74.62 8.99 Catalan
71. cs pdt 82.18 73.61 8.57 Czech
72. et edt 72.08 63.59 8.50 Estonian
73. ro rrt 75.77 67.43 8.33 Romanian
74. fi tdt 73.55 65.27 8.28 Finnish
75. es ancora 82.84 74.61 8.23 Spanish
76. ko gsd 71.88 63.73 8.15 Korean
77. ru syntagrus 79.68 71.63 8.05 Russian
78. vi vtb 40.40 32.45 7.95 Vietnamese
79. fa seraji 78.71 71.23 7.48 Persian
80. ko kaist 77.10 70.18 6.92 Korean
81. fi pud 68.87 62.38 6.49 Finnish
82. th pud 1.38 0.42 0.96 Thai

Table 18: Treebank ranking by difference between
average parser LAS and MLAS.

Treebank Best Best system Avg StDev
70. bxr bdt 99.24 IBM NY 88.64 ± 8.09
71. fi pud 99.69 Uppsala 88.13 ±10.81
72. zh gsd 96.71 HIT-SCIR 86.91 ± 3.83
73. fo oft 99.47 CUNI x-ling 86.76 ±10.68
74. ar padt 96.81 Stanford 86.62 ± 7.00
75. kmr mg 96.97 Uppsala 86.61 ± 7.16
76. kk ktb 97.40 Uppsala 85.55 ± 7.45
77. br keb 92.45 TurkuNLP 83.76 ± 7.37
78. he htb 93.98 Stanford 82.45 ± 3.80
79. vi vtb 93.46 HIT-SCIR 81.71 ± 3.73
80. pcm nsc 99.71 CEA LIST 79.94 ±10.69
81. ja modern 75.69 HIT-SCIR 59.40 ± 7.70
82. th pud 69.93 Uppsala 17.16 ±20.57

Table 19: Treebanks with most difficult word seg-
mentation (by average parser F1).

Treebank Best Best system Avg StDev
73. grc proiel 51.84 HIT-SCIR 42.46 ± 7.33
74. cu proiel 48.67 Stanford 35.54 ± 4.02
75. la proiel 39.61 Stanford 33.40 ± 5.39
76. got proiel 38.23 Stanford 27.22 ± 4.47
77. it postwita 65.90 Stanford 25.25 ±14.30
78. sl sst 24.43 NLP-Cube 20.92 ± 4.70
79. fr spoken 24.17 Stanford 20.43 ± 2.89
80. th pud 12.37 TurkuNLP 1.75 ± 3.68
81. pcm nsc 0.93 Stanford 0.06 ± 0.19
82. ja modern 0.23 Stanford 0.01 ± 0.04

Table 20: Treebanks with most difficult sentence
segmentation (by average parser F1).

7 Analysis of Submitted Systems

Table 21 gives an overview of 24 of the systems
evaluated in the shared task. The overview is
based on a post-evaluation questionnaire to which
24 of 25 teams responded. Systems are ordered
alphabetically by name and their LAS rank is in-
dicated in the second column.

Looking first at word and sentence segmenta-
tion, we see that, while a clear majority of systems
(19/24) rely on the baseline system for segmenta-
tion, slightly more than half (13/24) have devel-
oped their own segmenter, or tuned the baseline
segmenter, for at least a subset of languages. This
is a development from 2017, where only 7 out of
29 systems used anything other than the baseline
segmenter.

When it comes to morphological analysis, in-
cluding universal POS tags, features and lemmas,
all systems this year include some such compo-
nent, and only 6 systems rely entirely on the base-
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System R Segment Morph Syntax WEmb Additional Data MultiLing
AntNLP 9 Base Base Single-G FB None OwnS
ArmParser 25 Base Own Single FB None None
BOUN 21 Base Base Single-T Base None None
CEA LIST 6 Base BL/Own Single-G/T B/FB OPUS/Wikt OwnL
CUNI x-ling 20 B/Own B/Own Single/Ens FB/None O/UM/WALS/Wiki OwnL,S
Fudan 17 Base Base Ensemble None None OwnL,S
HIT-SCIR 1 B/Own Base Ensemble B/FB/Crawl None OwnL,S
HUJI 24 Base Base Single-T FB None OwnL
IBM NY 13 B/Own B/Joint Ensemble-T B/FB Wiki OwnL,S
ICS PAS 3 Base Own Single-G FB/None None None
KParse 16 B/Own Own Single Other None OwnL
LATTICE 3 Base OwnU Single-G/Ens B/FB/Crawl OPUS/Wiki OwnL,S
LeisureX 15 Base Own Single Base None OwnL
NLP-Cube 9 Own Own Single FB None OwnL
ONLP lab 22 Base Base Single-T None UML None
ParisNLP 11 B/Own B/Own Single-G FB UML OwnL
Phoenix 19 Own OwnU Single Train None OwnL
SLT-Interactions 12 B/Own Own Single Crawl None OwnL
SParse 26 B/Own Own Single-G Crawl None OwnL
Stanford 7 Own Own Single-G B/FB None None
TurkuNLP 2 B/Own Own Single-G B/FB OPUS/Aper OwnL
UDPipe Future 3 Own Joint Single-G B/FB None None
UniMelb 14 Base Joint Single Base None Base
Uppsala 7 Own OwnU,F Single-T B/FB/Wiki OPUS/Wiki/Aper OwnL,S

Table 21: Classification of participating systems. R = LAS ranking. Segment = word/sentence segmen-
tation. Morph = morphological analysis, including universal POS tags [U], features [F] and lemmas [L],
with subscripts for subsets [Joint = morphological component trained jointly with syntactic parser]. Syn-
tax = syntactic parsing [Single = single parser; Ensemble (or Ens) = parser ensemble; G = graph-based;
T = transition-based]. WEmb = pre-trained word embeddings [FB = Facebook; Crawl = trained on web
crawl data provided by the organizers; Wiki = trained on Wikipedia data; Train = trained on treebank
training data]. Additional Data = data used in addition to treebank training sets [OPUS (or O) = OPUS,
Aper = Apertium morphological analysers, Wikt = Wiktionary, Wiki = Wikipedia, UM = UniMorph,
UML = Universal Morphological Lattices, WALS = World Atlas of Language Structures]. MultiLing =
multilingal models used for low-resource (L) or small (S) languages. In all columns, Base (or B) refers
to the Baseline UDPipe system or the baseline word embeddings provided by the organizers, while None
means that there is no corresponding component in the system.

line UDPipe system. This is again quite different
from 2017, where more than half the systems ei-
ther just relied on the baseline tagger (13 systems)
or did not predict any morphology at all (3 sys-
tems). We take this to be primarily a reflection
of the fact that two out of three official metrics
included (some) morphological analysis this year,
although 3 systems did not predict the lemmas re-
quired for the BLEX metric (and 2 systems only
predicted universal POS tags, no features). As far
as we can tell from the questionnaire responses,

only 3 systems used a model where morphology
and syntax were predicted jointly.14

For syntactic parsing, most teams (19) use a sin-
gle parsing model, while 5 teams, including the
winning HIT-SCIR system, build ensemble mod-
els, either for all languages or a subset of them.
When it comes to the type of parsing model, we
observe that graph-based models are more popu-
lar than transition-based models this year, while
the opposite was true in 2017. We hypothesize that

14The ONLP lab system also has a joint model but in the
end used the baseline morphology as it gave better results.
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this is due to the superior performance of the Stan-
ford graph-based parser in last year’s shared task,
and many of the high-performing systems this year
either incorporate that parser or a reimplementa-
tion of it.15

The majority of parsers make use of pre-trained
word embeddings. Most popular are the Facebook
embeddings, which are used by 17 systems, fol-
lowed by the baseline embeddings provided by the
organizers (11), and embeddings trained on web
crawl data (4).16 When it comes to additional data,
over and above the treebank training sets and pre-
trained word embeddings, the most striking obser-
vation is that a majority of systems (16) did not use
any at all. Those that did primarily used OPUS
(5), Wikipedia dumps (3), Apertium morpholog-
ical analyzers (2), and Universal Morphological
Lattices (2). The CUNI x-ling system, which fo-
cused on low-resource languages, also exploited
UniMorph and WALS (in addition to OPUS and
Wikipedia).

Finally, we note that a majority of systems make
use of models trained on multiple languages to
improve parsing for languages with little or no
training data. According to the questionnaire re-
sponses, 15 systems use multilingual models for
the languages classified as “low-resource”, while
7 systems use them for the languages classified as
“small”.17 Only one system relied on the baseline
delexicalized parser trained on data from all lan-
guages.

8 Conclusion

The CoNLL 2018 Shared Task on UD parsing, the
second in the series, was novel in several respects.
Besides using cross-linguistically consistent lin-
guistic representations, emphasizing end-to-end
processing of text, and in using a multiply paral-
lel test set, as in 2017, it was unusual also in fea-
turing an unprecedented number of languages and
treebanks and in integrating cross-lingual learning
for resource-poor languages. Compared to the first
edition of the task in 2017, this year several lan-
guages were provided with little-to-no resources,
whereas in 2017, predicted morphology trained on

15This is true of at least 3 of the 5 best performing systems.
16The baseline embeddings were the same as in 2017 and

therefore did not cover new languages, which may partly ex-
plain the greater popularity of the Facebook embeddings this
year.

17We know that some teams used them also for clusters
involving high-resource languages, but we have no detailed
statistics on this usage.

the language in question was available for all of
the languages. The most extreme example of these
is Thai, where the only accessible resource was the
Facebook Research Thai embeddings model and
the OPUS parallel corpora. This year’s task also
introduced two additional metrics that take into
account morphology and lemmatization. This en-
couraged the development of truly end-to-end full
parsers, producing complete parses including mor-
phological features and lemmas in addition to the
syntactic tree. This also aimed to improve the util-
ity of the systems developed in the shared task for
later downstream applications. For most UD lan-
guages, these parsers represent a new state of the
art for end-to-end dependency parsing.

The analysis of the shared task results has so far
only scratched the surface, and we refer to the sys-
tem description papers for more in-depth analysis
of individual systems and their performance. For
many previous CoNLL shared tasks, the task it-
self has only been the starting point of a long and
fruitful research strand, enabled by the resources
created for the task. We hope and believe that the
2017 and 2018 UD parsing tasks will join this tra-
dition.
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Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A
multilingual treebank collection. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). Euro-
pean Language Resources Association, Portorož,
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and Balkız Öztürk. 2018. A morphology-based
representation model for LSTM-based dependency
parsing of agglutinative languages. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. As-
sociation for Computational Linguistics.

Martin Popel, Zdeněk Žabokrtský, and Martin
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Abstract
We summarize empirical results and tenta-
tive conclusions from the Second Extrin-
sic Parser Evaluation Initiative (EPE 2018).
We review the basic task setup, downstream
applications involved, and end-to-end re-
sults for seventeen participating parsers.
Based on both quantitative and qualita-
tive analysis, we correlate intrinsic eval-
uation results at different layers of morph-
syntactic analysis with observed down-
stream behavior.

1 Background and Motivation

The Second Extrinsic Parser Evaluation Initiative
(EPE 2018) was organized as an optional track of
the 2018 Shared Task on Multilingual Parsing from
Raw Text to Universal Dependencies (Zeman et al.,
2018) at the Conference on Computational Natural
Language Learning (CoNLL 2018). In the follow-
ing, we distinguish the tracks as the EPE vs. the
‘core’ UD parsing tasks, respectively. One focus
of the UD parsing task in 2018 was on different in-
trinsic evaluation metrics, such that the connection
to the EPE framework provides new opportunities
for correlating intrinsic metrics with downstream
utility to three relevant applications, viz. biologi-
cal event extraction, fine-grained opinion analysis,
and negation resolution. Unlike the strongly multi-
lingual core task, the EPE framework for the time
being is limited to English.

A previous instance of the EPE initiative (see
§ 2 below) embraced diversity and accepted sub-
missions of parser outputs that varied along several
dimensions, including different types of syntac-
tic or semantic dependency representations, vari-
able parser training data in type and volume, and
of course diverse approaches to input segmenta-
tion and parsing. In contrast, the association of

EPE 2018 with the UD parsing task ‘fixes’ two
of these dimensions: All submitted systems out-
put basic Universal Dependency (UD; McDonald
et al., 2013; Nivre et al., 2016) trees (following the
conventions of UD version 2.x) and parser train-
ing data was limited to the English UD treebanks
provided for the core task.

2 History: The EPE 2017 Infrastructure

What we somewhat interchangeably refer to as
the EPE framework or the EPE infrastructure
was originally assembled in mid-2017, to enable
the First Shared Task on Extrinsic Parser Eval-
uation (EPE 2017; Oepen et al., 2017), which
was organized as a joint event by the Fourth In-
ternational Conference on Dependency Linguistics
(DepLing 2017) and the 15th International Con-
ference on Parsing Technologies (IWPT 2017).
The framework is characterized by a collection
of ‘downstream’ natural language ‘understanding’
applications that are assumed to depend on the
analysis of grammatical structure. For each down-
stream application, there are commonly used ref-
erence data sets (often from past shared tasks) and
evaluation metrics. In the EPE context, state-of-
the-art systems for these applications have been
generalized to accept as inputs a broad variety
of syntactico-semantic dependency representations
(i.e. parser outputs submitted for extrinsic evalu-
ation) and to automatically retrain (and tune, to
some degree) for each specific parser. The fol-
lowing paragraphs briefly summarize each of the
downstream systems and main results from the EPE
2017 competition.

Dependency Representations For compatibil-
ity with different linguistic schools in syntactico-
semantic analysis, the EPE framework assumes a
comparatively broad definition of suitable interface
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representations to grammatical analysis (Oepen
et al., 2017; p. 6):

The term (bi-lexical) dependency representation
in the context of EPE 2017 is interpreted as a
graph whose nodes are anchored in surface lex-
ical units, and whose edges represent labeled
directed relations between two nodes. Each
node corresponds to a sub-string of the under-
lying linguistic signal (input string), identified
by character stand-off pointers. Node labels can
comprise a non-recursive attribute–value matrix
(or ‘feature structure’), for example to encode
lemma and part of speech information. Each
graph can optionally designate one or more
‘top’ nodes, broadly interpreted as the root-level
head or highest-scoping predicate (Kuhlmann
and Oepen, 2016).

In principle, this notion of dependency represen-
tations is broad in that it allows nodes that do not
correspond to (full) surface tokens, partial or full
overlap of nodes, as well as graphs that transcend
fully connected rooted trees. Participating teams
in the original EPE 2017 initiative did in fact take
advantage of all these degrees of freedom, whereas
in connection to the 2018 UD parsing task such
variation is excluded by design.

Biological Event Extraction The Turku Event
Extraction System (TEES) (Björne, 2014) is a pro-
gram developed for the automated extraction of
events, complex relations used to define the seman-
tic structure of a sentence. These events differ from
pairwise binary relations in that they have a defined
trigger node, usually a verb, they can have multiple
arguments, and other events can be used as event ar-
guments, forming complex nested relations. Events
can be seen as graphs, where named entities and
triggers are the nodes and the arguments linking
these are the edges. In this graph model, an event
is implicitly defined as a trigger node and its set of
outgoing edges.

The TEES system approaches event extraction
as a task of graph generation, modelling it as a
pipeline of consecutive, atomic classification tasks.
The first step is entity detection where each token
in the sentence is predicted as an entity node or
as negative. In the second step of edge detection,
argument edges are predicted for all valid, directed
pairs of nodes. In the third, unmerging step, over-
lapping events are ‘pulled apart’ by duplicating trig-
ger nodes. In the optional fourth step of modifier
detection, binary modifiers (such as speculation or
negation) can be predicted for the detected events.
All of the classification steps in the TEES system

rely on rich feature representations generated to
a large degree from syntactic dependency parses.
All classification tasks are implemented using the
SVMmulticlass classifier (Joachims, 1999).

TEES has been developed using corpora from
the Biomedical Natural Language Processing
(BioNLP) domain, in particular the event corpora
from the BioNLP Shared Tasks. These tasks define
their own annotation schemes and provide standard-
ized evaluation services. In the context of the EPE
challenge we use the BioNLP 2009 GENIA corpus
and its associated evaluation program to measure
the impact of different parses on event extraction
performance (Kim et al., 2009). The metric used
for comparing the EPE submissions is the primary
‘approximate span and recursive mode’ metric of
the original Shared Task, a micro-averaged F1 score
for the nine event classes of the corpus.

The specialized domain language presents
unique challenges for parsers not specifically op-
timized for this domain, so using this data set to
evaluate open-domain parses may result in overall
lower performance than with parsers specifically
trained on e.g. the GENIA treebank (Tateisi et al.,
2005). When using the EPE parse data, TEES
features encompass the type and direction for the
dependencies combined wit the text span and a sin-
gle part of speech for the tokens; lemmas are not
used.

Negation Resolution The EPE negation resolu-
tion system is called Sherlock (Lapponi et al., 2012,
2017) and implements the perspective on nega-
tion defined by Morante and Daelemans (2012)
through the creation of the Conan Doyle Negation
Corpus for the Shared Task of the 2012 Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2012). Negation instances are annotated
as tri-partite structures: Negation cues can be full
tokens (e.g. not), multi-word expressions (by no
means), or sub-tokens (un in unfortunate); for each
cue, its scope is defined as the possibly discon-
tinuous sequence of (sub-)tokens affected by the
negation. Additionally, a subset of in-scope tokens
can be marked as negated events or states, pro-
vided that the sentence is factual and the events in
question did not take place. In the EPE context,
gold-standard negation cues are provided, because
this sub-task has been found relatively insensitive
to grammatical structure (Velldal et al., 2012).

Sherlock approaches negation resolution as a se-
quence labeling problem, using a Conditional Ran-
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dom Field (CRF) classifier (Lavergne et al., 2010).
The token-wise negation annotations contain multi-
ple layers of information. Tokens may or may not
be negation cues and they can be either in or out
of scope for a specific cue; in-scope tokens may
or may not be negated events. Moreover, multiple
negation instances may be (partially or fully) over-
lapping. Before presenting the CRF with the anno-
tations, Sherlock ‘flattens’ all negation instances in
a sentence, assigning a six-valued extended ‘begin–
inside–outside’ labeling scheme. After classifica-
tion, hierarchical (overlapping) negation structures
are reconstructed using a set of post-processing
heuristics.

The features of the classifier include different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, we extract both
token and dependency distance to the nearest cue,
together with the full shortest dependency path.
Standard evaluation measures from the original
shared task include scope tokens (ST), scope match
(SM), event tokens (ET), and full negation (FN) F1

scores. ST and ET are token-level scores for in-
scope and negated event tokens, respectively, where
a true positive is a correctly retrieved token of the
relevant class (Morante and Blanco, 2012). FN
is the strictest of these measures and the primary
negation metric used in the EPE context—counting
as true positives only perfectly retrieved full scopes,
including an exact match on negated events.

Opinion Analysis The system by Johansson and
Moschitti (2013) marks up expressions of opin-
ion and emotion in a pipeline comprised of three
separate classification steps, combined with end-
to-end reranking; it was previously generalized
and adapted for the EPE framework by Johans-
son (2017). The system is based on the annotation
model and the annotated corpus developed in the
MPQA project (Wiebe et al., 2005). The main com-
ponent in this annotation scheme is the opinion
expression; examples include case such as dislike,
praise, horrible, or one of a kind. Each expression
is associated with an opinion holder: an entity that
expresses the opinion or experiences the emotion.
Furthermore, every non-objective opinion expres-
sion is assigned a polarity: positive, negative, or
neutral.

The opinion expression and polarity classifiers
rely near-exclusively on token-level information,
viz. n-grams comprising surface forms, lemmas,

and PoS tags. Conversely, the opinion holder ex-
traction and reranking modules make central use
of structural information, i.e. paths and topologi-
cal properties in one or more syntactico-semantic
dependency graph(s).

In the EPE context, we evaluated how well the
participating systems extract the three types of
structures mentioned above: expressions, holders,
and polarities. In each case, soft-boundary preci-
sion and recall measures were computed (Johans-
son and Moschitti, 2013; Johansson, 2017). Fur-
thermore, for the detailed analysis we evaluated
the opinion holder extractor separately, using gold-
standard opinion expressions. We refer to this task
as in-vitro holder extraction, and this score is used
for the overall ranking of submissions when aver-
aging F1 scores across the three EPE downstream
applications. The reason for highlighting this score
is that it is the one most strongly affected by the
design of the dependency representation.

Participating Teams Nine teams participated in
EPE 2017, in the order of overall rank: Stanford–
Paris (Schuster et al., 2017), Szeged (Szántó and
Farkas, 2017), Paris–Stanford (Schuster et al.,
2017), Universitat Pompeu Fabra (Mille et al.,
2017), East China Normal University (Ji et al.,
2017), Peking (Chen et al., 2017), Prague (Straka
et al., 2017), and the University of Washington
(Peng et al., 2017). These teams submitted 49 dis-
tinct runs that encompassed many different families
of dependency representations, various approaches
to preprocessing and parsing, and variable types
and volumes of training data. The dependency
representations employed by the participants var-
ied from more syntactically oriented schemes—e.g.
Stanford Basic (de Marneffe et al., 2006), CoNLL
2008–style (Surdeanu et al., 2008), and UD—to
more semantically oriented representations, such
as the Deep Syntactic Structures of Ballesteros
et al. (2015), DELPH-IN MRS Dependencies (DM;
Ivanova et al., 2012), or Enju Predicate–Argument
Structures (PAS; Miyao, 2006). The teams also
employed wildly variable volumes of training data,
ranging from around 200,000 tokens (the English
UD treebanks) to 1,7 million tokens (combining the
venerable Wall Street Journal, Brown, and GENIA
treebanks).

Results The team with the overall best result was
the Stanford–Paris system with an overall score of
60.51, followed by the Szeged (58.57) and Paris–
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Stanford (56.81) teams. The Stanford–Paris system
obtained the best results for event extraction (when
using the Stanford Basic representation), as well as
for negation resolution (with enhanced Universal
Dependencies). The Szeged system was the top
performer in the opinion analysis subtask and em-
ployed the ‘classic’ CoNLL 2008 representation.
The results further showed that a larger training set
had a positive impact on results for the Stanford–
Paris and Prague teams, who systematically varied
the amount of training data in their experimental
runs. In general however, it proved difficult to com-
pare results across different teams due to the fact
that these varied along multiple dimensions: the
parser (and its output quality), the representation,
input preprocessing, and the volume and type of
training data. In this respect, EPE 2018 controls for
several of these factors (dependency representation
and amount of training data) and thus enables a
more straightforward comparison across teams and
analysis of the relationship between intrinsic and
extrinsic parser performance.

3 Refinements: Towards EPE 2018

To integrate the EPE infrastructure with the 2018
UD parsing task, a number of extensions and re-
visions have been realized. These included provi-
sioning the EPE data and a basic validation tool
for parser outputs on the TIRA platform (Potthast
et al., 2014) as well as technical improvements in
two of the downstream systems (the opinion anal-
ysis system remains unchanged from EPE 2017).
In the following paragraphs, we survey some of
these adaptations for the EPE 2018 setup and com-
ment on how these revisions limit comparability to
end-to-end results from the 2017 campaign.

Document Collections The EPE parser inputs
are comprised of training, development, and eval-
uation data for the three downstream applications,
in total some 1900 documents, or around 850,000
tokens of running text. Reading and parsing thou-
sands of small files (for the opinion analysis and
event extraction tasks) proved to be a bottleneck
for several systems in the EPE 2017 shared task,
as parsers had to reload for each input file. For the
convenience of 2018 participants, we have ‘packed’
the original large collections of small documents
into three large files—one for each downstream
application. The packing scheme inserts special
‘delimiter paragraphs’ at document boundaries, us-
ing the following general format:

Document 0020030 ends.

To not interfere with the grammatical analysis of
immediate context, each delimiter is preceded and
followed by three consecutive newlines—seeking
to ensure that it is treated as a four-token utterance
of its own in sentence splitting and tokenization.

When preparing submitted parser outputs for
end-to-end evaluation, the delimiters allowed re-
constructing the original document collections and
data splits for each of the three EPE data sets. Over-
all, we did not observe unwanted side effects of
the delimiters; there are, however, a few instances
where the delimiter string itself can be tokenized
(and sometimes sentence-split) in unexpected ways,
including by the CoNLL 2018 baseline parser, such
as splitting the numerical identifier into two tokens
and breaking up the delimiter string as two sen-
tences. The EPE 2018 unpacker robustly handles
such cases, effectively ignoring sentence and token
boundaries in scanning parser outputs for delim-
iter strings, and we have no reason to believe that
the delimiters have negatively affected the parsing
systems of participants.

Biological Event Extraction The TEES system
used in the EPE 2018 task is largely unchanged
from the 2017 version. However, the training
and evaluation setup has been revised in order to
achieve optimal performance when evaluating the
submitted parses.

The BioNLP 2009 Shared Task, which serves
as the EPE event extraction application, consists
of three subtasks (Kim et al., 2009). Subtask 1
is the core task which defines a number of event
types to extract. Subtask 2 extends the first with
the addition of non-protein entities and secondary
event arguments. Subtask 3 adds speculation and
negation modifiers in the form of binary attributes
to be predicted for each event. Thus, subtasks 1 and
2 define the event graph, and subtask 1 annotations
can be seen as subgraphs of subtask 2.

In earlier versions of the TEES system, subtask
evaluation was linked to subtask training, so that
when the system was trained using subtask 1 anno-
tations it was also evaluated for the same subtask.
However, TEES generally achieves better perfor-
mance on subtask 1 when trained on subtask 2 (or
3) annotations. We speculate this might be caused
by the machine learning system trying to predict at
least some edges for the ‘gaps’ left by not including
subtask 2 annotations.

In the version of TEES updated for EPE 2018,
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evaluation has been decoupled from training data
selection, so it is now possible to evaluate the sys-
tem for the primary subtask 1 while still training
on the full subtask 2 graphs. The end result is
higher (and hopefully more stable) performance
when evaluating the submitted parses, but unfortu-
nately the EPE 2018 event extraction downstream
task results are therefore not fully comparable with
the 2017 ones.

Negation Resolution The Sherlock system used
in the EPE 2018 task differs from the one used in
EPE 2017 in two ways. First, we fixed a bug in
the 2017 system related to a limited, but important,
‘leak’ of gold-standard annotations into system pre-
dictions. This leak was a side effect of the (legit-
imate) use of gold-standard information for nega-
tion cues, where the presence of multi-word cues
(such as neither ... nor or by no means) could lead
to the injection of gold-standard scope and event
annotations in post-processing after classification,
effectively overwriting actual system predictions
under certain conditions.

The second difference between the 2017 and
2018 versions of Sherlock pertains to automated
hyper-parameter tuning. The two main components
in the Sherlock pipeline are two CRF classifiers,
one for scope and one for event tokens. Sherlock
in 2017 used the default hyper-parameters in the
Wapiti implementation, i.e. unlike the other two
EPE downstream systems it lacked the ability to au-
tomatically tune for each specific set of parser out-
puts. In EPE 2018, we introduced a comprehensive
hyper-parameter grid search over the development
set to identify the best-performing values for each
system individually. Specifically, we optimized the
L1 and L2 regularization hyper-parameters as well
as the stopping threshold in Wapiti for both the
scope and negated event classifiers. Briefly, the
grid search starts with training Sherlock using all
possible combinations of a broad range of candi-
date values along these six dimensions, leading to
a total of some 6400 configurations trained using
different hyper-parameter settings. These systems
are then sorted in two consecutive steps that reflect
the pipelined architecture of Sherlock: First, we
rank the configurations based on their scope reso-
lution scores on the development set and choose
the best-performing hyper-parameters for the scope
classifier among the n systems whose score falls
within an experimentally defined range below the
top-ranking system. Then, we re-rank this subset

of n systems based on their full negation score
on the development set and again select the best-
performing hyper-parameters from among an exper-
imentally defined range below the the best system.
To mitigate the risk of overfitting, in both stages,
the choice of the best-performing hyper-parameters
is based a simple ‘voting’ scheme, picking hyper-
parameter values that are most common in the top
n configurations. This tuning process was applied
separately to all parser outputs submitted to EPE
2018.

Overall, the corrected version of Sherlock com-
bined with automated hyper-parameter tuning leads
to a more robust and systematic evaluation on
the downstream application of negation resolution.
While this also means that the EPE 2018 results on
negation resolution are not strictly compatible to
the earlier 2017 campaign, it appears that the two
Sherlock revisions offset each other at least when
averaging over all submissions: the bug fix caused
a drop in full negation scores of close to two F1

points, but hyper-parameter tuning regained that
performance loss to an accuracy of one decimal
point (on average).

4 Task Overview

To minimize technical barriers to entry, the EPE
parser inputs were installed on the TIRA platform
alongside the data sets for the core UD parsing
task, using the exact same general formats. The
EPE document collections were provided as either
‘raw’, running text, or in pre-segmented form, with
sentence and token boundaries predicted by the
UDPipe baseline system of the core task. Parser
outputs were collected in CoNLL-U format (again,
for parallelism with the core task) and were then
transferred from TIRA to the cluster that actually
runs the EPE infrastructure. Here, all submissions
were ‘unpacked’ (see § 3 above) and converted to
the general EPE dependency graph format. Fur-
ther details on the task schedule, technical infras-
tructure, submitted parser outputs, and end-to-end
results are available from the task web site:�



�
	http://epe.nlpl.eu

Participating Teams Sixteen teams participated
in the EPE 2018 campaign, in addition to the base-
line parser provided by the core UD parsing task;
we refer to the summary paper for the core task
for a high-level characterization of participating
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Team
Words Sentences Lemmas UPOS XPOS LAS MLAS BLEX Intrinsic

〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # 〈 〉 # #

AntNLP 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 81.93 5 70.61 8 73.38 7 8
ArmParser 99.58 14 18.71 16 89.93 13 90.30 16 57.42 13 60.52 16 44.89 16 52.17 13 16
Baseline 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 76.33 13 65.86 13 67.43 11 11
IBM-NY 99.44 16 84.44 6 75.24 16 93.37 15 22.51 15 77.72 12 46.68 15 47.83 15 15
ICS-PAS 99.62 3 84.44 6 96.13 3 95.50 5 92.86 5 83.00 2 73.45 1 75.63 2 3
LATTICE-18 99.62 3 84.44 6 95.39 5 96.41 1 92.86 5 84.67 1 72.93 3 76.57 1 2
NLP-Cube 99.64 1 85.49 2 93.61 12 95.37 7 94.535 3 81.67 6 71.02 7 70.77 8 7
ONLP-lab 99.62 3 84.44 6 76.61 14 93.93 10 0.0525 16 65.92 15 57.01 14 46.32 16 13
ParisNLP-18 99.62 3 84.44 6 95.39 5 93.93 10 92.86 5 78.70 11 67.31 10 70.59 10 10
Phoenix 99.46 15 84.69 5 95.15 11 93.90 14 92.825 12 76.28 14 66.47 12 67.41 12 14
SLT-Interactions 99.62 3 84.44 6 95.39 5 95.86 2 92.86 5 81.51 8 69.91 9 73.44 6 5
SParse 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 0.00 17 17
Stanford-18 99.64 2 87.77 1 95.96 4 95.82 4 95.13 2 82.06 4 73.04 2 74.99 4 1
TurkuNLP-18 99.62 3 84.44 6 96.50 1 94.91 8 94.3 4 82.44 3 72.52 5 75.26 3 4
UDPipe-Future 99.59 13 84.81 4 96.43 2 95.86 3 95.195 1 81.64 7 72.56 4 74.81 5 6
Uppsala-18 99.62 12 85.44 3 75.40 15 95.41 6 22.52 14 81.37 9 71.34 6 50.46 14 12
UniMelb 99.62 3 84.44 6 95.39 5 94.68 9 92.86 5 79.19 10 66.95 11 70.77 9 9

Table 1: Summary of a selection of intrinsic evaluation scores from the core UD parsing task on English treebanks only. Columns
labeled 〈 〉 and # indicate the macro-averaged F1 of each metric over the four English treebanks and the corresponding ranking
of each team, respectively. The metrics are, from left to right: word and sentence segmentation; lemmatization; coarse and
fine-grained parts of speech (UPOS and XPOS, respectively); labeled attachment score (LAS); morphology-aware labeled
attachment score (MLAS); bi-lexical dependency score (BLEX); and finally an aggregate ‘intrinsic’ score, reflecting the average
of ranks of each team. Teams shown in bold are included in the correlation analysis to intrinsic measures in § 5.

approaches and bibliographic references to indi-
vidual system descriptions (Zeman et al., 2018).
The names of all participants are shown in Table 1.
Most teams submitted only one run with the excep-
tion of NLP-Cube (three runs) and SParse (four); in
these cases, all runs have been scored, but only the
most recent submission was considered for the final
evaluation and comparison with intrinsic measures.

We conducted a post-submission survey among
participants, to gauge the comparability of the pars-
ing systems submitted to the core UD parsing task
vs. those used for parsing the EPE data, e.g. soft-
ware versions, training regimes, or other configura-
tion options.1 Twelve teams responded to the sur-
vey, and hence the following details only apply to
those who responded. Almost all participants used
(parts of) the English training data provided by the
UD parsing shared task (which is the only training
data allowed in EPE 2018), except for the UniMelb
team who accidentally used their own UD conver-
sions of the WSJ and GENIA treebanks. Therefore,
UniMelb was excluded from the competition, but
we report their scores as an additional point of com-
parison. Of all the systems that used ‘legitimate’

1To not interfere with the busy final weeks of the core task,
the EPE submission deadline was two weeks later. Hence,
we could not technically enforce that the exact same software
configurations were used in both component tasks, and in fact
at least two teams had to resort to revising their parsers in
order to complete processing of the comparatively large EPE
input files.

training data, only LATTICE used different train-
ing data for their EPE submission than in their core
task system. Two of the survey respondents—NLP-
Cube and SParse—indicated that they had made
changes to their systems that render the EPE and
core task results incomparable. The four teams that
did not respond to the survey and the four teams
for which the survey revealed limited comparabil-
ity to core task results (i.e. UniMelb, LATTICE,
NLP-Cube, and SParse; shown in italics in Tables 1
and 2) were not considered in our quantitative cor-
relation analysis between intrinsic and extrinsic
metrics (see § 5 below). Finally, only four of the
survey respondents (NLP-Cube, Phoenix, UDPipe-
Future, and Uppsala-18) indicated that their parsers
had used raw texts as inputs, i.e. applied their own
sentence and token segmentation. The other eight
respondents, in contrast, had availed themselves of
the pre-segmented inputs provided as an alternative
form of the EPE parser inputs.

Intrinsic Metrics In our view, one of the most
intriguing opportunities of aligning EPE 2018 with
the core UD parsing task lies in the comparison of
intrinsic and extrinsic evaluation results. In other
words, we seek to shed light on the degrees to
which observations made in intrinsic evaluation
allow one to predict downstream success for a spe-
cific application, as well as on which (intrinsically
measurable) layers of grammatical analysis most
directly impact end-to-end performance. For these
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reasons, we extracted a comprehensive array of in-
trinsic evaluation results for parsers represented in
EPE 2018 from the in-depth result summary for the
core UD parsing task.2

Table 1 summarizes our selection of intrinsic ob-
servations, where the first six metrics seek to isolate
performance at all relevant layers of grammatical
analysis, viz. word and sentence segmentation, lex-
ical analysis (lemmatization and tagging), and syn-
tactic structure (labeled attachment scores, or LAS).
The table further includes the other two official
metrics of the core task, which by design blend to-
gether some of these layers, i.e. morphology-aware
labeled attachment score and bi-lexical dependency
score, which evaluate LAS plus tagging and mor-
phological features3 and LAS plus lemmatization,
respectively.

In all cases, the results in Table 1 reflect (macro-
averaged) performance over the English UD tree-
banks only. Several of the best-performing systems
across all languages of the core task also submitted
to EPE 2018, including ICS-PAS, LATTICE, Stan-
ford, TurkuNLP-18, and UDPipe-Future. These
systems also populate the top ranks in the aggre-
gate English-only intrinsic evaluation, even though
there is some ‘jitter’ in their relative ranks across
individual metrics. In a few cases, the results in
Table 1 actually reveal system idiosyncrasies: IBM-
NY and Uppsala-18 do not predict XPOS values,
whereas the XPOS field in the ONLP-lab parser out-
puts merely contains a copy of the coarse-grained
UPOS predictions. The nine parsers that started
from pre-segmented EPE documents all tie for third
and sixth rank in sentence splitting and tokeniza-
tion, respectively.

5 Official Results

End-to-end extrinsic evaluation results for the EPE
2018 campaign are summarized in Table 2.4 For
each of the three downstream applications, the ta-
ble shows precision, recall, and F1 scores on the
corresponding EPE evaluation set. Additionally,
we indicate for each application whether coarse- or
fine-grained parts of speech were used (see below)

2Intrinsic results were automatically scraped from
the official http://universaldependencies.org/
conll18/results.html page.

3None of the current EPE downstream systems actually
considers morphological features, although the EPE interface
format does in principle provide for their representation.

4A multitude of additional scores, including against the
development sections for each downstream application, are
available from the task web site at http://epe.nlpl.eu.

and provide an aggregate ranking of participating
teams based on macro-averaged F1 scores.

The parser that gives rise to overall best down-
stream results across the three EPE applications is
UDPipe-Future, even though it is not the top per-
former for any of the individual applications. Dif-
ferences in average scores for the best-performing
systems are small, however, with less than 0.4 F1

points between the first and the fifth overall rank.
Many of the best-performing systems when judged
in terms of extrinsic results correspond to what
one might have predicted from our summary of
English-only intrinsic results (see § 4 above): in
addition to UDPipe-Future, also SLT-Interactions,
Stanford, and TurkuNLP-18 are in the intersection
of the top-five intrinsic and extrinsic ranks. The
system that ranks second in the extrinsic perspec-
tive (NLP-Cube), on the other hand, indicated in
our participant survey that they had made changes
to the parser inbetween their submissions to the
core vs. the EPE tasks.

If one ranks systems individually for each down-
stream application and compares across each row,
the majority of teams appear to obtain broadly com-
parable rankings on different applications. Never-
theless, there are a few notable exceptions. Arm-
Parser achieves the best results on negation reso-
lution but otherwise ranks in the bottom segment
on event extraction and opinion analysis. Manual
inspection of the parser outputs submitted reveals
that ArmParser zealously over-segments (as is also
evident in its low intrinsic score on sentence split-
ting in Table 1): it breaks the 1089 sentences of the
gold-standard negation evaluation data into a little
more than two thousand isolated token sequences.
While the EPE infrastructure deals robustly with
segmentation mismatches, this discrepancy uncov-
ers a technical issue in our way of interfacing to the
original *SEM 2012 scorer: the ‘annotation projec-
tion’ described by Lapponi et al. (2017) will present
the scorer with shortened and, hence, simplified
gold standards to compare to. In other words, the
high negation scores for ArmParser indicate an un-
warranted reward for its dealing in artificially short
‘sentences’.

Another stark asymmetry in per-application
ranks pertains to TurkuNLP-18, which shows top
results on negation resolution and opinion analy-
sis but ranks in the bottom quarter on the event
extraction application (which happens to be devel-
oped at the same site). While the unexpectedly
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Team
Event Extraction Negation Resolution Opinion Analysis

PoS P R F1 PoS P R F1 PoS P R F1 〈 〉 #

AntNLP U 54.00 44.97 49.07 X 100 39.54 56.67 X 64.37 55.76 59.76 55.17 10
ArmParser U 53.76 39.28 45.39 X 99.12 42.75 59.74 X 60.13 51.65 55.57 53.57 15
Baseline U 39.63 53.43 45.51 X 100 40.30 57.45 X 61.67 55.95 58.67 53.88 13
IBM-NY U 53.08 43.81 48.00 U 100 39.16 56.28 U 62.03 56.03 58.88 54.39 12
ICS-PAS U 56.41 43.97 49.42 X 100 39.54 56.67 X 63.73 57.67 60.55 55.55 6
LATTICE-18 X 58.93 43.12 49.80 X 100 39.16 56.28 X 63.91 56.88 60.19 55.42 9
NLP-Cube U 56.54 42.65 48.62 X 100 40.15 57.30 X 64.95 59.24 61.96 55.96 3
ONLP-lab U 54.08 41.67 47.07 U 100 36.88 53.89 U 62.94 56.37 59.47 53.48 16
ParisNLP-18 X 55.66 43.56 48.87 X 100 40.68 57.83 X 63.01 56.78 59.73 55.48 8
Phoenix U 47.23 40.98 43.88 X 100 41.06 58.22 X 63.16 55.87 59.29 53.80 14
SLT-Interactions X 56.32 43.97 49.38 X 100 41.06 58.22 U 65.47 56.56 60.69 56.10 2
SParse X 50.62 41.04 45.33 X 100 40.30 57.45 X 63.44 57.94 60.57 54.45 11
Stanford-18 U 59.26 41.14 48.56 X 100 41.29 58.45 X 63.33 57.68 60.37 55.80 5
TurkuNLP-18 U 52.64 42.05 46.75 X 100 42.59 59.74 X 64.23 58.26 61.10 55.86 4
UDPipe-Future U 53.97 45.98 49.66 X 100 41.29 58.45 X 63.47 57.72 60.46 56.19 1
Uppsala-18 U 58.04 43.43 49.68 U 100 36.74 53.74 U 64.67 61.68 63.14 55.52 7

UniMelb X 58.52 49.43 53.59 X 100 41.83 58.99 X 66.67 62.88 64.72 59.10

Table 2: Summary of EPE 2018 results. The columns show, from left to right: team name, PoS tags used (UPOS or XPOS),
precision, recall, and F1 across the three downstream applications, average F1 across applications, and finally the overall rank of
each team. The best F1 score for each downstream task is indicated in bold. The UniMelb submission is considered outside the
competition due to the use of additional training data; teams shown in bold are included in the correlation analysis to intrinsic
measures in § 5.

low performance in the combination of the Turku
parser with the Turku event extraction system re-
assuringly indicates that there was no collusion in
Finland, we have so far been unable to form a hy-
pothesis about what might be the cause for this
performance discrepancy. Conversely, Uppsala-18
is among the top performers for event extraction
and opinion analysis but obtains the lowest F1 re-
sults on negation resolution in the EPE 2018 field.
The Uppsala parser is one of the few that does
not predict fine-grained parts of speech, which the
Sherlock negation system appears to strongly pre-
fer over the far more coarse-grained UPOS tags
(see below). We conjecture that the lack of XPOS
predictions in the Uppsala-18 parser outputs is at
least an important factor in the uncharacteristically
poor negation results for this system.

UPOS vs. XPOS Recall that the EPE 2018 in-
frastructure automatically retrains and tunes each
downstream system for each system submission.
An additional aspect in which the downstream sys-
tems could be optimized towards a particular parser
is, of course, feature engineering and selection. For
full generality and applicability across different
types of syntactico-semantic dependency represen-
tations, the current EPE applications restrict them-
selves to a range of broad token-level and structural
features that do not invoke individual linguistic
configurations (e.g. indicators of passive voice)—
including conjunctions of individual features that

have been clearly observed to be beneficial (see
§ 2 above and references there). All three down-
stream systems employ ‘vintage’ classifiers (CRFs
and SVMs) for which regularization techniques and
best practices are well established, such that one
can hope for a certain degree of feature selection
during training.

Reflecting availability of two distinct assign-
ments of parts of speech in all but a few of the
EPE 2018 submissions, we conducted one round of
feature adaptation in the downstream systems, viz.
determining whether to use the coarse-grained, uni-
versal UPOS or the finer-grained, English-specific
XPOS values for each combination of parser out-
puts and downstream system. This selection was
based on optimizing the primary metric for each ap-
plication on the development data, and the results
are indicated in the three PoS columns in Table 2.

XPOS appears to work better in general, possibly
reflecting that it makes available additional distinc-
tions, including some inflectional morphology.5

There are a few notable exceptions to this gener-
alization, however, and they appear application-
dependent to some degree. In particular the
event extraction system often obtains better results
when using UPOS, whereas for negation resolution

5Reflecting the above design constraints and desire for
cross-framework applicability, the EPE downstream systems
do not currently consider the morphological features that are
increasingly an integral part of the Universal Dependencies
framework.
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XPOS (where available) universally yields higher
end-to-end scores, and UPOS is only used with
the three systems that do not predict fine-grained
tags. Almost the same holds for the opinion analy-
sis application, with the one exception of the SLT-
Interactions submission, whose UPOS predictions
actually yield better results (though the actual dif-
ferences are small). Based on these observations,
one might expect Uppsala-18 (which only predicts
UPOS) to be at a disadvantage for opinion analysis
too, but other factors in this combination appear
more important (as Uppsala-18 actually obtains the
best overall opinion results).

Correlation Analysis To obtain a better under-
standing of the relationships between intrinsic and
extrinsic perspectives on parser performance, we
perform a quantitative correlation analysis over
pairs of evaluation metrics. We compute a rank
correlation matrix of intrinsic and extrinsic mea-
sures, limited to the sub-set of nine systems which
are known to be fully comparable across intrinsic
and extrinsic evaluation, i.e. where there were no
substantive changes to the parsers following the
completion of the core UD parsing task. We further
limit our analysis to the intrinsic evaluation metrics
pertaining to English (see Table 1), combined with
the downstream per-application F1 scores and an
average rank score called extrinsic in the following,
which aggregates the average rank of each system
across the three downstream applications. Figure 1
shows a heatmap of Spearman’s rank correlation
coefficients (ρ) for all pairs of intrinsic and extrin-
sic metrics.

In general, we observe high degrees of correla-
tion among intrinsic measures, albeit less so for the
segmentation metrics, in particular sentence seg-
mentation.6 We find the strongest correlations be-
tween the intrinsic average and the BLEX measure
(0.98), XPOS and lemmas (0.96), BLEX and lem-
mas (0.93), and UPOS and MLAS (0.92). Further,
BLEX correlates stronger with the average intrin-
sic metric than LAS and MLAS, so if one were
to search for a single, indicative intrinsic measure,
BLEX might offer a combined indicator across
analysis layers. We note that the correlation scores
pertaining to XPOS must be interpreted with some
care, given that two of the systems involved (IBM-

6Only one third of the systems considered in the correla-
tion matrix actually apply their own sentence splitting and
tokenization (see § 4 above). Accordingly, the corresponding
metrics are bound to exhibit far less interesting variation in
the correlation analysis.
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Figure 1: Correlation matrix of intrinsic and extrinsic metrics.

NY and Uppsala-18) do not predict XPOS, so that
their ranks according to this metric will not corre-
spond to their performance on other metrics.

If we examine the correlation between intrinsic
and extrinsic metrics, we also observe some strong
correlations—which is of course a very welcome
observation. In particular, we find a strong correla-
tion between the average extrinsic metric and the
intrinsic UPOS and MLAS metrics (0.88). The cor-
relation with UPOS is perhaps somewhat surprising
as UPOS is not used by the majority of systems.
Still, it appears that the ability to correctly predict
universal PoS tags provides a useful indicator of
downstream parser performance. We further ob-
serve strong to moderate correlations between the
individual intrinsic metrics and the overall extrinsic
average.

When examining per-application correlations to
intrinsic performance we find that each of the in-
dividual downstream metrics shows a correlation
with the intrinsic average, but for all three less
so than the extrinsic average. While seemingly
counter-intuitive, maybe, we interpret this as in-
dicative of a certain degree of complementarity
among the three downstream applications. Taken
together, they lead to better correspondences with
intrinsic metrics, an observation which holds also
true for several of the individual intrinsic metrics,
viz. UPOS, MLAS, and BLEX. This is in accor-
dance with the observation in the results overview
above: there is no parser to suit all needs, such that
in principle at least it would make sense to pick a
different parser for each of the three downstream
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applications.
Downstream results obtained by the different

parsers for the event extraction application, corre-
late most strongly with the UPOS metric (0.71),
followed by LAS (0.63) and MLAS (0.57). This
fits well with the observation that most of the top-
scoring systems in the event task actually make use
of UPOS (see above). The event extraction applica-
tion does not use lemmas among its features, hence
it shows no observable correlation to this particular
intrinsic metric. For the negation application, on
the other hand, the strongest correlation is with the
XPOS metric (0.75), followed by lemmas (0.71)
and BLEX (0.51). XPOS seems to be the favoured
PoS choice for this task (see Table 2), so this again
is in line with the most effective type of PoS for
the majority of systems.

When it comes to the opinion analysis applica-
tion, its rankings correlate most strongly with the
intrinsic ranking of parsers by MLAS (0.83), fol-
lowed by LAS and UPOS (both 0.75). It thus seems
that this application depends more strongly on a
syntactic or structural metric such as MLAS, in
comparison to the other downstream applications.
We also find that the opinion scores somewhat sur-
prisingly correlate more with UPOS (0.75) than
XPOS (0.27), which does not obviously follow
from the best-performing choice of tag set. We
leave further investigation of the relative impor-
tance of PoS tagging to the EPE opinion analysis
system to future work (see § 6 below).

Comparison to 2017 Owing to the updates in
downstream systems summarized in § 3 above, the
end-to-end scores in Table 2 are not strictly com-
parable to results from the EPE 2017 campaign
(Oepen et al., 2017). Nevertheless, we believe
that a ‘ballpark’ comparison can be informative.7

The best-performing parser in 2017 enabled end-
to-end scores of 50.23, 66.16, and 65.14 F1 points
on event extraction, negation resolution, and opin-
ion analysis, respectively. This was the Stanford–
Paris submission (run #06), outputting enhanced
UD graphs and trained on about 1.7 million tokens
of annotated text from the Brown, WSJ, and GE-

7In addition to the parameters suggested for such compari-
son in § 3 above, we find this belief supported by alignment of
results for the one system that participated in both EPE cam-
paigns in very similar configurations: the Prague submission
(run #00) in 2017 (Straka et al., 2017) corresponds closely
to the 2018 UDPipe baseline. F1 results for the three down-
stream applications in 2017 were 43.58, 58.83, and 59.79—
compared to 2018 scores of 45.51, 57.45, and 58.67.

NIA corpora (Schuster et al., 2017). In contrast,
the overall best parser in the EPE 2018 field deliv-
ers F1 results of 49.66, 58.45, and 56.19 (UDPipe-
Future). Taking into account that event scores
in 2017 may have been slightly under-estimated,
negation scores moderately inflated, and opinion
scores fully comparable—it seems fair to say that
the ‘pure’ English UD parsers from the EPE 2018
campaign do not facilitate the same high levels of
downstream performance. In the 2017 campaign,
end-to-end results for the event extraction applica-
tion were very competitive, and those for negation
resolution advanced the state of the art. This is
not the case in the 2018 field, which we tentatively
attribute to the limited volume of English training
data, the strict ‘treeness’ assumptions in most cur-
rent dependency parsers, and quite possibly the
inability of the EPE downstream applications to
take advantage of the UD morphological features.

6 Reflections and Outlook

In our view, the considerable effort for both par-
ticipants and organizers of running an additional
track at the 2018 CoNLL Shared Task on Universal
Dependency Parsing is rewarded through (a) a valu-
able, complementary perspective on the contrastive
evaluation of different parsing systems, as well as
through (b) a window of comparison to the state
of the art in three representative language ‘under-
standing’ applications. From a sufficiently high
level of abstraction, we see many reassuring cor-
respondences between intrinsic parser evaluation
and actual downstream utility. At the same time,
we find that not even a comprehensive ‘battery’ of
layered intrinsic metrics can fully inform the rela-
tive comparison of different parsers with regard to
their contributions to downstream performance.

In hindsight, we would have liked to obtain an
even tigher experimental setup, without any remain-
ing uncertainty about comparability of participat-
ing systems across the two tracks. If we were to
run another EPE campaign (unlikely as that may
feel just now), the EPE data bundles should also
include relevant test data for intrinsic evaluation.
In more immediate follow-up work, we plan to
re-compute and publish end-to-end results for the
submissions from the EPE 2017 campaign, for full
comparability, as well as further investigate the rel-
ative contributions of individual analysis layers to
the various downstream applications through addi-
tional control experiments and ablation studies.
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Abstract

In this paper, we describe the first CEA
LIST participation at the CoNLL 2018
shared task. The submitted system is
based on the state of the art parser from
CoNLL 2017, that has been improved
by the addition of morphological features
predictions and the integration of addi-
tional resources to provide accurate mod-
els for low-resource languages. Our ap-
proach ranked 5th of 27 participants in
MLAS for building morphology aware de-
pendency trees, 2nd for morphological fea-
tures only, and 3rd for tagging (UPOS) and
parsing (LAS) low-resource languages.

1 Introduction

The CoNLL 2018 Shared Task (Zeman et al.,
2018) is dedicated to developing dependency
parsers on many languages, including low-
resource languages. Our system uses the Stan-
ford team parser1 (Dozat et al., 2017) which was at
the state of the art during the CoNLL 2017 shared
task. We will refer to it as ”stf parser” in this arti-
cle. We also used UDPipe (Straka et al., 2016) for
tokenization, sentence segmentation, word align-
ment, lemmas and XPOS tags. Our main pur-
pose is not to propose a new parser system, our
approach is mainly focused on the adaptation of
existing systems to low-resources languages.
However, we also propose some improvements of
the stf parser on multiple levels: (1) the training
time is shorter and the models are more accurate
for features and XPOS tags predictions (even if
we didn’t use the predicted XPOS tags in the final
submission) (2) we studied the hyper-parameters
in order to find the best configuration (3) we im-

1https://github.com/tdozat/Parser-v2

plemented an optimal tree construction instead of
a greedy one, based on Stanford team recommen-
dations in their 2017 paper.
We spent five man-month to provide these results,
with two additional man-month dedicated to Bre-
ton corpus.
For low-resource languages, we based our ap-
proach on the following available data : OPUS
corpus, Wikipedia data (Wiktionary) and word
embeddings.

2 Architecture

Our architecture mainly reused the proposed
architecture of the 2017 state of the art system.
Here is a brief reminder to explain what we used
and how we used it. The model uses character
embeddings, pre-trained word embeddings and
post-trained word embeddings.

• Firstly, the raw text is processed by UDPipe.
• Then the stf tagger annotates the data with

UPOS, XPOS and Features tags. Both the tag-
ger and the parser use bi-LSTM layers on word
embeddings. The tagger and the parser are sep-
arately trained models even if the models struc-
tures are really close.
• Finally, for each word, the parser concatenates

one word level embedding (which is the sum of
chars + pre-trained + trained embeddings) with
one POS tag level embedding (UPOS + XPOS +
features). POS tag embeddings are also learned
during the training. We didn’t use lemmas. The
stf parser is graph-based.

We only used XPOS tags where they were con-
tributing to the UPOS, XPOS, features trio. We
evaluated this contribution by comparing the num-
ber of unique XPOS tags per corpus to the num-
ber of unique features. Some XPOS tags contains
multiple tag information (which is almost always
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the case for the features) and could thus contribute
more to the word embedding. For almost all lan-
guages, the parser is based on three bi-LSTM lay-
ers (300neurons/layer) and the tagger on two bi-
LSTM layers(200neurons/layer). The tagger ends
with a 120 neurons lReLU layer. The parser ends
with a 500 neurons lReLU layer for learning arc
probabilities, and a 170 neurons lReLU layer for
predicting the labels of the dependencies. For lan-
guages with less than 1500 sentences, we used a
parser composed of only one bi-LSTM layer and
smaller lReLU layers.
We only kept the best system evaluated on dev data
for each language on each of the last two steps.
Our measure for the tagger was the combination of
UPOS and Features annotations (like Alltags with-
out XPOS), if UDPipe was better than stf, we used
UDPipe. Our measure for the parser was the LAS.
For the evaluation, the predicted XPOS tags were
removed from the parsed file and changed to the
UDPipe ones, however the predicted XPOS were
used by the parser when they were predicted by the
tagger. We didn’t evaluate the XPOS tags as we
needed to sort the sub-XPOS tags (these sub-POS
tags are sorted in alphabetical order for features
which is really more convenient). The problem
was only that we had to sort the sub-XPOS tags
in order to have a score on them, but sorting them
is not required to have them used in the parser.
A table has been produced to summarize the con-
figuration (cf table 1 ).

3 Enhancements

3.1 Features

The initial architecture provided by Stanford team
was restricted to predicting UPOS tags only, or
UPOS tags and XPOS tags. We added a third type
of tagger to predict UPOS tags, XPOS tags and
morphological features at the same time.
As we said earlier, the tagger takes into account
characters by using a LSTM on each character
and using a linear attention layer on the LSTM
outputs, so we did expect great results on features.
However, POS tags are heterogeneously for-
matted: the UPOS tag represents only one
information, but a feature tag generally contains
many sub-tags, and XPOS tags may also contain
sub-tags depending on the treebank. The original
architecture didn’t tackle this problem and was
processing all tags as if they were unary tags.

It means, for example, that for Latin-ITTB,
the tagger ended with a lReLU layer that was
choosing the best class between 3129 classes.
We added a lReLU layer for each sub-class at the
end of the network so that the backpropagation
only backpropagates error on a subclass level,
thus being more accurate when building character
embeddings. This architecture was extended to
XPOS tags, as they may also contains subclasses.
Finally the score that was used to stop the training
and keep the best model was the ”UPOS and
Features” score, counting a word ok only if it had
the exact UPOS tag and the exact features tags.

To sum up, for each sub-category (for exam-
ple, the tense of a verb), a different lReLU layer
determines if the word corresponds to one of
the sub-category possible values (none, present,
future, past..).

3.2 Hyperparameters
In order to understand the impact of the param-
eters on the architecture, we performed some
random search optimization on hyperparameters,
for a subset of languages (Russian, Hebrew,
French, Uyghur, Vietnamese, Ancient Greek and
Bulgarian) that we considered representative.
We studied the following parameters: dropout
on word embeddings, dropout on character
embeddings, word embeddings merging strategy
(whether to sum or concatenate the word embed-
ding coming from characters and the pre/post
trained word embeddings), case sensitivity,
number of bi-LSTM layers, number of neurons
for bi-LSTM, lReLU layers sizes, lReLU layers
dropout, and some optimizer parameters like the
learning rate.

• number of bi-LSTM The number of bi-LSTM
layers deeply affects the score probably because
of the vanishing gradient problem. Best scores
were achieved for one to three bi-LSTM. With
four layers, some models fail to converge and
with five layers, no converging model is found.
• dropout For dropout on character embeddings,

we found that is wasn’t useful (initial value was
0.5 (50%) but optimal value was between 0 and
0.1). Other dropout did not have a clear influ-
ence.
• learning rate The learning rate was tuned based

on the model (tagger / parser) as the optimal
value wasn’t the same depending on the task and
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Lang Tokenizer Tagger XPOS Parser Smaller neural network
af-afribooms baseline stf used stf yes
br-keb nl-alpino stf unused stf no
bxr-bdt baseline udp unused udp no
en-lines baseline stf used stf no
fo-oft da-ddt stf unused stf no
fr-spoken baseline stf unused stf yes
ga-idt baseline udp unused udp yes
gl-ctg baseline stf used stf no
gl-treegal baseline udp unused udp no
hsb-ufal baseline udp unused udp no
hu-szeged baseline stf unused stf yes
hy-armtdp baseline udp unused stf yes
kk-ktb baseline udp unused udp no
kmr-mg baseline udp unused udp no
ko-gsd baseline stf used stf no
ko-kaist baseline stf used stf no
la-ittb baseline stf used stf no
la-perseus baseline udp unused udp no
nl-alpino baseline stf used stf no
nl-lassysmall baseline stf used stf no
no-nynorsklia baseline udp unused no-nynorsk no
pcm-nsc en-lines stf unused stf no
ru-taiga baseline udp unused ru-syntagrus no
sl-sst baseline udp unused udp no
sme-giella baseline udp unused udp no
th-pud own stf used stf no
vi-vtb baseline stf used stf yes
zh-gsd baseline stf used stf no
all others baseline stf unused stf no
Other models used
cs-pud & cs-pdt, sv-pud & sv-lines, fi-pud & fi-tdt, ja-modern & ja-gsd (udp), en-pud & en-gum
pcm-nsc en-lines (stf without post-trained embeddings)

Table 1: Summary table of specific configurations per languages. udp = UDPipe architecture

both tasks didn’t have the same optimal archi-
tecture.
• other parameters Other parameters did not

have a clear empirical influence on the score,
such as the number of neurons on each layer
(from 50 to 500) and other parameters of the op-
timizer.

3.3 Stopping criteria

Depending on the model (tagger/parser), the stop-
ping criteria was based on UPOSandFeats score or
LAS. The first thing we did with the parser was to
improve the training time. The previous algorithm
stopped the training only if the model didn’t im-
prove at all for 5000 iterations (which could cor-
respond to 2 hours on our environment), or after a
maximum number of iterations. This means that
the training would go on even for an improvement
of 0.01% each hour. In practice, with this config-

uration, the longest model took 24 hours to train.
We added two stopping criteria:

- The first is the time, the training time shouldn’t
exceed 2 hours. The training time depends on the
architecture so we chose the value depending on
our experiments
- The second is the average progression of the sys-
tem per hour during the last 20 validations (we set
one validation each 120 iteration). If the system
was under 0.1% per hour, we stopped the training.

With these criteria, almost all models are con-
verging really fast (in 30 minutes they were al-
ready close by 1% to their best score).

3.4 Optimal directed spanning tree

The graph-based model parser predicts a probabil-
ity of parent for each word of the sentence. The
default algorithm in the stf parser is greedy but the
Stanford team recommended to implement an op-
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timal algorithm to provide non-projective depen-
dency trees as a lot of treebanks contains at least
one non-projective tree.
In fact, 99% of all trees are projectives (non-
weighted average across all proportions in all tree-
banks). But building the optimal non-projective
spanning tree based on probabilities should also
help in building projective trees (as projective trees
are a subset of non-projective trees), and some
treebanks contain a lot more of non-projective
trees (10% for Ancient Greek Perseus).
We implemented the Chu-Liu-Edmonds algorithm
(Edmonds, 1967) and evaluated the result. We
didn’t notice a great improvement (less than
0.1%), we suppose that the probabilities were high
enough so that a greedy algorithm doesn’t have
troubles predicting the optimal tree by always
choosing the highest probability.
Empirically, the stf parser does build more nonpro-
jective trees than in the training set, one could con-
sider implementing the Eisner algorithm (Eisner,
1996) and make a compromise between Edmonds
and Eisner algorithms based on the probabilities
in each tree and on the non-projective proportion
wished.

3.5 Including an embedding from the tagger
in the parser

In the stf parser, the tagger and the parser are sepa-
rated. The parser builds its own UPOS tag embed-
dings but do not take into account the probabilities
of each tag proposed by the tagger. The fact that
one word has one tag instead of another could be
subjective in some circumstances and as the tag-
ger doesn’t get 100% in UPOS tag prediction, the
parser should get the information that the tag it is
reading is just a choice over many others, based on
probabilities.
For some languages like French, the tagger could
confuse verbs and auxiliaries. For these tags, the
probability could be something like 70% verb and
30% auxiliary, and the tagger will label the word
as a ”verb”. Making a mistake on which word is a
verb and which one is an auxiliary affects the de-
pendency tree. We therefore extracted these prob-
abilities from the tagger to introduce them in the
parser.
This experiment didn’t show a clear improvement
in the results. We think that the parser has trouble
learning from these probabilities because they are
almost always at one (the tagger rarely makes mis-
takes). Maybe one could improve the system by

not adding the probabilities directly but the output
of the layer before the softmax. This improvement
was not included in the final submission.

4 Cross-lingual transfer for low-resource
languages

The rest of our work was focused on cross-lingual
transfer methods and data mining to address the
problem of low-resource languages. The main
idea of our models is to build an artificial treebank
on which we could learn a tagger / parser. As
exposed by (Tiedemann and Agić, 2016), many
techniques may be used to build artificial tree-
banks. They identified mainly 1) model transfer
(for example, building a delexicalized parser from
a rich-resource language and using it directly on
a target language corpus annotated beforehand
with POS tags), 2) direct annotation projection
(relying on word alignments of a bitext to project
POS annotation), 3) treebank translation and 4)
cross-lingual word embeddings. The use of partial
annotations with dictionary may complete these
four techniques. We relied on quality of available
data to choose the best suited technique. Our
analysis started on all low-resource languages
but we applied our process to only 3 languages:
Breton, Faroese and Thai because of the lack of
valuable data for others2. Extending the capacities
of our models is certainly doable but a lot of
regularization on data should be done. We present
a summary of our choices in table 2.

4.1 Breton

Breton treebank has been built with direct an-
notation projection (Tiedemann and Agić, 2016).
There were neither training nor evaluation tree-
bank for Breton. Breton is member of Celtic lan-
guage family but no large treebank exists in this
family (Irish IDT is a 1020 only sentences cor-
pus). We decided to use the most valuable and
available resources for Breton: Wiktionary, word
embeddings from Facebook3, combined as in Wis-
niewski et al. (2014) with cross-lingual projection
from a larger parallel corpus to build our own arti-
ficial learning corpus.
We selected OfisPublik from OPUS (Tiedemann,
2009) site as parallel corpus for cross lingual

2We also had results on Upper Sorbian but failed to submit
the model.

3https://git.io/fbjDv
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Role Breton Thai Faroese
Tokenization model transfer dictionary model transfer
POS annotation projection+Wiktionary annotation projection+Wiktionary model transfer (*)
Dependencies annotation projection model transfer (*) model transfer (*)

Table 2: choices made to build our artificial treebanks for low-resource languages
(*) with cross-lingual embeddings

transfer. This corpus is composed of more than
60.000 sentences dumped from a bilingual institu-
tional site about Breton language4.
We proceeded as follow:

Statistics on parse tree: We computed some
statistics on Irish treebank: the counts of occur-
rences of all types of arc, indexed by triples (head
UPOS, dependency UPOS, arc label) to setup a
prior distribution probability.

Lexicon: We built a lexicon of form-
category from the most recent brwiktionary dump
(20/05/2018). We obtain 26650 entries with
mostly one category. When there are more than
one category, we preserved the order, assessing
that the most frequent category is the first men-
tioned in Wiktionary. Using links to other Wik-
tionaries we manually translated the 53 categories
into UPOS tag.

Parallel corpus: We filtered the parallel corpus
and excluded some sentences: those with less than
3 words (br or fr), those with more than 30 words
(br or fr) and those whose ratio of size of origi-
nal sentence upon translated sentence is not in the
range [1/3,3].

Tokenization: We used UDPipe with Dutch
model to tokenize the Breton side of the paral-
lel corpus. We chose Dutch because it preserves
”c’h” sequence of character which is the transcript
of a very frequent consonant in Breton.

Word Alignment: We built a word alignment
of the tokenized parallel corpus with efmaral5. We
used forward and reverse alignment and combined
them with atools from fastalign6 with grow-diag-
final-and mode.

Annotation: We used UDPipe to annotate the
French side corpus with baseline UDPipe model
for French.

POS tagging: We have performed UPOS anno-
tation within four steps.
1. Use our lexicon to annotate supposedly non

ambiguous tokens with word type: when the
4http://www.fr.brezhoneg.bzh
5https://github.com/robertostling/efmaral
6https://github.com/clab/fast align

form of a token has an entry with only one cat-
egory, the value is used as UPOS.

2. Use our lexicon to annotate ambiguous tokens
with hypotheses of word type : when a form
has an entry with more than one category, the
set of values is associated to the token within
the upos lexicon attribute.

3. Used bre2fre alignment to collect hypotheses
of token type: when a token is in the bre2fre
mapping, we collect the UPOS of all tokens in
French side within the upos alignment attribute

4. Intersect upos alignment and upos lexicon to
select most likely UPOS.
At the end of the process, sentences without

complete POS tagging are discarded.
Lemma: We have not built any specific solution

for lemmatisation and we reproduce the form as
value for lemma.

Features: We have projected features from the
French side. Because there is no features in our
lexicon, features comes only from cross-lingual
projection. At the end of first pass we collect all
features annotation and we add this data to our lex-
icon. Then, we use this enhanced lexicon as source
to annotate tokens with features when this infor-
mation exists in the lexicon.

Head and label: We walk through French de-
pendency tree starting from root node, and use
alignment fre2bre to project dependency annota-
tion (arc and label) when structures of French and
Breton seem to be the same. We initialize a stack
with the pair (root of French tree, root of Breton
tree), the second member is chosen as the word
aligned with root of French tree.
As long as the stack is not empty:
• pop a pair (fre head, bre head)
• get fre children from fre head and get UPOS

from each fre child
• for each bre node in fre2bre alignment of each

fre child
• if many conditions are met (there is only one

bre node aligned with fre child, fre child and
bre node have same POS, there is only one word
aligned with fre head) we simply project head
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and label, i.e. head of bre node is bre head, la-
bel is label of arc (fre child, fre head).
• when such conditions are not met, we create hy-

pothesis of dependency with most likely pair of
nodes: bre node with bre head but also with all
siblings of bre node. We use statistics to asso-
ciate a probability to each of these hypotheses.
• add to stack (fre child, bre node)
Finally, we build the parse tree with Chu-Edmonds
algorithm from the set of hypotheses.

Learning and prediction: We use this artificial
treebank to learn the UDPipe tagger and the stf
parser. We use the UDPipe tokenizer with Dutch
model to preprocess the raw test text.

Evaluation: Because no evaluation data ex-
ists, we relied on another language pair (French-
German) to experiment the cross-lingual projec-
tion process. We build a lexicon from dewik-
tionary with a mapping from Wiktionary tags to
UPOS tags. We select the 15.000 most frequent
forms in German based on word embeddings or-
der. We use PUD French and PUD German tree-
banks as parallel corpus. We get a F1 measure
of 72% on UPOS on and 28% on LAS which let
us hope similar results with French-Breton pair.
These figures are not far from our official results
75% in UPOS and 38% in LAS.

4.2 Faroese, Thai, and all other low-resource
languages

We started by exploring all the data we had avail-
able for the shared task: Wikipedia, word embed-
dings and parallel corpus, to build a low-resource
language strategy.
We used cross-lingual word representations for
building lexicalized taggers and parsers through
model transfer and annotation projection for tag
disambiguation.

4.2.1 Tokenizing Thai
The Thai language agglutinates a lot of words so it
can’t be tokenized with spaces. Dictionary Based
Longest Matching yielded good enough results
(Haruechaiyasak et al., 2008), so we built a dic-
tionary for Thai based on all words from the em-
beddings and the Wiktionary. Then we tokenized
the opus Thai corpus with dictionary, and learned
an UDPipe model on it to facilitate the integration
of the model in the final submission.
However, we didn’t know how to define the end
of each sentence in Thai, knowing that UD-
Pipe won’t define an end based on words or on

sentences lengths. We tried to build our own
tokenizer based on word embeddings, sentence
lengths, word lengths and eventually a dictionary
to improve the ”only character embedding based”
model. Even if we lacked the time to finalize
this contribution, we did manage to reach a f1
score close to UDPipe with random forest clas-
sifier on English LinES corpus (-0.2% tokens, -
5% sentences). The tokenization score for Thai is
64.17%.

4.2.2 Building word alignment on sentences
and a bilingual dictionary with OPUS

We used efmaral (Östling and Tiedemann, 2016)
to get word alignment on OPUS. As we needed
to be extremely confident on the built alignments,
the null-prior parameter was set to 0.95 (it doesn’t
stop the word aligner from making mistakes on
some words).
The dictionary was built based on aligned words.

4.2.3 Tagging Thai
Three sources of information are available for tag-
ging without annotated data:
• OPUS : tagging a rich-resource language and

transferring tags to the low-resource language
• Embeddings alignment : aligning embeddings

from one embedding cloud to another. Then us-
ing the source tagger on the aligned embeddings
• Data mining : parsing the Wiktionary to find the

possible tags of each word
We can combine these methods to do disambigua-
tion. The Thai language was tagged by using the
same method as Breton. We extracted a list of
each possible tags (UPOS) from the Wiktionary.
Then we used annotated parallel corpus from
Korean to disambiguate Thai tags. We weren’t
aware of a close enough language to Thai so we
were only able to transfer from a distant language.

4.2.4 Embeddings alignment : tagging and
parsing Faroese

For Faroese, the Wiktionary data didn’t seem to
be workable (no UPOS tag / not enough words)
and no OPUS data were available. We thus used
the only available source of informations : embed-
dings. We built a supervised cross-lingual embed-
ding mapper that could work in an unsupervised
way by using similar tokens between languages
(when languages are close enough). The mapper
is not limited by the number of word or the size of
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the embedding contrary to MUSE (Lample et al.,
2017). We found out that the HIT team had a sim-
ilar approach in 2015 (Guo et al., 2015).
The Faroese language is close to three other lan-
guages : Danish, Norwegian and Swedish. The
strategy was to build a bilingual tagger and a bilin-
gual lexicalized parser for Swedish-Norwegian,
evaluate our approach on Danish and export it on
Faroese. All embeddings (Swedish, Danish and
Faroese) were aligned in the Norwegian embed-
ding cloud. The architecture used was the Stan-
ford one, we only used gold and aligned embed-
dings (pretrained) and character embeddings (no
post-trained embeddings as they are highly lan-
guage dependent and based on word’s form and
not word’s embedding position in the cloud).

The algorithm of the mapper is described in Al-
gorithm 1: it uses the built bilingual dictionary
(1,n) to (1,n) and all tokens of common form in
embeddings as input, as well as the embeddings
of the two languages.
Then, each embedding of the source language is
aligned with the embeddings of the target lan-
guage. The general case is the 1 to n relation, for
which the source token is assigned an average of
each of the n tokens in the target language. So if
we have a 1 to 1 relation, the source token embed-
ding is equal to the target token embedding. The
dictionary was filtered by removing entries with
cardinality above 4.
For words that are not in the dictionary, we use the
n-closest embeddings in the source cloud which
are in the dictionary. Each of these tokens has an
alignment in the target cloud, so we do a weighted
average of their aligned embeddings in the target
cloud based on their distance in the source cloud
to find the embedding of the token which is not in
the dictionary.
This approach could be enhanced by taking into
account the direction to go from each of the word
in the source cloud to the target cloud, and averag-
ing these informations to locate the unknown point
in the target cloud (algorithm 1 ).

At this point we have cross-lingual embeddings.
Building a bilingual corpus should help to reduce
the bias of a monolingual model as well as learn-
ing with both original (Norwegian) and potentially
biased aligned (Swedish) embeddings. We built
a corpus based on UD ones (Nivre et al., 2017),
merging the same number of sentences from Nor-
wegian and Swedish into one file.We then trained a

Data: Source embeddings;
target embeddings;
dictionaries (opus + similar words)
Result: source aligned with target
init: define n closest words parameter;
for each source embedding s of token ts do

let e be the embedding of ts in target;
if ts in dictionary then

ss = target words for ts in dic;
es = embeddings of ss;
e = avg(es);

else
cs = closest n word embeddings to s
which are in dic;

es = embeddings of the n closest word
in target;

e = weighted avg(es, dist(cs,s));

Algorithm 1: Close-points embedding align-
ment algorithm; the n parameter was set to 5

bilingual tagger and parser on this corpus without
post-trained embeddings and evaluated it (cf table
3 ). SVNO : Swedish+Norwegian. DA : Danish.
FO : Faroese.
We then used this bilingual model on Faroese
Wikipedia sentences to have a treebank, annotat-
ing it by using aligned Faroese embeddings, and
we trained a Faroese model on this treebank with
original embeddings, hoping it could fix some in-
consistencies coming from the alignment as the
final model will use regularizations on original
Facebook embeddings. In the end, we have a
Faroese tagger and a Faroese parser.

4.2.5 Other languages

The method described in the previous section has
been tested on other languages but did not pro-
duce results significantly better than the baseline.
Not counting Thai, Faroese and Breton, there are
6 low-resource languages:
• For Buryat and Kurmanji we didn’t find a close

enough language to do unsupervised embedding
alignment as no parallel corpus / Wiktionary
were available.
• For Kazakh, we tried to build a Turkish-Russian

model, ending with around 50% in UPOS.
• For Armenian, we tried a Persian-Greek model

but we had troubles handling the character
embeddings (Armenian characters aren’t the
same), ending with 23% in UPOS (and if you
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Scores SVNO score No-transfer score
UPOS SV 93% 96%
UPOS DA 74% 97%
Feats SV 85% 92%
Feats DA 50% 97%
LAS SV 74% 83%
LAS DA 48% 84%
LAS SVNO 85%
UPOS FO 64%
Feats FO 34%
LAS FO 47%

Table 3: SVNO models results, compared to stf model trained on monolingual gold data.

don’t include character embeddings, you can’t
distinguish some proper noun from numbers).
• For Naija, no data

(OPUS/embedding/Wiktionary) was found,
so we used English models.
• Finally for Upper Sorbian we had better results

with a Polish-Czech model, ending with 75%
UPOS and 37% LAS (evaluated on the 23 avail-
able sentences as we don’t need training sen-
tences), but we lacked of time to upload the
model and finalize our contribution to the task.
We tried to use embeddings alignment from
MUSE on Upper Sorbian, but it didn’t provide
results as there wasn’t enough Upper Sorbian
embeddings.

5 Training

For the final submission, we trained around 190
models (including bilingual ones) which took 3
days on 3 GPU NVIDIA 1080 Ti. We did this
full training 4 times, each time changing a pa-
rameter: whether to include language specific de-
pendency annotation in the training, case-sensitive
parser or to change the tokenization used (refer-
ence tokenization or UDPipe tokenization as val-
idation set). The submitted result was the best
model out of the four runs.

6 Results

We’ll only detail some results. A summary ta-
ble for low-resource languages we worked on has
been produced (cf table 4).
We got some good ranks on the total average, but
these scores were deeply affected by our rank in
low-resource languages. For example, getting +64
points in Thai (with just a dictionary approach
based on known words) is the same as getting 0.8

points on each other treebanks which is far more
harder.
Still, we ranked 2nd in morphological features,
showing that the stf architecture was able to han-
dle morphological informations.
We ranked 2nd in tokenization (low-resource and
global) because of our work on the Thai language
(the 5 teams that got more than the baseline in Thai
ended up in the top 5 on the global tokenization
score). However our score for Thai tokenization
(64%) is far more bellow other scores for tokeniz-
ing Thai in literature, based on other corpus which
weren’t available for this shared task.
We also ranked 3rd in UPOS (low-resource and
global). We think that learning morphological fea-
tures during the training help a model to get bet-
ter results in UPOS as it could use the embed-
dings learned with morphological features to pre-
dict UPOS tags as well.
For big treebanks, we ranked 5th in UPOS prob-
ably because we took the SOTA and improved it.
We also stand below TurkuNLP for morphological
features on big treebanks (93.68% for 93.82%),
they also used the biLSTM architecture but they
inferred tags without sub-categories.
Finally we ranked 5th in MLAS which seems to be
the more representative score overall as it evalu-
ates morphology and dependency as a whole, and
it doesn’t give much importance to low-resource
languages because a cumulative low score in
UPOS and LAS results in a close to 0 MLAS.
A summary table can be found at the end of the
article.

7 Conclusion

Our multilingual model seems to produce great
results by enabling the production of a lexicalized
parser for low-resource languages. This could
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Tokens UPOS LAS
Lang Base Our Best Base Our Best Base Our Best
Thai 8.56 64.17 69.93 5.86 31.46 39.42 0.70 0.47 13.70
Faroese 99.51 99.03 99.51 44.66 63.53 65.54 25.19 47.17 49.43
Breton 92.26 92.50 94.49 30.74 75.39 85.01 10.25 38.64 38.64

Table 4: Summary score table for 3 low-resource languages

open the road to an universal parser (as long as we
have embeddings and a dictionary for a language)
with improved performance over the mixed model
provided for the shared task.
However, multiple steps are required in order to
achieve a unique model. First, one should merge
the tagger and the parser into one unique model,
by learning the parser with representation learned
by the tagger, and by eventually allowing the
tagger to complete POS tags based on dependency
learned embeddings.
Our transfer methods should be evaluated more
carefully. Because we didn’t have much time,
we didn’t find a way to evaluate our embeddings
mapper in an other way than through the UPOS
and dependency scores of our bilingual models.
Multiple strategies are still available from our
work: how to select the best languages for
transfer? How much languages should be used?
How does these parameters change from one
low-resource language to another ? etc.
Finally, to build an universal parser, we should
distinguish multiple embeddings. The post-
trained embeddings should be divided in two
categories, the universal post-trained embeddings
which changes the pretrained embeddings values
based on their position into the embeddings cloud;
and the language specific post-trained embed-
dings which should be based on the form and
the language of the token. Including pretrained
character embeddings and post-trained character
embeddings could also help for languages with
specific characters, for which we could at least
map punctuations and numbers characters for
tagging.
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tokens upos ufeats las mlas
af afribooms 99.75 (5) 97.24 (7) 96.91 (3) 84.16 (7) 73.15 (4)

ar padt 99.98 (2) 90.35 (7) 86.93 (6) 71.84 (8) 62.17 (5)
bg btb 99.92 (4) 98.72 (4) 97.38 (4) 89.59 (5) 82.55 (3)
br keb 92.5 (2) 75.39 (2) 43.55 (3) 38.64 (1) 4.15 (3)

bxr bdt 97.07 (4) 41.66 (8) 38.34 (3) 12.61 (11) 2.09 (5)
ca ancora 99.97 (5) 98.49 (7) 97.75 (7) 90.22 (6) 82.09 (6)

cs cac 99.97 (7) 98.83 (9) 93.8 (6) 89.55 (10) 79.92 (6)
cs fictree 99.97 (6) 98.4 (6) 95.57 (4) 91.22 (4) 81.87 (3)

cs pdt 99.93 (5) 98.44 (12) 92.75 (8) 89.06 (11) 78.63 (10)
cs pud 99.28 (4) 96.86 (4) 90.43 (7) 84.89 (3) 71.65 (7)

cu proiel 100 (1) 96.09 (3) 89.98 (1) 73.13 (5) 61.79 (4)
da ddt 99.87 (4) 97.38 (4) 96.7 (5) 83.69 (3) 75.27 (4)
de gsd 99.58 (4) 93.42 (10) 89.3 (4) 78.19 (4) 56.18 (4)
el gdt 99.86 (4) 97.64 (4) 94.56 (2) 88.18 (6) 76.44 (3)

en ewt 99.03 (5) 95.01 (7) 95.55 (6) 82.88 (4) 74.46 (4)
en gum 99.75 (3) 95.07 (7) 95.97 (4) 81.47 (6) 70.59 (5)
en lines 99.95 (3) 96.47 (8) 96.49 (5) 78.61 (7) 70.05 (8)
en pud 98.79 (24) 93.28 (24) 95.27 (3) 79.84 (15) 69.97 (13)

es ancora 99.97 (4) 98.61 (7) 98.08 (4) 89.58 (5) 82.33 (5)
et edt 99.91 (5) 97 (5) 95.19 (4) 83.52 (4) 75.87 (4)

eu bdt 99.96 (6) 95.97 (5) 92.19 (3) 83.13 (2) 71.7 (2)
fa seraji 100 (2) 97.05 (6) 97.13 (3) 86.18 (2) 80.38 (5)

fi ftb 100 (2) 95.83 (6) 96.23 (4) 87.14 (3) 79.09 (2)
fi pud 99.63 (4) 97.32 (5) 96.29 (6) 88.59 (5) 82.42 (3)
fi tdt 99.69 (4) 96.53 (7) 94.78 (6) 85.99 (4) 78.59 (5)

fo oft 99.03 (23) 63.53 (2) 33.52 (5) 47.17 (2) 0.8 (2)
fr gsd 99.66 (7) 96.1 (9) 95.85 (4) 85.03 (8) 76.41 (8)

fr sequoia 99.79 (5) 97.4 (9) 96.77 (6) 87.66 (7) 80.2 (4)
fr spoken 100 (2) 95.91 (6) 100 (2) 69.83 (9) 57.88 (8)
fro srcmf 100 (2) 95.87 (3) 97.59 (2) 86.78 (3) 79.62 (2)

ga idt 99.3 (5) 89.21 (9) 78.79 (5) 62.93 (14) 37.66 (8)
gl ctg 99.84 (4) 96.98 (3) 99.01 (4) 81.6 (5) 69.28 (5)

gl treegal 99.69 (2) 91.09 (10) 89.59 (5) 66.16 (12) 49.13 (11)
got proiel 100 (2) 95.71 (3) 88.87 (3) 68.32 (4) 54.8 (3)

grc perseus 99.96 (5) 91.94 (5) 89.71 (6) 73.41 (4) 52.14 (5)
grc proiel 100 (2) 96.87 (7) 91.33 (4) 75.02 (6) 58.36 (6)

he htb 99.98 (2) 82.6 (4) 80.82 (4) 63.66 (6) 51.3 (5)
hi hdtb 100 (2) 97.38 (7) 93.56 (4) 91.72 (3) 77.59 (4)

hr set 99.92 (4) 97.8 (7) 89.81 (7) 86.18 (5) 70.11 (6)
hsb ufal 98.6 (3) 65.75 (6) 49.8 (2) 23.64 (16) 3.55 (14)

hu szeged 99.81 (3) 95.4 (3) 92.75 (1) 76.96 (6) 65.68 (4)
hy armtdp 97.21 (4) 65.4 (8) 57.07 (2) 28.41 (7) 7.58 (7)

id gsd 100 (2) 93.94 (1) 95.35 (6) 78.84 (3) 67.81 (3)
it isdt 99.75 (5) 97.91 (6) 97.61 (3) 90.01 (7) 82.44 (5)

it postwita 99.73 (3) 95.9 (4) 96 (3) 71.77 (11) 59.12 (7)
ja gsd 90.46 (6) 88.9 (6) 90.45 (6) 74.55 (8) 61.74 (9)

ja modern 65.98 (5) 48.44 (8) 64.11 (9) 22.71 (9) 8.1 (9)
kk ktb 93.11 (6) 48.94 (11) 46.86 (4) 24.21 (4) 7.62 (5)

kmr mg 94.33 (4) 59.31 (6) 48.39 (2) 23.92 (9) 5.47 (7)
ko gsd 99.81 (6) 96.12 (4) 99.62 (5) 83.61 (3) 79.21 (3)

ko kaist 100 (2) 95.37 (4) 100 (2) 86.41 (3) 80.48 (3)
la ittb 99.94 (5) 97.82 (13) 95.93 (4) 85.17 (7) 77.97 (5)

la perseus 100 (2) 83.34 (11) 72.07 (8) 47.61 (12) 30.16 (11)
la proiel 99.99 (5) 96.69 (3) 90.7 (4) 71.07 (4) 58.79 (3)

lv lvtb 99.4 (6) 95.17 (2) 91.29 (3) 80.29 (5) 67.27 (2)
nl alpino 99.83 (5) 95.84 (7) 95.66 (7) 85.79 (7) 73.38 (6)

nl lassysmall 99.82 (6) 95.93 (7) 95.59 (5) 82.17 (7) 70.9 (5)
no bokmaal 99.78 (6) 97.85 (6) 96.19 (5) 89.73 (4) 81.96 (5)
no nynorsk 99.93 (5) 97.72 (4) 96.3 (4) 88.97 (5) 80.55 (5)

no nynorsklia 99.99 (2) 85.15 (12) 86.54 (6) 56.87 (10) 41.73 (9)
pcm nsc 99.71 (1) 57.21 (2) 43.09 (2) 16.06 (9) 2.35 (20)

pl lfg 99.86 (7) 98.54 (4) 94.67 (6) 94.62 (3) 86.26 (4)
pl sz 99.99 (3) 98.05 (4) 92.24 (4) 91.31 (4) 80.44 (3)

pt bosque 99.71 (2) 96.61 (3) 95.85 (2) 87.72 (2) 75.72 (2)
ro rrt 99.67 (6) 97.47 (5) 96.75 (6) 85.9 (4) 77.7 (4)

ru syntagrus 99.6 (7) 98.2 (9) 95.69 (6) 89.96 (11) 83.27 (6)
ru taiga 98.14 (2) 86.53 (11) 76.01 (7) 63.85 (7) 40.9 (8)
sk snk 100 (2) 96.61 (4) 90.89 (2) 86.38 (4) 73.44 (2)

sl ssj 98.29 (6) 96.85 (5) 93.11 (4) 86.72 (6) 78.65 (2)
sl sst 100 (2) 88.5 (12) 80.15 (7) 46.95 (13) 34.19 (12)

sme giella 99.84 (3) 87.69 (7) 82.41 (5) 56.98 (14) 46.05 (10)
sr set 99.97 (2) 98.04 (3) 93.63 (5) 87.92 (5) 76.95 (4)

sv lines 99.96 (3) 96.74 (2) 89.18 (5) 81.46 (4) 65.84 (5)
sv pud 98.52 (6) 92.98 (9) 73.32 (21) 76.23 (11) 42.8 (13)

sv talbanken 99.78 (7) 97.5 (3) 96.48 (5) 85.69 (6) 78.19 (5)
th pud 64.17 (2) 31.46 (3) 60.22 (2) 0.47 (17) 0.16 (5)
tr imst 99.86 (3) 93.42 (5) 91.94 (1) 63.78 (4) 55 (3)
ug udt 99.22 (7) 89.43 (1) 87.07 (2) 62.75 (8) 43.82 (4)

uk iu 99.67 (5) 97.03 (5) 90.71 (3) 83.64 (6) 71.12 (4)
ur udtb 100 (2) 94.12 (4) 83.53 (3) 81.89 (4) 56.85 (3)

vi vtb 84.26 (7) 77.38 (6) 83.99 (6) 44.35 (6) 37.98 (5)
zh gsd 89.55 (7) 85.06 (9) 88.57 (8) 65.34 (9) 55.2 (8)

Table 5: Summary table for main scores. Green: top 1, yellow: top 3, orange: top 5
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Abstract

This paper describes the ICS PAS system
which took part in CoNLL 2018 shared
task on Multilingual Parsing from Raw
Text to Universal Dependencies. The sys-
tem consists of jointly trained tagger, lem-
matizer, and dependency parser which are
based on features extracted by a biL-
STM network. The system uses both fully
connected and dilated convolutional neu-
ral architectures. The novelty of our ap-
proach is the use of an additional loss
function, which reduces the number of cy-
cles in the predicted dependency graphs,
and the use of self-training to increase
the system performance. The proposed
system, i.e. ICS PAS (Warszawa), ranked
3th/4th in the official evaluation1 obtain-
ing the following overall results: 73.02
(LAS), 60.25 (MLAS) and 64.44 (BLEX).

1 Introduction

Most of contemporary NLP systems for machine
translation, question answering, sentiment analy-
sis, etc. operate on preprocessed texts, i.e. texts
with tokenised, part-of-speech tagged, and pos-
sibly syntactically parsed sentences. Therefore,
the development of high-quality pipelines of NLP
tools or entire systems for language preprocessing
is still an important issue. The vast majority of
language preprocessing frameworks take advan-
tage of the statistical methods, especially the su-
pervised or semi-supervised statistical methods.
Based on training data, language preprocessing
tools learn to analyse sentences and to predict mor-
phosyntactic annotations of these sentences.

1http://universaldependencies.org/
conll18/results.html

The supervised methods require gold-standard
training data whose creation is a time-consuming
and expensive process. Nevertheless, the mor-
phosyntactically annotated data sets are pub-
licly available for many languages, in particu-
lar within Universal Dependencies initiative (UD,
Nivre et al., 2016). The initiators of UD aim at de-
veloping a cross-linguistically consistent annota-
tion schema and at building a large multilingual
collection of sentences annotated according to this
schema with the universal part-of-speech tags and
the universal dependency trees.

UD treebanks are nowadays used for multi-
lingual system development (Nivre et al., 2018).
The history of developing multilingual systems
dates back to 2006 and 2007, when two shared
tasks on multilingual dependency parsing were or-
ganised at the Conference on Computational Nat-
ural Language Learning (CoNLL, Buchholz and
Marsi, 2006; Nivre et al., 2007). After 10 years,
the shared task was organised again in 2017 (Ze-
man et al., 2017), and currently there is its fourth
edition (Zeman et al., 2018).

In this paper we describe our solution submit-
ted to the CoNLL 2018 Universal Dependency
shared task. The system and the trained models
for participating treebanks are publicly available.2

Our system takes a tokenised sentence as input.
The sentence tokenisation is predicted by the base-
line model (Straka and Straková, 2017).

Each word is represented both as an external
word embedding and as a character-based word
embedding estimated by a dilated convolutional
neural network encoder (CNN, Yu and Koltun,
2016). The concatenation of these embeddings is
fed to a bidirectional long short-term memory net-
work (biLSTM, Graves and Schmidhuber, 2005;
Hochreiter and Schmidhuber, 1997) which ex-

2https://github.com/360er0/COMBO
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tracts the final features (see Section 2.1). The tag-
ger takes extracted features and predicts univer-
sal part-of-speech tags, language-specific tags and
morphological features using three separate fully
connected neural networks with one hidden layer
(see Section 2.2). The lemmatizer uses a dilated
CNN to predict lemmas based on characters of
corresponding words and features previously ex-
tracted by a biLSTM encoder (see Section 2.3).
As a scoring function, the graph-based depen-
dency parser uses simple dot product of the vec-
tor representations of a dependent and its gover-
nor. These representations are output by two single
fully connected layers which take feature vectors
extracted by a biLSTM encoder as input. A novel
loss function penalizes cycles, in order to reduce
their number in the predicted dependency graphs
(see Section 2.4.2). Chu-Liu-Edmonds algorithm
(Chu and Liu, 1965; Edmonds, 1967) constructs
the final dependency tree. The dependency labels
are predicted with a fully connected neural net-
work based on the dependent and its governor em-
beddings as well (see Section 2.4 for more details
on the parser’s architecture). The system architec-
ture is schematised in Figure 1.

The whole system is end-to-end trained, sepa-
rately for each treebank provided for the purposes
of the shared task. The technical details of the im-
plemented system are given in Section 3. Ad-
ditionally, for 20 selected treebanks self-training
is used to increase the performance of the mod-
els (see Section 3.4). The proposed technique of
self-training has an impact on the quality of tag-
ging, lemmatisation and parsing (see Section 4.3).
The article ends with the presentation of the results
achieved by our system (see Section 4) and some
conclusions (see Section 5).

2 Architecture Overview

2.1 Feature Extraction

The system accepts an input in the form of to-
kenised sentences that can be annotated with addi-
tional morphosyntactic information: lemmas, part-
of-speech tags, and morphological features. How-
ever, as the goal of the shared task is to predict
not only dependency trees but also parts of speech,
lemmas and morphological features,3 we decide to
use words as the only input.

3Not all treebanks are annotated with lemmas and mor-
phological features.

Character Level
Embedding

Word Level
Embedding

External
embedding UD dataset

Sentence Level
biLSTM

Lemmatizer

Label PredictionMorphological
Features Prediction

Arc PredictionPart-of-Speech
Prediction

Figure 1: The schema of the system architecture.

2.1.1 Word Level Embedding
Each input word is represented as a vector us-
ing the external pre-trained embedding. Words
not present in the external embedding are re-
placed with the “unknown” word and represented
as a random vector drawn from the normal dis-
tribution with the mean and the variance calcu-
lated based on other word embedding vectors.
Both the external embedding itself and the vec-
tor representing “unknown” word are fixed during
the training, but they are transformed by a single
fully connected layer. This transformation serves
similar purpose as a trainable embedding, but
helps with generalization, since it will also trans-
form vectors for words available in the external
embedding, but not in the training set.

2.1.2 Character Level Embedding
Additionally, each word is represented as
the character-based word embedding extracted
with a dilated convolutional neural network
(CNN). We decide to use the dilated CNN instead
of commonly used biLSTM encoder to speed up
the training of the system.
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First, each word is transformed to a sequence
of the trainable character embeddings. More-
over, the special symbols “beginning-of-word”
and “end-of-word” are added to the sequence to
represent the beginning and the end of the word.
Then the dilated CNN encoder is used. Since
the encoder also outputs a sequence, we use
the global max-pooling operation to obtain the fi-
nal word embedding. This procedure is reasonable
for estimating embeddings of out-of-vocabulary
words, especially in languages with rich morphol-
ogy.

2.1.3 Sentence Level biLSTM
Both word representations are concatenated to-
gether and fed into the sentence level biLSTM net-
work. The network learns contexts for each word
and extracts the final features for each of these
words.

2.2 Tagger

2.2.1 Part-of-Speech Tags
The tagger is implemented as a fully connected
network with one hidden layer and soft-max ac-
tivation function. The tagger takes the features ex-
tracted by the biLSTM as input and predicts a uni-
versal part-of-speech tag and a language-specific
tag for each word.

2.2.2 Morphological Features
Similar approach is used to predict morphologi-
cal features. Each morphological feature is rep-
resented as an attribute-value pair (e.g. Num-
ber=Sing) and each word is annotated with a set of
appropriate attribute-value pairs in training data.
We therefore decide to treat the problem of mor-
phological features prediction as several classifi-
cation problems (see Figure 2).

biLSTM representation

Hidden layers

Probabilities

Case=Nom Gender=Fem Tense=NAIndividual predictions 

Case=Nom|Gender=FemFinal prediction 

Figure 2: The morphological features prediction.

For each attribute its value is predicted with
a fully connected network with one hidden layer
and soft-max activation function. Various words
are defined by the sets of various morphological
features. Since for each word only some attributes
are present in the set of morphological features,
the possible values are extended with “not applica-
ble” label. It allows the model to learn that an at-
tribute is not present in the set of morphological
features of a particular word.

2.3 Lemmatizer
Lemmatizer takes two different inputs. First, fea-
tures extracted by the biLSTM encoder are used,
however their dimensionality is reduced with
a single fully connected layer. Next, the word,
for which we want to predict a lemma, is con-
verted to a sequence of characters. The special
symbols “beginning-of-word” and “end-of-word”
are added to the sequence to represent the begin-
ning and the end of the word. Each character in
the sequence is represented as a trainable embed-
ding vector. The final input to the lemmatizer is
a sequence of character embeddings concatenated
with the reduced version of features extracted by
the biLSTM encoder. Note that each character em-
bedding is concatenated with exactly the same ex-
tracted feature vector.

Input word

<b> d o _ <e>

<b> d i d <e>

Character
embedding

Reduced biLSTM
representation

Dilated  
CNN Layers

Character  
Probabilities 

Prediction 

Figure 3: The lemmas prediction.

Then the dilated convolutional neural network
followed by soft-max function converts given in-
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put to the sequence of probabilities of one-hot en-
coded characters of the predicted lemma (see Fig-
ure 3).

2.4 Parser
2.4.1 Arc Prediction
Two single fully connected layers transform fea-
tures extracted by the biLSTM encoder into head
and dependent vector representations. A fully con-
nected dependency graph is defined with an ad-
jacency matrix. The columns of the matrix cor-
respond to heads represented with heads’ vector
representations and the rows correspond to depen-
dents represented with dependents’ vector repre-
sentations. The elements of the adjacency matrix,
in turn, are dot products of all pairs of the head and
dependent vector representations. Soft-max func-
tion is then applied to each row of the matrix
to predict the adjacent head-dependent pairs (see
Figure 4).

Adjacency matrixDot product

 D
ep

en
de

nt
re

pr
es

en
ta

tio
n 

 Head
representation 

ROOT The car is red

copdet
nsubj

root

Figure 4: The adjacency matrix and the extracted
dependency tree of the sentence The car is red.

2.4.2 Loss Function
In order to force the network to predict the correct
head for each dependent and thus a correct depen-
dency tree, the cross-entropy loss function is used
for each row in the adjacency matrix. Note how-
ever that such formulation of the problem can lead
the network to predict an adjacency matrix with
cycles.

We aim to get an adjacency matrix for which
a simple greedy algorithm would suffice to con-

struct the correct tree. Therefore, we propose
an additional ‘cycle-penalty’ loss function which
reduces the number of cycles in the predicted ad-
jacency matrix:

loss(A) =
K∑

k=1

tr(Ak)

The non-zero trace of Ak indicates that there
are the paths of the length k in the graph repre-
sented by the adjacency matrixA (Norman, 1965).
Therefore, by minimizing the sum of the traces of
the subsequent powers ofA we reduce the number
of cycles in the predicted graph. In an ideal sce-
nario K should be equal to the length of the sen-
tence, but in practice even K = 3 helps to reduce
the number of cycles. The final loss used to train
the arc prediction model is a sum of cross-entropy
loss and ‘cycle-penalty’ loss.

If the smoothed adjacent matrix still contains
cycles, Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967) is applied to extract
the properly built dependency tree in the final step
of the prediction procedure.

2.4.3 Label Prediction
In order to predict the label for each arc of the pre-
dicted dependency tree, the vector representations
of the arc’s head and its dependent are calculated.
These representations do not correspond to those
used during the arc prediction, but they are ob-
tained in a similar way. The estimated vector of
the dependent is concatenated with the weighted
average of its predicted head vector. The weights
correspond to probabilities of a word being the de-
pendent’s head predicted by the arc model de-
scribed in the previous section. It is not possible
to take just the vector of a single predicted head,
because it would prevent the model to be trained
together with the rest of the system, as argmax op-
eration is not differentiable. The concatenated vec-
tor representations are then fed to a single fully
connected layer with soft-max activation function.

3 Implementation Details

3.1 Network Hyperparameters

Word Embedding We use 300-dimensional
fastText word embeddings (Grave et al., 2018),4

4https://github.com/facebookresearch/
fastText/blob/master/docs/crawl-vectors.
md
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which are then converted to 100-dimensional vec-
tors by a single fully connected layer. The em-
bedding is not available for some languages,
i.e. for Old Church Slavonic (‘cu proiel’), Old
French (‘fro srcmf’), Gothic (‘got proiel’), Kur-
manji (‘kmr mg’), North Sámi (‘sme giella’) or it
seems incorrect, i.e. in Slovak (‘sk snk’). There-
fore, we estimate the embedding for these lan-
guages during the training of the whole system.

Character Embedding The character level em-
bedding is calculated with three convolutional lay-
ers with 512, 128 and 64 filters with dilation rates
equal to 1, 2 and 4. All of the filters have the ker-
nel of size 3. The input character embedding has
the size of 64.

Final Word Embedding The final word embed-
ding is the concatenation of the 100-dimensional
word embedding and the 64-dimensional
character-based word embedding. It has thus
164 dimensions.

Feature Extraction Two biLSTM layers with
512 hidden units are used to extract the final fea-
tures.

Tagger The tagger uses a fully connected net-
work with the hidden layer of the size 64.
The model to predict morphological features uses
the hidden layer of 128 neurons.

Lemmatizer The lemmatizer uses three convo-
lutional layers with 256 filters and dilation rates
equal to 1, 2 and 4. All of the filters have the kernel
of size 3. Then the final convolutional layer with
the kernel size equal to 1 is used to predict lem-
mas. The input characters, represented as the em-
beddings with 256 dimensions, are concatenated
with the features extracted with the biLSTM en-
coder and reduced to 32 dimensions with a single
fully connected layer.

Parser The arc model uses heads’ and depen-
dents’ vector representations with 512 dimen-
sions. The labelling model uses 128-dimensional
vectors.

All fully connected layers use tanh activation
function and all convolutional layers use rectified
linear unit (ReLU, Nair and Hinton, 2010).

3.2 Regularization

We apply both Gaussian Dropout (with
the dropout rate of 0.25) and Gaussian Noise

(with the standard deviation on 0.2) to the final
word embedding5 and after processing each
biLSTM layer. All fully connected layers use
the standard dropout (Srivastava et al., 2014)
with the dropout rate of 0.25. The biLSTM layers
use both the standard and recurrent dropout with
the rate of 0.25. Moreover, the biLSTM and
convolutional layers use L2 regularization with
the rate of 1× 10−6 and the trainable embeddings
use L2 regularization with the rate of 1× 10−5.

3.3 Training

We use cross-entropy loss for all parts of the sys-
tem. The loss for the arc prediction model is a sum
of cross-entropy loss and novel loss (see Section
2.4.2). The final loss is the weighted sum of losses
with the following weights for each task:

• 0.05 for part-of-speech tagging,

• 0.2 for morphological features prediction,

• 0.05 for lemmatization,

• 0.2 for arc prediction,

• 0.8 for label prediction.

The whole system is optimized with ADAM
(Kingma and Ba, 2014) with the learning rate
equal to 0.002 and β1 = β2 = 0.9. Typically,
the batch size of approximately 2500 words is
used, however for a few of the smallest tree-
banks the batch size is reduced to 1000 or even
75 words. Each batch consists of sentences with
a similar length, but the ordering of batches is
randomized within each epoch. Each observa-
tion (i.e. sentence) is weighted with the log of
the sentence length that forces the model to focus
on longer (and usually more difficult) sentences.
The model is trained for maximum of 400 epochs
and the learning rate is reduced twice by the factor
of two when the validation score reaches plateau.
For languages with multiple treebanks, first a gen-
eral model is trained on all sentences from these
treebanks and then the model is fine-tuned for each
treebank.

3.4 Self-training

For 20 arbitrarily selected treebanks, mostly
the smallest ones, self-training method (Triguero
et al., 2015) is used to increase the performance of

5https://keras.io/layers/noise/
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the system. First the model is trained in a stan-
dard way, as described in the previous sections.
Then the ‘semi-supervised’ training set is built.
It contains sentences with the total of approxi-
mately 25M words taken from raw data6 provided
by CoNLL 2018 organizers. For Uyghur language
only 3M words are available. The provided data
sets come either from Wikipedia or Commom
Crawl. Where it is possible we choose the sen-
tences from Common Crawl, due to longer (on
average) sentence sizes. The pre-trained model is
then used to predict dependency trees, lemmas and
part-of-speech tags for all sentences in the ‘semi-
supervised’ training set. Finally, the new model
is trained on this ‘semi-supervised’ training set
for only one epoch and fine-tuned on the gold-
standard training data, using the standard training
procedure.

3.5 Languages with No Resources

Our solution for processing treebanks with no
training data is very simple. We choose another
language for which training data is available and
train the model on this data. The estimated model
is used for predictions in the language with no
training data. We use the following treebank pairs:

• ‘br keb’ (Breton)7 – ‘ga idt’ (Irish),

• ‘fo oft’ (Faroese) – ‘no nynorsk’ (Norwe-
gian),

• ‘pcm nsc’ (Naija) – ‘en ewt’ (English),

• ‘th pud’ (Thai) – ‘vi vtb’ (Vietnamese).

The parallel UD treebanks for Czech, English,
Finish, and Swedish, and the treebank for modern
Japanese are processed with the models estimated
on other treebanks for the respective languages:

• ‘cs pud’ – ‘cs pdt’ (Czech),

• ‘en pud’ – ‘en ewt’ (English),

• ‘fi pud’ – ‘fi tdt’ (Finish),

• ‘sv pud’ – ‘sv talbanken’ (Swedish),

• ‘ja modern’ – ‘ja gsd’ (Japanese).
6https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-1989
7The first language in each row has no training data and is

parsed with the model estimated for the second language in
the pair.

4 Results

4.1 Overview

In the official evaluation8 (Zeman et al., 2018) our
system ranks 3th/4th for all three main metrics
(ex aequo with LATTICE and UDPipe Future for
LAS). It performs particularly well on small tree-
banks with no development data, but a reasonable
size of the training set. For example, the system
ranks 1st in terms of all three measures on Russian
‘ru taiga’ treebank, 1st (MLAS and BLEX) and
2nd (LAS) on Latin ‘la perseus’ treebank and spo-
ken Slovenian ‘sl sst’ treebank, and 1st (MLAS
and BLEX) and 3rd (LAS) on spoken Norwegian
‘no nynorsklia’ treebank. It is worth noting that
overall MLAS and BLEX scores obtained by our
system trained on small treebanks are currently
the state of the art (see Table 1). With respect to
LAS score, our system ranks 3rd.

Category LAS MLAS BLEX
All 73.02 60.25 64.44
Big 81.72 70.30 74.42
PUD 72.18 58.07 60.97
Small 66.90 49.24 54.89
Low-resource 19.26 1.89 6.17

Table 1: Official results of our system in CoNLL
shared task. State-of-the-art results are in bold.

Regarding to processing big treebanks, our sys-
tem performs very well on Czech ‘cs fictree’ tree-
bank and English ‘en gum’ treebank (1st place in
MLAS and BLEX, and 2nd place in LAS), and
Latin ‘la ittb’ treebank (1st place in MLAS and
BLEX, and 3rd place in LAS). It is very important
to note that most of the mentioned languages, i.e.
Russian, Latin, Slovenian, Norwegian, and Czech,
are Indo-European languages (fusional). Further-
more, for other fusional languages, e.g. Gali-
cian, Ancient Greek, Polish, Ukrainian, Dutch,
Swedish, French, Italian, Spanish, Basque, our
system provides quite satisfying results as well. It
follows that our system is especially appropriate
for processing fusional languages.

Our last observation concerns the usefulness of
external word embeddings for NLP system with
a neural architecture. The languages without ex-
ternal word embeddings (see Section 3.1) are pro-

8http://universaldependencies.org/
conll18/results.html
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cessed by our system significantly below its over-
all performance. Hence, the external word embed-
dings are crucial for a neural NLP system.

4.2 Impact of Loss Function

For 15 arbitrarily selected treebanks we train
the models without the additional loss function
and we compare UAS scores of these models with
UAS scores obtained by the models estimated with
the additional loss function (with K = 3, see Sec-
tion 2.4.2). Moreover for each treebank we calcu-
late what would be the fraction of trees with cycles
if we use the greedy algorithm to construct the pre-
dicted trees.

Note that the following results cannot be di-
rectly compared to the official test results. First
we report the scores on the validation set. Second
we use the gold-standard segmentation instead of
the segmentation predicted by the baseline model.

Treebank UAS % Cycles
without with without with

ar padt 86.23 86.39 7.70 4.51
bg btb 92.32 92.45 1.26 1.52
cu proiel 86.94 86.49 4.19 3.91
da ddt 86.61 86.24 5.14 4.61
de gsd 87.74 87.64 3.50 2.63
es ancora 92.39 92.49 3.08 3.39
fa seraji 90.30 90.44 5.18 4.51
got proiel 83.88 83.57 5.48 4.57
hr set 90.34 90.50 6.71 4.95
hu szeged 81.99 82.48 11.34 9.75
id gsd 84.33 84.47 6.98 6.98
lv lvtb 85.69 85.58 6.28 4.66
pt bosque 92.65 92.63 1.25 1.43
ro rrt 91.04 90.89 2.39 2.53
vi vtb 68.92 69.02 15.00 12.63
Average 86.76 86.75 5.70 4.84

Table 2: Comparison of the models trained with
and without the additional loss function.

The additional loss only slightly decreases UAS
(see the second and the third column in Table
2). However, it also has only a small impact on
the cycles reduction (see the fourth and the fifth
column in Table 2). If there is a lot of cycles in
the graphs predicted without the additional loss,
e.g. 7.7% cycles in ‘ar padt’ (Arabic), the num-
ber of cycles is significantly reduced with the addi-

tional loss function, i.e. the reduction by 3.2 p.p. If
the rate of cycles is lower, e.g. 4.19% in ‘cu proiel’
(Old Church Slavonic), fewer cycles are corrected,
i.e. the reduction by 0.28 p.p. Finally, there are
four treebanks – ‘bg btb’ (Bulgarian), ‘es ancora’
(Spanish), ‘pt bosque’ (Portuguese), and ‘ro rrt’
(Romanian), for which the additional loss function
slightly increases the number of cycles.

4.3 Impact of Self-training

We test the impact of self-training method on
the performance of the system trained on 20 se-
lected treebanks. Again the models are tested on
the validation set with the gold-standard segmen-
tation.

Comparing the results of the models estimated
on training data with the results of the models
estimated with the self-training method (see Ta-
ble 3), we notice that self-training significantly in-
creases the performance of the system. There is
an increase for all metrics for all treebanks except
for ‘zh gsd’ (Chinese). On average there is an in-
crease of 1.2 p.p. for LAS, 2.9 p.p. for MLAS and
1.7 p.p. for BLEX.

5 Conclusion

We described the ICS PAS system which took
part in CoNLL 2018 shared task. Our goal was
to build one system for preprocessing natural lan-
guages, i.e. for part-of-speech tagging, lemmatisa-
tion and dependency parsing. The three system’s
modules – tagger, lemmatizer and parser – are
jointly trained. The proposed neural system ranks
3th/4th in the official evaluation of the shared task.
It is worth nothing that the system is especially
useful for estimating the models on relative sparse
data (small treebanks), as it overcame other sys-
tems in terms of MLAS and BLEX. Furthermore,
our system is especially appropriate for processing
Indo-European fusional languages.

The self-training procedure significantly in-
creases the performance of the system. The pro-
posed loss function, in turn, has only a slight
impact on the cycles reduction and UAS scores.
The external word embeddings are crucial for our
neural-based system.
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Treebank LAS MLAS BLEX
std self std self std self

bg btb 88.84 89.23 79.39 80.12 78.89 79.21
da ddt 83.24 84.89 72.40 75.76 76.73 78.93
el gdt 87.89 89.19 73.55 76.98 74.06 77.30
eu bdt 81.58 82.85 65.94 68.15 76.29 77.49
fa seraji 86.91 87.22 80.19 81.18 80.86 81.36
ga idt N/A N/A N/A N/A N/A N/A
he htb 84.39 85.60 71.31 73.63 73.87 75.34
hr set 86.06 86.22 71.17 71.61 79.01 79.38
hu szeged 77.39 80.55 60.77 67.28 70.55 74.41
id gsd 77.62 77.97 64.27 66.22 74.03 74.62
kk ktb N/A N/A N/A N/A N/A N/A
lv lvtb 80.52 82.67 65.53 69.11 71.71 74.19
ro rrt 85.88 86.68 76.49 77.57 79.47 80.39
sk snk 83.44 85.52 56.05 66.69 72.77 77.13
tr imst 64.07 64.95 49.26 51.97 57.15 58.87
ug udt 63.89 65.50 38.21 41.83 51.48 53.89
uk iu 85.83 87.91 68.35 73.69 78.35 81.65
ur udtb 80.91 81.34 52.92 53.48 71.09 71.72
vi vtb 58.82 60.52 49.29 51.87 54.85 56.93
zh gsd 77.09 76.71 65.17 64.88 69.68 68.93
Average 79.69 80.86 64.46 67.33 71.71 73.43

Table 3: Comparison of the standard (std) and self-training (self) models on the validation set using
the gold-standard segmentation. Note that ‘kk ktb’ (Kazakh) and ‘ga idt’ (modern Irish) treebanks do
not have validation sets, so we are unable to report any results.
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Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar,
Livy Real, Siva Reddy, Georg Rehm, Michael
Rießler, Larissa Rinaldi, Laura Rituma, Luisa
Rocha, Mykhailo Romanenko, Rudolf Rosa, Da-
vide Rovati, Valentin Ros, ca, Olga Rudina, Shoval
Sadde, Shadi Saleh, Tanja Samardžić, Stephanie
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Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire
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Abstract

This paper describes our system (HIT-
SCIR) submitted to the CoNLL 2018
shared task on Multilingual Parsing from
Raw Text to Universal Dependencies. We
base our submission on Stanford’s win-
ning system for the CoNLL 2017 shared
task and make two effective extensions:
1) incorporating deep contextualized word
embeddings into both the part of speech
tagger and dependency parser; 2) ensem-
bling parsers trained with different initial-
ization. We also explore different ways
of concatenating treebanks for further im-
provements. Experimental results on the
development data show the effectiveness
of our methods. In the final evaluation, our
system was ranked first according to LAS
(75.84%) and outperformed the other sys-
tems by a large margin.

1 Introduction

In this paper, we describe our system (HIT-SCIR)
submitted to CoNLL 2018 shared task on Multilin-
gual Parsing from Raw Text to Universal Depen-
dencies (Zeman et al., 2018). We base our system
on Stanford’s winning system (Dozat et al., 2017,
§2) for the CoNLL 2017 shared task (Zeman et al.,
2017).

Dozat and Manning (2016) and its extension
(Dozat et al., 2017) have shown very competitive
performance in both the shared task (Dozat et al.,
2017) and previous parsing works (Ma and Hovy,
2017; Shi et al., 2017a; Liu et al., 2018b; Ma et al.,
2018). A natural question that arises is how can we
further improve their part of speech (POS) tagger
and dependency parser via a simple yet effective
technique. In our system, we make two notewor-
thy extensions to their tagger and parser:

• Incorporating the deep contextualized word
embeddings (Peters et al., 2018, ELMo: Em-
beddings from Language Models) into the
word representaton (§3);

• Ensembling parsers trained with different ini-
tialization (§4).

For some languages in the shared task, multi-
ple treebanks of different domains are provided.
Treebanks which are of the same language fami-
lies are provided as well. Letting these treebanks
help each other has been shown an effective way
to improve parsing performance in both the cross-
lingual-cross-domain parsing community and last
year’s shared tasks (Ammar et al., 2016; Guo
et al., 2015; Che et al., 2017; Shi et al., 2017b;
Björkelund et al., 2017). In our system, we ap-
ply the simple concatenation to the treebanks that
are potentially helpful to each other and explore
different ways of concatenation to improve the
parser’s performance (§5).

In dealing with the small treebanks and tree-
banks from low-resource languages (§6), we adopt
the word embedding transfer idea in the cross-
lingual dependency parsing (Guo et al., 2015)
and use the bilingual word vectors transforma-
tion technique (Smith et al., 2017)1 to map fast-
text2 word embeddings (Bojanowski et al., 2016)
of the source rich-resource language and target
low-resource language into the same space. The
transferred parser trained on the source language
is used for the target low-resource language.

We conduct experiments on the development
data to study the effects of ELMo, parser ensem-
ble, and treebank concatenation. Experimental re-
sults show that these techniques substantially im-

1https://github.com/Babylonpartners/
fastText_multilingual

2https://github.com/facebookresearch/
fastText
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prove the parsing performance. Using these tech-
niques, our system achieved an averaged LAS of
75.84 on the official test set and was ranked the
first according to LAS (Zeman et al., 2018). This
result significantly outperforms the others by a
large margin.3

We release our pre-trained ELMo for many
languages at https://github.com/
HIT-SCIR/ELMoForManyLangs.

2 Deep Biaffine Parser

We based our system on the tagger and parser of
Dozat et al. (2017). The core idea of the tagger
and parser is using an LSTM network to produce
the vector representation for each word and then
predict POS tags and dependency relations using
the representation. For the tagger whose input is
the word alone, this representation is calculated as

hi = BiLSTM(h0, (v
(word)
1 , ...,v(word)

n ))i

where v
(word)
i is the word embeddings. After get-

ting hi, the scores of tags are calculated as

h
(pos)
i = MLP(pos)(hi)

s
(pos)
i = W · h(pos)

i + b(pos)

y
(pos)
i = argmax

j
s
(pos)
i,j

where each element in s
(pos)
i represents the possi-

bility that i-th word is assigned with correspond-
ing tag.

For the parser whose inputs are the word and
POS tag, such representation is calculated as

xi = v
(word)
i ⊕ v

(tag)
i

hi = BiLSTM(h0, (x1, ...,xn))i

And a pair of representations are fed into a biaffine
classifier to predict the possibility that there is a
dependency arc between these two words. The
scores over all head words are calculated as

s
(arc)
i = H(arc-head)W (arc)h

(arc-dep)
i

+H(arc-head)b(arc)

y(arc) = argmax
j

s
(arc)
i,j

where h
(arc-dep)
i is computed by feeding hi into

an MLP and H(arc-head) is the stack of h(arc-head)
i

3http://universaldependencies.org/
conll18/results.html

which is calculated in the same way as h
(arc-dep)
i

but using another MLP. After getting the head
y(arc) word, its relation with i-th word is decided
by calculating

s
(rel)
i = h

T (rel−head)

y(arc)
U(rel)h

(rel−dep)
i

+W (rel)(h
(rel−dep)
i ⊕ h

T (rel−head)

y(arc)
)

+ b(rel),

y(rel) = argmax
j

s
(rel)
i,j

where h(rel−head) and h(rel−dep) are calculated in
the same way as h(arc-dep)

i and h
(arc-head)
i .

This decoding process can lead to cycles in the
result. Dozat et al. (2017) employed an iterative
fixing methods on the cycles. We encourage the
reader of this paper to refer to their paper for more
details on training and decoding.

For both the biaffine tagger and parser, the word
embedding v

(word)
i is obtained by summing a fine-

tuned token embedding wi, a fixed word2vec em-
bedding pi, and an LSTM-encoded character rep-
resentation v̂i as

v
(word)
i = wi + pi + v̂i.

3 Deep Contextualized Word
Embeddings

Deep contextualized word embeddings (Peters
et al., 2018, ELMo) has shown to be very effec-
tive on a range of syntactic and semantic tasks and
it’s straightforward to obtain ELMo by using an
LSTM network to encode words in a sentence and
training the LSTM network with language model-
ing objective on large-scale raw text. More specif-
ically, the ELMoi is computed by first computing
the hidden representation h

(LM)
i as

h
(LM)
i = BiLSTM(LM)(h

(LM)
0 , (ṽ1, ..., ṽn))i

where ṽi is the output of a CNN over charac-
ters, then attentively summing and scaling differ-
ent layers of h(LM)

i,j with sj and γ as

ELMoi = γ
L∑

j=0

sjh
(LM)
i,j ,

whereL is the number of layers and h
(LM)
i,0 is iden-

tical to ṽi. In our system, we follow Peters et al.
(2018) and use a two-layer bidirectional LSTM as
our BiLSTM(LM).
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In this paper, we study the usage of ELMo for
improving both the tagger and parser and make
several simplifications. Different from Peters et al.
(2018), we treat the output of ELMo as a fixed rep-
resentation and do not tune its parameters during
tagger and parser training. Thus, we cancel the
layer-wise attention scores sj and the scaling fac-
tor γ, which means

ELMoi =
2∑

j=0

h
(LM)
i,j .

In our preliminary experiments, using h
(LM)
i,0 for

ELMoi yields better performance on some tree-
banks. In our final submission, we decide using
either

∑2
j=0 h

(LM)
i,j or h

(LM)
i,0 based on their de-

velopment.
After getting ELMoi, we project it to the same

dimension as v
(word)
i and use it as an additional

word embedding. The calculation of v(word)
i be-

comes

v
(word)
i = wi + pi + v̂i +W (ELMo) ·ELMoi

for both the tagger and parser. We need to note that
training the tagger and parser includes W (ELMo).
To avoid overfitting, we impose a dropout func-
tion on projected vector W (ELMo) · ELMoi dur-
ing training.

4 Parser Ensemble

According to Reimers and Gurevych (2017), neu-
ral network training can be sensitive to initializa-
tion and Liu et al. (2018a) shows that ensemble
neural network trained with different initialization
leads to performance improvements. We follow
their works and train three parsers with different
initialization, then ensemble these parsers by av-
eraging their softmaxed output scores as

s
(rel)
i =

1

3

3∑

m=1

softmax(s
(m,rel)
i ).

5 Treebank Concatenation

For 15 out of the 58 languages in the shared task,
multiple treebanks from different domains are pro-
vided. There are also treebanks that come from
the same language family. Taking the advantages
of the relation between treebanks has been shown
a promising direction in both the research commu-
nity (Ammar et al., 2016; Guo et al., 2015, 2016a)

and in the CoNLL 2017 shared task (Che et al.,
2017; Björkelund et al., 2017; Shi et al., 2017b).
In our system, we adopt the treebank concatena-
tion technique as Ammar et al. (2016) with one ex-
ception: only a group of treebanks from the same
language (cross-domain concatenation) or a pair
of treebanks that are typologically or geograph-
ically correlated (cross-lingual concatenation) is
concatenated.

In our system, we tried cross-domain concate-
nation on nl, sv, ko, it, en, fr, gl, la, ru, and sl.4

We also tried cross-lingual concatenation on ug-
tr, uk-ru, ga-en, and sme-fi following Che et al.
(2017). However, due to the variance in vocabu-
lary, grammatical genre, and even annotation, tree-
bank concatenation does not guarantee to improve
the model’s performance. We decide the usage of
concatenation by examining their development set
performance. For some small treebanks which do
not have development set, whether using treebank
concatenation is decided through 5-fold cross vali-
dation.5 We show the experimental results of tree-
bank concatenation in Section 9.3.

6 Low Resources Languages

In the shared task, 5 languages are presented with
training set of less than 50 sentences. 4 languages
do not even have any training data. It’s difficult to
train reasonable parser on these low-resource lan-
guages. We deal with these treebanks by adopt-
ing the word embedding transfer idea of Guo et al.
(2015). We transfer the word embeddings of
the rich-resource language to the space of low-
resource language using the bilingual word vec-
tors transformation technique (Smith et al., 2017)
and trained a parser using the source treebank with
only pretrained word embeddings on the trans-
formed space as v

(word)
i = pi. The transforma-

tion matrix is automatically learned on the fasttext
word embeddings using the same tokens shared by
two languages (like punctuation).

Table 1 shows our source languages for the tar-
get low-resource languages. For a treebank with
a few training data, its source language is decided
by testing the source parser’s performance on the

4We opt out cs, fi, and pl because all the treebanks of
these languages are relatively large – they have more than
10K training sentences.

5We use udpipe for this part of experiments because we
consider the effect of treebank concatenation as being irrele-
vant to the parser architecture and udpipe has the speed ad-
vantage in both training and testing.
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target br fo th hy kk bxr kmr hsb
source ga no zh et tr hi fa pl

Table 1: Cross-lingual transfer settings for low-
resource target languages.

training data.6 For a treebank without any training
data, we choose the source language according to
their language family.7

Naija presents an exception for our method
since it does not have fasttext word embeddings
and embedding transformation is infeasible. Since
it’s a dialect of English, we use the full pipeline of
en ewt for pcm nsc instead.

7 Preprocessing

Besides improving the tagger and parser, we also
consider the preprocessing as an important factor
to the final performance and improve it by using
the state-of-the-art system for sentence segmenta-
tion, or developing our own word segmentor for
languages whose tokenizations are non-trival.

7.1 Sentence Segmentation
For some treebanks, sentence segmentation can be
problematic since there is no explicitly sentence
delimiters. de Lhoneux et al. (2017) and Shao
(2017) presented a joint tokenization and sentence
segmentation model (denoted as Uppsala segmen-
tor)8 that outperformed the baseline model in last
year’s shared task (Zeman et al., 2017). We se-
lect a set of treebanks whose udpipe sentence seg-
mentation F-scores are lower than 95 on the devel-
opment set and use Uppsala segmentor instead.9

Using the Uppsala segmentor leads to a develop-
ment improvement of 7.67 F-score in these tree-
banks over udpipe baseline and it was ranked the
first according to sentence segmentation in the fi-
nal evaluation.

7.2 Tokenization for Chinese, Japanese, and
Vietnamese

Tokenization is non-trivial for languages which
do not have explicit word boundary markers, like

6We use udpipe for this test. When training the parser, the
small set of target training data is also used.

7Thai does not have a treebank in the same family. We
choose Chinese as source language because of geographical
closeness and both these two languages are SVO in typology.

8https://github.com/yanshao9798/
segmenter/

9We use Uppsala segmentor for it postwita, got proiel,
la poroiel, cu proiel, grc proiel, sl ssj, nl lassysmall, fi tdt,
pt bosque, da ddt, id gsd, el gdt, and et edt.

Chinese, Japanese, and Vietnamese. We develop
our own tokenizer (denoted as SCIR tokenizer) for
these three languages. Following Che et al. (2017)
and Zheng et al. (2017), we model the tokenization
as labeling the word boundary tag10 on charac-
ters and use features derived from large-scale un-
labeled data to further improve the performance.11

In addition to the pointwise mutual information
(PMI), we also incorporate the character ELMo
into our tokenizer. Embeddings of these features
are concatenated along with a bigram character
embeddings as input. These techniques lead to the
best tokenization performance on all the related
treebanks and the average improvement over ud-
pipe baseline is 7.5 in tokenization F-score.12

7.3 Preprocessing for Thai
Thai language presents a unique challenge in the
preprocessing. Our survey on the Thai Wikipedia
indicates that there is no explicit sentence delim-
iter and obtaining Thai words requires tokeniza-
tion. To remedy this, we use the whitespace as
sentence delimiter and use the lexicon-based word
segmentation – forward maximum matching algo-
rithm for Thai tokenization. Our lexicon is derived
from the fasttext word embeddings by preserving
the top 10% frequent words.

7.4 Lemmatization and Morphology Tagging
We did not make an effort on lemmatization and
morphology tagging, but only use the baseline
model. This lags our performance in the MLAS
and BLEX evaluation, in which we were ranked
6th and 2nd correspondingly. However, since our
method, especially incorporating ELMo, is not
limited to particular task, we expect it to improve
both the lemmatization and morphology tagging
and achieve better MLAS and BLEX scores.

8 Implementation Details

Pretrained Word Embeddings. We use the
100-dimensional pretrained word embeddings re-
leased by the shared task for the large languages.
For the small treebanks and treebanks for low-
resource languages where cross-lingual transfer
is required, we use the 300-dimensional fast-
text word embeddings. Old French treebank

10We use the BIES scheme.
11For Vietnamese where whitespaces occur both inter- and

intra-words, we treat the whitespace-separated token as a
character.

12on ja gsd, ja modern, vi vtb, and zh gsd.
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(a) The effects of ELMo on POS tagging
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(b) The effects of ELMo on dependency parsing

Figure 1: The effects of ELMo. Treebanks are sorted from the smallest to the largest.

(fro srcmf ) presents the only exceptions and we
use the French embeddings instead. For all the
embeddings, we only use 10% of the most fre-
quent words.

ELMo. We use the same hyperparameter set-
tings as Peters et al. (2018) for BiLSTM(LM) and
the character CNN. We train their parameters as
training a bidirectional language model on a set
of 20-million-words data randomly sampled from
the raw text released by the shared task for each
language. Similar to Peters et al. (2018), we use
the sample softmax technique to make training on
large vocabulary feasible (Jean et al., 2015). How-
ever, we use a window of 8192 words surround-
ing the target word as negative samples and it
shows better performance in our preliminary ex-
periments. The training of ELMo on one language
takes roughly 3 days on an NVIDIA P100 GPU.

Biaffine Parser. We use the same hyperparame-
ter settings as Dozat et al. (2017). When trained
with ELMo, we use a dropout of 33% on the pro-
jected vectors.

SCIR Tokenizer. We use a 50-dimensional
character bigram embeddings. For the character
ELMo whose input is a character, the language
model predict next character in the same way as
the word ELMo. The final model is an ensemble
of five single tokenizers.

Uppsala Segmentor. We use the default settings
for the Uppsala segmentor and the final model is
an ensemble of three single segmentors.

9 Results

9.1 Effects of ELMo
We study the effect of ELMo on the large tree-
banks and report the results of a single tagger and
parser with and without ELMo. Figure 1a shows
the tagging results on the development set and Fig-
ure 1b shows the parsing results. Using ELMo in
the tagger leads to a macro-averaged improvement
of 0.56% in UPOS and the macro-averaged error
reduction is 17.83%. Using ELMo in the parser
leads to a macro-averaged improvement of 0.84%
in LAS and the macro-averaged error reduction is
7.88%.
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Figure 2: The effects of ensemble on dependency parsing. Treebanks are sorted according to the number
of training sentences from left to right.

nl apino lassysmall sv lines talbanken ko gsd kaist it isdt postwita
# train 12.2 5.8 # train 2.7 4.3 # train 4.4 23.0 # train 13.1 5.4
single 91.87 86.82 single 84.64 86.39 single 82.05 87.83 single 92.01 80.79

concat. 92.08 89.34 concat. 85.76 86.77 concat. 83.73 87.61 concat. 91.80 82.54

en ewt gum lines fr gsd sequoia spoken
# train 12.5 2.9 2.7 # train 14.6 2.2 1.2
single 88.75 86.52 83.86 single 91.64 91.44 79.06

concat. 88.74 85.65 85.30 concat. 91.44 90.51 81.99

Table 2: The developement performance with cross-domain concatenation for languages which has mul-
tiple treebanks. single means training the parser on it own treebank without concatenation. # train shows
the number of training sentences in the treebank measured in thousand.

ELMo improves the tagging performance al-
most on every treebank, except for zh gsd and
gl ctg. Similar trends are witnessed in the pars-
ing experiments with ko kaist and pl lfg being the
only treebanks where ELMo slightly worsens the
performance.

We also study the relative improvements in de-
pendence on the size of the treebank. The line in
Figure 1a and Figure 1b shows the error reduction
from using ELMo on each treebank. However, no
clear relation is revealed between the treebank size
and the gains using ELMo.

9.2 Effects of Ensemble

We also test the effect of ensemble and show the
results in Figure 2. Parser ensemble leads to an
averaged improvement of 0.55% in LAS and the
averaged error reduction is 4.0%. These results
indicate that ensemble is an effective way to im-
prove the parsing performance. The relationship
between gains using ensemble and treebank size
is also studied in this figure and the trend is that
small treebank benefit more from the ensemble.
We address this to the fact that the ensemble im-

proves the model’s generalization ability in which
the parser trained on small treebank is weak due to
overfitting.

9.3 Effects of Treebank Concatenation

As mentioned in Section 5, we study the effects
of both the cross-domain concatenation and cross-
lingual concatenation.

Cross-Domain Concatenation. For the tree-
banks which have development set, the develop-
ment performances are shown in Table 2. Num-
bers of sentences in the training set are also shown
in this table. The general trend is that for the tree-
bank with small training set, cross-domain con-
catenation achieves better performance. While for
those with large training set, concatenation does
not improve the performance or even worsen the
results.

For the small treebanks which do not have de-
velopment set, the 5 fold cross validation results
are shown in Table 3 in which concatenation im-
proves most of the treebanks except for gl treegal.
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gl treegal la perseus no nynorsklia ru taiga sl sst
# train 0.6 # train 1.3 # train 0.3 # train 0.9 # train 2.1
treegal 66.71 perseus 44.05 nynorsklia 51.05 taiga 54.70 sst 55.15

+ctg 56.73 +proiel 50.78 +nynorsk 58.49 +syntagrus 60.75 +ssj 59.52

Table 3: The 5-fold cross validation results for the cross-domain concatenation of treebank which does
not have development set.

ug udt uk iu ga idt sme giella
ug udt 69.27 uk iu 88.84 ga idt 62.84 sme giella 66.33

+tr imst 19.27 +ru syntagus 90.74 +en ewt 51.00 +fi ftb 59.86

Table 4: Cross-lingual concatenation results. The results for ug udt and uk iu are obtained on the devel-
opment set. The results for ga idt and sme giella are obtained with udpipe by 5-fold cross validation.

∆-sent. udpipe uppsala
fi tdt +0.69 88.13 88.67

et edt +1.22 86.33 86.36
nl lassysmall +1.39 88.08 88.60

da ddt +1.56 86.21 86.51
el gdt +1.57 90.08 89.96

cu proiel +1.72 72.79 74.04
pt bosque +1.83 90.73 90.20

id gsd +2.46 74.14 78.83
la proiel +4.82 73.21 74.22

got proiel +5.36 67.55 68.40
grc proiel +5.86 79.67 80.72

sl ssj +18.81 88.43 92.27
it postwita +30.40 74.91 79.26

∆-word udpipe scir
ja gsd +4.07 80.53 85.23
zh gsd +7.16 66.16 75.78
vi vtb +9.02 48.58 57.53

Table 5: The effects of improved preprocessing on
the parsing performance. The first block shows
the effects of sentence segmentation improvement.
∆-sent. means the sentence segmentation F-score
difference between Uppsala segmentor and ud-
pipe. The second block shows the effects of word
segmentation improvement. ∆-word means the
word segmentation in F-score difference between
SCIR tokenizer and udpipe.

Cross-Lingual Concatenation. The experi-
mental results of cross-lingual concatenation are
shown in Table 4. Unfortunately, concatenating
treebanks from different languages only achieves
improved performance on uk iu. This results
also indicate that in cross lingual parsing, sophis-
ticated methods like word embeddings transfer
(Guo et al., 2015, 2016b) and treebank transfer
(Guo et al., 2016a) are still necessary.

9.4 Effects of Better Preprocessing

We also study how preprocessing contributes to
the final parsing performance. The experimental
results on the development set are shown in Ta-

ble 5. From this table, the performance of word
segmentation is almost linearly correlated with the
final performance. Similar trends on sentence seg-
mentation performance are witnessed but el gdt
and pt bosque presents some exceptions where
better preprocess leads drop in the final parsing
performance.

9.5 Parsing Strategies and Test Set
Evaluation

Using the development set and cross validation,
we choose the best model and data combination
and the choices are shown in Table 6 along with
the test evaluation. From this table, we can see
that our system gains more improvements when
both ELMo and parser ensemble are used. For
some treebanks, concatenation also contributes to
the improvements. Parsing Japanese, Vietnamese,
and Chinese clearly benefits from better word seg-
mentation. Since most of the participant teams
use single parser for their system, we also remove
the parser ensemble and do a post-contest eval-
uation. The results are also shown in this table.
Our system without ensemble achieves an macro-
averaged LAS of 75.26, which unofficially ranks
the first according to LAS in the shared task.

We report the time and memory consumption.
A full run over the 82 test sets on the TIRA vir-
tual machine (Potthast et al., 2014) takes about 40
hours and consumes about 4G RAM memory.

10 Conclusion

Our system submitted to the CoNLL 2018 shared
task made several improvements on last year’s
winning system from Dozat et al. (2017), includ-
ing incorporating deep contextualized word em-
beddings, parser ensemble, and treebank concate-
nation. Experimental results on the development
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set show the effectiveness of our methods. Using
these techniques, our system achieved an averaged
LAS of 75.84% and obtained the first place in LAS
in the final evaluation.
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ltcode sent+tokenize tagger parser LAS w/o ens. ref. LAS
af afribooms udpipe: self biaffine (none): self biaffine (none)*3: self 85.47 (1) 84.41 (5) 85.45

ar padt udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 73.63 (2) 73.34 (3) 77.06
bg btb udpipe: self biaffine (h0): self biaffine (h0)*3: self 91.22 (1) 90.89 (1) 90.41
br keb udpipe: self biaffine trans: self+ga idt biaffine trans*3: self+ga idt 8.54 (21) 7.82 (21) 38.64

bxr bdt udpipe: self biaffine trans: self+hi hdtb biaffine trans*3: self+hi hdtb 15.44 (6) 15.69 (6) 19.53
ca ancora udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 91.61 (1) 91.29 (1) 90.82

cs cac udpipe: self biaffine (h0): self biaffine (h0)*3: self 91.61 (1) 91.33 (1) 91.00
cs fictree udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 92.02 (1) 91.39 (3) 91.83

cs pdt udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 91.68 (1) 91.45 (1) 90.57
cs pud udpipe: cs pdt biaffine (h0): cs pdt biaffine (h0,1,2)*3: cs pdt 86.13 (1) 85.89 (1) 85.35

cu proiel uppsala: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 74.29 (3) 73.29 (4) 75.73
da ddt uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 86.28 (1) 85.54 (1) 84.88
de gsd udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 80.36 (1) 79.81 (1) 79.03
el gdt uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 89.65 (1) 88.88 (3) 89.59

en ewt udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 84.57 (1) 83.88 (2) 84.02
en gum udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 84.42 (2) 83.57 (2) 85.05
en lines udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self+en ewt+en gum 81.97 (1) 81.67 (1) 81.44
en pud udpipe: en ewt biaffine (h0): en ewt biaffine (h0,1,2)*3: en ewt 87.73 (2) 87.26 (2) 87.89

es ancora udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 90.93 (1) 90.62 (1) 90.47
et edt uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 85.35 (1) 84.74 (1) 84.15

eu bdt udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self 84.22 (1) 83.42 (1) 83.13
fa seraji udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 88.11 (1) 87.60 (1) 86.18

fi ftb udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self 88.53 (1) 88.00 (1) 87.86
fi pud udpipe: fi tdt biaffine (h0): fi tdt biaffine (h0)*3: fi tdt 90.23 (1) 89.58 (1) 89.37
fi tdt uppsala: self biaffine (h0): self biaffine (h0)*3: self 88.73 (1) 88.68 (1) 87.64

fo oft udpipe: no bokmaal biaffine trans: no bokmaal biaffine trans*3: no bokmaal 44.05 (4) 44.17 (4) 49.43
fr gsd udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 86.89 (1) 86.81 (1) 86.46

fr sequoia udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 89.65 (2) 89.12 (2) 89.89
fr spoken udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self+fr gsd+fr sequoia 75.78 (1) 75.09 (1) 74.31
fro srcmf udpipe: self biaffine (none): self biaffine (none)*3: self 87.07 (2) 86.53 (3) 87.12

ga idt udpipe: self biaffine (none): self biaffine (none)*3: self 68.57 (5) 66.80 (7) 70.88
gl ctg udpipe: self biaffine (none): self biaffine (none)*3: self 82.35 (2) 81.80 (3) 82.76

gl treegal udpipe: self biaffine (none): self biaffine (none)*3: self 72.88 (4) 71.27 (8) 74.25
got proiel uppsala: self biaffine (none): self biaffine (none)*3: self 69.26 (3) 67.61 (5) 69.55

grc perseus udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 79.39 (1) 78.53 (1) 74.29
grc proiel uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 79.25 (1) 78.35 (1) 76.76

he htb udpipe: self biaffine (h0): self biaffine (h0)*3: self 67.05 (3) 66.67 (3) 76.09
hi hdtb udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self 92.41 (1) 92.13 (1) 91.75

hr set udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 87.36 (1) 86.82 (1) 86.76
hsb ufal udpipe: self biaffine trans: self+pl lfg biaffine trans*3: self+pl lfg 37.68 (4) 35.42 (4) 46.42

hu szeged udpipe: self biaffine (h0): self biaffine (h0)*3: self 82.66 (1) 80.96 (1) 79.47
hy armtdp udpipe: self biaffine trans: self+et edt biaffine trans*3: self+et edt 33.90 (3) 30.87 (3) 37.01

id gsd uppsala: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 80.05 (1) 79.19 (1) 79.13
it isdt udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 92.00 (1) 91.71 (1) 91.47

it postwita uppsala: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self+it isdt 79.39 (1) 78.69 (1) 78.62
ja gsd udpipe+scir: self biaffine (h0): self biaffine (h0)*3: self 83.11 (1) 82.70 (1) 79.97

ja modern udpipe+scir: ja gsd biaffine (h0): ja gsd biaffine (h0)*3: ja gsd 26.58 (4) 25.16 (4) 28.33
kk ktb udpipe: self biaffine trans: self+tr imst biaffine trans*3: self+tr imst 23.92 (10) 23.18 (13) 31.93

kmr mg udpipe: self biaffine trans: self+fa seraji biaffine trans*3: self+fa seraji 26.26 (5) 24.58 (6) 30.41
ko gsd udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 85.14 (1) 84.76 (1) 84.31

ko kaist udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 86.91 (1) 86.61 (2) 86.84
la ittb udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 87.08 (1) 86.50 (2) 86.54

la perseus udpipe: self biaffine (h0): self+la proiel biaffine (h0,1,2)*3: self+la proiel 72.63 (1) 72.67 (1) 68.07
la proiel uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 73.61 (1) 72.42 (1) 71.76

lv lvtb udpipe: self biaffine (h0): self biaffine (h0)*3: self 83.97 (1) 83.04 (1) 81.85
nl alpino udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self+nl lassysmall 89.56 (1) 89.31 (1) 87.49

nl lassysmall uppsala: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self+nl alpino 86.84 (1) 86.57 (1) 84.27
no bokmaal udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 91.23 (1) 90.89 (1) 90.37
no nynorsk udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 90.99 (1) 90.62 (1) 89.46

no nynorsklia udpipe: self biaffine (h0): self+no nynorsk biaffine (h0,1,2)*3: self+no nynorsk 70.34 (1) 69.06 (1) 68.71
pcm nsc udpipe: en ewt biaffine (h0): en ewt biaffine (h0,1,2)*3: en ewt 24.48 (2) 25.16 (2) 30.07

pl lfg udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 94.86 (1) 94.63 (1) 94.62
pl sz udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 92.23 (1) 91.67 (1) 91.59

pt bosque uppsala: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 87.61 (3) 87.32 (5) 87.81
ro rrt udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 86.87 (1) 86.07 (3) 86.33

ru syntagrus udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self 92.48 (1) 92.26 (1) 91.72
ru taiga udpipe: self biaffine (h0,1,2): self+ru syntagrus biaffine (h0,1,2)*3: self+ru syntagrus 71.81 (3) 71.62 (3) 74.24
sk snk udpipe: self biaffine (h0,1,2): self biaffine (h0,1,2)*3: self 88.85 (1) 88.29 (1) 87.59

sl ssj uppsala: self biaffine (h0): self biaffine (h0,1,2)*3: self 91.47 (1) 91.08 (2) 91.26
sl sst udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self+sl ssj 61.39 (1) 59.90 (1) 58.12

sme giella udpipe: self biaffine (none): self biaffine (h0,1,2)*3: self 69.06 (3) 67.43 (5) 69.87
sr set udpipe: self biaffine (none): self biaffine (h0,1,2)*3: self 88.33 (3) 87.78 (5) 88.66

sv lines udpipe: self biaffine (h0): self biaffine (h0)*3: self+sv talbanken 84.08 (1) 83.64 (1) 81.97
sv pud udpipe: sv lines biaffine (h0): sv lines biaffine (h0)*3: sv lines+sv talbanken 80.35 (1) 79.78 (1) 79.71

sv talbanken udpipe: self biaffine (h0,1,2): self biaffine (h0)*3: self+sv lines 88.63 (1) 88.26 (1) 86.45
th pud thai biaffine trans: zh gsd biaffine trans*3: zh gsd 0.64 (14) 0.61 (15) 13.70
tr imst udpipe: self biaffine (h0): self biaffine (h0,1,2)*3: self 66.44 (1) 64.91 (1) 64.79
ug udt udpipe: self biaffine (h0): self biaffine (h0)*3: self 67.05 (1) 66.20 (1) 65.23
uk iu udpipe: self biaffine (h0): self biaffine (h0)*3: self+ru syntagrus 88.43 (1) 87.79 (1) 85.16

ur udtb udpipe: self biaffine (h0): self biaffine (h0)*3: self 83.39 (1) 82.17 (1) 82.15
vi vtb udpipe+scir: self biaffine (h0,1,2): self biaffine (h0)*3: self 55.22 (1) 53.92 (1) 47.41

zh gsd udpipe+scir: self biaffine (none): self biaffine (h0,1,2)*3: self 76.77 (1) 75.55 (1) 71.04
average 75.84 (1) 75.26 (1)

Table 6: The strategies used in the final submission. The toolkit and model are separated by colon. (upp-
sala: the Uppsala segmentor; scir: our segmentor; biaffine: the biaffine tagger and parser; biaffine trans:
our transfer parser for low-resource languages.) h0 and h0,1,2 denotes the ELMo used to train the model.
h0 means using h

(LM)
i,0 and h0,1,2 means using

∑2
j=0 h

(LM)
i,j . self denotes that the model is trained with

the treebank itself. If the model field is not filled with self, the model is trained with treebank concatena-
tion. The ref. column shows the top performing system if we are not top, or the second-best performing
system on LAS. We also show the results without parser ensemble and our unofficial ranks of this system.
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Abstract

This paper describes the system of team
LeisureX in the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to
Universal Dependencies. Our system pre-
dicts the part-of-speech tag and depen-
dency tree jointly. For the basic tasks,
including tokenization, lemmatization and
morphology prediction, we employ the of-
ficial baseline model (UDPipe). To train
the low-resource languages, we adopt a
sampling method based on other rich-
resource languages. Our system achieves
a macro-average of 68.31% LAS F1 score,
with an improvement of 2.51% compared
with the UDPipe.

1 Introduction

The goal of Universal Dependencies (UD) (Nivre
et al., 2016; Zeman et al., 2017) is to develop
multilingual treebank, whose annotations of mor-
phology and syntax are cross-linguistically consis-
tent. In this paper, we describe our system for the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies (Zeman
et al., 2018), and we focus only on the subtasks
of part-of-speech (POS) tagging and dependency
parsing. For the intermediate steps, including tok-
enization, lemmatization and morphology predic-
tion, we tackle them by the official baseline model
(UDPipe)1.

∗ These authors made equal contribution.† Correspond-
ing author. This paper was partially supported by National
Key Research and Development Program of China (No.
2017YFB0304100), National Natural Science Foundation of
China (No. 61672343 and No. 61733011), Key Project
of National Society Science Foundation of China (No. 15-
ZDA041), The Art and Science Interdisciplinary Funds of
Shanghai Jiao Tong University (No. 14JCRZ04).

1https://ufal.mff.cuni.cz/udpipe/

Dependency parsing that aims to predict the
existence and type of linguistic dependency rela-
tions between words, is a fundamental part in nat-
ural language processing (NLP) tasks (Li et al.,
2018c; He et al., 2018). Many referential natural
language processing studies (Zhang et al., 2018;
Bai and Zhao, 2018; Cai et al., 2018; Li et al.,
2018b; Wang et al., 2018; Qin et al., 2017) can
also contribute to the universal dependency pars-
ing system. Universal dependency parsing fo-
cuses on learning syntactic dependency structure
over many typologically different languages, even
low-resource languages in a real-world setting.
Within the dependency parsing literature, there are
two dominant techniques, graph-based (McDon-
ald et al., 2005; Ma and Zhao, 2012; Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017)
and transition-based parsing (Nivre, 2003; Dyer
et al., 2015; Zhang et al., 2017). Graph-based de-
pendency parsers enjoy the advantage of the global
search which learns the scoring functions for all
possible parsing trees to find the globally high-
est scoring one while transition-based dependency
parsers build dependency trees from left to right
incrementally, which makes the series of multiple
choice decisions locally.

In our system, we adopt the transition-based de-
pendency parsing in view of its relatively lower
time complexity. Our system implements univer-
sal dependency parsing based on the stack-pointer
networks (STACKPTR) parser introduced by (Ma
et al., 2018). Furthermore, previous work (Straka
et al., 2016; Nguyen et al., 2017) showed that POS
tags are helpful to dependency parsing. In partic-
ular, (Nguyen et al., 2017) pointed out that pars-
ing performance could be improved by the merit
of accurate POS tags and the context of syntac-
tic parse tree could help resolve POS ambiguities.
Therefore, we seek to jointly learn POS tagging
and dependency parsing.
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As Long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) have shown
significant representational effectiveness to a wide
range of NLP tasks, we leverage bidirectional
LSTMs (BiLSTM) to learn shared representations
for both POS tagging and dependency parsing.
In addition, to train the low-resource languages,
we adopt a sampling method based on other rich-
resource languages.

In terms of all the above model improvement,
compared to the UDPipe baseline, our system
achieves a macro-average of 68.31% LAS F1
score, with an improvement of 2.51% in this task.

2 Our Model

In this section, we describe our joint model2

for POS tagging and dependency parsing in the
CoNLL 2018 Shared Task, which is built on
the STACKPTR parser introduced by (Ma et al.,
2018). Our model is mainly composed of three
components, the representation (Section 2.1), POS
tagger (Section 2.2) and dependency parser (Sec-
tion 2.3). Figure 1 illustrates the overall model.

2.1 Representation

Representation is a key component in various NLP
models, and good representations should ideally
model both complex characteristics and linguis-
tic contexts. In our system, we follow the bi-
directional LSTM-CNN architecture (BiLSTM-
CNNs) (Chiu and Nichols, 2016; Ma and Hovy,
2016), where CNNs encode word information into
character-level representation and BiLSTM mod-
els context information of each word.

Character Level Representation Though word
embedding is popular in many existing parsers,
they are not ideal for languages with high out-of-
vocabulary (OOV) ratios. Hence, our system in-
troduces the character-level (Li et al., 2018a) rep-
resentation to address the challenge. Formally,
given a word w = {BOW, c1, c2, ..., cn, EOW},
where two special BOW (begin-of-word) and
EOW (end-of-word) tags indicate the begin and
end positions respectively, we use the CNN to ex-
tract character-level representation as follows:

ec =MaxPool(Conv(w))

2Our code will be available here: https://github.
com/bcmi220/joint_stackptr.

where the CNN is similar to the one in (Chiu and
Nichols, 2016), but we use only characters as the
inputs to CNN, without character type features.

Word Level Representation Word embedding
is a standard component of most state-of-the-art
NLP architectures. Due to their ability to cap-
ture syntactic and semantic information of words
from large scale unlabeled texts, we pre-train the
word embeddings from the given training dataset
by word2vec (Mikolov et al., 2013) toolkit. For
low-resource languages without available training
data, we sample the training dataset from similar
languages to generate a mixed dataset.

2.2 POS Tagger

To enrich morphological information, we also in-
corporate UPOS tag embeddings into the repre-
sentation. Therefore, we jointly predict the UPOS
tag in our system. The architecture for the POS
tagger in our model is almost identical to that of
the parser (Dozat et al., 2017). The tagger uses a
BiLSTM over the concatenation of word embed-
dings and character embeddings:

sposi = BiLSTMpos(ewi � eci )

Then we calculate the probability of tag for each
type using affine classifiers as follows:

hposi =MLP pos(sposi )

rposi =W poshposi + bpos

yposi = argmax(ri)

The tag classifier is trained jointly using cross-
entropy losses that are summed together with the
dependency parser loss during optimization.

Context-sensitive Representation In order to
integrate contextual information, we concatenate
the character embedding ec, pre-trained word em-
bedding ew and UPOS tag embedding epos, then
feed them into the BiLSTM. We take the bidi-
rectional vectors at the final layer as the context-
sensitive representation:

−→si = LSTMforward(e
w
i � eci � eposi )

←−si = LSTMbackward(e
w
i � eci � eposi )

si =
−→si �←−si

Notably, we use the UPOS tag from the output of
our POS tagging model.
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Figure 1: The joint model for POS tagging and dependency parsing.

2.3 Dependency Parsing

The universal dependency parsing component of
our system is built on the current state-of-the-art
approach STACKPTR, which combines pointer
networks (Vinyals et al., 2015) with an internal
stack for tracking the status of depth-first search.
It benefits from the global information of the sen-
tence and all previously derived subtree structures,
and removes the left-to-right restriction in classi-
cal transition-based parsers.

The STACKPTR parser mainly consists of two
parts: encoder and decoder. The encoder based on
BiLSTM-CNNs architecture takes the sequence of
tokens and their POS tags as input, then encodes
it into encoder hidden state si. The internal stack
σ is initialized with dummy ROOT. For decoder
(a uni-directional RNN), it receives the input from
last step and outputs decoder hidden state ht. The
pointer neural network takes the top element wh
in the stack σ at each timestep t as current head
to select a specific child wc with biaffine attention

mechanism (Dozat and Manning, 2017) for atten-
tion score function in all possible head-dependent
pairs. Then the child wc will be pushed onto the
stack σ for next step when c 6= h, otherwise it
indicates that all children of the current head h
have been selected, therefore the head wh will be
popped out of the stack σ. The attention scoring
function used is given as follows and the pointer
neural network uses at as pointer to select the child
element:

eti = hTt Wsi + UTht + VT si + b
at = softmax(et)

More specifically, the decoder maintains a list of
available words in test phase. For each head h at
each decoding step, the selected child will be re-
moved from the list to make sure that it cannot be
selected as a child of other head words.

Given a dependency tree, there may be multi-
ple children for a specific head. This results in
more than one valid selection for each time step,

67



which might confuse the decoder. To address this
problem, the parser introduces an inside-outside
order to utilize second-order sibling information,
which has been proven to be an important feature
for parsing process (McDonald and Pereira, 2006;
Koo and Collins, 2010). To utilize the second-
order information, the parser replaces the input of
decoder from si as follows:

βi = ss ◦ sh ◦ si

where s and h indicate the sibling and head index
of node i, ◦ is the element-wise sum operation to
ensure no additional model parameters.

2.4 Loss Function
The training objective of pur system is to learn
the probability of UPOS tags Pθpos(ypos|x) and
the dependency trees Pθdep(ydep|x, y

′
pos). Given

a sentence x, the probabilities are factorized as:

Pθpos(ypos|x) =
k∑

i=1

Pθpos(pi|x)

y
′
pos = arg max

ypos∈Ypos
(Pθpos(ypos|x))

Pθdep(ydep|x, y
′
pos) =

k∑

i=1

Pθdep(pi|p<i, x, y
′
pos)

=
k∏

i=1

li∏

j=1

Pθdep(ci,j |ci,<j , p<i, x, y
′
pos)

where θpos and θdep represent the model param-
eters respectively. p<i denotes the preceding de-
pendency paths that have already been generated.
ci,j represents the jth word in pi and ci,j denotes
all the proceeding words on the path pi.

Therefore, the whole loss is the sum of three
objectives:

Loss = Losspos + Lossarc + Losslabel

where the Losspos, Lossarc and Losslabel are the
conditional likehood of their corresponding tar-
get, using the cross-entropy loss. Specifically, we
train a dependency label classifier following Dozat
and Manning (2017), which takes the dependency
head-child pair as input features.

3 System Implements

Our system focuses on three targets: the UPOS
tag, dependency arc and dependency relation.
Therefore, we rely on the UDPipe model (Straka

Treebank Sampling
Breton KEB English, Irish
Czech PUD Czech PDT

English PUD English EWT
Faroese OFT Norwegian, English, Danish,

Swedish, German, Dutch
Finnish PUD Finnish TDT

Japanese Modern Japanese GSD
Naija NSC English

Swedish PUD Swedish Talbanken
Thai PUD English, Chinese,

Hindi, Vietnamese

Table 1: Language substitution for treebanks with-
out training data

et al., 2016) to provide a pipeline from raw text
to basic dependency structures, including a tok-
enizer, tagger and the dependency predictor.

For treebanks with non-empty training dataset
(including treebanks whose training set is very
small), we utilize the baseline model UDPipe
trained on corresponding treebank, which has been
provided by the organizer. For the remaining nine
treebanks without training data, we construct the
train dataset by sampling from the other training
datasets according to the language similarity in-
spired by (Zhao et al., 2009, 2010; Wang et al.,
2015, 2016), as detailed in Table 1.

Our system adopts the hyper-parameter config-
uration in (Ma et al., 2018), with a few exceptions.
We initialize word vectors with 50-dimensional
pretrained word embeddings, 100-dimensional tag
embeddings and 512-dimensional recurrent states
(in each direction). Our system drops embeddings
and hidden states independently with 33% proba-
bility. We optimize with Adam (Kingma and Ba,
2015), setting the learning rate to 1e−3 and β1 =
β2 = 0.9. Moreover, we train models for up to 100
epochs with batch size 32 on 3 NVIDIA GeForce
GTX 1080Ti GPUs with 200 to 500 sentences per
second and occupying 2 to 3 GB graphic memory
each model. A full run over the test datasets on the
TIRA virtual machine (Potthast et al., 2014) takes
about 12 hours.

4 Results

Table 2 reports the official evaluation results of
our system in several metrics of treebanks from
the CoNLL 2018 shared task (?). For depen-
dency parsing, our model outperforms the baseline
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Results Ours Baseline Best
LAS 68.31 65.80 75.84
MLAS 53.70 52.42 61.25
BLEX 58.42 55.80 66.09
UAS 74.03 71.64 80.51
CLAS 63.85 60.77 72.36
UPOS 87.15 87.32 90.91
XPOS 83.91 85.00 86.67
Morphological features 83.46 83.74 87.59
Morphological tags 76.68 77.62 80.30
Lemmas 87.77 87.84 91.24
Sentence segmentation 83.01 83.01 83.87
Word segmentation 96.97 96.97 98.18
Tokenization 97.39 97.39 98.42

Table 2: Results on all treebanks.

with absolute gains (1.28-3.08%) on average LAS,
UAS, MLAS and CLAS. These results show that
our joint model could improve the performance of
universal dependency parsing. Surprisingly, in the
case of POS tagging, our joint model obtains lower
averaged accuracy in both UPOS and XPOS. The
possible reason for performance degradation may
be that we select all hyper-parameters based on
English and do not tune them individually.

Furthermore, we also compare the performance
of our system with the baseline and the best scorer
on big treebanks (Table 3), PUD treebanks (Table
4), low-resource languages (Table 5), respectively.

Since our model applies the baseline model for
tokenization and segmentation, we show all results
of focused metrics on each treebank in Table 6.
In addition, we compare our model with the best
and the average results of top ten models on each
treebank, using LAS F1 for the evaluation metric,
as shown in Figure 2.

5 Conclusion

In this paper, we describe our system in the
CoNLL 2018 shared task on UD parsing. Our sys-
tem uses a transition-based neural network archi-
tecture for dependency parsing, which predicts the
UPOS tag and dependencies jointly. Combining
pointer networks with an internal stack to track
the status of the top-down, depth-first search in
the parsing decoding procedure, the STACKPTR
parser is able to capture information from the
whole sentence and all the previously derived sub-
trees, removing the left-to-right restriction in clas-
sical transition-based parsers, while maintaining

Results Ours Baseline Best
LAS 77.98 74.14 84.37
MLAS 63.79 61.27 72.67
BLEX 68.55 64.67 75.83
UAS 82.27 78.78 87.61
CLAS 73.59 69.13 81.29
UPOS 93.71 93.71 96.23
XPOS 91.81 91.81 95.16
Morphological features 90.85 90.85 94.14
Morphological tags 87.56 87.56 91.50
Lemmas 93.34 93.34 96.08
Sentence segmentation 86.09 86.09 89.52
Word segmentation 98.81 98.81 99.21
Tokenization 99.24 99.24 99.51

Table 3: Results on big treebank only.

Results Ours Baseline Best
LAS 61.05 66.63 74.20
MLAS 41.95 51.75 58.75
BLEX 50.60 54.87 63.25
UAS 67.88 71.22 78.42
CLAS 57.34 61.29 69.86
UPOS 82.45 85.23 87.51
XPOS 35.66 54.27 55.98
Morphological features 78.89 83.41 87.05
Morphological tags 34.68 50.32 51.90
Lemmas 82.24 83.37 85.76
Sentence segmentation 75.53 75.53 76.04
Word segmentation 92.61 92.61 94.57
Tokenization 92.61 92.61 94.57

Table 4: Results on PUD treebank only.

Results Ours Baseline Best
LAS 17.16 17.17 27.89
MLAS 3.43 3.44 6.13
BLEX 7.63 7.63 13.98
UAS 30.07 30.08 39.23
CLAS 13.42 13.42 22.18
UPOS 45.17 45.20 61.07
XPOS 54.68 54.23 54.73
Morphological features 38.03 38.03 48.95
Morphological tags 25.86 25.72 25.91
Lemmas 54.25 54.25 64.42
Sentence segmentation 65.99 65.99 67.50
Word segmentation 84.95 84.95 93.38
Tokenization 85.76 85.76 93.34

Table 5: Results on low-resource languages only.
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Figure 2: LAS F1 score per treebank. For comparison, we include the best official result and the average
of the top ten results on each treebank.

linear parsing steps. Furthermore, our model is
single instead of ensemble, and it does not uti-
lize lemmas or morphological features. Results
show that our system achieves 68.31% in macro-
averaged LAS F1-score on the official blind test.
Further improvements could be obtained by multi-
lingual embeddings and adopting ensemble meth-
ods.
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UPOS UAS LAS MLAS UPOS UAS LAS MLAS
af afribooms 95.12 84.64 80.75 66.96 ar padt 89.34 74.45 70.11 57.21
bg btb 97.72 91.24 87.69 77.56 br keb 30.74 27.80 10.25 0.37
bxr bdt 41.66 29.20 12.61 2.09 ca ancora 98.00 91.87 89.38 80.87
cs cac 98.32 91.07 88.46 74.28 cs fictree 97.28 91.07 87.12 71.98
cs pdt 98.21 91.59 89.37 78.20 cs pud 94.67 84.09 78.17 59.57
cu proiel 93.70 75.18 68.68 55.36 da ddt 95.44 82.21 78.74 67.34
de gsd 91.58 80.31 75.73 36.39 el gdt 95.63 86.64 83.17 65.02
en ewt 93.62 83.32 80.46 70.58 en gum 93.24 81.09 76.68 63.05
en lines 94.71 80.71 75.26 65.04 en pud 94.15 86.77 83.49 70.23
es ancora 98.14 91.35 89.09 81.01 et edt 95.50 84.18 80.59 70.39
eu bdt 92.34 81.06 76.49 60.75 fa seraji 96.01 86.76 82.78 75.38
fi ftb 92.28 84.23 79.83 66.53 fi pud 84.86 62.87 50.67 36.39
fi tdt 94.37 84.72 80.88 70.42 fo oft 44.66 42.64 25.19 0.36
fro srcmf 94.30 90.32 85.15 75.66 fr gsd 95.75 87.25 84.08 74.58
fr sequoia 95.84 85.16 82.50 71.23 fr spoken 92.94 71.81 65.30 52.73
ga idt 89.21 72.66 62.93 37.66 gl ctg 96.26 81.60 78.60 65.00
gl treegal 91.09 71.61 66.16 49.13 got proiel 94.31 69.71 62.62 48.19
grc perseus 82.37 70.08 63.68 33.28 grc proiel 95.87 75.19 71.05 52.44
he htb 80.87 64.90 60.53 46.03 hi hdtb 95.75 94.18 90.83 72.03
hr set 96.33 88.39 83.06 60.93 hsb ufal 65.75 35.02 23.64 3.55
hu szeged 90.59 73.91 66.23 50.36 hy armtdp 65.40 36.81 21.79 6.84
id gsd 92.99 83.49 77.12 64.70 it isdt 97.05 91.01 88.91 79.66
it postwita 93.94 72.74 67.48 54.38 ja gsd 87.85 76.14 74.43 60.32
ja modern 48.44 29.36 22.71 8.10 kk ktb 48.94 39.45 24.21 7.62
kmr mg 59.31 32.86 23.92 5.47 ko gsd 93.44 80.91 76.27 68.93
ko kaist 93.32 87.43 85.11 76.91 la ittb 97.21 86.64 83.96 73.55
la perseus 83.34 58.45 47.61 30.16 la proiel 94.84 68.02 62.62 49.11
lv lvtb 91.70 78.74 73.13 55.05 nl alpino 94.04 87.76 83.91 68.47
nl lassysmall 94.06 82.34 78.13 64.55 no bokmaal 96.51 90.30 88.11 78.94
no nynorsk 96.07 89.67 87.26 76.85 no nynorsklia 85.15 57.92 48.95 37.60
pcm nsc 44.44 26.11 12.18 4.60 pl lfg 96.77 93.67 90.94 74.89
pl sz 95.50 89.64 85.83 64.03 pt bosque 95.99 88.48 85.80 70.70
ro rrt 96.62 89.06 83.94 74.60 ru syntagrus 97.84 92.09 90.28 80.63
ru taiga 86.53 63.58 55.51 36.79 sk snk 93.15 83.42 79.43 55.02
sl ssj 94.46 84.01 81.18 65.00 sl sst 88.50 54.16 46.95 34.19
sme giella 87.69 63.80 56.98 46.05 sr set 96.84 89.50 84.90 70.68
sv lines 93.97 81.32 76.04 59.25 sv pud 90.12 76.30 70.19 35.44
sv talbanken 95.36 85.27 81.57 71.64 th pud 5.65 0.71 0.62 0.01
tr imst 91.64 64.02 56.07 44.49 ug udt 87.48 71.29 57.89 37.46
uk iu 94.80 81.43 77.01 56.96 ur udtb 92.13 86.14 79.99 51.65
vi vtb 75.29 47.32 41.77 34.18 zh gsd 83.47 66.45 63.05 51.64

Table 6: Performances of focused metrics on each treebank.
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Abstract

This paper describes the system of our
team Phoenix for participating CoNLL
2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependen-
cies. Given the annotated gold standard
data in CoNLL-U format, we train the to-
kenizer, tagger and parser separately for
each treebank based on an open source
pipeline tool UDPipe. Our system reads
the plain texts for input, performs the pre-
processing steps (tokenization, lemmas,
morphology) and finally outputs the syn-
tactic dependencies. For the low-resource
languages with no training data, we use
cross-lingual techniques to build models
with some close languages instead. In
the official evaluation, our system achieves
the macro-averaged scores of 65.61%,
52.26%, 55.71% for LAS, MLAS and
BLEX respectively.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2016)
is a framework that provides cross-linguistically
consistent grammatical annotations for various
languages, which enables comparative evaluations
for some cross-lingual learning tasks. As a follow
up of CoNLL 2017 UD Shared Task (Zeman et al.,
2017), the goal of CoNLL 2018 UD Shared Task
(Zeman et al., 2018) is to develop multilingual de-
pendency parsers from raw text for many typolog-
ically different languages with training data from

∗ Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100), National Natural Science
Foundation of China (No. 61672343 and No. 61733011),
Key Project of National Society Science Foundation of China
(No. 15-ZDA041), The Art and Science Interdisciplinary
Funds of Shanghai Jiao Tong University (No. 14JCRZ04).

UD project. The task comprises 82 test sets from
57 languages. However, there are a category of
low-resource languages that have little or no train-
ing data, which requires cross-lingual techniques
(Zeman and Resnik, 2008; Tiedemann, 2015) with
the help of the data from other languages.

In this paper, we present the system of our
team Phoenix for multilingual universal depen-
dency parsing from raw text. The targeted task
is a challenging one in terms of deep learning
based natural language processing (Wu and Zhao,
2018; Bai and Zhao, 2018; Cai et al., 2018; Li
et al., 2018; Zhang et al., 2018; Zhang and Zhao,
2018; He et al., 2018; Wang et al., 2017; Qin
et al., 2017). We adopt the trainable open source
tool UDPipe 1.2 (Straka et al., 2016; Straka and
Straková, 2017) to train the dependency parser for
each test set with UD version 2.2 (Nivre et al.,
2018) treebanks as training data. There are three
main components of our model to perform, tok-
enization, Part-of-Speech (POS) tagging and de-
pendency parsing. When evaluated on the web in-
terface of TIRA (Potthast et al., 2014) platform,
the system reads the raw text for input and chooses
the corresponding model for a particular test set
with a model selector. After the tokenization and
tagging on the raw text, the system finally out-
puts the syntactic dependencies in the CoNLL-U
format. To deal with the low-resource languages
which have no training data, some cross-lingual
techniques are applied by training with other re-
lated or close languages. Our official submis-
sion obtains macro-averaged scores of 65.61%,
52.26%, 55.71% for LAS, MLAS and BLEX on
all treebanks.

The rest of this paper is organized as follows.
Section 2 introduces the architecture overview of
our system. Section 3 gives the implementation
details and the specific strategies applied for the
low-resource languages. Finally, we report and an-
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alyze the official results with the three main eval-
uation metrics in Section 4.

2 System Overview

Figure 1 illustrates the overall architecture of our
system for training and predicting. In the train-
ing procedure, the system takes as input the tree-
banks (training set) of CoNLL-U format and trains
a model for each of them. Every model has three
components, tokenizer, tagger and parser. As we
train the parser, pretrained word embeddings for
word forms in the word2vec format are applied. In
the predicting procedure, the system takes as input
the raw text (test set) and selects a model accord-
ing to the language code and treebank code. With
the selected model, the system outputs the syntac-
tic head and the type of the dependency relation
for each word.

2.1 Training Data

Our models are trained by using only UD 2.2 tree-
banks provided by the CoNLL 2018 UD Shared
Task without any other additional data. There are
82 test sets from 57 languages, and 61 of the 82
treebanks are large enough to provide training and
development sets. However, the other 21 tree-
banks lack of development data and some of them
even have no training data. Among these low-
resource treebanks, 7 have training data with still
reasonable size; 5 are extra test sets in languages
where another large treebank exists; 9 are low-
resource languages with no training data avail-
able (Breton, Faroese, Naija, Thai) or the train-
ing set being just a tiny sample (Armenian, Buryat,
Kazakh, Kurmanji, Upper Sorbian). For the tree-
banks that still have training data but without de-
velopment data, we split the last 10% of the train-
ing data as the development set to tune model hy-
perparameters even if the training set is very small.
To deal with those having no training data, we
train the parsers with the treebanks of the same
languages or related languages. The details will
be given in Section 3.4.

2.2 Word Embedding

We adopt pretrained embeddings for word forms
with the provided training data by word2vec
(Mikolov et al., 2013). The parameter settings
of word2vec are shown in Table 1. We use the
skip-gram model to train the word vectors with
a dimension of 50. The context window is set

to 10 words and the word will be dropped if
its frequency is less than twice. After convert-
ing CoNLL-U to the horizontal format (replacing
spaces within word forms with a Unicode charac-
ter), we train the word embeddings of each tree-
bank on the UD data for 15 iterations.

Parameters Value
algorithm skip-gram
size 50
window 10
min-count 2
iterations 15

Table 1: Parameters for training word embed-
dings.

2.3 Model Selector

Since we train models individually for every lan-
guages and treebanks, a model selector is needed
to decide which model to use when predicting.
The model selector in our system simply reads the
json file in the test file folder and assigns the corre-
sponding trained model for each test set according
to the language code and treebank code.

3 Model Description

3.1 Tokenizer

In our system pipeline, the first step is the sen-
tence segmentation and tokenization which is per-
formed jointly in UDPipe. A single-layer bidi-
rectional GRU network is used to train the tok-
enizer which predicts for each character whether
it is the last one in a sentence or the last one in a
token. In UD treebanks, the text is structured on
several levels: document, paragraph, sentence and
token. A MISC feature SpaceAfter=No is defined
to denote that a given token is not followed by a
space. Thus, the tokenizer is trained according to
the SpaceAfter=No features in the CoNLL-U files.

The parameters used for training the tokenizer
are listed in Table 2. The segmenter and tok-
enizer network employs character embeddings and
is trained using dropout both before and after the
recurrent units. The GRU dimension, dropout
probability and learning rate are tuned on the de-
velopment set. All the tokenizers are trained for
100 epochs. Other parameters like tokenize url
and allow spaces are set as default.
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Figure 1: System architecture

Parameters Value
tokenize url 1
allow spaces 1
batch size 50,100
dimension 24, 64
dropout 0.1, 0.2, 0.3
early stop 1
epochs 100
learning rate 0.002, 0.005, 0.01

Table 2: Parameters for training the tokenizers.

Parameters Value
models 2
templates 1 tagger
guesser suffix rules 1 4, 6, 8, 10, 12
guesser enrich dictionary 1 4, 5, 6
guesser prefixes max 1 0, 4
templates 2 lemmatizer
guesser suffix rules 2 4, 6, 8
guesser enrich dictionary 2 4, 5, 6
guesser prefixes max 2 0, 4
iterations 20
early stopping 1

Table 3: Parameters for training the taggers.

3.2 Tagger
The second step in our system pipeline is to gen-
erate some POS tags and other morphological fea-
tures for the tokenized data, which will be uti-
lized as the input for the final dependency parser.
We adopt the built-in tagger in UDPipe, which is

based on an open source morphological analysis
tool MorphoDita (Straková et al., 2014). In this
step, the tagger will produce the following out-
puts:

Lemma: Lemma or stem of word form.

UPOS: Universal POS tag.

XPOS: Language-specific POS tag.

FEATS: List of morphological features from the
universal feature inventory or from a defined
language-specific extension.

We use two MorphoDita models to produce dif-
ferent features, whose effectiveness has been veri-
fied in (Straka et al., 2016). The first model called
tagger generates the UPOS, XPOS and FEATS
tags while the second one called lemmatizer per-
forms lemmatization.

The tagger consists of a guesser and an averaged
perceptron. The guesser generates several triplets
(UPOS, XPOS, FEATS) for each word according
to its last four characters. The averaged percep-
tron with a fixed set of features disambiguates the
generated tags (Straka et al., 2016; Straková et al.,
2014).

The structure of the lemmatizer is similar to the
tagger. A guesser produces (lemma rule, UPOS)
tuples and an averaged perceptron performs dis-
ambiguation. The lemmatizer generates a lemma
from a word by stripping some affix and adding
new affix according to the last four characters of a
word and its prefix.
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The training parameters of the two models for
different treebanks are provided in Table 3.

Parameters Value
embedding form 50
embedding upostag 20
embedding feats 20
embedding deprel 20
hidden layer 200
batch size 10
iterations 30
l2 0.3, 0.5
learning rate 0.01, 0.02
learning rate final 0.001
structured interval 0, 8, 10
transition oracle static, dynamic, static lazy
transition system projective, link2, swap
use gold tags 1

Table 4: Parameters for training the parsers.

3.3 Parser

The final parsing step is performed using Par-
sito (Straka et al., 2015), which is a transition-
based parser with a neural-network classifier. The
parser supports several transition systems includ-
ing a projective arc-standard system (Nivre, 2008),
a partially non-projective link2 system (Gómez-
Rodrı́guez et al., 2014) and a fully non-projective
swap system (Nivre, 2009). Meanwhile, the tran-
sition oracles can be configured into static oracles,
dynamic oracle for the arc-standard system (Gold-
berg et al., 2014) or a search-based oracle (Straka
et al., 2015).

We use the golden Lemmas, UPOS, XPOS and
FEATS tags for both the training and development
data when training the parser. The parser em-
ploys FORM embeddings of dimension 50, and
UPOS, FEATS, DEPREL embeddings of dimen-
sion 20. The FORM embeddings are pretrained
with word2vec using the training data, and the
other embeddings are initialized randomly. All the
embeddings are updated for each iteration during
training. The hidden layer size is set to 200 and the
batch size is limited to 30. All the parsing models
are trained for 10 iterations. The training param-
eters for different datasets are reported in Table 4.
The optimal parameters are chosen to maximize
the accuracy on the development set.

3.4 Low-resource Treebanks

In the UD 2.2 datasets provided by the shared task,
there are low-resource treebanks with little or even
no training data. As we have stated before, in this
work, we mainly focus on the strategy to deal with
the treebanks without any training data in this sec-
tion.

For the ones with other treebanks in the same
languages, we trained models both on the mix-
ture of all those treebanks and on the largest tree-
bank as the official baseline did. For those without
other treebanks in the same language, the direct
solution is to use other related treebanks as train-
ing data. Hence, we take advantage of the cross-
lingual knowledge and train the mixture models
with the treebanks of similar or related languages.
Specifically, we manually selected treebanks with
similar languages as the ingredients of a mixture
dataset according to many factors such as gram-
mar, morphology and vocabulary. The training
and development sets of the selected treebanks are
merged together on which we train and evaluate
the results. The no-training-data treebanks and
their corresponding training sets are shown in Ta-
ble 5.

4 Results

The final results are evaluated blindly on TIRA
platform. There are three main scoring metrics,
LAS, MLAS and BLEX. Our system ranks 19 in
LAS, 17 in MLAS and 13 in BLEX on the main
metric ranking board. The main evaluation scores
of our system on all treebanks, big treebanks, PUD
treebanks, small treebanks and low-resource lan-
guages are shown in Table 6. Overall, our sys-
tem gives a similar performance to the BASELINE
UDPipe 1.2 system, which is not surprising as we
closely followed the hyper-parameter settings and
data splitting of the baseline system on big and
small treebanks.

As described in Section 3.4, we select training
sets differently for the low-resource treebanks in-
cluding PUD treebanks and other treebanks with-
out training data. Table 7 shows the results com-
parison with the baseline system on those tree-
banks. Our system shows a consistent improve-
ment over the baseline model for all the three met-
rics on PUD treebanks, which suggests that en-
larging training data with different types of tree-
banks of the same language indeed helps building
a better model. Our system shows a slight ad-
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Low-resource Treebanks Training Treebanks
Czech PUD Czech PDT / Czech (PDT, CAC, FicTree)
English PUD English EWT / English (EWT, GUM, LinES)
Finnish PUD Finnish TDT / Finnish (TDT, FTB)
Japanese Modern Japanese GSD
Swedish PUD Swedish Talbanken / Swedish (Talbanken, LinES)
Breton KEB Irish (IDT), Latin (ITTB, Persus, PROIEL), Old French (SRCMF),

French (GSD, Sequoia, Spoken)
Faroese OFT Danish (DDT), Norwegian (Bokmaal, Nynorsk, NynorskLIA)
Naija NSC English (EWT, GUM, LinES), Portuguese (Bosque)
Thai PUD Hindi (HDTB), Vietnamese (VTB), Chinese (GSD),

English (EWT, GUM, LinES)

Table 5: The training data for the low-resource treebanks.

Target
Treebanks

LAS MLAS BLEX

Big treebanks 73.93 61.12 64.47
PUD treebanks 66.97 52.26 55.69
Small treebanks 54.63 38.38 40.72
Low-resource 16.99 3.02 8.00
All treebanks 65.61 52.26 55.71

Table 6: Evaluation scores of our system on dif-
ferent types of treebanks.

Metrics PUD Treebanks Low-resource
Ours Base Ours Base

LAS 66.97 66.63 16.99 17.17
MLAS 52.26 51.75 3.02 3.44
BLEX 55.69 54.87 8.00 7.63

Table 7: Comparison of our system (Ours) and
baseline system (Base) on PUD treebanks and
low-resource languages.

Target
Treebanks

Selected
Model

LAS Rank

cs pud cs pdt 80.34 16
en pud en all 79.69 16
fi pud fi tdt 80.19 14
ja modern ja gsd 22.90 6
sv pud sv all 71.75 15
Macro-average 66.97 13

Table 8: LAS F1 scores and rankings of our sys-
tem on PUD treebanks.

vantage over baseline on low-resource treebanks
in BLEX, which indicates that low-resource lan-
guages can be trained with similar languages.

Target
Treebanks

LAS Rank

bxr bdt 9.04 20
hsb ufal 23.43 21
hy armtdp 23.37 14
kk ktb 23.00 14
kmr mg 19.08 19
br keb 8.88 20
fo oft 29.13 12
pcm nsc 16.25 8
th pud 0.75 5
Macro-average 16.99 17

Table 9: LAS F1 scores and rankings of our sys-
tem on low-resource languages.

Table 8 shows the results on each PUD tree-
banks and our selected model for testing. The
models with suffix ‘ all’ represent those trained
with all treebanks of the same language. During
the test phase, we evaluated both models trained
with all treebanks of the same language and with
the largest treebank of that language, and com-
pared the rounded results to decide which one to
take for our final system. The model trained by
mixed English and Swedish treebanks with all data
of the same languages shows better performance
than those of the single largest treebank. How-
ever, the models trained by the largest Czech and
Finnish treebanks get a higher score. We conjec-
ture that more training data may provide more in-
formation for the modeling while too large train-
ing sets will also bring noise for a specific domain.
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Metrics F1 Score Rank
UAS 71.27 19
CLAS 60.62 19
UPOS 87.49 15
XPOS 84.83 13
Morphological features 83.87 11
All morphological tags 77.47 10
Lemmas 87.69 14
Sentence segmentation 82.91 17
Word segmentation 97.03 8
Tokenization 97.46 7

Table 10: Other metrics and rankings of our sys-
tem.

Table 9 shows the LAS F1 scores and rank-
ings of each low-resource language. Note that our
system has a good performance on pcm nsc and
th pud treebanks when most teams get an unsatis-
fying result. It also proves that our data selection
method is effective for improving the model per-
formance to some extent. Table 10 shows the F1
scores and our system rankings on other metrics.
In particular, our system ranks first in the Sentence
Segmentation F1 score of PUD treebanks.

5 Conclusion

In this paper, we describe our system to CoNLL
2018 UD Shared Task. In our system, we fo-
cus on the accuracy improvement of the low re-
source treebanks against the baseline. The re-
sults of the official blind test show that our sys-
tem achieves 65.61%, 52.26%, 55.71% in macro-
averaged LAS, MLAS and BLEX.
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Jana Straková, Milan Straka, and Jan Hajič. 2014.
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Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium, pages 1–20.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
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Abstract

We propose a novel neural network model
for joint part-of-speech (POS) tagging and
dependency parsing. Our model extends
the well-known BIST graph-based depen-
dency parser (Kiperwasser and Goldberg,
2016) by incorporating a BiLSTM-based
tagging component to produce automati-
cally predicted POS tags for the parser. On
the benchmark English Penn treebank, our
model obtains strong UAS and LAS scores
at 94.51% and 92.87%, respectively, pro-
ducing 1.5+% absolute improvements to
the BIST graph-based parser, and also ob-
taining a state-of-the-art POS tagging ac-
curacy at 97.97%. Furthermore, experi-
mental results on parsing 61 “big” Univer-
sal Dependencies treebanks from raw texts
show that our model outperforms the base-
line UDPipe (Straka and Straková, 2017)
with 0.8% higher average POS tagging
score and 3.6% higher average LAS score.
In addition, with our model, we also obtain
state-of-the-art downstream task scores for
biomedical event extraction and opinion
analysis applications.

Our code is available together with all pre-
trained models at: https://github.
com/datquocnguyen/jPTDP.

1 Introduction

Dependency parsing – a key research topic in nat-
ural language processing (NLP) in the last decade
(Buchholz and Marsi, 2006; Nivre et al., 2007a;
Kübler et al., 2009) – has also been demonstrated
to be extremely useful in many applications such
as relation extraction (Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005), semantic parsing

(Reddy et al., 2016) and machine translation (Gal-
ley and Manning, 2009). In general, dependency
parsing models can be categorized as graph-based
(McDonald et al., 2005) and transition-based (Ya-
mada and Matsumoto, 2003; Nivre, 2003). Most
traditional graph- or transition-based models de-
fine a set of core and combined features (McDon-
ald and Pereira, 2006; Nivre et al., 2007b; Bohnet,
2010; Zhang and Nivre, 2011), while recent state-
of-the-art models propose neural network archi-
tectures to handle feature-engineering (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017; Ma and Hovy, 2017).

Most traditional and neural network-based pars-
ing models use automatically predicted POS tags
as essential features. However, POS taggers are
not perfect, resulting in error propagation prob-
lems. Some work has attempted to avoid using
POS tags for dependency parsing (Dyer et al.,
2015; Ballesteros et al., 2015; de Lhoneux et al.,
2017), however, to achieve the strongest parsing
scores these methods still require automatically
assigned POS tags. Alternatively, joint POS tag-
ging and dependency parsing has also attracted a
lot of attention in NLP community as it could help
improve both tagging and parsing results over in-
dependent modeling (Li et al., 2011; Hatori et al.,
2011; Lee et al., 2011; Bohnet and Nivre, 2012;
Zhang et al., 2015; Zhang and Weiss, 2016; Yang
et al., 2018).

In this paper, we present a novel neural
network-based model for jointly learning POS tag-
ging and dependency paring. Our joint model ex-
tends the well-known BIST graph-based depen-
dency parser (Kiperwasser and Goldberg, 2016)
with an additional lower-level BiLSTM-based tag-
ging component. In particular, this tagging com-
ponent generates predicted POS tags for the parser
component. Evaluated on the benchmark English
Penn treebank test Section 23, our model pro-
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Figure 1: Illustration of our new model for joint POS tagging and graph-based dependency parsing.

duces a 1.5+% absolute improvement over the
BIST graph-based parser with a strong UAS score
of 94.51% and LAS score of 92.87%; and also ob-
taining a state-of-the-art POS tagging accuracy of
97.97%. In addition, multilingual parsing exper-
iments from raw texts on 61 “big” Universal De-
pendencies treebanks (Zeman et al., 2018) show
that our model outperforms the baseline UDPipe
(Straka and Straková, 2017) with 0.8% higher av-
erage POS tagging score, 3.1% higher UAS and
3.6% higher LAS. Furthermore, experimental re-
sults on downstream task applications (Fares et al.,
2018) show that our joint model helps produce
state-of-the-art scores for biomedical event extrac-
tion and opinion analysis.

2 Our joint model

This section presents our model for joint POS tag-
ging and graph-based dependency parsing. Fig-
ure 1 illustrates the architecture of our joint model
which can be viewed as a two-component mix-
ture of a tagging component and a parsing compo-
nent. Given word tokens in an input sentence, the
tagging component uses a BiLSTM to learn “la-
tent” feature vectors representing these word to-
kens. Then the tagging component feeds these fea-
ture vectors into a multilayer perceptron with one

hidden layer (MLP) to predict POS tags. The pars-
ing component then uses another BiLSTM to learn
another set of latent feature representations, based
on both the input word tokens and the predicted
POS tags. These latent feature representations are
fed into a MLP to decode dependency arcs and an-
other MLP to label the predicted dependency arcs.

2.1 Word vector representation

Given an input sentence s consisting of n word
tokens w1, w2, ..., wn, we represent each ith word
wi in s by a vector ei. We obtain ei by concate-
nating word embedding e

(W)
wi and character-level

word embedding e
(C)
wi :

ei = e(W)
wi
◦ e(C)

wi
(1)

Here, each word type w in the training data is rep-
resented by a real-valued word embedding e

(W)
w .

Given the word type w consisting of k charac-
ters w = c1c2...ck where each jth character in w
is represented by a character embedding cj , we
use a sequence BiLSTM (BiLSTMseq) to learn its
character-level vector representation (Ballesteros
et al., 2015; Plank et al., 2016). The input to
BiLSTMseq is the sequence of k character em-
beddings c1:k, and the output is a concatenation
of outputs of a forward LSTM (LSTMf) reading
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the input in its regular order and a reverse LSTM
(LSTMr) reading the input in reverse:

e
(C)
w = BiLSTMseq(c1:k) = LSTMf(c1:k) ◦ LSTMr(ck:1)

2.2 Tagging component
We feed the sequence of vectors e1:n with an ad-
ditional context position index i into another BiL-
STM (BiLSTMpos), resulting in latent feature vec-
tors v(pos)

i each representing the ith word wi in s:

v
(pos)
i = BiLSTMpos(e1:n, i) (2)

We use a MLP with softmax output (MLPpos)
on top of the BiLSTMpos to predict POS tag of
each word in s. The number of nodes in the output
layer of this MLPpos is the number of POS tags.
Given v

(pos)
i , we compute an output vector as:

ϑi = MLPpos(v
(pos)
i ) (3)

Based on output vectors ϑi, we then com-
pute the cross-entropy objective loss LPOS(t̂, t),
in which t̂ and t are the sequence of predicted POS
tags and sequence of gold POS tags of words in the
input sentence s, respectively (Goldberg, 2016).
Our tagging component thus can be viewed as a
simplified version of the POS tagging model pro-
posed by Plank et al. (2016), without their addi-
tional auxiliary loss for rare words.

2.3 Parsing component
Assume that p1, p2, ..., pn are the predicted POS
tags produced by the tagging component for the
input words. We represent each ith predicted POS
tag by a vector embedding e

(P)
pi . We then create a

sequence of vectors x1:n in which each xi is pro-
duced by concatenating the POS tag embedding
e
(P)
pi and the word vector representation ei:

xi = e(P)
pi ◦ ei = e(P)

pi ◦ e(W)
wi
◦ e(C)

wi
(4)

We feed the sequence of vectors x1:n with an
additional index i into a BiLSTM (BiLSTMdep),
resulting in latent feature vectors vi as follows:

vi = BiLSTMdep(x1:n, i) (5)

Based on latent feature vectors vi, we follow a
common arc-factored parsing approach to decode
dependency arcs (McDonald et al., 2005). In par-
ticular, a dependency tree can be formalized as a
directed graph. An arc-factored parsing approach
learns the scores of the arcs in the graph (Kübler

et al., 2009). Here, we score an arc by using a
MLP with a one-node output layer (MLParc) on
top of the BiLSTMdep:

scorearc(i, j) (6)

= MLParc

(
vi ◦ vj ◦ (vi ∗ vj) ◦ |vi − vj |

)

where (vi ∗ vj) and |vi − vj | denote the element-
wise product and the absolute element-wise differ-
ence, respectively; and vi and vj are correspond-
ingly the latent feature vectors associating to the
ith and jth words in s, computed by Equation 5.

Given the arc scores, we use the Eisner (1996)’s
decoding algorithm to find the highest scoring pro-
jective parse tree:

score(s) = argmax
ŷ∈Y(s)

∑

(h,m)∈ŷ
scorearc(h,m) (7)

where Y(s) is the set of all possible dependency
trees for the input sentence s while scorearc(h,m)
measures the score of the arc between the head hth

word and the modifier mth word in s.
Following Kiperwasser and Goldberg (2016),

we compute a margin-based hinge loss LARC with
loss-augmented inference to maximize the mar-
gin between the gold unlabeled parse tree and the
highest scoring incorrect tree.

For predicting dependency relation type of a
head-modifier arc, we use another MLP with soft-
max output (MLPrel) on top of the BiLSTMdep.
Here, the number of the nodes in the output layer
of this MLPrel is the number of dependency rela-
tion types. Given an arc (h,m), we compute an
output vector as:

v(h,m) (8)

= MLPrel

(
vh ◦ vm ◦ (vh ∗ vm) ◦ |vh − vm|

)

Based on output vectors v(h,m), we also com-
pute another cross-entropy objective loss LREL for
relation type prediction, using only the gold la-
beled parse tree.

Our parsing component can be viewed as an
extension of the BIST graph-based dependency
model (Kiperwasser and Goldberg, 2016), where
we additionally incorporate the character-level
vector representations of words.

2.4 Joint model training
The training objective loss of our joint model is the
sum of the POS tagging loss LPOS, the structure
loss LARC and the relation labeling loss LREL:

L = LPOS + LARC + LREL (9)
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The model parameters, including word embed-
dings, character embeddings, POS embeddings,
three one-hidden-layer MLPs and three BiLSTMs,
are learned to minimize the sum L of the losses.

Most neural network-based joint models
for POS tagging and dependency parsing are
transition-based approaches (Alberti et al., 2015;
Zhang and Weiss, 2016; Yang et al., 2018),
while our model is a graph-based method. In
addition, the joint model JMT (Hashimoto et al.,
2017) defines its dependency parsing task as a
head selection task which produces a probability
distribution over possible heads for each word
(Zhang et al., 2017).

Our model is the successor of the joint model
jPTDP v1.0 (Nguyen et al., 2017) which is also a
graph-based method. However, unlike our model,
jPTDP v1.0 uses a BiLSTM to learn “shared” la-
tent feature vectors which are then used for both
POS tagging and dependency parsing tasks, rather
than using two separate layers. As mentioned
in Section 4, our model generally outperforms
jPTDP v1.0 with 2.5+% LAS improvements on
universal dependencies (UD) treebanks.

2.5 Implementation details

Our model is released as jPTDP v2.0, available at
https://github.com/datquocnguyen/
jPTDP. Our jPTDP v2.0 is implemented using
DYNET v2.0 (Neubig et al., 2017) with a fixed
random seed.1 Word embeddings are initialized
either randomly or by pre-trained word vectors,
while character and POS tag embeddings are
randomly initialized. For learning character-level
word embeddings, we use one-layer BiLSTMseq,
and set the size of LSTM hidden states to be equal
to the vector size of character embeddings.

We apply dropout (Srivastava et al., 2014) with
a 67% keep probability to the inputs of BiLSTMs
and MLPs. Following Iyyer et al. (2015) and
Kiperwasser and Goldberg (2016), we also apply
word dropout to learn an embedding for unknown
words: we replace each word token w appearing
#(w) times in the training set with a special “unk”
symbol with probability punk(w) = 0.25

0.25+#(w) .
This procedure only involves the word embedding
part in the input word vector representation.

We optimize the objective loss using Adam
(Kingma and Ba, 2014) with an initial learning
rate at 0.001 and no mini-batches. For training,

1https://github.com/clab/dynet

we run for 30 epochs, and restart the Adam opti-
mizer and anneal its initial learning rate at a pro-
portion of 0.5 every 10 epochs. We evaluate the
mixed accuracy of correctly assigning POS tag to-
gether with dependency arc and relation type on
the development set after each training epoch. We
choose the model with the highest mixed accuracy
on the development set, which is then applied to
the test set for the evaluation phase.

For all experiments presented in this pa-
per, we use 100-dimensional word embeddings,
50-dimensional character embeddings and 100-
dimensional POS tag embeddings. We also fix
the number of hidden nodes in MLPs at 100. Due
to limited computational resource, for experiments
presented in Section 3, we perform a minimal grid
search of hyper-parameters to select the number
of BiLSTMpos and BiLSTMdep layers from {1, 2}
and the size of LSTM hidden states in each layer
from {128, 256}. For experiments presented in
sections 4 and 5, we fix the number of BiLSTM
layers at 2 and the size of hidden states at 128.

3 Experiments on English Penn treebank

Experimental setup: We evaluate our model
using the English WSJ Penn treebank (Marcus
et al., 1993). We follow a standard data split
to use sections 02-21 for training, Section 22 for
development and Section 23 for test (Chen and
Manning, 2014), employing the Stanford conver-
sion toolkit v3.3.0 to generate dependency trees
with Stanford basic dependencies (de Marneffe
and Manning, 2008).

Word embeddings are initialized by 100-
dimensional GloVe word vectors pre-trained on
Wikipedia and Gigaword (Pennington et al.,
2014).2 As mentioned in Section 2.5, we per-
form a minimal grid search of hyper-parameters
and find that the highest mixed accuracy on the de-
velopment set is obtained when using 2 BiLSTM
layers and 256-dimensional LSTM hidden states
(in Table 1, we present scores obtained on the de-
velopment set when using 2 BiLSTM layers).

Main results: Table 2 compares our UAS and
LAS scores on the test set with previous published
results in terms of the dependency annotations.3

2
https://nlp.stanford.edu/projects/glove

3Choe and Charniak (2016) reported the highest UAS
score at 95.9% and LAS score at 94.1% to date on the test
set, using the Stanford conversion toolkit v3.3.0 to convert
the output constituent trees into dependency representations.

84



#states With punctuations Without pun.
POS UAS LAS UAS LAS

128 97.64 93.68 92.11 94.42 92.61
256 97.63 93.89 92.33 94.63 92.82
Chen and Manning (2014) 92.0 89.7

Dyer et al. (2015) 93.2 90.9
BIST-graph [K&G16] 93.3 91.0

Zhang et al. (2017) 94.30 91.95
Ma and Hovy (2017) 94.77 92.66

Dozat and Manning (2017) 95.24 93.37

Table 1: Results on the development set. #states
and “Without pun.” denote the size of LSTM hid-
den states and the scores computed without punc-
tuations, respectively. “POS” indicates the POS
tagging accuracy. [K&G16] denotes results re-
ported in Kiperwasser and Goldberg (2016).

Model POS UAS LAS
Chen and Manning (2014) 97.3 91.8 89.6
Dyer et al. (2015) 97.3 93.1 90.9
Weiss et al. (2015) 97.44 93.99 92.05
BIST-graph [K&G16] 97.3 93.1 91.0
BIST-transition [K&G16] 97.3 93.9 91.9
Kuncoro et al. (2016) 97.3 94.26 92.06
Andor et al. (2016) 97.44 94.61 92.79
Zhang et al. (2017) 97.3 94.10 91.90
Ma and Hovy (2017) 97.3 94.88 92.98
Dozat and Manning (2017) 97.3 95.44 93.76
Dozat and Manning (2017) [•] 97.3 95.66 94.03
Bohnet and Nivre (2012) [?] 97.42 93.67 92.68
Alberti et al. (2015) 97.44 94.23 92.36
Zhang and Weiss (2016) 93.43 91.41
Hashimoto et al. (2017) 94.67 92.90
Yang et al. (2018) 97.54 94.18 92.26
Our model 97.97 94.51 92.87

Table 2: Results on the test set. POS tagging accu-
racies are computed on all tokens. UAS and LAS
are computed without punctuations. [•]: the tree-
bank was converted with the Stanford conversion
toolkit v3.5.0. [?]: the treebank was converted
with the head rules of Yamada and Matsumoto
(2003). For both [•] and [?], obtained parsing
scores are just for reference, not for comparison.

The first 11 rows present scores of dependency
parsers in which POS tags were predicted by using
an external POS tagger such as the Stanford tagger
(Toutanova et al., 2003). The last 6 rows present
scores for joint models. Clearly, our model pro-
duces very competitive parsing results. In particu-
lar, our model obtains a UAS score at 94.51% and
a LAS score at 92.87% which are about 1.4% and

1.9% absolute higher than UAS and LAS scores
of the BIST graph-based model (Kiperwasser and
Goldberg, 2016), respectively. Our model also
does better than the previous transition-based joint
models in Alberti et al. (2015), Zhang and Weiss
(2016) and Yang et al. (2018), while obtaining
similar UAS and LAS scores to the joint model
JMT proposed by Hashimoto et al. (2017).

We achieve 0.9% lower parsing scores than the
state-of-the-art dependency parser of Dozat and
Manning (2017). While also a BiLSTM- and
graph-based model, it uses a more sophisticated
attention mechanism “biaffine” for better decod-
ing dependency arcs and relation types. In future
work, we will extend our model with the biaffine
attention mechanism to investigate the benefit for
our model. Other differences are that they use a
higher dimensional representation than ours, but
rely on predicted POS tags.

We also obtain a state-of-the-art POS tagging
accuracy at 97.97% on the test Section 23, which
is about 0.4+% higher than those by Bohnet and
Nivre (2012), Alberti et al. (2015) and Yang et al.
(2018). Other previous joint models did not men-
tion their specific POS tagging accuracies.4

4 UniMelb in the CoNLL 2018 shared
task on UD parsing

Our UniMelb team participated with jPTDP v2.0
in the CoNLL 2018 shared task on parsing 82 tree-
bank test sets (in 57 languages) from raw text to
universal dependencies (Zeman et al., 2018). The
82 treebanks are taken from UD v2.2 (Nivre et al.,
2018), where 61/82 test sets are for “big” UD tree-
banks for which both training and development
data sets are available and 5/82 test sets are ex-
tra “parallel” test sets in languages where another
big treebank exists. In addition, 7/82 test sets are
for “small” UD treebanks for which development
data is not available. The remaining 9/82 sets are
in low-resource languages without training data or
with a few gold-annotation sample sentences.

For the 7 small treebanks without development
data available, we split training data into two parts
with a ratio 9:1, and then use the larger part for
training and the smaller part for development. For
each big or small treebank, we train a joint model
for universal POS tagging and dependency pars-
ing, using a fixed random seed and a fixed set

4Hashimoto et al. (2017) showed that JMT obtains a POS
tagging accuracy of 97.55% on WSJ sections 22-24.

85



System All Big PUD Small Low
(82) (61) (5) (7) (9)

U
PO

S UDPipe 1.2 87.32 93.71 85.23 87.36 45.20
UniMelb 87.90 94.50 85.33 87.12 45.20
goldseg. 95.63 90.21 87.64

U
A

S UDPipe 1.2 71.64 78.78 71.22 63.17 30.08
UniMelb 74.16 81.83 73.17 64.71 30.08
goldseg. 85.01 81.81 67.46

L
A

S

UDPipe 1.2 65.80 74.14 66.63 55.01 17.17
UniMelb 68.65 77.69 68.72 56.12 17.17
goldseg. 80.68 75.03 58.65

Table 3: Official macro-average F1 scores com-
puted on all tokens for UniMelb and the baseline
UDPipe 1.2 in the CoNLL 2018 shared task on
UD parsing from raw texts (Zeman et al., 2018).
“UPOS” denotes the universal POS tagging score.
“All”, “Big”, “PUD”, “Small” and “Low” refer
to the macro-average scores over all 81, 61 big
treebank, 5 parallel, 7 small treebank and 9 low-
resource treebank test sets, respectively. “gold-
seg.” denotes the scores of our jPTDP v2.0 model
regarding gold segmentation, detailed in Table 4.

of hyper-parameters as mentioned in Section 2.5.5

We evaluate the mixed accuracy on the develop-
ment set after each training epoch, and select the
model with the highest mixed accuracy.

For parsing from raw text to universal de-
pendencies, we employ CoNLL-U test files pre-
processed by the baseline UDPipe 1.2 (Straka and
Straková, 2017). Here, we utilize the tokenization,
word and sentence segmentation predicted by UD-
Pipe 1.2. For 68 big and small treebank test files,
we use the corresponding trained joint models. We
use the joint models trained for cs pdt, en ewt,
fi tdt, ja gsd and sv talbanken to process 5 par-
allel test files cs pud, en pud, fi pud, ja modern
and sv pud, respectively. Since we do not focus
on low-resource languages, we employ the base-
line UDPipe 1.2 to process 9 low-resource tree-
bank test files. The final test runs are carried out
on the TIRA platform (Potthast et al., 2014).

Table 3 presents our results in the CoNLL 2018
shared task on multilingual parsing from raw texts
to universal dependencies (Zeman et al., 2018).
Over all 82 test sets, we outperform the baseline
UDPipe 1.2 with 0.6% absolute higher average
UPOS F1 score and 2.5+% higher average UAS

5We initialize word embeddings by 100-dimensional pre-
trained vectors from Ginter et al. (2017). For a language
where pre-trained word vectors are not available in Ginter
et al. (2017), word embeddings are randomly initialized.

and LAS F1 scores. In particular, for the “big”
category consisting of 61 treebank test sets, we ob-
tain 0.8% higher UPOS and 3.1% higher UAS and
3.6% higher LAS than UDPipe 1.2.

Our (UniMelb) official LAS-based rank is at
14th place while the baseline UDPipe 1.2 is at
18th place over total 26 participating systems.6

However, it is difficult to make a clear compari-
son between our jPTDP v2.0 and the parsing mod-
els used in other top systems. Several better par-
ticipating systems simply reuse the state-of-the-
art biaffine dependency parser (Dozat and Man-
ning, 2017; Dozat et al., 2017), constructing en-
semble models or developing treebank concatena-
tion strategies to obtain larger training data, which
is likely to produce better scores than ours (Zeman
et al., 2018).

Recall that the shared task focuses on parsing
from raw texts. Most higher-ranking systems aim
to improve the pre-processing steps of tokeniza-
tion7, word8 and sentence9 segmentation, result-
ing in significant improvements in final parsing
scores. For example, in the CoNLL 2017 shared
task on UD parsing (Zeman et al., 2017), UDPipe
1.2 obtained 0.1+% higher average tokenization
and word segmentation scores and 0.2% higher
average sentence segmentation score than UDPipe
1.1, resulting in 1+% improvement in the final av-
erage LAS F1 score while both UDPipe 1.2 and
UDPipe 1.1 shared exactly the same remaining
components. Utilizing better pre-processors, as
used in other participating systems, should like-
wise improve our final parsing scores.

In Table 3, we also present our average UPOS,
UAS and LAS accuracies with respect to (w.r.t.)
gold-standard tokenization, word and sentence
segmentation. For more details and future compar-
ison, Table 4 presents the UPOS, UAS and LAS
scores w.r.t. gold-standard segmentation, obtained
by jPTDP v2.0 on each UD v2.2–CoNLL 2018
shared task test set. Compared to the scores pre-
sented in Table 3 in Nguyen et al. (2017) on over-
lapped treebanks, our model jPTDP v2.0 generally
produces 2.5+% improvements in UAS and LAS
scores to jPTDP v1.0 (Nguyen et al., 2017).

6http://universaldependencies.org/
conll18/results.html

7http://universaldependencies.org/
conll18/results-tokens.html

8http://universaldependencies.org/
conll18/results-words.html

9http://universaldependencies.org/
conll18/results-sentences.html
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Treebank Code UPOS UAS LAS Treebank Code UPOS UAS LAS
Afrikaans-AfriBooms af afribooms 95.73 82.57 78.89 Italian-ISDT it isdt 98.01 92.33 90.20
Ancient Greek-PROIEL grc proiel 96.05 77.57 72.84 Italian-PoSTWITA it postwita 95.41 84.20 79.11
Ancient Greek-Perseus grc perseus 88.95 65.09 58.35 Japanese-GSD ja gsd 97.27 94.21 92.02
Arabic-PADT ar padt 96.33 86.08 80.97 Japanese-Modern [p] ja modern 70.53 66.88 49.51
Basque-BDT eu bdt 93.62 79.86 75.07 Korean-GSD ko gsd 93.35 81.32 76.58
Bulgarian-BTB bg btb 98.07 91.47 87.69 Korean-Kaist ko kaist 93.53 83.59 80.74
Catalan-AnCora ca ancora 98.46 90.78 88.40 Latin-ITTB la ittb 98.12 82.99 79.96
Chinese-GSD zh gsd 93.26 82.50 77.51 Latin-PROIEL la proiel 95.54 74.95 69.76
Croatian-SET hr set 97.42 88.74 83.62 Latin-Perseus [s] la perseus 82.36 57.21 46.28
Czech-CAC cs cac 98.87 89.85 87.13 Latvian-LVTB lv lvtb 93.53 81.06 76.13
Czech-FicTree cs fictree 97.98 88.94 85.64 North Sami-Giella [s] sme giella 87.48 65.79 58.09
Czech-PDT cs pdt 98.74 89.64 87.04 Norwegian-Bokmaal no bokmaal 97.73 89.83 87.57
Czech-PUD [p] cs pud 96.71 87.62 82.28 Norwegian-Nynorsk no nynorsk 97.33 89.73 87.29
Danish-DDT da ddt 96.18 82.17 78.88 Norwegian-NynorskLIA [s] no nynorsklia 85.22 64.14 54.31
Dutch-Alpino nl alpino 95.62 86.34 82.37 Old Church Slavonic-PROIEL cu proiel 93.69 80.59 73.93
Dutch-LassySmall nl lassysmall 95.21 86.46 82.14 Old French-SRCMF fro srcmf 95.12 86.65 81.15
English-EWT en ewt 95.48 87.55 84.71 Persian-Seraji fa seraji 96.66 88.07 84.07
English-GUM en gum 94.10 84.88 80.45 Polish-LFG pl lfg 98.22 95.29 93.10
English-LinES en lines 95.55 80.34 75.40 Polish-SZ pl sz 97.05 90.98 87.66
English-PUD [p] en pud 95.25 87.49 84.25 Portuguese-Bosque pt bosque 96.76 88.67 85.71
Estonian-EDT et edt 96.87 85.45 82.13 Romanian-RRT ro rrt 97.43 88.74 83.54
Finnish-FTB fi ftb 94.53 86.10 82.45 Russian-SynTagRus ru syntagrus 98.51 91.00 88.91
Finnish-PUD [p] fi pud 96.44 87.54 84.60 Russian-Taiga [s] ru taiga 85.49 65.52 56.33
Finnish-TDT fi tdt 96.12 86.07 82.92 Serbian-SET sr set 97.40 89.32 85.03
French-GSD fr gsd 97.11 89.45 86.43 Slovak-SNK sk snk 95.18 85.88 81.89
French-Sequoia fr sequoia 97.92 89.71 87.43 Slovenian-SSJ sl ssj 97.79 88.26 86.10
French-Spoken fr spoken 94.25 79.80 73.45 Slovenian-SST sl sst [s] 89.50 66.14 58.13
Galician-CTG gl ctg 97.12 85.09 81.93 Spanish-AnCora es ancora 98.57 90.30 87.98
Galician-TreeGal [s] gl treegal 93.66 77.71 71.63 Swedish-LinES sv lines 95.51 83.60 78.97
German-GSD de gsd 94.07 81.45 76.68 Swedish-PUD [p] sv pud 92.10 79.53 74.53
Gothic-PROIEL got proiel 93.45 79.80 71.85 Swedish-Talbanken sv talbanken 96.55 86.53 83.01
Greek-GDT el gdt 96.59 87.52 84.64 Turkish-IMST tr imst 92.93 70.53 62.55
Hebrew-HTB he htb 96.24 87.65 82.64 Ukrainian-IU uk iu 95.24 83.47 79.38
Hindi-HDTB hi hdtb 96.94 93.25 89.83 Urdu-UDTB ur udtb 93.35 86.74 80.44
Hungarian-Szeged hu szeged 92.07 76.18 69.75 Uyghur-UDT ug udt 87.63 76.14 63.37
Indonesian-GSD id gsd 93.29 84.64 77.71 Vietnamese-VTB vi vtb 87.63 67.72 58.27
Irish-IDT [s] ga idt 89.74 75.72 65.78 Average 94.49 83.11 78.18

Table 4: UPOS, UAS and LAS scores computed on all tokens of our jPTDP v2.0 model regarding gold-
standard segmentation on 73 CoNLL-2018 shared task test sets “Big”, “PUD” and “Small” – UD v2.2
(Nivre et al., 2018). [p] and [s] denote the “PUD” extra parallel and small test sets, respectively. For
each treebank, a joint model is trained using a fixed set of hyper-parameters as mentioned in Section 2.5.

5 UniMelb in the EPE 2018 campaign

Our UniMelb team also participated with jPTDP
v2.0 in the 2018 Extrinsic Parser Evaluation (EPE)
campaign (Fares et al., 2018).10 The EPE 2018
campaign runs in collaboration with the CoNLL
2018 shared task, which aims to evaluate depen-
dency parsers by comparing their performance
on three downstream tasks: biomedical event ex-
traction (Björne et al., 2017), negation resolution
(Lapponi et al., 2017) and opinion analysis (Jo-
hansson, 2017). Here, participants only need to
provide parsing outputs of English raw texts used
in these downstream tasks; the campaign orga-
nizers then compute end-to-end downstream task

10http://epe.nlpl.eu

scores. General background can be also found in
the first EPE edition 2017 (Oepen et al., 2017).

Unlike EPE 2017, the EPE 2018 campaign lim-
ited the training data to the English UD treebanks
only. We unfortunately were unaware of this re-
striction during development of our model. Thus,
we trained a jPTDP v2.0 model on dependency
trees generated with the Stanford basic dependen-
cies on a combination of the WSJ treebank, sec-
tions 02-21, and the training split of the GENIA
treebank (Tateisi et al., 2005). We used the fixed
set of hyper-parameters as used for the CoNLL
2018 shared task as mentioned in Section 2.5.11

We then submitted the parsing outputs by run-
11Word embeddings are initialized by the 100-dimensional

pre-trained GloVe word vectors.
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Task Development set Evaluation set
Pre. Rec. F1 SP17 Pre. Rec. F1 SP17

Event extraction 57.87 51.20 54.331 52.6754.59 58.52 49.43 53.591 50.2950.23
Negation resolution 100.0 44.51 61.603 64.8565.37 100.0 41.83 58.993 65.1366.16
Opinion analysis 69.12 64.65 66.811 66.6368.53 66.67 62.88 64.721 63.7265.14

Average 60.911 61.3862.83 59.101 59.7160.51

Table 5: Downstream task scores Precision (Prec.), Recall (Rec.) and F1 for our UniMelb team. The
subscript in the F1 column denotes the unofficial rank of UniMelb over 17 participating teams at EPE
2018 (Fares et al., 2018). “SP17” denotes the F1 scores obtained by the EPE 2017 system Stanford-Paris
(Schuster et al., 2017) with respect to (w.r.t.) the Stanford basic dependencies. The subscript in the SP17
column denotes the F1 scores obtained by Stanford-Paris w.r.t. the UD-v1-enhanced type of dependency
representations, in which the average F1 score at 60.51 is the highest one at EPE 2017.

ning our trained model on the pre-processed to-
kenized and sentence-segmented data provided by
the campaign on the TIRA platform.

Table 5 presents the results we obtained for
three downstream tasks at EPE 2018 (Fares et al.,
2018). Since we employed external training data,
our obtained scores are not officially ranked. In
total 17 participating teams, we obtained the high-
est average F1 score over the three downstream
tasks (i.e., we ranked first, unofficially). In par-
ticular, we achieved the highest F1 scores for both
biomedical event extraction and opinion analysis.
Our results may be high because the training data
we used is larger than the English UD treebanks
used by other teams.

Table 5 also presents scores from the Stanford-
Paris team (Schuster et al., 2017)—the first-ranked
team at EPE 2017 (Oepen et al., 2017). Both
EPE 2017 and 2018 campaigns use the same
downstream task setups, therefore the downstream
task scores are directly comparable. Note that
Stanford-Paris employed the state-of-the-art bi-
affine dependency parser (Dozat et al., 2017) with
larger training data. In particular, Stanford-Paris
not only used the WSJ sections 02-21 and the
training split of the GENIA treebank (as we did),
but also included the Brown corpus. The down-
stream application of negation resolution requires
parsing of fiction, which is one the genres included
in the Brown corpus. Hence it is reasonable that
the Stanford-Paris team produced better negation
resolution scores than we did.

However, in terms of the Stanford basic depen-
dencies, while we employ a less accurate pars-
ing model with smaller training data, we obtain
higher downstream task scores for event extrac-
tion and opinion analysis than the Stanford-Paris

team. Consequently, better intrinsic parsing per-
formance does not always imply better extrin-
sic downstream application performance. Sim-
ilar observations on the biomedical event ex-
traction and opinion analysis tasks can also be
found in Nguyen and Verspoor (2018) and Gómez-
Rodrı́guez et al. (2017), respectively. Further in-
vestigations of this pattern requires much deeper
understanding of the architecture of the down-
stream task systems, which is left for future work.

6 Conclusion

In this paper, we have presented a novel neural
network model for joint POS tagging and graph-
based dependency parsing. On the benchmark
English WSJ Penn treebank, our model obtains
strong parsing scores UAS at 94.51% and LAS at
92.87%, and a state-of-the-art POS tagging accu-
racy at 97.97%.

We also participated with our joint model in
the CoNLL 2018 shared task on multilingual pars-
ing from raw texts to universal dependencies, and
obtained very competitive results. Specifically,
using the same CoNLL-U files pre-processed by
UDPipe (Straka and Straková, 2017), our model
produced 0.8% higher POS tagging, 3.1% higher
UAS and 3.6% higher LAS scores on average than
UDPipe on 61 big UD treebank test sets. Further-
more, our model also helps obtain state-of-the-art
downstream task scores for the biomedical event
extraction and opinion analysis applications.

We believe our joint model can serve as a new
strong baseline for both intrinsic POS tagging
and dependency parsing tasks as well as for ex-
trinsic downstream applications. Our code and
pre-trained models are available at: https://
github.com/datquocnguyen/jPTDP.
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Abstract

This paper presents the IBM Research AI
submission to the CoNLL 2018 Shared
Task on Parsing Universal Dependen-
cies. Our system implements a new
joint transition-based parser, based on
the Stack-LSTM framework and the Arc-
Standard algorithm, that handles tokeniza-
tion, part-of-speech tagging, morpholog-
ical tagging and dependency parsing in
one single model. By leveraging a com-
bination of character-based modeling of
words and recursive composition of par-
tially built linguistic structures we quali-
fied 13th overall and 7th in low resource.
We also present a new sentence segmen-
tation neural architecture based on Stack-
LSTMs that was the 4th best overall.

1 Introduction

The CoNLL 2018 Shared Task on Parsing Uni-
versal dependencies consists of parsing raw text
from different sources and domains into Univer-
sal Dependencies (Nivre et al., 2016, 2017a) for
more than 60 languages and domains.1 The task
includes extremely low resource languages, like
Kurmanji or Buriat, and high-resource languages
like English or Spanish. The competition there-
fore invites to learn how to make parsers for low-
resource language better by exploiting resources
available for the high-resource languages. The
task also includes languages from almost all lan-
guage families, including Creole languages like
Nigerian Pidgin2 and completely different scripts
(i.e. Chinese, Latin alphabet, Cyrillic alphabet, or

1This is the second run of the task, please refer to (Zeman
et al., 2017) for the 2017 Shared Task.

2https://en.wikipedia.org/wiki/
Nigerian_Pidgin

Arabic). For further description of the task, data,
framework and evaluation please refer to (Nivre
et al., 2018, 2017b; Zeman et al., 2018; Potthast
et al., 2014; Nivre and Fang, 2017).

In this paper we describe the IBM Research AI
submission to the Shared Task on Parsing Uni-
versal Dependencies. Our starting point is the
Stack-LSTM3 parser (Dyer et al., 2015; Balles-
teros et al., 2017) with character-based word rep-
resentations (Ballesteros et al., 2015), which we
extend to handle tokenization, POS tagging and
morphological tagging. Additionally, we apply
the ideas presented by Ammar et al. (2016) to all
low resource languages since they benefited from
high-resource languages in the same family. Fi-
nally, we also present two different ensemble algo-
rithms that boosted our results (see Section 2.4).

Participants are requested to obtain parses from
raw texts. This means that, sentence segmentation,
tokenization, POS tagging and morphological tag-
ging need to be done besides parsing. Participants
can choose to use the baseline pipeline (UDPipe
1.2 (Straka et al., 2016)) for those steps besides
parsing, or create their own implementation. We
choose to use our own implementation for most of
the languages. However, in a few treebanks with
very hard tokenization, like Chinese and Japanese,
we rely on UDPipe 1.2 and a run of our base parser
(section 2.1), since this produces better results.

For the rest of languages, we produce parses
from raw text that may be in documents (and thus
we need to find the sentence markers within those
documents); for some of the treebanks we adapted
Ballesteros and Wanner (2016) punctuation pre-
diction system (which is also based in the Stack-
LSTM framework) to predict sentence markers.
Given that the text to be segmented into sentences

3We use the dynamic neural network library Dynet -
http://dynet.io/ - (Neubig et al., 2017) to implement
our parser.
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can be of a significant length, we implemented a
sliding-window extension of the punctuation pre-
diction system where the Stack-LSTM is reinitial-
ized and primed when the window is advanced
(see Section 3 for details).

Our system ranked 13th overall, 7th for low re-
source languages and 4th in sentence segmenta-
tion. It was also the best qualifying system in
low resource language, Kurmanji, evidencing the
effectiveness of our adaptation of Ammar et al.
(2016) approach (see Section 2.3).

2 Our Parser

In this Section we present our base parser (see Sec-
tion 2.1), our joint architecture (see Section 2.2)
and our cross-lingual approach (see Section 2.3).

2.1 Stack-LSTM Parser
Our base model is the Stack-LSTM parser (Dyer
et al., 2015; Ballesteros et al., 2017) with
character-based word representations (Ballesteros
et al., 2015). This parser implements the Arc-
Standard with SWAP parsing algorithm (Nivre,
2004, 2009) and it uses Stack-LSTMs to model
three data structures: a buffer B initialized with
the sequence of words to be parsed, a stack S con-
taining partially built parses, and a list A of actions
previously taken by the parser. This parser expects
tokenized input and a unique POS tag associated
with every token.

We use Ballesteros et al. (2015) version of the
parser which means that we compute character-
based word vectors using bidirectional LSTMs
(Graves and Schmidhuber, 2005); but, in addition,
we also add pretrained word embeddings for all
languages. The intention is to improve in morpho-
logically rich languages and compensate for the
rest of languages in which modeling characters is
not that important.

2.2 Joint tokenization, tagging and
dependency parsing

Inspired by joint models like the ones by Bohnet
et al. (2013), Zhang and Clark (2008), Ra-
sooli and Tetreault (2013); Alberti et al. (2015);
Swayamdipta et al. (2016), among others, we ex-
tend the transition-based parser presented in 2.1
with extra actions that handle tokenization, UPOS
tagging and morphological tagging.

Actions: Actions RIGHT-ARC(r) , LEFT-ARC(r)
and SWAP remain unchanged, where r represents

the label assigned to the arc. The following actions
are modified or added for the joint transition-based
system.

1. SHIFT is extended to SHIFT(p, f) in which p
is the UPOS tag assigned to the token being
shifted, f is the Morphological tag. This is
the same as in (Bohnet et al., 2013).

2. A new action TOKENIZE(i) is added to
handle tokenization within the sentence.
TOKENIZE(i) tokenizes the string at the top
of the buffer at offset i. The resulted two to-
kens are put at the top of the buffer. When
a string needs to be tokenized into more than
two tokens, a series of TOKENIZE and SHIFT

actions will do the work.

3. A new action SPLIT is added to handle split-
ting of a string which is more complicated
than inserting whitespace, for example, the
word "des" in French is splitted into "de" and
"les", as shown in Figure 2. SPLIT splits the
top of the buffer token into a list of new to-
kens. The resulted tokens are then put at the
top of the buffer.

4. A new action MERGE is added to handle
the "compound" form of token that appears
sometimes in training data. For example,
in the French treebank, “200 000” (with a
whitespace) is often treated as one token.
In our parser, this is obtained by applying
MERGE when “200” is at the top of stack, and
“000” is at the top of buffer.

Figure 1 describes 1) parser transitions applied
to the stack and buffer and 2) the resulting stack
and buffer states. Figure 2 gives an example of
transition sequence in our joint system.

Modules: Our joint system extends the
transition-based parser in Section 2.1 with
extra modules to handle tokenization, UPOS and
morphological tagging. The final loss function is
the sum of the loss functions from the parser itself
and these extra modules. Due to time limitation
we did not introduce weights in the sum.

1. Tokenization module. When a string ap-
pears at buffer top, for each offset inside the
string, predict whether to tokenize here. If
tokenization happens at some offset i, apply
TOKENIZE(i) and transit to next state accord-
ingly. If no tokenization happens, predict an
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Stackt Buffert Action Stackt+1 Buffert+1 Dependency
S, (u, u), (v, v) B RIGHT-ARC(r) S, (gr(u,v), u) B u

r→ v

S, (u, u), (v, v) B LEFT-ARC(r) S, (gr(v,u), v) B u
r← v

S, (u, u), (v, v) (w, w), B SWAP S, (v, v) (u, u), (w, w), B —
S (u, u), B SHIFT(p, f) S, (u, u) B —
S (w, w), B TOKENIZE(i) S (w1, w1), (w2, w2), B —
S (w, w), B SPLIT(w1 , ...,wn) S (w1, w1), ..., (wn, wn), B —

S, (u, u) (v, v), B MERGE S (g(u,v), “u v”), B —

Figure 1: Parser transitions indicating the action applied to the stack and buffer and the resulting state. Bold symbols indicate
(learned) embeddings of words and relations, script symbols indicate the corresponding words and relations. gr and g are
compositions of embeddings. w1 and w2 are obtained by tokenizing w at offset i. “u v” is the “compound" form of word.

Transition Stack Buffer Dependency Tags
[] [Le-1, canton-2, des-3, Ulis-4, compte-5,

25-6, 785-7, habitants.-8]
SHIFT(Le, DET) [Le-1] [ canton-2, des-3, Ulis-4, compte-5,

25-6, 785-7, habitants.-8] (Le, DET)
SHIFT(canton, NOUN) [ Le-1, canton-2 ] [ des-3, Ulis-4, compte-5, 25-6, 785-7, habitants.-8] (canton, NOUN)
SPLIT(des, de les) [ Le-1, canton-2 ] [ de-3, les-4, Ulis-5, compte-6, 25-7,

785-8, habitants.-9 ]
LEFTARC(det) [ canton-2 ] [ de-3, les-4, Ulis-5, compte-6, 25-7,

785-8, habitants.-9 ] Le det←−− canton
SHIFT(de, ADP) [ canton-2, de-3 ] [ les-4, Ulis-5, compte-6, 25-7, 785-8, habitants.-9 ] (de, ADP)
SHIFT(les, DET) [ canton-2, de-3, les-4 ] [ Ulis-5, compte-6, 25-7, 785-8, habitants.-9 ] (les, DET)
SHIFT(Ulis, PROPN) [ canton-2, de-3, les-4, Ulis-5 ] [ compte-6, 25-7, 785-8, habitants.-9 ] (Ulis, PROPN)

LEFTARC(det) [ canton-2, de-3, Ulis-5 ] [ compte-6, 25-7, 785-8, habitants.-9 ] les det←−− Ulis
LEFTARC(case) [ canton-2, Ulis-5 ] [ compte-6, 25-7, 785-8, habitants.-9 ] de case←−−− Ulis

RIGHTARC(nmod) [ canton-2 ] [ compte-6, 25-7, 785-8, habitants.-9 ] canton nmod−−−−→ Ulis
SHIFT(compte, VERB) [ canton-2, compte-6 ] [ 25-7, 785-8, habitants.-9 ] (compte, VERB)

LEFTARC(nsubj) [ compte-6 ] [ 25-7, 785-8, habitants.-9 ] canton
nsubj←−−−− compte

SHIFT(25, NUM) [ compte-6, 25-7 ] [ 785-8, habitants.-9 ] (25, NUM)
MERGE [ compte-6 ] [ 25 785-7, habitants.-8 ]
SHIFT(25 785, NUM) [ compte-6, 25 785-7 ] [ habitants.-8 ] (25 785, NUM)
TOKENIZE(offset=9) [ compte-6, 25 785-7 ] [ habitants-8, .-9 ]
SHIFT(habitants, NOUN) [ compte-6, 25 785-7, habitants-8 ] [ .-9 ] (habitants, NOUN)

LEFTARC(nummod) [ compte-6, habitants-8 ] [ .-9 ] compte nummod←−−−−−− 25 785

RIGHTARC(obj) [ compte-6 ] [ .-9 ] compte
obj−−→ habitants

SHIFT(., PUNCT) [ compte-6, .-9 ] [ ] (., PUNCT)

RIGHTARC(punct) [ compte-6 ] [ ] compte
punct−−−−→ .

Figure 2: Transition sequence for “Le canton des Ulis compte 25 785 habitants.” with the joint model in Section 2.2. “habitants.-
8” means that “habitants.” is the 8th token in the current token stream. Morphological tags are omitted in this figure.

action from the set of other (applicable) ac-
tions, and transit accordingly.

2. Tagging module. If SHIFT is predicted as the
next action, a sub-routine will call classifiers
to predict POS and morph-features. The joint
system could also predict lemma, but exper-
iment results lead to the decision of not pre-
dicting lemma.

3. Split module. If SPLIT is predicted as the next
action, a sub-routine will call classifiers to
predict the output of SPLIT.

Word embeddings: Parser state representation
is composed by three Stack-LSTM’s: stack, buffer,
actions, as in (Ballesteros et al., 2017). To rep-
resent each word in the stack and the buffer,
we use character-based word embeddings together
with pretrained embeddings and word embeddings
trained in the system. The character-based word
embeddings are illustrated in Figure 3. For tok-
enization module, we deployed a character-based

embeddings to represent not only the string to to-
kenize, but also the offset, as illustrated in Figure
4.

Figure 3: Character-based embeddings from bi-LSTMs to
represent the token “its”.
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Figure 4: Character-based embeddings from bi-LSTMs to
represent the string “ok.” and the offset 2 in consideration.

2.3 Cross-Lingual Parser

We adapted cross-lingual architecture of Ammar
et al. (2016) (also based in the Stack-LSTM parser)
in our joint model presented in Section 2.2 to han-
dle low-resource and zero-shot languages. This ar-
chitecture enables effective training of the Stack-
LSTM parser on multilingual training data. Words
in each language are represented by multilingual
word embeddings to allow cross-lingual sharing;
whereas language specific characteristics are cap-
tured by means of language embeddings. Ammar
et al. (2016) experiment with a) pre-specified lan-
guage embeddings based on linguistic features and
b) language embeddings learned jointly with the
other parameters. The former requires external
linguistic knowledge and the latter can be trained
only when all languages in the set have enough an-
notated training data. We take a third approach –
we pretrain language embeddings on raw text (ex-
plained in next section) and then keep them fixed
during parser training. In our implementation,
pretrained language embeddings are concatenated
with word representation and with parser state.

We use cross-lingual version of our parser
for all zero-shot languages (these are: Breton,
Naija, Faroese and Thai), most low resource lan-
guages (these are: Buryat, Kurmanji, Kazakh, Sor-
bian Upper, Armenian, Irish, Vietnamese, North-
ern Sami and Uyghur ), and some other lan-
guages in which we observed strong improve-
ments on development data when parsing with a
cross-lingual model trained in the same language
family (these are: Ancient Greek – grc_proiel
and grc_perseus, Swedish – sv_pud, Norwegian

Nearest Neighbors
Character Word Sub-Word

German Dutch Swedish Afrikaans
Portuguese Galician Galician Galician
Ukrainian Bulgarian Bulgarian Russian
Hindi Hebrew Urdu Urdu
Kazakh Ukrainian Buryat Buryat
Kurmanji Turkish Urdu Naija
Persian Arabic Uyghur Uyghur

Table 1: Nearest neighbors of a variety of languages based on
language vectors learned via models of varying granularities:
Characters, Words and Sub-Word units (BPEs)

Nynorsk – no_nynorsklia ).
In zero-shot setup, we observed that language

embeddings in fact hurt parser performance4. This
is consistent with the findings of Ammar et al.
(2016) for a similar setup as noted in footnote 30.
In such cases, we trained multilingual parser with-
out language embeddings, relying only on multi-
lingual word embeddings.

Language embeddings: Ammar et al. (2016)
architecture utilizes language embeddings that
capture language nuances and allow generaliza-
tion. We adapt the method of Östling and Tiede-
mann (2017) to pretrain language embeddings.
This method is essentially a character-level lan-
guage model, where a 2-layered LSTM predicts
next character at each time step given previous
character inputs. A language vector is concate-
nated to each input as well as the hidden layer be-
fore final softmax. The model is trained on a raw
corpus containing texts from different languages.
Language vectors are shared within the same lan-
guage.

The model of Östling and Tiedemann (2017)
operates at the level of characters; They restrict
their experiments to the languages that are written
in Latin, Cyrillic or Greek scripts. However, the
shared task data spanned a variety of languages
with scripts not included in this set. Moreover,
there are languages in the shared task that are
closely related yet written in different scripts –
examples include Hindi-Urdu and Hebrew-Arabic
pairs. In preliminary experiments, we found that
the language vectors learned via the character-
based model, fail to capture language similarities
when the script is different. We therefore em-
ploy three variations of Östling and Tiedemann
(2017) model that differ in granularity of input

4We performed this experiment in an off-line, artificiality
created zero-shot setup.
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units: we use 1) characters, 2) words and 3) sub-
word units (Byte Pair Encodings, BPEs, Sennrich
et al. (2015)) as inputs. Table 1 shows the near-
est neighbors of a variety of languages based on
the language vectors from each model. Notice that
the nearest neighbor of Hindi is Urdu only when
model operates on word and sub-word levels. The
vectors learned from the three versions are con-
catenated to form final language embeddings.

This method requires a multilingual corpus for
training. We take the first 20K tokens from each
training corpus – for the corpora that had fewer
tokens, additional raw text is taken from OPUS re-
sources. For BPE inputs, we limit the size of BPE
vocabulary to 100,000 symbols.

Multilingual word embeddings: The cross-
lingual parser of Ammar et al. (2016) requires
word vectors for each language to be in the same
universal space. To this end, we use alignment
matrices provided by Smith et al. (2017) for Bo-
janowski et al. (2017) word embeddings. However,
for several low-resource languages, pre-computed
alignment matrices were not available. These in-
clude Naija, Faroese, Kurmanji, Northern Sami,
Uyghur, Buryat and Irish. For these languages,
to map monolingual embeddings to multilingual
space, we seed the mapping algorithm of Smith
et al. (2017) with freely available dictionaries5

combined with shared vocabulary with one of the
already mapped languages.

2.4 Sentence-based Ensemble and MST
Ensemble

2.4.1 Graph-based ensemble

We adapt Sagae and Lavie (2006) ensemble
method to our Stack-LSTM only models (see Sec-
tion 2.1) to obtain the final parses of Chinese,
Japanese, Hebrew, Hungarian, Turkish and Czech.
Kuncoro et al. (2016) already tried an ensemble
of several Stack-LSTM parser models achieving
state-of-the-art in English, German and Chinese,
which motivated us to improve the results of our
greedy decoding method.6

5Bilingual dictionaries used for multilingual mapping of
word embeddings,
https://people.uta.fi/ km56049/same/svocab.html
https://github.com/apertium/apertium-kmr-eng
https://github.com/apertium/apertium-fao-nor

6Kuncoro et al. (2016) developed ensemble distillation
into a single model which we did not attempt to try for the
Shared Task but we leave for future developments.

2.4.2 Model Rescoring: Sentence Level
Ensemble

For all of the languages and treebank combinations
except for Chinese, Japanese, Hebrew, Hungarian,
Turkish and Czech, we apply a sentence-level en-
semble technique to obtain the final parses.

We train 10-20 parsing models per language-
treebank (see Section 4.2). For an input sen-
tence, with each model we generate a parsing out-
put and a parsing score by adding up the scores
of all the actions along the transition sequence
(see Figure 1) . Then for each input sentence,
we choose the parsing output with the highest
model score. The joint model handles tokeniza-
tion before considering other parsing actions, and
makes tokenization decision on every offset; this
means that we need to include the normalized
score for each tokenization decision. The score
assigned to tokenizing a string S at offset n is
(
∑

i=1...n−1 Scorekeep(S, i)+Scoretok(S, n))/n,
and the score assigned to keeping S as a whole is
(
∑

i=1...len(S) Scorekeep(S, i))/len(S).
This simple technique worked fairly well, lead-

ing to significant LAS F1 improvement compared
with the single model output. From 77.53 LAS
in average on single model output of 58 tree-
banks dev set, 10-model ensemble improves LAS
to 78.75 and 20-model ensemble improves LAS to
79.79. Due to time limitation, we only ran a 20-
model sentence-level ensemble on 15 treebanks
(ar_padt, ca_ancora, cs_fictree, cu_proiel, da_ddt,
el_gdt, en_ewt, fr_sequoia, fro_srcmf, gl_ctg,
hi_hdtb, ko_gsd, ko_kaist, pl_sz, pt_bosque)
while in the rest we ran a 10-model ensemble.

In multi-lingual setting, we ran 5-model ensem-
ble in most cases except grc_proiel, grc_perseus
and sv_lines where 10-models ensembles were
used for decoding and no_nynorsklia where a sin-
gle model was used for decoding.

3 Sentence Segmentation

For sentence segmentation we adapted the punc-
tuation prediction system by Ballesteros and Wan-
ner (2016). This model is derived from the Stack-
LSTM parser introduced in Section 2.1 and it
uses the same architecture (including a stack, a
buffer and a stack containing the transitions al-
ready taken) but it is restricted to two distinct tran-
sitions, either SHIFT or BREAK (which adds a
sentence marker between two tokens). The sys-
tem is therefore context dependent and it makes
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decisions about sentence boundaries regardless of
punctuation symbols or other typical indicative
markers.7

We only applied our sentence segmentation sys-
tem for the datasets in which we surpassed the de-
velopment sets baseline numbers provided by the
organizers of the Shared Task by a significant mar-
gin, these are: bg_btb, es_ancora, et_edt, fa_seraji,
id_gsd, it_postwita, la_proiel, and ro_rrt.

Handling document segmentation: In 58 of
the 73 datasets with training data, the train.txt
file contains less than 10 paragraphs, and 53 of
these contain no paragraph breaks. Thus, if we
assumed (incorrectly) that paragraph breaks oc-
cur at sentence boundaries and naı̈vely used para-
graphs as training units for the sentence break de-
tector, we would face a huge computational hurdle:
we would accumulate the loss over hundreds of
thousands of words before computing backprop-
agation. We addressed this issue by adopting a
sliding window approach. The data is segmented
into windows containing W words with an overlap
of O words. Each window is treated as a training
unit, where the loss is computed, the optimizer is
invoked and the stack LSTM state is reset. The
main challenge of a sliding window approach is to
compensate for edge effects: a trivial implementa-
tion would ignore the right and left context, which
results in diminished ability of detecting sentence
breaks near the beginning and the end of the win-
dow. Since we desire to keep W to a manageable
size, we cannot ignore edge effects. We use two
different approaches to provide left and right con-
text to the stack LSTM. The right context is pro-
vided by the last O words of the window (with
the obvious exception of the last window). Thus,
the sentence segmentation algorithm predicts sen-
tence breaks for the first W − O words. To pro-
vide left context, we snapshot the stack and action
buffer after the last prediction in the window, we
slide the window to the right by W − O words,
we reset the LSTM state, and we prime the in-
put buffer with the L words to the left of the new
window, the action buffer with the most recent L
actions, and the stack with the L topmost entries
from the snapshot. We explored using different pa-
rameter for the window overlap and the size of the
left context, and concluded that asymmetric ap-

7We again used character-based word representations
(Ballesteros et al., 2015) and pretrained word embeddings in
the same way as the system described in Section 2.1.

proaches did not provide an advantage over select-
ing L = O. The parameters for the system used
for the evaluation are W = 100, L = O = 30.

4 Models

4.1 Stack-LSTM

For 6 treebanks (cs_pdt, he_htb, ja_gsd,
hu_szeged, tr_imst, zh_gsd), we trained 20
baseline Stack-LSTM models for parsing (uti-
lizing UDPipe pre-processing for sentence
segmentation, tokenization and UPOS tagging)
per treebank. And the 20 parsing model outputs
are rescored with graph-based ensemble (see
Section 2.4.2). Independent LSTM models are
trained on each treebank for labeling.

All models for the 6 treebanks are trained with
dimension 200. Except for ja_gsd and zh_gsd, the
models are trained with character embeddings.

We utilized diverse set of word embeddings
for Stack-LSTM and graph-based models: cs_pdt,
he_htb and tr_imst (CoNLL2017 embedding with
dimension 100), ja_gsd (in-house cross-lingual
embeddings with dimension 300), hu_szeged and
zh_gsd (Facebook embeddings with dimension
300).

4.2 Joint Models

We set input and hidden-layer dimension to 100
and action vector dimension to 20. CoNLL
2017 pretrained embeddings (dimension 100)
were used wherever available. We used Facebook
embeddings (dimension 300) for af_afribooms,
got_proiel and sr_set.

For en_pud and fi_pud where no training and
dev set is available, the models trained from the
biggest treebank in the same language (en_ewt and
fi_tdt) are used to parse the testset. ru_syntagrus
model is used to parse ru_taiga testset because of
higher score. For gl_treegal and la_perseus where
no development data is available, 1/10 of training
data is set aside as development set.

We use sentence-based ensemble (see Section
2.4.2) for all models since the parser presented in
Section 2.2 may produce a different number of to-
kens in the output due to tokenization.

4.3 Cross Lingual

Cross-lingual models are trained with input and
hidden layers of dimension 100 each, and action
vectors of dimension 20. Pretrained multilingual
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Target Treebank Set of Training Treebanks
pcm_nsc en_ewt, pt_bosque
fo_oft no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
br_keb af_afribooms, en_ewt, nl_alpino, de_gsd, got_proiel, ga_idt
th_pud id_gsd, vi_vtb
kmr_mg hi_hdtb, ur_udtb, fa_seraji, kmr_mg
vi_vtb id_gsd, vi_vtb, hu_szeged
bxr_bdt ug_udt, bxr_bdt, fa_seraji, tr_imst
ug_udt ug_udt, bxr_bdt, fa_seraji, tr_imst
kk_ktb uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb
hsb_ufal uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb
sme_giella no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
ga_idt af_afribooms, en_ewt, nl_alpino, de_gsd, got_proiel, ga_idt
hy_armtdp grc_perseus, grc_proiel, el_gdt, hy_armtdp
grc_perseus grc_perseus, grc_proiel, el_gdt, hy_armtdp
grc_proiel grc_perseus, grc_proiel, el_gdt, hy_armtdp
sv_pud no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
no_nyrosklia no_bokmaal, no_nynorsk, sv_lines, sv_talbanken, da_ddt, sme_giella
sl_sst uk_iu, bg_bdt, sk_snk, sl_ssj, sl_sst, hr_set, cs_fictree, pl_lfg, lv_lvtb, cu_proiel, bxr_bdt, hsb_ufal, kk_ktb

Table 2: For each target treebank (left column), the parser was trained on a set of related languages’ treebanks (right column).
Top section contains zero-shot languages (no training data at all), middle section lists low resource languages (with small
amounts of training data) and the bottom section lists the test treebanks for which little or no in-domain training data was
provided but a different training treebank of the same language was available.

word embeddings are of dimension 300 and pre-
trained language embeddings are of dimension
192 (concatenation of three 64 length vectors).

For each target language, cross-lingual parser
is trained on a set of treebanks from related lan-
guages. Table 2 details the sets of source treebanks
used to train the parser for each target treebank. In
the case of low resource languages, training algo-
rithm is modified to sample from each language
equally often. This is to ensure that the parser is
still getting most of its signal from the language of
interest. In all cross-lingual experiments, sentence
level ensemble (see Section 2.4.2) is used.

4.4 Segmentation

Sentence segmentation models have hidden layer
dimension equal to 100. It relies on the fast-
Text embeddings (Bojanowski et al., 2017), which
have dimension equal to 300. The sliding window
width is of 100 words, and the overlap between ad-
jacent windows is 30 words.

5 Results

Table 4 presents the average F1 LAS results
grouped by treebank size and type of our system
compared to the baseline UDPipe 1.2 (Straka and
Straková, 2017). Table 3 presents the F1 LAS re-
sults for all languages compared to the baseline
UDPipe 1.2. Our system substantially surpassed
the baseline but it is far from the best system of
the task in most cases. Some exceptions are the

low resource languages like kmr_mg in which our
system is the best, bxr_bdt in which it is the second
best and hsb_ufal in which it is the 3rd best; proba-
bly due to our cross-lingual approach (see Section
2.3). In ko_gsd and ko_kaist our scores are 17.61
and 13.56 higher than the baseline UDPipe 1.2 as
a result of character-based embeddings (similar re-
sult as (Ballesteros et al., 2015)), but still far from
the best system.

It is worth noting that, on most treebanks our
system used joint model to do tokenization in one
pass together with parsing, and we trained with no
more than UD-2.2 training data. Our overall tok-
enization score is 97.30, very close (-0.09) to the
baseline UDPipe 1.2, our tokenization score on big
treebanks is 99.24, the same as the baseline.

For sentence segmentation, as explained in Sec-
tion 3, we only used our system for the treebanks
in which it performed better than the baseline in
the development set. We ranked 4th, 0.5 above the
baseline and 0.36 below the top-ranking system.
Table 5 shows the results of our system for the 8
treebanks for which we submitted a run with our
own sentence segmenter. For the other treebanks
we used the baseline UDPipe 1.2. We remark
that for la_projel, where no punctuation marks are
available, our system outperformed UDPipe Fu-
ture by 3.79 and UDPipe 1.2 by 3.99. Finally, for
it_postwita, a dataset where the punctuation is as
indicative of sentence breaks and other character
patterns, our system outperformed UDPipe future

98



Treebank Baseline Ours Treebank Baseline Ours
af_afribooms 77.88% 80.53% (13) ar_padt 66.41% 69.13% (15)
bg_btb 84.91% 86.83% (15) br_keb 10.25% 9.45% (18)
bxr_bdt 12.61% 19.22% (2) ca_ancora 85.61% 87.60% (16)
cs_cac 83.72% 87.08% (15) cs_fictree 82.49% 85.83% (15)
cs_pdt 83.94% 87.08% (14) cs_pud 80.08% 83.00% (12)
cu_proiel 65.46% 69.65% (10) da_ddt 75.43% 77.87% (15)
de_gsd 70.85% 73.91% (16) el_gdt 82.11% 84.37% (13)
en_ewt 77.56% 78.37% (16) en_gum 74.20% 76.11% (17)
en_lines 73.10% 74.31% (16) en_pud 79.56% 81.13% (13)
es_ancora 84.43% 86.90% (16) et_edt 75.02% 79.89% (15)
eu_bdt 70.13% 75.09% (15) fa_seraji 79.10% 82.71% (15)
fi_ftb 75.64% 81.33% (13) fi_pud 80.15% 83.49% (12)
fi_tdt 76.45% 79.79% (15) fo_oft 25.19% 38.84% (7)
fr_gsd 81.05% 84.32% (13) fro_srcmf 79.27% 83.49% (11)
fr_sequoia 81.12% 82.79% (15) fr_spoken 65.56% 65.34% (17)
ga_idt 62.93% 61.45% (19) gl_ctg 76.10% 76.81% (17)
gl_treegal 66.16% 62.44% (12) got_proiel 62.16% 63.52% (11)
grc_perseus 57.75% 66.23% (11) grc_proiel 67.57% 71.77% (13)
he_htb 57.86% 60.17% (15) hi_hdtb 87.15% 89.72% (14)
hr_set 78.61% 82.64% (15) hsb_ufal 23.64% 42.33% (3)
hu_szeged 66.76% 67.25% (16) hy_armtdp 21.79% 19.25% (20)
id_gsd 74.37% 77.03% (15) it_isdt 86.26% 87.14% (18)
it_postwita 66.81% 73.85% (5) ja_gsd 72.32% 73.29% (15)
ja_modern 22.71% 22.74% (7) kk_ktb 24.21% 23.72% (12)
kmr_mg 23.92% 30.41% (1) ko_gsd 61.40% 79.01% (13)
ko_kaist 70.25% 83.81% (15) la_ittb 75.95% 82.43% (15)
la_perseus 47.61% 43.40% (19) la_proiel 59.66% 64.69% (14)
lv_lvtb 69.43% 73.17% (14) nl_alpino 77.60% 81.43% (15)
nl_lassysmall 74.56% 76.49% (17) no_bokmaal 83.47% 86.64% (16)
no_nynorsk 82.13% 85.31% (16) no_nynorsklia 48.95% 58.28% (8)
pcm_nsc 12.18% 13.03% (12) pl_lfg 87.53% 90.42% (15)
pl_sz 81.90% 82.81% (17) pt_bosque 82.07% 84.12% (16)
ro_rrt 80.27% 82.87% (14) ru_syntagrus 84.59% 87.79% (15)
ru_taiga 55.51% 63.00% (9) sk_snk 75.41% 77.91% (16)
sl_ssj 77.33% 82.22% (13) sl_sst 46.95% 48.36% (11)
sme_giella 56.98% 55.97% (18) sr_set 82.07% 83.84% (16)
sv_lines 74.06% 75.90% (16) sv_pud 70.63% 76.65% (9)
sv_talbanken 77.91% 80.63% (16) th_pud 0.70% 0.67% (12)
tr_imst 54.04% 57.19% (16) ug_udt 56.26% 60.25% (14)
uk_iu 74.91% 77.74% (14) ur_udtb 77.29% 79.80% (15)
vi_vtb 39.63% 43.48% (7) zh_gsd 57.91% 60.63% (16)

Table 3: Final F1 LAS results of our system compared with the baseline. We show our ranking for the particular treebank
between parenthesis next to our score.

by 29.84 and UDPipe 1.2 by 36.99.
The 2018 edition of the Extrinsic Parser Eval-

uation Initiative (EPE 2018) (Fares et al., 2018)
runs in collaboration with the 2018 Shared Task
on Multilingual Parsing. Parsers are evaluated
against the three EPE downstream systems: bio-
logical event extraction, fine-grained opinion anal-
ysis, and negation resolution. This provides op-

portunities for correlating intrinsic metrics with
downstream effects on the three relevant applica-
tions. Our system qualified 12th overall, being
10th in event extraction, 13th in negation resolu-
tion and 14th in opinion analysis.
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Treebank Baseline Ours
All 65.80% 69.11% (13)
Big treebanks 74.14% 77.55% (15)
PUD treebanks 66.63% 69.40% (10)
Small treebanks 55.01% 56.13% (18)
Low resource 17.17% 21.88% (7)

Table 4: Average F1 LAS results (grouped by treebank size
and type) of our system compared with the baseline. We show
our ranking in the same category between parenthesis next to
our score.

Treebank Baseline Ours (Rank)
bg_btb 92.85 92.24 (24)
es_ancora 98.26 97.89 (24)
et_edt 90.02 91.29 (6)
fa_seraji 98.74 98.09(24)
id_gsd 92.00 92.03 (6)
it_postwita 21.80 58.79 (2)
la_proiel 35.16 39.15 (2)
ro_rrt 93.72 94.40 (5)

Table 5: Sentence segmentation F1 and rank, compared to
baseline. We only include the results in which our system
surpassed the baseline in the development set.

6 Conclusion

We presented the IBM Research submission to the
CoNLL 2018 Shared Task on Universal Depen-
dency Parsing. We presented a new transition-
based algorithm for joint (1) tokenization, (2) tag-
ging and (3) parsing that extends the arc-standard
algorithm with new transitions. In addition, we
also used the same Stack-LSTM framework for
sentence segmentation achieving good results.
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Joint morphological and syntactic analysis for richly
inflected languages. Transactions of the Association
for Computational Linguistics, 1:415–428.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 334–343.

Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari
Björne, and Richard Johansson. 2018. The 2018
Shared Task on Extrinsic Parser Evaluation. On
the downstream utility of English Universal Depen-
dency parsers. In Proceedings of the 22nd Confer-
ence on Natural Language Learning, Brussels, Bel-
gia.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5-6):602–610.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1744–1753. Association for Com-
putational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

100



Joakim Nivre. 2004. Inductive dependency parsing.
Technical Report 04070, Växjö University, School
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Hlaváčová, Florinel Hociung, Petter Hohle, Radu
Ion, Elena Irimia, Tomáš Jelínek, Anders Jo-
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Abstract

This paper presents our experiments with
applying TUPA to the CoNLL 2018 UD
shared task. TUPA is a general neu-
ral transition-based DAG parser, which
we use to present the first experiments
on recovering enhanced dependencies as
part of the general parsing task. TUPA
was designed for parsing UCCA, a cross-
linguistic semantic annotation scheme, ex-
hibiting reentrancy, discontinuity and non-
terminal nodes. By converting UD trees
and graphs to a UCCA-like DAG for-
mat, we train TUPA almost without mod-
ification on the UD parsing task. The
generic nature of our approach lends it-
self naturally to multitask learning. Our
code is available at https://github.
com/CoNLL-UD-2018/HUJI.

1 Introduction

In this paper, we present the HUJI submission to
the CoNLL 2018 shared task on Universal Depen-
dency parsing (Zeman et al., 2018). We focus only
on parsing, using the baseline system, UDPipe 1.2
(Straka et al., 2016; Straka and Straková, 2017)
for tokenization, sentence splitting, part-of-speech
tagging and morphological tagging.

Our system is based on TUPA (Hershcovich
et al., 2017, 2018, see §3), a transition-based
UCCA parser. UCCA (Universal Conceptual Cog-
nitive Annotation; Abend and Rappoport, 2013)
is a cross-linguistic semantic annotation scheme,
representing events, participants, attributes and re-
lations in a directed acyclic graph (DAG) struc-
ture. UCCA allows reentrancy to support ar-
gument sharing, discontinuity (corresponding to
non-projectivity in dependency formalisms) and
non-terminal nodes (as opposed to dependencies,

which are bi-lexical). To parse Universal Depen-
dencies (Nivre et al., 2016) using TUPA, we em-
ploy a bidirectional conversion protocol to repre-
sent UD trees and graphs in a UCCA-like unified
DAG format (§2).

Enhanced dependencies. Our method treats en-
hanced dependencies1 as part of the dependency
graph, providing the first approach, to our knowl-
edge, for supervised learning of enhanced UD
parsing. Due to the scarcity of enhanced de-
pendencies in UD treebanks, previous approaches
(Schuster and Manning, 2016; Reddy et al., 2017)
have attempted to recover them using language-
specific rules. Our approach attempts to learn
them from data: while only a few UD treebanks
contain any enhanced dependencies, similar struc-
tures are an integral part of UCCA and its anno-
tated corpora (realized as reentrancy by remote
edges; see §2), and TUPA supports them as a stan-
dard feature.

As their annotation in UD is not yet widespread
and standardized, enhanced dependencies are not
included in the evaluation metrics for UD pars-
ing, and so TUPA’s ability to parse them is not re-
flected in the official shared task scores. However,
we believe these enhancements, representing case
information, elided predicates, and shared argu-
ments due to conjunction, control, raising and rel-
ative clauses, provide richer information to down-
stream semantic applications, making UD better
suited for text understanding. We propose an eval-
uation metric specific to enhanced dependencies,
enhanced LAS (§5.1), and use it to evaluate our
method.

1http://universaldependencies.org/u/
overview/enhanced-syntax.html
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Figure 1: (a) Example UCCA annotation for the sentence
“We were made to feel very welcome.”, containing a control
verb, made. The dashed A edge is a remote edge. (b) Bilex-
ical graph annotating the same sentence in UD (reviews-
077034-0002 from UD_English-EWT). Enhanced de-
pendencies appear below the sentence. (c) The same UD
graph, after conversion to the unified DAG format. Interme-
diate non-terminals and head edges are introduced, to get a
UCCA-like structure.

2 Unified DAG Format

To apply TUPA to UD parsing, we convert UD
trees and graphs into a unified DAG format (Her-
shcovich et al., 2018). The format consists of a
rooted DAG, where the tokens are the terminal
nodes.2 Edges are labeled (but not nodes), and are
divided into primary and remote edges, where the
primary edges form a tree (all nodes have at most
one primary parent, and the root has none). Re-
mote edges (denoted as dashed edges in Figure 1)

2Our conversion code supports full conver-
sion between UCCA and UD, among other rep-
resentation schemes, and is publicly available at
http://github.com/danielhers/semstr/
tree/master/semstr/conversion.

enable reentrancy, and thus form a DAG together
with primary edges. Figure 1 shows an example
UCCA graph, and a UD graph (containing two en-
hanced dependencies) before and after conversion.
Both annotate the same sentence from the English
Web Treebank (Silveira et al., 2014)3.

Conversion protocol. To convert UD into the
unified DAG format, we add a pre-terminal for
each token, and attach the pre-terminals according
to the original dependency edges: traversing the
tree from the root down, for each head token we
create a non-terminal parent with the edge label
head, and add the node’s dependents as children
of the created non-terminal node (see Figure 1c).
This creates a constituency-like structure, which is
supported by TUPA’s transition set (see §3.1).

Although the enhanced dependency graph is not
necessarily a supergraph of the basic dependency
tree, the graph we convert to the unified DAG for-
mat is their union: any enhanced dependnecies
that are distinct from the basic dependency of a
node (by having a different head or universal de-
pendency relation) are converted to remote edges
in the unified DAG format.

To convert graphs in the unified DAG format
back into dependency graphs, we collapse all head
edges, determining for each terminal what is the
highest non-terminal headed by it, and then attach-
ing the terminals to each other according to the
edges among their headed non-terminals.

Input format. Enhanced dependencies are en-
coded in the 9th column of the CoNLL-U format,
by an additional head index, followed by a colon
and dependency relation. Multiple enhanced de-
pendencies for the same node are separated by
pipes. Figure 2 demonstrates this format. Note
that if the basic dependency is repeated in the en-
hanced graph (3:nsubj:pass in the example),
we do not treat it as an enhanced dependency, so
that the converted graph will only contain each
edge once. In addition to the UD relations defined
in the basic representations, enhanced dependen-
cies may contain the relation ref, used for rel-
ative clauses. In addition, they may contain more
specific relation subtypes, and optionally also case
information.

Language-specific extensions and case infor-
mation. Dependencies may contain language-

3https://catalog.ldc.upenn.edu/
LDC2012T13
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1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj:pass 3:nsubj:pass|5:nsubj:xsubj|7:nsubj:xsubj _

Figure 2: Example line from CoNLL-U file with two enhanced dependencies: 5:nsubj:xsubj and 7:nsubj:xsubj.

he went straight to work and finished the job efficiently and promptly !

nsubj

nsubj

root

advmod mark

advcl

cc

conj

det

obj

advmod

cc

conj

advmod

punct

Figure 3: UD graph from reviews-341397-0003 (UD_English-EWT), containing conjoined predicates and arguments.

specific relation subtypes, encoded as a suffix
separated from the universal relation by a colon.
These extensions are ignored by the parsing eval-
uation metrics, so for example, the subtyped rela-
tion nsubj:pass (Figure 1b) is considered the
same as the universal relation nsubj for eval-
uation purposes. In the enhanced dependencies,
these suffixes may also contain case information,
which may be represented by the lemma of an ad-
position. For example, the “peace”→ “earth” de-
pendency in Figure 4 is augmented as nmod:on
in the enhanced graph (not shown in the figure be-
cause it shares the universal relation with the basic
dependency).

In the conversion process, we strip any
language-specific extensions from both basic and
enhanced dependencies, leaving only the univer-
sal relations. Consequently, case information that
might be encoded in the enhanced dependencies is
lost, and we do not handle it in our current system.

Ellipsis and null nodes. In addition to enhanced
dependencies, the enhanced UD representation
adds null nodes to represented elided predicates.
These, too, are ignored in the standard evalua-
tion. An example is shown in Figure 4, where
an elided “wish” is represented by the node E9.1.
The elided predicate’s dependents are attached to
its argument “peace” in the basic representation,
and the argument itself is attached as an orphan.
In the enhanced representation, all arguments are
attached to the null node as if the elided predicate
was present.

While UCCA supports empty nodes without
surface realization in the form of implicit units,
previous work on UCCA parsing has removed
these from the graphs. We do the same for UD
parsing, dropping null nodes and their associated

dependencies upon conversion to the unified DAG
format. We leave parsing elided predicates for fu-
ture work.

Propagation of conjuncts. Enhanced depen-
dencies contain dependencies between conjoined
predicates and their arguments, and between pred-
icates and their conjoined arguments or modifiers.
While these relations can often be inferred from
the basic dependencies, in many cases they require
semantic knowledge to parse correctly. For exam-
ple, in Figure 3, the enhanced dependencies repre-
sent the shared subject (“he”) among the conjoined
predicates (“went” and “finished”), and the con-
joined modifiers (“efficiently” and “promptly”)
for the second predicate (“finished”). However,
there are no enhanced dependencies between the
first predicate and the second predicate’s modi-
fiers (e.g. “went”→ “efficiently”), as semantically
only the subject is shared and not the modifiers.

Relative clauses. Finally, enhanced graphs at-
tach predicates of relative clauses directly to the
antecedent modified by the relative clause, adding
a ref dependency between the antecedent and the
relative pronoun. An example is shown in Fig-
ure 5a. While these graphs may contain cycles
(“robe” ↔ “made” in the example), they are re-
moved upon conversion to the unified DAG for-
mat by the introduction of non-terminal nodes (see
Figure 5b).

3 General Transition-based DAG Parser

We now turn to describing TUPA (Hershcovich
et al., 2017, 2018), a general transition-based
parser (Nivre, 2003). TUPA uses an extended set
of transitions and features that supports reentran-
cies, discontinuities and non-terminal nodes. The
parser state is composed of a buffer B of tokens
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I wish all happy holidays , and moreso , E9.1 peace on earth .
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Figure 4: newsgroup-groups.google.com_GuildWars_086f0f64ab633ab3_ENG_20041111_173500-
0051 (UD_English-EWT), containing a null node (E9.1) and case information (nmod:on).
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(b) UD converted to unified DAG format.

Figure 5: (a) reviews-255261-0007 (UD_English-EWT), containing a relative clause, and (b) the same graph after
conversion to the unified DAG format. The cycle is removed due to the non-terminal nodes introduced in the conversion.

and nodes to be processed, a stack S of nodes cur-
rently being processed, and a graph G = (V,E, `)
of constructed nodes and edges, where V is the set
of nodes, E is the set of edges, and ` : E → L
is the label function, L being the set of possible
labels. Some states are marked as terminal, mean-
ing that G is the final output. A classifier is used
at each step to select the next transition based on
features encoding the parser’s current state. Dur-
ing training, an oracle creates training instances
for the classifier, based on gold-standard annota-
tions.

3.1 Transition Set

Given a sequence of tokens w1, . . . , wn, we pre-
dict a rooted graph G whose terminals are the to-
kens. Parsing starts with the root node on the
stack, and the input tokens in the buffer.

The TUPA transition set, shown in Figure 6,
includes the standard SHIFT and REDUCE oper-
ations, NODEX for creating a new non-terminal
node and an X-labeled edge, LEFT-EDGEX and
RIGHT-EDGEX to create a new primary X-labeled

edge, LEFT-REMOTEX and RIGHT-REMOTEX to
create a new remote X-labeled edge, SWAP to
handle discontinuous nodes, and FINISH to mark
the state as terminal.

The REMOTEX transitions are not required for
parsing trees, but as we treat the problem as gen-
eral DAG parsing due to the inclusion of enhanced
dependencies, we include these transitions.

3.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM with feature embeddings as in-
puts, followed by an MLP and a softmax layer
for classification. The model is illustrated in Fig-
ure 7. Inference is performed greedily, and train-
ing is done with an oracle that yields the set of
all optimal transitions at a given state (those that
lead to a state from which the gold graph is still
reachable). Out of this set, the actual transition
performed in training is the one with the highest
score given by the classifier, which is trained to
maximize the sum of log-likelihoods of all opti-
mal transitions at each step.
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Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E SHIFT S | x B V E −
S | x B V E REDUCE S B V E −
S | x B V E NODEX S | x y | B V ∪ {y} E ∪ {(y, x)X} − x 6= root
S | y, x B V E LEFT-EDGEX S | y, x B V E ∪ {(x, y)X} − 




x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E RIGHT-EDGEX S | x, y B V E ∪ {(x, y)X} −
S | y, x B V E LEFT-REMOTEX S | y, x B V E ∪ {(x, y)∗X} −
S | x, y B V E RIGHT-REMOTEX S | x, y B V E ∪ {(x, y)∗X} −
S | x, y B V E SWAP S | y x | B V E − i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E +

Figure 6: The transition set of TUPA. We write the stack with its top to the right and the buffer with its head to the left. (·, ·)X
denotes a primary X-labeled edge, and (·, ·)∗X a remote X-labeled edge. i(x) is the swap index (see §3.3). In addition to the
specified conditions, the prospective child in an EDGE transition must not already have a primary parent.

Parser state

S
made

B
to feel very wel...

G

We

nsubj

were
aux

head

Classifier

BiLSTM

Embeddings

We were welcome .. . .

MLP

transition

softmax

Figure 7: Illustration of the TUPA model, adapted from Her-
shcovich et al. (2018). Top: parser state (stack, buffer and
intermediate graph). Bottom: BiLTSM architecture. Vector
representation for the input tokens is computed by two lay-
ers of bidirectional LSTMs. The vectors for specific tokens
are concatenated with embedding and numeric features from
the parser state (for existing edge labels, number of children,
etc.), and fed into the MLP for selecting the next transition.

Features. We use vector embeddings represent-
ing the words, lemmas, coarse (universal) POS
tags and fine-grained POS tags, provided by
UDPipe 1.2 during test. For training, we use the
gold-annotated lemmas and POS tags. In addition,
we use one-character prefix, three-character suf-
fix, shape (capturing orthographic features, e.g.,
“Xxxx”) and named entity type, provided by
spaCy;4 punctuation and gap type features (Maier
and Lichte, 2016), and previously predicted edge
labels and parser actions. These embeddings are

4http://spacy.io

initialized randomly, except for the word embed-
dings, which are initialized with the 250K most
frequent word vectors from fastText for each lan-
guage (Bojanowski et al., 2017),5 pre-trained over
Wikipedia and updated during training. We do
not use word embeddings for languages without
pre-trained fastText vectors (Ancient Greek, North
Sami and Old French).

To the feature embeddings, we concatenate nu-
meric features representing the node height, num-
ber of (remote) parents and children, and the ratio
between the number of terminals to total number
of nodes in the graph G.

Table 1 lists all feature used for the classifier.
Numeric features are taken as they are, whereas
categorical features are mapped to real-valued em-
bedding vectors. For each non-terminal node, we
select a head terminal for feature extraction, by
traversing down the graph according to a priority
order on edge labels (otherwise selecting the left-
most child). The priority order is:

parataxis, conj, advcl, xcomp

3.3 Constraints

During training and parsing, we apply constraints
on the parser state to limit the possible transitions
to valid ones.

A generic constraint implemented in TUPA is
that stack nodes that have been swapped should
not be swapped again (Hershcovich et al., 2018).
To implement this constraint, we define a swap in-
dex for each node, assigned when the node is cre-
ated. At initialization, only the root node and ter-
minals exist. We assign the root a swap index of 0,
and for each terminal, its position in the text (start-
ing at 1). Whenever a node is created as a result

5http://fasttext.cc
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Nodes
s0 wmtuepT#ˆ$xhqyPCIEMN
s1 wmtueT#ˆ$xhyN
s2 wmtueT#ˆ$xhy
s3 wmtueT#ˆ$xhyN
b0 wmtuT#ˆ$hPCIEMN
b1, b2, b3 wmtuT#ˆ$
s0l, s0r, s1l, s1r,
s0ll, s0lr, s0rl, s0rr,
s1ll, s1lr, s1rl, s1rr

wme#ˆ$

s0L, s0R, s1L,
s1R, b0L, b0R

wme#ˆ$

Edges
s0 → s1, s0 → b0,
s1 → s0, b0 → s0

x

s0 → b0, b0 → s0 e
Past actions
a0, a1 eA
Global node ratio

Table 1: Transition classifier features.
si: stack node i from the top. bi: buffer node i.
xl, xr (xL, xR): x’s leftmost and rightmost children (par-
ents). w: head terminal text. m: lemma. u: coarse (universal)
POS tag. t: fine-grained POS tag. h: node’s height. e: la-
bel of its first incoming edge. p: any separator punctuation
between s0 and s1. q: count of any separator punctuation
between s0 and s1. x: numeric value of gap type (Maier and
Lichte, 2016). y: sum of gap lengths. P, C, I, E, and M: num-
ber of parents, children, implicit children, remote children,
and remote parents. N: numeric value of the head terminal’s
named entity IOB indicator. T: named entity type. #: word
shape (capturing orthographic features, e.g. "Xxxx" or "dd").
ˆ: one-character prefix. $: three-character suffix.
x → y refers to the existing edge from x to y. x is an in-
dicator feature, taking the value of 1 if the edge exists or 0
otherwise, e refers to the edge label, and ai to the transition
taken i+ 1 steps ago.
A refers to the action type (e.g. SHIFT/RIGHT-EDGE/NODE),
and e to the edge label created by the action.
node ratio is the ratio between non-terminals and termi-
nals (Hershcovich et al., 2017).

of a NODE transition, its swap index is the arith-
metic mean of the swap indices of the stack top
and buffer head.

In addition, we enforce UD-specific constraints,
resulting from the nature of the converted DAG
format: every non-terminal node must have a sin-
gle outgoing head edge: once it has one, it may
not get another, and until it does, the node may not
be reduced.

4 Training details

The model is implemented using DyNet v2.0.3
(Neubig et al., 2017).6 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as used in
previous experiments on UCCA parsing (Hersh-
covich et al., 2018), without any hyperparameter

6http://dynet.io

tuning on UD treebanks.

Hyperparameter Value
Pre-trained word dim. 300
Lemma dim. 200
Coarse (universal) POS tag dim. 20
Fine-grained POS tag dim. 20
Named entity dim. 3
Punctuation dim. 1
Shape dim. 3
Prefix dim. 2
Suffix dim. 3
Action dim. 3
Edge label dim. 20
MLP layers 2
MLP dimensions 50
BiLSTM layers 2
BiLSTM dimensions 500

Table 2: Hyperparameter settings.

4.1 Hyperparameters

We use dropout (Srivastava et al., 2014) be-
tween MLP layers, and recurrent dropout (Gal and
Ghahramani, 2016) between BiLSTM layers, both
with p = 0.4. We also use word, lemma, coarse-
and fine-grained POS tag dropout with α = 0.2
(Kiperwasser and Goldberg, 2016): in training,
the embedding for a feature value w is replaced
with a zero vector with a probability of α

#(w)+α ,
where #(w) is the number of occurrences of w
observed. In addition, we use node dropout (Her-
shcovich et al., 2018): with a probability of 0.1
at each step, all features associated with a single
node in the parser state are replaced with zero vec-
tors. For optimization we use a minibatch size
of 100, decaying all weights by 10−5 at each up-
date, and train with stochastic gradient descent for
50 epochs with a learning rate of 0.1, followed
by AMSGrad (Sashank J. Reddi, 2018) for 250
epochs with α = 0.001, β1 = 0.9 and β2 = 0.999.
We found this training strategy better than using
only one of the optimization methods, similar to
findings by Keskar and Socher (2017). We select
the epoch with the best LAS-F1 on the develop-
ment set. Other hyperparameter settings are listed
in Table 2.

4.2 Small Treebanks

For corpora with less than 100 training sentences,
we use 750 epochs of AMSGrad instead of 250.
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For corpora with no development set, we use
10-fold cross-validation on the training set, each
time splitting it to 80% training, 10% develop-
ment and 10% validation. We perform the nor-
mal training procedure on the training and devel-
opment subsets, and then select the model from
the fold with the best LAS-F1 on the correspond-
ing validation set.

4.3 Multilingual Model

For the purpose of parsing languages with no
training data, we use a delexicalized multilingual
model, trained on the shuffled training sets from
all corpora, with no word, lemma, fine-grained
tag, prefix and suffix features. We train this model
for two epochs using stochastic gradient descent
with a learning rate of 0.1 (we only trained this
many epochs due to time constraints).

4.4 Out-of-domain Evaluation

For test treebanks without corresponding training
data, but with training data in the same language,
during testing we use the model trained on the
largest training treebank in the same language.

5 Results

Official evaluation was done on the TIRA on-
line platform (Potthast et al., 2014). Our system
(named “HUJI”) ranked 24th in the LAS-F1 rank-
ing (with an average of 53.69 over all test tree-
banks), 23rd by MLAS (average of 44.6) and 21st
by BLEX (average of 48.05). Since our system
only performs dependency parsing and not other
pipeline tasks, we henceforth focus on LAS-F1
(Nivre and Fang, 2017) for evaluation.

After the official evaluation period ended, we
discovered several bugs in the conversion between
the CoNLL-U format and the unified DAG format,
which is used by TUPA for training and is output
by it (see §2). We did not re-train TUPA on the
training treebanks after fixing these bugs, but we
did re-evaluate the already trained models on all
test treebanks, and used the fixed code for con-
verting their output to CoNLL-U. This yielded an
unofficial average test LAS-F1 of 58.48, an im-
provement of 4.79 points over the official average
score. In particular, for two test sets, ar_padt
and gl_ctg, TUPA got a zero score in the of-
ficial evaluation due to a bug with the treatment
of multi-token words. These went up to 61.9 and
71.42, respectively. We also evaluated the trained

TUPA
(official)

TUPA
(unofficial)

UDPipe
(baseline)

All treebanks 53.69 58.48 65.80
Big treebanks 62.07 67.36 74.14
PUD treebanks 56.35 56.82 66.63
Small treebanks 36.74 41.19 55.01
Low-resource 8.53 12.68 17.17

Table 3: Aggregated test LAS-F1 scores for our system
(TUPA) and the baseline system (UDPipe 1.2).

TUPA models on all available development tree-
banks after fixing the bugs.

Table 3 presents the averaged scores on the
shared task test sets, and Figure 8 the (official and
unofficial) LAS-F1 scores obtained by TUPA on
each of the test and development treebanks.

5.1 Evaluation on Enhanced Dependencies
Since the official evaluation ignores enhanced de-
pendencies, we evaluate them separately using
a modified version of the shared task evaluation
script7. We calculate the enhanced LAS, identical
to the standard LAS except that the set of depen-
dencies in both gold and predicted graphs are the
enhanced dependencies instead of the basic depen-
dencies: ignoring null nodes and any enhanced de-
pendency sharing a head with a basic one, we align
the words in the gold graph and the system’s graph
as in the standard LAS, and define

P =
#correct

#system
, R =

#correct

#gold
, F1 = 2· P ·R

P +R
.

Table 4 lists the enhanced LAS precision, recall
and F1 score on the test treebanks with any en-
hanced dependencies, as well as the percentage of
enhanced dependencies in each test treebank, cal-
culated as 100 · #enhanced

#enhanced+#words .
Just as remote edges in UCCA parsing are

more challenging than primary edges (Hersh-
covich et al., 2017), parsing enhanced dependen-
cies is a harder task than standard UD parsing, as
the scores demonstrate. However, TUPA learns
them successfully, getting as much as 56.55 en-
hanced LAS-F1 (on the Polish LFG test set).

5.2 Ablation Experiments
The TUPA transition classifier for some of the
languages uses named entity features calculated

7https://github.com/CoNLL-UD-2018/
HUJI/blob/master/tupa/scripts/conll18_
ud_eval.py
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Figure 8: TUPA’s LAS-F1 per treebank: official and unofficial test scores, and development scores (where available).

110



Enhanced LAS % En-
hancedTreebank P R F1

ar_padt 28.51 16.24 20.69 5.30
cs_cac 54.94 35.69 43.27 7.57
cs_fictree 48.78 18.53 26.85 4.30
cs_pdt 49.46 26.47 34.48 4.61
nl_alpino 56.04 50.81 53.30 4.80
nl_lassysmall 49.71 51.30 50.49 4.13
en_ewt 57.36 52.05 54.58 4.36
en_pud 58.99 50.00 54.13 5.14
fi_tdt 40.20 31.37 35.24 7.34
lv_lvtb 31.76 18.70 23.54 4.12
pl_lfg 59.19 54.13 56.55 2.61
sk_snk 37.28 21.61 27.36 3.91
sv_pud 45.40 39.58 42.29 6.36
sv_talbanken 50.15 43.20 46.42 6.89

Table 4: TUPA’s enhanced LAS precision, recall and F1 per
test treebank with any enhanced dependencies, and percent-
age of enhanced dependencies in test treebank.

by spaCy.8 For German, Spanish, Portuguese,
French, Italian, Dutch and Russian, the spaCy
named entity recognizer was trained on Wikipedia
(Nothman et al., 2013). However, the English
model was trained on OntoNotes9, which is in fact
not among the additional resources allowed by the
shared task organizers. To get a fair evaluation
and to quantify the contribution of the NER fea-
tures, we re-trained TUPA on the English EWT
(en_ewt) training set with the same hyperparam-
eters as in our submitted model, just without these
features. As Table 5 shows, removing the NER
features (−NER) only slightly hurts the perfor-
mance, by 0.28 LAS-F1 points on the test tree-
bank, and 0.63 on the development treebank.

As further ablation experiments, we tried re-
moving POS features, pre-trained word embed-
dings, and remote edges (the latter enabling TUPA
to parse enhanced dependencies). Removing the
POS features does hurt performance to a larger de-
gree, by 2.87 LAS-F1 points on the test set, while
removing the pre-trained word embeddings even
slightly improves the performance. Removing re-
mote edges and transitions from TUPA causes a
very small decrease in LAS-F1, and of course en-
hanced dependencies can then no longer be pro-
duced at all.

8https://spacy.io/api/annotation
9https://catalog.ldc.upenn.edu/

LDC2013T19

LAS-F1 Enhanced LAS-F1

Model Test Dev Test Dev
Original 72.10 72.44 54.58 57.13
−NER 71.82 71.81 55.31 54.65
−POS 69.23 69.54 53.78 49.12
−Embed. 72.33 72.55 56.26 54.54
−Remote 72.08 72.32 0.00 0.00

Table 5: Ablation LAS-F1 and Enhanced LAS-F1 on the En-
glish EWT development and test set. NER: named entity
features. POS: part-of-speech tag features (both universal
and fine-grained). Embed.: external pre-trained word em-
beddings (fastText). Remote: remote edges and transitions in
TUPA.

6 Conclusion

We have presented the HUJI submission to the
CoNLL 2018 shared task on parsing Universal De-
pendencies, based on TUPA, a general transition-
based DAG parser. Using a simple conversion pro-
tocol to convert UD into a unified DAG format,
training TUPA as-is on the UD treebanks yields
results close to the UDPipe baseline for most tree-
banks in the standard evaluation. While other sys-
tems ignore enhanced dependencies, TUPA learns
to produce them too as part of the general de-
pendency parsing process. We believe that with
hyperparameter tuning and more careful handling
of cross-lingual and cross-domain parsing, TUPA
can be competitive on the standard metrics too.

Furthermore, the generic nature of our parser,
which supports many representation schemes, as
well as domains and languages, will allow improv-
ing performance by multitask learning (cf. Hersh-
covich et al., 2018), which we plan to explore in
future work.
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Abstract

We present the Uppsala system for the
CoNLL 2018 Shared Task on universal
dependency parsing. Our system is a
pipeline consisting of three components:
the first performs joint word and sentence
segmentation; the second predicts part-of-
speech tags and morphological features;
the third predicts dependency trees from
words and tags. Instead of training a sin-
gle parsing model for each treebank, we
trained models with multiple treebanks for
one language or closely related languages,
greatly reducing the number of models.
On the official test run, we ranked 7th of
27 teams for the LAS and MLAS metrics.
Our system obtained the best scores over-
all for word segmentation, universal POS
tagging, and morphological features.

1 Introduction

The CoNLL 2018 Shared Task on Multilingual
Parsing from Raw Text to Universal Dependencies
(Zeman et al., 2018) requires participants to build
systems that take as input raw text, without any
linguistic annotation, and output full labelled de-
pendency trees for 82 test treebanks covering 46
different languages. Besides the labeled attach-
ment score (LAS) used to evaluate systems in the
2017 edition of the Shared Task (Zeman et al.,
2017), this year’s task introduces two new met-
rics: morphology-aware labeled attachment score
(MLAS) and bi-lexical dependency score (BLEX).
The Uppsala system focuses exclusively on LAS
and MLAS, and consists of a three-step pipeline.
The first step is a model for joint sentence and
word segmentation which uses the BiRNN-CRF
framework of Shao et al. (2017, 2018) to predict
sentence and word boundaries in the raw input and

simultaneously marks multiword tokens that need
non-segmental analysis. The second component
is a part-of-speech (POS) tagger based on Bohnet
et al. (2018), which employs a sentence-based
character model and also predicts morphological
features. The final stage is a greedy transition-
based dependency parser that takes segmented
words and their predicted POS tags as input and
produces full dependency trees. While the seg-
menter and tagger models are trained on a single
treebank, the parser uses multi-treebank learning
to boost performance and reduce the number of
models.

After evaluation on the official test sets (Nivre
et al., 2018), which was run on the TIRA server
(Potthast et al., 2014), the Uppsala system ranked
7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, and 7th of 27 sys-
tems with respect to MLAS, with a macro-average
F1 of 59.20. It also reached the highest aver-
age score for word segmentation (98.18), universal
POS (UPOS) tagging (90.91), and morphological
features (87.59).

Corrigendum: After the test phase was over, we
discovered that we had used a non-permitted re-
source when developing the UPOS tagger for Thai
PUD (see Section 4). Setting our LAS, MLAS and
UPOS scores to 0.00 for Thai PUD gives the cor-
rected scores: LAS 72.31, MLAS 59.17, UPOS
90.50. This does not affect the ranking for any of
the three scores, as confirmed by the shared task
organizers.

2 Resources

All three components of our system were trained
principally on the training sets of Universal De-
pendencies v2.2 released to coincide with the
shared task (Nivre et al., 2018). The tagger and
parser also make use of the pre-trained word em-
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beddings provided by the organisers, as well as
Facebook word embeddings (Bojanowski et al.,
2017), and both word and character embed-
dings trained on Wikipedia text1 with word2vec
(Mikolov et al., 2013). For languages with no
training data, we also used external resources in
the form of Wikipedia text, parallel data from
OPUS (Tiedemann, 2012), the Moses statistical
machine translation system (Koehn et al., 2007),
and the Apertium morphological transducer for
Breton.2

3 Sentence and Word Segmentation

We employ the model of Shao et al. (2018) for
joint sentence segmentation and word segmen-
tation. Given the input character sequence, we
model the prediction of word boundary tags as
a sequence labelling problem using a BiRNN-
CRF framework (Huang et al., 2015; Shao et al.,
2017). This is complemented with an attention-
based LSTM model (Bahdanau et al., 2014) for
transducing non-segmental multiword tokens. To
enable joint sentence segmentation, we add extra
boundary tags as in de Lhoneux et al. (2017a).

We use the default parameter settings intro-
duced by Shao et al. (2018) and train a segmen-
tation model for all treebanks with at least 50 sen-
tences of training data. For treebanks with less or
no training data (except Thai discussed below), we
substitute a model for another treebank/language:
• For Japanese Modern, Czech PUD, English

PUD and Swedish PUD, we use the model
trained on the largest treebank from the same
language (Japanese GSD, Czech PDT, En-
glish EWT and Swedish Talbanken).

• For Finnish PUD, we use Finnish TDT rather
than the slightly larger Finnish FTB, because
the latter does not contain raw text suitable
for training a segmenter.

• For Naija NSC, we use English EWT.

• For other test sets with little or no training
data, we select models based on the size of
the intersection of the character sets mea-
sured on Wikipedia data (see Table 2 for de-
tails).3

1https://dumps.wikimedia.org/
backup-index-bydb.html

2https://github.com/apertium/
apertium-bre

3North Sami Giella was included in this group by mistake,
as we underestimated the size of the treebank.

Thai Segmentation of Thai was a particularly
difficult case: Thai uses a unique script, with no
spaces between words, and there was no training
data available. Spaces in Thai text can function
as sentence boundaries, but are also used equiva-
lently to commas in English. For Thai sentence
segmentation, we exploited the fact that four other
datasets are parallel, i.e., there is a one-to-one
correspondence between sentences in Thai and
in Czech PUD, English PUD, Finnish PUD and
Swedish PUD.4 First, we split the Thai text by
white space and treat the obtained character strings
as potential sentences or sub-sentences. We then
align them to the segmented sentences of the four
parallel datasets using the Gale-Church algorithm
(Gale and Church, 1993). Finally, we compare the
sentence boundaries obtained from different par-
allel datasets and adopt the ones that are shared
within at least three parallel datasets.

For word segmentation, we use a trie-based seg-
menter with a word list derived from the Face-
book word embeddings.5 The segmenter retrieves
words by greedy forward maximum matching
(Wong and Chan, 1996). This method requires no
training but gave us the highest word segmenta-
tion score of 69.93% for Thai, compared to the
baseline score of 8.56%.

4 Tagging and Morphological Analysis

We use two separate instantiations of the tag-
ger6 described in Bohnet et al. (2018) to predict
UPOS tags and morphological features, respec-
tively. The tagger uses a Meta-BiLSTM over the
output of a sentence-based character model and a
word model. There are two features that mainly
distinguishes the tagger from previous work. The
character BiLSTMs use the full context of the sen-
tence in contrast to most other taggers which use
words only as context for the character model.
This character model is combined with the word
model in the Meta-BiLSTM relatively late, after
two layers of BiLSTMs.

For both the word and character models, we
use two layers of BiLSTMs with 300 LSTM cells
per layer. We employ batches with 8000 words
and 20000 characters. We keep all other hyper-
parameters as defined in Bohnet et al. (2018).
From the training schema described in the above

4This information was available in the README files dis-
tributed with the training data and available to all participants.

5github.com/facebookresearch/fastText
6https://github.com/google/meta_tagger
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paper, we deviate slightly in that we perform early
stopping on the word, character and meta-model
independently. We apply early stopping due to
the performance of the development set (or train-
ing set when no development set is available) and
stop when no improvement occurs in 1000 training
steps. We use the same settings for UPOS tagging
and morphological features.

To deal with languages that have little or no
training data, we adopt three different strategies:
• For the PUD treebanks (except Thai),

Japanese Modern and Naija NSC, we use the
same model substitutions as for segmentation
(see Table 2).

• For Faroese we used the model for Norwe-
gian Nynorsk, as we believe this to be the
most closely related language.

• For treebanks with small training sets we use
only the provided training sets for training.
Since these treebanks do not have develop-
ment sets, we use the training sets for early
stopping as well.

• For Breton and Thai, which have no training
sets and no suitable substitution models, we
use a bootstrapping approach to train taggers
as described below.

Bootstrapping We first annotate an unlabeled
corpus using an external morphological analyzer.
We then create a (fuzzy and context-independent)
mapping from the morphological analysis to uni-
versal POS tags and features, which allows us to
relabel the annotated corpus and train taggers us-
ing the same settings as for other languages. For
Breton, we annotated about 60,000 sentences from
Breton OfisPublik, which is part of OPUS,7 us-
ing the Apertium morphological analyzer. The
Apertium tags could be mapped to universal POS
tags and a few morphological features like per-
son, number and gender. For Thai, we anno-
tated about 33,000 sentences from Wikipedia us-
ing PyThaiNLP8 and mapped only to UPOS tags
(no features). Unfortunately, we realized only af-
ter the test phase that PyThaiNLP was not a per-
mitted resource, which invalidates our UPOS tag-
ging scores for Thai, as well as the LAS and
MLAS scores which depend on the tagger. Note,
however, that the score for morphological features

7https://opus.nlpl.eu/OfisPublik.php
8https://github.com/PyThaiNLP/

pythainlp/wiki/PyThaiNLP-1.4

is not affected, as we did not predict features at all
for Thai. The same goes for sentence and word
segmentation, which do not depend on the tagger.

Lemmas Due to time constraints we chose not
to focus on the BLEX metric in this shared task.
In order to avoid zero scores, however, we simply
copied a lowercased version of the raw token into
the lemma column.

5 Dependency Parsing

We use a greedy transition-based parser (Nivre,
2008) based on the framework of Kiperwasser and
Goldberg (2016b) where BiLSTMs (Hochreiter
and Schmidhuber, 1997; Graves, 2008) learn rep-
resentations of tokens in context, and are trained
together with a multi-layer perceptron that pre-
dicts transitions and arc labels based on a few
BiLSTM vectors. Our parser is extended with a
SWAP transition to allow the construction of non-
projective dependency trees (Nivre, 2009). We
also introduce a static-dynamic oracle to allow the
parser to learn from non-optimal configurations at
training time in order to recover better from mis-
takes at test time (de Lhoneux et al., 2017b).

In our parser, the vector representation xi of a
word type wi before it is passed to the BiLSTM
feature extractors is given by:

xi = e(wi) ◦ e(pi) ◦ BiLSTM(ch1:m).

Here, e(wi) represents the word embedding and
e(pi) the POS tag embedding (Chen and Manning,
2014); these are concatenated to a character-based
vector, obtained by running a BiLSTM over the
characters ch1:m of wi.

With the aim of training multi-treebank mod-
els, we additionally created a variant of the parser
which adds a treebank embedding e(tbi) to input
vectors in a spirit similar to the language embed-
dings of Ammar et al. (2016) and de Lhoneux et al.
(2017a):

xi = e(wi) ◦ e(pi) ◦ BiLSTM(ch1:m) ◦ e(tbi).

We have previously shown that treebank em-
beddings provide an effective way to combine
multiple monolingual heterogeneous treebanks
(Stymne et al., 2018) and applied them to low-
resource languages (de Lhoneux et al., 2017a). In
this shared task, the treebank embedding model
was used both monolingually, to combine sev-
eral treebanks for a single language, and multilin-
gually, mainly for closely related languages, both
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for languages with no or small treebanks, and for
languages with medium and large treebanks, as
described in Section 6.

During training, a word embedding for each
word type in the training data is initialized using
the pre-trained embeddings provided by the or-
ganizers where available. For the remaining lan-
guages, we use different strategies:
• For Afrikaans, Armenian, Buryat, Gothic,

Kurmanji, North Sami, Serbian and Upper
Sorbian, we carry out our own pre-training
on the Wikipedia dumps of these languages,
tokenising them with the baseline UDPipe
models and running the implementation of
word2vec in the Gensim Python library9 with
30 iterations and a minimum count of 1.

• For Breton and Thai, we use specially-trained
multilingual embeddings (see Section 6).

• For Naija and Old French, we substitute En-
glish and French embeddings, respectively.

• For Faroese, we do not use pre-trained em-
beddings. While it is possible to train such
embeddings on Wikipedia data, as there is no
UD training data for Faroese we choose in-
stead to rely on its similarity to other Scandi-
navian languages (see Section 6).

Word types in the training data that are not found
amongst the pre-trained embeddings are initial-
ized randomly using Glorot initialization (Glorot
and Bengio, 2010), as are all POS tag and tree-
bank embeddings. Character vectors are also ini-
tialized randomly, except for Chinese, Japanese
and Korean, in which case we pre-train character
vectors using word2vec on the Wikipedia dumps
of these languages. At test time, we first look
for out-of-vocabulary (OOV) words and charac-
ters (i.e., those that are not found in the treebank
training data) amongst the pre-trained embeddings
and otherwise assign them a trained OOV vec-
tor.10 A variant of word dropout is applied to
the word embeddings, as described in Kiperwasser
and Goldberg (2016a), and we apply dropout also
to the character vectors.

We use the extended feature set of Kiperwasser
and Goldberg (2016b) (top 3 items on the stack
together with their rightmost and leftmost depen-

9https://radimrehurek.com/gensim/
10An alternative strategy is to have the parser store embed-

dings for all words that appear in either the training data or
pre-trained embeddings, but this uses far more memory.

Character embedding dimension 500
Character BiLSTM layers 1
Character BiLSTM output dimension 200
Word embedding dimension 100
POS embedding dimension 20
Treebank embedding dimension 12
Word BiLSTM layers 2
Word BiLSTM hidden/output dimension 250
Hidden units in MLP 100
Word dropout 0.33
α (for OOV vector training) 0.25
Character dropout 0.33
pagg (for exploration training) 0.1

Table 1: Hyper-parameter values for parsing.

dents plus first item on the buffer with its left-
most dependent). We train all models for 30
epochs with hyper-parameter settings shown in Ta-
ble 1. Note our unusually large character embed-
ding sizes; we have previously found these to be
effective, especially for morphologically rich lan-
guages (Smith et al., 2018). Our code is publicly
available. We release the version used here as UU-
Parser 2.3.11

Using Morphological Features Having a
strong morphological analyzer, we were inter-
ested in finding out whether or not we can improve
parsing accuracy using predicted morphological
information. We conducted several experiments
on the development sets for a subset of treebanks.
However, no experiment gave us any improvement
in terms of LAS and we decided not to use this
technique for the shared task.

What we tried was to create an embedding rep-
resenting either the full set of morphological fea-
tures or a subset of potentially useful features, for
example case (which has been shown to be use-
ful for parsing by Kapociute-Dzikiene et al. (2013)
and Eryigit et al. (2008)), verb form and a few oth-
ers. That embedding was concatenated to the word
embedding at the input of the BiLSTM. We varied
the embedding size (10, 20, 30, 40), tried different
subsets of morphological features, and tried with
and without using dropout on that embedding. We
also tried creating an embedding of a concatena-
tion of the universal POS tag and the Case fea-
ture and replace the POS embedding with this one.
We are currently unsure why none of these exper-
iments were successful and plan to investigate this

11https://github.com/UppsalaNLP/
uuparser
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in the future. It would be interesting to find out
whether or not this information is captured some-
where else. A way to test this would be to use
diagnostic classifiers on vector representations, as
is done for example in Hupkes et al. (2018) or in
Adi et al. (2017).

6 Multi-Treebank Models

One of our main goals was to leverage informa-
tion across treebanks to improve performance and
reduce the number of parsing models. We use two
different types of models:

1. Single models, where we train one model per
treebank (17 models applied to 18 treebanks,
including special models for Breton KEB and
Thai PUD).

2. Multi-treebank models

• Monolingual models, based on multiple
treebanks for one language (4 models,
trained on 10 treebanks, applied to 11
treebanks).
• Multilingual models, based on tree-

banks from several (mostly) closely re-
lated languages (12 models, trained on
48 treebanks, applied to 52 treebanks;
plus a special model for Naija NSC).

When a multi-treebank model is applied to a test
set from a treebank with training data, we naturally
use the treebank embedding of that treebank also
for the test sentences. However, when parsing a
test set with no corresponding training data, we
have to use one of the other treebank embeddings.
In the following, we refer to the treebank selected
for this purpose as the proxy treebank (or simply
proxy).

In order to keep the training times and lan-
guage balance in each model reasonable, we cap
the number of sentences used from each treebank
to 15,000, with a new random sample selected at
each epoch. This only affects a small number of
treebanks, since most training sets are smaller than
15,000 sentences. For all our multi-treebank mod-
els, we apply the treebank embeddings described
in Section 5. Where two or more treebanks in
a multilingual model come from the same lan-
guage, we use separate treebank embeddings for
each of them. We have previously shown that
multi-treebank models can boost LAS in many
cases, especially for small treebanks, when ap-
plied monolingually (Stymne et al., 2018), and ap-

plied it to low-resource languages (de Lhoneux
et al., 2017a). In this paper, we add POS tags and
pre-trained embeddings to that framework, and ex-
tend it to also cover multilingual parsing for lan-
guages with varying amounts of training data.

Treebanks sharing a single model are grouped
together in Table 2. To decide which languages to
combine in our multilingual models, we use two
sources: knowledge about language families and
language relatedness, and clusterings of treebank
embeddings from training our parser with all avail-
able languages. We created clusterings by train-
ing single parser models with treebank embed-
dings for all treebanks with training data, capping
the maximum number of sentences per treebank
to 800. We then used Ward’s method to perform a
hierarchical cluster analysis.

We found that the most stable clusters were
for closely related languages. There was also a
tendency for treebanks containing old languages
(i.e., Ancient Greek, Gothic, Latin and Old Church
Slavonic) to cluster together. One reason for these
languages parsing well together could be that sev-
eral of the 7 treebanks come from the same anno-
tation projects, four from PROIEL, and two from
Perseus, containing consistently annotated and at
least partially parallel data, e.g., from the Bible.

For the multi-treebank models, we performed
preliminary experiments on development data in-
vestigating the effect of different groupings of lan-
guages. The main tendency we found was that it
was better to use smaller groups of closely related
languages rather than larger groups of slightly
less related languages. For example, using multi-
lingual models only for Galician-Portuguese and
Spanish-Catalan was better than combining all
Romance languages in a larger model, and com-
bining Dutch-German-Afrikaans was better than
also including English.

A case where we use less related languages is
for languages with very little training data (31 sen-
tences or less), believing that it may be benefi-
cial in this special case. We implemented this
for Buryat, Uyghur and Kazakh, which are trained
with Turkish, and Kurmanji, which is trained with
Persian, even though these languages are not so
closely related. For Armenian, which has only
50 training sentences, we could not find a close
enough language, and instead train a single model
on the available data. For the four languages that
are not in a multilingual cluster but have more than
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one available treebank, we use monolingual multi-
treebank models (English, French, Italian and Ko-
rean).

For the nine treebanks that have no training data
we use different strategies:

• For Japanese Modern, we apply the mono-
treebank Japanese GSD model.

• For the four PUD treebanks, we apply
the multi-treebank models trained using the
other treebanks from that language, with the
largest available treebank as proxy (except
for Finnish, where we prefer Finnish TDT
over FTB; cf. Section 3 and Stymne et al.
(2018)).

• For Faroese, we apply the model for the
Scandinavian languages, which are closely
related, with Norwegian Nynorsk as proxy
(cf. Section 4). In addition, we map the
Faroese characters {Íýúð}, which do not oc-
cur in the other Scandinavian languages, to
{Iyud}.

• For Naija, an English-based creole, whose
treebank according to the README file con-
tains spoken language data, we train a spe-
cial multilingual model on English EWT and
the three small spoken treebanks for French,
Norwegian, and Slovenian, and usd English
EWT as proxy.12

• For Thai and Breton, we create multilin-
gual models trained with word and POS
embeddings only (i.e., no character mod-
els or treebank embeddings) on Chinese and
Irish, respectively. These models make use
of multilingual word embeddings provided
with Facebook’s MUSE multilingual embed-
dings,13 as described in more detail below.

For all multi-treebank models, we choose the
model from the epoch that has the best mean LAS
score among the treebanks that have available de-
velopment data. This means that treebanks with-
out development data rely on a model that is good
for other languages in the group. In the cases
of the mono-treebank Armenian and Irish models,
where there is no development data, we choose the

12We had found this combination to be useful in prelim-
inary experiments where we tried to parse French Spoken
without any French training data.

13https://github.com/facebookresearch/
MUSE

model from the final training epoch. This also ap-
plies to the Breton model trained on Irish data.

Thai–Chinese For the Thai model trained on
Chinese, we were able to map Facebook’s mono-
lingual embeddings for each language to English
using MUSE, thus creating multilingual Thai-
Chinese embeddings. We then trained a mono-
lingual parser model using the mapped Chinese
embeddings to initialize all word embeddings, and
ensuring that these were not updated during train-
ing (unlike in the standard parser setup described
in Section 5). At test time, we look up all OOV
word types, which are the great majority, in the
mapped Thai embeddings first, otherwise assign
them to a learned OOV vector. Note that in this
case, we had to increase the word embedding di-
mension in our parser to 300 to accomodate the
larger Facebook embeddings.

Breton–Irish For Breton and Irish, the Face-
book software does not come with the necessary
resources to map these languages into English.
Here we instead created a small dictionary by us-
ing all available parallel data from OPUS (Ubuntu,
KDE and Gnome, a total of 350K text snip-
pets), and training a statistical machine translation
model using Moses (Koehn et al., 2007). From
the lexical word-to-word correspondences created,
we kept all cases where the translation probabil-
ities in both directions were at least 0.4 and the
words were not identical (in order to exclude a
lot of English noise in the data), resulting in a
word list of 6027 words. We then trained mono-
lingual embeddings for Breton using word2vec on
Wikipedia data, and mapped them directly to Irish
using MUSE. A parser model was then trained,
similarly to the Thai-Chinese case, using Irish em-
beddings as initialization, turning off updates to
the word embeddings, and applying the mapped
Breton embeddings at test time.

7 Results and Discussion

Table 2 shows selected test results for the Upp-
sala system, including the two main metrics LAS
and MLAS (plus a mono-treebank baseline for
LAS),14 the sentence and word segmentation ac-
curacy, and the accuracy of UPOS tagging and
morphological features (UFEATS). To make the
table more readable, we have added a simple color

14Since our system does not predict lemmas, the third main
metric BLEX is not very meaningful.
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LANGUAGE TREEBANK LAS MLAS SENTS WORDS UPOS UFEATS SEGMENTATION TAGGING PARSING
ARABIC PADT 73.54 73.54 61.04 68.06 96.19 90.70 88.25
ARMENIAN ARMTDP 23.90 23.90 6.97 57.44 93.20 75.39 54.45
BASQUE BDT 78.12 78.12 67.67 100.00 100.00 96.05 92.50
BULGARIAN BTB 88.69 88.69 81.20 95.58 99.92 98.85 97.51
BRETON KEB 33.62 33.62 13.91 91.43 90.97 85.01 70.26 FRENCH GSD SPECIAL*
CHINESE GSD 69.17 69.17 59.53 99.10 93.52 89.15 92.35
GREEK GDT 86.39 86.39 72.29 91.92 99.69 97.26 93.65
HEBREW HTB 67.72 67.72 44.19 100.00 90.98 80.26 79.49
HUNGARIAN SZEGED 73.97 73.97 56.22 94.57 99.78 94.60 86.87
INDONESIAN GSD 78.15 78.15 67.90 93.47 99.99 93.70 95.83
IRISH IDT 68.14 68.14 41.72 94.90 99.60 91.55 81.78
JAPANESE GSD 79.97 79.97 65.47 94.92 93.32 91.73 91.66
JAPANESE MODERN 28.27 28.27 11.82 0.00 72.76 54.60 71.06 JAPANESE GSD
LATVIAN LVTB 76.97 76.97 63.90 96.97 99.67 94.95 91.73
OLD FRENCH SRCMF 78.71 78.71 69.82 59.15 100.00 95.48 97.26
ROMANIAN RRT 84.33 84.33 76.00 95.81 99.74 97.46 97.25
THAI PUD 4.86 4.86 2.22 11.69 69.93 33.75 65.72 SPECIAL*
VIETNAMESE VTB 46.15 46.15 40.03 88.69 86.71 78.89 86.43
AFRIKAANS AFRIBOOMS 79.47 78.89 66.35 99.65 99.37 96.28 95.39
DUTCH ALPINO 83.58 81.73 71.11 89.04 99.62 95.78 95.89

LASSYSMALL 82.25 79.59 70.88 73.62 99.87 96.18 95.85
GERMAN GSD 75.48 75.15 53.67 79.36 99.37 94.02 88.13
ANCIENT GREEK PERSEUS 65.17 62.95 44.31 98.93 99.97 92.40 90.12

PROIEL 72.24 71.58 54.98 51.17 99.99 97.05 91.04
GOTHIC PROIEL 63.40 60.58 49.79 31.97 100.00 93.43 88.60
LATIN ITTB 83.00 82.55 75.38 94.54 99.99 98.34 96.78

PERSEUS 58.32 49.86 37.57 98.41 100.00 88.73 78.86
PROIEL 64.10 63.85 51.45 37.64 100.00 96.21 91.46

OLD CHURCH SLAVONIC PROIEL 70.44 70.31 58.31 44.56 99.99 95.76 88.91
BURYAT BDT 17.96 8.45 1.26 93.18 99.04 50.83 40.63 RUSSIAN SYNTAGRUS
KAZAKH KTB 31.93 23.85 8.62 94.21 97.40 61.72 48.45 RUSSIAN SYNTAGRUS
TURKISH IMST 61.34 61.77 51.23 96.63 97.80 93.72 90.42
UYGHUR UDT 62.94 62.38 42.54 83.47 99.69 89.19 87.00
CATALAN ANCORA 88.94 88.68 81.39 99.35 99.79 98.38 97.90
SPANISH ANCORA 88.79 88.65 81.75 97.97 99.92 98.69 98.23
CROATIAN SET 84.62 84.13 70.53 96.97 99.93 97.93 91.70
SERBIAN SET 86.99 85.14 75.54 93.07 99.94 97.61 93.70
SLOVENIAN SSJ 87.18 87.28 77.81 93.23 99.62 97.99 94.73

SST 56.06 53.27 41.22 23.98 100.00 93.18 84.75
CZECH CAC 89.49 88.94 82.25 100.00 99.94 99.17 95.84

FICTREE 89.76 87.78 80.63 98.72 99.85 98.42 95.52
PDT 88.15 88.09 82.39 92.29 99.96 99.07 96.89
PUD 84.36 83.35 74.46 96.29 99.62 97.02 93.66 CZECH PDT

POLISH LFG 93.14 92.85 84.09 99.74 99.91 98.57 94.68
SZ 89.80 88.48 77.28 98.91 99.94 97.95 91.82

SLOVAK SNK 86.34 83.80 71.15 88.11 99.98 96.57 89.51
UPPER SORBIAN UFAL 28.85 2.70 3.43 73.40 95.15 58.91 42.10 SPANISH ANCORA
DANISH DDT 80.08 79.68 71.19 90.10 99.85 97.14 97.03
FAROESE OFT 41.69 39.94 0.70 95.32 99.25 65.54 34.56 DANISH DDT NORWEGIAN NYNORSK
NORWEGIAN BOKMAAL 88.30 87.68 81.68 95.13 99.84 98.04 97.18

NYNORSK 87.40 86.23 79.42 92.09 99.94 97.57 96.88
NYNORSKLIA 59.66 55.51 45.51 99.86 99.99 90.02 89.62

SWEDISH LINES 80.53 78.33 65.38 85.17 99.99 96.64 89.54
PUD 78.15 75.52 49.73 91.57 98.78 93.12 78.53 SWEDISH TALBANKEN
TALBANKEN 84.26 83.29 76.74 96.45 99.96 97.45 96.82

ENGLISH EWT 81.47 81.18 72.98 75.41 99.10 95.28 96.02
GUM 81.28 79.23 69.62 81.16 99.71 94.67 95.80
LINES 78.64 76.28 70.18 88.18 99.96 96.47 96.52
PUD 84.09 83.67 72.49 97.02 99.69 95.23 95.16 ENGLISH EWT

ESTONIAN EDT 81.09 81.47 74.11 92.16 99.96 97.16 95.80
FINNISH FTB 84.19 83.12 76.40 87.91 99.98 96.30 96.73

PUD 86.48 86.48 80.52 92.95 99.69 97.59 96.84 FINNISH TDT
TDT 84.33 84.24 77.50 91.12 99.78 97.06 95.58

NORTH SAAMI GIELLA 64.85 64.14 51.67 98.27 99.32 90.44 85.03 GERMAN GSD
FRENCH GSD 85.61 85.16 76.79 95.40 99.30 96.86 96.26

SEQUOIA 87.39 86.26 79.97 87.33 99.44 97.92 97.47
SPOKEN 71.26 69.44 60.12 23.54 100.00 95.51 100.00

GALICIAN CTG 78.41 78.27 65.52 96.46 98.01 95.80 97.78
TREEGAL 72.67 70.16 58.22 82.97 97.90 93.25 92.15

PORTUGUESE BOSQUE 84.41 84.27 71.76 90.89 99.00 95.90 95.41
HINDI HDTB 89.37 89.23 74.62 99.02 100.00 97.44 93.55
URDU UDTB 80.40 79.85 52.15 98.60 100.00 93.66 80.78
ITALIAN ISDT 89.43 89.37 81.17 99.38 99.55 97.79 97.36

POSTWITA 76.75 76.46 66.46 54.00 99.04 95.61 95.63
KOREAN GSD 81.92 81.12 77.25 92.78 99.87 95.61 99.63

KAIST 84.98 84.74 78.90 100.00 100.00 95.21 100.00
KURMANJI MG 29.54 7.61 5.77 90.85 96.97 61.33 48.26 SPANISH ANCORA
PERSIAN SERAJI 83.39 83.22 76.97 99.50 99.60 96.79 97.02
NAIJA NSC 20.44 19.44 3.55 0.00 98.53 57.19 36.09 ENGLISH EWT SPECIAL*
RUSSIAN SYNTAGRUS 89.00 89.39 81.01 98.79 99.61 98.59 94.89

TAIGA 65.49 59.32 46.07 66.40 97.81 89.32 82.15
UKRAINIAN IU 82.70 81.41 59.15 93.42 99.76 96.89 81.95

ALL OFFICIAL 72.37 70.71 59.20 83.80 98.18 90.91 87.59
ALL CORRECTED 72.31 70.65 59.17 83.80 98.18 90.50 87.59

BIG 80.25 79.61 68.81 87.23 99.10 95.59 93.65
PUD 72.27 71.46 57.80 75.57 94.11 87.51 87.05
SMALL 63.60 60.06 46.00 80.68 99.23 90.93 84.91

LOW-RESOURCE OFFICIAL 25.87 18.26 5.16 67.50 93.38 61.07 48.95
LOW-RESOURCE CORRECTED 25.33 17.72 4.91 67.50 93.38 57.32 48.95

Table 2: Results for LAS (+ mono-treebank baseline), MLAS, sentence and word segmentation, UPOS
tagging and morphological features (UFEATS). Treebanks sharing a parsing model grouped together;
substitute and proxy treebanks for segmentation, tagging, parsing far right (SPECIAL models detailed in
the text). Confidence intervals for coloring: | < µ−σ < | < µ−SE < µ < µ+SE < | < µ+σ < | .

119



coding. Scores that are significantly higher/lower
than the mean score of the 21 systems that suc-
cessfully parsed all test sets are marked with two
shades of green/red. The lighter shade marks dif-
ferences that are outside the interval defined by the
standard error of the mean (µ± SE, SE = σ/

√
N )

but within one standard deviation (std dev) from
the mean. The darker shade marks differences that
are more than one std dev above/below the mean
(µ±σ). Finally, scores that are no longer valid be-
cause of the Thai UPOS tagger are crossed out in
yellow cells, and corrected scores are added where
relevant.

Looking first at the LAS scores, we see that our
results are significantly above the mean for all ag-
gregate sets of treebanks (ALL, BIG, PUD, SMALL,
LOW-RESOURCE) with an especially strong result
for the low-resource group (even after setting the
Thai score to 0.00). If we look at specific lan-
guages, we do particularly well on low-resource
languages like Breton, Buryat, Kazakh and Kur-
manji, but also on languages like Arabic, Hebrew,
Japanese and Chinese, where we benefit from hav-
ing better word segmentation than most other sys-
tems. Our results are significantly worse than the
mean only for Afrikaans AfriBooms, Old French
SRCMF, Galician CTG, Latin PROIEL, and Por-
tuguese Bosque. For Galician and Portuguese, this
may be the effect of lower word segmentation and
tagging accuracy.

To find out whether our multi-treebank and
multi-lingual models were in fact beneficial for
parsing accuracy, we ran a post-evaluation exper-
iment with one model per test set, each trained
only on a single treebank. We refer to this as the
mono-treebank baseline, and the LAS scores can
be found in the second (uncolored) LAS column in
Table 2. The results show that merging treebanks
and languages did in fact improve parsing accu-
racy in a remarkably consistent fashion. For the
64 test sets that were parsed with a multi-treebank
model, only four had a (marginally) higher score
with the mono-treebank baseline model: Esto-
nian EDT, Russian SynTagRus, Slovenian SSJ,
and Turkish IMST. Looking at the aggregate sets,
we see that, as expected, the pooling of resources
helps most for LOW-RESOURCE (25.33 vs. 17.72)
and SMALL (63.60 vs. 60.06), but even for BIG

there is some improvement (80.21 vs. 79.61). We
find these results very encouraging, as they indi-
cate that our treebank embedding method is a reli-

able method for pooling training data both within
and across languages. It is also worth noting that
this method is easy to use and does not require ex-
tra external resources used in most work on mul-
tilingual parsing, like multilingual word embed-
dings (Ammar et al., 2016) or linguistic re-write
rules (Aufrant et al., 2016) to achieve good results.

Turning to the MLAS scores, we see a very sim-
ilar picture, but our results are relatively speaking
stronger also for PUD and SMALL. There are a few
striking reversals, where we do significantly better
than the mean for LAS but significantly worse for
MLAS, including Buryat BDT, Hebrew HTB and
Ukrainian IU. Buryat and Ukrainian are languages
for which we use a multilingual model for parsing,
but not for UPOS tagging and morphological fea-
tures, so it may be due to sparse data for tags and
morphology, since these languages have very little
training data. This is supported by the observa-
tion that low-resource languages in general have
a larger drop from LAS to MLAS than other lan-
guages.

For sentence segmentation, the Uppsala system
achieved the second best scores overall, and re-
sults are significantly above the mean for all ag-
gregates except SMALL, which perhaps indicates a
sensitivity to data sparseness for the data-driven
joint sentence and word segmenter (we see the
same pattern for word segmentation). However,
there is a much larger variance in the results than
for the parsing scores, with altogether 23 tree-
banks having scores significantly below the mean.

For word segmentation, we obtained the best re-
sults overall, strongly outperforming the mean for
all groups except SMALL. We know from previous
work (Shao et al., 2018) that our word segmenter
performs well on more challenging languages like
Arabic, Hebrew, Japanese, and Chinese (although
we were beaten by the Stanford team for the for-
mer two and by the HIT-SCIR team for the lat-
ter two). By contrast, it sometimes falls below
the mean for the easier languages, but typically
only by a very small fraction (for example 99.99
vs. 100.00 for 3 treebanks). Finally, it is worth
noting that the maximum-matching segmenter de-
veloped specifically for Thai achieved a score of
69.93, which was more than 5 points better than
any other system.

Our results for UPOS tagging indicate that this
may be the strongest component of the system,
although it is clearly helped by getting its input
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from a highly accurate word segmenter. The Upp-
sala system ranks first overall with scores more
than one std dev above the mean for all aggre-
gates. There is also much less variance than in the
segmentation results, and scores are significantly
below the mean only for five treebanks: Galician
CTG, Gothic PROIEL, Hebrew HTB, Upper Sor-
bian UFAL, and Portuguese Bosque. For Galician
and Upper Sorbian, the result can at least partly be
explained by a lower-than-average word segmen-
tation accuracy.

The results for morphological features are sim-
ilar to the ones for UPOS tagging, with the best
overall score but with less substantial improve-
ments over the mean. The four treebanks where
scores are significantly below the mean are all lan-
guages with little or no training data: Upper Sor-
bian UFAL, Hungarian Szeged, Naija NSC and
Ukrainian IU.

All in all, the 2018 edition of the Uppsala parser
can be characterized as a system that is strong
on segmentation (especially word segmentation)
and prediction of UPOS tags and morphological
features, and where the dependency parsing com-
ponent performs well in low-resource scenarios
thanks to the use of multi-treebank models, both
within and across languages. For what it is worth,
we also seem to have the highest ranking single-
parser transition-based system in a task that is oth-
erwise dominated by graph-based models, in par-
ticular variants of the winning Stanford system
from 2017 (Dozat et al., 2017).

8 Extrinsic Parser Evaluation

In addition to the official shared task evaluation,
we also participated in the 2018 edition of the Ex-
trinsic Parser Evaluation Initiative (EPE) (Fares
et al., 2018), where parsers developed for the
CoNLL 2018 shared task were evaluated with re-
spect to their contribution to three downstream
systems: biological event extraction, fine-grained
opinion analysis, and negation resolution. The
downstream systems are available for English
only, and we participated with our English model
trained on English EWT, English LinES and En-
glish GUM, using English EWT as the proxy.

In the extrinsic evaluation, the Uppsala system
ranked second for event extraction, first for opin-
ion analysis, and 16th (out of 16 systems) for nega-
tion resolution. Our results for the first two tasks
are better than expected, given that our system

ranks in the middle with respect to intrinsic eval-
uation on English (9th for LAS, 6th for UPOS).
By contrast, our performance is very low on the
negation resolution task, which we suspect is due
to the fact that our system only predicts universal
part-of-speech tags (UPOS) and not the language
specific PTB tags (XPOS), since the three systems
that only predict UPOS are all ranked at the bot-
tom of the list.

9 Conclusion

We have described the Uppsala submission to the
CoNLL 2018 shared task, consisting of a seg-
menter that jointly extracts words and sentences
from a raw text, a tagger that provides UPOS
tags and morphological features, and a parser that
builds a dependency tree given the words and
tags of each sentence. For the parser we ap-
plied multi-treebank models both monolingually
and multilingually, resulting in only 34 models for
82 treebanks as well as significant improvements
in parsing accuracy especially for low-resource
languages. We ranked 7th for the official LAS and
MLAS scores, and first for the unofficial scores on
word segmentation, UPOS tagging and morpho-
logical features.
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Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher Manning, Sebastian Schuster, Siva
Reddy, Dima Taji, Nizar Habash, Herman Leung,
Marie-Catherine de Marneffe, Manuela Sanguinetti,
Maria Simi, Hiroshi Kanayama, Valeria de Paiva,
Kira Droganova, Hěctor Martínez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies.

123



Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 124–132
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2012

Tree-stack LSTM in Transition Based Dependency Parsing
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Abstract

We introduce tree-stack LSTM to model
state of a transition based parser with
recurrent neural networks. Tree-stack
LSTM does not use any parse tree based
or hand-crafted features, yet performs
better than models with these features.
We also develop new set of embeddings
from raw features to enhance the perfor-
mance. There are 4 main components of
this model: stack’s σ-LSTM, buffer’s β-
LSTM, actions’ LSTM and tree-RNN. All
LSTMs use continuous dense feature vec-
tors (embeddings) as an input. Tree-RNN
updates these embeddings based on transi-
tions. We show that our model improves
performance with low resource languages
compared with its predecessors. We par-
ticipate in CoNLL 2018 UD Shared Task
as the ”KParse” team and ranked 16th in
LAS, 15th in BLAS and BLEX metrics, of
27 participants parsing 82 test sets from 57
languages.

1 Introduction

Recent studies in neural dependency parsing cre-
ates an opportunity to learn feature conjunctions
only from primitive features.(Chen and Manning,
2014) A designer only needs to extract primitive
features which may be useful to take parsing ac-
tions. However, extracting primitive features from
state of a parser still remains critical. On the other
hand, representational power of recurrent neural
networks should allow a model both to summarize
every action taken from the beginning to the cur-
rent state and tree-fragments obtained until a cur-
rent state.

We propose a method to concretely summarize
previous actions and tree fragments within current

word embeddings. We employ word and context
embeddings from (Kırnap et al., 2017) as an ini-
tial representer. Our model modifies these embed-
dings based on parsing actions. These embeddings
are able to summarize, children-parent relation-
ship. Finally, we test our system in CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies.

Rest of the paper is organized as follows: Sec-
tion 2 summarizes related work done in neural
transition based dependency parsing. Section 3
describes the models that we implement for tag-
ging, lemmatization and dependency parsing. Sec-
tion 4 discusses our results and section 5 presents
our contributions.

2 Related Work

In this section we describe the related work done
in neural transition based dependency parsing and
morphological analysis.

2.1 Morphological Analysis and Tagging
Finite-state transducers (FST) have an impor-
tant role in previous morphological analyzers.
(Koskenniemi, 1983) Unlike modern neural sys-
tems, these type of analyzers are language de-
pendent rule based systems. Morphological tag-
ging, on the other hand, tries to solve tagging and
analysis problem at the same stage. Koskenniemi
proposed conditional random fields (CRFs) based
model and Heigold et al. proposed neural network
architectures to solve tagging and analysis prob-
lem immediately. Modern systems heavily based
on word and context based features that we explain
in the following paragraph.

2.2 Embedding Features
Chen and Manning, Kiperwasser and Goldberg,
use pre-trained word and random part-of-speech
(POS) embeddings. Ballesteros et al. use
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character-based word representation for the stack-
LSTM parser. In Alberti et al., end-to-end ap-
proach is taken for both word and POS embed-
dings. In other words, one component of their
model has responsibility to generate POS embed-
dings and the other to generate word embeddings.

2.3 Decision Module

We name a part of our model, which provides tran-
sitions from features, as decision module. Deci-
sion module is a neural architecture designed to
find best feature conjunctions. Chen and Manning
uses MLP, Dozat et al. applies BiLSTM stacked
with MLP as a decision module. We inspire from
Dyer et al.’s stack-LSTM which basically repre-
sents each component of a state (buffer, stack and
actions) with an LSTM. We found new inputs to
tree-RNN, and modify this model to obtain better
results.

3 Model

In this section, we describe MorphNet (Dayanık
et al., 2018) used for tagging and lemmatization;
and Tree-stack LSTM used for dependency pars-
ing. We train these models separately. MorphNet
employs UDPipe (Straka et al., 2016) for tokeniza-
tion to generate conll-u formatted file with miss-
ing head and dependency relation columns. Tree-
stack LSTM takes that for dependency parsing.
We detail these models in the remaining part of
this section.

3.1 Lemmatization and Part of Speech
Tagging

We implement MorphNet (Dayanık et al., 2018)
for lemmatization and Part of Speech tagging. It
is trained on (Nivre et al., 2018). MorphNet is
a sequence-to-sequence recurrent neural network
model used to produce a morphological analysis
for each word in the input sentence. The model
operates with a unidirectional Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) encoder to create a character-based word
embeddings and a bidirectional LSTM encoder to
obtain context embeddings. The decoder consists
of two layers LSTM.

The input to the MorphNet consists of an N
word sentence S = [w1, . . . , wN ], where wi

is the i’th word in the sentence. Each word
is input as a sequence of characters wi =
[wi1, . . . , wiLi ], wij ∈ A where A is the set of

alphanumeric characters and Li is the number of
characters in word wi.

The output for each word consists
of a stem, a part-of-speech tag and
a set of morphological features, e.g.
“earn+Upos=verb+Mood=indicative+Tense=past”
for “earned”. The stem is produced one character
at a time, and the morphological information is
produced one feature at a time. A sample output
for a word looks like [si1, . . . , siRi , fi1, . . . , fiMi ]
where sij ∈ A is an alphanumeric character in
the stem, Ri is the length of the stem, Mi is
the number of features, fij ∈ T is a morpho-
logical feature from a feature set such as T =
{Verb,Adjective,Mood=Imperative,Tense=Past, . . .}.

In Word Encoder we map each character wij

to an A dimensional character embedding vec-
tor aij ∈ RA.The word encoder takes each word
and processes the character embeddings from left
to right producing hidden states [hi1, . . . , hiLi ]
where hij ∈ RH . The final hidden state ei = hiLi

is used as the word embedding for word wi.

hij = LSTM(aij , hij−1) (1)

hi0 = 0 (2)

ei = hiLi (3)

We model context encoder by using a bidirec-
tional LSTM. The inputs are the word embed-
dings e1, · · · , eN produced by the word encoder.
The context encoder processes them in both di-
rections and constructs a unique context embed-
ding for each target word in the sentence. For a
word wi I define its corresponding context embed-
ding ci ∈ R2H as the concatenation of the for-
ward −→c i ∈ RH and the backward←−c i ∈ RH hid-
den states that are produced after the forward and
backward LSTMs process the word embedding ei.
Figure illustrates the creation of the context vector
for the target word earned.

−→c i = LSTMf (ei,
−→c i−1) (4)

←−c i = LSTMb(ei,
←−c i+1) (5)

−→c 0 = ←−c N+1 = 0 (6)

ci = [−→c i;←−c i] (7)

The decoder is implemented as a 2-Layer
LSTM network that outputs the correct tag for a
single target word. By conditioning on the input
embeddings and its own hidden state, the decoder
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learns to generate yi = [yi1, . . . , yiKi ] where yi is
the correct tag of the target word wi in sentence
S, yij ∈ A ∪ T represents both stem characters
and morphological feature tokens, and Ki is the
total number of output tokens (stem + features) for
word wi. The first layer of the decoder is initial-
ized with the context embedding ci and the second
layer is initialized with the word embedding ei.

d1i0 = relu(Wd × ci ⊕Wdb) (8)

d2i0 = ei (9)

(10)

We parameterize the distribution over possible
morphological features and characters at each time
step as

p(yij |d2ij) = softmax(Ws × d2ij ⊕Wsb) (11)

where Ws ∈ R|Y|×H and Wsb ∈ R|Y| where
Y = A ∪ T is the set of characters and morpho-
logical features in output vocabulary.

3.2 Word and Context Embeddings
We benefit pre-trained word embeddings from
(Kırnap et al., 2017) in our parser. Both word and
context embeddings are extracted from the lan-
guage model described in section 3.1 of (Kırnap
et al., 2017).

3.3 Features
We use limited number of continuous embeddings
in parser model. These are POS, word, context,
and morphological feature embeddings. Word and
context embeddings are pre-trained and not fine-
tuned during training. POS and morphological
feature embeddings are randomly initialized and
learned during training.

Abbrev Feature
c context embedding
v word embedding
p universal POS tag
f morphological features

Table 1: Possible features for each word

3.4 Morphological Feature Embeddings
We introduce morphological feature embeddings,
which differs from (Dyer et al., 2015), as an ad-
ditional input to our model. Each feature is rep-
resented with 128 dimensional continuous vector.

We experiment that vector sizes lower than 128
reduces the performance of a parser, and higher
than 128 does not bring further enhancements.
We formulate morphological feature embeddings
by adding feature vectors of a word. For exam-
ple, suppose we are given a word it with follow-
ing morphological features: Case=Nom and Gen-
der=Neut and Number=Sing and Person=3 and
PronType=Prs. We basically sum corresponding
5 unique vectors to provide morphological feature
embedding. However, our experiments suggest
that not all languages benefit from morphological
feature embeddings. (See section 4 for details)

3.5 Dependency Label Embeddings

Each distinct dependency label defined in CoNLL
2018 UD Shared Task represented with a 128 di-
mensional continuous vector. These vectors com-
bined to construct hidden states in tree-RNN part
of our model. We randomly initialize these vectors
and learned during training.

3.6 ArcHybrid Transition System

We implement the ArcHybrid Transition System
which has three components, namely a stack of
tree fragments σ, a buffer of unused words β and
a set A of dependency arcs, c = (σ, β,A). Stack
is empty, there is no any arcs and, all the words of
a sentence are in buffer initially. This system has
3 type of transitions:

• shift(σ, b|β,A) = (σ|b, β,A)

• leftd(σ|s, b|β,A) = (σ, b|β,A ∪ {(b, d, s)})

• rightd(σ|s|t, β, A) = (σ|s, β,A∪{(s, d, t)})

where | denotes concatenation and (b, d, s) is a de-
pendency arc between b (head) and s (modifier)
with label d. The system terminates parsing when
the buffer is empty and the stack has only one word
assumed to be the root.

3.7 Tree-stack LSTM

Tree-stack LSTM has 4 main components:
buffer’s β-LSTM, stack’s σ-LSTM, actions’-
LSTM and tree’s tree-RNN or t-RNN in short.
We aim to represent each component of the transi-
tion system, c = (σ, β,A), with a distinct LSTM
similar to (Dyer et al., 2015). Initial inputs to
these LSTMs are embeddings obtained by con-
catenating the features explained in section 3.3.
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Figure 1: MorphNet illustration for the sentence ”Bush earned 340 points in 1969” and target word
”earned”.

. . . Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs ...IT  It

Figure 2: Morphological feature embeddings ob-
tained by adding individual feature embeddings

Our model differs from (Dyer et al., 2015) by rep-
resenting actions and dependency relations sep-
arately and including morphological feature em-
beddings. The transition system (see section 3.6
for details) is also different from theirs.

Buffer’s β-LSTM is initialized with zero hidden
state, and fed with input features from last word to
the beginning. Similarly, stack’s σ-LSTM is also
initialized with zero hidden state and fed with in-
put features from the beginning word to the last
word of a stack. Actions’ LSTM is also started
with zero hidden state, and updated after each ac-
tion. Inputs to σ-LSTM and β-LSTM are updated
via tree-RNN.

We update either buffer’s or stack’s input em-
beddings based on parsing actions. For instance,
suppose we are given βi a top word in buffer and
σi a final word in stack. The leftd transition
taken in current state. tree-RNN uses concatena-
tion of previous embedding, σi, and dependency
relation embedding (explained in 3.5) as a hidden
ht−1.Input of a tree-RNN is a previous word em-

   LSTM    LSTM    LSTM

wi+2
wi+1wi

Figure 3: β − LSTM processing a sentence. It
starts to read from right to left. Each vector ((wi)
represents the concatenation of POS, language and
morph-feat embeddings.

   LSTM    LSTM   LSTM

si si+1 si+2

Figure 4: σ − LSTM processing a sentence.
It starts to read from left to right. Each input
(si) is transformed version of initial feature vec-
tor. Transformations are based on local transitions
see 3.6 for details.

bedding, βi. Output ht becomes a new word em-
bedding for buffer’s top word βi−new. Figure 5
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depicts this flow. Similarly to left transition, right
transition updates the stack’s second top word.
Hidden state of an RNN is calculated by concate-
nating stack’s top word and dependency relation.

There are 73 distinct actions for shift, labeled
left and labeled right actions. We randomly ini-
tialize 128 dimensional vector for each labeled ac-
tion and shift. These vectors become an input for
action-LSTM shown in Figure 6.

       t-RNN

   LSTM   LSTM
βi

concat

ht-1

βnew

Dependency Relation

Figure 5: Buffer word’s embedding update based
on left move. Inputs are old embeddings obtained
from Table 3.3
.

Concatenation of stack’s LSTM, buffer’s LSTM
and actions’ LSTM’s final hidden layer becomes
an input to MLP which outputs the probabilities
for each transition in the next step.

3.8 Training
Our training strategy varies based on training data
sizes. We divide datasets into 4 parts: 100k to-
kens or more, tokens in between 50k and 100k,
and more than 20k less than 50k tokens.

For languages having more than 50k tokens in
training data, we employ morphological feature-
embeddings as an additional input dimension (see
Figure 2). However, for languages having tokens
less than 50k we do not use this feature dimen-
sion. Finally we realize that the languages with
more than 100k tokens, using morphological fea-
ture embeddings does not improve parsing perfor-
mance but we use that additional feature dimen-
sion.

We use 5-fold cross validation for languages
without development data. We do not change the
LSTMs’ hidden dimensions, but record the num-
ber of epochs took for convergence. The average

of these epochs is used to train a model with whole
training set.

3.8.1 Optimization and Hyper-Parameters
We conduct experiments to find best set of hyper-
parameters. We start with a dimension of 32
and increase the dimension by powers of two un-
til 512 for LSTM hiddens, 1024 for LM matrix
(explained in below). We report the best hyper-
parameters in this paper. Although the perfor-
mance does not decrease after the best setting,
we choose the minimum-best size not to sacrifice
from training speed.

All the LSTMs and tree-RNN have hidden di-
mension of 256. The vectors extracted from LM
having dimension of 950, but we reduce that to
512 by a matrix-vector multiplication. This matrix
is also learned. We use Adam optimizer with de-
fault parameters. (Kingma and Ba, 2014).Training
is terminated if the performance does not improve
for 9 epochs.

4 Results

In this section we inspect our best/worst results
and the conclusions we obtain during CoNLL 2018
UD Shared Task experiments.

We submit our system to CoNLL 2018 UD
Shared Task as ”KParse” team. Our scoring is pro-
vided under the official CoNLL 2018 UD Shared
Task website.1 as well as in Table 4.1. All ex-
periments are done with UD version 2.2 datasets
(Nivre et al., 2018) and (Nivre et al., 2017) for
training and testing respectively. The model im-
proves performance by reducing hand-crafted fea-
ture selection. In order to analyze our tree-stack
LSTM, we compare that model with Kırnap et al.
sharing similar feature interests and transition sys-
tem with our model. The difference between these
two models is that Kırnap et al. based on hand-
crafted feature selection from state, e.g. number of
left children of buffer’s first word. However, tree-
stack LSTM only needs raw features and previous
parsing actions.

Our model comparatively performs better with
languages less than 50k training tokens, e.g.
sv lines and hu szeged and tr imst. However,
when the number of training examples increases
the performance improve slightly saturates, e.g.
ar padt, en ewt. This may be due to conver-
gence problems of our model. This conclusion

1
http://universaldependencies.org/conll18/

results.html
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Dependent word Dependency 
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Figure 6: End-to-end tree-stack model composed of 4 main components, namely, β-LSTM, σ-LSTM
and actions’ LSTMs and the tree-RNN.

Lang code Kırnap et al. New Model
tr imst 56.78 58.75
hu szeged 66.21 68.18
en ewt 74.87 75.77
ar padt 67.83 68.02
cs cac 83.39 83.57
sv lines 71.12 74.81

Table 2: Comparison of two models

is also agrees with our official ranking in CoNLL
2018 UD Shared Task because our ranking in low-
resource languages is 10, but general ranking is
16.

We next analyze the performance gain by in-
cluding morphological features with languages
training token in between 50k and 100k. As we de-
duce from Table 3, tree-stack LSTM benefits from
morphological information with mid-resource lan-
guages. However, we could not gain the similar

Lang code Morp-Feats no Morp-Feats
ko gsd 73.74 72.54
got proiel 54.33 53.24
id gsd 75.76 73.97

Table 3: Morphological feature embeddings in
some languages having tokens more than 50k and
less than 100k in training data

performance enhancement with languages more
than 100k training tokens.

4.1 Languages without Training Data

We have three criteria to choose a trained model
for languages without training data. If there is a
training corpus with the same language we use that
as a parent. If there is no data from the same lan-
guage, we pick a parent language from the same
family. If there are more than one parent for a lan-
guage, we select a parent with more training data.
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We list our selections in Table 4.

Language Parent Language
en pud en ewt
ja modern ja gsd
cs pud cs pdt
sv pud sv talbanken
fi pud fi tdt
th pud id gsd
pcm nsc en ewt
br keb en ewt

Table 4: Our parent choices in languages without
train data

5 Discussion

We use tree-stack LSTM model in transition based
dependency parsing framework. Our main motiva-
tion for this work is to reduce the human designed
features extracted from state components. Our re-
sults prove that the model is able to learn better
than its predecessors. Moreover, we examine that
the model performs better in languages with low
resources compared in CoNLL 2018 UD Shared
Task. We also constitute morphological feature
embeddings which become useful for dependency
parsing. All of our work is done in transition based
dependency parsing, which sacrifices performance
due to locality and non projectiveness. This study
opens a question on adapting the tree-stack LSTM
in graph based dependency parsing. Our code is
publicly available at https://github.com/
kirnap/ku-dependency-parser2.
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Language LAS MLAS BLEX Ranks Language LAS MLAS BLEX Ranks
af afribooms 78.12 65.12 63.93 17-15-19 ar padt 68.02 58.05 61.21 16-11-13
bg btb 84.53 75.58 77.63 20-16-9 br keb 8.91 0.35 1.77 19-15-19
bxr bdt 9.93 0.49 0.69 18-22-23 ca ancora 85.89 77.22 77.22 18-17-17
cs cac 83.57 75.3 77.24 19-12-18 cs fictree 82.67 71.93 75.31 18-15-16
cs pdt 81.43 73.77 71.44 21-21-22 cs pud 78.69 64.14 84.52 18-19-17
cu proiel 59.42 46.96 81.55 23-22-21 da ddt 76.4 67.05 63.09 17-15-19
en ewt 75.77 66.78 68.76 20-20-18 en gum 76.44 65.19 64.32 16-12-15
de gsd 71.59 46.87 35.41 17-8-23 el gdt 83.34 65.74 66.6 16-14-18
en lines 73.96 64.91 62.76 17-15-19 en pud 78.41 66.16 69.25 19-19-17
es ancora 84.99 76.71 77.06 18-17-16 et edt 74.52 65.7 63.5 20-19-17
eu bdt 74.55 63.11 61.25 17-13-18 fa seraji 81.18 74.84 71.65 17-16-14
fi ftb 75.84 65.53 67.91 17-16-11 fi pud 81.55 74.18 66.29 13-12-10
fi tdt 78.42 70.4 65.89 16-15-12 fo oft 22.5 0.29 5.44 20-19-20
fr gsd 81.07 72.07 73.96 19-19-17 fr sequoia 84.36 76.56 71.33 14-10-20
fr spoken 57.32 15 57.76 10-10-10 fro srcmf 76.92 67.85 71.35 20-19-20
ga idt 63.13 34.36 40.76 13-19-16 gl ctg 79.02 66.13 71.12 14-14-9
gl treegal 70.45 52.15 56.38 10-9-9 got proiel 54.33 40.58 40.51 24-24-22
grc perseus 55.03 34.19 37.0 20-15-16 grc proiel 62.11 43.92 37.00 22-21-20
he htb 58.28 45.06 48.09 18-16-16 hi hdtb 86.86 70.44 79.98 20-17-15
hr set 81.6 65.23 68.74 17-8-18 hsb ufal 30.81 6.22 15.39 8-9-7
hu szeged 68.18 51.13 50.53 14-20-21 hy armtdp 24.58 7.24 6.96 12-9-21
id gsd 75.51 65.02 63.92 17-13-17 it isdt 85.80 75.5 70.16 22-21-22
it postwita 70.03 56.04 47.53 13-12-20 ja gsd 73.30 59.46 59.89 14-14-20
ja modern 23.35 8.94 10.13 5-4-5 kk ktb 23.86 5.98 8.02 11-11-13
kmr mg 23.39 3.97 7.56 15-15-16 ko gsd 73.74 67.31 60.52 19-18-16
ko kaist 78.81 71.49 65.29 19-19-16 la ittb 75.79 71.49 71.66 20-19-19
la perseus 51.6 33.65 38.04 11-8-8 la proiel 59.35 46.36 51.13 20-19-19
lv lvtb 72.33 57.08 60.54 16-13-14 nl alpino 78.83 64.22 65.79 17-16-15
nl lassysmall 76.70 63.97 64.58 16-15-15 no bokmaal 82.32 37.93 73.52 20-19-18
no nynorsk 80.57 70.78 72.27 20-19-17 no nynorsklia 53.33 41.01 44.46 13-10-11
pcm nsc 15.84 5.3 13.61 10-1-11 pl lfg 86.12 71.96 76.71 21-21-20
pl sz 82.83 63.76 73.05 16-17-14 pt bosque 82.71 68.01 73.07 18-17-15
ro rrt 80.90 72.39 72.59 17-14-14 ru syntagrus 82.89 56.8 75.48 20-19-18
ru taiga 60.55 39.41 44.05 11-9-9 sk snk 75.75 53.49 61.0 20-20-16
sl ssj 78.18 62.94 69.49 16-18-14 sl sst 48.77 34.66 39.82 10-11-9
sme giella 53.39 39.13 41.75 19-19-15 sr set 80.85 67.46 72.09 20-19-16
sv lines 74.81 59.72 67.35 17-15-15 sv pud 70.77 43.04 54.67 16-12-15
sv talbanken 77.91 69.25 69.87 17-16-17 th pud 0.74 0.04 0.44 7-8-8
tr imst 58.75 48.28 49.84 15-12-13 ug udt 57.04 36.63 44.44 16-16-14
uk iu 76.5 36.63 65.5 16-16-13 ur udtb 78.12 51.25 64.66 17-15-15
vi vtb 40.48 33.88 36.03 16-14-15 zh gsd 59.76 50.87 53.11 19-15-18

Table 5: Our official results in CoNLL 2018 UD Shared Task, ranks are given in LAS-MLAS-BLEX
order
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Abstract

In this paper we describe the TurkuNLP
entry at the CoNLL 2018 Shared Task
on Multilingual Parsing from Raw Text to
Universal Dependencies. Compared to the
last year, this year the shared task includes
two new main metrics to measure the mor-
phological tagging and lemmatization ac-
curacies in addition to syntactic trees. Bas-
ing our motivation into these new met-
rics, we developed an end-to-end parsing
pipeline especially focusing on develop-
ing a novel and state-of-the-art component
for lemmatization. Our system reached the
highest aggregate ranking on three main
metrics out of 26 teams by achieving 1st
place on metric involving lemmatization,
and 2nd on both morphological tagging
and parsing.

1 Introduction

The 2017 and 2018 CoNLL UD Shared tasks aim
at an evaluation of end-to-end parsing systems on
a large set of treebanks and languages. The 2017
task (Zeman et al., 2017) focused primarily on the
evaluation of the syntactic trees produced by the
participating systems, whereas the 2018 task (Ze-
man et al., 2018) adds further two metrics which
also measure the accuracy of morphological tag-
ging and lemmatization. In this paper, we present
the TurkuNLP system submission to the CoNLL
2018 UD Shared Task. The system is an end-to-
end parsing pipeline, with components for seg-
mentation, morphological tagging, parsing, and
lemmatization. The tagger and parser are based on
the 2017 winning system by Dozat et al. (2017),
while the lemmatizer is a novel approach utilizing
the OpenNMT neural machine translation system
for sequence-to-sequence learning. Our pipeline

ranked first on the evaluation metric related to
lemmatization, and second on the metrics related
to tagging and parsing.

2 Task overview

CoNLL 2018 UD Shared Task is a follow-up to
the 2017 shared task of developing systems pre-
dicting syntactic dependencies on raw texts across
a number of typologically different languages. In
addition to the 82 UD treebanks for 57 languages,
which formed the primary training data, the par-
ticipating teams were allowed to use also addi-
tional resources such as Wikipedia dumps1, raw
web crawl data and word embeddings (Ginter
et al., 2017), morphological transducers provided
by Apertium2 and Giellatekno3, and the OPUS
parallel corpus collection (Tiedemann, 2012). In
addition to the 2017 primary metric (LAS), the
systems were additionally evaluated also on met-
rics which include lemmatization and morphology
prediction. In brief, the three primary metrics of
the task are as follows (see Zeman et al. (2018) for
detailed definitions):

LAS The proportion of words which have the cor-
rect head word with the correct dependency
relation.

MLAS Similar to LAS, with the additional re-
quirement that a subset of the morphol-
ogy features is correctly predicted and the
functional dependents of the word are cor-
rectly attached. MLAS is only calculated on
content-bearing words, and strives to level
the field w.r.t. morphological richness of lan-
guages.

1https://dumps.wikimedia.org
2https://svn.code.sf.net/p/apertium/

svn/languages
3https://victorio.uit.no/langtech/

trunk/langs
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BLEX The proportion of head-dependent content
word pairs whose dependency relation and
both lemmas are correct.

3 System overview and rationale

The design of the pipeline was dictated by the tight
schedule and the limited manpower we were able
to invest into its development. Our overall objec-
tive was to develop an easy-to-use parsing pipeline
which carries out all the four tasks of segmenta-
tion, morphological tagging, parsing, and lemma-
tization, resulting in an end-to-end full parsing
pipeline reusable in downstream applications. We
also strove for the pipeline to perform well on
all four tasks and all groups of treebanks, rang-
ing from the large treebanks to the highly under-
resourced ones. With this in mind, we decided to
rely on openly available components when the ac-
ceptable performance is already met, and create
our own components for those tasks we see clear
room for improvement.

Therefore, for segmentation, tagging and pars-
ing we leaned as much as possible on well-known
components trained in the standard manner, and
deviated from these only when necessary. Our
approach to lemmatization, on the other hand, is
original and previously unpublished. In summary,
we rely for most but not all languages on the
tokenization and sentence splitting provided by
the UDPipe baseline (Straka et al., 2016). Tag-
ging and parsing is carried out using the parser
of Dozat et al. (2017), the winning entry of the
2017 shared task. Using a simple data manipu-
lation technique, we also obtain the morphologi-
cal feature predictions from the same tagger which
was originally used to produce only universal part-
of-speech (UPOS) and language-specific part-of-
speech (XPOS) predictions. Finally, the lemma-
tization is carried out using the OpenNMT neu-
ral machine translation toolkit (Klein et al., 2017),
casting lemmatization as a machine translation
problem. All these components are wrapped into
one parsing pipeline, making it possible to run
all four steps with one simple command and gain
state-of-the-art or very close to state-of-the-art re-
sults for each step. In the following, we describe
each of these four steps in more detail, while more
detailed description of the pipeline itself is given
in Section 6.

3.1 Tokenization and sentence splitting

For all but three languages, we rely on the UD-
Pipe baseline runs provided by the shared task or-
ganizers. The three languages where we decided
to deviate from the baseline are Thai, Breton and
Faroese. Especially for Thai we suspected the UD-
Pipe baseline, trained without ever seeing a sin-
gle character of the Thai alphabet, would perform
poorly. For Breton, we were unsure about the
way in which the baseline system tokenizes words
with apostrophes like arc’hant (money), and with-
out deeper knowledge of Breton language decided
that it is better to explicitly keep all words with
apostrophes unsegmented. We therefore devel-
oped a regular-expression based sentence splitter
and tokenizer — admittedly under a very rushed
schedule — which splits sentences and tokens on
a handful of punctuation characters. While, af-
ter the fact, we can see that the UDPipe base-
line performed well at 92.3%, our solution outper-
formed it by two percentage points, validating our
choice. For Thai, we developed our own training
corpus using machine translation (described later
in the paper in Section 4.3), and trained UDPipe
on this corpus, gaining a segmentation model at
the same time. Indeed, the UDPipe baseline only
reached 8.5% accuracy while our tokenizer per-
formed at the much higher 43.2% (still far below
the 70% achieved by the Uppsala team). Simi-
larly, for Faroese we built training data by pool-
ing the Danish-DDT, Swedish-Talbanken, and the
three available Norwegian treebanks (Bokmaal,
Nynorsk, NynorskLIA), and subsequntly trained
the UDPipe tokenizer on this data. After the fact,
we can see that essentially all systems performed
in the 99–100% range on Faroese, and we could
have relied on the UDPipe baseline.

On a side note, we did develop our own method
for tokenization and sentence splitting but in the
end, unsure about its stability and performance
on small treebanks, we decided to “play it safe”
and not include it in the final system. However,
the newly developed tokenizer is part of our open-
source pipeline release and trainable on new data.

3.2 Pre-trained embeddings

Where available, we used the pre-trained embed-
dings from the 2017 shared task (Ginter et al.,
2017). Embeddings for Afrikaans, Breton, Buryat,
Faroese, Gothic, Upper Sorbian, Armenian, Kur-
dish, Northern Sami, Serbian and Thai were ob-
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tained from the embeddings published by Face-
book4 trained using the fastText method (Bo-
janowski et al., 2016), and finally for Old French
(Old French-SRCMF) we took the embeddings
trained using word2vec (Mikolov et al., 2013) on
the treebank train section by the organizers in their
baseline UDPipe model release. We did not pre-
train any embeddings ourselves.

3.3 UPOS tagging

UPOS tagging for all languages is carried out us-
ing the system of Dozat et al. (2017) trained out-
of-the-box with the default set of parameters from
the CoNLL-17 shared task. The part-of-speech
tagger is a time-distributed affine classifier over
tokens in a sentence, where tokens are first em-
bedded with a word encoder which sums together
a learned token embedding, a pre-trained token
embedding and a token embedding encoded from
the sequence of its characters using unidirectional
LSTM. After that bidirectional LSTM reads the
sequence of embedded tokens in a sentence to cre-
ate a context-aware token representations. These
token representations are then transformed with
ReLU layers separately for each affine tag classi-
fication layers (namely UPOS and XPOS). These
two classification layers are trained jointly by
summing their cross-entropy losses. For more de-
tailed description, see Dozat and Manning (2016)
and Dozat et al. (2017).

3.4 XPOS and FEATS tagging

As the tagger of Dozat et al. predicts the XPOS
field, we used a simple trick of concatenating
the FEATS field into XPOS, therefore manipu-
lating the tagger into predicting the XPOS and
morphological features as one long string. For
example the original XPOS field value N and
FEATS field value Case=Nom|Number=Sing
in Finnish-TDT treebank gets concatenated into
XPOS=N|Case=Nom|Number=Sing and this
full string is predicted as one class by the tagger.
After tagging and parsing, these values are again
splitted into correct columns. This is a (embarras-
ingly) simple approach which leads to surprisingly
good results, as our system ranks 3rd in morpho-
logical features with accuracy of 86.7% over all
treebanks, 0.9pp below the Uppsala team which
ranked 1st on this subtask.

4https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

We, in fact, did at first develop a comparatively
complex morphological feature prediction compo-
nent which outperformed the state-of-the-art on
the 2017 shared task, but later we discovered that
the simple technique described above somewhat
surprisingly gives notably better results. We ex-
pected that the complex morphology of many lan-
guages leads to a large number of very rare mor-
phological feature strings, a setting unsuitable for
casting the problem as a single multi-class pre-
diction task. Consequently, our original attempt
at morphological tagging predicted value for each
morphological category separately from a shared
representation layer, rather than predicting the full
feature string at once. To shed some light on
the complexity of the problem in terms of the
number of classes, and understand why a multi-
class setting works well, we list in Table 1 the
number of unique morphological feature strings
needed to cover 80%, 90%, 95%, and 100% of the
running words in the training data for each lan-
guage. The number of unique feature combina-
tions varies from 15 (Japanese-GSD, Vietnamese-
VTB) to 2629 (Czech-PDT), and for languages
with high number of unique combinations, we can
clearly see that there is a large leap from covering
95% of running words to covering full 100%. For
example in Czech-PDT, only 349 out of the 2629
feature combinations are needed to cover 95% of
running words, and the rest 2280 (of which 588
are singletons) together accounts only 5% of run-
ning words. Based on these numbers our conclu-
sions are that a focus on predicting the rare feature
combinations correctly does not affect the accu-
racy much, and learning a reasonable number of
common feature combinations well seems to be a
good strategy in the end.

Interestingly, on our preliminary experiments
with Finnish, we found that concatenating FEATS
into XPOS improved also LAS by more than
0.5pp, since the parser takes the XPOS field as a
feature and benefits from the additional morpho-
logical information present. To investigate this
more closely and test whether the same improve-
ment can be seen on other languages as well, we
carry out an experiment where we train the tagger
and parser without morphological information for
Finnish and six more arbitrarily chosen treebanks.
This new experiment then follows the original
training setting used by the Stanford team on their
CoNLL-17 submission, and by comparing this to
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80% 90% 95% 100%
Czech-PDT 96 194 349 2629
Finnish-TDT 79 188 349 2052
Finnish-FTB 72 174 333 1762
Czech-CAC 81 160 285 1745
Czech-FicTree 73 161 287 1464
Slovak-SNK 79 163 283 1199
Ukrainian-IU 91 186 322 1197
Polish-LFG 84 170 281 1171
Slovenian-SSJ 73 141 254 1101
Croatian-SET 63 125 212 1099
Latin-PROIEL 121 214 323 1031
Ancient Greek-PROIEL 114 203 308 1027
Urdu-UDTB 30 61 124 1001
Polish-SZ 80 157 267 991
Latin-ITTB 58 136 226 985
Turkish-IMST 54 139 262 972
Hindi-HDTB 38 76 127 939
Estonian-EDT 43 89 151 918
German-GSD 58 96 141 909
Basque-BDT 51 100 169 884
Old Church Slavonic-PROIEL 78 168 276 859
Latvian-LVTB 57 119 218 828
Ancient Greek-Perseus 59 107 169 774
Russian-SynTagRus 67 124 176 734
Slovenian-SST 73 146 233 645
Gothic-PROIEL 75 138 214 623
Hungarian-Szeged 40 90 166 581
Serbian-SET 48 85 131 539
Hebrew-HTB 19 45 85 521
Romanian-RRT 34 58 97 451
Bulgarian-BTB 33 63 107 432
Latin-Perseus 58 100 144 418
Portuguese-Bosque 20 35 60 396
Russian-Taiga 66 126 182 376
North Sami-Giella 39 78 127 369
Irish-IDT 47 81 125 360
Greek-GDT 57 90 123 348

80% 90% 95% 100%
Arabic-PADT 22 35 53 322
Spanish-AnCora 28 48 71 295
Italian-ISDT 22 35 55 281
Catalan-AnCora 28 47 68 267
French-GSD 19 31 46 225
Italian-PoSTWITA 23 39 56 224
Galician-TreeGal 23 41 66 222
Uyghur-UDT 21 40 63 214
Swedish-Talbanken 26 43 61 203
Norwegian-Bokmaal 26 39 57 203
French-Sequoia 25 43 62 200
Indonesian-GSD 12 20 31 192
Norwegian-Nynorsk 26 41 53 184
Swedish-LinES 25 43 61 173
Persian-Seraji 11 19 31 162
Danish-DDT 24 38 53 157
Armenian-ArmTDP 51 85 117 157
English-EWT 19 32 45 150
Upper Sorbian-UFAL 48 88 111 134
English-LinES 18 29 43 104
English-GUM 16 27 40 104
Kazakh-KTB 29 49 71 98
Norwegian-NynorskLIA 22 34 46 96
Dutch-Alpino 16 24 31 63
Afrikaans-AfriBooms 14 22 28 61
Dutch-LassySmall 13 19 26 59
Kurmanji-MG 24 35 46 58
Old French-SRCMF 11 15 19 57
Buryat-BDT 17 26 34 41
Chinese-GSD 7 10 13 31
Galician-CTG 7 9 11 27
Korean-GSD 4 4 6 19
Korean-Kaist 6 8 10 17
French-Spoken 8 10 12 16
Vietnamese-VTB 6 8 10 15
Japanese-GSD 5 7 9 15

Table 1: The number of unique UPOS+morphlogical feature combinations needed to cover 80%, 90%,
95% and 100% of the running words in each treebank.

our main runs we can directly evaluate the effect
of predicting additional morphological informa-
tion. Three of the treebanks used in this exper-
iment (Arabic-PADT, Czech-PDT and Swedish-
Talbanken) seem to originally encode the full (or
at least almost full) morphological information
in the XPOS field in a language-specific manner
(e.g. AAFS1----2A---- in Czech), whereas
four treebanks seem to include only part-of-speech
like information or nothing at all in the XPOS
field (Estonian-EDT, Finnish-TDT, Irish-IDT and
Russian-SynTagRus).

The results of this experiment are shown in Ta-
ble 2. Four treebanks above the dashed line, those
originally including only part-of-speech like infor-
mation in the XPOS field, shows clear positive im-

provement in terms of LAS when the parser is able
to see also morphological tags predicted together
with the language-specific XPOS. The parser see-
ing the morphological tags (LASm column) shows
improvements approx. from +0.3 to +0.9 for these
four treebanks compared to the parser without
morphological tags (LAS column). Three tree-
banks below the dashed line, those already includ-
ing language-specific morphological information
in the XPOS field, quite naturally does not bene-
fit from additional morphology and shows mildly
negative results in terms of LAS. However the
difference in treebanks showing negative results
is substantially smaller compared to those having
positive effect (negative differences stay between
-0.0 to -0.2), therefore based on these seven tree-
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Treebank LAS LASm UPOS UPOSm XPOS XPOSm

Estonian-EDT 83.40 84.15 (+0.75) 96.32 96.45 (+0.13) 97.81 97.87 (+0.06)
Finnish-TDT 85.74 86.60 (+0.86) 96.45 96.66 (+0.21) 97.48 97.63 (+0.15)
Irish-IDT 70.01 70.88 (+0.87) 91.87 92.36 (+0.49) 91.01 91.05 (+0.04)
Russian-SynT. 91.40 91.72 (+0.32) 98.11 98.03 (-0.08) — —
Arabic-PADT 72.67 72.45 (-0.22) 90.39 90.48 (+0.19) 87.36 87.39 (+0.03)
Czech-PDT 90.62 90.57 (-0.05) 98.76 98.74 (-0.02) 95.66 95.44 (-0.22)
Swedish-Talb. 85.87 85.83 (-0.04) 97.40 97.47 (+0.07) 96.36 96.41 (+0.05)

Table 2: LAS, UPOS and XPOS scores for seven parsers trained with and without tagger predicting the
additional morphological information. m after the score name stands for including the morphological
information during training, i.e. the official result for our system. Note that when evaluating XPOS, the
morphological information is already extracted from that field so the evaluation only includes prediction
of original XPOS-tags, not morphological features.

banks the overall impact stays on positive side.
Note that during parsing the parser only sees pre-
dicted morphological features, so this experiment
confirms that predicting more complex informa-
tion on lower-level can improve the parser.

Because of the fact that many treebanks include
more than plain part-of-speech information in the
language-specific XPOS field, likely more natural
place for the morphological features would be the
universal part-of-speech field UPOSwhich is guar-
anteed to include only universal part-of-speech in-
formation. However, with the limited time we had
during the shared task period, we had no time to
test whether adding morphological features harms
the prediction of original part-of-speech tag, and
we decided to use XPOS field as we thought it’s
least important of these two. Based on the re-
sults in the XPOS column of Table 2, we how-
ever see that additional information does not gen-
erally seem to harm the prediction of the original
language-specific part-of-speech tags and hints to-
wards the conclusion that likely the UPOS field
could have been used with comparable perfor-
mance.

3.5 Syntactic parsing

Syntactic parsing for all languages is carried out
using the system of Dozat et al. trained out-of-
the-box with the default set of parameters from
the CoNLL-17 shared task. The parser architec-
ture is quite similar as used in the tagger. Tokens
are first embedded with a word encoder which
sums together a learned token embedding, a pre-
trained token embedding and a token embedding
encoded from the sequence of its characters us-
ing unidirectional LSTM. These embedded tokens

are yet concatenated together with corresponding
part-of-speech embeddings. After that bidirec-
tional LSTM reads the sequence of embedded to-
kens in a sentence to create a context-aware token
representations. These token representations are
then transformed with four different ReLU layers
separately for two different biaffine classifiers to
score possible relations (HEAD) and their depen-
dency types (DEPREL), and best predictions are
later decoded to form a tree. These relation and
type classifiers are again trained jointly by sum-
ming their cross-entropy losses. For more detailed
description, see Dozat and Manning (2016) and
Dozat et al. (2017).

3.6 Lemmatization

While in many real word industry applications es-
pecially for inflective languages the lemmatizer is
actually the most needed component of the parsing
pipeline, yet it’s performance has been undesirable
weak in previous state-of-the-art parsing pipelines
for many inflectionally complex languages. For
this reason we develop a novel and previously un-
published component for lemmatization.

We represent lemmatization as a sequence-to-
sequence translation problem, where the input is
a word represented as a sequence of characters
concatenated with a sequence of its part-of-speech
and morphological tags, while the desired output
is the corresponding lemma represented as a se-
quence of characters. Therefore we are training
the system to translate the word form characters
+ morphological tags into the lemma characters,
where each word is processed independently from
it’s sentence context. For example, input and out-
put sequences for the English word circles as a
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noun are:

INPUT: c i r c l e s UPOS=NOUN
XPOS=NNS Number=Plur

OUTPUT: c i r c l e

As our approach can be seen similar to general
machine translation problem, we are able to use
any openly available machine translation toolkit
and translation model implementations. Our cur-
rent implementation is based on the Python ver-
sion of the OpenNMT: Open-Source Toolkit for
Neural Machine Translation (Klein et al., 2017).
We use a deep attentional encoder-decoder net-
work with 2 layered bidirectional LSTM encoder
for reading the sequence of input characters + mor-
phological tags and producing a sequence of en-
coded vectors. Our decoder is a 2 layered unidi-
rectional LSTM with input feeding attention for
generating the sequence of output characters based
on the encoded representations. In input feeding
attention (Luong et al., 2015) the previous atten-
tion weights are given as input in the next time
step to inform the model about past alignment de-
cisions and prevent the model to repeat the same
output multiple times. We use beam search with
beam size 5 during decoding.

As the lemmatizer does not see the actual sen-
tence where a word appears, morphological tags
are used in the input sequence to inform the sys-
tem about the word’s morpho-syntactic context.
The tagger is naturally able to see the full sen-
tence context and in most cases it should produce
enough information for the lemmatizer to give it
a possibility to lemmatize ambiguous words cor-
rectly based on the current context. During test
time we run the lemmatizer as a final step in the
parsing pipeline, i.e. after tagger and parser, so the
lemmatizer runs on top of the predicted part-of-
speech and morphological features. Adding the
lemmatizer only after the tagger and parser (and
not before like done in many pipelines) does not
cause any degradation for the current pipeline as
the tagger and parser by Dozat et al. (2017) do not
use lemmas as features.

This method is inspired by the top systems from
the CoNLL-SIGMORPHON 2017 Shared Task of
Universal Morphological Reinflection (Cotterell
et al., 2017), where the participants used encoder-
decoder networks to generate inflected words from
the lemma and given morphological tags (Kann
and Schütze, 2017; Bergmanis et al., 2017). While

the SIGMORPHON 2017 Shared Task was based
on gold standard input features, to our knowledge
we are the first ones to use similar techniques on
reversed problem settings and to incorporate such
lemmatizer into the full parsing pipeline to run on
top of predicted morphological features.

4 Near-zero resource languages

There are nine very low resource languages: Bre-
ton, Faroese, Naija and Thai with no training data,
and Armenian, Buryat, Kazakh, Kurmanji and Up-
per Sorbian with only a tiny training dataset. For
the latter five treebanks with tiny training sam-
ple, we trained the tagger and parser in the stan-
dard manner, despite the tiny training set size.
However, for four of these five languages (Ar-
menian, Buryat, Kazakh and Kurmanji) we used
Apertium morphological transducers (Tyers et al.,
2010) to artificially extend the lemmatizer training
data by including new words from the transducer
not present in the original training data (methods
are similar to those used with Breton and Faroese,
for details see Section 4.1). Naija is parsed using
the English-EWT models without any extra pro-
cessing as it strongly resembles English language
and at the same time lacks all resources. Breton,
Faroese and Thai were each treated in a different
manner described below.

4.1 Breton

Our approach to Breton was to first build a Breton
POS and morphological tagger, and subsequently
apply a delexicalized parser. To build the tag-
ger, we selected 5000 random sentences from the
Breton Wikipedia text dump and for each word
looked up all applicable morphological analyzes
in the Breton Apertium transducer converted into
UD using a simple language-agnostic mapping
from Apertium tags to UD tags. For words un-
known to the transducer (59% of unique words),
we assign all possible UPOS+FEATS strings pro-
duced by the transducer on the words it recog-
nizes in the data. Then we decode the most
likely sequence of morphological readings using
a delexicalized 3-gram language model trained
on the UPOS+FEATS sequences of English-EWT
and French-GSD training data. Here we used
the lazy decoder program5 which is based on
the KenLM language model estimation and query-
ing system (Heafield, 2011). This procedure re-

5https://github.com/kpu/lazy
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sults in 5000 sentences (96,304 tokens) of mor-
phologically tagged Breton, which can be used to
train the tagger in the usual manner. The syn-
tactic parser was trained as delexicalized (FORM
field replaced with underscore) on the English-
EWT and French-GSD treebanks. The accu-
racy of UPOS and FEATS was 72% (3rd rank)
and 56.6% (2nd rank) and LAS ranked 3rd with
31.8%. These ranks show our approach as com-
petitive in the shared task, nevertheless the Upp-
sala team achieved some 14pp higher accuracies
of UPOS and FEATS, clearly using a considerably
better approach.

The Breton lemmatizer was trained using the
same training data as used for the tagger, where
for words recognized by the transducer the part-
of-speech tag and morphological features are con-
verted into UD with the language-agnostic map-
ping, and lemmas are used directly. Unknown
words for transducer (i.e. those for which we are
not able to get any lemma analysis) are simply
skipped from the lemmatizer training. As the lem-
matizer sees each word separately, skipping words
and breaking the sentence context does not cause
any problems. With this approach we achieved
the 1st rank and accuracy of 77.6%, which is over
20pp better that the second best team.

To estimate the quality of our automatically pro-
duced training data for Breton tagging and lemma-
tization, we repeat the same procedure with the
Breton test data6, i.e. we use the combination of
morphological transducer and language model as
a direct tagger leaving out the part of training
an actual tagger with the produced data as done
in our original method. When evaluating these
produced analyses against the gold standard, we
get a direct measure of quality for this method.
We measure three different scores: 1) Oracle full
match of transducer readings converted to UD,
where we measure how many tokens can receive
a correct combination of UPOS and all morpho-
logical tags when taking into account all possi-
ble readings given by the transducer. For un-
known words we include all combinations known
from the transducer. This setting measures the
best full match number achievable by the language
model if it would predict everything perfectly. 2)
Language model full match, i.e. how many to-
kens received a fully correct analysis when lan-

6Using development data in these experiments would be
more desirable, but unfortunately we don’t have any Breton
development data available.

guage model was used to pick one of the possi-
ble analyses. 3) Random choice full match, i.e.
how many tokens received a fully correct analy-
sis when one of the possible analyses was picked
randomly. On Breton test set our oracle full match
is 55.5%, language model full match 51.0% and
random full match 46.2%. We can see that us-
ing a language model to pick analyses shifts the
performance more closer to oracle full match than
random full match, showing somewhat positive re-
sults for the language model decoding. Unfortu-
nately when we tried to replicate the same experi-
ment for other low-resource languages, we did not
see the same positive signal. However, the biggest
weakness of this method seems to be in the ora-
cle full match which is only 55.5%. This means
that the correct analysis cannot be found from the
converted transducer output for almost half of the
tokens. A probable reason for this is the simple
language-agnostic mapping from Apertium tags
to UD tags which is originally developed for the
lemmatizer training and strove for high precision
rather than high recall. Our development hypoth-
esis was that missing a tag in lemmatizer’s input
likely does not tremendously harm the lemmatizer,
so when developing the mapping we rather left
some tags out than caused a potential erroneous
conversion. However, when the same mapping is
used here, missing one common tag (for example
VerbForm=Fin) can cause great losses in full
match evaluation.

4.2 Faroese

For Faroese the starting situation was similar to
Breton but as the coverage of the Faroese Aper-
tium tranducer was weak, we decided to take an
another approach. This is because we feared that
the decoder input would have too many gaps to
fill in and therefore the quality of produced data
would decrease. For that reason the Faroese tag-
ger and parser was trained in the usual manner
using pooled training sets of related Nordic lan-
guages: Danish-DDT, Swedish-Talbanken, and
the three available Norwegian treebanks (Bok-
maal, Nynorsk, NynorskLIA). The pre-trained
embeddings were Faroese from the Facebook’s
embeddings dataset, filtered to only contain words
which Faroese has in common with one of the lan-
guages used in training. However, the Faroese
lemmatizer is trained directly from the transducer
output by analyzing vocabulary extracted from the
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Faroese Wikipedia and turning Apertium analyses
into UD using the same tag mapping table as in
the Breton. On UPOS tagging our system ranks
only 10th, whereas on both morphological feature
prediction and lemmatization, we rank 1st.

4.3 Thai

As there is no training data and no Apertium mor-
phological transducer for Thai, we machine trans-
lated the English-EWT treebank word-for-word
into Thai, and used the result as training data
for the Thai segmenter, tagger and parser. Here
we utilized the Marian neural machine transla-
tion framework (Junczys-Dowmunt et al., 2018)
trained on the 6.1 million parallel Thai-English
sentences in OPUS (Tiedemann, 2012). Since we
did not have access to a Thai tokenizer and Thai
language does not separate words with spaces, we
forced the NMT system into character-level mode
by inserting a space between all characters in a
sentence (both on the source and the target side)
and again removing those after translation. After
training the translation system, the English-EWT
treebank is translated one word at a time, creat-
ing a token and sentence segmented Thai version
of the treebank. Later all occurrences of English
dots and commas were replaced with whitespaces
in the raw input text (and accordingly absence of
SpaceAfter=No tags in CoNNL-U) as Thai uses
whitespace rather than punctuation as pause char-
acter, and rest of the words were merged together
in raw text by including SpaceAfter=No feature
for each word not followed by dot or comma. This
word-by-word translation and Thai word merging
technique gives us the possibility to train a some-
what decent sentence and word segmenter with-
out any training data for a language which does
not use whitespaces to separate words or even sen-
tences. Furthermore, all the words were removed
as they have no Thai counterpart, lemmas were
dropped, all matching morphological features be-
tween English and Thai were copied, HEAD in-
dices were updated because of removing before
mentioned tokens, non-existent dependency re-
lations in Thai were mapped to similar existent
ones, and finally enhanced dependency graphs
were dropped. The tagger and parser were then
trained normally using this training data. Training
a lemmatizer is not needed as the Thai treebank
does not include lemma annotation.

Our Thai segmentation achieves 1st rank and

accuracy of 12.4% on sentence segmentation and
5th rank and accuracy of 43.2% on tokenization.
On UPOS prediction we have accuracy of 27.6%
and 4th rank, and our LAS is 6.9% and we rank
2nd, while the best team on Thai LAS, CUNI x-
ling, achieves 13.7%. English is not a particu-
larly natural choice for the source language of a
Thai parser, with Chinese likely being a better can-
didate. We still chose English because we were
unable to train a good Chinese-Thai MT system
on the data provided in OPUS and the time pres-
sure of the shared task prevented us from explor-
ing other possibilities. Clearly, bad segmentation
scores significantly affect other scores as well, and
when the parser and tagger are evaluated on top of
gold segmentation, our UPOS accuracy is 49.8%
and LAS 20.4%. These numbers are clearly better
than with predicted segmentation but still far off
from typical supervised numbers.

5 Results

The overall results of our system are summarized
in Table 3, showing the absolute performance,
rank, and difference to the best system / next
best system for all metrics on several treebank
groups — big, small, low-resource and parallel
UD (PUD). With respect to the three main met-
rics of the task, we ranked 2nd on LAS, 2nd on
MLAS and 1st on BLEX, and received the high-
est aggregate ranking out of 26 teams, of which
21 submitted non-zero runs for all treebanks. For
LAS, our high rank is clearly due to balanced per-
formance across all treebank groups, as our ranks
in the individual groups are 3rd, 6th, 4th and 6th,
still giving a 2nd overall rank. A similar pattern
can also be observed for MLAS. Our 1st overall
rank on the BLEX metric is undoubtedly due to
the good performance in lemmatization, on which
our system achieves the 1st rank overall as well as
in all corpus groups except the low-resourced lan-
guages. Altogether, it can be seen in the results ta-
ble that the two main strengths of the system is 1)
lemmatization and 2) tagging of small treebanks,
and on any metric, the system ranks between 1st
and 5th place across all corpora (all column in Ta-
ble 3).

6 Software release

The full parsing pipeline is available at
https://turkunlp.github.com/
Turku-neural-parser-pipeline,
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All Big PUD Small Low
LAS 73.28 (-2.56 / 2) 81.85 (-2.52 / 3) 71.78 (-2.42 / 6) 64.48 (-5.05 / 4) 22.91 (-4.98 / 6)
MLAS 60.99 (-0.26 / 2) 71.27 (-1.40 / 3) 57.54 (-1.21 / 5) 47.63 (-1.61 / 2) 3.59 (-2.54 / 5)
BLEX 66.09 (+0.76 / 1) 75.83 (+0.37 / 1) 63.25 (+0.91 / 1) 53.54 (-1.35 / 2) 11.40 (-2.58 / 2)
UAS 77.97 (-2.54 / 4) 85.32 (-2.29 / 5) 75.58 (-2.84 / 6) 71.50 (-4.44 / 5) 34.51 (-4.72 / 6)
CLAS 69.40 (-2.96 / 2) 78.26 (-3.03 / 4) 67.65 (-2.21 / 5) 59.28 (-5.57 / 4) 18.15 (-4.03 / 6)
UPOS tagging 89.81 (-1.10 / 4) 95.41 (-0.82 / 6) 85.59 (-1.92 / 9) 91.93 (-0.91 / 3) 52.53 (-8.54 / 4)
XPOS tagging 86.17 (-0.50 / 3) 94.47 (-0.69 / 4) 55.68 (-0.30 / 2) 90.51 (+0.50 / 1) 43.43 (-11.3 / 17)
Morph. features 86.70 (-0.89 / 3) 93.82 (-0.32 / 3) 85.24 (-1.81 / 5) 85.63 (+0.58 / 1) 40.04 (-8.91 / 4)
All morph. tags 79.83(-0.47 / 2) 91.08 (-0.42 / 3) 51.60 (-0.30 / 2) 82.02 (+1.17 / 1) 17.58 (-8.33 / 19)
Lemmatization 91.24 (+1.92 / 1) 96.08 (+0.83 / 1) 85.76 (+0.07 / 1) 91.02 (+1.02 / 1) 61.61 (-2.81 / 3)
Sentence segmt. 83.03 (-0.84 / 5) 86.09 (-3.43 / 7–21) 75.53 (-0.51 / 3–17) 83.33 (-0.12 / 2–20) 66.23 (-1.27 / 2)
Word segmt. 97.42 (-0.76 / 5) 98.81 (-0.40 / 8–21) 92.61 (-1.96 / 7–19) 99.43 (+0.20 / 1–19) 89.10 (-4.28 / 5)
Tokenization 97.83 (-0.59 / 4) 99.24 (-0.27 / 6–21) 92.61 (-1.96 / 7–19) 99.57 (+0.01 / 1–18) 89.85 (-3.49 / 5)

Table 3: Results in every treebank group, shown as “absolute score (difference / rank)”. For first rank,
the difference to the next best system is shown, for other ranks we show the difference to the best ranking
system, shared ranks are shown as a range.

together with all the trained models. We have
ported the parser of Dozat et al. into Python3,
and included other modifications such as the
ability to parse a stream of input data without
reloading the model. The pipeline has a modular
structure, which allowed us to easily reconfigure
the components for languages which needed a
non-standard treatment. The pipeline software is
documented, and we expect it to be comparatively
easy to extend it with own components.

7 Conclusions

In this paper we presented the TurkuNLP entry
at the CoNLL 2018 UD Shared Task. This year
we focused on building an end-to-end pipeline
system for segmentation, morphological tagging,
syntactic parsing and lemmatization based on
well-known components, and including our novel
lemmatization approach. On BLEX evaluation, a
metric including lemmatization and syntactic tree,
we rank 1st, reflecting the state-of-the-art perfor-
mance on lemmatization. On MLAS and LAS,
metrics including morphological tagging and syn-
tactic tree, and plain syntactic tree, we rank 2nd
on both. All these components are wrapped into
one simple parsing pipeline that carries out all four
tasks with one command, and the pipeline is avail-
able for everyone together with all trained models.
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Abstract

We describe the SEx BiST parser (Seman-
tically EXtended Bi-LSTM parser) de-
veloped at Lattice for the CoNLL 2018
Shared Task (Multilingual Parsing from
Raw Text to Universal Dependencies).
The main characteristic of our work is the
encoding of three different modes of con-
textual information for parsing: (i) Tree-
bank feature representations, (ii) Multi-
lingual word representations, (iii) ELMo
representations obtained via unsupervised
learning from external resources. Our
parser performed well in the official end-
to-end evaluation (73.02 LAS – 4th/26
teams, and 78.72 UAS – 2nd/26); remark-
ably, we achieved the best UAS scores
on all the English corpora by applying
the three suggested feature representa-
tions. Finally, we were also ranked 1st at
the optional event extraction task, part of
the 2018 Extrinsic Parser Evaluation cam-
paign.

1 Introduction

Feature representation methods are an essential
element for neural dependency parsing. Meth-
ods such as Feed Forward Neural Network (FFN)
(Chen and Manning, 2014) or LSTM-based word
representations (Kiperwasser and Goldberg, 2016;
Ballesteros et al., 2016) have been proposed to
provide fine-grained token representations, and
these methods provide state of the art perfor-
mance. However, learning efficient feature repre-
sentations is still challenging, especially for under-
resourced languages.

One way to cope with the lack of training data
is a multilingual approach, which makes it possi-
ble to use different corpora in different languages

as training data. In most cases, for instance in the
CoNLL 2017 shared task (Zeman et al., 2017), the
teams that have adopted this approach used a mul-
tilingual delexicalized parser (i.e. a multi-source
parser trained without taking into account lexical
features). However, it is evident that delexicalized
parsing cannot capture contextual features that de-
pend on the meaning of words within the sentence.

Following previous proposals promoting a
model-transfer approach with lexicalized feature
representations (Guo et al., 2016; Ammar et al.,
2016; Lim and Poibeau, 2017), we have developed
the SEx BiST parser (Semantically EXtended Bi-
LSTM parser), a multi-source trainable parser us-
ing three different contextualized lexical represen-
tations:

• Corpus representation: a vector representa-
tion of each training corpus.

• Multilingual word representation: a multi-
lingual word representation obtained by the
projection of several pre-trained monolingual
embeddings into a unique semantic space
(following a linear transformation of each
embedding).

• ELMo representation: token-based repre-
sentation integrating abundant contexts gath-
ered from external resources (Peters et al.,
2018).

In this paper, we extend the multilingual graph-
based parser proposed by Lim and Poibeau
(2017) with the three above representations.
Our parser is open source and available at:
https://github.com/CoNLL-UD-2018/
LATTICE/.

Our parser performed well in the official end-to-
end evaluation (73.02 LAS – 4th out of 26 teams,
and 78.72 UAS – 2nd out of 26). We obtained very
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good results for French, English and Korean where
we were able to extensively exploit the three above
features (for these languages, we obtained the best
UAS performance on all the treebanks, and among
the best LAS performance as well). Unfortunately
we were not able to exploit the same strategy for
all the languages due to a lack of a GPU and, cor-
respondingly, time for training, and also due a lack
of training data for some languages.

The structure of the paper is as follows. We
first describe the feature extraction and represen-
tation methods (Section 2 and 3) and then present
our POS tagger and our parser based on multi-task
learning (Section 4). We then give some details
on our implementation (Section 5) and we finally
provide an analysis of our official results (Section
6).

2 Deep Contextualized Token
Representations

The architecture of our parser follows the mul-
tilingual LATTICE parser presented in Lim and
Poibeau (2017), with the addition of the three fea-
ture representations presented in the introduction.

The basic token representations is as follows.
Given a sentence of tokens s=(t1,t2,..tn), the ith

token ti can be represented by a vector xi, which
is the result of the concatenation (◦) of a word
vector wi and a character-level vector ci of ti:

xi = ci ◦ wi

ci = Char(ti; θc)
wi = Word(ti; θw)

When the approach is monolingual, wi corre-
sponds to the external word embeddings provided
by Facebook (Bojanowski et al., 2016). Otherwise
we used our own multilingual strategy based on
multilingual embeddings (see Section 3.2)

2.1 Character-Level Word Representation
Token ti can be decomposed as a vector of
characters (ch1, ch2,.. chm) where chj is the jth

character of ti. The function Char (that generates
the character-level word vector ci) corresponds to
a vector obtained from the hidden state represen-
tation hj of the LSTM, with an initial state h0 (m
is the length of token ti)1:

1Note that i refers to the ith token in the sentence and that j
refers to the jth character of the ith token. Here, we use lower-
case italics for vectors and uppercase italics for matrices. So

hj = LSTM(ch)(h0, (ch1,ch2,..chm))j

ci = wchm

For LSTM-based character-level represen-
tations, previous studies have shown that the
last hidden layer hm represents a summary of
all the information based on the input character
sequences (Shi et al., 2017). It is then possible
to linearly transform this with a parameter wc

so as to get the desired dimensionality. Another
representation method involves applying an
attention-based linear transformation of the hid-
den layer matrix Hi, for which attention weights
ai are calculated as follows:

ai = Sofmax(watt Hi
T)

ci = aiHi

Since we apply the Softmax function, making
weights sum up to 1 after a linear transforma-
tion of Hi with attention parameter watt, the self-
attention weight ai intuitively corresponds to the
most informational characters of token ti for pars-
ing. Finally, by summing up the hidden state Hi

of each word according to its attention weights ai,
we obtain our character-level word representation
vector for token ti. Most recently, Dozat et al.
(2017) suggested an enhanced character-level rep-
resentation based on the concatenation of hm and
aiHi so as to capture both the summary and con-
text information in one go for parsing. This is an
option that could be explored in the future.

After some empirical experiments, we chose
bidirectional LSTM encoders rather than a single
directional one and then introduced the hidden
state Hi into the two-layered Multi-Layer Percep-
tron (MLP) without bias terms for computing the
attention weight ai:

ai = Sofmax(watt2 tanh(Watt1 Hi
T))

ci = aiHi

For training, we used the charter-level word repre-
sentations for all the languages except Kazakh and
Thai (see Section 5).

2.2 Corpus Representation
Following Lim and Poibeau (2017), we used a
one-hot treebank representation strategy to encode

a set of hidden state Hi is a matrix stacked on m characters.
In this paper, all the letters w and W denote parameters that
the system has to learn.
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language-specific features. In other words, each
language has its own set of specific lexical fea-
tures.

For languages with several training corpora
(e.g., French-GSD and French-Spoken), our
parser computes an additional feature vector
taking into account corpus specificities at word
level. Following the recent work of Stymne et al.
(2018), who proposed a similar approach for
treebank representations, we chose to use a 12
dimensional vector for corpus representation.
This representation tri is concatenated with the
token representation xi:

tri = Treebank(ti; θtr)

xi = ci ◦ wi ◦ tri

We used this approach (corpus representation) for
24 corpora, and its effectiveness will be discussed
in Section 5.

2.3 Contextualized Representation

ELMo (Embedding from Language Model (Peters
et al., 2018)) is a function that provides a represen-
tation based on the entire input sentence. ELMo
contextualized embedding is a new technique for
word representation that has achieved state-of-the-
art performance across a wide range of language
understanding tasks. This approach is able to cap-
ture both subword and contextual information. As
stated in the original paper by Peters et al. (2018),
the goal is to “learn a linear combination of the
vectors stacked above each input word for each
end task, which markedly improves performance
over just using the top LSTM layer”.

We trained our language model with bidirec-
tional LSTM using ELMo as an intermediate layer
in the bidirectional language model (biLM), and
we used ELMo embeddings to improve again the
performance of our model.

Ri = {xLMi ,
←→
h LM

i,j | = 1, ..., L}
= {hLM

i,j | = 0, ..., L}
(1)

ELMoi = E(Ri; Θ) = γ
L∑

j=0

sjhLM
i,j (2)

In (1), xLMi and hLMi,0 are word embedding vec-

tors corresponding to the token layer.
←→
h LM

i,j is

a hidden LSTM vector consisting of a multi-layer
and a bidirectional LSTM layer. hLM

i,j is a con-

catenated vector composed of xLMi and
←→
h LM

i,j .
We computed our model with all the biLM layers
weighted. In (2), sj is softmax weight that is train-
able to normalize multi-layer LSTM layers. γ is
the scalar parameter to efficiently train the model.
We used a 1024 dimensions ELMo embedding.

3 Multilingual Feature Representations

The supervised, monolingual approach to parsing,
based on syntactically annotated corpora, has long
been the most common one. However, thanks to
recent developments involving powerful word rep-
resentation methods (a.k.a. word embeddings), it
is now possible to develop accurate multilingual
lexical models by mapping several monolingual
embeddings into a single vector space. This mul-
tilingual approach to parsing has yielded encour-
aging results for both low- (Guo et al., 2015) and
high-resource languages (Ammar et al., 2016). In
this work, we extend the recent multilingual de-
pendency parsing approach proposed by Lim and
Poibeau (2017) that achieved state-of-the-art per-
formance during the last CoNLL shared task by
using multilingual embeddings mapped based on
bilingual dictionaries.

3.1 Embedding Projection

There are different strategies to produce multilin-
gual word embeddings (Ruder et al., 2018), but
a very efficient one consists in simply project-
ing one word embedding on top of the other to
make both representations share the same seman-
tic space (Artetxe et al., 2016). The alternative in-
volves directly generating bilingual word embed-
dings from bilingual corpora (Gouws et al., 2015;
Gouws and Sgaard, 2015), but this requires a large
amount of bilingual data aligned at sentence or
document level. This kind of resource is not avail-
able for most language pairs, especially for under-
resourced languages.

We thus chose to train independently monolin-
gual word embeddings and then map these word
embeddings one to another. This approach is pow-
erful since monolingual word embeddings gener-
ally share a similar structure (especially if they
have been trained on similar corpora) and so can
be superimposed with little information loss.

To project embeddings, we applied the linear
transformation method using bilingual dictionar-
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ies proposed by Artetxe et al. (2017). We took the
bilingual dictionaries from OPUS2 and Wikipedia.

The projection method can be described as fol-
lows. Let X and Y be the source and target word
embedding matrix so that xi refers to ith word em-
bedding of X and yj refers to jth word embedding
of Y. And let D be a binary matrix where Dij = 1,
if xi and yj are aligned. Our goal is to find a trans-
formation matrix W such that Wx approximates y.
This is done by minimizing the sum of squared er-
rors:

arg min
W

m∑

i=1

n∑

j=1

Dij‖xiW − yi‖2

The method is relatively simple since convert-
ing a bilingual dictionary into D is quite straight-
forward. The size of the dictionary used for train-
ing is around 250 pairs, and the projected word
embedding is around 1.8GB. The dictionaries and
the projected word embeddings are publicly avail-
able on Github.3

3.2 Training with Multilingual Embedding
After having trained multilingual embeddings,
we associate them with word representation wi as
follows:

wi = Word(ti; θmw)

We applied the multilingual embedding mostly
to train the nine low-resource languages of the
2018 CoNLL evaluation, for which only a hand-
ful of annotated sentences were provided.

4 Multi-Task Learning for Tagging and
Parsing

In this section, we describe our Part-Of-Speech
(POS) tagger and dependency parser using the en-
coded token representation xi based on Multi-Task
Learning (MTL) (Zhang and Yang, 2017).

4.1 Part-Of-Speech Tagger
As presented in Section 2 and 3, our parser is
based on models trained with a combination of
features, encoding different contextual informa-
tion. However, the attention mechanism for the
character-level word vector ci is focusing only on
a limited number of features within the token, and

2http://opus.nlpl.eu/
3https://github.com/jujbob/

multilingual-models

the word representation element wi is thus needed
to transform a bidirectional LSTM, as a way to
capture the overall context of a sentence. Finally,
a token is encoded as a vector gi:

gi = BiLSTM(pos)(g0, (x1,x2,..xn))i

We transform the token vector gi to a vector of
the desired dimensionality by two-layered MLP
with a bias term to classify the best candidate of
universal part-of-speech (UPOS):

p′i = Wpos2 leaky relu(Wpos1 gi
T) + bpos

y′i = arg max
j
p′ij

Finally, we randomly initialize the UPOS
embedding as pi and map the predicted UPOS y′i
as a POS vector:

pi = Pos(y′i; θpos)

4.2 Dependency Parser
To take into account the predicted POS vector on
the main target task (i.e. parsing), we concatenate
the predicted POS vector pi with the word rep-
resentation wi and then we encode the resulting
vector via BiLSTM. This enriches the syntactic
representations of the token by back-propagation
during training:

vi = BiLSTM(dep)(v0, (x1,x2,..xn))i

Following Dozat and Manning (2016), we used
a deep bi-affine classifier to score all the possi-
ble head and modifier pairs Y = (h,m). We then
selected the best dependency graph based on Eis-
ner’s algorithm (Eisner and Satta, 1999). This al-
gorithm tries to find the maximum spanning tree
among all the possible graphs:

arg max
valid Y

∑

(h,m)∈Y

ScoreMST (h,m)

With this algorithm, it has been observed that pars-
ing results (for some sentences) can have multiple
roots, which is not a desirable feature. We thus fol-
lowed an empirical method that selects a unique
root based on the word order of the sentence, as
already proposed by Lim and Poibeau (2017) to
ensure tree well-formedness. After the selection
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of the best-scored tree, another bi-affine classifier
is applied for the classification of relation labels,
based on the predicted tree.

We trained our tagger and parser simultaneously
using a single objective function with penalized
terms:

loss = αCrossEntropy(p′, p(gold))

+ βCrossEntropy(arc′, arc(gold))

+ γCrossEntropy(dep′, dep(gold))

where arc′ and dep′ refer to the predicted arc
(head) and dependency (modifier) results.

Since UAS directly affects LAS, we assumed
that UAS would be crucial for parsing unseen cor-
pora such as Finnish PUD, as well as other cor-
pora from low-resource languages. Therefore, we
gave more weight to the parameters predicting
arc′ than rel′ and p′, since arc′ directly affects
UAS. We set α = 0.1, β = 0.7 and γ = 0.2. Un-
fortunately, during the testing phase, we did not
adjust weight parameters that would have bene-
fited LAS for the 61 big treebanks, and this made
our results on big treebanks suffer a bit (7th) com-
pared to those we obtained on Small and PUD
treebanks (3th) regarding LAS. This also explains
the gap between the UAS and LAS scores in our
overall results.

5 Implementation Details

In this section, we provide some details on our im-
plementation for the CoNLL 2018 shared task (Ze-
man et al., 2018b).

5.1 Training

We have trained both monolingual and multilin-
gual models for parsing. In the first case, we sim-
ply used the available Universal Dependency 2.2
corpora for training (Zeman et al., 2018a). In the
second case, for the multilingual approach, as both
multilingual word embeddings and corresponding
training corpora (in the Universal Dependency 2.2
format) were required, we concatenated the corre-
sponding available Universal Dependency 2.2 cor-
pora to artificially create multilingual training cor-
pora.

The number of epochs was set to 200, with one
epoch processing the entire training corpus in each
language and with a batch size of 32. We then
picked the best five performing models to parse
the test corpora on TIRA (Potthast et al., 2014).

The five models were used as an ensemble run (de-
scribed in Section 5.2).

Hyperparameters. Each deep learning parser
has a number of hyperparameters that can boost
the overall performance of the system. In our im-
plementation, most hyperparameter settings were
identical to Dozat et al. (2017), except of course
those concerning the additional features we have
introduced before. We used 100 dimensional
character-level word representations with a 200 di-
mensional MLP, as presented in Section 2, and
for corpus representation, we used a 12 dimen-
sional vector. We set the learning-rate to 0.002
with Adam optimization.

Multilingual Embeddings. As described in
Section 3, we specifically trained multilingual em-
bedding models for nine low-resource languages.
Table 2 gives the list of languages for which we
adopted this approach, along with the language
used for knowledge transfer. We selected language
pairs based on previous studies (Lim and Poibeau,
2017; Lim et al., 2018; Partanen et al., 2018) for
bxr, kk, kmr, sme, and hsb, and the others where
chosen based on the public availability of bilin-
gual dictionaries (this explains why we chose to
map several languages with English, even when
there was no real linguistically motivated reason
to do so). Since we could not find any pre-trained
embeddings for pcm nsc, we applied a delexical-
ized parsing approach based on an English mono-
lingual model.

ELMo. We used ELMo weights to train spe-
cific models for five languages: Korean, French,
English, Japanese and Chinese. ELMo weights
were pre-trained using the CoNLL resources pro-
vided 4. We used AllenNLP5 for training, and used
the default hyperparameters. We included ELMo
only at the level of the input layer for both training
and inference (we set up dropout to 0.5 and used
1024 dimensions for the ELMo embedding layer
in our model). All the other hyper-parameters are
the same as for our other models (without ELMo).

5.2 Testing

All the tests were done on the TIRA platform pro-
vided by the shared task organizers. During the
test phase, we applied an ensemble mechanism us-
ing five models trained with two different “seeds”.
The seeds are integers randomly produced by the

4http://hdl.handle.net/11234/1-1989
5https://github.com/allenai/allennlp
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Corpus UAS LAS Rank(UAS) Rank(LAS) Baseline(LAS)
Overall (82) 78.71 73.02 2 4 65.80
Big treebanks only (61) 85.36 80.97 4 7 74.14
PUD treebanks only (5) 76.81 72.34 3 3 66.63
Small treebanks only (7) 75.67 68.12 2 3 55.01
Low-resource only (9) 37.03 23.39 4 5 17.17

Corpus Method UAS(Rank) LAS(Rank)
af afribooms 87.42 (7) 83.72 (8)
grc perseus tr 79.15 (4) 71.63 (8)
grc proiel tr 79.53 (5) 74.46 (8)
ar padt 75.96 (8) 71.13 (10)
hy armtdp tr, mu 53.56 (1) 37.01 (1)
eu bdt 85.72 (7) 81.13 (8)
br keb tr, mu 43.78 (3) 23.65 (5)
bg btb 92.1 (9) 88.02 (11)
bxr bdt tr, mu 36.89 (3) 17.16 (4)
ca ancora 92.83 (6) 89.56 (9)
hr set 90.18 (8) 84.67 (9)
cs cac tr 93.43 (2) 91 (2)
cs fictree tr 94.78 (1) 91.62 (3)
cs pdt tr 92.73 (2) 90.13 (7)
cs pud tr 89.49 (7) 83.88 (9)
da ddt 85.36 (8) 80.49 (11)
nl alpino tr 90.59 (2) 86.13 (5)
nl lassysmall tr 87.83 (2) 84.02 (4)
en ewt tr, el 86.9 (1) 84.02 (2)
en gum tr, el 88.57 (1) 85.05 (1)
en lines tr, el 86.01 (1) 81.44 (2)
en pud tr, el 90.83 (1) 87.89 (1)
et edt 86.25 (7) 82.33 (7)
fo oft tr, mu 48.64 (9) 25.17 (17)
fi ftb tr 89.74 (4) 86.54 (6)
fi pud tr 90.91 (4) 88.12 (6)
fi tdt tr 88.39 (6) 85.42 (7)
fr gsd tr, el 89.5 (1) 86.17 (3)
fr sequoia tr, el 91.81 (1) 89.89 (1)
fr spoken tr, el 79.47 (2) 73.62 (3)
gl ctg tr 84.05 (7) 80.63 (10)
gl treegal tr 78.71 (2) 73.13 (3)
de gsd 82.09 (8) 76.86 (11)
got proiel 73 (6) 65.3 (8)
el gdt 89.29 (8) 86.02 (11)
he htb 66.54 (9) 62.29 (9)
hi hdtb 94.44 (8) 90.4 (12)
hu szeged 80.49 (8) 74.21 (10)
zh gsd tr, el 71.48 (5) 68.09 (5)
id gsd 85.03 (3) 77.61 (10)
ga idt 79.13 (2) 69.1 (4)

Corpus Method UAS(Rank) LAS(Rank)
it isdt tr 92.41 (6) 89.96 (8)
it postwita tr 77.52 (6) 72.66 (7)
ja gsd tr, el 76.4 (6) 74.82 (6)
ja modern 29.36 (8) 22.71 (8)
kk ktb tr, mu 39.24 (15) 23.97 (9)
ko gsd tr, el 88.03 (2) 84.31 (2)
ko kaist tr, el 88.92 (1) 86.32 (4)
kmr mg tr, mu 38.64 (3) 27.94 (4)
la ittb tr 87.88 (8) 84.72 (8)
la perseus tr 75.6 (3) 64.96 (3)
la proiel tr 73.97 (6) 67.73 (8)
lv lvtb tr 82.99 (8) 76.91 (11)
pcm nsc tr, mu 18.15 (21) 11.63 (18)
sme giella tr, mu 76.66 (1) 69.87 (1)
no bokmaal 91.4 (5) 88.43 (11)
no nynorsk tr 90.78 (8) 87.8 (11)
no nynorsklia tr 76.17 (2) 68.71 (2)
cu proiel 77.49 (6) 70.48 (8)
fro srcmf 91.35 (5) 85.51 (7)
fa seraji 89.1 (7) 84.8 (10)
pl lfg tr 95.69 (8) 92.86 (11)
pl sz tr 92.24 (9) 88.95 (10)
pt bosque 89.77 (5) 86.84 (7)
ro rrt 89.8 (8) 84.33 (10)
ru syntagrus tr 93.1 (4) 91.14 (6)
ru taiga tr 79.77 (1) 74 (2)
sr set 90.48 (10) 85.74 (11)
sk snk 86.81 (11) 82.4 (11)
sl ssj tr 87.18 (10) 84.68 (10)
sl sst tr 63.64 (3) 57.07 (3)
es ancora 91.81 (6) 89.25 (7)
sv lines tr 85.65 (4) 80.88 (6)
sv pud tr 83.44 (3) 79.1 (4)
sv talbanken tr 89.02 (4) 85.24 (7)
th pud tr, mu 0.33 (21) 0.12 (21)
tr imst 69.06 (7) 60.9 (11)
uk iu 85.36 (10) 81.33 (9)
hsb ufal tr, mu 54.01 (2) 43.83 (2)
ur udtb 87.4 (7) 80.74 (10)
ug udt 75.11 (6) 62.25 (9)
vi vtb 49.65 (6) 43.31 (8)

Table 1: Official experiment results for each corpus, where tr (Treebank), mu (Multilingual) and el
(ELMo) in the column Method denote the feature representation methods used (see Section 2 and 3).

Corpus Projected languages UAS LAS
hy armntdp Greek 1 1
br keb English 3 5
bxr bdt Russian 3 4
fo oft English 9 17
kk ktb Turkish 15 9
kmr mg English 3 4
pcm nsc - 21 18
sme giella Finnish+Russian 1 1
th giella English 21 21
hsb ufal Polish 2 2

Table 2: Languages trained with multilingual
word embeddings and their ranking.

Representation Methods UAS LAS
baseline 81.79 78.45
+em 83.39 80.15
+em, tr 83.67 80.64
+em, el 85.47 82.72
+em, tr, el 85.49 82.93

Table 3: Relative contribution of the different rep-
resentation methods on the overall results.
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Python random library and are used to initialize
the two parameters W and w (see Section 2). Gen-
erally, an ensemble mechanism combines the best
performing models obtained from different seeds,
so as to ensure robustness and efficiency. In our
case, due to a lack of a GPU, different models have
been trained simply based on the use of two differ-
ent seeds. Finally, the five best performing models
produced by the two seeds were put together to
form the ensemble model. This improved the per-
formances by up to 0.6%, but other improvements
could be expected by testing with a larger set of
seeds.

5.3 Hardware Resources

The training process for all the language models
with the ensemble and ELMo was done using 32
CPUs and 7 GPUs (Geforce 1080Ti) in approx-
imately two weeks. The memory usage of each
model depends on the size of external word em-
beddings (3GB RAM by default plus the amount
needed for loading the external embeddings). In
the testing phase on the TIRA platform, we sub-
mitted our models separately, since testing with
a model trained with ELMo takes around three
hours. Testing took 46.2 hours for the 82 corpora
using 16 CPUs and 16GB RAM.

6 Results

In this section, we discuss the results of our sys-
tem and the relative contributions of the different
features to the global results.

Overall results. The official evaluation results
are given in Table1. Our system achieved 73.02
LAS (4th out of 26 teams) and 78.71 UAS (2nd out
of 26).

The comparison of our results with those ob-
tained by other teams shows that there is room for
improvement regarding preprocessing. For exam-
ple, our system is 0.86 points below HIT-SCIR
(Harbin) for sentence segmentation and 1.03 for
tokenization (HIT-SCIR obtained the best overall
results). Those two preprocessing tasks (sentence
segmentation and tokenization) affect tagging and
parsing performance directly. As a result, our
parser ranked second on small treebanks (LAS),
where most teams used the default segmenter and
tokenizer, avoiding the differences on this aspect.
In contrast, we achieved 7th on the big treebanks,
probably because there is a more significant gap
(1.72) here at the tokenization level.

Corpus Representation. Results with cor-
pus representation (corpora marked tr in column
Method of Table 1) exhibit relatively better perfor-
mance than those without it, since tr makes it pos-
sible to capture corpus-oriented features. Results
were positive not only for small treebanks (e.g.,
cs fictree and ru taiga) but also for big treebanks
(e.g., cs cac and ru syntagrus). Corpus represen-
tation with ELMo shows the best performance for
parsing English and French.

Multilinguality. As described in Section 3,
we applied the multilingual approach to most
of the low-resource languages. The best result
is obtained for hy armtdp, while sme giella and
hsb ufal also gave satisfactory results. We only
applied the delexicalized approach to pcm nsc
since we could not find any pre-trained embed-
dings for this language. We got a relatively poor
result for pcm nsc, despite testing different strate-
gies and different feature combinations (we as-
sume that the English model is not fit for it).

Additionally, we found that character-level rep-
resentation is not always helpful, even in the case
of some low-resource languages. When we tested
kk ktb (Kazakh) trained with a Turkish corpus,
with multilingual word embeddings and character-
level representations, the performance dramati-
cally decreased. We suspect this has to do with
the writing systems (Arabic versus Latin), but this
theory should be further investigated.

sme giella is another exceptional case since we
chose to use a multilingual model trained with
three different languages. Although Russian and
Finnish do not use the same writing system, apply-
ing character and corpus representation improve
the results. This is because the size of the train-
ing corpus for sme giella is around 900 sentences,
which seems to be enough to capture its main char-
acteristics.

Language Model (ELMo). We used ELMo
embeddings for five languages: Korean, French,
English, Japanese and Chinese (they are marked
with el in the method column in Table 1). The
experiments with ELMo models showed excel-
lent overall performance. All the English cor-
pora, fr gsd and fr sequoia in French, and Korean
ko kaist obtained the best UAS. We also obtained
the best LAS for English en gum and en pud, and
for fr sequoia in French.

Contributions of the Different System Com-
ponents to the General results. To analyze the
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Task Precision Recall F1(Rank)
Event Extraction 58.93 43.12 49.80 (1)

Negation Resolution 99.08 41.06 58.06 (12)
Opinion Analysis 63.91 56.88 60.19 (9)

Task LAS MLAS BLEX
Intrinsic Evaluation 84.66 (1) 72.93 (3) 77.62 (1)

Table 4: Official evaluation results on three EPE
task (see https://goo.gl/3Fmjke).

effect of the proposed representation methods on
parsing, we evaluated four different models with
different components. We set our baseline model
with a token representation as xi = wi ◦ ci ◦ pi,
where wi is a randomly initialized word vector, ci

is a character-level word vector and pi is a POS
vector predicted by UDpipe1.1 (note that we did
not apply our 2018 POS tagger here, since it is
trained jointly with the parser and that affects the
overall feature representation). We then initialized
the word vector wi with external word embeddings
as provided by the CoNLL shared organizers. We
also re-run the experiment by adding treebank and
ELMo representations. The results are shown in
Table 3 (em denotes the use of the external word
embedding and tr and el denotes treebank and
ELMo representations respectively.). We observe
that each representation improves the overall re-
sults. This is especially true regarding LAS when
using ELMo (el), which means this representation
has a positive effect on relation labeling.

Extrinsic Parser Evaluation (EPE 2018). Par-
ticipants in the CoNLL shared task were invited to
also participate in the 2018 Extrinsic Parser Eval-
uation (EPE) campaign6 (Fares et al., 2018), as a
way to confirm the applicability of the developed
methods on practical tasks. Three downstream
tasks were proposed this year in the EPE: biomed-
ical event extraction, negation resolution and opin-
ion analysis (and each task was run independently
from the others). For this evaluation, participants
were only required to send a parsed version of the
different corpora received as input back to the or-
ganizers using a UD-type format (the organizers
then ran the different scripts related to the dif-
ferent tasks and computed the corresponding re-
sults). We trained one single English model for
the three tasks using the three English corpora pro-
vided (en lines, en ewt, en gum) without treebank
embeddings (tr), since we did not know which cor-
pus embedding would perform better. In addition,

6http://epe.nlpl.eu/

we did not apply our ensemble process on TIRA
since it would have been too time consuming.

Our results are listed in Table 4. They in-
clude an intrinsic evaluation (overall performance
of the parser on the different corpora considered
as a whole) (Nivre and Fang, 2017) and task-
specific evaluations (i.e. results for the three dif-
ferent tasks). In the intrinsic evaluation, we ob-
tained the best LAS among all the participating
systems, which confirms the portability of our ap-
proach across different domains. As for the task-
specific evaluations, we obtained the best result for
event extraction, but our parser did not perform
so well on negation resolution and opinion analy-
sis. This means that specific developments would
be required to properly address the two tasks un-
der consideration, taking semantics into consider-
ation.

7 Conclusion

In this paper, we described the SEx BiST parser
(Semantically EXtended Bi-LSTM parser) devel-
oped at Lattice for the CoNLL 2018 Shared Task.
Our system was an extention of our 2017 parser
(Lim and Poibeau, 2017) with three deep contex-
tual representations (multilingual word represen-
tation, corpus representations, ELMo representa-
tion). It also included a multi-task learning pro-
cess able to simultaneously handle tagging and
parsing. SEx BiST achieved 73.02 LAS (4th over
26 teams), and 78.72 UAS (2nd out of 26), over
the 82 test corpora of the evaluation. In the future,
we hope to improve our sentence segmenter and
our tokenizer since this seems to be the most ob-
vious target for improvements to our system. The
generalization of ELMo representation to new lan-
guages (beyond what we could do for the 2018
evaluation) should also have a positive effect on
the results.
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Abstract

This paper describes our system (SLT-
Interactions) for the CoNLL 2018 shared
task: Multilingual Parsing from Raw Text
to Universal Dependencies. Our system
performs three main tasks: word segmen-
tation (only for few treebanks), POS tag-
ging and parsing. While segmentation is
learned separately, we use neural stacking
for joint learning of POS tagging and pars-
ing tasks. For all the tasks, we employ
simple neural network architectures that
rely on long short-term memory (LSTM)
networks for learning task-dependent fea-
tures. At the basis of our parser, we
use an arc-standard algorithm with Swap
action for general non-projective pars-
ing. Additionally, we use neural stack-
ing as a knowledge transfer mechanism for
cross-domain parsing of low resource do-
mains. Our system shows substantial gains
against the UDPipe baseline, with an aver-
age improvement of 4.18% in LAS across
all languages. Overall, we are placed at
the 12th position on the official test sets.

1 Introduction

Our system for the CoNLL 2018 shared task (Ze-
man et al., 2018) contains the following modules:
word segmentation, part-of-speech (POS) tagging
and dependency parsing. In some cases, we also
use a transliteration module to transcribe data into
Roman form for efficient processing.

• Segmentation We mainly use this module to
identify word boundaries in certain languages
such as Chinese where space is not used as a
boundary marker.

• POS tagging For all the languages, we only
focus on universal POS tags while ignoring
language specific POS tags and morphologi-
cal features.

• Dependency parsing We use an arc-standard
transition system (Nivre, 2003) with an ad-
ditional Swap action for unrestricted parsing
(Nivre, 2009).

We rely on UDPipe 1.2 (Straka and Straková,
2017) for tokenization for almost all the treebanks
except for Chinese and Japanese where we ob-
served that the UDPipe segmentation had an ad-
verse effect on parsing performance as opposed to
gold segmentation on the development sets. More-
over, we also observed that training a separate
POS tagger was also beneficial as the UDPipe POS
tagger had slightly lower performance in some
languages. However, other than tokenization, we
ignored other morphological features predicted by
UDPipe and didn’t explore their effect on parsing.

Additionally, we use knowledge transfer ap-
proaches to enhance the performance of parsers
trained on smaller treebanks. We leverage re-
lated treebanks (other treebanks of the same lan-
guage) using neural stacking for learning better
cross-domain parsers. We also trained a generic
character-based parsing system for languages that
have neither in-domain nor cross-domain training
data.

Upon the official evaluation on 82 test sets, our
system (SLT-Interactions) obtained the 12th posi-
tion in the parsing task and achieved an average
improvement of 4.18% in LAS over the UDPipe
baseline.
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2 System Architecture

2.1 Text Processing
Given the nature of the shared task, sentence and
word segmentation are the two major prerequi-
site tasks needed for parsing the evaluation data.
For most of the languages, we rely on UDPipe
for both sentence segmentation and word segmen-
tation. However, in few languages such as Chi-
nese and Japanese which do not use white space
as explicit word boundary marker, we build our
own word segmentation models. Our segmenta-
tion models use a simple neural network classifier
that relies on character bidirectional LSTM (Bi-
LSTM) representations of a focus character to pro-
duce a probabilistic distribution over two bound-
ary markers: Begining of a word and Inside of a
word. The segmentation network is shown in Fig-
ure 1. The models are trained on the respective
training data sets by merging the word forms in
each sentence into a sequence of characters. At
inference, the segmentation model relies on sen-
tence segmentation from UDPipe.

B

LSTM b LSTM b LSTM b LSTM b LSTM b LSTM b LSTM b

LSTM f LSTM f LSTM f LSTM f LSTM f LSTM f LSTM f

…
こ れ に 対 し て の

…

…

…

… I  B   I  I I B

+ + + + + + +

MLPMLP

Figure 1: Word segmentation model based on
character Bi-LSTM networks.

ja gsd zh gsd
Precision Recall F1-score Precision Recall F1-score

B 97.43 97.26 97.35 96.50 96.48 96.49
I 96.35 96.58 96.46 93.94 93.96 93.95
avg 96.97 96.97 96.97 95.96 95.96 95.96

Table 1: Word segmentation results on Chinese
and Japanese development sets. B and I mark the
Begining and Inside of a word.

Other than word segmentation, we used Roman al-
phabet for Hindi. The goal is to normalize the spell
variations in Hindi texts. We used an open source
converter1 that uses a deterministic mapping be-
tween Devanagari to Roman alphabet.

1https://github.com/ltrc/indic-wx-converter

2.2 Dependency Parsing
2.2.1 Parsing Algorithm
We employ an arc-standard transition system
(Nivre, 2003) as our parsing algorithm. A typi-
cal transition-based parsing system uses the shift-
reduce decoding algorithm to map a parse tree
onto a sequence of transitions. Throughout the de-
coding process a stack and a queue data structures
are maintained. The queue stores the sequence of
raw input, while the stack stores the partially pro-
cessed input which may be linked with the rest of
the words in the queue. The parse tree is build
by consuming the words in the queue from left to
right by applying a set of transition actions. There
are three kinds of transition actions that are per-
formed in the parsing process: Shift, Left-Arc,
Right-Arc. Additionally, we use a Swap action
which reorders top node in the stack and the top
node in the queue for parsing non-projective arcs
(Nivre, 2009).
At training time, the transition actions are inferred
from the gold parse trees and the mapping between
the parser state and the transition action is learned
using a simple LSTM-based neural networking ar-
chitecture presented in Goldberg (2016). While
training, we use the oracle presented in (Nivre
et al., 2009) to restrict the number of Swap ac-
tions needed to parse non-projective arcs. Given
that Bi-LSTMs capture global sentential context
at any given time step, we use minimal set of fea-
tures in our parsing model. At each parser state,
we restrict our features to just two top nodes in
the stack. Since Swap action distorts the linear or-
der of word sequence, it renders the LSTM repre-
sentations irrelevant in case of non-projective sen-
tences. To capture this distortion, we also use the
top most word in the queue as an additional fea-
ture.

2.3 Joint POS tagging and Parsing
Inspired by stack-propagation model of Zhang and
Weiss (2016), we jointly model POS tagging and
parsing using a stack of tagger and parser net-
works. The parameters of the tagger network are
shared and act as a regularization on the parsing
model. The overall model is trained by minimiz-
ing a joint negative log-likelihood loss for both
tasks. Unlike Zhang and Weiss (2016), we com-
pute the gradients of the log-loss function simul-
taneously for each training instance. While the
parser network is updated given the parsing loss
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only, the tagger network is updated with respect to
both tagging and parsing losses. Both tagger and
parser networks comprise of an input layer, a fea-
ture layer, and an output layer as shown in Figure
2. Following Zhang and Weiss (2016), we refer to
this model as stack-prop.

Tagger network: The input layer of the tagger
encodes each input word in a sentence by concate-
nating a pre-trained word embedding with its char-
acter embedding given by a character Bi-LSTM.
In the feature layer, the concatenated word and
character representations are passed through two
stacked Bi-LSTMs to generate a sequence of hid-
den representations which encode the contextual
information spread across the sentence. The first
Bi-LSTM is shared with the parser network while
the other is specific to the tagger. Finally, output
layer uses the feed-forward neural network with
a softmax function for a probability distribution
over the Universal POS tags. We only use the for-
ward and backward hidden representations of the
focus word for classification.
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…

LSTM LSTM LSTM

LSTM LSTM LSTM

…

…

LSTM LSTM LSTM

LSTM LSTM LSTM
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…
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…
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…
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This alwaysrainy

Parser State:
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LinearLinearLinear

b0

me

+ ++

Figure 2: POS tagging and parsing network
based on stack-propagation model proposed in
(Zhang and Weiss, 2016).

Parser Network: Similar to the tagger network,
the input layer encodes the input sentence using
word and character embeddings which are then
passed to the shared Bi-LSTM. The hidden rep-
resentations from the shared Bi-LSTM are then
concatenated with the dense representations from
the feed-forward network of the tagger and passed
through the Bi-LSTM specific to the parser. This
ensures that the tagging network is penalized for
the parsing error caused by error propagation by

back-propagating the gradients to the shared tag-
ger parameters (Zhang and Weiss, 2016). Finally,
we use a non-linear feed-forward network to pre-
dict the labeled transitions for the parser config-
urations. From each parser configuration, we ex-
tract the top node in the stack and the first node
in the buffer and use their hidden representations
from the parser specific Bi-LSTM for classifica-
tion.

2.4 Cross-domain Transfer
Among 57 languages, 17 languages presented in
the task have multiple treebanks from different
domains. From among the 17 languages, almost
5 languages have at-least one treebank which is
smaller in size than the rest containing no more
than 2000 sentences for training. To boost the
performance of parsers trained on these smaller
treebanks (target), we leverage large cross-domain
treebanks (source) in the same language using
neural stacking as a knowledge transfer mecha-
nism.
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Figure 3: Knowledge transfer from resource-
rich domains to resource-poor domains using
neural stacking (Zhang and Weiss, 2016; Chen
et al., 2016).

As we discussed above, we adapted feature-level
neural stacking (Zhang and Weiss, 2016; Chen
et al., 2016) for joint learning of POS tagging
and parsing. Similarly, we also adapt this stack-
ing approach for cross-domain knowledge trans-
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fer by incorporating the syntactic knowledge from
resource-rich domain into resource-poor domain.
Recently, Wang et al. (2017); Bhat et al. (2018)
showed significant improvements in parsing social
media texts by injecting syntactic knowledge from
large cross-domain treebanks using neural stack-
ing.
As shown in Figure 3, we transfer both POS
tagging and parsing information from the source
model. For tagging, we augment the input layer of
the target tagger with the hidden layer of multi-
layered perceptron (MLP) of the source tagger.
For transferring parsing knowledge, hidden repre-
sentations from the parser specific Bi-LSTM of the
source parser are augmented with the input layer
of the target parser which already includes the hid-
den layer of the target tagger, word and character
embeddings. In addition, we also add the MLP
layer of the source parser to the MLP layer of the
target parser. The MLP layers of the source parser
are generated using raw features from target parser
configurations. Apart from the addition of these
learned representations from the source model, the
overall target model remains similar to the base
model shown in Figure 2. The tagging and pars-
ing losses are back-propagated by traversing back
the forward paths to all trainable parameters in the
entire network for training and the whole network
is used collectively for inference.

3 Experiments

We train three kinds of parsing models based on
the availability of training data: stack-prop mod-
els trained for languages having large treebanks,
ii) stacking models for languages having smaller
in-domain treebanks and large out-domain tree-
banks, and iii) backoff character models for those
languages which have neither in-domain nor out-
domain training data. We will first discuss the
details about the experimental setup for all these
models and subsequently, we will discuss the re-
sults.

3.1 Hyperparameters

Word Representations For the stack-prop and
stacking models, we include lexical features in
the input layer of the neural networks using 64-
dimension pre-trained word embeddings concate-
nated with 64-dimension character-based embed-
dings obtained using a Bi-LSTM over the charac-
ters of a word. For each language, we include pre-

trained embeddings only for 100K most frequent
words in the raw corpora.
The distributed word representations for each lan-
guage are learned separately from their mono-
lingual corpora collected from Web to Corpus
(W2C) (Majliš, 2011)2 and latest wiki dumps3.
The word representations are learned using Skip-
gram model with negative sampling which is im-
plemented in word2vec toolkit (Mikolov et al.,
2013). For our backoff character model we
only use 64-dimension character Bi-LSTM em-
beddings in the input layer of the network.

Hidden dimensions The word-level Bi-LSTMs
have 128 cells while the character-level Bi-LSTMs
have 64 cells. The POS tagger specific MLP has
64 hidden nodes while the parser MLP has 128
hidden nodes. We use hyperbolic tangent as an
activation function in all tasks.

Learning We use momentum SGD for learning
with a minibatch size of 1. The initial learning rate
is set to 0.1 with a momentum of 0.9. The LSTM
weights are initialized with random orthonormal
matrices as described in (Saxe et al., 2013). We
set the dropout rate to 30% for all the hidden states
in the network. All the models are trained for up
to 100 epochs, with early stopping based on the
development set.
All of our neural network models are implemented
in DyNet (Neubig et al., 2017).

4 Results

In Table 4, we present the results of our parsing
models on all the official test sets, while in Ta-
ble 5, we report the average results across evalu-
ation sets. In both tables, we also provide com-
parison of results on all the evaluation matrices
with the UDPipe baseline models. For 74 out of 82
treebanks, we have obtained an average improve-
ment of 5.8% in LAS over the UDPipe baseline
models. Although, we ranked 12th in the over-
all shared task, our rankings are particularly better
for all those treebanks which were parsed using
the stacking models or parsed after segmentation
by our own segmentation models.

2As pointed out by one of the reviewers, W2C was not
listed on the list of allowed resources. Using this data for
training word embeddings might have a significant impact
for resource-poor languages. Our results, therefore, might
not be directly comparable with other participating teams and
should be taken with a grain of salt!

3https://dumps.wikimedia.org
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Our parsing system took around 1 hour 30 minutes
to parse all the official test sets on TIRA virtual
machine.

Impact of Word Segmentation To evaluate the
impact of our segmentation models, we conducted
two parsing experiments; one using the segmen-
tation from the UDPipe models, and the other us-
ing the segmentation from our own segmentation
models. We compared the performance of both
segmentations on Japanese and Chinese develop-
ment sets. The results are shown in Table 2. As
shown in the Table, we achieved an average im-
provement of 3% in LAS over the UDPipe base-
line. By using our segmentation models, we have
achieved better ranking for these two languages
than our average ranking in the official evaluation.

UDPipe Our model
UPOS ULAS LAS UPOS ULAS LAS

ja gsd 89.14 78.73 77.47 90.92 82.57 81.30
zh gsd 84.30 65.36 61.96 86.51 68.51 64.89

Table 2: Impact of our word segmentation mod-
els on Chinese and Japanese development sets.

Impact of Domain Adaptation We also con-
ducted experiments to evaluate the impact of neu-
ral stacking for knowledge transfer from resource-
rich domains to resource-poor domains. In all the
cases of neural stacking, we used the base mod-
els trained on those domains that have larger tree-
banks. We show the comparison of performance
of stacking models with the base models trained
on just the in-domain smaller treebanks. Results
on development sets of multiple domains of En-
glish and French are shown in Table 3. For En-
glish domains, there is an improvement of 1% to
2% using eng ewt as source domain for knowl-
edge transfer, while for French improvements are
quite high (2% to 5%) using fr gsd as source do-
main. Similar to the impact of word segmentation,
our ranking on treebanks that use neural stacking
is better than our average.

Base model Stacking model
UPOS ULAS LAS UPOS ULAS LAS

en gum 96.29 86.96 83.53 96.68 88.51 85.47
en lines 96.71 83.95 80.16 97.13 85.21 81.70
fr sequoia 98.27 90.42 87.72 98.75 92.18 89.79
fr spoken 95.91 82.40 74.96 97.25 86.01 79.82

Table 3: Impact of neural stacking on multiple
domains of English and French.

5 Conclusion

In this paper, we have described our parsing mod-
els that we have submitted to CoNLL-2018 pars-
ing shared task on Universal Dependencies. We
have developed three types of models depending
on the number of training samples. All of our
models learn POS tag and parse tree information
jointly using stack-propagation. For smaller tree-
banks, we have used neural stacking for knowl-
edge transfer from large cross-domain treebanks.
Moreover, we also developed our own segmenta-
tion models for Japanese and Chinese for improv-
ing the parsing results of these languages. We have
significantly improved the baseline results from
UDPipe for almost all the official test sets. Finally,
we have achieved 12th rank in the shared task for
average LAS.
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Faculty of Mathematics and Physics, Charles Univer-
sity. http://hdl.handle.net/11858/00-097C-0000-0022-
6133-9.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781
.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. 2017. Dynet: The dynamic neural
network toolkit. arXiv preprint arXiv:1701.03980 .

157



BASELINE UDPipe 1.2 SLT-Interactions
UPOS ULAS LAS MLAS BLEX UPOS ULAS LAS MLAS BLEX

af afribooms 95.12 82.02 77.88 64.48 66.60 97.42 86.05 83.07 68.66 72.89
ar padt 89.34 71.44 66.41 55.01 57.60 90.34 75.38 71.52 58.00 63.20
bg btb 97.72 88.88 84.91 75.30 73.78 98.54 91.84 88.64 78.63 78.00
br keb 30.74 27.80 10.25 0.37 2.10 36.80 36.06 14.15 0.17 3.66
bxr bdt 41.66 29.20 12.61 2.09 4.41 43.07 24.89 8.29 0.86 3.76
ca ancora 98.00 88.66 85.61 76.74 77.27 98.66 91.77 89.42 80.79 82.21
cs cac 98.32 87.11 83.72 70.89 77.65 99.00 91.37 89.14 74.27 83.37
cs fictree 97.28 86.77 82.49 69.26 74.96 98.25 91.52 88.13 72.82 81.25
cs pdt 98.21 86.88 83.94 74.32 79.39 98.70 90.74 88.44 77.07 84.14
cs pud 96.57 85.29 80.08 66.53 73.79 96.85 88.63 83.76 68.39 77.33
cu proiel 93.70 72.03 65.46 53.96 58.39 94.66 74.66 68.81 54.65 61.15
da ddt 95.44 79.14 75.43 65.41 66.04 97.08 83.97 81.09 69.45 71.81
de gsd 91.58 75.99 70.85 34.09 60.56 94.03 81.61 77.23 38.50 67.89
el gdt 95.63 85.47 82.11 65.33 68.67 97.64 89.16 86.67 68.10 74.05
en ewt 93.62 80.48 77.56 68.70 71.02 94.88 84.04 81.52 71.37 75.21
en gum 93.24 78.48 74.20 62.66 62.14 95.99 85.47 82.42 67.95 70.41
en lines 94.71 78.26 73.10 64.03 65.42 96.92 82.53 78.38 68.41 71.25
en pud 94.15 83.05 79.56 67.59 71.14 95.66 87.36 84.64 71.41 76.89
es ancora 98.14 87.42 84.43 76.01 76.43 98.74 90.90 88.68 80.77 81.93
et edt 95.50 79.16 75.02 67.12 63.85 96.91 84.89 81.85 71.18 69.65
eu bdt 92.34 75.00 70.13 57.65 63.50 95.72 83.08 79.57 63.57 72.15
fa seraji 96.01 83.10 79.10 72.20 69.43 97.15 88.42 84.94 77.32 75.39
fi ftb 92.28 79.86 75.64 65.22 61.76 95.02 86.90 83.64 70.66 68.89
fi pud 95.84 83.33 80.15 73.16 65.46 86.74 65.44 54.12 48.74 50.14
fi tdt 94.37 80.28 76.45 68.58 62.19 96.16 86.30 83.63 72.84 67.63
fo oft 44.66 42.64 25.19 0.36 5.56 59.61 57.64 44.51 0.52 11.30
fr gsd 95.75 84.17 81.05 72.16 74.22 96.12 87.56 84.74 75.31 78.44
fr sequoia 95.84 83.85 81.12 71.34 74.41 97.83 89.66 88.11 77.90 82.62
fr spoken 92.94 71.46 65.56 53.46 54.67 97.11 77.61 73.04 62.46 62.14
fro srcmf 94.30 85.27 79.27 70.70 74.45 76.67 67.47 52.97 35.06 44.91
ga idt 89.21 72.66 62.93 37.66 42.06 91.46 75.84 66.54 36.66 45.17
gl ctg 96.26 79.15 76.10 62.11 65.29 96.92 82.93 80.46 67.90 70.93
gl treegal 91.09 71.61 66.16 49.13 51.60 95.12 77.50 72.54 53.42 58.05
got proiel 94.31 68.59 62.16 48.57 55.02 94.21 70.33 63.38 47.31 55.86
grc perseus 82.37 64.40 57.75 31.05 38.74 90.45 71.11 65.00 39.96 43.70
grc proiel 95.87 71.99 67.57 49.51 55.85 96.39 76.27 71.64 51.57 59.41
he htb 80.87 62.18 57.86 44.09 46.51 82.60 65.68 62.13 47.57 51.89
hi hdtb 95.75 91.41 87.15 69.09 79.93 97.48 94.22 91.08 72.79 63.66
hr set 96.33 84.49 78.61 58.72 70.26 97.88 89.59 84.83 61.70 76.31
hsb ufal 65.75 35.02 23.64 3.55 11.72 76.60 54.86 46.42 7.67 20.17
hu szeged 90.59 72.55 66.76 52.82 56.92 95.14 79.93 74.80 58.08 64.77
hy armtdp 65.40 36.81 21.79 6.84 11.94 43.41 33.17 11.61 1.13 5.36
id gsd 92.99 80.63 74.37 63.42 62.50 93.79 83.98 77.66 65.76 65.99
it isdt 97.05 88.91 86.26 77.06 77.12 97.93 91.22 89.14 79.79 81.00
it postwita 93.94 72.34 66.81 53.64 53.99 95.43 77.21 72.54 57.89 59.96
ja gsd 87.85 74.49 72.32 58.35 60.17 90.29 80.60 78.77 62.39 60.62
ja modern 48.44 29.36 22.71 8.10 9.49 53.36 34.11 27.01 11.08 12.45
kk ktb 48.94 39.45 24.21 7.62 9.79 40.98 21.92 7.10 0.95 2.65
kmr mg 59.31 32.86 23.92 5.47 11.86 42.08 25.80 9.39 0.55 4.02
ko gsd 93.44 69.21 61.40 54.10 50.50 95.56 85.21 81.82 76.51 68.66

Table 4: Accuracy of different parsing models on the evaluation set. POS tags
are jointly predicted with parsing. LID = Language tag, TRN = Translitera-
tion/normalization.

BASELINE UDPipe 1.2 SLT-Interactions
UPOS ULAS LAS MLAS BLEX UPOS ULAS LAS MLAS BLEX

All treebanks 87.32 71.64 65.80 52.42 55.80 88.12 75.46 69.98 54.52 59.68
Big treebanks 93.71 78.78 74.14 61.27 64.67 95.11 83.50 79.67 64.95 69.77
Parallel treebanks 85.23 71.22 66.63 51.75 54.87 85.07 70.96 64.73 48.47 54.90
Small treebanks 87.36 63.17 55.01 38.80 41.06 87.36 65.17 56.74 35.73 42.90
Low-resource treebanks 45.20 30.08 17.17 3.44 7.63 43.04 31.48 17.47 1.79 6.95

Table 5: POS tagging accuracies of different models on CS evaluation set. SP =
stack-prop.
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Abstract

This paper describes Stanford’s system at
the CoNLL 2018 UD Shared Task. We
introduce a complete neural pipeline sys-
tem that takes raw text as input, and per-
forms all tasks required by the shared task,
ranging from tokenization and sentence
segmentation, to POS tagging and depen-
dency parsing. Our single system sub-
mission achieved very competitive perfor-
mance on big treebanks. Moreover, after
fixing an unfortunate bug, our corrected
system would have placed the 2nd, 1st, and
3rd on the official evaluation metrics LAS,
MLAS, and BLEX, and would have out-
performed all submission systems on low-
resource treebank categories on all metrics
by a large margin. We further show the ef-
fectiveness of different model components
through extensive ablation studies.

1 Introduction

Dependency parsing is an important component
in various natural langauge processing (NLP) sys-
tems for semantic role labeling (Marcheggiani and
Titov, 2017), relation extraction (Zhang et al.,
2018), and machine translation (Chen et al., 2017).
However, most research has treated dependency
parsing in isolation, and largely ignored upstream
NLP components that prepare relevant data for the
parser, e.g., tokenizers and lemmatizers (Zeman
et al., 2017). In reality, however, these upstream
systems are still far from perfect.

To this end, in our submission to the CoNLL
2018 UD Shared Task, we built a raw-text-
to-CoNLL-U pipeline system that performs all
tasks required by the Shared Task (Zeman et al.,

∗These authors contributed roughly equally.

2018).1 Harnessing the power of neural sys-
tems, this pipeline achieves competitive perfor-
mance in each of the inter-linked stages: tok-
enization, sentence and word segmentation, part-
of-speech (POS)/morphological features (UFeats)
tagging, lemmatization, and finally, dependency
parsing. Our main contributions include:
• New methods for combining symbolic statis-

tical knowledge with flexible, powerful neu-
ral systems to improve robustness;
• A biaffine classifier for joint POS/UFeats pre-

diction that improves prediction consistency;
• A lemmatizer enhanced with an edit classifier

that improves the robustness of a sequence-
to-sequence model on rare sequences; and
• Extensions to our parser from (Dozat et al.,

2017) to model linearization.
Our system achieves competitive performance

on big treebanks. After fixing an unfortunate bug,
the corrected system would have placed the 2nd,
1st, and 3rd on the official evaluation metrics LAS,
MLAS, and BLEX, and would have outperformed
all submission systems on low-resource treebank
categories on all metrics by a large margin. We
perform extensive ablation studies to demonstrate
the effectiveness of our novel methods, and high-
light future directions to improve the system.2

2 System Description

In this section, we present detailed descriptions
for each component of our neural pipeline system,
namely the tokenizer, the POS/UFeats tagger, the
lemmatizer, and finally the dependency parser.

1We chose to develop a pipeline system mainly because it
allows easier parallel development and faster model tuning in
a shared task context.

2To facilitate future research, we make our implementa-
tion public at: https://github.com/stanfordnlp/
UD-from-scratch.
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2.1 Tokenizer

To prepare sentences in the form of a list of words
for downstream processing, the tokenizer compo-
nent reads raw text and outputs sentences in the
CoNLL-U format. This is achieved with two sub-
systems: one for joint tokenization and sentence
segmentation, and the other for splitting multi-
word tokens into syntactic words.

Tokenization and sentence segmentation. We
treat joint tokenization and sentence segmentation
as a unit-level sequence tagging problem. For
most languages, a unit of text is a single charac-
ter; however, in Vietnamese orthography, the most
natural units of text are single syllables.3 We as-
sign one out of five tags to each of these units: end
of token (EOT), end of sentence (EOS), multi-word
token (MWT), multi-word end of sentence (MWS),
and other (OTHER). We use bidirectional LSTMs
(BiLSTMs) as the base model to make unit-level
predictions. At each unit, the model predicts hier-
archically: it first decides whether a given unit is
at the end of a token with a score s(tok), then clas-
sifies token endings into finer-grained categories
with two independent binary classifiers: one for
sentence ending s(sent), and one for MWT s(MWT).

Since sentence boundaries and MWTs usually
require a larger context to determine (e.g., periods
following abbreviations or the ambiguous word
“des” in French), we incorporate token-level infor-
mation into a two-layer BiLSTM as follows (see
also Figure 1). The first layer BiLSTM operates
directly on raw units, and makes an initial predic-
tion over the categories. To help capture local unit
patterns more easily, we also combine the first-
layer BiLSTM with 1-D convolutional networks,
by using a one hidden layer convolutional network
(CNN) with ReLU nolinearity at its first layer, giv-
ing an effect a little like a residual connection (He
et al., 2016). The output of the CNN is simply
added to the concatenated hidden states of the Bi-
LSTM for downstream computation:

hRNN
1 = [

−→
h1,
←−
h1] = BiLSTM1(x), (1)

hCNN
1 = CNN(x), (2)

h1 = hRNN
1 + hCNN

1 , (3)

[s
(tok)
1 , s

(sent)
1 , s

(MWT)
1 ] =W1h1, (4)

where x is the input character representations,
3In this case, we define a syllable as a consecutive run

of alphabetic characters, numbers, or individual symbols, to-
gether with any leading white spaces before them.

BiLSTM1
Step t

Input Unit t
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Step t

Figure 1: Illustration of the tokenizer/sentence
segmenter model. Components in blue represent
the gating mechanism between the two layers.

and W1 contains the weights and biases for a lin-
ear classifier.4 For each unit, we concatenate its
trainable embedding with a four-dimensional bi-
nary feature vector as input, each dimension cor-
responding to one of the following feature func-
tions: (1) does the unit start with whitespace; (2)
does it start with a capitalized letter; (3) is the unit
fully capitalized; and (4) is it purely numerical.

To incorporate token-level information at the
second layer, we use a gating mechanism to sup-
press representations at non-token boundaries be-
fore propagating hidden states upward:

g1 = h1 � σ(s(tok)
1 ) (5)

h2 = [
−→
h2,
←−
h2] = BiLSTM2(g1), (6)

[s
(tok)
2 , s

(sent)
2 , s

(MWT)
2 ] =W2h2, (7)

where � is an element-wise product broadcast
over all dimensions of h1 for each unit. This
can be viewed as a simpler alternative to multi-
resolution RNNs (Serban et al., 2017), where the
first-layer BiLSTM operates at the unit level, and
the second layer operates at the token level. Unlike
multi-resolution RNNs, this formulation is end-to-
end differentiable, and can more easily leverage
efficient off-the-shelf RNN implementations.

To combine predictions from both layers of the
BiLSTM, we simply sum the scores to obtain
s(X) = s

(X)
1 +s

(X)
2 , whereX ∈ {tok, sent, MWT}.

The final probability over the tags is then

pEOT = p+−− pEOS = p++−, (8)

pMWT = p+−+ pMWS = p+++, (9)

where p±±± = σ(±s(tok))σ(±s(sent))σ(±s(MWT)),
4We will omit bias terms in affine transforms for clarity.
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and σ(·) is the logistic sigmoid function. pOTHER is
simply σ(−s(tok)). The model is trained to mini-
mize the standard cross entropy loss.

Multi-word Token Expansion. The tokenizer/
sentence segmenter produces a collection of sen-
tences, each being a list of tokens, some of which
are labeled as multi-word tokens (MWTs). We
must expand these MWTs into the underlying syn-
tactic words they correspond to (e.g., “im” to “in
dem” in German), in order for downstream sys-
tems to process them properly. To achieve this, we
take a hybrid approach to combine symbolic statis-
tical knowledge with the power of neural systems.

The symbolic statistical side is a frequency lex-
icon. Many languages, like German, have only a
handful of rules for expanding a few MWTs. We
leverage this information by simply counting the
number of times a MWT is expanded into differ-
ent sequences of words in the training set, and re-
taining the most frequent expansion in a dictionary
to use at test time. When building this dictionary,
we lowercase all words in the expansions to im-
prove robustness. However, this approach would
fail for languages with rich clitics, a large set of
unique MWTs, and/or complex rules for MWT ex-
pansion, such as Arabic and Hebrew. We capture
this by introducing a powerful neural system.

Specifically, we train a sequence-to-sequence
model using a BiLSTM encoder with an attention
mechanism (Bahdanau et al., 2015) in the form of
a multi-layer perceptron (MLP). Formally, the in-
put multi-word token is represented by a sequence
of characters x1, . . . , xI , and the output syntactic
words are represented similarly as a sequence of
characters y1, . . . , yJ , where the words are sep-
arated by space characters. Inputs to the RNNs
are encoded by a shared matrix of character em-
beddings E. Once the encoder hidden states henc

are obtained with a single-layer BiLSTM, each de-
coder step is unrolled as follows:

hdec
j = LSTMdec(Eyj−1 ,h

dec
j−1), (10)

αij ∝ exp(u>α tanh(Wα[h
dec
j ,henc

i ])), (11)

cj =
∑

i

αijh
enc
i , (12)

P (yj = w|y<j) ∝ u>w tanh(W [hdec
j , cj ]). (13)

Here, w is a character index in the output vocab-
ulary, y0 a special start-of-sequence symbol in the
vocabulary, and hdec

0 the concatenation of the last
hidden states of each direction of the encoder.

To bring the symbolic and neural systems to-
gether, we train them separately and use the fol-
lowing protocol during evaluation: for each MWT,
we first look it up in the dictionary, and return the
expansion recorded there if one can be found. If
this fails, we retry by lowercasing the incoming
token. If that fails again, we resort to the neural
system to predict the final expansion. This allows
us to not only account for languages with flexi-
ble MWTs patterns (Arabic and Hebrew), but also
leverage the training set statistics to cover both
languages with simpler MWT rules, and MWTs
in the flexible languages seen in the training set
without fail. This results in a high-performance,
robust system for multi-word token expansion.

2.2 POS/UFeats Tagger

Our tagger follows closely that of (Dozat et al.,
2017), with a few extensions. As in that work,
the core of the tagger is a highway BiLSTM (Sri-
vastava et al., 2015) with inputs coming from the
concatenation of three sources: (1) a pretrained
word embedding, from the word2vec embeddings
provided with the task when available (Mikolov
et al., 2013), and from fastText embeddings oth-
erwise (Bojanowski et al., 2017); (2) a trainable
frequent word embedding, for all words that oc-
curred at least seven times in the training set; and
(3) a character-level embedding, generated from
a unidirectional LSTM over characters in each
word. UPOS is predicted by first transforming
each word’s BiLSTM state with a fully-connected
(FC) layer, then applying an affine classifier:

hi = BiLSTM(tag)
i (x1, . . . ,xn), (14)

v
(u)
i = FC(u)(hi), (15)

P
(
y
(u)
ik |X

)
= softmaxk

(
W (u)v

(u)
i

)
. (16)

To predict XPOS, we similarly start with trans-
forming the BiLSTM states with an FC layer. In
order to further ensure consistency between the
different tagsets (e.g., to avoid a VERB UPOS with
an NN XPOS), we use a biaffine classifier, condi-
tioned on a word’s XPOS state as well as an em-
bedding for its gold (at training time) or predicted
(at inference time) UPOS tag y(u)i∗ :

v
(x)
i = FC(x)(hi), (17)

s
(x)
i = [E

(u)

y
(u)
i∗
, 1]>U(x)[v

(x)
i , 1], (18)

P
(
y
(x)
ik |y

(u)
i∗ , X

)
= softmaxk

(
s
(x)
i

)
. (19)
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UFeats is predicted analogously with separate pa-
rameters for each individual UFeat tag. The tagger
is also trained to minimize the cross entropy loss.

Some languages have composite XPOS tags,
yielding a very large XPOS tag space (e.g., Arabic
and Czech). For these languages, the biaffine clas-
sifier requires a prohibitively large weight tensor
U(x). For languages that use XPOS tagsets with a
fixed number of characters, we classify each char-
acter of the XPOS tag in the same way we clas-
sify each UFeat. For the rest, instead of taking the
biaffine approach, we simply share the FC layer
between all three affine classifiers, hoping that the
learned features for one will be used by another.

2.3 Lemmatizer

For the lemmatizer, we take a very similar ap-
proach to that of the multi-word token expansion
component introduced in Section 2.1 with two key
distinctions customized to lemmatization.

First, we build two dictionaries from the train-
ing set, one from a (word, UPOS) pair to the
lemma, and the other from the word itself to the
lemma. During evaluation, the predicted UPOS
is used. When the UPOS-augmented dictionary
fails, we fall back to the word-only dictionary
before resorting to the neural system. In look-
ing up both dictionaries, the word is never lower-
cased, because case information is more relevant
in lemmatization than in MWT expansion.

Second, we enhance the neural system with an
edit classifier that shortcuts the prediction process
to accommodate rare, long words, on which the
decoder is more likely to flounder. The concate-
nated encoder final states are put through an FC
layer with ReLU nonlinearity and fed into a 3-
way classifier, which predicts whether the lemma
is (1) exactly identical to the word (e.g., URLs and
emails), (2) the lowercased version of the word
(e.g., capitalized rare words in English that are not
proper nouns), or (3) in need of the sequence-to-
sequence model to make more complex edits to
the character sequence. During training time, we
assign the labels to each word-lemma pair greed-
ily in the order of identical, lowercase, and se-
quence decoder, and train the classifier jointly with
the sequence-to-sequence lemmatizer. At evalua-
tion time, predictions are made sequentially, i.e.,
the classifier first determines whether any shortcut
can be taken, before the sequence decoder model
is used if needed.

2.4 Dependency Parser

The dependency parser also follows that of (Dozat
et al., 2017) with a few augmentations. The high-
way BiLSTM takes as input pretrained word em-
beddings, frequent word and lemma embeddings,
character-level word embeddings, summed XPOS
and UPOS embeddings, and summed UFeats em-
beddings. In (Dozat et al., 2017), unlabeled attach-
ments are predicted by scoring each word i and its
potential heads with a biaffine transformation

ht = BiLSTM(parse)
t (x1, . . . ,xn), (20)

v
(ed)
i ,v

(eh)
j = FC(ed)(hi),FC(eh)(hj), (21)

s
(e)
ij = [v

(eh)
j , 1]>U (e)[v

(ed)
i , 1], (22)

= Deep-Biaff(e)(hi,hj), (23)

P
(
y
(e)
ij |X

)
= softmaxj

(
s
(e)
i

)
, (24)

where v(ed)
i is word i’s edge-dependent repre-

sentation and v(eh)
i its edge-head representation.

This approach, however, does not explicitly take
into consideration relative locations of heads and
dependents during prediction; instead, such pre-
dictive location information must be implicitly
learned by the BiLSTM. Ideally, we would like the
model to explicitly condition on (i − j), namely
the dependent i and its potential head j’s location
relative to each other, in modeling p(yij).5

Here, we motivate one way to build this into
the model. First we factorize the relative loca-
tion of word i and head j into their linear order
and the distance between them, i.e., P (yij |sgn(i−
j), abs(i − j)), where sgn(·) is the sign function.
Applying Bayes’ rule and assuming conditional
independence, we arrive at the following

P (yij |sgn(i− j), abs(i− j)) ∝ (25)

P (yij)P (sgn(i− j)|yij)P (abs(i− j)|yij).
In a language where heads always follow their de-
pendents, P (sgn(i − j) = 1|yij) would be ex-
tremely low, heavily penalizing rightward attach-
ments. Similarly, in a language where dependen-
cies are always short, P (abs(i−j)� 0|yij) would
be extremely low, penalizing longer edges.
P (yij) can remain the same as computed in

Eq. (24). P (sgn(i− j)|yij) can be computed sim-
ilarly with a deep biaffine scorer (cf. Eqs. (20)–
(23)) over the recurrent states. This results in the
score of j preceding i; flipping the sign wherever
i precedes j turns this into the log odds of the ob-

5Henceforth we omit the (e) superscript and X .
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served linearization. Applying the sigmoid func-
tion then turns it into a probability:

s
(l)
ij = Deep-Biaff(l)(hi,hj), (26)

s
′(l)
ij = sgn(i− j)s(l)ij , (27)

P (sgn(i− j)|yij) = σ
(
s
′(l)
ij

)
. (28)

This can be effortlessly incorporated into the edge
score by adding in the log of this probability
− log(1 + exp(−s′(l)ij )). Error is not backpropa-
gated to this submodule through the final attach-
ment loss; instead, it is trained with its own cross
entropy, with error only computed on gold edges.
This ensures that the model learns the conditional
probability given a true edge, rather than just
learning to predict the linear order of two words.

For P (abs(i − j)|yij), we use another deep bi-
affine scorer to generate a distance score. Dis-
tances are always no less than 1, so we apply
1 + softplus to predict the distance between i and
j when there’s an edge between them:

s
(d)
ij = Deep-Biaff(d)(hi,hj), (29)

s
′(d)
ij = 1 + softplus

(
s
(d)
ij

)
. (30)

where softplus(x) = log(1 + exp(x)). The dis-
tribution of edge lengths in the treebanks roughly
follows a Zipfian distribution, to which the Cauchy
distribution is closely related, only the latter is
more stable for values at or near zero. Thus, rather
than modeling the probability of an arc’s length,
we can use the Cauchy distribution to model the
probability of an arc’s error in predicted length,
namely how likely it is for the predicted distance
and the true distance to have a difference of δ(d)ij :

Zipf(k;α, β) ∝ (kα/β)−1, (31)

Cauchy(x; γ) ∝ (1 + x2/γ)−1 (32)

δ
(d)
ij = abs(i− j)− s′(d)ij , (33)

P (abs(i− j)|yij) ∝ (1 + δ
2(d)
ij /2)−1. (34)

When the difference δ(d)ij is small or zero, there
will be effectively no penalty; but when the model
expects a significantly longer or shorter arc than
the observed distance between i and j, it is dis-
couraged from assigning an edge between them.
As with the linear order probability, the log of the
distance probability is added to the edge score, and
trained with its own cross-entropy on gold edges.6

6Note that the penalty assigned to the edge score in this
way is proportional to ln δ

(d)
ij for high δ(d)

ij ; using a Gamma

At inference time, the Chu-Liu/Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) is used
to ensure a maximum spanning tree. Dependency
relations are assigned to gold (at training time)
or predicted (at inference time) edges y(e)i∗ using
another deep biaffine classifier, following (Dozat
et al., 2017) with no augmentations:

s
(r)
i = Deep-Biaff(r)

(
hi,hy(e)

i∗

)
, (35)

P
(
y
(r)
ik |y

(e)
i∗
)
= softmaxk

(
s
(r)
i

)
. (36)

3 Training Details

Except where otherwise stated, our system is a
pipeline: given a document of raw text, the to-
kenizer/sentence segmenter/MWT expander first
splits it into sentences of syntactic words; the tag-
ger then assigns UPOS, XPOS and UFeat tags
to each word; the lemmatizer takes the predicted
word and UPOS tag and outputs a lemma; finally,
the parser takes all annotations as input and pre-
dicts the head and dependency label for each word.

All components are trained with early stopping
on the dev set when applicable. When a dev
set is unavailable, we split the training set into
an approximately 7-to-1 split for training and de-
velopment. All components (except the depen-
dency parser) are trained and evaluated on the de-
velopment set assuming all related components
had oracle implementations. This means the to-
kenizer/sentence segmenter assumes all correctly
predicted MWTs will be correctly expanded, the
MWT expander assumes gold word segmentation,
and all downstream tasks assume gold word seg-
mentation, along with gold annotations of all pre-
requisite tasks. The dependency parser is trained
with predicted tags and morphological features
from the POS/UFeats tagger.

Treebanks without training data. For tree-
banks without training data, we adopt a heuristic
approach for finding replacements. Where a larger
treebank in the same language is available (i.e., all
PUD treebanks and Japanese-Modern), we used
the models from the largest treebank available in
that language. Where treebanks in related lan-
guages are available (as determined by language
families from Wikipedia), we use models from
the largest treebank in that related language. We

or Poisson distribution to model the distance directly, or using
a normal distribution instead of Cauchy, respectively, assigns
penalties roughly proportional to δ(d)

ij , ln Γ(δ
(d)
ij ), and δ2(d)

ij .
Thus, the Cauchy is more numerically stable during training.
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ended up choosing the models from English-EWT
for Naija (an English-based pidgin), Irish-IDT for
Breton (both are Celtic), and Norwegian-Nynorsk
for Faroese (both are West Scandinavian). For
Thai, since it uses a different script from all other
languages, we use UDPipe 1.2 for all components.

Hyperparameters. The tokenizer/sentence seg-
menter uses BiLSTMs with 64d hidden states
in each direction and takes 32d character em-
beddings as input. During training, we employ
dropout to the input embeddings and hidden states
at each layer with p = .33. We also randomly
replace the input unit with a special <UNK> unit
with p = .33, which would be used in place of any
unseen input at test time. We add noise to the gat-
ing mechanism in Eq. (6) by randomly setting the
gates to 1 with p = .02 and setting its temperature
to 2 to make the model more robust to tokeniza-
tion errors at test time. Optimization is performed
with Adam (Kingma and Ba, 2015) with an ini-
tial learning rate of .002 for up to 20,000 steps,
and whenever dev performance deteriorates, as is
evaluated every 200 steps after the 2,000th step,
the learning rate is multiplied by .999. For the
convolutional component we use filter sizes of 1
and 9, and for each filter size we use 64 channels
(same as one direction in the BiLSTM). The con-
volutional outputs are concatenated in the hidden
layer, before an affine transform is applied to serve
as a residual connection for the BiLSTM. For the
MWT expander, we use BiLSTMs with 256d hid-
den states in each direction as the encoder, a 512d
LSTM decoder, 64d character embeddings as in-
put, and dropout rate p = .5 for the inputs and
hidden states. Models are trained up to 100 epochs
with the standard Adam hyperparameters, and the
learning rate is annealed similarly every epoch af-
ter the 15th epoch by a factor of 0.9. Beam search
of beam size 8 is employed in evaluation.

The lemmatizer uses BiLSTMs with 100d hid-
den states in each direction of the encoder, 50d
character embeddings as input, and dropout rate
p = .5 for the inputs and hidden states. The de-
coder is an LSTM with 200d hidden states. During
training we jointly minimize (with equal weights)
the cross-entropy loss of the edit classifier and the
negative log-likelihood loss of the seq2seq lem-
matizer. Models are trained up to 60 epochs with
standard Adam hyperparameters.

The tagger and parser share most of their hy-
perparameters. We use 75d uncased frequent

word and lemma embeddings, and 50d POS tag
and UFeat embeddings. Pretrained embeddings
and character-based word representations are both
transformed to be 125d. During training, all em-
beddings are randomly replaced with a <drop>
symbol with p = .33. We use 2-layer 200d BiL-
STMs for the tagger and 3-layer 400d BiLSTMs
for the parser. We employ dropout in all feed-
forward connections with p = .5 and all recur-
rent connections (Gal and Ghahramani, 2016) with
p = .25 (except p = .5 in the tagger BiLSTM).
All classifiers use 400d FC layers (except 100d
for UFeats) with the ReLU nonlinearity. We train
the systems with Adam (α = .003, β1 = .9,
β2 = .95) until dev accuracy decreases, at which
point we switch to AMSGrad (Reddi et al., 2018)
until 3,000 steps pass with no dev accuracy in-
creases.

4 Results

The main results are shown in Table 1. As can be
seen from the table, our system achieves competi-
tive performance on nearly all of the metrics when
macro-averaged over all treebanks. Moreover, it
achieves the top performance on several metrics
when evaluated only on big treebanks, showing
that our systems can effectively leverage statisti-
cal patterns in the data. Where it is not the top per-
forming system, our system also achieved compet-
itive results on each of the metrics on these tree-
banks. This is encouraging considering that our
system is comprised of single-system components,
whereas some of the best performing teams used
ensembles (e.g., HIT-SCIR (Che et al., 2018)).

When taking a closer look, we find that our
UFeats classifier is very accurate on these tree-
banks as well. Not only did it achieve the top
performance on UFeats F1, but also it helped the
parser achieve top MLAS as well on big treebanks,
even when the parser is not the best-performing
as evaluated by other metrics. We also note the
contribution from our consistency modeling in the
POS tagger/UFeats classifier: in both settings the
individual metrics (UPOS, XPOS, and UFeats)
achieve a lower advantage margin over the refer-
ence systems when compared to the AllTags met-
ric, showing that these reference systems, though
sometimes more accurate on each individual task,
are not as consistent as our system overall.

The biggest disparity between the all-treebanks
and big-treebanks results comes from sentence
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(a) Results on all treebanks

System Tokens Sent Words Lemmas UPOS XPOS UFeats AllTags UAS CLAS LAS MLAS BLEX

Stanford 96.19 76.55 95.99 88.32 89.01 85.51 85.47 79.71 76.78 68.73 72.29 60.92 64.04
Reference 98.42† 83.87† 98.18‡ 91.24? 90.91‡ 86.67∗ 87.59‡ 80.30∗ 80.51† 72.36† 75.84† 61.25∗ 66.09?

∆ –2.23 –7.32 –2.19 –2.92 –1.90 –1.16 –2.12 –0.59 –3.73 –3.63 –3.55 –0.33 –2.05

Stanford+ 97.42 85.46 97.23 89.17 89.95 86.50 86.20 80.36 79.04 70.39 74.16 62.08 65.28

∆ –1.00 +1.59 –0.95 –2.07 –0.96 –0.17 –1.39 +0.06 –1.47 –1.97 –1.68 +0.83 –0.81

(b) Results on big treebanks only

System Tokens Sent Words Lemmas UPOS XPOS UFeats AllTags UAS CLAS LAS MLAS BLEX

Stanford 99.43 89.52 99.21 95.25 95.93 94.95 94.14 91.50 86.56 79.60 83.03 72.67 75.46
Reference 99.51† 87.73† 99.16† 96.08? 96.23† 95.16† 94.11∗ 91.45∗ 87.61† 81.29† 84.37† 71.71∗ 75.83?

∆ –0.08 +1.79 +0.05 –0.83 –0.30 –0.21 +0.03 +0.05 –1.05 –1.69 –1.34 +0.96 –0.37

Table 1: Evaluation results (F1) on the test set, on all treebanks and big treebanks only. For each set of
results on all metrics, we compare it against results from reference systems. A reference system is the top
performing system on that metric if we are not top, or the second-best performing system on that metric.
Reference systems are identified by superscripts (†: HIT-SCIR, ‡: Uppsala, ?: TurkuNLP, ∗: UDPipe
Future). Shaded columns in the table indicate the three official evaluation metrics. “Stanford+” is our
system after a bugfix evaluated unofficially; for more details please see the main text.

Treebanks System LAS MLAS BLEX

Small Stanford+ 83.90 72.75 77.30
Reference 69.53† 49.24‡ 54.89‡

Low-Res Stanford+ 63.20 51.64 53.58
Reference 27.89? 6.13? 13.98?

PUD Stanford+ 82.25 74.20 74.37
Reference 74.20† 58.75∗ 63.25•

Table 2: Evaluation results (F1) on low-resource
treebank test sets. Reference systems are identi-
fied by symbol superscripts (†: HIT-SCIR, ‡: ICS
PAS, ?: CUNI x-ling, ∗: Stanford, •: TurkuNLP).

segmentation. After inspecting the results on
smaller treebanks and double-checking our imple-
mentation, we noticed issues with how we pro-
cessed data in the tokenizer that negatively im-
pacted generalization on these treebanks.7 This is
devastating for these treebanks, as all downstream
components process words at the sentence level.

We fixed this issue, and trained new tokenizers
with all hyperparameters identical to our system at
submission. We further built an unofficial evalua-
tion pipeline, which we verified achieves the same
evaluation results as the official system, and eval-

7Specifically, our tokenizer was originally designed to be
aware of newlines (\n) in double newline-separated para-
graphs, but we accidentally prepared training and dev sets for
low resource treebanks by putting each sentence on its own
line in the text file. This resulted in the sentence segmenter
overfitting to relying on newlines. In later experiments, we
replaced all in-paragraph whitespaces with space characters.

uated our entire pipeline by only replacing the to-
kenizer. As is shown in Table 1, the resulting
system (Stanford+) is much more accurate over-
all, and we would have ranked 2nd, 1st, and 3rd on
the official evaluation metrics LAS, MLAS, and
BLEX, respectively.8 On big treebanks, all met-
rics changed within only 0.02% F1 and are thus
not included. On small treebanks, however, this
effect is more pronounced: as is shown in Table
2, our corrected system outperforms all submis-
sion systems on all official evaluation metrics on
all low-resource treebanks by a large margin.

5 Analysis

In this section, we perform ablation studies on the
new approaches we proposed for each component,
and the contribution of each component to the fi-
nal pipeline. For each component, we assume ac-
cess to an oracle for all other components in the
analysis, and show their efficacy on the dev sets.9

For the ablations on the pipeline, we report macro-
averaged F1 on the test set.

8We note that the only system that is more accurate than
ours on LAS is HIT’s ensemble system, and we achieve very
close performance to their system on MLAS (only 0.05% F1

lower, which is likely within the statistical variation reported
in the official evaluation).

9We perform treebank-level paired bootstrap tests for each
ablated system against the top performing system in abla-
tion with 105 bootstrap samples, and indicate statistical sig-
nificance in tables with symbol superscripts (*:p < 0.05,
**:p < 0.01, ***:p < 0.001).
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System Tokens Sentences Words

Stanford+ 99.46 91.33 99.27
− gating 99.47 91.34 99.27
− conv 99.45 91.03 98.67
− seq2seq – – 98.97
− dropout 99.22∗ 88.78∗∗∗ 98.98∗

Table 3: Ablation results for the tokenizer. All
metrics in the table are macro-averaged dev F1.
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Figure 2: Effect of the seq2seq component for
MWT expansion in the tokenizer.

Tokenizer. We perform ablation studies on the
less standard components in the tokenizer, namely
the gating mechanism in Eq. (6) (gating), the con-
volutional residual connections (conv), and the
seq2seq model in the MWT expander (seq2seq),
on all 61 big treebanks. As can be seen in Ta-
ble 3, all but the gating mechanism make no-
ticeable differences in macro F1. When taking
a closer look, we find that both gating and conv
show a mixed contribution to each treebank, and
we could have improved overall performance fur-
ther through treebank-level component selection.
One surprising discovery is that conv greatly helps
identify MWTs in Hebrew (+34.89 Words F1)
and sentence breaks in Ancient Greek-PROIEL
(+18.77 Sents F1). In the case of seq2seq, al-
though the overall macro difference is small, it
helps with the word segmentation performance
on all treebanks where it makes any meaningful
difference, most notably +10.08 on Hebrew and
+4.19 on Arabic in Words F1 (see also Figure 2).
Finally, we note that dropout plays an important
role in safeguarding the tokenizer from overfitting.

POS/UFeats Tagger. The main novelty in our
tagger is the explicit conditioning of XPOS and
UFeats predictions on the UPOS prediction. We
compare this against a tagger that simply shares
the hidden features between the UPOS, XPOS,
and UFeats classifiers. Since we used full-rank
tensors in the biaffine classifier, treebanks with

System UPOS XPOS UFeats AllTags PMI

Stanford 96.50 95.87 95.01 92.52 .0514
− biaff 96.47 95.71∗ 94.13∗∗∗ 91.32∗∗∗ .0497∗

Table 4: Ablation results for the tagger. All
metrics are macro-averaged dev F1, except PMI,
which is explained in detail in the main text.

System Big Small LowRes All

Stanford 96.56 91.72∗ 69.21 94.22
− edit & seq2seq 89.97∗∗∗ 82.68∗∗∗ 63.50∗∗ 87.45∗∗∗

− edit 96.48∗ 91.80 68.30 94.10
− dictionaries 95.37∗∗∗ 90.43∗∗∗ 66.02∗ 92.89∗∗∗

Table 5: Ablation results for the lemmatizer, split
by different groups of treebanks. All metrics in the
table are macro-averaged dev F1.

large, composite XPOS tagsets would incur pro-
hibitive memory requirements. We therefore ex-
clude treebanks that either have more than 250
XPOS tags or don’t use them, leaving 36 treebanks
for this analysis. We also measure consistency be-
tween tags by their pointwise mutual information

PMI = log

(
pc(AllTags)

pc(UPOS)pc(XPOS)pc(UFeats)

)
,

where pc(X) is the accuracy of X . This quantifies
(in nats) how much more likely it is to get all tags
right than we would expect given their individual
accuracies, if they were independent. As can be
seen in Table 4, the added parameters do not af-
fect UPOS performance significantly, but do help
improve XPOS and UFeats prediction. Moreover,
the biaffine classifier is markedly more consistent
than the affine one with shared representations.

Lemmatizer. We perform ablation studies on
three individual components in our lemmatizer:
the edit classifier (edit), the sequence-to-sequence
module (seq2seq) and the dictionaries (dictionar-
ies). As shown in Table 5, we find that our
lemmatizer with all components achieves the best
overall performance. Specifically, adding the
neural components (i.e., edit & seq2seq) drasti-
cally improves overall lemmatization performance
over a simple dictionary-based approach (+6.77
F1), and the gains are consistent over different
treebank groups. While adding the edit clas-
sifier slightly decreases the F1 score on small
treebanks, it improves the performance on low-
resource languages substantially (+0.91 F1), and
therefore leads to an overall gain of 0.11 F1. Tree-
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Figure 3: Edit operation types as output by the edit classifier on the official dev set. Due to space limit
only treebanks containing over 120k dev words are shown and sorted by the ratio of seq2seq operation.

System LAS CLAS

Stanford 87.60 84.68
− linearization 87.55∗ 84.62∗

− distance 87.43∗∗∗ 84.48∗∗∗

Table 6: Ablation results for the parser. All met-
rics in the table are macro-averaged dev F1.

banks where the largest gains are observed include
Upper Sorbian-UFAL (+4.55 F1), Kurmanji-MG
(+2.27 F1) and English-LinES (+2.16 F1). Fi-
nally, combining the neural lemmatizer with dic-
tionaries helps capture common lemmatization
patterns seen during training, leading to substan-
tial improvements on all treebank groups.

To further understand the behavior of the edit
classifier, for each treebank we present the ratio of
all predicted edit types on dev set words in Fig-
ure 3. We find that the behavior of the edit clas-
sifier aligns well with linguistic knowledge. For
example, while Ancient Greek, Arabic and Ko-
rean require a lot of complex edits in lemmatiza-
tion, the vast majority of operations in Chinese and
Japanese are simple identity mappings.

Dependency Parser. The main innovation for
the parsing module is terms that model locations
of a dependent word relative to possible head
words in the sentence. Here we examine the im-
pact of these terms, namely linearization (Eq. (28))
and distance (Eq. (34)). For this analysis, we ex-
clude six treebanks with very small dev sets. As
can be seen in Table 6, both terms contribute sig-
nificantly to the final parser performance, with the
distance term contributing slightly more.

Pipeline Ablation. We analyze the contribution
of each pipeline component by incrementally re-
placing them with gold annotations and observing
performance change. As shown in Figure 4, most
downstream systems benefit moderately from gold
sentence and word segmentation, while the parser
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Figure 4: Pipeline ablation results. Dashed, dot-
ted, and solid lines represent tagger, lemmatizer,
and parser metrics, respectively. Official evalua-
tion metrics are highlighted with thickened lines.

largely only benefits from improved POS/UFeats
tagger performance (aside from BLEX, which is
directly related to lemmatization performance and
benefits notably). Finally, we note that the parser
still is far from perfect even given gold annotations
from all upstream tasks, but our components in the
pipeline are very effective at closing the gap be-
tween predicted and gold annotations.

6 Conclusion & Future Directions

In this paper, we presented Stanford’s submission
to the CoNLL 2018 UD Shared Task. Our submis-
sion consists of neural components for each stage
of a pipeline from raw text to dependency parses.
The final system was very competitive on big tree-
banks; after fixing our preprocessing bug, it would
have outperformed all official systems on all met-
rics for low-resource treebank categories.

One of the greatest opportunities for further
gains is through the use of context-sensitive word
embeddings, such as ELMo (Peters et al., 2018)
and ULMfit (Howard and Ruder, 2018). Although
this requires a large resource investment, HIT-
SCIR (Che et al., 2018) has shown solid improve-
ments from incorporating these embeddings.
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Abstract

We introduce NLP-Cube: an end-to-end
Natural Language Processing framework,
evaluated in CoNLL’s “Multilingual Par-
sing from Raw Text to Universal Depen-
dencies 2018” Shared Task. It performs
sentence splitting, tokenization, compo-
und word expansion, lemmatization, ta-
gging and parsing. Based entirely on re-
current neural networks, written in Py-
thon, this ready-to-use open source system
is freely available on GitHub1. For each
task we describe and discuss its specific
network architecture, closing with an over-
view on the results obtained in the compe-
tition.

1 Introduction and Shared task
description

NLP-Cube is a freely available Natural Language
Processing (NLP) system that performs: sentence
splitting, tokenization, lemmatization, tagging
and parsing. The system takes raw-text as input
and annotates it, generating a CoNLL-U2 format
file. Written in Python, it is based entirely on re-
current neural networks built in DyNET (Neubig
et al., 2017). The paper focuses on each NLP task,
its architecture, motivating our choice and compa-
ring it to the current state-of-the-art3

1https://github.com/adobe/NLP-Cube
2The CoNLL-U format is well described in the official

Universal Dependencies (UD) website and in (Nivre et al.,
2018) and is the standard format of the UD Corpus.

3We must note that in the official runs our system was
affected by a bug which had a negative impact on the quality
of the lexicalized features (See section 2.1 for details). Due
to the fact that were unable to retrain the models to meet the
Shared Task’s deadline (at the time of submitting this article
we are still retraining them), we are reposting all new results
on the GitHub project page.

The “Multilingual Parsing from Raw Text to
Universal Dependencies” 2018 Shared Task (Ze-
man et al., 2018) targets primarily learning to ge-
nerate syntactic dependency trees and secondarily
the end-to-end text preprocessing pipeline (from
raw text segmentation up to parsing), all in a mul-
tilingual setting. The task is open to anybody, and
participants can choose whether to focus on par-
sing or attacking the end-to-end problem. The task
itself is not simple, having to handle typologica-
lly different languages, some of them having little
or even no training data. Based on the Universal
Dependencies (UD) Corpus4 (Nivre et al., 2016,
2018), participants have to target 82 languages,
with datasets annotated in the CoNLL-U format.
Their systems, given raw text as input, have to cor-
rectly: segment a text into sentences (marked as
SS in the results table, or Sentence Splitting), seg-
ment sentences into words (marked as Tok, from
Tokenization), expand single tokens/words into
compound words (marked as Word), and, for each
word, predict its universal part-of-speech (UPOS),
language-dependent part-of-speech (XPOS), mor-
phological attributes (Morpho), and dependency
link to another word and its label, evaluated as
5 different metrics named CLAS, BLEX, MLAS,
UAS, and LAS. Each of these metrics is well des-
cribed in the Shared Task; for brevity, in this paper
we will focus mostly on UAS - Unlabeled Attach-
ment Score measuring only the linking to the cor-
rect word, and LAS - Labeled Attachment Score,
measuring both linking to another word and cor-
rectly predicting the link’s label. Section 4 pre-
sents NLP-Cube’s results for all these metrics for
all languages in the Shared Task.

The paper is organized as follows: in section 2
we first discuss generics, then move to each par-
ticular task. We further present some training as-

4http://universaldependencies.org/
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pects of our system in section 3, followed by re-
sults in section 4, closing with section 6 on con-
clusions.

2 Processing pipeline

The end-to-end system is a standard processing pi-
peline having the following components: a sen-
tence splitter, tokenizer, compound word expan-
der (specific to the UD format), lemmatizer, tagger
and a parser.

2.1 Input features
Our system is able to work with both lexicali-
zed (word embeddings and character embeddings)
and delexicalized, morphological features (UPOS,
XPOS and ATTRs). However, we observed that
when using morphological features as input (for
example using POS tags as input for parsing), the
performance of the end-to-end system generally
degrades. This is mainly because while training
is done using gold-standard morphological featu-
res (e.g. the parser is trained on gold POS tags),
at runtime these features are predicted at an earlier
step and then used as “gold” input (e.g. the par-
ser would be given tagger-predicted POS tags as
input). There are several ways in which this effect
can be mitigated with varying degrees of success;
in our approach we preferred to use only lexicali-
zed features as input for all our modules, with the
exception of the lemmatizer which is heavily de-
pendent on morphological information.

In what follows, when we refer to lexicalized
features, we mean a concatenation of the fol-
lowing:

1. external word embeddings: 300-
dimensional standard word embeddings
using Facebook’s FastText (Bojanow-
ski et al., 2016) vectors5 projected to a
100-dimensional space using a linear trans-
formation); to these we included a trainable
<UNK> token;

2. holistic word embeddings: these repre-
sent all words in the trainset which have
a frequency of at least 2. They are 100-
dimensional trainable embeddings, also in-
cluding a <UNK> token for unseen tokens
in the testset;

3. character word embeddings: 100-
dimensional word representation generated

5Available on github.com/facebookresearch/fastText

by applying a network over the word’s
symbols.

Figure 1: Word Character network for computing
character-level features

The character word embeddings are obtained by
applying a two-layer bidirectional LSTM network
(size 200, using 0.33 dropout only on the recurrent
connections) on a word’s characters/symbols (see
Figure 1). We then concatenate the final outputs
from the second layer (top) forward and backward
LSTM with an attention vector (totaling 400 va-
lues: 100 from last fwd. state, 100 from last bw.
state and 200 from the attention). The attention
is computed over all the network states, using the
final internal states of the top forward and bac-
kward layers for conditioning. Let fk,(1,n) be the
forward states of the top layer (k-th) in the cha-
racter network and bk,(1,n) be its backward coun-
terpart. If fk,n is the forward state corresponding
to the last character of a word and bk,1 is the bac-
kward state of the first letter of that word, then the
character-level embeddings (Ec) are computed as
in Equations 1, 2 and 3.

si =V · tanh(W 1 · (fk,i ⊕ bk,i)+
W 2 · (f∗k,n ⊕ b∗k,1))

(1)

αi =
exp(si)∑n

k=1 exp(sk)
(2)
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Ec =
n∑

i=1

αi · (f∗k,i ⊕ b∗k,i) (3)

Finally, we linearly project Ec to an 100-
dimensional vector. Note, that we use f∗ and b∗

for the internal states of the LSTM cells and that
the missing superscript means the variables refer
to the output of the LSTM cells.

The morphological features are computed by
adding three distinct (trainable) embeddings of
size 100: one for UPOS, one for XPOS and one
for ATTRS.

2.2 Tokenization and sentence splitting
For most languages in the Shared Task our system
uses raw text as input. Exceptions apply to the
low-resourced languages for which we had little
or no training data. In these cases we use the input
provided by the UDPipe baseline system (Straka
et al., 2016) which is already in CoNLL-U format.

For tokenization and sentence splitting we use
the same network architecture (see Figure 2) and
labeling strategy for all languages. The process is
sequential: first we run sentence splitting and then
we perform tokenization on the segmented senten-
ces. In both steps, we use identical networks; ar-
guably we could achieve both tasks in a single pass
over the input data (the same architecture could
perform both sentence splitting and tokenization).
However, the best performing network parameters
for sentence splitting are not identical to the best
performing network parameters for tokenization.
With this in mind, we trained two separate models
for the two tasks.

For every symbol (si) in the input text, the de-
cision for tokenization or sentence splitting (after
si) is generated using a softmax layer that takes as
input 4 distinct vectors (final output states) of:

1. Forward Network: A unidirectional LSTM
that sees the input symbol by symbol in natu-
ral order;

2. Peek Network: A unidirectional LSTM , that
peeks at a limited window of symbols6 in
front of the current symbol - the input is fed
to the network in reverse order;

3. Language Model (LM) Network: A uni-
directional LSTM that takes as input exter-
nal word embeddings for previously genera-

6We set the value to 5 based on empirical observations

ted words; it updates only when a new word
is predicted by the network;

4. Partial Word Embeddings (PWE) Ne-
twork: It is often the case that we are able
to generate valid (known) words made up of
symbols from the previously tokenized word
up to the current symbol. If the joined sym-
bols form a word that exists in the embed-
dings, we use these embeddings. Otherwise
we use the unknown word embedding. We
project the embedding using the same 300-
to-100 linear transformation.

Figure 2: Tokenization and Sentence Splitting

For regularization, we observed that adding two
auxiliary softmax layers (with same labels as final
layer) for the Forward Network and the Peek Ne-
twork slightly reduces overfitting. Intuitively, the
Forward Network should be able to tokenize/sen-
tence split based only on the previous characters
and the Peek Network should also share this trait.

Moreover, the LM Network combined with the
PWE Network should be able to “determine” if it
makes sense (from the Language Modeling point-
of-view) to generate another word, based on the
previous words. This is highly important for lan-
guages that don’t use spaces to delimit words in-
side an utterance (e.g. Chinese, Japanese etc.).

For the large treebanks in the UD corpus our to-
kenization method placed second, with an overall
token-level score of 99.46%, the highest score be-
ing 99.51%. On the same treebanks, for sentence
splitting we placed 5th, with an overall F-score of
86.83% (highest was 89.52%).
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2.3 Lemmatization and compound word
expansion

Lemmatization (automatically inferring a word’s
canonical form) and compound word expansion
(automatically expanding collapsed tokens into
their constituents) are similar in the sense that both
start from a sequence of symbols and have the
task of generating another sequence of symbols.
One difference is that lemmatization is also depen-
dent on the input word’s morphological attributes
and part-of-speech, whereas compound word ex-
pansion doesn’t have such data available (at least
not for the UD corpus and consequently not for
our system).

At first glance the two tasks can easily be sol-
ved using sequence to sequence models. It is
important to mention that by analyzing some in-
put examples, one can easily see that input-output
sequences have monotonic alignments. This im-
plies that the standard encoder-decoder with atten-
tion model is too complex and resource consuming
for these two tasks.

We propose a method that uses an attention-
free encoder-decoder model, which is less com-
putationally expensive and, surprisingly, provides
a 3-5% absolute increase in accuracy (at word le-
vel) as opposed to its attention-based counterpart.

The model is composed of a bidirectional
LSTM encoder and an unidirectional LSTM de-
coder. Similarly to a Finite State Transducer
(FST) we train a model to output any symbol from
the alphabet and three additional special symbols:
<COPY>, <INC> and <EOS>. During trai-
ning, we use a dynamic algorithm to monotonica-
lly align the input symbols to the output symbols.
Based on these alignments, we create the “gold-
standard” decoder output, which aims at copying
as many input characters to the output as possible,
while incrementing the input cursor and emitting
new symbols only as a last resort.

Trying to find a comprehensive example for En-
glish proves difficult (most lemmas are obtained
by simply copying a portion of the input word)
and we prefer to address lemmatization for a Ro-
manian example because it allows a better explo-
ration of the output sequence of symbols. A good
example is the lemmatization process for the word
“fetelor” (en.: girls), which has the canonical form
“fată” (en.: girl). The alignment process will ge-
nerate the following source-destination pairs of in-
dexes: 1-1, 3-3. The pairs map only symbols

that are identical in the input and output sequence.
The output symbol list for the decoder to learn is:
<COPY>a<INC><INC><COPY>a<EOS>7.

Let E(1,n) be the output of the encoder for a
sequence of n input symbols and i be an internal
index which takes values from 1 to n. The algori-
thm we use in the decoding process is:

E <− e n c o d e r ( word )
o u t <− ’ ’
i <− 1
do {

i n p = f ( E [ i ] , word )
c o u t = d e c o d e r ( i n p )
i f c o u t == ’<COPY>’

o u t <− o u t + word [ i ]
e l s e i f c o u t == ’<INC>’

i <− i + 1
e l s e i f c o u t != ’<EOS>’

o u t <− o u t + c o u t
} w h i l e ( c o u t != ’<EOS> ’)

In the code above f(E[i], word) is generica-
lly defined for both lemmatization and compound
word expansion. The function uses the output of
the encoder for position i and, for lemmatization,
it concatenates this vector with morphological fe-
atures (see Section 2.1 for details). The compound
word expander directly uses E[i] as input for the
decoder.

To our knowledge, the attention-free encoder
decoder provides state-of-the-art results8, our re-
sults being up-to-par with the highest ranking sys-
tem in the UD Shared Task. The results are repor-
ted without using any lexicon for known words,
and by employing the heuristic of leaving numbers
and proper nouns unchanged.

2.4 Tagging

Tagging is achieved using a two-layer bidirectio-
nal LSTM (same size for all languages). The in-
put of the network is composed only of lexicali-
zed features (see Section 2.1) and the output con-
tains three softmax layers that independently pre-
dict UPOS, XPOS and ATTRS. Though the AT-
TRS label is composed by multiple key-value pairs
for each morphological attribute of the word (e.g.

7As a reviewer kindly noted, a <COPY> might not
always be followed by an <INC>; We cannot exclude the
possibility that a word in a certain language might have a sin-
gle letter that has to be copied twice in the lemma. We thank
the reviewer for pointing this out.

8The results from the official UD Shared Tasks are affec-
ted by the aforementioned bug in our system, which degraded
our accuracy with 5% on average
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gender, case, number etc.), we treat the concatena-
ted strings as a single value.

We performed a number of experiments trying
to predict individual morphological attributes, but
the overall accuracy degraded and we preferred
this naive approach to other tagging strategies.

For regularization, we use an auxiliary layer of
softmax functions (Szegedy et al., 2015), located
after the first bidirectional LSTM layer. The ob-
jective function is also designed to maximize the
prediction probabilities for the same labels as the
main softmax functions.

Note: The tagger is completely independent
from the parser and we don’t use any morpholo-
gical information for parsing.

2.5 Parsing

Our parser is inspired by Kiperwasser and Gold-
berg (2016) and Dozat et al. (2017), in the sense
that we use multiple stacked bidirectional LSTM
layers and project 4 specialized representations for
each word in a sentence, which are later aggrega-
ted in a multilayer perceptron in order to produce
arc and label probabilities.

We observed that training the parser on both
morphological and lexical features biases the mo-
del into relying on correct previously-predicted
tags. This does not hold for end-to-end parsing,
which implies that we use predicted (thus imper-
fect) morphology. Also, in this Shared Task we
can only train a tagger using the provided corpora,
which means that it has access to the same features
and training examples as the parser itself.

Taking all this into account, an interesting ques-
tion arises: “Why would tagging followed by par-
sing (learned on an identical training dataset) be
better than multi-task learning and joint predic-
tion of arcs, labels and POS tags?”. The answer
that we came to is .. that it is not. Actually, we
observed that jointly training a parser to also ou-
tput morphological features increases the absolute
UAS and LAS scores by up to 1.5% (at least for
our own models).

Our parser architecture (Figure 3) is composed
of 5 layers of bidirectional LSTMs (sized 300,
300, 200, 200, 200). After the first two layers we
introduce an auxiliary loss using three softmax la-
yers for the three independent morphological la-
bels: UPOS, XPOS and ATTRS. After the final
stacked layer we project 4 specialized represen-
tation which are used in a bi-affine attention for

predicting arcs between words and a softmax la-
yer for predicting the label itself (after we decode
the graph into a parsing tree).

There are several interesting observations which
apply to this approach (but they could be generally
true):

Observation 1: If we compute the accuracy of
the auxiliary predicted tags and compare it to that
of the independent tagger, we get an slight increa-
sed accuracy for the UPOS labels and decreased
figures for XPOS and ATTRS. This could mean
that the contribution to parsing of the UPOS labels
is higher than that of XPOS labels and morpholo-
gical attributes. Of course, we are also using lexi-
calized features, so this conclusion might be false.
Note: In the end-to-end system we use the tagger
to predict POS tags for UPOS, XPOS and ATTRS;
the slight gain in accuracy of using UPOS tags pre-
dicted by the parser are offset by the complexity
of picking labels from separate modules and more
parameter logic for the end-user of our system (for
example, if a user requests only POS tags he wo-
uld then need to run the parser just for UPOSes).

Observation 2: In theory, the parsing tree sho-
uld be computed as the minimum or maximum
spanning tree (MST) from the complete graph that
we create using the network. A standard way to
do this is to use Chu–Liu/Edmonds’ algorithm.
However, in our initial experiments we used a gre-
edy method, which almost never generated MSTs.
The algorithm worked by sorting all possible arcs,
based on the probabilities from highest to lowest.
Then we would start from the most probable arc
and iteratively add arcs if they would not intro-
duce cycles. While this is similar to Kruskal’s al-
gorithm, it never holds for directed graphs. When
we switched to the MST algorithm we obtained
lower UAS and LAS scores for the parser. We
checked the validity of the results and, indeed, the
score of MST trees is higher than that of greedy
trees. Also, we tried multiple MST implementa-
tion including our own, which reduces any chance
of coding errors. The conclusion is that in order to
obtain good UAS/LAS scores, one should always
favor strong arc scores over lower-confidence re-
lations between words. The MST algorithm remo-
ves high confidence relations and replaces them
with subsets of lower scoring relationships that
provide a “global-optimum”. Our intuition is that
if one wants to use a MST tree algorithm to pro-
duce a parsing tree, this algorithm should be inte-
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Figure 3: Parser architecture

grated at training time and not just employed over
an already trained network. However, the high
computational complexity of this algorithm has a
strong negative impact on the training time making
it very hard to validate this theory.

3 Training details

Regarding drop-out, for all tasks we use a consis-
tent strategy: similar to the methodology of Do-
zat et al. (2017) we randomly drop each repre-
sentation9 independently and we scale the others
to cope with the missing input. The default para-
meters used in our process are also close to those
proposed in the aforementioned paper, with the ex-
ception that we found a batch-size of 1000 to pro-
vide better results. The batch size refers to the nu-
mber of tokens included in one training iteration.
Our models are implemented using DyNET (Neu-
big et al., 2017), which is a framework for neural
networks with dynamic computation graph. This
implies that we don’t require bucketing and pad-
ding in our approach. Instead, when we compute
a batch we add sentences until the total number of
tokens reaches the batch threshold (1000). Often,
we overflow the input size, because rarely the nu-
mber of tokens sum up to exactly 1000.

The global early-stopping condition is that the
task-specific metric over the development set do-
esn’t improve over 20 consecutive training epochs.

All models that use auxiliary softmax functions,
weight the auxiliary loss by an empirically selec-
ted value of 0.2. Whenever more than one aux

9For the tokenizer we even drop entire LSTM-outputs that
represent the input of the final Softmax layer - but we still
infer loss via the auxiliary softmaxes

softmax layers are used, the weighed value is equ-
ally divided between the losses (i.e. if we use two
auxiliary loss layers, each will infer a loss that is
scaled with the value 0.1, not 0.2).

At runtime the end-to-end system performs the
following operations sequentially: (a) it segments
the input raw text using the best accuracy sentence
splitter model, it then (b) tokenizes the sentences
using the best accuracy tokenizer network model,
(c) it generates compound words with the best ac-
curacy compound word expander model over the
tokens, (d) it predicts POS tags using each of the
best performing network model for UPOS, XPOS
and ATTRS respectively, (e) generates parse links
and labels using the best UAS model (and not the
LAS one, though we save this one as well), fina-
lly (f) filling in the lemma with the best accuracy
lemmatizer model.

We used the same hyperparameters for all lan-
guages. They were chosen based on a few langu-
ages that we initially tested on, and used these va-
lues for all other languages. However, each task
has its own set of hyperparameters that can be
tuned individually. Except the input sizes (like
the 300-to-100 linear transform in the tokenizer),
all other LSTM sizes are configurable through the
automatically generated config file for each task.

4 Results

We summarized our results in table 1 showing
NLP-Cube’s individual task scores for each lan-
guage, and two tables comparing our ranking by
task: table 2 with the score average over all tree-
banks and table 3 concerning only the large tree-
banks. Complete scores are available on the offi-
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Language Tok SS Word Lemma UPOS XPOS Morpho CLAS BLEX MLAS UAS LAS
af afribooms 99.97 99.65 99.97 94.35 97.54 93.40 96.46 78.02 70.30 71.47 87.89 84.33

ar padt 99.98 77.35 91.10 48.65 87.71 84.37 84.58 64.96 33.12 58.13 71.53 67.61
bg btb 99.93 92.95 99.93 88.60 98.53 95.75 96.36 85.09 69.37 79.67 92.47 88.93
br keb 92.26 91.97 91.71 44.26 30.74 0.00 29.57 7.26 1.93 0.34 26.95 9.90

bxr bdt 83.26 31.52 83.26 16.05 34.99 83.26 37.95 1.01 0.03 0.06 6.32 2.42
ca ancora 99.98 99.27 99.94 97.49 98.45 98.51 97.94 86.24 83.57 82.54 92.91 90.49

cs cac 99.99 99.76 99.91 95.03 98.96 94.37 93.69 88.80 82.64 80.71 92.90 90.72
cs fictree 99.99 98.60 99.90 94.92 98.00 93.43 94.49 86.89 80.13 78.23 93.01 89.68

cs pdt 99.99 91.01 99.85 94.75 98.76 95.65 95.22 87.81 81.69 81.73 91.63 89.45
cs pud 99.55 91.70 99.40 92.22 97.17 92.93 92.04 81.96 75.30 72.76 89.60 84.82

cu proiel 100.00 37.28 100.00 80.96 93.23 93.52 85.27 65.68 54.38 53.66 74.60 67.70
da ddt 99.85 91.79 99.85 93.15 96.93 99.85 96.15 79.90 71.67 72.62 85.91 83.03
de gsd 99.70 81.19 99.62 76.71 93.83 96.78 88.54 72.96 42.49 54.79 82.09 77.24
el gdt 99.88 89.61 99.24 88.86 96.95 96.65 92.52 81.62 66.38 71.28 89.12 86.19

en ewt 99.26 76.32 99.26 94.51 95.25 94.83 96.03 79.31 73.77 73.75 85.49 82.79
en gum 99.65 82.13 99.65 91.70 94.71 94.42 95.64 75.01 65.38 67.42 84.10 80.59
en lines 99.91 87.80 99.91 93.89 96.38 95.01 96.46 75.40 67.82 69.28 82.58 78.03
en pud 99.74 95.70 99.74 94.32 95.14 93.88 94.99 82.36 76.12 72.76 88.27 85.31

es ancora 99.98 98.32 99.75 97.73 98.33 98.34 97.90 84.66 82.02 81.05 91.36 89.06
et edt 99.90 91.86 99.90 87.67 96.13 97.28 93.47 80.04 67.33 71.94 86.09 82.30

eu bdt 99.97 99.83 99.97 85.34 95.09 99.97 89.97 79.57 63.94 67.31 85.63 81.53
fa seraji 100.00 99.50 99.08 87.51 96.43 96.18 96.35 81.75 69.77 78.42 88.45 85.21

fi ftb 100.00 86.01 99.95 83.35 94.21 91.97 93.54 79.83 63.16 71.89 87.56 83.74
fi pud 99.67 93.29 99.67 76.66 96.59 0.03 94.56 85.14 58.90 78.41 90.05 87.28
fi tdt 99.70 88.73 99.70 77.92 95.52 96.52 92.41 81.74 58.42 73.04 87.06 83.74

fo oft 99.51 93.04 97.41 46.83 44.66 0.00 24.06 18.93 5.87 0.33 39.92 24.72
fr gsd 99.68 94.20 97.82 94.53 95.16 97.82 94.78 82.01 78.11 73.86 87.89 84.66

fr sequoia 99.86 89.86 97.77 93.35 96.08 97.77 95.19 81.91 76.06 75.50 87.83 85.27
fr spoken 100.00 21.63 100.00 90.62 95.22 97.45 100.00 57.63 52.78 53.41 72.76 65.81
fro srcmf 100.00 74.19 100.00 100.00 94.54 94.42 96.50 72.36 72.36 66.90 84.88 77.39

ga idt 99.56 95.38 99.56 84.98 91.01 90.40 79.78 53.98 41.89 35.54 76.80 65.37
gl ctg 99.84 96.59 99.17 94.93 96.86 96.30 99.04 75.10 69.73 68.20 83.90 81.07

gl treegal 99.50 84.99 95.06 84.67 90.25 86.75 88.27 57.80 46.62 47.68 71.13 64.90
got proiel 100.00 28.03 100.00 80.85 93.45 94.17 84.42 59.23 46.76 46.32 70.22 62.83

grc perseus 99.97 98.81 99.97 71.09 87.82 76.11 83.81 58.83 35.14 39.00 73.11 66.17
grc proiel 100.00 44.57 100.00 83.17 95.52 95.68 88.23 67.08 54.13 53.38 77.76 73.04

he htb 99.98 100.00 85.16 81.33 82.48 82.45 80.71 55.64 51.70 49.77 67.53 63.32
hi hdtb 99.98 98.84 99.98 96.71 97.16 96.49 93.25 87.30 84.70 76.01 94.65 91.27

hr set 99.92 95.56 99.92 89.95 97.72 99.92 90.52 82.77 71.56 69.81 90.64 85.81
hsb ufal 98.60 74.51 98.60 63.76 65.75 98.60 49.80 24.85 17.36 8.13 42.58 31.02

hu szeged 99.80 94.18 99.80 83.14 94.97 99.80 89.37 74.17 56.22 59.93 81.52 75.85
hy armtdp 97.21 92.41 96.47 70.79 65.40 96.47 57.07 23.40 17.36 10.44 44.53 29.63

id gsd 99.95 93.59 99.95 80.99 93.09 94.24 95.44 75.86 53.26 66.00 85.00 78.14
it isdt 99.75 96.81 99.68 96.88 97.79 97.63 97.54 85.53 81.42 81.57 92.49 90.21

it postwita 99.73 21.80 99.45 85.10 95.47 95.35 95.74 60.47 49.49 55.41 73.34 69.18
ja gsd 93.14 94.92 93.14 91.97 90.57 93.14 93.13 68.05 67.33 64.81 81.29 78.79

ja modern 65.98 0.00 65.98 54.14 47.71 0.00 64.15 4.42 4.07 2.76 16.67 13.60
kk ktb 92.26 75.57 92.89 23.49 57.84 56.04 38.32 13.15 0.76 2.69 39.48 19.64

kmr mg 94.33 69.14 94.01 64.64 59.31 58.77 48.39 17.91 11.69 5.87 34.86 24.18
ko gsd 99.87 93.90 99.87 38.39 95.27 88.24 99.70 79.75 21.93 76.44 86.10 82.09

ko kaist 100.00 100.00 100.00 30.05 95.12 84.14 100.00 83.63 15.26 79.50 88.13 86.00
la ittb 99.97 92.50 99.97 96.17 97.93 93.75 95.31 83.99 79.82 76.98 89.20 86.34

la perseus 100.00 98.67 100.00 67.55 85.69 68.29 72.63 45.39 28.48 29.01 63.46 51.92
la proiel 99.99 35.16 99.99 87.92 94.62 94.76 86.50 64.23 56.27 52.18 72.74 67.36

lv lvtb 99.68 98.05 99.68 86.24 93.73 83.09 88.44 74.87 61.18 61.31 83.41 78.18
nl alpino 99.89 90.75 99.89 92.76 95.68 93.80 96.07 80.42 71.95 72.73 89.32 85.95

nl lassysmall 99.84 77.48 99.84 92.47 95.83 94.12 95.45 75.26 66.41 69.25 85.37 81.75
no bokmaal 99.87 96.64 99.87 84.13 97.70 99.87 95.83 85.90 80.26 79.28 90.83 88.55
no nynorsk 99.96 94.28 99.96 82.42 97.42 99.96 95.41 85.90 76.43 78.33 90.83 88.53

no nynorsklia 99.99 99.86 99.99 75.80 85.36 99.99 81.19 48.26 40.44 35.31 64.43 52.94
pcm nsc 91.20 0.00 87.97 75.25 44.44 87.97 42.47 9.89 8.16 2.67 22.39 9.62

pl lfg 99.94 99.91 99.94 92.20 98.31 92.47 93.53 91.76 81.68 82.67 95.77 93.73
pl sz 99.98 99.14 99.33 88.71 97.13 89.58 89.88 85.90 72.76 74.06 91.00 88.01

pt bosque 99.69 87.88 97.59 94.65 94.46 97.59 93.71 81.23 77.56 70.62 86.80 84.36
ro rrt 99.74 95.62 99.74 94.79 97.46 96.73 96.83 80.68 74.65 76.26 90.44 85.25

ru syntagrus 99.71 98.79 99.71 92.28 98.41 99.71 96.20 89.14 79.49 84.09 92.69 90.94
ru taiga 97.36 70.37 97.36 76.11 90.31 97.34 80.62 53.82 37.50 39.17 66.39 58.18
sk snk 99.97 86.00 99.97 84.26 95.92 82.53 87.01 83.20 65.14 66.99 88.87 85.77

sl ssj 99.91 97.51 99.91 91.93 97.85 92.52 92.79 86.56 75.56 76.83 91.49 89.39
sl sst 100.00 24.43 100.00 86.50 91.92 83.70 83.79 41.82 35.69 33.27 54.04 46.77

sme giella 99.75 98.79 99.75 74.28 87.36 88.68 80.64 53.20 37.51 39.90 66.82 57.40
sr set 99.97 92.61 99.97 89.36 97.62 99.97 92.58 83.87 71.08 73.71 90.84 86.96

sv lines 99.96 87.44 99.96 91.40 95.99 93.65 88.92 79.24 69.08 64.33 85.04 80.80
sv pud 98.57 91.23 98.57 80.71 93.20 90.80 77.28 75.40 56.38 48.35 82.40 78.16

sv talbanken 99.95 93.60 99.95 92.92 97.25 95.41 95.63 82.33 73.42 75.03 88.32 85.00
th pud 8.56 0.39 8.56 8.56 5.86 0.02 5.67 0.31 0.31 0.00 0.58 0.53
tr imst 99.86 97.09 97.92 82.94 92.52 91.87 87.81 58.14 47.63 48.76 68.78 61.53
ug udt 99.91 83.83 99.91 87.60 88.42 91.47 84.23 53.52 45.02 38.48 74.56 60.98
uk iu 99.65 95.43 99.65 86.06 96.50 88.46 88.60 79.61 64.21 66.86 86.44 83.24

ur udtb 100.00 98.60 100.00 96.57 93.60 91.82 83.10 76.08 72.90 55.29 87.92 81.97
vi vtb 87.20 92.88 87.20 81.37 78.28 76.55 86.95 41.95 37.93 37.10 51.83 45.64

zh gsd 93.14 98.80 93.14 92.38 88.58 88.41 92.21 65.39 64.52 59.22 73.44 69.60

Table 1: End-to-end parsing results obtained in the CoNLL official evaluation campaign177



Score Rank Range Average Median
SS 82.55 21 83.87 - 13.33 79.35 83.01
Token 97.36 19 98.42 - 78.45 95.90 97.39
Word 96.8 21 98.18 - 78.11 95.55 96.97
Lemma 81.21 20 91.24 - 57.1 82.85 87.77
UPOS 88.5 10 90.91 - 71.38 86.96 87.9
XPOS 86.46 2 86.67 - 4.88 75.53 84.83
Morpho 85.08 7 87.59 - 59.1 82.25 83.74
UAS 76.16 10 80.51 - 50.86 72.83 74.72
LAS 70.82 10 75.84 - 47.02 67.26 69.11

Table 2: Overall Results

Score Rank Range Average Median
SS 86.83 5 89.52 - 15.44 83.01 86.09
Tok 99.46 2 99.51 - 84.57 98.32 99.24
Word 98.87 5 99.21 - 84.14 97.94 98.81
Lemma 86.85 21 96.08 - 58.14 88.18 93.34
UPOS 95.02 10 96.23 - 79.83 93.56 94.06
XPOS 93.71 5 95.16 - 6.46 82.31 91.81
Morpho 92.68 7 94.14 - 65.42 89.76 90.85
UAS 84.55 8 87.61 - 62.07 80.59 82.27
LAS 80.48 8 84.37 - 58.14 76.220 77.98

Table 3: Results for Big Treebanks

cial website10 and due to space restrictions the
description of each individual score is available
online11 as well. For example, for sentence split-
ting (SS) and tokenization (Token), the figures re-
ported are F1 scores. For tables 2 and 3 we did not
include in the max-min/average/median calcula-
tion the lowest performing system as it had a very
low score and would skew the overall ranking.
For the Rank value in the tables please note that
there were 25 systems participating (excluding the
lowest competitor), so rank 10 means 10th posi-
tion out of 25.

Overall, NLP-Cube performed above average
for most tasks and treebanks, and, even better if
we consider only the large treebanks. Due to the
hidden bug we discovered very late in the TIRA
testing period (mentioned in the introduction) we
can see consistently bad performance for the tasks
of compound word expansion and lemmatization
where the character network has a large influence.
Considering that for most languages we performed
end-to-end processing, a low performance in the
early processing chain compounded the error and
led to lower scores.

5 Use-cases

We’ve built NLP-Cube with the vision that it wo-
uld help in higher-level NLP tasks like Machine

10http://universaldependencies.org/conll18/results.html
11http://universaldependencies.org/conll18/evaluation.html

Translation, Named Entity Recognition or Ques-
tion Answering, to name a few.

Part of NLP-Cube, we have a Named Entity
Recognition (NER) system12 that employs Graph-
Based-Decoding (GBD) over a hybrid network ar-
chitecture composed of bidirectional LSTMs for
word-level encoding, which had great results13.

We’re currently working on integrating Univer-
sal Morphological Reinflection and also Machine
Translation tasks in NLP-cube. We welcome fee-
dback and contributions to the project, as well as
new ideas and areas we could cover.

6 Conclusions

This paper introduces NLP-Cube: an end-to-end
system that performs text segmentation, lemmati-
zation, part-of-speech tagging and parsing. It al-
lows training of any model given datasets in the
CoNLL-U format. Written in Python, it is open-
source, easily usable (“pip install nlpcube”) and
provides models for the large treebanks in the Uni-
versal Dependency Corpus.

We presented and discussed each NLP task.
Results place NLP-Cube in the upper half of
the best performing end-to-end text preprocessing
systems. As we retrain our models, new scores
will be continuously updated online14.

Finally, we highlight a few ideas:
1. We presented a lemmatizer / compound word

expander that uses a Finite State Transducer-style
algorithm that is faster and has better results than
the classic attention-based encoder-decoder model
(with the mention that it requires monotonic alig-
nments between symbols) (see section 2.3);

2. We obtained better results for Morphologi-
cal Attributes when using each example as a sin-
gle class instead of splitting and predicting their
presence or not at every instance (see section 2.4);

3. Parsing based on lexicalized features only,
and at the same time, performing UPOS, XPOS
and ATTRS prediction jointly with arc index and
labeling led to a higher performance than parsing
based on previously predicted morphological fea-
tures generated by a tagger (see section 2.5).

12https://github.com/adobe/NLP-Cube/tree/dev.gbd-ner
13http://opensource.adobe.com/NLP-Cube/blog/posts/1-

gbd/results.html
14https://github.com/adobe/NLP-Cube
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Abstract

This paper describes our submission to
CoNLL 2018 UD Shared Task. We
have extended an LSTM-based neural net-
work designed for sequence tagging to
additionally generate character-level se-
quences. The network was jointly trained
to produce lemmas, part-of-speech tags
and morphological features. Sentence seg-
mentation, tokenization and dependency
parsing were handled by UDPipe 1.2 base-
line. The results demonstrate the viabil-
ity of the proposed multitask architecture,
although its performance still remains far
from state-of-the-art.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) aims to collect consistently annotated tree-
banks for many languages. Its current version
(2.2) (Nivre et al., 2018) includes publicly avail-
able treebanks for 71 languages in CoNLL-U for-
mat. The treebanks contain lemmas, part-of-
speech tags, morphological features and depen-
dency relations for every word.

Neural networks have been successfully applied
to most of these tasks and produced state-of-the-
art results for part-of-speech tagging and depen-
dency parsing. Part-of-speech tagging is usually
defined as a sequence tagging problem and is
solved with recurrent or convolutional neural net-
works using word-level softmax outputs or condi-
tional random fields (Lample et al., 2016; Strubell
et al., 2017; Chiu and Nichols, 2016). Reimers
and Gurevych (2017) have studied these architec-
tures in depth and demonstrated the effect of net-
work hyperparameters and even random seeds on
the performance of the networks.

Neural networks have been applied to depen-
dency parsing since 2014 (Chen and Manning,
2014). The state-of-the-art in dependency parsing
is a network with deep biaffine attention module,
which won CoNLL 2017 UD Shared Task (Dozat
et al., 2017).

Nguyen et al. (2017) used a neural network to
jointly learn POS tagging and dependency parsing.
To the best of our knowledge, lemma generation
and POS tagging have never been trained jointly
using a single multitask architecture.

This paper describes our submission to CoNLL
2018 UD Shared Task. We have designed a neu-
ral network that jointly learns to predict part-of-
speech tags, morphological features and lemmas
for the given sequence of words. This is the first
step towards JointUD, a multitask neural network
that will learn to output all labels included in UD
treebanks given a tokenized text. Our system used
UDPipe 1.2 (Straka et al., 2016) for sentence seg-
mentation, tokenization and dependency parsing.

Our main contribution is the extension of a se-
quence tagging network by Reimers and Gurevych
(2017) to support character-level sequence outputs
for lemma generation. The proposed architecture
was validated on nine UD v2.2 treebanks. The
results are generally not better than the UDPipe
baseline, but we did not extensively tune the net-
work to squeeze most out of it. Hyperparameter
search and improved network design are left for
the future work.

2 System Architecture

Our system used in CoNLL 2018 UD Shared Task
consists of two parts. First, it takes the raw in-
put and produces CoNLL-U file using UDPipe 1.2.
Then, if the corresponding neural model exists, the
columns corresponding to lemma, part-of-speech
and morphological features are replaced by the
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predictions of the neural model. Note that UDPipe
1.2 did not use the POS tags and lemmas produced
by our neural model. We did not train neural mod-
els for all treebanks, so most of our submissions
are just the output of UDPipe.

The codename of our system in the Shared Task
was ArmParser. The code is available on GitHub1.

3 Neural model

In this section we describe the neural architecture
that takes a sequence of words and outputs lem-
mas, part-of-speech tags, and 21 morphological
features. POS tag and morphological feature pre-
diction is done using a sequence tagging network
from (Reimers and Gurevych, 2017). To gener-
ate lemmas, we extend the network with multiple
decoders similar to the ones used in sequence-to-
sequence architectures.

Suppose the sentence is given as a sequence of
words w1, . . . , wn. Each word consists of char-
acters wi = c1i . . . c

ni
i . For each wi, we are

given its lemma as a sequence of characters: li =
l1i . . . l

mi
i , POS tag pi ∈ P , and 21 features f1i ∈

F 1, . . . , f21i ∈ F 21. The sets P, F 1, . . . , F 21 con-
tain the possible values for POS tags and morpho-
logical features and are language-dependent: the
sets are constructed based on the training data of
each language. Table 1 shows the possible values
for POS tags and morphological features for En-
glish - EWT treebank.

The network consists of three parts: embedding
layers, feature extraction layers and output layers.

3.1 Embedding layers

By Embd(a) we denote a d-dimensional embed-
ding of the integer a. Usually, a is an index of a
word in a dictionary or an index of a character in
an alphabet.

Each word wi is represented by a con-
catenation of three vectors: e(wi) =
(eword(wi), ecasing(e), echar(w)). The first
vector, eword(wi) is a 300-dimensional pretrained
word vector. In our experiments we used FastText
vectors (Bojanowski et al., 2017) released by
Facebook2. The second vector, ecasing(wi), is a
one-hot representation of eight casing features,
described in Table 2.

1 https://github.com/YerevaNN/JointUD/
2https://github.com/facebookresearch/

fastText/blob/master/pretrained-vectors.
md

The third vector, echar(wi) is a character-level
representation of the word. We map each charac-
ter to a randomly initialized 30-dimensional vec-
tor ĉji = Emb30(cji ), and apply a bi-directional
LSTM on these embeddings. echar(wi) is the con-
catenation of the 25-dimensional final states of
two LSTMs.

The resulting e(wi) is a 358-dimensional vector.

3.2 Feature extraction layers

We denote a recurrent layer with inputs
x1, . . . , xn and hidden states h1, . . . , hn by
hi = RNN(xi, hi−1). We use two types of recur-
rent cells: LSTM (Hochreiter and Schmidhuber,
1997) and GRU (Cho et al., 2014).

We apply three layers of LSTM with 150-
dimensional hidden states on the embedding vec-
tors:

hji = LSTM
(
hj−1i , hj−1i−1

)
j = 1, 2, 3

where h0i = e(wi). We also apply 50% dropout
before each LSTM layer.

The obtained 150-dimensional vectors repre-
sent the words with their contexts, and are ex-
pected to contain necessary information about the
lemma, POS tag and morphological features.

3.3 Output layers

3.3.1 POS tags and features

Part-of-speech tagging and morphological feature
prediction are word-level classification tasks. For
each of these tasks we apply a linear layer with
softmax activation.

p̃i = softmax(Wph
3
i + bp)

f̃ki = softmax
(
Wfkh3i + bfk

)
k = 1, . . . , 21

The dimensions of the matrices Wp, Wfk and
vectors bp, bfk depend on the training set for
the given language: Wp ∈ R|P |×150, Wfk ∈
R|Fk|×150, k = 1, . . . , 21. So we end up with 22
cross-entropy loss functions:

Lp =
1

n

n∑

i=1

ce(p̃i, pi)

Lfk =
1

n

n∑

i=1

ce
(
f̃ki , f

k
i

)
k = 1, . . . , 21
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Tag Values

POS

PROPN (6.328%), PUNCT (11.574%), ADJ (6.102%), NOUN (16.997%),
VERB (11.254%), DET (7.961%), ADP (8.614%), AUX (6.052%),
PRON (9.081%), PART (2.721%), SCONJ (1.881%), NUM (1.954%), ADV (5.158%),
CCONJ (3.279%), X (0.414%), INTJ (0.336%), SYM (0.295%)

Number Sing (27.357%), Plur (6.16%), None (66.483%)
Degree Pos (5.861%), Cmp (0.308%), Sup (0.226%), None (93.605%)
Mood Ind (7.5%), Imp (0.588%), None (91.912%)
Tense Past (4.575%), Pres (5.316%), None (90.109%)
VerbForm Fin (9.698%), Inf (4.042%), Ger (1.173%), Part (2.391%), None (82.696%)
Definite Def (4.43%), Ind (2.07%), None (93.5%)
Case Acc (1.284%), Nom (4.62%), None (94.096%)
Person 1 (3.255%), 3 (5.691%), 2 (1.396%), None (89.658%)
PronType Art (6.5%), Dem (1.258%), Prs (7.394%), Rel (0.569%), Int (0.684%), None (83.595%)
NumType Card (1.954%), Ord (0.095%), Mult (0.033%), None (97.918%)
Voice Pass (0.589%), None (99.411%)
Gender Masc (0.743%), Neut (0.988%), Fem (0.24%), None (98.029%)
Poss Yes (1.48%), None (98.52%)
Reflex Yes (0.049%), None (99.951%)
Foreign Yes (0.009%), None (99.991%)
Abbr Yes (0.04%), None (99.96%)
Typo Yes (0.052%), None (99.948%)

Table 1: The values for part-of-speech and morphological features for English - EWT treebank.

numeric All characters are numeric
mainly numeric More than 50% of characters are numeric
all lower All characters are lower cased
all upper All characters are upper cased
initial upper The first character is upper cased
contains digit At least one of the characters is digit
other None of the above rules applies
padding This is used for the padding placeholders for short sequences

Table 2: Casing features used in the embedding layer.

3.3.2 Lemma generation

This subsection describes our main contribution.
In order to generate the lemmas for all words, we
add one GRU-based decoder per each word. These
decoders share the weights and work in parallel.
The i-th decoder outputs l̃1i , . . . , l̃

mi
i , the predicted

characters of the lemma of the i-th word. We de-
note the inputs to the i-th decoder by x1i , . . . , x

mi
i .

Each of xji is a concatenation of four vectors:

xji =
(
h3i , ĉ

j
i , π

j
i , l̂

j−1
i

)
.

1. h3i is the representation of the i-th word af-
ter feature extractor LSTMs. This is the only
part of xji vector that does not depend on
j. This trick is important to make sure that

word-level information is always available in
the decoder.

2. ĉji = Emb30(cji ) is the same embedding of
the j-th character of the word used in the
character-level BiLSTM described in Section
3.1.

3. πji is some form of positional encoding. It
indicates the number of characters remain-
ing till the end of the input word: πji =
Emb5(ni−j+1). Positional encodings were
introduced in (Sukhbaatar et al., 2015) and
were successfully applied in neural machine
translation (Gehring et al., 2017; Vaswani
et al., 2017).
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4. l̂j−1i is the indicator of the previous charac-
ter of the lemma. During training it is the
one-hot vector of the ground-truth: l̂j−1i =

onehot(lj−1i ). During inference it is the
output of the GRU in the previous timestep
l̂j−1i = l̃j−1i .

These inputs are passed to a single layer of GRU
network. The output of the decoder is formed by
applying another dense layer on the GRU state:

sji = GRU(xji , s
j−1
i )

l̃ji =Wos
j
i + bo

Here, sji ∈ R150, Wo ∈ R|C|×150, where |C| is
the number of characters in the alphabet. The ini-
tial state of the GRU is the output of the feature
extractor LSTM: s0i = h3i . All GRUs share the
weights.

The loss function for lemma output is:

Ll =
1

n

n∑

i=1

1

ni

ni∑

j=1

ce
(
l̃ji , l

j
i

)

3.4 Multitask loss function
The combined loss function is a weighted average
of the loss functions described above:

L = λlLl + λpLp +
21∑

k=1

λfkLfk (1)

The final version of our system used λp = 0.2
and λl = λfk = 1 for every k.

4 Experiments

We have implemented the architecture defined
in the previous section using Keras framework.
Our implementation is based on the codebase for
(Reimers and Gurevych, 2017)3. The new part of
the architecture (lemma generation) is quite slow.
The overall training speed is decreased by more
than three times when it is enabled. We have left
speed improvements for future work.

To train the model we used RMSProp optimizer
with early stopping. The initial learning rate was
0.001, and it was decreased to 0.0005 since the
seventh epoch. The training was stopped when
the loss function was not improved on the devel-
opment set for five consecutive epochs.

3https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf

Due to time constraints, we have trained our
neural architecture on just nine treebanks. These
include three English and two French treebanks.

Our system was evaluated on Ubuntu virtual
machines in TIRA platform (Potthast et al., 2014)
and on our local machines using the test sets
available on UD GitHub repository (Zeman et al.,
2018a).

The version we ran on TIRA had a bug in the
preprocessing pipeline and was doubling new line
symbols in the input text. Raw texts in UD v2.2
occasionally contain new line symbols inside the
sentences. These symbols were duplicated due
to the bug, and the sentence segmentation part of
UDPipe treated them as two different sentences.
The evaluation scripts used in CoNLL 2018 UD
Shared Task obviously penalized these errors. Af-
ter the deadline of the Shared Task, we ran the
same models (without retraining) on the test sets
on our local machines without new line symbols.

Additionally, we locally trained models for
two more non-Indo-European treebanks: Arabic
PADT and Korean GSD.

4.1 Results

Table 3 shows the main metrics of CoNLL 2018
UD Shared Task on the nine treebanks that we
used for training our models. For each of the met-
rics we report five scores, two scores on our local
machine (our model and UDPipe 1.2), and three
scores from the official leaderboard4 (our model,
UDPipe baseline, the best score for that particu-
lar treebank). LAS metric evaluates sentence seg-
mentation, tokenization and dependency parsing,
so the numbers for our models should be identical
to UDPipe 1.2. MLAS metric additionally takes
into account POS tags and morphological features,
but not the lemmas. BLEX metric evaluates de-
pendency parsing and lemmatization. The full de-
scription of these metrics are available in (Zeman
et al., 2018b) and in CoNLL 2018 UD Shared Task
website5. Table 4 compares the same models us-
ing another set of metrics that measure the per-
formance of POS tagging, morphological feature
extraction and lemmatization.

4http://universaldependencies.org/
conll18/results.html

5http://universaldependencies.org/
conll18/evaluation.html
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Metric LAS MLAS BLEX
Environment Local TIRA Local TIRA Local TIRA

Model Our UDPipe Our UDPipe Winner Our UDPipe Our UDPipe Winner Our UDPipe Our UDPipe Winner
English EWT 77.12 77.12 65.69 77.56 84.57 62.12 68.27 57.73 68.70 76.33 66.35 70.53 60.73 71.02 78.44
English GUM 74.21 74.21 60.89 74.20 85.05 56.43 62.66 44.73 62.66 73.24 58.75 62.14 48.54 62.14 73.57
English LinES 73.08 73.08 60.52 73.10 81.97 55.25 64.00 44.89 64.03 72.25 57.91 65.39 47.24 65.42 75.29
French Spoken 65.56 65.56 58.94 65.56 75.78 51.50 53.46 47.08 53.46 64.67 50.07 54.67 48.77 54.67 65.63
French Sequoia 81.12 81.12 66.14 81.12 89.89 64.56 71.34 55.68 71.34 82.55 62.50 74.41 58.99 74.41 84.67
Finnish TDT 76.45 76.45 58.65 76.45 88.73 62.52 68.58 48.24 68.58 80.84 38.56 62.19 28.87 62.19 81.24
Finnish FTB 75.64 75.64 65.48 75.64 88.53 54.06 65.22 44.15 65.22 79.65 46.57 61.76 38.95 61.76 82.44
Swedish LinES 74.06 74.06 60.21 74.06 84.08 50.16 58.62 40.10 58.62 66.58 55.58 66.39 44.80 66.39 77.01
Swedish Talbanken 77.72 77.72 62.70 77.91 88.63 58.49 69.06 46.89 69.22 79.32 59.64 69.89 48.41 70.01 81.44
Arabic PADT 65.06 65.06 N/A 66.41 77.06 51.79 53.81 N/A 55.01 68.54 2.89 56.34 N/A 57.60 70.06
Korean GSD 61.40 61.40 N/A 61.40 85.14 47.73 54.10 N/A 54.10 80.75 0.30 50.50 N/A 50.50 76.31

Table 3: Performance of our model compared to UDPipe 1.2 baseline and the winner models of CoNLL
2018 UD Shared Task.

Metric POS UFeat Lemma
Environment Local TIRA Local TIRA Local TIRA

Model Our UDPipe Our UDPipe Winner Our UDPipe Our UDPipe Winner Our UDPipe Our UDPipe Winner
English EWT 90.47 93.61 92.96 93.62 95.94 93.95 94.60 93.87 94.60 96.03 91.51 95.92 95.77 95.88 97.23
English GUM 91.00 93.23 89.94 93.24 96.44 93.70 93.89 91.61 93.90 96.68 89.26 94.36 88.66 94.36 96.18
English LinES 88.93 94.71 87.99 94.71 97.06 92.81 94.97 91.05 94.97 97.08 86.84 95.84 85.37 95.84 96.56
French Spoken 92.67 92.94 92.18 92.94 97.17 99.97 100.00 100.00 100.00 100.00 86.28 95.84 95.39 95.84 97.50
French Sequoia 92.81 95.84 95.11 95.84 98.15 93.77 94.97 94.36 94.97 97.50 79.41 97.03 96.56 97.03 97.99
Finnish TDT 92.72 94.37 92.35 94.37 97.30 89.10 92.06 88.49 92.06 95.58 62.25 86.49 59.50 86.49 95.32
Finnish FTB 86.77 92.28 86.44 92.28 96.70 89.40 92.74 88.82 92.74 96.89 73.06 88.70 72.35 88.70 97.02
Swedish LinES 90.02 93.97 89.74 93.97 97.37 83.65 87.23 82.75 87.23 89.61 82.15 94.58 80.59 94.58 96.90
Swedish Talbanken 91.30 95.35 91.07 95.36 97.90 89.23 94.34 87.93 94.36 96.82 82.99 95.30 81.71 95.28 97.82
Arabic PADT 88.50 89.35 N/A 89.34 93.63 83.07 83.39 N/A 83.42 90.96 7.42 87.42 N/A 87.41 91.61
Korean GSD 85.34 93.44 N/A 93.44 96.33 99.49 99.51 N/A 99.51 99.70 12.87 87.03 N/A 87.03 94.02

Table 4: Additional metrics describing the performance of our model, UDPipe 1.2 baseline, and the
winner models of CoNLL 2018 UD Shared Task.

5 Discussion

5.1 Input vectors for lemma generation

The initial versions of the lemma decoder did not
get the state of the LSTM below h3i and positional
embedding πji as inputs. The network learned
to produce lemmas with some accuracy but with
many trivial errors. In particular, after training on
English - EWT treebank, the network learned to
remove s from the end of the plural nouns. But it
also started to produce ¡end-of-the-word¿ symbol
even if s was in the middle of the word. We be-
lieve the reason was that there was almost no in-
formation available that would allow the decoder
to distinguish between plural suffix and a simple
s inside the word. One could argue that the initial
state of the GRU (h3i ) could contain such informa-
tion, but it could have been lost in the GRU.

To remedy this we decided to pass h3i as an input
at every step of the decoder. This idea is known to
work well in image caption generation. The ear-
liest usage of this trick we know is in (Donahue
et al., 2015).

Additionally, we have added explicit informa-
tion about the position in the word. Unlike
(Vaswani et al., 2017), we encode the number of
characters left before the end of the word. This
choice might be biased towards languages where

the ending of the word is the most critical in
lemmatization.

By combining these two ideas we got signif-
icant improvement in lemma generation for En-
glish. We did not do ablation experiments to de-
termine the effect of each of these additions.

The additional experiments showed that this ar-
chitecture of the lemmatizer does not generalize to
Arabic and Korean. We will investigate this prob-
lem in the future work.

5.2 Balancing different tasks

Multitask learning in neural networks is usually
complicated because of varying difficulty of indi-
vidual tasks. The λ coefficients in (1) can be used
to find optimal balance between the tasks. Our ini-
tial experiments with all λ coefficients equal to 1
showed that the loss term for POS tagging (Lp)
had much higher values than the rest. We decided
to set λp = 0.2 to give more weight to the other
tasks and noticed some improvements in lemma
generation.

We believe that more extensive search for bet-
ter coefficients might help to significantly improve
the overall performance of the system.
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5.3 Fighting against overfitting

The main challenge in training these networks is
to overcome overfitting. The only trick we used
was to apply dropout layers before feature extrac-
tor LSTMs. We did not apply recurrent dropout
(Gal and Ghahramani, 2016) or other noise in-
jection techniques, although recent work in lan-
guage modeling demonstrated the importance of
such tricks for obtaining high performance mod-
els (Merity et al., 2018).

6 Conclusion

In this paper we have described our submission to
CoNLL 2018 UD Shared Task. Our neural net-
work was learned to jointly produce lemmas, part-
of-speech tags and morphological features. It is
the first step towards a fully multitask neural ar-
chitecture that will also produce dependency re-
lations. Future work will include more extensive
hyperparameter tuning and experiments with more
languages.
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Abstract

This is a system description paper for the
CUNI x-ling submission to the CoNLL
2018 UD Shared Task. We focused on
parsing under-resourced languages, with
no or little training data available. We em-
ployed a wide range of approaches, includ-
ing simple word-based treebank transla-
tion, combination of delexicalized parsers,
and exploitation of available morphologi-
cal dictionaries, with a dedicated setup tai-
lored to each of the languages. In the offi-
cial evaluation, our submission was iden-
tified as the clear winner of the Low-
resource languages category.

1 Introduction

This paper describes our submission to the CoNLL
2018 shared task on Multilingual Parsing from
Raw Text to Universal Dependencies (Zeman
et al., 2018; Nivre et al., 2016).

Our primary focus was on the 4 languages with
no annotated training data (treebanks) available, as
we have significant experience with such a setting
(Mareček, 2016; Rosa et al., 2017; Rosa, 2018a);
in the shared task, these are Naija, Faroese, Thai,
and Breton. Apart from Naija, there are at least
some non-treebank resources available for each
of the languages, such as parallel data, monolin-
gual data, or morphological dictionaries.1 Fur-
thermore, we also employ treebanks for other lan-
guages together with several cross-lingual parsing
methods; in our work, we will refer to the lan-
guage being parsed as the target language, and the
other languages that we exploit when parsing it as

1Parallel data actually exist for all of the languages, at
least in the form of the New Testament part of the Bible and
the Universal Declaration of Human Rights; however, using
these datasets was not allowed in the shared task.

Language Sentences Tokens
Buryat 19 153
Kurmanji 20 242
Upper Sorbian 23 460
Kazakh 31 529
Armenian 50 804

Table 1: Sizes of available training data.

the source languages. We used a different setup
for each of the languages, based on its characteris-
tics and on the available resources.

Our secondary focus was on the 5 languages
with only tiny training data available – see Table 1.
However, as we had no previous experience with
this particular setup, we tried to build upon our
successful approaches for languages with no train-
ing data, combining the resources available for the
target language with treebanks for different (but
preferably close) source languages.

In the official evaluation of the shared task, our
submission achieved the highest average scores in
all of the main evaluation metrics when averaged
over the 9 low-resource languages. We scored par-
ticularly well for the languages with no training
data available, winning for 3 of them. For the lan-
guages with small training data available, our sub-
mission was usually not the highest scoring one,
but still performed very competitively.

2 Approach

Our baseline approach for parsing a target lan-
guage is to train the UDPipe tokenizer, tagger and
parser (Straka et al., 2016) on UD 2.2 training data
for the target language (Nivre et al., 2018), using
the default settings. For target languages with no
treebank, we need to use training data for another
language and cross-lingual techniques. For target
languages with small training data, we also use
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cross-lingual techniques, as an enrichment of the
baseline approach to achieve better performance.

In this section, we introduce several approaches
that we apply to many or most of the target lan-
guages; the specific setups used for each of the
target languages are described in later sections.

2.1 Treebank translation using parallel data

Tiedemann (2014) introduced the approach of au-
tomatically translating the word forms in a source
treebank into the target language, and then train-
ing a pseudo-target parser (and/or a tagger) on the
resulting pseudo-target treebank.

This approach was further investigated by Rosa
et al. (2017), Rosa and Žabokrtský (2017) and
Rosa (2018a), finding that the sophistication of the
Machine Translation (MT) system plays a rather
minor role in cross-lingual parsing, while there is a
significant benefit in using word-based translation
– this forces the translations to be more literal, and
enables a trivial approach to annotation transfer.

In this work, we use probably the simplest
possible approach, based on extracting a dictio-
nary from word-aligned data, and translating each
source word into the target word most frequently
aligned to it, ignoring any context or other infor-
mation. While we had found that using state-of-
the-art statistical MT tools leads to slightly bet-
ter results, it is also much more computationally
demanding, which may be a bottleneck when one
needs to process a lot of language pairs in a short
time.

Our treebank translation pipeline is:

1. obtain OpenSubtitles20182 (Lison and Tiede-
mann, 2016) sentence-aligned source-target
parallel data from Opus3 (Tiedemann, 2012)

2. tokenize the parallel data with source and tar-
get UDPipe tokenizers

3. obtain intersection word-alignment with
FastAlign4 (Dyer et al., 2013)

4. extract the translation table: for each source
word, take the target word most frequently
aligned to it, and store it as its translation

5. translate the source training treebank into the
target language, replacing each word form

2http://www.opensubtitles.org/
3http://opus.nlpl.eu/
4https://github.com/clab/fast_align

and each lemma5 by its translation from the
translation table (keep the word untranslated
if it does not appear in the translation table)

6. now UDPipe can be trained in a standard way
on the resulting pseudo-target treebank and
applied to target texts

2.2 UniMorph morphology post-corrections

One of the available resources is UniMorph
(Sylak-Glassman, 2016),6 a project on universal
morphology annotation that covers a majority of
the low-resource languages in this shared task. It
provides a list of words associated with lemmas
and morphological features. The annotation of
features is unfortunately different from that used
in Universal Dependencies, however, almost all
the features can be mapped to them. The data
available for low-resource languages is as follows:

• large data (10,000 words): Armenian, Bre-
ton, Faroese, and Kurmanji

• small data (257 words): Kazakh

• no data: Buryat, Naija, Thai, and Upper Sor-
bian; for Upper Sorbian, we use the large data
for the similar Lower Sorbian

The POS tag of the word can be found also
among the features, however, sometimes it does
not match the UPOS; e.g. the copula verbs are
AUX in UD but V (verb) in UniMorph.

We use the UniMorph lexicon for correcting the
morphological features, lemmas, and tags. If a
token is found in the lexicon, we change its tag
(unless it is AUX), lemma, and morphological fea-
tures according to the lexicon. Each feature that
was mapped from UniMorph style to UD style is
added to the features obtained by the tagger. In
case it was there but with a different value, the
value is changed.

We chose to post-correct the morphological an-
notation only after parsing. This way, the parser
cannot benefit from the potentially better mor-
phological annotation; however, the target parser
seems to benefit from being applied to an annota-
tion more similar to what it was trained on.7

5We translate lemmas using the dictionary extracted on
forms, as we typically do not have another choice anyway.
We assume that the lemma is a prominent word form and is
thus likely to be translated correctly even in this way.

6https://unimorph.github.io/
7We have not evaluated the influence on delexicalized
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2.3 Combining multiple parsers

For cross-lingual parsing of target languages with-
out any training data, McDonald et al. (2013)
showed that combining syntactic information from
multiple source languages can lead to a more accu-
rate parsing than when using only one source lan-
guage. Moreover, this idea can be easily extended
to target languages with small training data, com-
bining the target language resources with larger
resources for other close languages (Zhang and
Barzilay, 2015).

To combine the multilingual resources, we use
the weighted parse tree combination method of
Rosa and Žabokrtský (2015), which is based on
the work of Sagae and Lavie (2006). It consists of
training separate parsers on the source language
treebanks (and also the target language treebank if
it is available), applying them independently to the
input sentence, and then combining the resulting
dependency trees into a directed graph, with each
edge weighted by a sum of weights of the parsers
which produced this edge. The final parse tree is
then obtained by applying the directed maximum
spanning tree algorithm of Chu and Liu (1965) and
Edmonds (1967) to the weighted graph.

To make the source parser applicable to the tar-
get language sentences, we either use a translation
approach (translating the source training treebank
into the target language, or translating the target
input data into the source language), or we train a
delexicalized parser, which only uses the part-of-
speech as its input, disregarding the word forms.

The parsers need to be weighted according to
their expected performance on the target language
data. Moreover, for efficiency reasons, we want to
only select a few most promising source languages
to use; we usually combine only 3 sources.8 For
target languages with small training data available,
we simply evaluate the source parsers on the tar-
get treebank, select the ones that perform best,
and weight them according to their LAS;9 the tar-
get parser is weighted by a hand-crafted weight
slightly above the highest-scoring source parser.10

source parsers. However, the delexicalized parsers do
not use morphological features, and UniMorph-based post-
processing does not seem to change the UPOS tags very of-
ten, so we do not expect a strong influence.

8Note that combining only two parsers does not make
much sense due to the combination/voting mechanism.

9Labelled Attachment Score; see Section 5.
10We want to enable combining the information from the

parsers, but we also want to give most power to the target
parser. Therefore, we manually choose a target weight higher

For languages with no treebank data available,
we used the typological similarity score of Agić
(2017) computed on the WALS dataset (Dryer and
Haspelmath, 2013).

We use a similar approach to combine multiple
predictors for the dependency relation label, part
of speech tag, morphological features, and mor-
phological lemma. However, as opposed to de-
pendency trees, there are no strict structural con-
straints, which means that instead of the spanning
tree algorithm, we can use a simple weighted vot-
ing.

2.4 Using pre-trained word embeddings

The UDPipe parser uses vector representations of
input word forms, which it by default trains jointly
with training the parser, i.e. using only the words
that appear in the training treebank. However,
the parsing accuracy can typically be improved by
pre-training the word embeddings on larger mono-
lingual data, and using these fixed embeddings in
the parser instead.11 For low-resource languages,
this becomes even more promising, as the train-
ing treebanks are tiny or non-existent, and pre-
training the word embeddings on much larger data
can both improve performance on words unseen in
the training data (which are most words) as well
as indirectly provide the parser with some more
knowledge of the structure of the target language
(Rosa et al., 2017). This is especially useful when
using translation approaches, where the parser is
not actually exposed to genuine target texts during
training; in such cases, the word embeddings bring
in such exposure at least indirectly.

We use the word embeddings of Bojanowski
et al. (2016) pre-trained on Wikipedia texts, which
are available online12 for nearly all of our focus
languages (with the only exception of Naija).

3 Languages with low training data

For all the languages with some small training data
available, we use this data for training a base UD-
Pipe model, and combine it with additional models
trained on data for other close source languages.

than the highest source weight, but lower than the sum of the
two lowest source weights.

11https://ufal.mff.cuni.cz/udpipe/
users-manual#udpipe_training_parser_
embeddings

12https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md
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Target weight Additional sources’ weights
0.57 Armenian 0.56 Latvian 0.51 Estonian
0.45 Buryat 0.41 Hindi 0.38 Uyghur
0.44 Kazakh 0.33 Turkish 0.29 Uyghur
0.52 Kurmanji 0.47 Latin 0.45 Greek

Table 2: Weights of the target parser and addi-
tional delexicalized source parsers used in parser
combination. Weights are based on LAS achieved
by the parsers on the target training treebank.

3.1 Armenian, Buryat, Kazakh, Kurmanji
Our setup is identical for four of the target lan-
guages – we train UDPipe on the target training
data, and combine it with delexicalized parsers for
two close source languages, selected and weighted
based on the LAS they achieve on the target train-
ing treebank:

1. train a UDPipe tokenizer, tagger and parser
on the small target training data; use the pre-
trained word embeddings for the parser

2. train delexicalized parsers for two other close
source languages

3. tokenize and tag the input with the target
model

4. parse it with the target parser and the delexi-
calized source language parsers

5. do a weighted combination of the parse trees,
using LAS on target treebank as weights

6. post-fix the morphology using data from Uni-
Morph, rewriting UPOS and lemmas and
merging morphological features (except for
Buryat for which UniMorph is not available)

In Table 2, we list the additional source lan-
guages and the weights used for the parser com-
bination.

3.2 Upper Sorbian
For Upper Sorbian, our setup is a bit more com-
plex, combining the target model with source
models both for tagging and parsing:

1. apply Polish tokenizer

2. combine Upper Sorbian tagger with Pol-
ish tagger and pseudo-Upper Sorbian tagger
trained on MonoTranslated Czech treebank

Predicting lemmas:
0.40 U.Sorb. 0.60 Polish 0.51 Czech

Predicting UPOS tags:
1.00 U.Sorb. 0.69 Polish 0.65 Czech

Predicting morphological features:
0.30 U.Sorb. 0.10 Polish 0.24 Czech

Parsing:
0.53 U.Sorb. 0.70 Croatian 0.73 Czech

0.66 Russian 0.69 Slovak
0.68 Slovene

Table 3: Weights used for combining the individ-
ual UDPipe predictors for the Upper Sorbian tar-
get and for the additional source languages.

3. apply UniMorph morphology post-correction
based on Lower Sorbian UniMorph data

4. combine Upper Sorbian parser with delexi-
calized Czech, Croatian, Russian, Slovak and
Slovene parsers

The combination weights are listed in Table 3.
Upper Sorbian is very similar to Czech and Pol-

ish, even lexically, which we tried to exploit by
using Czech and Polish treebanks also to train tag-
gers for Upper Sorbian.

We found the similarity with Polish to be suffi-
cient for the Polish tagger to be directly applicable
to Upper Sorbian texts without any translation.

For Czech, we decided to try to translate the
Czech treebank into a pseudo-Upper Sorbian tree-
bank, as the orthographic variance is higher for
this language pair. However, as there are no par-
allel data available, we resorted to an approximate
translation approach. First, we preprocessed the
Czech treebank by changing ‘-v-’ to ‘-w-’ and ‘o-’
to ‘wo-’, as this seems to be a regular difference
between Czech and Upper Sorbian. We then ap-
plied the MonoTrans system (Rosa, 2017), which
tries to map the source words onto similar target
words; the similarity is computed based on an edit
distance of the word forms, and on their frequen-
cies in monolingual corpora.13

Moreover, evaluation of the Upper Sorbian tools
on the Upper Sorbian training data indicated a very
low performance of the tools (even without cross-
validation); therefore, we often give more power
to the cross-lingual tools than to the Upper Sorbian

13We used the Czech treebank and the Upper Sorbian texts
from Wikipedia (Rosa, 2018b) as monolingual corpora.
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tools in the combinations. The weights we use are
the accuracies of the tools on the Upper Sorbian
training data (LAS for parsing, UPOS accuracy for
UPOS, etc.); this time, the target weights are ob-
tained in the same way as the source weights, i.e.
they are not hand-crafted.

4 Languages with no training data

We list the processing pipeline for each of the lan-
guages, together with detailed descriptions of pro-
cessing steps specific for the language.

4.1 Naija
1. apply English tokenizer

2. “translate” words to English

3. apply English tagger and parser

4. copy lowercased form to lemma, remove final
‘-s’ if there is one

For Naija (Nigerian Pidgin) we have no data
available at all. Some basic information about
this language can be found on Wikipedia,14 where
there are also links to other resources. A couple
of sentences can be found also on the web of
Jehovah Witnesses15 and we also looked into
the translation of the Declaration of Human
Rights.16 Based on these resources, we conclude
that Naija is very similar to English, but differs
mainly in the most common words and function
words. We also learned that its written form
is not standardized, since different resources
showed different level of similarity with English
spelling. While the texts of Jehovah Witnesses
were almost English (We come from different
different place and we dey speak different different
language.), the example from the web of the
University of Hawai17 shows more differences:

Naija: A bai shu giv mai broda.
English: I bought shoes that I gave to my brother.

Since we did not know what spelling is used in
the testing treebank, we decided to use the tools
trained on English, applied to Naija inputs pro-
cessed with a couple of translation rules which we
devised based on the Naija texts which we read.

14https://en.wikipedia.org/wiki/
Nigerian_Pidgin

15https://www.jw.org/pcm/
16https://unicode.org/udhr/

translations.html
17http://www.hawaii.edu/satocenter/

langnet/definitions/naija.html

First, some Naija words are directly translated
into English using the following small dictionary:

sey → that de → is
na → is don → has

wey → which am → him
im → his go → will

wetin → what no → not
dey → is di → the
deh → is pikin → small
foh → in sebi → right

e → he abi → right
dem → they nna → man

dis → this sabi → know

It seems that Naija language is very simple and
many words are homonymous when translating
into English. It is of course possible that not all
translations are correct, since the dictionary was
developed mainly by choosing the most probable
English word based on the example context.

Second, we used a couple of regular expressions
to translate remaining non-English words.18

i → y k → c
d → th ˆ → h
t → th $ → t

a$ → er o → ou

We perform the above substitutions on each un-
known Naija word one after another, until it be-
comes a known English word. If no English word
is reached after all the substitutions are done, the
original word is used.

It is evident that any information found about
such a highly low-resource language is crucial.
We read a couple of web pages with examples of
Naija, and based on that we built the small dictio-
nary. If we were limited to read only the English
Wikipedia article about the Naija language, the
dictionary would be of course smaller and the re-
sults would be worse. In Table 4, we show the re-
sults when no translation rules are used and Naija
is parsed by English parser, and the results when
only the information from the Wikipedia article
about Naija is used.

4.2 Thai

1. obtain a Thai tokenizer

2. translate Indonesian, Chinese and Viet-
namese treebanks into Thai, using OpenSub-

18For this purposes, we define that a word is English if it
has more than five occurrences in the first 3 million words of
the English Wikipedia dump.
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Naija LAS MLAS BLEX
no translation 16.1 2.7 14.9
using Wikipedia 22.3 2.6 19.4
using all sources 30.1 4.6 26.0

Table 4: Comparison of Naija results with no
translation, only with Wikipedia examples, and the
full setup which also uses information we learned
from other websites.

titles2018 parallel data;19

3. train pseudo-Thai taggers and parsers on the
translated treebanks; use pre-trained Thai
word embeddings for the parsers

4. combine the taggers and parsers (with
weights 0.75, 0.55, 0.40 based on LAS of the
source parsers on source development data)

The crucial part of Thai analysis is tokenization,
since there are no tokenized texts available; how-
ever, we need tokenization both in the main pro-
cessing pipeline, as well as to tokenize the parallel
data for the translation step. The only data com-
prising separated Thai tokens are the word vec-
tors trained on Wikipedia20 (Bojanowski et al.,
2016). The tokens are ordered according to their
frequency and are associated with the vectors.

We used a very simple approach. We generated
a synthetic Thai text by sampling Thai tokens from
the list of tokens available. Since we do not know
the token distribution, we decided that the proba-
bility Prob(t) of a token is inversely proportional
to the square root of its order Ord(t):

Prob(t) ∝ 1√
Ord(t)

The lexicon itself contains a lot of foreign words
(English, Japanese, Chinese), which caused that
approximately every third generated word was not
Thai. We therefore filtered out all the tokens con-
taining English, Japanese, or Chinese characters.21

After a token is sampled, the end of sentence is
generated with a probability of 5%.

19Vietnamese uses a lot of tokens with internal spaces; for
the translation, we replaced the spaces with underscores.

20https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

21For filtering, we used the regular expression [a-z A-Z
\u4E00-\u9FFF \u3040-\u309F \u30A0-\u30FF
\u4e00-\u9fff]

By this procedure, we generated a text of one
million tokens in total. We generated two vari-
ants, one with tokens separated by spaces and one
without spaces. Using these two files, we trained
the UDPipe tokenizer for Thai.22 We assume that
since the tokens were sampled randomly, the only
information the tokenizer can learn are the tokens
itself and therefore the tokenization of real Thai
texts should be reasonable.

The parameters of the sampling procedure
could be tuned if we had even a tiny example of
tokenized text in Thai.

4.3 Faroese

1. train devowelled Nynorsk tagger and parser

2. apply Nynorsk tokenizer

3. apply devowelled Nynorsk tagger and parser

4. copy lowercased form to lemma

5. apply UniMorph morphology post-correction

Faroese is quite close to the Nynorsk variant of
Norwegian; even applying the Nynorsk models di-
rectly to Faroese texts yields competitive results.
Unfortunately, there is no parallel data available
to perform standard treebank translation.

However, as shown by Rosa et al. (2017), lexi-
cally similar languages can be brought even closer
by devowelling the words, i.e. by removing all
vowels, which acts as a sort of a poor man’s trans-
lation into an intermediary pivot language. We
thus devowel the Nynorsk treebank to obtain a de-
vowelled Nynorsk tagger and parser, and apply it
to devowelled Faroese texts.

4.4 Breton

1. translate French treebank into Breton, using
OpenSubtitles2018 parallel data

2. train pseudo-Breton tagger and parser on the
translated treebank (by mistake, we did not
use pre-trained Breton word embeddings)

3. apply French tokenizer

4. apply pseudo-Breton tagger and parser

5. apply UniMorph morphology post-correction

22As recommended by the UDPipe manual, we use the
dimension=64 setting.
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Submission LAS MLAS BLEX UPOS
CUNI xling 27.9 6.1 14.0 57.6
Uppsala 25.9 5.2 9.0 61.1
TurkuNLP 22.9 3.6 11.4 52.5
Baseline 17.2 3.4 7.6 45.2

Table 5: Macro-average LAS, MLAS, BLEX and
UPOS on the 9 low-resource languages. Best re-
sult in bold, second-best result underlined.

Breton is a Celtic language; however, we do not
have much treebank or parallel data for Celtic lan-
guages. Therefore, we decided to only use French
as a single source, since due to the long-term con-
tact, Breton is similar to French in some aspects,
and there is at least some parallel data available.

5 Evaluation

The evaluation of the submissions to the shared
task was performed by the organizers via the TIRA
evaluation platform (Potthast et al., 2014), running
the submitted systems on secret test data and re-
porting their performance in LAS (labeled attach-
ment score), MLAS (morphology-aware labeled
attachment score), and BLEX (bi-lexical depen-
dency score). For a full description of the met-
rics, see (Zeman et al., 2018) or the shared task
website;23 here, we only note that while LAS only
evaluates parsing accuracy, MLAS also includes
evaluation of tagging (UPOS and morphological
features), while BLEX also includes lemmatiza-
tion. We also list UPOS tagging accuracies.

Table 5 shows the average scores over the 9
low-resource languages. Our submission achieved
the best average result in all the 3 main scoring
metrics; for comparison, we also list the submis-
sions that scored second-best in the metrics, and
the baseline setup.

Table 6 reports the results individually for each
low-resource language, together with the ranking
of our submission among all of the 26 participants.

All scores are adapted from official results.24

5.1 Languages with no training data

For the languages with no training data, which
were our primary focus, our submission typically
scores best in all of the metrics, with the exception

23http://universaldependencies.org/
conll18/evaluation.html

24http://universaldependencies.org/
conll18/results.html

of Breton. Our results are particularly strong for
Thai, 2x-3x higher than the second best system.

By analyzing our setup for Breton and compar-
ing it to the setups used by other participants of the
shared task, we found that we had unfortunately
taken several clearly suboptimal steps:

• We overlooked the availability of Ofis Publik
ar Brezhoneg,25 a Breton-French parallel cor-
pus of 60,000 sentences, considerably larger
and probably cleaner than the 17,000 Open-
Subtitles2018 sentences we used.

• We failed to note the peculiar Breton spelling
with a lot of intra-word apostrophes, which
calls for an adaptation of the tokenizer.

• We forgot to use the available pre-trained
word embeddings.

Another case where our solution performs
poorly is MLAS score for Naija, which does not
even surpass the baseline. We made the mistake
of keeping the morphological features predicted
by the English tagger, even though the pidgin lan-
guage exhibits little or no inflection, and a better
approach would thus be not to predict any morpho-
logical features at all (i.e. to always return ‘ ’). In-
deed, in the now-released test data, no morpholog-
ical features are annotated in the Naija treebank.

We also did not do well in UPOS tagging for
Faroese, probably because of the devowelling.

5.2 Languages with low training data
For the languages with some small training data
available, we score a bit worse. Our submission is
usually among the top 5 submissions and always
above the baseline, but it is rarely the best. Nev-
ertheless, as this setting was only our secondary
focus and as we had no prior experience with it,
we are still happy about our results.

In general, our submission performs particu-
larly well in MLAS, which is probably thanks to
our exploitation of the UniMorph dictionary. For
Armenian and Kazakh, we managed to win in
MLAS and BLEX, although we are not sure why,
as our setup was similar for all of the languages.
We note, however, that the available training data
are largest for these two languages; as we train
UDPipe on the target data with the default settings,
not adapted to the small size of the training data in
any way, our approach is probably better suited for

25http://opus.nlpl.eu/OfisPublik.php
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Target LAS MLAS BLEX UPOS
language ours comp. ours comp. ours comp. ours comp.
Breton 26.9 4 38.6 1 3.0 4 13.9 1 11.4 4 20.7 1 52.7 4 85.0 1
Faroese 49.4 1 47.2 2 1.1 1 0.8 2 14.4 1 14.4 2 58.7 6 65.5 1
Naija 30.1 1 24.5 2 4.6 6 5.3 1 26.0 1 22.9 2 67.9 1 57.2 2
Thai 13.7 1 6.9 2 6.3 1 2.2 2 10.8 1 3.5 2 39.4 1 33.8 2
Buryat 17.1 5 19.5 1 2.5 2 3.0 1 5.6 4 6.7 1 42.3 7 50.8 1
U.Sorb. 33.4 5 46.4 1 8.5 2 9.1 1 14.6 10 21.1 1 69.9 4 79.5 1
Armen. 30.1 4 37.0 1 13.4 1 10.4 2 19.0 1 18.3 2 71.4 2 75.4 1
Kazakh 26.3 2 31.9 1 8.9 1 8.6 2 11.3 1 10.2 2 54.6 5 61.7 1
Kurm. 24.0 8 30.4 1 6.9 3 8.0 1 12.6 3 13.7 1 61.5 1 61.3 2

Table 6: LAS, MLAS, BLEX and UPOS of our submission (ours), as well as the best result achieved
among the other participants (comp.). The ranks are also listed.

Submission LAS MLAS BLEX UPOS
Best 75.8 61.3 66.1 90.9
Baseline 65.8 52.4 55.8 87.3
CUNI xling 64.9 50.4 54.1 88.7

Table 7: Macro-average LAS, MLAS, BLEX and
UPOS on all 82 test sets for 57 languages.

languages with somewhat larger training data. We
hypothesize that the training procedure should be
modified when the training data are small, e.g. by
lowering the number of training iterations over the
data, or by reducing the complexity of the model;
however, we have not performed any experiments
in this direction.

5.3 All languages

For completeness, we also include the macro-
average evaluation of our submission on all 82 test
sets in Table 7; for all but the 9 low-resourced
ones, we simply submitted a standard UDPipe sys-
tem trained with default parameters.

We usually rank slightly below the official base-
line (typically around the 20th position), with a
huge loss to the winner. This shows that the parser
we use is not very strong in itself, in contrast with
most of our competitors’ parsers. Nevertheless,
by applying various specialized cross-lingual tech-
niques, we managed to surpass even the stronger
parsers on the low-resource languages.

6 Conclusion

In this paper, we described our submission to the
CoNLL 2018 UD Shared Task, in which we fo-
cused on under-resourced languages.

We have devised a separate processing pipeline

tailored to each low-resource language, based on
what resources are available for it and how simi-
lar to other resource-rich languages it is. Our ap-
proach mostly revolves around simple dictionary-
based machine translation, employment of pre-
trained word embeddings, combination of delex-
icalized parsers for close languages, and exploita-
tion of a morphological dictionary.

Our submission achieved the best average re-
sult in all the three main evaluation metrics on the
low-resource languages. For the languages with
no training data, our submission usually outper-
formed all other submissions. For the languages
with small training data, our submission was usu-
ally among the top 5 out of all the 26 submissions.

Our approach demonstrates that even quite sim-
ple methods can work well, as in the context-
independent word-based dictionary-lookup trans-
lation. On the other hand, we did not surpass
a LAS of 50 for any of the under-resourced lan-
guages, only reaching 28 on average. This shows
that, even though the various techniques we used
can bring huge improvements over the baselines,
the resulting parsing accuracies are probably still
too low for most practical purposes.
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Abstract

UDPipe is a trainable pipeline which per-
forms sentence segmentation, tokeniza-
tion, POS tagging, lemmatization and de-
pendency parsing (Straka et al., 2016). We
present a prototype for UDPipe 2.0 and
evaluate it in the CoNLL 2018 UD Shared
Task: Multilingual Parsing from Raw Text
to Universal Dependencies, which em-
ploys three metrics for submission rank-
ing. Out of 26 participants, the proto-
type placed first in the MLAS ranking,
third in the LAS ranking and third in the
BLEX ranking. In extrinsic parser evalua-
tion EPE 2018, the system ranked first in
the overall score.

The prototype utilizes an artificial neu-
ral network with a single joint model for
POS tagging, lemmatization and depen-
dency parsing, and is trained only using
the CoNLL-U training data and pretrained
word embeddings, contrary to both sys-
tems surpassing the prototype in the LAS
and BLEX ranking in the shared task.

The open-source code of the proto-
type is available at http://github.com/
CoNLL-UD-2018/UDPipe-Future.

After the shared task, we slightly refined
the model architecture, resulting in better
performance both in the intrinsic evalu-
ation (corresponding to first, second and
second rank in MLAS, LAS and BLEX
shared task metrics) and the extrinsic eval-
uation. The improved models will be
available shortly in UDPipe at http://

ufal.mff.cuni.cz/udpipe.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) seeks to develop cross-linguistically consis-
tent treebank annotation of morphology and syn-
tax for many languages. The latest version of
UD 2.2 (Nivre et al., 2018) consists of 122 de-
pendency treebanks in 71 languages. As such,
the UD project represents an excellent data source
for developing multi-lingual NLP tools which per-
form sentence segmentation, tokenization, POS
tagging, lemmatization and dependency tree pars-
ing.

The goal of the CoNLL 2018 Shared Tasks:
Multilingual Parsing from Raw Text to Universal
Dependencies (CoNLL 2018 UD Shared Task) is
to stimulate research in multi-lingual dependency
parsers which process raw text only. The overview
of the task and the results are presented in Zeman
et al. (2018). The current shared task is a reiter-
ation of previous year’s CoNLL 2017 UD Shared
Task (Zeman et al., 2017).

This paper describes our contribution to CoNLL
2018 UD Shared Task, a prototype of UDPipe 2.0.
UDPipe (Straka et al., 2016)1 is an open-source
tool which automatically generates sentence seg-
mentation, tokenization, POS tagging, lemmati-
zation and dependency trees, using UD treebanks
as training data. The current version UDPipe 1.2
(Straka and Straková, 2017) is used as a base-
line in CoNLL 2018 UD Shared Task. UDPipe
1.2 achieves low running times and moderately
sized models, however, its performance is behind
the current state-of-the-art, placing 13th, 17th and
18th in the three metrics (MLAS, LAS and BLEX,
respectively). As a participation system in the
shared task, we therefore propose a prototype for
UDPipe 2.0, with the goal of reaching state-of-the-
art performance.

1http://ufal.mff.cuni.cz/udpipe
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The contributions of this paper are:

• Description of UDPipe 2.0 prototype, which
placed 1st in MLAS, 3rd in LAS and 3rd in
BLEX, the three metrics of CoNLL 2018 UD
Shared Task. In extrinsic parser evaluation
EPE 2018, the prototype ranked first in over-
all score.
The prototype employs an artificial neural
network with a single joint model for POS
tagging, lemmatization, and parsing. It uti-
lizes solely CoNLL-U training data and word
embeddings, and does not require treebank-
specific hyperparameter tuning.
• Runtime performance measurements of the

prototype, using both CPU-only and GPU en-
vironments.
• Ablation experiments showing the effect of

word embeddings, regularization techniques
and various joint model architectures.
• Post-shared-task model refinement, improv-

ing both the intrinsic evaluation (correspond-
ing to 1st, 2nd and 2nd rank in MLAS, LAS
and BLEX shared task metrics) and the ex-
trinsic evaluation. The improved models will
be available soon in UDPipe.2

2 Related Work

Deep neural networks have recently achieved re-
markable results in many areas of machine learn-
ing. In NLP, end-to-end approaches were ini-
tially explored by Collobert et al. (2011). With
a practical method for pretraining word embed-
dings (Mikolov et al., 2013) and routine utiliza-
tion of recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), deep neural
networks achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017).

The wave of neural network parsers was started
recently by Chen and Manning (2014) who pre-
sented fast and accurate transition-based parser.
Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2016)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points

2http://ufal.mff.cuni.cz/udpipe

in 2016. The neural graph-based parser of Dozat
et al. (2017) won the last year’s CoNLL 2017 UD
Shared Task by a wide margin.

3 Model Overview

The objective of the shared task is to parse raw
texts. In accordance with the CoNLL-U format,
the participant systems are required to:

• tokenize the given text and segment it into
sentences;
• split multi-word tokens into individual words

(CoNLL-U format distinguishes between the
surface tokens, e.g., won’t, and words, e.g.,
will and not);
• perform POS tagging, producing UPOS (uni-

versal POS) tags, XPOS (language-specific
POS) tags and UFeats (universal morpholog-
ical features);
• perform lemmatization;
• finally perform dependency parsing, includ-

ing universal dependency relation labels.

We decided to reuse the tokenization, sentence
segmentation and multi-word token splitting avail-
able in UDPipe 1.2, i.e., the baseline solution, and
focus on POS tagging, lemmatization, and pars-
ing, utilizing a deep neural network architecture.

For practical reasons, we decided to devise a
joint model for POS tagging, lemmatization, and
parsing, with the goal of sharing at least the trained
word embeddings, which are usually the largest
part of a trained neural network model.

For POS tagging, we applied a straightforward
model in the lines of Ling et al. (2015) – first rep-
resenting each word with its embedding, contextu-
alizing them with bidirectional RNNs (Graves and
Schmidhuber, 2005), and finally using a softmax
classifier to predict the tags. To predict all three
kinds of tags (UPOS, XPOS and UFeats), we reuse
the embeddings and the RNNs, and only employ
three different classifiers, each for one kind of the
tags.

To accomplish lemmatization, we convert each
lemma to a rule generating it from the word form,
and then classify each input word into one of such
rules. Assuming that lemmatization and POS tag-
ging could benefit one another, we reuse the con-
textualized embeddings of the tagger, and lemma-
tize through the means of a fourth classifier (in
addition to the three classifiers producing UPOS,
XPOS and UFeats tags).
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Regarding the dependency parsing, we reimple-
mented a biaffine attention parser of (Dozat et al.,
2017), which won the previous year’s shared task.
The parser also processes contextualized embed-
dings, followed by additional attention and classi-
fication layers. We considered two levels of shar-
ing:

• loosely joint model, where only the word em-
beddings are shared;
• tightly joint model, where the contextualized

embeddings are shared by the tagger and the
parser.

4 Model Implementation

We now describe each model component in a
greater detail.

4.1 Tokenization and Sentence Segmentation
We perform tokenization, sentence segmentation
and multi-word token splitting with the baseline
UDPipe 1.2 approach. In a nutshell, input charac-
ters are first embedded using trained embeddings,
then fixed size input segments (of 50 characters)
are processed by a bidirectional GRU (Cho et al.,
2014), and each character is classified into three
classes – a) there is a sentence break after this
character, b) there is a token break after this char-
acter, and c) there is no break after this character.
For detailed description, see Straka and Straková
(2017).

We only slightly modified the baseline models
in the following way: in addition to the segments
of size 50 we also consider longer segments of
200 characters during training (and choose the best
model for each language according to the develop-
ment set performance). Longer segments improve
sentence segmentation performance for treebanks
with nontrivial sentence breaks – such sentence
breaks are caused either by the fact that a treebank
does not contain punctuation, or that semantic sen-
tence breaks (e.g., end of heading and start of a
text paragraph) are not annotated in the treebank.
The evaluation of longer segments models is pre-
sented later in Section 6.1.

4.2 Embedding Input Words
We represent each input word using three kinds of
embeddings, as illustrated in Figure 1.

• pretrained word embeddings: pretrained
word embeddings are computed using large
plain texts and are constant throughout the

Input word cat

Pretrained
embeddings.

Trained
embeddings.

c a t

GRU GRU GRU

Character-level
word embeddings.

Figure 1: Word embeddings used in the model.

training. We utilize either word embed-
dings provided by the CoNLL 2017 UD
Shared Task organizers (of dimension 100),
Wikipedia fastText embeddings3 (of dimen-
sion 300), or no pretrained word embeddings,
choosing the alternative resulting in highest
development accuracy. To limit the size of
the pretrained embeddings, we keep at most
1M most frequent words of fastText embed-
dings, or at most 3M most frequent words of
the shared task embeddings.
• trained word embeddings: trained word em-

beddings are created for every training word,
initialized randomly, and trained with the rest
of the network.
• character-level word embeddings: character-

level word embeddings are computed simi-
larly as in Ling et al. (2015), utilizing a bidi-
rectional GRU.

4.3 POS Tagging

We process the embedded words through a
multi-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to obtain contextualized em-
beddings. In case multiple RNN layers are em-
ployed, we utilize residual connections on all but
the first layer (Wu et al., 2016).

For each of the three kinds of tags (UPOS,
XPOS and UFeats), we construct a dictionary con-
taining all unique tags from the training data.
Then, we employ a softmax classifier for each tag
kind processing contextualized embeddings and
generating a class from the corresponding tag dic-
tionary.

However, a single-layer softmax classifier has
only a limited capacity. To allow more non-linear
processing for each tag kind, we prepend a dense
layer with tanh non-linearity and a residual con-
nection before each softmax classifier.

3
http://github.com/facebookresearch/fastText/

blob/master/pretrained-vectors.md

199



Word 1
embeddings

...

...

LSTM ...

...
...tanh

UFeats

tanh

Lemmas

tanh

UPOS

tanh

XPOS

LSTM

Word 2
embeddings

LSTM

LSTM

Word N
embeddings

LSTM

LSTM

Figure 2: Tagger and lemmatizer model.

The illustration of the tagger and the lemmatizer
is illustrated in Figure 2.

4.4 Lemmatization

We lemmatize input words by classifying them
into lemma generation rules. We consider these
rules as a fourth tag kind (in addition to UPOS,
XPOS and UFeats) and use analogous architec-
ture.

To construct the lemma generation rule from a
given form and lemma, we proceed as follows:

• We start by finding the longest continuous
substring of the form and the lemma. If it is
empty, we use the lemma itself as the class.
• If there is a common substring of the form

and the lemma, we compute the shortest edit
script converting the prefix of the form into
the prefix of the lemma, and the shortest edit
script converting the suffix of the form to the
suffix of the lemma.
We consider two variants of the edit
scripts. The first one permits only char-
acter operations delete_current_char and
insert_char(c). The second variant addi-
tionally allows copy_current_char opera-
tion. For each treebank, we choose the vari-
ant producing less unique classes for all train-
ing data.
• All above operations are performed case in-

sensitively. To indicate correct casing of the
lemma, we consider the lemma to be a con-
catenation of segments, where each segment
is composed of either a sequence of lower-
case characters, or a sequence of uppercase
characters. We represent the lemma casing
by encoding the beginning of every such seg-
ment, where the offsets in the first half of the
lemma are computed relatively to the start of
the lemma, and the offsets in the second half
of the lemma are computed relatively to the
end of the lemma.

Lemma generation rules
Minimum 6
Q1 199
Median 490
Mean 877
Q3 831
Maximum 8475

Table 1: Statistics of number of lemma generation
rules for 73 treebank training sets of the CoNLL
2018 UD Shared Task.

Considering all 73 treebank training sets of the
CoNLL 2018 UD Shared Task, the number of
created lemma generation rules according to the
above procedure is detailed in Table 1.

4.5 Dependency Parsing

We base our parsing model on a graph-based
biaffine attention parser architecture of the last
year’s shared task winner (Dozat et al., 2017).

The model starts again with contextualized em-
beddings produced by bidirectional RNNs, with
an artificial ROOT word prepended before the be-
ginning of the sentence. The contextualized em-
beddings are non-linearly mapped into arc-head
and arc-dep representation, which are combined
using biaffine attention to produce for each word a
distribution indicating the probability of all other
words being its dependency head. Finally, we pro-
duce an arborescence (i.e., directed spanning tree)
with maximum probability by utilizing the Chu-
Liu/Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967).

To generate labels for dependency arcs, we pro-
ceed analogously – we non-linearly map the con-
textualized embeddings into rel-head and rel-dep
and combine them using biaffine attention, pro-
ducing for every possible dependency edge a prob-
ability distribution over dependency labels.

4.6 Joint Model Variants

We consider two variants of a joint tagging and
parsing model, illustrated in Figure 3.

• The tightly joint model shares the contextu-
alized embeddings between the tagger and
the parser. Notably, the shared contextual-
ized embeddings are computed using 2 layers
of bidirectional LSTM. Then, both the tag-
ger and the parser employ an additional layer
of bidirectional LSTM, resulting in 4 bidirec-
tional RNN layers.
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Figure 3: The tightly joint model (on the left) and
the loosely joint model (on the right).

• The loosely joint model shares only the
word embeddings between the tagger and the
parser, which both compute contextualized
embeddings using 2 layers of bidirectional
LSTM, resulting again in 4 RNN layers.

There is one additional difference between the
tightly and loosely joint model. While in the
tightly joint model the generated POS tags influ-
ence the parser model only independently through
the shared contextualized embeddings (i.e., the
POS tags can be considered regularization of the
parser model), the loosely joint model extends the
parser word embeddings by the embeddings of the
predicted UPOS, XPOS and UFeats tags. Note
that we utilize the predicted tags even during train-
ing (instead of the gold ones).

4.7 Model Hyperparameters
Considering the 73 treebank training sets of the
CoNLL 2018 UD Shared Task, we do not em-
ploy any treebank-specific hyperparameter search.
Most of the hyperparameters were set according
to a single Czech-PDT treebank (the largest one),
and no effort has been made to adjust them to the
other treebanks.

To compute the character-level word embed-
dings, we utilize character embeddings and GRUs
with dimension of 256. The trained word embed-
dings and the sentence-level LSTMs have a di-
mension of 512. The UPOS, XPOS and UFeats
embeddings, if used, have a dimension of 128.
The parser arc-head, arc-dep, rel-head and rel-dep
representations have dimensions of 512, 512, 128
and 128, respectively.

4.8 Neural Network Training
For each of the 73 treebanks with a training
set we train one model, utilizing only the train-
ing treebank and pretrained word embeddings.
Each model was trained using the Adam algo-
rithm (Kingma and Ba, 2014) on a GeForce GTX
1080 GPU with a batch size of 32 randomly cho-
sen sentences (for batch size of 64 sentences train-

ing ended with out-of-memory error for some tree-
banks). The training consists of 60 epochs, with
the learning rate being 0.001 for the first 40 epochs
and 0.0001 for the last 20 epochs. To sufficiently
train smaller treebanks, each epoch consists of one
pass over the training data or 300 batches, what-
ever is larger.

Following Dozat and Manning (2016); Vaswani
et al. (2017), we modify the default value of β2
hyperparameter of Adam, but to a different value
than both of the above papers – to 0.99, which re-
sulted in best performance on the largest treebank.
We also make sure Adam algorithm does not up-
date first and second moment estimates for embed-
dings not present in a batch.

We regularize the training by several ways:

• We employ dropout with dropout probabil-
ity 50% on all embeddings and hidden layers,
with the exception of RNN states and resid-
ual connections.
• We utilize label smoothing of 0.03 in all soft-

max classifications.
• With a probability of 20%, we replace trained

word embedding by an embedding of an un-
known word.

With the described training method and regular-
ization techniques, the model does not seem to
overfit at all, or very little. Consequently, we do
not perform early stopping and always utilize the
model after full 60 epochs of training.

The training took 2-4 hours for most of the tree-
banks, with the two largest Russian-SynTagRus
and Czech-PDT taking 15 and 20 hours, respec-
tively.

5 CoNLL 2018 UD Shared Task

The official CoNLL 2018 UD Shared Task evalua-
tion was performed using a TIRA platform (Pot-
thast et al., 2014), which provided virtual ma-
chines for every participants’ systems. During test
data evaluation, the machines were disconnected
from the internet, and reset after the evaluation
finished – this way, the entire test sets were kept
private even during the evaluation.

The shared task contains test sets of three kinds:

• For most treebanks large training and devel-
opment sets were available, in which case
we trained the model on the training set and
choose among the pretrained word embed-
dings and tightly or loosely joint model ac-
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cording to performance on the development
set.
• For several treebanks very small training sets

and no development sets were available. In
these cases we manually split 10% of the
training set to act as a development set and
proceed as in the above case.
• Nine test treebanks contained no training data

at all. For these treebanks we adopted the
baseline model strategy:
For Czech-PUD, English-PUD, Finnish-
PUD, Japanese-Modern, and Swedish-PUD
there were other treebank variants of the
same language available in the training set.
Consequently, we processed these treebanks
using models trained for Czech PDT, En-
glish EWT, Finnish TDT, Japanese GSD, and
Swedish Talbanken, respectively.
For Breton-KEB, Faroese-OFT, Naija-NSC,
and Thai-PUD, we trained a universal mixed
model, by using first 200 sentences of each
training set (or less in case of very small
treebanks) as training data and first 20 sen-
tences of each development treebank as de-
velopment data.

5.1 Shared Task Evaluation

The official CoNLL 2018 UD Shared Task results
are presented in Table 4. In addition to F1 scores,
we also include rank of our submission (out of the
26 participant systems).

In the three official metrics (LAS, MLAS and
BLEX) our system reached third, first and third
average performance. Additionally, our system
achieved best average performance in XPOS and
AllTags metrics. Furthermore, the lemmatization
F1 score was the second best.

Interestingly, although our system achieves
highest average score in MLAS (which is a combi-
nation of dependency parsing and morphological
features), it reaches only third best average LAS
and fourth best average UFeats. Furthermore, the
TurkuNLP participation system surpasses our sys-
tem in both LAS and UFeats. We hypothesise that
the high performance of our system in MLAS met-
ric is caused by the fact that the tagger and parser
models are joined, thus producing consistent an-
notations.

Finally, we note that the segmentation improve-
ments outlined in Section 4.1 resulted in third av-
erage F1 score of our system.

Event Negation Opinion Overall
Extraction Resolution Analysis Score

49.66 3 58.45 3 60.46 7 56.19 1

Table 2: UDPipe 2.0 prototype results in EPE
2018. For each metric we present F1 score per-
centage and also rank.

Model size
Average 139.2MB
Minimum 90.5MB
Q1 110.0MB
Median 132.0MB
Q3 145.1MB
Maximum 347.1MB
UDPipe 1.2 13.2MB

Table 3: Statistics of the model sizes.

5.2 Extrinsic Parser Evaluation

Following the First Shared Task on Extrinsic
Parser Evaluation (Oepen et al., 2017), the 2018
edition of Extrinsic Parser Evaluation Initiative
(EPE 2018) ran in collaboration with the CoNLL
2018 UD Shared Task. The initiative allowed
to evaluate the English systems submitted to the
CoNLL shared task against three EPE downstream
systems – biological event extraction, negation
resolution, and fine-grained opinion analysis.

The results of our system are displayed in Ta-
ble 2. Even though our system ranked only 3rd,
3rd, and 7th in the downstream task F1 scores, it
was the best system in the overall score (and aver-
age of the three F1 scores).

5.3 Model Size

The statistics of the model sizes is listed in Table 3.
Average model size is approximately 140MB,
which is more than 10 times larger than baseline
UDPipe 1.2 models. Note however that we do not
perform any model quantization (which should re-
sult in almost four times smaller models, follow-
ing for example approach of Wu et al. (2016)), and
we did not consider the model size during hyper-
parameter selection. Taking into account that the
largest part of the models are the trained word em-
beddings, the model size could be reduced sub-
stantially by reducing trained word embeddings
dimension.

5.4 Runtime Performance

The runtime performance of our system is pre-
sented in Table 6. Compared to the baseline UD-
Pipe 1.2, tagging and parsing on a single CPU
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Language Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS MLAS BLEX
Afrikaans-AfriBooms 99.75 4 99.75 4 98.25 4 97.82 1 94.23 1 97.45 1 94.08 2 97.11 2 87.74 6 84.99 4 75.67 1 75.74 3
Ancient Greek-PROIEL 100.00 1 100.00 1 49.15 4 97.34 3 97.74 2 91.98 1 90.53 1 91.08 19 79.50 6 75.78 5 59.82 5 62.62 7
Ancient Greek-Perseus 99.96 4 99.96 4 98.73 3 92.10 4 84.27 2 90.30 2 83.18 2 81.78 20 77.94 7 72.49 6 51.55 6 49.46 7
Arabic-PADT 99.98 1 93.71 4 80.89 1 90.64 3 87.81 3 88.05 3 87.38 2 88.94 3 76.30 7 72.34 6 63.77 2 65.66 3
Armenian-ArmTDP 97.21 3 96.47 3 92.41 2 65.29 21 — 40.09 23 33.14 21 57.46 20 49.60 3 36.42 2 4.14 20 13.03 8
Basque-BDT 99.97 3 99.97 3 99.83 3 96.08 2 — 92.21 2 90.13 1 95.19 4 86.03 5 82.65 5 71.73 1 77.25 3
Breton-KEB 91.03 22 90.62 20 90.36 20 36.58 7 0.01 1 36.84 4 0.00 1 54.99 4 36.54 7 13.87 7 1.24 5 5.78 6
Bulgarian-BTB 99.91 25 99.91 25 95.56 3 98.83 3 97.01 1 97.69 1 96.37 1 97.41 3 92.82 4 89.70 3 83.12 1 83.17 2
Buryat-BDT 97.07 3 97.07 3 90.90 3 41.66 8 — 38.34 3 30.00 2 56.83 2 29.20 11 12.61 10 2.09 4 4.41 6
Catalan-AnCora 99.98 1 99.98 1 99.68 1 98.85 1 98.85 1 98.36 1 97.81 1 98.90 1 92.97 3 90.79 3 84.07 1 85.47 1
Chinese-GSD 90.04 6 90.04 6 96.25 24 85.83 7 85.64 4 89.13 5 84.61 5 90.01 6 68.73 9 65.67 8 55.97 7 61.38 7
Croatian-SET 99.93 1 99.93 1 94.64 24 98.02 3 — 92.12 1 91.44 1 96.69 2 90.33 7 85.93 6 72.85 2 79.84 2
Czech-CAC 100.00 1 99.99 1 100.00 1 99.33 2 96.36 1 96.08 1 95.66 1 98.14 3 92.62 6 90.32 7 83.42 1 86.24 4
Czech-FicTree 100.00 1 100.00 1 98.84 2 98.49 4 94.94 3 95.74 3 94.53 2 97.80 3 93.05 8 90.06 8 81.11 5 84.76 6
Czech-PDT 99.93 4 99.93 3 93.41 2 99.01 3 96.93 2 96.85 2 96.38 1 98.71 1 92.32 6 90.32 5 85.10 1 87.47 3
Czech-PUD 99.25 22 99.25 22 94.95 22 96.84 6 93.64 2 93.55 2 92.09 1 96.44 1 89.66 5 84.86 4 75.81 1 80.32 2
Danish-DDT 99.90 1 99.90 1 91.41 4 97.72 2 — 97.09 2 96.03 2 96.66 3 85.67 6 83.33 5 75.29 3 76.83 4
Dutch-Alpino 99.93 2 99.93 2 90.97 1 96.90 1 94.93 1 96.51 1 94.36 1 96.76 1 90.11 5 87.09 4 76.09 2 77.76 2
Dutch-LassySmall 99.83 5 99.83 5 76.54 4 95.98 5 94.51 3 95.65 4 93.58 3 95.78 4 86.80 5 83.15 5 72.10 4 72.63 6
English-EWT 99.02 24 99.02 24 77.05 2 95.43 4 95.05 3 95.99 3 93.68 2 97.23 1 85.01 8 82.51 7 74.71 3 77.64 4
English-GUM 99.75 2 99.75 2 78.79 4 95.55 5 95.42 2 96.39 3 94.26 2 96.18 1 84.60 8 81.35 7 70.74 4 71.67 5
English-LinES 99.93 23 99.93 23 87.21 24 96.77 4 95.72 2 96.67 3 93.26 2 96.44 2 82.73 9 78.26 10 70.66 6 71.73 7
English-PUD 99.67 21 99.67 21 96.19 4 95.68 3 94.59 2 95.32 2 91.78 1 95.87 2 87.80 7 85.02 7 74.45 5 78.20 5
Estonian-EDT 99.93 3 99.93 3 91.55 5 97.31 2 98.08 2 95.81 1 94.47 1 94.88 2 86.29 6 83.26 6 76.62 2 76.29 2
Faroese-OFT 99.50 15 97.40 23 96.25 1 62.00 3 4.23 1 32.19 7 1.04 1 51.31 6 54.95 5 41.99 5 0.74 3 13.49 3
Finnish-FTB 100.00 1 99.99 1 87.83 3 96.28 3 95.27 1 96.89 1 93.95 2 94.74 3 88.77 7 86.13 7 78.77 3 78.46 4
Finnish-PUD 99.63 3 99.63 3 90.70 23 97.61 2 — 96.87 1 0.00 4 90.64 3 89.69 8 87.69 7 82.17 5 76.00 3
Finnish-TDT 99.68 23 99.68 23 90.32 4 96.75 5 97.52 4 95.43 3 94.17 2 90.18 3 88.10 7 85.72 6 79.25 3 73.99 3
French-GSD 99.69 3 98.81 4 94.29 3 96.32 5 — 96.07 3 95.13 2 96.75 3 88.74 4 85.74 4 77.29 3 79.88 4
French-Sequoia 99.85 2 99.14 4 86.99 4 97.56 6 — 97.00 4 96.25 3 97.36 3 90.07 5 88.04 6 81.45 3 83.04 5
French-Spoken 100.00 1 100.00 1 21.63 3 95.47 8 97.37 3 — 93.00 7 95.98 3 76.20 7 71.16 7 60.17 6 60.87 6
Galician-CTG 99.89 2 99.21 2 97.23 2 96.98 3 96.62 3 99.05 2 96.24 3 97.53 4 84.42 3 81.88 3 69.75 3 74.46 3
Galician-TreeGal 99.69 1 98.73 1 83.90 2 94.44 2 91.64 1 93.08 1 90.49 1 95.05 2 78.66 3 74.25 1 60.63 1 64.29 1
German-GSD 99.60 2 99.61 2 82.32 2 94.04 2 96.93 2 89.96 2 84.47 2 96.14 2 82.76 4 78.17 5 56.84 3 69.79 4
Gothic-PROIEL 100.00 1 100.00 1 29.88 4 95.75 2 96.38 2 90.05 1 87.64 1 92.39 18 74.92 3 69.39 2 56.45 1 61.92 3
Greek-GDT 99.87 2 99.86 3 90.71 4 97.73 3 97.71 3 94.27 3 93.45 2 94.74 4 91.27 3 89.05 3 77.43 2 77.18 5
Hebrew-HTB 99.96 24 85.15 25 99.69 24 82.53 6 82.54 4 81.29 2 80.36 2 82.88 3 67.22 8 63.65 7 51.36 4 54.13 4
Hindi-HDTB 100.00 1 100.00 1 98.63 24 97.56 2 97.09 2 94.10 1 92.06 1 98.45 3 94.85 3 91.75 2 78.30 1 86.42 3
Hungarian-Szeged 99.79 24 99.79 24 96.12 2 95.48 2 — 92.41 3 91.28 2 92.99 3 83.08 4 78.51 4 67.13 1 70.39 4
Indonesian-GSD 100.00 1 100.00 1 93.53 3 93.55 6 94.45 4 95.77 3 88.78 2 99.60 3 84.91 8 78.58 4 67.58 4 75.94 2
Irish-IDT 99.30 4 99.30 4 92.60 3 91.58 2 90.41 2 82.40 2 78.46 2 87.52 2 78.50 4 70.22 2 45.53 2 51.29 2
Italian-ISDT 99.79 3 99.71 2 99.38 1 98.09 2 97.94 2 97.83 1 97.16 1 98.21 1 92.66 4 90.75 4 83.46 3 84.48 3
Italian-PoSTWITA 99.75 2 99.47 1 28.95 5 95.99 2 95.77 2 96.24 1 94.48 2 94.91 4 77.34 7 73.23 6 61.29 4 61.71 5
Japanese-GSD 90.46 6 90.46 6 95.01 1 88.88 7 — 90.45 6 88.88 6 90.01 4 76.13 11 74.54 9 61.99 6 63.48 5
Japanese-Modern 65.98 5 65.98 5 0.00 2 48.51 7 0.00 1 64.14 7 0.00 1 54.76 6 28.41 16 22.39 15 7.33 15 9.06 15
Kazakh-KTB 93.11 5 92.74 6 81.56 2 48.94 11 49.16 5 46.86 4 38.92 2 57.36 4 39.45 10 24.21 3 7.62 4 9.79 3
Korean-GSD 99.86 4 99.86 4 93.26 3 96.13 3 89.81 4 99.63 3 87.44 4 91.37 3 86.58 6 83.12 6 78.56 6 73.85 3
Korean-Kaist 100.00 1 100.00 1 100.00 1 95.65 2 86.73 3 — 86.62 3 93.53 2 88.13 6 86.16 6 80.46 4 78.15 2
Kurmanji-MG 94.33 3 94.01 3 69.14 3 52.50 22 50.21 20 41.05 21 28.34 18 52.44 21 37.29 5 29.09 3 2.40 19 9.51 12
Latin-ITTB 99.94 4 99.94 4 82.49 3 98.28 5 95.29 1 96.36 2 94.30 1 98.56 3 88.00 6 85.22 6 79.73 2 82.86 5
Latin-PROIEL 100.00 1 100.00 1 35.36 5 96.75 2 96.93 1 91.26 2 90.06 1 95.54 4 73.96 7 69.79 6 58.03 4 64.54 5
Latin-Perseus 99.99 22 99.99 22 99.15 1 87.64 7 73.25 2 78.02 4 71.22 2 75.44 20 70.33 6 60.08 7 40.75 4 39.86 7
Latvian-LVTB 99.37 24 99.37 24 98.66 1 94.63 6 87.10 1 91.48 2 85.67 1 93.33 3 83.52 6 79.32 6 67.24 3 70.92 4
Naija-NSC 96.63 7 93.27 6 0.00 4 41.52 21 — — 5.83 17 89.72 6 26.89 11 12.60 13 3.72 11 11.06 14
North Sami-Giella 99.84 2 99.84 2 98.33 2 90.65 4 91.95 3 86.82 2 81.88 2 78.43 20 74.40 4 68.95 4 54.07 2 48.25 5
Norwegian-Bokmaal 99.81 4 99.81 4 97.13 2 98.14 2 — 96.95 2 96.20 1 98.20 1 91.81 3 89.98 3 83.68 1 85.82 1
Norwegian-Nynorsk 99.92 23 99.92 23 93.49 3 97.88 2 — 96.85 2 95.98 1 97.80 1 91.12 4 88.97 4 81.86 1 84.05 3
Norwegian-NynorskLIA 99.99 1 99.99 1 99.86 1 89.74 7 — 89.52 3 84.32 2 92.65 18 67.49 6 59.35 7 46.57 6 49.97 6
Old Church Slavonic-PROIEL 100.00 1 100.00 1 40.54 4 96.34 2 96.62 2 89.65 2 88.12 1 88.93 20 79.06 3 74.84 2 62.60 2 65.71 5
Old French-SRCMF 100.00 1 100.00 1 100.00 1 96.22 1 96.15 1 97.79 1 95.52 1 — 91.72 1 87.12 1 80.28 1 84.11 1
Persian-Seraji 100.00 1 99.65 2 98.75 4 97.32 2 97.33 2 97.45 1 96.90 1 97.05 2 89.48 4 86.14 3 80.83 1 80.28 3
Polish-LFG 99.90 4 99.90 4 99.65 24 98.56 3 94.18 1 95.28 1 93.23 1 96.73 3 96.21 6 94.53 5 86.93 1 89.07 3
Polish-SZ 99.99 2 99.88 3 99.00 3 98.20 1 92.55 2 92.40 3 91.36 1 95.31 3 92.78 6 90.59 6 79.76 5 82.89 3
Portuguese-Bosque 99.64 23 99.51 21 88.47 23 96.37 5 — 95.77 3 93.43 3 97.38 3 89.48 7 87.04 6 74.16 5 80.01 4
Romanian-RRT 99.64 24 99.64 24 95.57 4 97.56 3 96.92 4 97.14 4 96.69 3 97.61 3 90.16 7 85.65 5 77.94 3 79.35 4
Russian-SynTagRus 99.63 3 99.63 3 98.64 4 98.71 1 — 97.17 1 96.90 1 97.94 2 92.96 5 91.46 4 86.76 1 87.90 2
Russian-Taiga 98.14 1 98.14 1 87.38 1 90.42 5 98.12 1 80.89 4 78.02 4 83.55 4 70.54 8 63.80 8 44.93 5 48.51 6
Serbian-SET 99.97 1 99.97 1 93.26 2 98.18 1 — 94.26 1 93.77 1 96.56 2 91.68 5 88.15 4 77.73 1 81.75 2
Slovak-SNK 100.00 1 100.00 1 84.96 4 96.65 3 85.98 2 90.33 3 84.60 2 95.66 2 87.96 7 85.06 7 72.08 3 78.44 2
Slovenian-SSJ 98.26 24 98.26 24 76.74 5 96.83 6 93.26 3 93.48 3 92.67 2 96.22 2 87.43 8 85.59 8 77.95 3 81.22 4
Slovenian-SST 100.00 1 100.00 1 22.90 3 92.58 8 84.68 3 84.65 5 81.57 3 92.56 3 58.32 8 52.84 8 40.24 5 44.57 6
Spanish-AnCora 99.96 24 99.94 22 98.96 1 98.80 1 98.80 1 98.43 1 97.82 1 99.02 1 91.64 7 89.55 6 83.16 3 84.44 3
Swedish-LinES 99.96 2 99.96 2 85.25 3 96.66 4 94.60 4 89.42 4 86.39 3 96.61 2 84.82 8 80.68 8 65.77 6 75.67 4
Swedish-PUD 98.26 24 98.26 24 88.89 23 93.31 6 91.66 3 77.80 5 75.61 3 86.23 6 81.62 8 77.90 8 49.90 4 64.04 4
Swedish-Talbanken 99.88 5 99.88 5 95.79 3 97.79 2 96.43 3 96.59 4 95.43 2 97.08 3 89.32 3 86.36 3 79.08 2 80.73 4
Thai-PUD 8.53 20 8.53 20 0.20 21 5.67 18 0.12 2 6.59 6 0.12 2 — 0.88 9 0.65 13 0.04 7 0.23 17
Turkish-IMST 99.86 2 97.92 1 97.09 2 93.58 4 92.82 3 91.25 3 89.00 3 92.74 4 69.34 6 63.07 6 54.02 4 56.69 5
Ukrainian-IU 99.76 2 99.76 2 96.86 2 97.17 3 91.52 1 91.45 1 90.12 1 95.94 3 87.11 5 84.06 5 72.27 1 77.11 4
Upper Sorbian-UFAL 98.64 1 98.64 1 67.24 22 65.51 21 — 49.63 18 43.46 15 63.54 17 35.72 15 24.29 15 3.41 19 11.88 12
Urdu-UDTB 100.00 1 100.00 1 98.59 24 93.68 6 91.69 5 81.97 6 77.27 4 97.33 2 87.17 8 81.32 7 54.72 6 72.58 4
Uyghur-UDT 99.58 5 99.58 5 82.82 4 88.92 6 91.47 4 86.80 4 78.33 3 92.86 4 76.61 2 65.23 2 45.78 1 54.17 2
Vietnamese-VTB 85.05 5 85.05 5 93.31 2 77.61 5 75.91 4 84.83 5 75.80 4 84.76 2 50.98 5 46.45 3 40.26 3 42.88 2
Total 97.46 7 97.04 7 83.64 3 89.37 6 86.67 1 86.67 4 80.30 1 89.32 2 77.90 5 73.11 3 61.25 1 64.49 3

Table 4: Official CoNLL 2018 UD Shared Task results of the UDPipe 2.0 prototype. For each metric we
present F1 score percentage and also rank (out of the 26 participant systems).
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Experiment UPOS XPOS UFeats AllTags Lemmas UAS LAS MLAS BLEX
Shared task submission 95.73 94.79 94.11 91.45 95.12 85.28 81.83 71.71 74.67
Baseline tokenization&segmentation 95.69 94.75 94.07 91.41 95.09 85.10 81.65 71.53 74.48
No precomputed word embeddings 95.23 94.19 93.45 90.52 94.82 84.52 80.88 69.98 73.30
Best model on development set 95.74 94.80 94.12 91.47 95.16 85.28 81.83 71.76 74.69
Checkpoint average of 5 last epochs 95.74 94.81 94.12 91.48 95.14 85.30 81.84 71.80 74.69
No label smoothing 95.66 94.70 94.01 91.26 94.98 85.16 81.68 71.31 74.32
Loosely joint model for all treebanks 95.71 94.82 94.13 91.49 95.29 85.14 81.68 71.71 74.72
Tightly joint model for all treebanks 95.75 94.76 94.06 91.40 94.79 85.34 81.88 71.61 74.33
Tagging each class independently 95.56 94.71 94.04 — 95.47 — — — —

Adding connection between character-level embeddings and the lemma classifier.
Loosely joint model for all treebanks 95.74 94.85 94.21 91.60 95.86 85.17 81.73 71.89 75.37
Tightly joint model for all treebanks 95.80 94.83 94.17 91.57 95.80 85.44 81.99 71.90 75.54
Best joint model for all treebanks 95.78 94.83 94.19 91.57 95.83 85.38 81.95 71.94 75.55

Table 5: Average score of different variants of our system.

Configuration Tagging&parsing Speedup to 1
speed thread CPU

PyPI Tensorflow 1.5.1, CPU version
1 thread 111 w/s 1
2 threads 191 w/s 1.7
4 threads 326 w/s 2.9
8 threads 517 w/s 4.7
16 threads 624 w/s 5.6

PyPI Tensorflow 1.5.1, GPU version
GeForce GTX 1080

1 thread 2320 w/s 20.9
2 threads 2522 w/s 22.7
4 threads 2790 w/s 25.1

UDPipe 1.2, no parallelism available
1 thread 1907 w/s 17.2

Table 6: Average runtime performance of our sys-
tem.

thread is more than 17 times slower. Utilizing
8 CPU threads speeds up the performance of the
prototype by a factor of 4.7, which is still more
than 3 times slower than the baseline models. Nev-
ertheless, when GPU is employed during tagging
and parsing, the runtime speed of our system sur-
passes baseline models.

We note that runtime performance has not been
a priority during hyperparameter model selection.
There are many possible trade-offs which would
make inference faster, and some of them will pre-
sumably decrease the system performance only
slightly.

6 Ablation Experiments

All ablation experiment results in this section are
performed using test sets of 61 so called “big tree-
banks”, which are treebanks with provided devel-
opment data, disregarding small treebanks and test
treebanks without training data.

6.1 Baseline Sentence Segmentation

The performance of our system using baseline to-
kenization and segmentation models (cf. Sec-
tion 4.1) is displayed in Table 5. The effect
of achieving better sentence segmentation influ-
ences parsing more than tagging, which can han-
dle wrong sentence segmentation more gracefully.

6.2 Pretrained Word Embeddings

Considering that pretrained word embeddings
have demonstrated effective similarity extraction
from large plain text (Mikolov et al., 2013), they
have a potential of substantially increasing tagging
and parsing performance. To quantify their effect,
we have evaluated models trained without pre-
trained embeddings, presenting results in Table 5.
Depending on the metric, the pretrained word
embeddings improve performance by 0.3-1.7 F1
points.

6.3 Regularization Methods

The effect of early stopping, checkpoint averag-
ing of last 5 epochs and label smoothing is shown
also in Table 5. While early stopping and check-
point averaging have little effect on performance,
early stopping demonstrate slight improvement of
0.1-0.4 F1 points.

6.4 Tightly vs Loosely Joint Model

The last model variants presented in Table 5 show
the effect of always using either the tightly or
loosely joint model for all treebanks. In present
implementation, loosely joint model accomplishes
better tagging accuracy, while deteriorating pars-
ing slightly. The tightly joint model performs
slightly worse during tagging and most notably
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Figure 4: Logarithmic regression of using tightly
joint models (+1) and loosely joint models (-1) de-
pending on treebank size in words.

during lemmatization, while improving depen-
dency parsing.

Finally, Figure 4 shows result of logarithmic re-
gression of using tightly or loosely joint model,
depending on treebank size in words. Accord-
ingly, the loosely joint model seems to be more
suited for smaller treebanks, while the tightly joint
model appear to be more suited for larger tree-
banks.

7 Post-competition Improved Models

Motivated by the decrease in lemmatization per-
formance of the tightly joint model architecture,
we refined the architecture of the models by
adding a direct connection from character-level
word embeddings to the lemma classifier. Our
hope was to improve lemmatization performance
in the tightly joint architecture by providing the
lemma classifier a direct access to the embeddings
of exact word composition.

As seen in Table 5, the improved models per-
form considerably better, and with only minor dif-
ferences between the tighty and loosely joint ar-
chitectures. We therefore consider only the tightly
joint improved models, removing a hyperparame-
ter choice (which joint architecture to use).

The improved models show a considerable in-
crease of 0.68 percentage points in lemmatization
performance and minor increase in other tagging
scores. The parsing performance also improves by
0.87, 0.19, and 0.16 points in BLEX, MLAS and
LAS F1 scores in the ablation experiments.

Encouraged by the results, we performed an
evaluation of the improved models in TIRA,
achieving 73.28, 61.25, and 65.53 F1 scores in
LAS, MLAS and BLEX metrics, which corre-

sponds to increases of 0.17, 0.00 and 1.04 percent-
age points. Such scores would rank 2nd, 1st, and
2nd in the shared task evaluation. We also sub-
mitted the improved models to extrinsic evaluation
EPE 2018, improving the F1 scores of the three
downstream tasks listed in Table 2 by 0.87, 0.00,
and 0.27 percentage points, corresponding to 1st,
3rd, and 4th rank. The overall score of the origi-
nal models, already the best achieved in EPE 2018,
further increased by 0.38 points with the improved
models.

8 Conclusions and Future Work

We described a prototype for UDPipe 2.0 and
its performance in the CoNLL 2018 UD Shared
Task, where it achieved 1st, 3rd and 3rd in
the three official metrics, MLAS, LAS and
BLEX, respectively. The source code of the
prototype is available at http://github.com/

CoNLL-UD-2018/UDPipe-Future.
We also described a minor modification of

the prototype architecture, which improves both
the intrinsic and the extrinsic evaluation. These
improved models will be released shortly in
UDPipe at http://ufal.mff.cuni.cz/udpipe,
utilizing quantization to decrease model size.
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erably improving the quality of the paper.

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
aly normalized transition-based neural networks.
In Association for Computational Linguistic.
http://arxiv.org/abs/1603.06042.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language

205



Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation:
Encoder-decoder approaches. CoRR abs/1409.1259.
http://arxiv.org/abs/1409.1259.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica 14.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Hajič, Joakim Nivre, Filip Ginter, Juhani Luoto-
lahti, Sampo Pyysalo, Slav Petrov, Martin Pot-
thast, Francis Tyers, Elena Badmaeva, Memduh
Gökırmak, Anna Nedoluzhko, Silvie Cinková, Jan
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Abstract

We present the contribution of the ONLP
lab at the Open University of Israel to
the CONLL 2018 UD SHARED TASK

on MULTILINGUAL PARSING FROM RAW

TEXT TO UNIVERSAL DEPENDENCIES.
Our contribution is based on a transition-
based parser called yap: yet another
parser which includes a standalone mor-
phological model, a standalone depen-
dency model, and a joint morphosyntactic
model. In the task we used yap’s stan-
dalone dependency parser to parse input
morphologically disambiguated by UD-
Pipe, and obtained the official score of
58.35 LAS. In a follow up investigation we
use yap to show how the incorporation of
morphological and lexical resources may
improve the performance of end-to-end
raw-to-dependencies parsing in the case of
a morphologically-rich and low-resource
language, Modern Hebrew. Our results
on Hebrew underscore the importance of
CoNLL-UL, a UD-compatible standard
for accessing external lexical resources,
for enhancing end-to-end UD parsing, in
particular for morphologically rich and
low-resource languages. We thus encour-
age the community to create, convert, or
make available more such lexica.

1 Introduction

The Universal Dependencies (UD) initiative1 is an
international, cross-linguistic and cross-cultural
initiative aimed at providing morpho-syntactically
annotated data sets for the world’s languages un-
der a unified, harmonized, annotation scheme.

1universaldependencies.org

The UD scheme (Nivre et al., 2016) adheres
to two main principles: (i) there is a single set
of POS tags, morphological properties, and de-
pendency labels for all treebanks, and their an-
notation obeys a single set of annotation princi-
ples, and (ii) the text is represented in a two-level
representation, clearly mapping the written space-
delimited source tokens to the (morpho)syntactic
words which participate in the dependency tree.

The CONLL 2018 UD SHARED TASK is
a multilingual parsing evaluation campaign
wherein, contrary to previous shared tasks such
as CoNLL-06/07 (Buchholz and Marsi, 2006;
Nivre et al., 2007) corpora are provided with
raw text, and the end goal is to provide a com-
plete morpho-syntactic representation, including
automatically resolving all of the token-word
discrepancies. Contrary to the previous SPMRL
shared tasks (Seddah et al., 2013, 2014), the
output of all systems obeys a single annotation
scheme, allowing for reliable cross-system and
cross-language evaluation.

This paper presents the system submitted by
the ONLP lab to the shared task, including the
dependency models trained on the train sets, as-
suming morphologically disambiguated input to-
kens by UDpipe (Straka et al., 2016). We success-
fully parsed 81 test treebanks of UDv2 set (Nivre
et al., 2017) participating in the CONLL 2018
UD SHARED TASK (Zeman et al., 2018), obtain-
ing the official score of LAS 58.35 average on all
treebanks. We then present an analysis of case of
Modern Hebrew, a low-resource morphologically
rich language (MRL), which is known to be noto-
riously hard to parse, due to its high morphological
word ambiguity and the small size of the treebank.
We investigate the contribution of an external lex-
icon and a standalone morphological component,
and show that inclusion of such lexica can lead to
above 10% LAS improvement on this MRL.
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Our investigation demonstrates the importance
of sharing not only syntactic treebanks but also
lexical resources among the UD community, and
we propose the UD-compatible CoNLL-UL stan-
dard for external lexica(More et al., 2018) for shar-
ing broad-coverage lexical resources in the next
UD shared tasks, and in general.

The remainder of this document is organized as
follows: In Section 2, we present our parser’s for-
mal system and statistical models. In Section 3
we present technical issues relevant to the official
run for the shared task followed by our results on
all languages. In Section 4 we proceed with an
analysis of the performance on Modern Hebrew in
the task, compared against its performance aug-
mented with a lexicon-backed morphological ana-
lyzer. We finally discuss in Section 5 directions
for future work and conclude by embracing the
CoNLL-UL standard (More et al., 2018) for UD-
anchored lexical resource as means to facilitate
and improve raw-to-dependencies UD parsing.

2 Our Framework

The parsing system presented by the ONLP Lab
for this task is based on yap — yet another parser,
a transition-based parsing system that relies on
the formal framework of Zhang and Clark (2011),
an efficient computational framework designed for
structure prediction and based on the generalized
perceptron for learning and beam search for de-
coding. This section briefly describes the formal
settings and specific models available via yap.2

2.1 Formal Settings

Formally, a transition system is a quadruple
(C, T, cs, Ct) where C is a set of configurations,
T a set of transitions between the elements of C,
cs an initialization function, and Ct ⊂ C a set
of terminal configurations. A transition sequence
y = tn(tn−1(...t1(cs(x)))) for an input x starts
with an initial configuration cs(x) and results in a
terminal configuration cn ∈ Ct. In order to deter-
mine which transition t ∈ T to apply given a con-
figuration c ∈ C, we define a model that learns to
predict the transition that would be chosen by an
oracle function O : C → T , which has access to
the gold output. We employ an objective function

F (x) = argmaxy∈GEN(x)Score(y)

2https://github.com/habeanf/yap

which scores output candidates (transition se-
quence in GEN(x)) such that the most plausible
sequence of transitions is the one that most closely
resembles the one generated by an oracle.

To compute Score(y), y is mapped to a global
feature vector Φ(y) = {φi(y)} where each fea-
ture φi(y) is a count of occurrences of a pattern
defined by a feature function. Given this vector,
Score(y) is calculated as the dot product of Φ(y)
and a weights vector ~ω:

Score(y) = Φ(y) · ~ω =
∑

cj∈y

∑

i

ωiφi(cj)

Following Zhang and Clark (2011), we learn the
weights vector ~ω via the generalized perceptron,
using the early-update averaged variant of Collins
and Roark (2004). For decoding, the framework
uses the beam search algorithm, which helps mit-
igate otherwise irrecoverable errors in the transi-
tion sequence.

2.2 Morphological Analysis
The input to the morphological disambiguation
(MD) component in particular and to the yap pars-
ing system in general is a lattice L representing
all of the morphological analysis alternatives of k
surface tokens of the input stream x = x1, ..., xk,
such that each Li = MA(xi) is generated by a
morphological analysis (MA) component, the lat-
tice concatenate the lattices for the whole input
sentence x. Each lattice-arc in L has a morpho-
syntactic representation (MSR) defined as m =
(b, e, f, t, g), with b and e marking the start and
end nodes of m in L, f a form, t a universal part-
of-speech tag, and g a set of attribute=value uni-
versal features. These lattice-arc correspond to
potential nodes in the intended dependency tree.

2.3 Morphological Disambiguation
The morphological disambiguation (MD) compo-
nent of our parser is based on More and Tsarfaty
(2016), modified to accommodate UD POS tags
and morphological features. We provide here a
brief exposition of the transition system, as shall
be needed for our later analysis, and refer the
reader to the original paper for an in-depth discus-
sion (More and Tsarfaty, 2016).

A configuration for morphological disambigua-
tion CMD = (L, n, i,M) consists of a lattice L,
an index n representing a node in L, an index i
s.t. 0 ≤ i < k representing a specific token’s lat-
tice, and a set of disambiguated morphemes M .
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The initial configuration function is defined to
be cs(x) = (L, bottom(L), 0, ∅), where L =
MA(x1) ◦ ... ◦ MA(xk), and n = bottom(L),
the bottom of the lattice. A configuration is termi-
nal when n = top(L) and i = k. To traverse the
lattice and disambiguate the input, we define an
open set of transitions using the MDs transition
template:

MDs : (L, p, i,M)→ (L, q, i,M ∪ {m})

Where p = b, q = e, and s relates the transition to
the disambiguated morpheme m using a parame-
terized delexicalization s = DLEXoc(m):

DLEXOC(m) =

{
( , , , t, g) if t ∈ OC
( , , f, t, g) otherwise

In words, DLEX projects a morpheme either
with or without its form depending on whether or
not the POS tag is an open-class with respect to
the form. For UD, we define:

OC = {ADJ,AUX,ADV,PUNCT,NUM,
INTJ,NOUN,PROPN,V ERB }

We use the parametric model of More and Tsar-
faty (2016) to score the transitions at each step.
Since lattices may have paths of different length
and we use beam search for decoding, the prob-
lem of variable-length transition sequences arises.
We follow More and Tsarfaty (2016), using the
ENDTOKEN transition to mitigate the biases
induced by variable-length sequences.

2.4 Syntactic Disambiguation
A syntactic configuration is a triplet CDEP =
(σ, β,A) where σ is a stack, β is a buffer, and A
a set of labeled arcs. For dependency parsing, we
use a specific variant of Arc Eager that was first
presented by (Zhang and Nivre, 2011). The differ-
ences between plain arc-eager and the arc-zeager
variant are detailed in Figure 1.

The features defined for the parametric model
also follows the definition of non-local features by
Zhang and Nivre (2011), with one difference: we
created one version of each feature with a morpho-
logical signature (all feature values of the relevant
node) and one without. this allows to capture phe-
nomena like agreement.

2.5 Joint Morpho-Syntactic Processing
Given the standalone morphological and syntactic
disambiguation it is possible to embed the two into

a single joint morpho-syntactic transition system
with a “router” that decides which of the transition
systems to apply in a given configuration, and train
the morphosyntactic model to maximize a sin-
gle objective function. We implement such joint
parser in yap but we have not used it in the task,
and we thus leave its description out of this ex-
position. For further discussion and experiments
with the syntactic and joint morpho-syntactic vari-
ants in yap we refer the reader to (More et al., In
Press).

3 Shared Task Implementation

For sentence segmentation and tokenization up to
and including full morphological disambiguation
for all languages, we rely on the UDPipe (Straka
et al., 2016). Our parsing system implementa-
tion is yap – yet another parser, an open-source
natural language processor written in Go3. Once
compiled, the processor is a self-contained binary,
without any dependencies on external libraries.

For the shared task the processor was compiled
with Go version 1.10.3. During the test phase we
wrapped the processor with a bash script that in-
voked yap serially on all the treebanks. Addition-
ally, in order to train on all treebanks we limited
the size of all training sets to the first 50,000 sen-
tences for the parser.

Finally, our training algorithm iterates until con-
vergence, where performance is measured by F1

for labeled attachment score when evaluated on
languages’ respective development sets. We de-
fine convergence as two consecutive iterations re-
sulting in a monotonic decrease in F1 for LAS,
and used the best performing model up to that
point. For some languages we observed the F1

never monotonically decreased twice, so after 20
iterations we manually stopped training and used
the best performing model.

For some treebanks (cs cac, fr sequoia,
ru syntagrus) the serialization code, which re-
lies on Go’s built-in encoder package, failed
to serialize the in-memory model because it is
larger than 230 bytes. To overcome the limitation
we downloaded the go source code, manually
changed the const field holding this limit and
compiled the go source code.

Our strategy for parsing low resource languages
was to use another treebank in the same language
when such existed for the following:

3https://golang.org
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Arc Eager:

Conf. c = (σ, β,A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([0], [1, ..., n], ∅)
Terminal Ct = {c ∈ C|c = ([0], [], A)}
Transitions (σ, [i|β], A)→ ([σ|i], β, A) (SHIFT)

([σ|i], [j|β], A)→ ([σ|i|j], β, A ∪ {(i, l, j)}) (ArcRightl)
if (k, l′, i) /∈ A and i 6= 0 then
([σ|i], [j|β], A)→ ([σ], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)
if (k, l′, i) ∈ A then
([σ|i], β, A)→ (σ, β,A ∪ {(i, l, j)}) (REDUCE)

Arc ZEager:

Conf. c = (σ, σh, β, A) σh = A second, ’head’ stack
Initial cs(x = x1, ..., xn) = ([]σ, []h, [1, ..., n], ∅) Note: no root
Terminal Ct = {c ∈ C|c = ([]σ, σh, [], A)} For any σh, A
Transitions ([i]σ, σh, []β, A)→ ([]σ, σh, []β, A) (POPROOT)

([σ|i], σh, []β, A)→ (σ, σh, []β, A) (REDUCE2)
if TL! =REDUCE then TL = Last Transition
(σ, σh, [i|β], A)→ ([σ|i], [σh|i], β, A) (SHIFT)
if |β| > 0 and (|σ| > 1 and (|β| > 1 or |σh| = 1)) then
([σ|i], σh, [j|β], A)→ ([σ|i|j], σh, β, A ∪ {(i, l, j)}) (ArcRightl)
if |β| > 0 and |σ| > 0 then
([σ|i], σh, β, A)→ ([σ], σh, β, A ∪ {(i, l, j)}) (REDUCE1)
if |β| > 0 and |σ| > 0 and (k, l′, i) /∈ A and i = k then
([σ|i], [σh|k], [j|β], A)→ ([σ], [σh], [j|β], A ∪ {(j, l, i)}) (ArcLeftl)

Figure 1: Arc-Eager (Kübler et al., 2009, Chapter 3) and Arc-ZEager (Zhang and Nivre, 2011) Systems.

• cs pud: cs pdt

• en pud:en lines

• fi pud: fi ftb

• sv pud: sv lines

• ja modern: ja gsd

For treebanks where no resource in the same lan-
guage is available we used the parsing model
trained for English:

• br keb: en ewt

• fo oft: en ewt

• pcm nsc: en ewt

• th pud: en ewt

Tables 2 and 3 present our official results for all
languages. Our system is ranked 22 with an av-
erage LAS score of 58.35. Our highest perform-
ing languages are Italian and Hindi — interest-
ingly, both of which are considered morpholog-
ically rich, and both with LAS around 82. Our
lowest performing languages (with up to 20 LAS)
are the low-resource languages listed above, with
Thai (0 LAS) as an outlier.

4 The Case of MRLs: A Detailed
Analysis for Modern Hebrew

As is well known, and as observed in this particu-
lar task, morphologically rich languages are most
challenging to parse in the raw-to-dependencies
parsing scenarios. This is because the initial au-
tomatic segmentation and morphological disam-
biguation may contain irrecoverable errors which
will undermine parsing performance.

In order to investigate the errors of our parser
we took a particular MRL that is known to be hard
to parse (Modern Hebrew, ranked 58 in the LAS
ranking, with basline 58.73 accuracy) and con-
trasted the Baseline UDPipe results with the re-
sults of our parser, with and without the use of ex-
ternal lexical and morphological resources. Table
1 lists the results of the different parsing models on
our dev set. In all of the parsing scenarios, we used
UDPipe’s built in sentence segmentation, to make
sure we parse the exact same sentences.We then
contrasted UDPipe’s full pipeline with the yap out-
put for different morphological settings. We used
the Hebrew UD train set for training and the He-
brew UD for analyzing the empirical results.

Initially, we parsed the dev set with the same
system we used for the shared task, namely, yap
dependency parser which parses the morphologi-
cally diambiguated output by UDPipe (yap DEP).
Here we see that yap DEP results (59.19) are lower
than the full UDPipe pipeline (61.95).
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Model Lexicon Sentence Morphological Parser Results on dev
Segmentation Disambiguation LAS / MLAS / BLEX

UDPipe full – UDPipe UDPipe UDPipe 61.95 / 49.28 / 51.45
yap DEP – UDPipe UDPipe yap 59.19 / 49.19 / 33.75
yap full Basline UDPipe yap yap 52.25 / 37.85 / 29.59

HebLex 60.94 / 39.49 / 33.85
HebLex-Infused 71.39 / 61.42 / 41.86

yap GOLD – Gold Gold yap 79.33 / 72.56 / 47.62

Table 1: The Contribution of Lexical Resources: Analysis of the Case for Modern Hebrew

We then moved on to experiment with yap’s
complete pipeline, including a data-driven mor-
phological analyzer (MA) to produce input lat-
tices, transition-based morphological disambigua-
tion and transition-based parsing. The results now
dropped relative to the UDPipe baseline and rel-
ative to our own yap DEP system, from 59.19 to
52.25 LAS. Now, interestingly, when we replace
the baseline data-driven MA learned from the tree-
bank alone with an MA backed with an external
broad-coverage lexicon called HebLex (adapted
from (Adler and Elhadad, 2006)), the LAS results
arrive at 60.94 LAS, outperforming the results ob-
tained by yap DEP (UDPipe morphology with yap
dependencies) and close much of the gap with the
UDPipe full model. This suggests that much of the
parser error stems from missing lexical knowledge
concerning the morphologically rich and ambigu-
ous word forms, rather than parser errors.

Finally, we simulated an ideal morphological
lattices, by artificially infusing the path that indi-
cates the correct disambiguation into the HebLex
lattices in case it has been missing. Note that
we still provide an ambiguous input signal, with
many possible morphological analyses, only now
we guarantee that the correct analysis exists in the
lattice. For this setting, we see a significant im-
provement in LAS, obtaining 71.39 (much beyond
the baseline) without changing any of the parsing
algorithms involved. So, for morphologically rich
and ambiguous languages it appears that lexical
coverage is a major factor affecting task perfor-
mance, especially in the resource scarce case.

Note that the upper-bound of our parser, when
given a completely disambiguated morphological
input stream, provides LAS of 79.33, which is a
few points above the best system (Stanford) in the
raw-to-dependencies scenario.

5 Discussion and Conclusion

This paper presents our submission to the CONLL
2018 UD SHARED TASK. Our submitted system
assumed UDpipe up to and including morpholog-
ical disambiguation, and employed a state-of-the-
art transition-based parsing model to successfully
parse 81 languages in the UDv2 set, with the av-
erage LAS of 58.35, ranked 22 among the shared
task participants.

A detailed post-task investigation of the perfor-
mance that we conducted on Modern Hebrew, in-
cluding the shared task and a number of variants,
has shown that for the MRL case much of the
parser errors may be attributed to incomplete mor-
phological analyses or a complete lack thereof for
the source tokens in the input stream.

In the future we intend to investigate sophisti-
cated ways for incorporating additional external
lexical and morphological knowledge, explicitely
by means of broad-coverage lexica obeying the
CoNLL-UL format (More et al., 2018), or implic-
itly by means of pre-trained word embeddings on
large volumes of data. Note, however, that the
utility of word-embedding themselves present an
open questions in the case of morphologically rich
and ambigous source token, where each token may
be equivalent to multiple syntactic words in a lan-
guage like English.

We additionally intend to replace the hand-
crafted feature model with neural-network based
feature extraction mechanisms, and we aim to ex-
plore universal morphosyntactic parsing via joint
morphosyntactic modeling, as previously advo-
cated in different settings (Tsarfaty and Goldberg,
2008; Bohnet and Nivre, 2012; Andor et al., 2016;
Bohnet et al., 2013; Li et al., 2011; Bohnet and
Nivre, 2012; Li et al., 2014; Zhang et al., 2014)..
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Treebank UAS LAS MLAS CLAS BLEX
af afribooms 79.83 73.01 60.73 64.99 41.46
ar padt 71.62 64.87 53.54 60.69 5.13
bg btb 87.94 77.81 69.16 73.11 25.18
br keb 26.46 7.01 0.42 3.06 1.98
bxr bdt 30.52 11.14 1.65 4.71 2.52
ca ancora 86.94 80.49 70.37 72.92 53.34
cs cac 85.41 76.25 64.77 73.22 24.89
cs fictree 84.33 72.63 59.28 68.01 29.12
cs pdt 83.09 74.6 65.51 72.12 29.79
cs pud 74.26 49.25 31.59 35.74 15.69
cu proiel 69.22 55.34 46.96 54.08 16.22
da ddt 77.18 69.43 60.7 65.25 39.45
de gsd 74.93 65.44 30.98 59.06 37.04
el gdt 83.9 77.37 60.25 70.09 25.2
en ewt 79.69 71 63.06 66.87 51.34
en gum 78.24 69.91 58.8 62.85 46.55
en lines 77.58 68.11 60.28 64.23 44.05
en pud 72.12 63.73 53.73 58.79 43.33
es ancora 87.61 81.55 73.01 75.48 52.31
et edt 76.5 64.52 56.69 61.37 21.73
eu bdt 69.27 55.21 43.35 50.71 21.14
fa seraji 83.41 76.32 70.75 72.56 57.72
fi ftb 75.5 59.82 48.98 52.84 16.82
fi pud 56.32 38.3 40.59 44.04 15.81
fi tdt 75.29 63.58 56.5 60.84 19.59
fo oft 41.41 18.92 0.36 11.98 5.07
fr gsd 84.89 78.15 69.18 72.91 50.51
fr sequoia 83.7 77.93 69.18 72.92 49.55
fr spoken 69.94 61.29 51.17 52.69 41.01
fro srcmf 84.56 68.55 62.02 64.67 64.67
ga idt 72.64 59.62 34.63 47.71 25.64
gl ctg 80.39 75.59 63.47 68.3 40.79
gl treegal 71.88 64.13 47.71 54.36 34.4
got proiel 66.12 53.17 42.68 50.49 16.86
grc perseus 46.75 35.21 17.91 28.08 5.24
grc proiel 64.75 55.52 38.44 46.53 7.58
he htb 63.19 55.94 43.12 46.99 31.79
hi hdtb 91.1 82.35 65.28 77.12 59.25
hr set 83.32 73.71 54.4 70.23 22.76
hsb ufal 38.15 26.84 4.73 19.27 3.98
hu szeged 68.53 54.32 41 48.46 30.73

Table 2: Official Shared-Task Results
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Treebank UAS LAS MLAS CLAS BLEX
hy armtdp 40.83 25.04 8.42 17.09 6.96
id gsd 82.19 72.23 61.93 70.05 41.53
it isdt 89.25 82.22 72.45 75.06 52.7
it postwita 73.97 66.35 53.96 56.95 41.03
ja gsd 74.21 68.45 52.96 54.81 50.63
ja modern 29.3 22.68 8.29 10.6 9.42
kk ktb 37.92 17.34 4.33 9.25 2.89
kmr mg 35.77 25.1 7.77 19.95 6.53
ko gsd 69.4 55.13 49.99 51.85 17.26
ko kaist 74.3 59.36 52.62 54.96 12.26
la ittb 72.77 63.19 54.81 60.29 21.93
la perseus 43.97 28.12 16.31 23.67 7.46
la proiel 59.01 48.13 36.96 43.96 14.95
lv lvtb 73.29 59.67 46.27 54.42 20.58
nl alpino 79.22 70.95 56.57 62.7 42.48
nl lassysmall 80.03 70.54 58.26 62.3 43.05
no bokmaal 86.01 77.43 69.77 74.18 43.89
no nynorsk 84.25 75.89 67.57 71.83 40.5
no nynorsklia 58.15 42.21 32.58 36.57 30.99
pcm nsc 26.11 12.4 4.57 14.68 14.68
pl lfg 90.22 73.65 60.48 70.55 29.06
pl sz 85.38 71.87 54.81 68.9 22.67
pt bosque 84.35 77.46 62.64 69.99 52.06
ro rrt 82.35 73.01 63.78 66.46 29.07
ru syntagrus 82.93 74.39 66.49 71.54 23.83
ru taiga 61.97 48.86 31.77 42.96 18.03
sk snk 77.99 66.71 48.45 63.6 18.27
sl ssj 78.61 71.24 57.51 67.57 23.79
sl sst 51.43 40.88 28.96 35.62 22.96
sme giella 64.09 48.62 37.23 44.08 17.25
sr set 85.41 76.78 64.7 73.57 24.1
sv lines 78.84 68.77 54.28 66.28 37.24
sv pud 70.7 42.7 16.79 30.36 16.14
sv talbanken 82.12 73.24 65.84 70.02 36
th pud 0 0 0 0 0
tr imst 60.24 43.95 34.37 39.01 15.95
ug udt 67.47 45.67 28.89 35.67 24.12
uk iu 78.45 69.36 51.42 64.69 21.97
ur udtb 84.45 74.5 48.8 66.66 53.69
vi vtb 45.43 37.05 32.18 33.78 33.78
zh gsd 62.77 55.97 46.88 51.02 50.74

Table 3: Official Shared-Task Results
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SParse: Koç University Graph-Based Parsing System for the CoNLL 2018
Shared Task
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Abstract

We present SParse, our Graph-Based Pars-
ing model submitted for the CoNLL 2018
Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies (Ze-
man et al., 2018). Our model ex-
tends the state-of-the-art biaffine parser
(Dozat and Manning, 2016) with a struc-
tural meta-learning module, SMeta, that
combines local and global label predic-
tions. Our parser has been trained and
run on Universal Dependencies datasets
(Nivre et al., 2016, 2018) and has 87.48%
LAS, 78.63% MLAS, 78.69% BLEX and
81.76% CLAS (Nivre and Fang, 2017)
score on the Italian-ISDT dataset and has
72.78% LAS, 59.10% MLAS, 61.38%
BLEX and 61.72% CLAS score on the
Japanese-GSD dataset in our official sub-
mission. All other corpora are evaluated
after the submission deadline, for whom
we present our unofficial test results.

1 Introduction

End-to-end learning with neural networks has
proven to be effective in parsing natural language
(Kiperwasser and Goldberg, 2016). Graph-based
dependency parsers (McDonald et al., 2005) repre-
sent dependency scores between words as a matrix
representing a weighted fully connected graph,
from which a spanning tree algorithm extracts the
best parse tree. This setting is very compatible
with neural network models that are good at pro-
ducing matrices of continuous numbers.

Compared to transition-based parsing (Kırnap
et al., 2017; Kiperwasser and Goldberg, 2016),
which was the basis of our university’s last year
entry, graph-based parsers have the disadvantage
of producing n2 entries for parsing an n-word

sentence. Furthermore, algorithms used to parse
these entries can be even more complex than
O(n2). However, graph-based parsers allow easy-
to-parallelize static architectures rather than se-
quential decision mechanisms and are able to
parse non-projective sentences. Non-projective
graph-based parsing is the core of last year’s win-
ning entry (Dozat et al., 2017).

Neural graph-based parsers can be divided into
two components: encoder and decoder. The en-
coder is responsible for representing the sentence
as a sequence of continuous feature vectors. The
decoder receives this sequence and produces the
parse tree, by first creating a graph representation
and then extracting the maximum spanning tree
(MST).

We use a bidirectional RNN (bi-RNN) to pro-
duce a contextual vector for each word in a sen-
tence. Use of bi-RNNs is the defacto standard
in dependency parsing, as it allows representing
each word conditioned on the whole sentence. Our
main contribution in the encoder part is to the
word embeddings feeding the bi-RNN. We use
word vectors coming from a language model pre-
trained on very large language corpora, similar to
Kırnap et al. (2017). We extend word embeddings
with learnable embeddings for UPOS tags, XPOS
tags and FEATs where applicable.

Our decoder can be viewed as a more struc-
tured version of the state-of-the-art biaffine de-
coder of Dozat et al. (2017), where we attempt
to condition the label-seeking units to a parse-
tree instead of simple local predictions. We pro-
pose a meta-learning module that allows struc-
tured and unstructured predictions to be combined
as a weighted sum. This additional computational
complexity is paid off by our simple word-level
model in the encoder part. We call it that we call
structured meta-biaffine decoder or shortly SMeta.

We implemented our model using Knet deep

216

https://doi.org/10.18653/v1/K18-2022


learning framework (Yuret, 2016) in Julia lan-
guage (Bezanson et al., 2017). Our code will be
made available publicly.

We could only get official results for two cor-
pora due to an unexpected software bug. There-
fore, we present unofficial results obtained after
the submission deadline as well.

2 Related work

Kiperwasser and Goldberg (2016) use trainable
BiLSTMs to represent features of each word, in-
stead of defining the features manually. They for-
mulated the structured prediction using hinge loss
based on the gold parse tree and parsed scores.

Dozat and Manning (2016) propose deep bi-
affine attention combined with the parsing model
of Kiperwasser and Goldberg (2016), which sim-
plifies the architecture by allowing implementa-
tion with a single layer instead of two linear layers.

Stanford’s Graph-based Neural Dependency
Parser (Dozat et al., 2017) at the CoNLL 2017
Shared Task (Zeman et al., 2017) is implemented
with four ReLU layers, two layers for finding
heads and dependents of each word, and two lay-
ers for finding the dependency relations for each
head-dependent pair. The outputs are then fed into
two biaffine layers, one for determining the head
of the word, and another for determining the de-
pendency relation of head-dependent pair.

We propose a dependency parsing model based
on the graph-based parser by Dozat and Manning
(2016). We are adding a meta-biaffine decoder
layer, similar to the tagging model proposed by
Bohnet et al. (2018), for computing the arc labels
based on the full tree constructed from the unla-
beled arc scores instead of computing them inde-
pendently.

Our parsing model uses pretrained word em-
beddings from Kırnap et al. (2017). Our parser
uses the same language model with Kırnap et al.
(2017), in which graph based-parsing algorithms
are applied. However, a transition-based parsing
model is given in Kırnap et al. (2017). There-
fore, some adaptations are made on the features
proposed by Kırnap et al. (2017) in order to use
them in a graph based parsing model. We did not
use contextual features coming from the language
model or features related to words in stack and
buffer. Instead, we trained a three-layer BiLSTM
from scratch to encode contextual features.

3 Model

In this section, we depict important aspects of our
architecture which is shown in Figure 1. We dis-
cuss encoder and decoder separately and then give
the model hyper-parameters used.

3.1 Encoder

Word Model
We used four main features to represent each word
in a sentence: a pre-trained word embedding,
UPOS tag embedding, XPOS tag embedding and
FEAT embedding.

Pre-trained words come from the language
model in Kırnap et al. (2017). This model rep-
resents each word using a character-level LSTM,
which is a suitable setting for morphologically rich
languages, as shown in Dozat et al. (2017). We use
the word vectors without further training.

UPOS and XPOS tag embeddings are repre-
sented by vectors randomly initialized using unit
Gaussian distribution.

Morphological features, also called FEATs, are
different in the sense that there are zero or more
FEATs for each word. We follow a simple strat-
egy: we represent each FEAT using a randomly
initialized vector and add all FEAT embeddings
for each word. We simply used zero for word vec-
tors without any morphological features.

For practical reasons, we also needed to repre-
sent ROOT word of a sentence. We do so by ran-
domly initializing a word embedding and setting
all other embeddings to zero.

At test time, we used tags and morphological
features produced by MorphNet (Dayanık et al.,
2018). For languages where this model is not
available, we directly used UDPipe results (Straka
et al., 2016).

Sentence Model
We used a three-layer bidirectional LSTM to rep-
resent a sentence. We used the hidden size of 200
for both forward and backward LSTMs. Dropout
(Srivastava et al., 2014) is performed at the input
of each LSTM layer, including the first layer. Our
LSTM simply use nth hidden state for nth word,
different from the language model in Kırnap et al.
(2017).

The language model discussed in the previous
section also provides context embeddings. We
performed experiments for combining our own
contextual representation with this representation
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Figure 1: Overall model architecture.

using various concatenation and addition strate-
gies, but we observed poorer performance in terms
of generalization. Also, using the language model
directly as a feature extractor led to unsatisfactory
performance, different from last years’ transition-
based entry of our institution (Kırnap et al., 2017).

3.2 Decoder
Structured Meta-Biaffine Decoder (SMeta)
Deep biaffine decoder (Dozat and Manning, 2016)
is the core of last year’s winning entry (Dozat
et al., 2017), so we used this module as our start-
ing point. Biaffine architecture is computationally
efficient and can be used with easy-to-train soft-
max objective, different from harder-to-optimize
hinge loss objectives as in Kiperwasser and Gold-
berg (2016).

Similar to (Dozat et al., 2017), we produce four
different hidden vectors, two for arcs and two for
relations (or labels). Formally

(1)h(arc−dep)
i = MLP(arc−dep)(hi)

(2)h(arc−head)
i = MLP(arc−head)(hi)

(3)h(rel−dep)
i = MLP(rel−dep)(hi)

(4)h(rel−head)
i = MLP(rel−head)(hi)

where hi represents ith hidden state of the bi-
LSTM embedding. The vectors correspond to
arcs seeking their dependents, arcs seeking their
heads, and corresponding relations. MLP can be
any neural network module. Here, we simply use
dense layers followed by ReLU activations, as in
(Dozat et al., 2017).

Now, we perform the biaffine transformation to
compute the score matrix representing the graph,

(5)s(arc)i = H(arc−head)W (arc)hi

+H(arc−head)bT(arc)

where H(arc−head) represents matrix of
h(arc−head)
i vectors, W (arc) and b(arc) are

learnable weights.
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Up to this point, our decoder is identical to the
one in (Dozat et al., 2017). The difference is in the
computation of predicted arcs. We compute two
different predictions:

(6)y
′l(arc)
i = argmax

j
s
(arc)
ij

(7)p = parse(S(arc))

(8)y
′s(arc)
i = pi

Here S(arc) is the matrix of arc scores and
parse is a spanning tree algorithm that com-
putes the indices of the predicted arcs. Now, we
compute label scores using these two predictions.
First, we compute coefficient vector k using the
bi-RNN encodings,

(9)h′ =
∑n

i=1 hi

n

(10)k = W (meta)h′ + b(meta)

where n is the number of words in the sentence,
W and b are learned parameters. Averaging over
time is inspired by the global average pooling op-
erator in the vision literature (Lin et al., 2013),
transforming temporal representation to a global
one.

We now compute the weighted sum of label pre-
dictions using coefficient vector k.

sl(rel)i = hT(rel−head)
y
′l(arc)
i

U(rel)h(rel−dep)
i

+W (rel)cat(h(rel−dep)
i ,h(rel−head)

y
′l(arc)
i

)

+ b(rel)

(11)

ss(rel)i = hT(rel−head)
y
′s(arc)
i

U(rel)h(rel−dep)
i

+W (rel)cat(h(rel−dep)
i ,h(rel−head)

y
′s(arc)
i

)

+ b(rel)

(12)

(13)s(rel)i = k1sl(rel)i + k2ss(rel)i

(14)y
′(rel)
i = argmax

j
s
(rel)
ij

where U(rel), W (rel) and b(rel) are learned param-
eters.

Our model is trained using sum of softmax
losses similar to (Dozat et al., 2017).

Parsing algorithms

In our parsing model, Chu-Liu-Edmonds algo-
rithm (Chu, 1965; Edmonds, 1967) and Eisner
(1996)’s algorithm are used interchangeably, dur-
ing both the training of parser models and parsing
phase of test datasets. On the languages whose
training dataset consists of more than 250,000
words, Chu-Liu-Edmonds algorithm is used for
parsing since it has a complexity of O(n2), where
n is the number of words.

This approach allows us to train our models on
relatively larger datasets in less amount of time,
compared to the Eisner’s algorithm whose time
complexity is O(n3).

On training datasets having at most 250,000
words, Eisner’s algorithm is used during both
training and parsing phase. Eisners algorithm
produces only projective trees and Chu-Liu-
Edmonds algorithm produces both projective and
non-projective trees. This means the number
of possible trees Eisner’s algorithm can gener-
ate is fewer compared to Chu-Liu-Edmonds al-
gorithm, so even though Eisner’s algorithm has
higher time complexity than Chu-Liu-Edmonds
algorithm, parsing models are trained faster when
Eisner’s algorithm is used.

3.3 Hyperparameters

We used a 150-dimensional tag and feature em-
beddings and 350-dimensional word embeddings
for the word model. Bi-RNN sentence model has
the hidden size of 200 for both forward and back-
ward RNNs, producing 400-dimensional feature
context vectors. We used the hidden size of 400
for arc MLPs and 100 for relation MLPs.

4 Training

We used Adam optimizer (Kingma and Ba, 2014)
with its standard parameters. Based on dataset
size, we trained the model for 25 to 100 epochs
and selected the model based on its validation la-
beled attachment accuracy.

We sampled sentences with identical number of
words in a minibatch. In training corpora that are
sufficiently large, we sampled minibatches so that
approximately 500 tokens exist in a single mini-
batch. We reduced this size to 250 for relatively
small corpora. For very small corpora, we simply
sample a constant number of sentences as a mini-
batch.
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Dataset LAS MLAS BLEX Dataset LAS MLAS BLEX
ar padt 67.57% 56.22% 58.84% hu szeged 73.84% 56.03% 63.31%
bg btb 85.85% 76.28% 74.73% id gsd 76.88% 65.34% 64.89%
ca ancora 87.60% 79.05% 79.49% it isdt 87.51% 78.81% 78.75%
cs cac 86.05% 73.54% 80.14% it postwita 69.48% 56.20% 56.73%
cs fictree 84.21% 71% 76.86% ja modern 22.91% 8.47% 9.73%
cs pdt 86.07% 76.54% 81.39% ko gsd 75.52% 69.15% 63.18%
cs pud 81.80% 68.19% 75.10% ko kaist 81.64% 74.46% 68.86%
cu proiel 67.80% 56.51% 60.93% la ittb 77.66% 68.09% 73.91%
da ddt 77.90% 68.14% 68.64% la perseus 47.45% 29.99% 32.47%
de gsd 70.65% 34.50% 60.40% la proiel 64.29% 51.80% 58.05%
el gdt 83.65% 66.76% 70.14% lv lvtb 71.52% 57.26% 60.20%
en ewt 77.87% 68.57% 70.83% nl alpino 78.28% 63.38% 66.08%
en gum 75.51% 63.95% 63.52% nl lassysmall 78.10% 65.73% 66.77%
en lines 73.97% 65.15% 66.06% pl lfg 88.21% 75.40% 79.25%
en pud 81.31% 69.85% 73.18% pl sz 83.01% 65.10% 73.34%
es ancora 86.94% 79.14% 79.58% pt bosque 84.32% 70.27% 75.29%
et edt 77.45% 69.58% 66.05% ro rrt 82.74% 74.19% 74.60%
eu bdt 73.84% 60.49% 66.38% ru syntagrus 88.22% 80.16% 81.05%
fa seraji 81.74% 75.15% 71.93% ru taiga 40.01% 23.92% 25.44%
fi ftb 76.62% 66.28% 62.88% sk snk 77.81% 56.11% 62.23%
fi tdt 79.30% 71.07% 64.37% sl ssj 78.46% 64.93% 70.50%
fr gsd 82.32% 72.91% 74.97% sl sst 43.63% 31.14% 35.41%
fr sequoia 82.60% 73.07% 76.07% sv lines 74.87% 59.32% 67.25%
fr spoken 64.62% 53.15% 54.18% sv pud 71.66% 43.65% 55.60%
ga idt 35.84% 13.07% 16.77% sv talbanken 79.06% 70.55% 71.16%
gl ctg 80.31% 67.77% 70.72% tr imst 60.19% 49.57% 51.02%
got proiel 62.40% 49.19% 55.15% ug udt 58.48% 38.18% 45.94%
grc perseus 61.82% 34.17% 41.16% uk iu 75.93% 57.81% 64.84%
grc proiel 68.03% 49.40% 55.62% ur udtb 78.41% 51.28% 64.94%
he htb 60.09% 46.32% 49.19% vi vtb 41.27% 34.73% 36.95%
hi hdtb 87.66% 70% 80.47% zh gsd 59.51% 49.33% 54.33%
hr set 80.86% 60.65% 72.36%

Table 1: Our unofficial F1 scores. Tests are done in TIRA (Potthast et al., 2014) machine allocated for
the task.
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We saved best models with corresponding con-
figurations, scores and optimization states during
training for recovery. We then re-create the model
files for the best models of each corpus by remov-
ing the optimization states.

MorphNet is the morphological analysis and
disambiguation tool proposed by Dayanık et al.
(2018), which we used while training our pars-
ing model. During training of the parser, CoNLL-
U formatted training dataset files, which are pro-
duced by UDPipe (Straka et al., 2016), are given
to MorphNet as input. Then, MorphNet applies
its own morphological analysis and disambigua-
tion, and new CoNLL-U formatted files produced
by MorphNet are used by our parser.

Even though we used lemmatized and tagged
outputs generated by MorphNet while training our
parser, we run our parser on outputs generated by
UDPipe, due to time constrains during parsing.

5 Results and Discussion

Short after the testing period ended, our parser ob-
tained results on 64 treebank test sets out of 82,
which are shown in Table 1. According to the re-
sults announced including the unofficial runs, we
had an average LAS score of 57% on the 64 test
sets on which our model is run and ranked 24th
among the best runs of 27 teams. The MLAS score
of our model is 46.40% and our model is ranked
22nd out of the submissions of 27 models. And,
the BLEX score of our model is 49.17% and our
model is ranked 21st out of the best BLEX results
of all 27 models including unofficial runs.1

According to the results, our model performs
better at datasets with comparably larger training
data. For instance, our model has around 90%
LAS score on Catalan, Indian, Italian, Polish and
Russian languages which have higher number of
tokens in training data. Furthermore, our model
performs relatively well in some low-resource lan-
guages like Turkish and Hungarian. However, on
the datasets with very small or no training data,
such as Japanese Modern, Russian Taiga and Irish
IDT, we get lower scores. Hence, our model bene-
fits from large amount of data during training pro-
cess, but prediction with low resources remains as
an issue for our model.

1Best results of each team including unofficial runs are an-
nounced in http://universaldependencies.org/conll18/
results-best-all.html Our results and rankings announced in the
paper are taken from the CoNLL 2018 best results webpage in September 2,
2018 and may change with the inclusion of new results of participated teams
later.

6 Contributions

In this work, we proposed a new decoding mecha-
nism, called SMeta, for graph-based neural depen-
dency parsing. This architecture attempts to com-
bine structured and unstructured prediction meth-
ods using meta-learning. We coupled this archi-
tecture with custom training methods and algo-
rithms to evaluate its performance.
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2017. Parsing with context embeddings. Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies
pages 80–87.

Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Net-
work in network. arXiv preprint arXiv:1312.4400
.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Abstract

In this paper, we present the details of
the neural dependency parser and the neu-
ral tagger submitted by our team ‘ParisNLP’
to the CoNLL 2018 Shared Task on pars-
ing from raw text to Universal Dependen-
cies. We augment the deep Biaffine (BiAF)
parser (Dozat and Manning, 2016) with novel
features to perform competitively: we utilize
an indomain version of ELMo features (Pe-
ters et al., 2018) which provide context-
dependent word representations; we utilize
disambiguated, embedded, morphosyntactic
features from lexicons (Sagot, 2018), which
complements the existing feature set. Hence-
forth, we call our system ‘ELMoLex’. In
addition to incorporating character embed-
dings, ELMoLex leverage pre-trained word
vectors, ELMo and morphosyntactic features
(whenever available) to correctly handle rare
or unknown words which are prevalent in
languages with complex morphology. EL-
MoLex1 ranked 11th by Labeled Attachment
Score metric (70.64%), Morphology-aware
LAS metric (55.74%) and ranked 9th by
Bilexical dependency metric (60.70%). In an
extrinsic evaluation setup, ELMoLex ranked
7th for Event Extraction, Negation Resolution
tasks and 11th for Opinion Analysis task by F1
score.

1 Introduction

The goal of this paper is to describe ELMoLex, the
parsing system submitted by our team ‘ParisNLP’ to
the CoNLL 2018 Shared Task on parsing from raw

1Code to reproduce our tagging and parsing experi-
ments is publicly accessible at https://github.com/
BenjaminMullerGit/NeuroTaggerLex and https:
//github.com/ganeshjawahar/ELMoLex respectively.

text to Universal Dependencies (Zeman et al., 2018).
The backbone of ELMoLex is the BiAF parser (Dozat
and Manning, 2016) consisting of a large, well-tuned
network that generates word representations, which
are then fed to an effective, biaffine classifier to pre-
dict the head of each modifier token and the class of
the edge connecting these tokens. In their follow-up
work (Dozat et al., 2017), the authors further enrich
the parser by utilizing character embeddings for gen-
erating word representations which could help in gen-
eralizing to rare and unknown words (also called Out
Of Vocabulary (OOV) words). They also train their
own taggers using a similar architecture and use the
resulting Part of Speech (PoS) tags for training the
parser in an effort to leverage the potential benefits
in PoS quality over off-the-shelf taggers.

We identify two potential shortcomings of the BiAF
parser. The first problem is the context independence
of the word embedding layer of the parser: the mean-
ing of a word varies across linguistic contexts, which
could be hard to infer automatically for smaller tree-
banks (especially) due to lack of data. To handle this
bottleneck, we propose to use Embeddings from Lan-
guage Model (ELMo) features (Peters et al., 2018)
which are context dependent (function of the entire
input sentence) and obtained from the linear com-
bination of several layers of a pre-trained BiLSTM-
LM2. The second problem is the linguistic naivety3

of the character embeddings: they can generalize
over relevant sub-parts of each word such as prefixes

2Due to lack of time, we could train BiLSTM-LMs on the tree-
bank data only (indomain version). We leave it for future work to
train the model on large raw corpora from each language, which
we believe could further strengthen our parser.

3The term linguistic naivetywas introduced by Matthews et al.
(2018) to refer to the fact that character-based embeddings for
a sentence must discover that words exist and are delimited by
spaces (basic linguistic facts that are built in to the structure of
word-based models). In our context, we use a different meaning
of this term as the term corresponds to the word-level character-
based embeddings.
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Figure 1: Architecture of ELMoLex which uses BiAF parser as its backbone. Arrows indicate structural dependence, but not necessarily
trainable parameters.

or suffixes, which can be problematic for unknown
words which do not always follow such generaliza-
tions (Sagot and Martínez Alonso, 2017). We attempt
to lift this burden by resorting to external lexicons4,
which provides information for both word with an ir-
regular morphology and word not present in the train-
ing data, without any quantitative distinction between
relevant and less relevant information. To tap the in-
formation from the morphological features (such as
gender, tense, mood, etc.) for each word present in the
lexicon efficiently, we propose to embed the features
and disambiguate them contextually with the help of
attention (Bahdanau et al., 2014), before combining
them for the focal word.

We showcase the potential of ELMoLex in parsing
82 treebanks provided by the shared task. ELMoLex
ranked 11th by Labeled Attachment Score (LAS) met-
ric (70.64%), Morphology-aware LAS (MLAS) met-
ric (55.74%) and ranked 9th by BiLEXical depen-
dency (BLEX) metric (60.70%). We perform abla-
tion and training time studies to have a deeper un-
derstanding of ELMoLex. In an extrinsic evaluation
setup (Fares et al., 2018), ELMoLex ranked 7th for
Event Extraction, Negation Resolution tasks and 11th

for Opinion Analysis task by F1 score. On an average,
ELMoLex ranked 8th with a F1 score of 55.48%.

2 ELMoLex

The model architecture of ELMoLex, which uses
BiAF parser (Dozat and Manning, 2016) (which in
turn is based on Kiperwasser and Goldberg (2016))
as its backbone, is displayed in Figure 1. For our

4We use lexicon information for treebanks from 43 languages
provided by UDLexicons (Sagot, 2018).

shared task submission, we assume tokenization and
segmentation is already done5; we henceforth train
ELMoLex on gold tokens and PoS tags provided by
UDPipe (Straka et al., 2016). We evaluate our model
using the segmentation and PoS tags provided by UD-
Pipe, except for certain languages where we use the
tokens and PoS tag predicted by our own tokenizer
and taggers (as respectively explained in Section 2.6
and 2.7)6 respectively.

2.1 Backbone parser
ELMoLex uses the BiAF parser (Dozat and Man-
ning, 2016), a state-of-the-art graph-based parser, as
its backbone. BiAF parser consumes a sequence of
tokens and their PoS tags, which is fed through a mul-
tilayer BiLSTM network. The output state of the final
LSTM layer is then fed through four separate ReLU
layers, producing four specialized vector representa-
tions: first for the word as a modifier seeking its head;
second for the word as a head seeking all its modi-
fiers; third for the word as a modifier deciding on its
label; and lastly for the word as head deciding on the
labels of its modifiers. These vectors become the in-
put to two biaffine classifiers: one computes a score
for each token pair, with the highest score for a given
token indicating that token’s most probable head; the
other computes a score for each label for a given to-
ken/head pair, with the highest score representing the
most probable label for the arc from the head to the

5We explored a wide variety of tokenization and segmenta-
tion techniques in our last year submission (de La Clergerie et al.,
2017). Our primary focus for this year is to explore novel neural
network layers for both tagging and parsing.

6Due to lack of time, we could not train the taggers effectively
for all the languages and use the predicted PoS from UDPipe for
training our parser.
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Figure 2: Architecture of embedding model used by ELMoLex for the word ‘admonish’. vGP (ELMo) and vGP (lex) (red ellipses) are
our major contributions. Arrows indicate structural dependence, but not necessarily trainable parameters.

modifier. We refer the readers to Dozat and Manning
(2016) for further details.

Formally, the BiAF parser consumes a sequence of
n word embeddings (vGP (word)

1 , . . . ,vGP (word)
n ) and

n tag embeddings (vGP (tag)
1 , . . . ,vGP (tag)

n ) as input,
which can be written as:

xGP
i = vGP (word)

i ⊕ vGP (tag)
i ,

vGP (word)
i = vGP (token)

i + vGP (w2v)
i + vGP (char)

i ,

vGP (tag)
i = vGP (UPoS)

i + vGP (XPoS)
i .

(1)

In the equation 1, vGP (token)
i , vGP (w2v)

i , vGP (char)
i

represent the holistic frequent word embedding, pre-
trained word embedding (fixed) and LSTM based
character-level embeddings respectively, whereas the
Universal PoS (UPoS) and language-specific (XPoS)
tag embeddings are represented by vGP (UPoS)

i and
vGP (XPoS)

i respectively. Note that ‘+’ denotes
element-wise addition operator, while ‘⊕’ denotes
concatenation operator.

ELMoLex reformulates the input embedding layer
of BiAF parser in a few ways (as illustrated in Fig-
ure 2): we utilize an indomain version of ELMo fea-
tures (vGP (ELMo)

i ) which provide context-dependent
word representation (as discussed in Section 2.2);
we utilize disambiguated, embedded, morphosyntac-
tic features from lexicons (vGP (lex)

i ), which provide
information that is especially relevant for word with
an irregular morphology (Sagot and Martínez Alonso,
2017), thereby complementing the existing feature set
(as discussed in Section 2.3). Incorporating them,
equation 1 now becomes:

xGP
i = vGP (word)

i ⊕ vGP (morph)
i ,

vGP (word)
i = vGP (fair)

i ⊕ vGP (char)
i ⊕ vGP (ELMo)

i ,

vGP (morph)
i = vGP (PoS)

i ⊕ vGP (lex)
i ,

vGP (PoS)
i = vGP (UPoS)

i + vGP (XPoS)
i .

(2)

In the equation 2, vGP (fair)
i and vGP (char)

i repre-
sent the learnable embeddings that are associated with
frequent words in the vocabulary (pre-initialized from
FAIR word vectors (Bojanowski et al., 2017)) and
convolution-based character-level embeddings (Ma
et al., 2018)7 respectively. Apart from these changes
in the embedding layer, we replace the decoding strat-
egy (tree construction from the predicted graph) of our
parser from greedy decoding (used by BiAF parser)
to Chu-Liu-Edmonds algorithm (Chu and Liu, 1967),
which further improves performance during evalua-
tion.

2.2 ELMo features
In natural language, the meaning of a word changes
when the underlying linguistic context changes. This
fact is not captured by static word embeddings due to
their context independence. Employing a deep, con-
textualized word representation, ELMo (Peters et al.,
2018), which is a function of the entire sentence,
yields promising result for several downstream tasks
such as Question Answering, Textual Entailment and
Sentiment Analysis. We attempt to test whether this
hypothesis holds for dependency parsing. This is an
interesting experiment as the authors of ELMo ob-
tain larger improvements for tasks with small train set
(sample efficient), indicating that smaller treebanks
deprived of useful information could potentially en-
joy good improvements.8

The backbone of ELMo is a BiLSTM-based neu-
ral Language Model (BiLSTM-LM), which is trained

7For obtaining character emebddings, we prefer convolution
operation (introduced in dos Santos and Zadrozny (2014)) over
LSTM (used by BiAF and introduced in Ballesteros et al. (2015))
as the former is parallelizable and efficient especially for large
treebanks.

8ELMoLex rank 8th overall for small treebanks by LAS met-
ric.
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on a large raw corpus. We attempt to explore in this
work whether we can train an indomain version of a
BiLSTM-LM effectively using the available training
data. The main challenge to accomplish this task is to
learn transferable features in the absence of abundant
raw data. Inspired by the authors of BiAF who use a
large, well-tuned network to create a high performing
graph parser, we implement a large BiLSTM-LM net-
work (independent of the ELMoLex parser) which is
highly regularized to prevent data overfitting and able
to learn useful features. Our BiLSTM-LM consumes
both the word and tag embedding as input, which can
be formally written as:

xLM
i = vLM(word)

i ⊕ vLM(UPoS)
i ,

vLM(word)
i = vLM(fair)

i ⊕ vLM(char)
i .

(3)

In equation 3, the notations vLM(fair)
i , vLM(char)

i

and vLM(UPoS)
i are the counterparts of vGP (fair)

i ,
vGP (char)

i and vGP (UPoS)
i respectively.

Note that ELMo, as proposed in Peters et al. (2018),
builds only on character embeddings, automatically
inferring the PoS information in the lower layers of
the LSTM network. Since we have less training data
to work with, we feed the PoS information explicitly
which helps in easening the optimization process of
our BiLSTM-LM network. Given a sequence of n
words, xLM

1 , . . . , xLM
n , BiLSTM-LM learns by maxi-

mizing the log likelihood of forward LSTM and back-
ward LSTM directions, which can be defined as:

n∑

i=1

(log Pr(xLM
i |xLM

1 , . . . , xLM
i−1 ; Θx;

−→
ΘLSTM ,

−→
Θs))

+ (log Pr(xLM
i |xLM

i+1 , . . . , xLM
n ; Θx;

←−
ΘLSTM ,

←−
Θs)) . (4)

We share the word embedding layer (Θx) of both
LSTMs and learn the rest of the parameters indepen-
dently. Unlike Peters et al. (2018), we do not tie
the Softmax layer (Θs) in both the LSTM directions.
Essentially, ELMo features are computed by a task-
specific linear combination of the BiLSTM-LM’s in-
termediate layer representations. If L represents the
number of layers in BiLSTM-LM, ELMo computes a
set of 2L + 1 representations:

Rk = {xLM
k ,
←−h LM

k,j ,
−→h LM

k,j |j = 1, . . . , L}
= {hLM

k,j |j = 1, . . . , L},
(5)

where hLM
k,0 is the word embedding layer (Equation 3)

and hLM
k,j =

←−h LM
k,j ⊕

−→h LM
k,j , for each BiLSTM layer.

The authors of ELMo (Peters et al., 2018) show that
different layers of BiLSTM-LM carry different types

of information: lower-level LSTM states capture syn-
tactic aspects (e.g., they can be used for PoS tagging);
higher-level LSTM states model context-dependent
aspects of word meaning (e.g., they can be used for
word sense disambiguation); This observation is ex-
ploited by ELMoLex which can smartly select among
all of these signals the useful information for depen-
dency parsing. Thus, ELMo features for a word are
computed by attending (softly) to the informative lay-
ers in R, as follows:

vGP (ELMo)
i = E(Rk; Θelmo) = γelmo

L∑

j=0

selmo
j hLM

k,j . (6)

In equation 6, selmo corresponds to the softmax-
normalized weights, while γelmo lets ELMoLex to
scale the entire ELMo vector.

2.3 Lexicon features

Character-level models depend on the internal
character-level make-up of a word. They exploit
the relevant sub-parts of a word such as suffixes or
prefixes to generate word representations. They can
generalize to unknown words if these unknown words
follow such generalizations. Otherwise, they fail to
add any improvement (Sagot and Martínez Alonso,
2017) and we may need to look for other sources to
complement the information provided by character-
level embeddings. We term this problem as linguistic
naivety.

ELMoLex taps into the large inventory of morpho-
logical features (gender, number, case, tense, mood,
person, etc.) provided by external resources, namely
the UDLexicons (Sagot, 2018) lexicon collection,
which cover words with an irregular morphology as
well as words not present in the training data. Essen-
tially, these lexicons consist of ⟨word, UPoS, morpho-
logical features⟩ triplets, which we query using ⟨word,
UPoS⟩ pair resulting in one or more hits. When we
attempt to integrate the information from these hits,
we face the challenge of disambiguation as not all the
morphological features returned by the query are rele-
vant to the focal ⟨word, UPoS⟩ pair. ELMoLex relies
on attention mechanism (Bahdanau et al., 2014) to se-
lect the relevant morphological features, thereby hav-
ing the capability to handle noisy or irrelevant features
by paying no attention.

Put formally, given a sequence of m morpholog-
ical feature embeddings (vGP (mf)

mf1
, …, vGP (mf)

mfm
) for

a word i, the lexicon-based embedding for the word
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Target Source(s)

hy_armtdp grc_perseus, grc_proiel
kk_ktb tr_imst, ug_udt
hsb_ufal mixed
kmr_mg fa_seraji
bxr_bdt tr_imst, ug_udt, ko_gsd, ko_kaist, ja_gsd
pcm_nsc mixed
en_pud en_ewt
th_pud mixed
ja_modern ja_gsd
br_keb mixed
fo_oft da_ddt, sv_talbanken, sv_lines,

no_nynorsklia, no_bokmaal, no_nynorsk
fi_pud fi_tdt
sv_pud sv_talbanken
cs_pud cs_pdt

Table 1: Treebanks to source the training data for Delexicalized
Parsing of a given target treebank.

(vGP (lex)
i ) can be computed as follows:9

v
GP (lex)
i =

m∑

j=1

slex
mfj

vGP (mf)
mfj

. (7)

In equation 7, slex
mfj

corresponds to the softmax-
normalized weight which is a learnable parameter for
each available morphological feature (in this case, it
is mfj). The general idea to perform a weighted sum
to extract relevant features has been previously stud-
ied in the context of sequence labeling (Rei et al.,
2016) for integrating word and character level fea-
tures. Combining the distributional knowledge of
words along with the semantic lexicons has been ex-
tensively studied for estimating high quality word
vectors, also referred to as ‘retrofitting’ in litera-
ture (Faruqui et al., 2015).

2.4 Delexicalized Parsing

We perform delexicalized “language family” parsing
for treebanks with less than 50 or no train sentences
(as shown in Table 1). The delexicalized version of
ELMoLex throws away word-level information such
as vGP (word) and vGP (char) and works with the rest.
The source treebanks are concatenated to form one
large treebank, which is then used to train the delex-
icalized parser for the corresponding target treebank.
In case of “mixed model”, we concatenate at most 300
sentences from each treebank to create the training
data.

9We experienced inferior results with other lexicon-based rep-
resentations such as n-hot vector (having active value correspond-
ing to the each of the morphological feature), unweighted average
of morphological feature embeddings and morphological feature
group based embedded attention.

2.5 Handling OOV words
Out Of Vocabulary (OOV) word problem is prevalent
in languages with rich morphology and an accurate
parser should come up with smart techniques to per-
form better than substituting a learned unknown vo-
cabulary token (‘UNK’) during evaluation. To cir-
cumvent this problem, ELMoLex relies on four sig-
nals from the proposed embedding layer:

• vGP (fair): If an OOV word is present in the
FAIR word vectors, ELMoLex directly substi-
tute the word embedding without any transfor-
mation.10 If OOV word is absent, we resort to
using ‘UNK’ token.

• vGP (ELMo): For an OOV word, the ELMo layer
of ELMoLex computes the context-dependent
word representation based on the other vocabu-
lary words present in the focal sentence.

• vGP (char): Character-level embedding layer of
ELMoLex computes the representation based on
the known characters extracted from the OOV
word naturally.

• vGP (lex): If an OOV word is present in the exter-
nal lexicon, ELMoLex queries with the ⟨word,
PoS⟩ pair and computes the representation based
on the known set of morphological features.

2.6 Neural Tagger with embedded lexicon
As described in Dozat et al. (2017), the BiAF model
benefits from Part-of-Speech (PoS) inputs only if their
accuracy is high enough. Our idea was therefore to
design an accurate tagger in order to improve the per-
formance of the parser.

Moreover, the shared task allows the use of external
resources such as lexicons. A lexicon is simply a col-
lection of possibilities in terms of PoS and morpho-
logical features usually provided for a large amount
of words. In the context of neural taggers, an external
lexicon can be seen as an external memory that can be
useful in two ways:

• For making training faster. At initialization, for
a given token, all possible PoS tags are equiprob-
able of being predicted by the network. The
model only learns from the example it sees. By
providing the model with a constrained set of

10Inspired by Mikolov et al. (2013), we experimented with a
linear transformation of the FAIR word vectors to the trained word
embedding space, which resulted in poor performance. This con-
firms the intuition that the learned word embedding space is a
non-linear transformation of the pre-trained word vectors.
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possible tags as input features we can expect the
training process to be faster.

• For helping the model with OOV tokens. In-
deed, the lexicon provides information - poten-
tially complementary to the character based rep-
resentation - on OOV tokens that could be useful
at inference.

Generally speaking, this experience is interesting
because it challenges the idea that neural models, if
deep enough and trained on enough data, don’t require
external resources and can learn everything in an end-
to-end manner. As we will see for tagging, external
pre-computed resources such as lexicons are of a great
help.

The tagger we design is based on the neural tag-
ging model with lexicon described in Sagot and
Martínez Alonso (2017) and adapted using architec-
tural insights from Dozat and Manning (2016). In
short, words are represented in three ways. The first
part is a trainable word vector (initialized with the
FAIR vectors described in Bojanowski et al. (2017)).
The second part is a character-based representation
either computed using 1-dimensional convolution or
a recurrent LSTM cell. The third component is an
n-hot encoded vector of the tags that appear in an
external lexicon, possibly embedded in a continuous
space. These three components are summed, pro-
viding amorphologically and lexically-enriched word
representation. This vector is then fed to a two layer
BiLSTM that encodes the sentence level context, fol-
lowed by two heads, one for predicting UPoS and
the other for predicting morphological features. Each
head is composed of a dense layer followed by a soft-
max layer.

2.7 Specific Tokenization post-processing for
Arabic

To improve the Arabic tokenizer, we noticed that to-
kenization is very error-prone wherein most of the er-
rors come from wrong analysis of the letter .’و‘ In-
deed, in Arabic, this letter (which is a coordinate con-
junction, “and”) is usually concatenated to the next
word (e.g ‘ ,’وقطر “and Qata”) but is sometimes just a
part of the word (e.g ,’وافق‘ “he agrees”). This ambi-
guity confuses the UDPipe tokenizer. Our fix consists
in splitting that letter from its word whenever UDPipe
was unable to provide a proper UPoS tag. This simple
fix led to a 0.7% improvement in word segmentation
compared to the UDPipe baseline and led us to rank
4th on Arabic in the final LAS metric.

Treebank Neural Tagger UDPipe

af_afribooms 95.33 95.53
da_dadt 95.54 95.18
el_gdt 95.48 94.80
fr_sequoia 96.13 95.78
fr_spoken 95.71 93.70
hu_szeged 93.07 92.56
sv_lines 95.27 94.37
tr_imst 91.08 91.02
vi_vtb 77.10 77.80
zh_gsd 84.26 83.24

Table 2: UPoS F1 on Dev. datasets (used as test)

3 Results

The implementation of ELMoLex as well as the neu-
ral tagger are based on the publicly available BiAF
parser code provided by CMU (Ma et al., 2018). Sim-
ilar to Dozat et al. (2017), we use mostly the same
set of hyper-parameters (as displayed in Appendix A),
which makes ELMoLex robust across a wide variety
of treebanks present in the shared task (Zeman et al.,
2018). For treebanks with no development data, we
perform a 5-fold cross validation to identify the av-
erage number of epochs taken to train each fold. By
setting the maximum number of epochs to this aver-
age number, we then train ELMoLex on 90% of the
training data and use the rest of the training data for se-
lecting our best model. When we do not find external
lexicon in UDLexicons (Sagot, 2018) for a given lan-
guage, we skip the lexicon based features (vGP (lex))
and work with the rest. ELMoLex ran for ∼26 hours
on the TIRA virtual machine (Potthast et al., 2014) se-
quentially, which can be trivially parallelized to run
within two hours. Our shared task results are dis-
played in Appendix B.

3.1 Performance Analysis of the Tagger
Given the general architecture we presented in Sec-
tion 2.6, we are able to test a few key questions: Is
recurrent cell better suited at encoding word morphol-
ogy compared to 1-D convolution layer ? Is embed-
ding the lexical information into a continuous space
useful for improving the performance ? And finally,
is using an external lexicon always useful for better
UPoS tagging ? We summarize our results as follows:

• Convolution layer works better than recurrent
cell for languages such as Vietnamese and Chi-
nese.

• Leveraging an external lexicon helps the tagger
for most of the languages, specifically for lan-
guages such as French (tested on fr_sequoia
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Treebank Vanilla NLM Init. ELMo Lex ELMoLex

nl_lassysmall 73.57 (230) 74.08 (751) 74.10 (779) 74.23 (979) 74.05 (500)
fr_spoken 61.83 (94) 61.97 (141) 62.07 (175) 62.28 (275) 62.49 (383)
el_gdt 81.43 (148) 82.06 (687) 82.09 (764) 82.48 (1358) 82.48 (2028)
it_postwita 64.95 (369) 66.35 (225) 65.27 (266) 65.67 (600) 65.63 (518)
ro_rrt 81.21 (430) 81.08 (1139) 81.39 (1325) 81.60 (1694) 81.47 (890)
tr_imst 53.72 (249) 53.67 (624) 54.00 (735) 54.16 (670) 53.97 (1559)
uk_iu 78.62 (316) 78.73 (271) 79.21 (330) 79.14 (731) 78.87 (1891)

Table 3: Ablation study of ELMoLex. LAS dev. score along with training time (with 90% of the training data with the rest used for
selecting the best model) in minutes is reported for selected treebanks. For NLM Init. and ELMoLex models, we report the time taken
to train the parser (excluding the time taken to train the underlying BiLSTM-LM). All the reported models uses Chu-Liu-Edmonds
algorithm (Chu and Liu, 1967) for constructing the final parse tree.
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Figure 3: Comparing morphological embedding technique: RNN
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Figure 4: Impact of external lexicons

and fr_spoken), Greek, Danish, Hungarian and
Swedish. The only language for which the lexi-
con did not help is Turkish.

• Using a continuous embedding layer for lexicon
features always leads to better performance com-
pare to straight n-hot encoding.

We now present in more details the performance of our
model regarding these three dimensions. The results
are reported on development datasets treated as a strict
test set.

As we notice in Figure 3, using a convolution layer
as a morphological embedding technique provides
poorer results compared to a recurrent cell except for
two cases: Chinese and Vietnamese. This suggests
that the different morphology and tokenization com-
plexity that we find for Europeans languages com-
pared to Chinese and Vietnamese might well require
different kind of embedding architectures. Intuitively,
we could say that the character-wise sequential struc-
ture of the Europeans languages is better modeled by
a recurrent cell, while a language like Chinese with
overlaying phenomenons is better modeled by a con-
volution layer.

We now describe the impact of an external lexicon
for UPoS tagging (Figure. 4). We present the results
only for the datasets for which the RNN cell was pro-
viding the best results. We compare two architectures:
the neural tagger using a recurrent cell for morphol-
ogy with an external lexicon (embedded in a continu-
ous space) and the same architecture without external
lexicons. For all the treebanks (except Turkish), the
lexicon helps the UPoS tagging performance.

The last component of the neural tagger we analyze
is the input technique of the lexical information. We
compare two techniques. The first one is the architec-
ture described in Sagot and Martínez Alonso (2017)
for which the lexical information is feeded using a n-
hot encoded vector which is then concatenated with
the other word representation vectors. The second
one embeds in a continuous space the lexicon tags
before averaging them providing a single vector that
summarizes the lexical information of a given word.
As we see in Figure 5, in all languages we experi-
mented with, the embedding layers provides better re-
sults than a simple n-hot encoded representation.

For most of the treebanks, we performed signifi-
cantly above the UDPipe baseline for UPoS tagging.
Our results are summarized in Table 2. Unfortunately,
we reached these results too late before the deadline,
and we did not get the time to retrain our parser on our
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Figure 5: Impact of lexicon embedding technique

own, predicted PoS tags. Therefore, at test time, we
only used the predicted tags for treebanks for which
we were confident that our predicted tags would help
the parser. It resulted in using our system for four tree-
banks: el_gdt, hu_szeged, sv_lines and tr_imst.
In Appendix C,you will find the performance of our
Neural tagger and our ELMoLex parser trained on our
predicted tags for which we were able to retrain the
models after the system submission deadline.

3.2 Ablation Study of the Parser

To unpack the benefits obtained from each of our
contributions, we perform ablation studies with the
following variants of ELMoLex: ELMoLex without
ELMo and lexicon features, which is effectively the
vanilla BiAF model (Ma et al., 2018); initializing
the BiLSTM layer of the vanilla model with that of
a pre-trained BiLSTM-LM (NLM Init.)11; ELMoLex
with the ELMo features only (ELMo); ELMoLex with
the lexicon features only (Lex); ELMoLex with both
ELMo and Lexicon features (full version); The mod-
els used in the ablation study are trained on 90% of the
training data, tuned on the remaining 10% and tested
on the development set provided by the organizers.

The results are displayed in Table 312. We make
the following important observations: (1) Utilizing ei-
ther ELMo or Lexicon or both always outperform the
BiAF model; (2) External lexicons brings in valuable
information about OOV words and words with irregu-
lar morphology, thereby outperforming BiAF (which
relies for those cases on character embeddings only)
by a large margin; (3) ELMo entails high train time
due to the additional LSTM operation over the entire

11Our final submission to the shared task did not have the NLM
pre-initialization feature.

12The training time reported in the table is an over-estimate,
as it is captured when several parsers (at most four of them) are
running together in a single GTX 1070 GPU.

Treebank ParisNLP-2017 ParisNLP-2018

el_edt 82.25 86.83 (+4.58)
hu_szeged 66.82 74.36 (+7.54)
sv_lines 76.61 79.92 (+3.31)
tr_imst 56.03 61.27 (+5.24)

Table 4: Comparing LAS scores for 2017 and 2018 participation
of ParisNLP. The increase in the absolute LAS points are enclosed
in the ellipses.

sentence, but exhibits strong performance over BiAF
model which naturally leads us to combine it along
with the lexicon information to create ELMoLex (our
final submission system).

In summary, in contrast with our participation to the
shared task last year (de La Clergerie et al. (2017)13,
we decided to focus on neural models wherein we ex-
plored many architectures and ideas both for tagging
and parsing. As a result we reached superior perfor-
mance in the final LAS score compared to our last year
submission. To illustrate this, we compare the results
of our current submission with that of the last year for
four treebanks (Table 4) and observe significant im-
provements in the LAS score.

3.3 Extrinsic Evaluation of the Parser
A “good” parser should not only perform well in the
intrinsic metrics such as LAS, BLAS and BLEX, but
should strengthen a real world NLP system by provid-
ing relevant syntactic features. To understand the im-
pact of ELMoLex in a downstream NLP application,
we participiated in the shared task on Extrinsic Parser
Evaluation (Fares et al., 2018). The goal of this task
is to evaluate the parse trees predicted by ELMoLex
on three downstream applications: biological event
extraction, fine-grained opinion analysis, and nega-
tion resolution, for its usefulness. Since all the tasks
are based on English language, we train ELMoLex on
en_ewt treebank (which is the largest English tree-
bank provided by the organizers (Zeman et al., 2018))
without changing the hyper-parameters (as disclosed
in Appendix A). We refer the readers to Fares et al.
(2018) for details about each of the downstream task
and the accompanying system (which takes the fea-
tures dervied from ELMoLex) used to solve the task.
Our extrinsic evaluation results14 are displayed in Ta-
ble 5. ELMoLex ranked 7th for Event Extraction,
Negation Resolution tasks and 11th for Opinion Anal-
ysis task by F1 score. On an average, ELMoLex

13Our team ‘ParisNLP’ ranked 6th in the unofficial ranking.
14In our last year joint submission with Stanford (Schuster

et al., 2017), we evaluated different semantic dependencies rep-
resentations and also compared different parsing strategies.
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Downstream Task Precision Recall F1 Score

Event Extraction 55.66 (-3.6) 43.56 (-9.87) 48.87 (-4.72)
Negation Resolution 100 (0) 40.68 (-2.07) 57.83 (-1.91)
Opinion Analysis 63.01 (-3.66) 56.78 (-6.1) 59.73 (-4.99)

Table 5: Results on the downstream tasks for our ELMoLex system trained on the en_ewt treebank with the corresponding difference
from the best system enclosed in ellipses.

ranked 8th with a F1 score of 55.48%.

4 Conclusion

We presented our parsing system, ELMoLex, which
successfully integrates context-dependent ELMo and
lexicon-based representations to overcome the con-
text independency and linguistic naivety problem in
the embedding layer of the BiAF model respectively.
We showed the analysis of our neural tagger, whose
competitive performance in PoS estimation is capital-
ized by ELMoLex to achieve strong gains in parsing
quality for four treebanks. We also performed an abla-
tion study to understand the source of gains brought by
ELMoLex. We evaluated ELMoLex on three down-
stream applications to understand its usefulness.

In the next step of our work, we plan to: (1) com-
pare the performance in utilizing recurrent layer over
the convolution layer for character embeddings (sim-
ilar to our neural tagger experiment) which underlies
our parser; (2) pursue the NLM initialization feature
further to inspect if using it can enrich ELMoLex; (3)
observe the performance when we augment the in-
domain train data for our BiLSTM-LM with massive
raw data (such as Wikipedia); (4) train our parser and
tagger jointly with the gold PoS tags; and (5) exploit
lattice information (More et al., 2018; Buckman and
Neubig, 2018) which captures rich linguistic knowl-
edge.
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Appendix A: Hyper-parameters Used

Hyper-parameter ELMoLex Value BiLSTM-LM Value Neural Tagger Value

E
m
be
d

CNN window 3 3 3
char-LSTM - - 300
CNN filters 100 100 300
character embed. size 100 100 100
word embed. size 300 300 300
PoS embed. size 100 100 -
lexicon based embed. size 100 - 300

L
ST

M

layers 3 3 2
hidden state 512 150 400
arc MLP size 512 - -
label MLP size 128 - 400
BPTT 10 - -

D
ro
po
ut embeddings 0.33 0.33 0.33

LSTM hidden states 0.33 0.33 0.5
LSTM layers 0.33 0.33 0.33

O
pt
im

iz
at
io
n

optimizer Adam Adam Adam
init learning rate 0.001 0.001 0.001
(β1, β2) (0.9, 0.9) (0.9, 0.9) (0.9, 0.9)
decay rate 0.75 0.75 0.75
gradient clipping 5.0 5.0 5.0
schedule 10 10 10
maximum epochs 1000 variable 15 1000
batch size variable16 variable16 12

Table 6: Hyper-parameters for all the models used in the experiments.
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Appendix B: CoNLL Final Results

Treebank LAS MLAS BLEX Treebank LAS MLAS BLEX

af_afribooms 82.97 (-2.50) 69.59 (-6.08) 72.57 (-3.87) hy_armtdp 12.49 (-24.52) 1.98 (-11.38) 6.24 (-12.80)
ar_padt 72.77 (-4.29) 58.95 (-9.59) 63.62 (-6.44) id_gsd 77.44 (-2.61) 65.06 (-3.30) 65.58 (-10.98)
bg_btb 88.85 (-2.37) 79.07 (-4.05) 77.92 (-6.39) it_isdt 89.51 (-2.49) 80.43 (-3.46) 81.33 (-3.43)
br_keb 10.53 (-28.11) 0.34 (-13.57) 2.23 (-18.47) it_postwita 69.73 (-9.66) 55.95 (-12.55) 57.63 (-11.71)
bxr_bdt 15.06 (-4.47) 1.78 (-1.20) 3.61 (-3.04) ja_gsd 74.44 (-8.67) 60.38 (-12.24) 63.05 (-10.74)
ca_ancora 89.96 (-1.65) 81.63 (-2.44) 83.03 (-2.44) ja_modern 13.63 (-14.70) 3.06 (-8.76) 4.49 (-9.30)
cs_cac 90.31 (-1.30) 75.72 (-7.70) 84.87 (-1.92) kk_ktb 23.50 (-8.43) 5.88 (-3.05) 8.62 (-2.71)
cs_fictree 89.39 (-2.63) 74.18 (-10.05) 82.86 (-4.95) kmr_mg 17.93 (-12.48) 4.09 (-3.89) 7.99 (-5.67)
cs_pdt 90.27 (-1.41) 79.13 (-5.97) 86.31 (-1.60) ko_gsd 82.22 (-2.92) 75.17 (-5.68) 69.25 (-7.06)
cs_pud 82.68 (-3.45) 67.87 (-7.94) 76.23 (-4.30) ko_kaist 85.49 (-1.42) 77.49 (-3.80) 72.29 (-7.26)
cu_proiel 70.54 (-5.19) 57.01 (-6.30) 63.56 (-7.75) la_ittb 84.64 (-2.44) 74.66 (-5.18) 81.33 (-3.04)
da_ddt 81.22 (-5.06) 70.47 (-6.84) 71.74 (-6.33) la_perseus 55.02 (-17.61) 32.08 (-17.69) 37.15 (-15.60)
de_gsd 77.64 (-2.72) 36.95 (-21.09) 67.94 (-3.46) la_proiel 67.90 (-5.71) 53.02 (-6.34) 61.85 (-5.75)
el_gdt 86.83 (-2.82) 67.92 (-10.74) 74.12 (-5.97) lv_lvtb 78.16 (-5.81) 60.19 (-7.70) 66.52 (-5.88)
en_ewt 81.42 (-3.15) 71.53 (-4.80) 74.97 (-3.47) nl_alpino 85.17 (-4.39) 69.52 (-7.00) 74.06 (-5.09)
en_gum 78.43 (-6.62) 65.12 (-8.12) 66.25 (-7.32) nl_lassysmall 80.79 (-6.05) 67.44 (-6.67) 69.79 (-6.75)
en_lines 76.64 (-5.33) 66.73 (-5.52) 68.95 (-6.34) no_bokmaal 88.90 (-2.33) 79.58 (-4.10) 82.26 (-3.56)
en_pud 80.75 (-7.14) 67.89 (-6.97) 72.19 (-8.34) no_nynorsk 88.67 (-2.32) 78.08 (-3.78) 81.57 (-2.87)
es_ancora 89.13 (-1.80) 81.18 (-2.75) 82.59 (-2.33) no_nynorsklia 54.39 (-15.95) 39.68 (-17.83) 45.47 (-15.51)
et_edt 81.78 (-3.57) 71.59 (-5.38) 69.82 (-9.55) pcm_nsc 11.32 (-18.75) 3.49 (-1.81) 9.80 (-16.24)
eu_bdt 80.45 (-3.77) 63.40 (-8.33) 72.50 (-5.65) pl_lfg 92.96 (-1.90) 76.96 (-9.97) 84.14 (-6.28)
fa_seraji 85.14 (-2.97) 77.73 (-3.10) 75.48 (-4.96) pl_sz 89.03 (-3.20) 67.31 (-13.46) 78.85 (-7.44)
fi_ftb 83.73 (-4.80) 71.43 (-8.22) 69.33 (-13.11) pt_bosque 86.53 (-1.28) 71.73 (-4.21) 78.02 (-2.60)
fi_pud 71.64 (-18.59) 62.46 (-21.32) 57.40 (-25.04) ro_rrt 84.75 (-2.12) 76.02 (-2.66) 77.28 (-3.69)
fi_tdt 83.06 (-5.67) 73.16 (-7.68) 67.47 (-13.77) ru_syntagrus 91.41 (-1.07) 81.74 (-5.02) 84.65 (-4.00)
fo_oft 29.48 (-19.95) 0.34 (-0.73) 7.16 (-7.24) ru_taiga 62.15 (-12.09) 38.46 (-23.13) 45.77 (-18.59)
fr_gsd 85.00 (-1.89) 75.38 (-3.06) 78.51 (-2.67) sk_snk 84.22 (-4.63) 58.52 (-16.49) 67.08 (-13.66)
fr_sequoia 85.32 (-4.57) 74.70 (-7.85) 79.13 (-5.54) sl_ssj 84.48 (-6.99) 67.85 (-14.53) 76.57 (-6.66)
fr_spoken 66.41 (-9.37) 53.30 (-11.37) 55.96 (-9.67) sl_sst 50.62 (-10.77) 35.21 (-10.72) 41.82 (-9.12)
fro_srcmf 85.53 (-1.59) 76.96 (-3.32) 82.14 (-1.97) sme_giella 65.95 (-3.92) 48.73 (-8.74) 49.28 (-10.82)
ga_idt 67.24 (-3.64) 39.68 (-6.11) 46.29 (-8.89) sr_set 87.02 (-1.64) 72.20 (-5.53) 78.10 (-5.18)
gl_ctg 81.25 (-1.51) 68.48 (-2.44) 71.77 (-3.37) sv_lines 79.92 (-4.16) 61.59 (-4.99) 72.27 (-4.74)
gl_treegal 70.48 (-3.77) 51.10 (-9.53) 56.75 (-7.54) sv_pud 71.77 (-8.58) 42.69 (-9.05) 55.48 (-10.64)
got_proiel 66.37 (-3.18) 51.20 (-5.25) 59.18 (-4.80) sv_talbanken 84.27 (-4.36) 73.98 (-5.34) 76.49 (-4.95)
grc_perseus 71.76 (-7.63) 39.22 (-15.76) 49.39 (-9.29) th_pud 0.23 (-13.47) 0.00 (-6.29) 0.01 (-10.76)
grc_proiel 74.51 (-4.74) 54.87 (-5.40) 62.83 (-6.20) tr_imst 61.71 (-4.73) 48.32 (-7.41) 52.34 (-7.79)
he_htb 62.17 (-13.92) 47.82 (-15.56) 51.52 (-13.52) ug_udt 61.27 (-5.78) 40.73 (-5.05) 49.48 (-5.94)
hi_hdtb 90.98 (-1.43) 72.25 (-6.05) 84.80 (-1.94) uk_iu 81.33 (-7.10) 59.99 (-12.28) 70.06 (-8.32)
hr_set 84.53 (-2.83) 61.82 (-11.62) 75.94 (-4.56) ur_udtb 81.10 (-2.29) 52.34 (-5.64) 68.57 (-5.22)
hsb_ufal 28.15 (-18.27) 4.88 (-4.21) 15.06 (-6.03) vi_vtb 43.04 (-12.18) 35.45 (-12.16) 38.89 (-5.13)
hu_szeged 74.36 (-8.30) 55.98 (-11.15) 63.76 (-9.41) zh_gsd 62.80 (-13.97) 52.47 (-14.15) 58.01 (-14.96)

LAS MLAS BLEX

All treebanks 70.64 (-5.20) 55.74 (-5.51) 60.70 (-5.39)
Big treebanks only 80.29 (-4.08) 65.88 (-6.79) 70.95 (-4.88)
PUD treebanks only 64.09 (-10.11) 48.79 (-9.96) 53.16 (-10.09)
Small treebanks only 60.84 (-8.69) 40.71 (-8.53) 46.08 (-8.81)
Low-resource languages only 16.52 (-11.37) 2.53 (-3.60) 6.75 (-7.23)

Table 7: Results on each treebank in the shared task along with the macro average over all of them (with the corresponding difference
from the best system enclosed in ellipses).
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Appendix C: Performance of ELMoLex trained and tested using the NeuroTagger tags

Treebank UPOS LAS MLAS BLEX

da_ddt 95.53 (+0.09) 81.69(+0.47) 69.19 (-1.28) 72.57(+0.83)
de_gsd 91.97 (+0.39) 77.09(-0.55) 37.24(+0.29) 67.71(-0.23)
eu_bdt 92.74 (+0.4) 79.94(-0.51) 61.84(-1.56) 72.02(-0.48)
el_gdt** 96.35 (-) 87.31(+0.48) 68.68(+0.76) 75.07(+0.95)
fr_sequoia 96.66 (+0.82) 87.31 (+1.99) 76.11(+1.41) 81.43(+2.3)
fr_spoken 94.63 (+1.69) 66.98(+0.57) 54.1(+0.8) 56.6(+0.64)
hr_set 96.96 (+0.63) 84.56 (+0.03) 61.88 (+0.06) 75.98(+0.06)
hu_szeged** 91.82 (-) 73.86(-0.5) 55.59 (-0.39) 63.38 (-0.38)
sv_lines** 95.28 (-) 79.57 (-0.35) 61.35(-0.24) 72.2(-0.07)
zh_gsd** 83.59 (+0.12) 64.56 (+1.76) 52.85(+0.38) 60.24(+2.23)

UPOS LAS MLAS BLEX

Average gain +0.59 +0.34 0.02 +0.58

Table 8: Performance of ELMOLEX trained and tested using tags from the neural tagger (with the corresponding absolute difference
from our submission final results) and average absolute gain of using the neural tagger compared to tags used at the submissions
**indicates datasets for which tags from the neural tagger where used at test time for the submission
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Bebek, 34342 İstanbul, Turkey
saziye.bilgin,arzucan.ozgur,gungort,balkiz.ozturk@boun.edu.tr

Abstract

We propose two word representation mod-
els for agglutinative languages that bet-
ter capture the similarities between words
which have similar tasks in sentences.
Our models highlight the morphological
features in words and embed morpho-
logical information into their dense rep-
resentations. We have tested our mod-
els on an LSTM-based dependency parser
with character-based word embeddings
proposed by Ballesteros et al. (2015). We
participated in the CoNLL 2018 Shared
Task on multilingual parsing from raw text
to universal dependencies as the BOUN
team. We show that our morphology-
based embedding models improve the
parsing performance for most of the agglu-
tinative languages.

1 Introduction

This paper describes our submission to the CoNLL
2018 Shared Task (Zeman et al., 2018b) on pars-
ing of Universal Dependencies (UD) (Nivre et al.,
2016). We propose morphologically enhanced
character-based word embeddings to improve the
parsing performance especially for agglutinative
languages. We apply our approach to a transition-
based dependency parser by Ballesteros et al.
(2015) that uses stack Long Short Term Mem-
ory structures (LSTMs) to predict the parser state.
This parser uses character-level word represen-
tation, which has been shown to perform better
for languages with rich morphology (Ballesteros
et al., 2015; Dozat et al., 2017). From our exper-
iment results performed on UD version 2.2 data
sets (Nivre et al., 2018; Zeman et al., 2018a) we
observe that including morphological information
to a character-based word embedding model yields

a better learning of relationships between words
and increases the parsing performance for most of
the agglutinative languages with rich morphology.

The rest of the paper is organized as follows:
Section 2 provides a brief description of the
LSTM-based dependency parser used in this study
and introduces our embedding models. Section 3
gives the implementation details of our system and
describes the training strategies we apply to differ-
ent languages. Section 4 discusses our results on
the shared task as well as the post-evaluation ex-
periments and Section 5 concludes the paper.

2 Parsing Model

We use the LSTM-based parser by Ballesteros
et al. (2015). It is an improved version of a state-
of-the-art transition-based dependency parser pro-
posed by Dyer et al. (2015) and uses stack LSTM
structures with push and pop operations to learn
representations of the parser state. Instead of
lookup-based word representations, bidirectional
LSTM modules are used to create character-based
encodings of words. With this character-based
modelling, the authors obtain improvements on
the dependency parsing of many morphologically
rich languages.

2.1 Character Embeddings of Words
The character-based word embedding model using
bi-LSTMs in (Ballesteros et al., 2015) is depicted
in Figure 1. The authors compute character-based
vector representations of words using bi-LSTMs.
Their embedding system reads each word charac-
ter by character from the beginning to the end and
computes an embedding vector of the character se-
quence, which is denoted as ~w in Figure 1. The
system also reads the word character by character
from the end to the beginning and the produced
embedding is denoted as ←−w . These two embed-
ding vectors and the learned representation of the
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POS-tag of the word t are concatenated to pro-
duce the vector representation of the word. A lin-
ear mapping of POS-tag words to integers is used
to create a representation of the POS tags as in
(Ballesteros et al., 2015).

Figure 1: Vector represetntation of the word
travel with the character-based embedding model
in (Ballesteros et al., 2015).

2.2 Morphology-based Character
Embeddings

To improve the parsing performance of the LSTM
parser with character-based word embeddings
mentioned in Section 2.1, we include the mor-
phological information of words to the embedding
model. In agglutinative languages like Turkish, a
stem usually takes different suffixes and by this
way, different meanings are created using a single
root-word. Words that share the same suffixes tend
to have similar roles in a sentence. For instance,
gerunds in Turkish are a kind of derivational suf-
fixes. Verbs that take the same gerund as a suf-
fix have usually the same role in sentences. Table
1 shows some statistics of verbs with gerunds in
the development data set of Turkish-IMST tree-
bank for demonstration purposes. The first col-
umn shows some example suffixes that attach to
verbs and turn them to adverbs. The second col-
umn shows the number of verbs with the corre-
sponding suffix in the development set. The third
column shows the statistics of the dependency la-
bels of these verbs. As it can be seen from the ta-
ble, these suffixes help determining the role of the
word they attach to. Therefore, representing each
word using its corresponding lemma and suffixes
separately and utilizing the morphological infor-

mation of words can improve the parsing perfor-
mance in agglutinative languages.

Figure 2: Vector representation of the word travel
with the character-based embedding model in
(Ballesteros et al., 2015).

Lemma-Suffix Model
For agglutinative languages where the stem of a
word does not change in different word forms, we
created a model that uses lemma and suffix infor-
mation of words in character-based embeddings.
In this model, each word is separated to its lemma
and suffixes. Then, the embedding system first
reads the lemma of the word character by charac-
ter from the beginning to the end and computes an
embedding vector of the character sequence of the
lemma which is denoted as ~r. Secondly, the sys-
tem reads the lemma character by character from
the end to the beginning and the produced embed-
ding is denoted as ←−r . A similar process is per-
formed for the suffixes of the word and the pro-
duced vectors are denoted as ~s and←−s . These four
embedding vectors and the vector representation
of the POS-tag of the word t are then concate-
nated to produce the vector representation of the
word. POS-tag representations are created by lin-
early mapping the POS-tag words to integers as in
(Ballesteros et al., 2015). Vector representation of
an example word using this model is depicted in
Figure 3.

Morphological Features Model
The lemma-suffix model is suitable only for ag-
glutinative languages which make use of suffixes
to create different word forms. For languages that
do not have this type of grammar, we created an-
other model where the specific morphological fea-
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Suffix Number of Occurrences Dependency Label
-Ip 41 23 nmod 8 compound 5 conj 4 obj 1 root
-ArAk 32 26 nmod 3 conj 2 compound 1 root
-ken 20 18 nmod 1 conj 1 acl
-IncA 8 7 nmod 1 compound
-mAdAn 7 4 nmod 2 compound 1 obj
-DIkçA 3 3 nmod

Table 1: Number of occurrences of some example suffixes and the corresponding dependency labels of
verbs with these suffixes in the development data of Turkish-IMST treebank.

Figure 3: Character-based word embedding of a Turkish word gitti (”it went” in English) using lemma-
suffix embedding model.

tures of each word are embedded to the dense rep-
resentations of the words. The reason behind this
choice is that some morphological features have
a direct impact in identifying the dependency la-
bels of words. For instance, if a word has a case
feature and its value is accusative, then it is usu-
ally an object of the sentence. By extracting and
utilizing such morphological features, we can im-
prove the parsing accuracy for languages that suit
this model.

In this model, the embedding of a word is
created character by character as in Section 2.1.
Then, the embedding vector of each of its selected
morphological features are created by reading the
feature value character by character from the be-
ginning to the end. Finally, these embedding vec-
tors and the vector representation of the POS-tag
of the word are concatenated to produce the vector
representation of the word.

The vector representation of an example word
using its morphological features is shown in Fig-
ure 4.

3 Implementation

The systems participating in the CoNLL 2018
Shared Task on UD Parsing are expected to parse
raw text without any gold-standard pre-processing
operations such as tokenization, lemmatization,

and morphological analysis. However, the base-
line pre-processed versions of the raw text by the
UDPipe system (Straka et al., 2016) are available
for the participants who want to focus only on the
dependency parsing task. We used the automat-
ically annotated version of the corpora provided
by UDPipe, since our primary aim is to observe
the effect of our embedding models on the depen-
dency parsing of agglutinative languages.

No morp.parser With morp.parser
Word Lemma Suffix Lemma Suffix
Her her - her -
şeyden şey den şey DAn
önce önce - önce -
sanatçıydı sanat çıydı sanat CHY DH

Table 2: Lemma and suffix separation example
without using morphological analyzer and disam-
biguator and with using morphological analyzer
and disambiguator on the Turkish sentence ”Her
şeyden önce sanatçıydı.” (English meaning: ”She
was an artist before anything else.”)

In the implementation of the lemma-suffix em-
bedding model, we did not utilize any morpholog-
ical analyzer and disambiguator tools to find the
lemmas and the suffixes of the words. Instead, for
each word in the treebank we extracted its corre-
sponding lemma information from the conll-u ver-
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Figure 4: Character-based word embedding of a German word war (”was” in English) with its morpho-
logical features being Mood = Ind|Number = Sing|Person = 3|Tense = Past|V erbForm =
Fin using morphological features embedding model. The selected features for German are Case, Mood,
Tense, and VerbForm. Since there is no Case feature in the morphological features of war, the Case
feature is represented with an empty string in the word vector of war.

sion of the treebank data and subtracted the lemma
from the word to find the suffix information. We
compared these two approaches on the Turkish-
IMST treebank. For this purpose, we utilized the
Turkish morphological parser and disambiguator
by (Sak et al., 2008). A comparison between the
two approaches is shown on an example sentence
in Table 2. We observed that finding the suffixes
by subtracting the lemmas from the words gives
the same parsing performance as using a morpho-
logical analyzer tool to find the lemma and suffixes
of a word. So, we opted not to use a morphological
analyzer and disambiguator for the languages with
the lemma-suffix embedding model due to the ad-
ditional costs of these tools.

3.1 Embedding Model Selection for Different
Languages

We applied the lemma-suffix model in 2.2 to
Buryat, Hungarian, Kazakh, Turkish, and Uyghur
languages because these languages have aggluti-
native morphology, take suffixes, and the stem of
a word usually does not change in different word
forms. We also applied this model to Danish to
observe the effect in parsing performance of a lan-
guage with little inflectional morphology.

For the languages that do not follow this
scheme, we applied the morphological features
embedding model in 2.2. Table 3 shows the mor-
phological features selected for these languages in
the shared task. We selected four morphological
features from the input conll-u files for most of
the languages. For French, Indonesian, and Old
French, we used less than four features because

there are less than four common morphological
features in the conll-u files of these languages.

For Persian, Japanese, Korean, Vietnamese, and
Chinese, we used the baseline embedding model
due to the lack of representative morphological
features in their corresponding conll-u files.

Languages without Training Data
We trained a mixed language parser model with
morphological features embedding model for the
languages with no training data. For training
this parser model, we used the mixed language
training data supplied by the organizers of the
shared task. This data is created by including the
first 200 sentences of each treebank.
In the shared task, this model is applied to
the Buryat-KEB, Czech-PUD, English-PUD,
Faroese-OFT, Japanese-Modern, Naija-NSC,
Swedish-PUD, and Thai-PUD treebanks.

We trained parser models for the Upper
Sorbian-UFAL and Galician-TreeGal treebanks
using the morphological features embedding
model and for the Buryat-BDT treebank using the
lemma-suffix embedding model. However, we
used the mixed language parser model for these
treebanks in the shared task due to some software
issues.

3.2 Training Specifications

Our model mostly uses the same hyper-parameter
configuration with the original settings of the
parser in (Ballesteros et al., 2015) with a few ex-
ceptions. We used stochastic gradient descent
trainer with a learning rate of 0.13. We replaced
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Language Morphological Features
Afrikaans Aspect Case Tense VerbForm
Ancient Greek Aspect Case Tense VerbForm
Arabic Aspect Case Mood VerbForm
Armenian Aspect Case Tense VerbForm
Basque Aspect Case Tense VerbForm
Bulgarian Aspect Case Tense VerbForm
Catalan AdpType Mood Tense VerbForm
Croatian Case Mood Tense VerbForm
Czech Aspect Case Tense VerbForm
Dutch Degree Case Tense VerbForm
English Case Mood Tense VerbForm
Estonian Case Mood Tense VerbForm
French Mood Tense VerbForm
Finnish Case Mood Tense VerbForm
Galician Case Mood Tense VerbForm
German Case Mood Tense VerbForm
Gothic Case Mood Tense VerbForm
Greek Aspect Case Tense VerbForm
Hebrew HebBinyan HebSource Tense VerbForm
Hindi Aspect Case Tense VerbForm
Indonesian PronType Degree
Irish Case Mood Tense VerbForm
Italian PronType Mood Tense VerbForm
Kurmanji Case Mood Tense VerbForm
Latin Case Mood Tense VerbForm
Latvian Aspect Case Tense VerbForm
North Sami Case Mood Tense VerbForm
Norwegian Case Mood Tense VerbForm
Old Church Slavonic Case Mood Tense VerbForm
Old French Tense VerbForm
Polish Aspect Case Tense VerbForm
Portuguese PronType Mood Tense VerbForm
Romanian Case Mood Tense VerbForm
Russian Aspect Case Tense VerbForm
Serbian PronType Mood Tense VerbForm
Slovak Aspect Case Tense VerbForm
Slovenian Aspect Case Tense VerbForm
Spanish Case Mood Tense VerbForm
Swedish Case Mood Tense VerbForm
Ukrainian Aspect Case Tense VerbForm
Upper Sorbian Case Mood Tense VerbForm
Mixed Language Case Mood Tense VerbForm

Table 3: List of morphological features used for the languages with the morphological features embed-
ding model.
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the original character-based embedding model
with our embedding models. In the lemma-suffix
model, the forward word vector and the backward
word vector of the lemma of a word both have 50
dimensions. The forward and backward word vec-
tors of the suffix of a word also have 50 dimen-
sions each. In the morphological features model,
each of the forward and backward word vectors of
a word have 50 dimensions. Each of the four mor-
phological feature vectors have 25 dimensions. If
a morphological feature is absent in a word, an
embedding vector of an empty string is created for
that feature. So, we increased the dimension of the
character-based representations to 200 in total.

The original parser is not compatible with
UD parsing. We adapted it to be able to
take input and produce output in conll-u for-
mat. The source code of our modified version
of the LSTM-based parser by Ballesteros et al.
(2015) can be found at https://github.
com/CoNLL-UD-2018/BOUN.

A full run over the 82 test sets takes about 3
hours when no pre-trained embeddings are used,
and 20 hours when the CoNLL-17 pre-trained
word embeddings from (Ginter et al., 2017) are
used on the TIRA virtual machine (Potthast et al.,
2014). The largest of the test sets needs 4 GB
memory without pre-trained word vectors. When
the CoNLL-17 pre-trained vectors are used, mem-
ory usage can reach to 32 GB depending on the
pre-trained vector sizes.

4 Results

This section presents the parsing performance of
our parser models on the CoNLL-18 Shared Task
as well as the post-evaluation scores of our mod-
els.

4.1 Shared Task

Table 4 shows our official LAS, MLAS, and
BLEX results in the CoNLL-18 Shared Task.
The models that use the CoNLL-17 pre-trained
word embeddings from (Ginter et al., 2017) are
indicated in pre-trained vectors column. We
also trained parser models using pre-trained
word embeddings for Czech-PDT, German-GSD,
English-EWT, English-GUM, English-LinES,
Spanish-AnCora, Indonesian-GSD, Latvian-
LVTB, Swedish-LinES, Swedish-Talbanken, and
Turkish-IMST. However, we could not run these
models with their corresponding embedding files

inside the TIRA virtual machine due to some
unknown memory and disk issues.

Although the parser we used does not obtain
competitive performance when compared with the
best performing systems in the shared task, it
achieves better performance on the treebanks with
no training data when compared to its performance
on treebanks with training data. We exclude the
parallel UD treebanks from this judgment because
one can get better performance on parallel UD
treebanks by training the parser using the train-
ing data of the treebanks that have the same lan-
guage with the parallel UD treebanks (e.g., the
training data of English-EWT for English-PUD,
Czech-PDT for Czech-PUD etc.). Due to time-
constraints, we did not focus on the parallel UD
treebanks and treated them as unknown languages.

4.2 Post-Evaluation

We performed another set of experiments using
our models on the test data of UD version 2.2 data
sets. The purpose of these experiments is to inves-
tigate the effect of our embedding models on pars-
ing performance. Here we used the gold-standard
conll-u files instead of the automatically annotated
corpora by UDPipe, since our aim in these exper-
iments is to observe the performance difference
between our embedding models and the baseline
embedding model.

In Table 5, we compare our models with the
baseline model proposed in (Ballesteros et al.,
2015). Due to time constraints, we trained all
models without pre-trained word embeddings.

From the comparative results shown in Table
5, we observe that on the languages that have
rich inflectional and derivational processes mostly
by adding suffixes to words, our morphological
features model outperforms the baseline model
in terms of parsing scores. This is the case for
the Bulgarian, Croatian, Czech, Basque, Gothic,
Latin, Polish, Russian, Slovak, Slovene, North
Sami, and Ukrainian languages.

The morphological features model is not suit-
able for the grammatical structure of Arabic,
which has derivational morphology and it also
fails to outperform the baseline in Romanic lan-
guages like French, Spanish, Catalan, Galician,
and Portuguese. The possible reason behind this
failure might be the analytic structure of the gram-
mar of these languages where every morpheme is
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Pre-
Treebank LAS LAS MLAS BLEX trained

Rank vectors
af-afribooms 23 72.09 58.08 59.42 -
ar-padt 19 66.84 55.68 58.22 ar.vec
bg-btb 21 82.74 72.76 71.14 -
br-keb 10 10.59 0.43 2.21 -
bxr-bdt 19 9.12 1.01 2.46 -
ca-ancora 21 85.03 75.73 76.15 ca.vec
cs-cac 21 83.22 70.50 76.98 cs.vec
cs-fictree 20 82.00 68.75 74.49 cs.vec
cs-pdt 20 83.24 74.04 78.45 -
cs-pud 21 69.60 56.86 63.13 -
cu-proiel 22 60.39 47.99 52.96 cu.vec
da-ddt 21 73.03 63.21 63.69 da.vec
de-gsd 24 56.85 27.51 45.83 -
el-gdt 20 82.11 65.23 68.59 el.vec
en-ewt 22 73.61 64.00 66.11 -
en-gum 22 72.07 60.46 59.93 -
en-lines 22 68.92 59.03 59.74 -
en-pud 23 69.28 56.99 60.04 -
es-ancora 21 83.02 73.95 74.40 -
et-edt 17 75.47 67.74 64.42 et.vec
eu-bdt 19 70.41 57.83 63.36 eu.vec
fa-seraji 19 79.62 73.09 69.84 fa.vec
fi-ftb 20 75.34 65.24 61.69 fi.vec
fi-pud 20 60.07 53.14 48.14 -
fi-tdt 20 75.68 67.56 61.21 fi.vec
fo-oft 19 23.73 0.34 5.81 -
fr-gsd 21 80.07 71.01 72.70 fr.vec
fr-sequoia 21 80.03 70.04 73.03 fr.vec
fr-spoken 25 58.88 45.56 46.02 -
fro-srcmf 22 76.56 68.00 71.17 -
ga-idt 21 55.57 28.92 34.56 -
gl-ctg 18 76.36 62.94 66.00 -
gl-treegal 21 63.43 46.11 48.83 -
got-proiel 21 58.18 44.69 50.63 -
grc-perseus 21 54.57 28.46 35.31 grc.vec
grc-proiel 20 64.77 46.68 52.86 grc.vec
he-htb 21 57.28 43.42 45.94 he.vec
hi-hdtb 21 85.88 67.93 78.21 -
hr-set 22 75.91 56.67 67.43 hr.vec
hsb-ufal 10 29.04 7.18 15.67 -
hu-szeged 22 63.47 50.91 54.57 hu.vec

Pre-
Treebank LAS LAS MLAS BLEX trained

Rank vectors
hy-armtdp 18 21.22 5.66 11.03 -
id-gsd 21 74.01 63.22 62.50 -
it-isdt 23 84.96 75.13 75.21 -
it-postwita 17 67.94 54.15 54.81 it.vec
ja-gsd 21 72.21 58.04 59.78 -
ja-modern 19 18.82 5.02 6.27 -
kk-ktb 21 12.88 2.22 3.95 kk.vec
kmr-mg 21 14.12 2.59 6.65 -
ko-gsd 17 74.99 69.00 62.99 ko.vec
ko-kaist 17 81.45 74.22 68.61 ko.vec
la-ittb 18 76.32 67.78 72.02 la.vec
la-perseus 21 41.94 26.20 28.93 la.vec
la-proiel 21 58.20 45.91 52.11 la.vec
lv-lvtb 20 68.47 54.24 57.43 -
nl-alpino 21 75.94 60.99 63.59 nl.vec
nl-lassysmall 22 74.48 61.40 62.77 nl.vec
no-bokmaal 21 81.47 72.64 73.73 -
no-nynorsk 22 78.48 68.49 69.75 -
no-nynorsklia 21 46.98 35.58 38.54 -
pcm-nsc 19 11.60 3.84 9.60 -
pl-lfg 22 85.11 71.71 75.43 -
pl-sz 22 79.71 61.89 69.76 -
pt-bosque 19 82.62 67.97 72.83 pt.vec
ro-rrt 20 80.18 71.00 71.44 ro.vec
ru-syntagrus 17 84.69 76.43 77.43 ru.vec
ru-taiga 24 45.93 29.00 31.09 -
sk-snk 21 74.37 53.95 59.97 sk.vec
sl-ssj 20 76.78 62.89 68.32 sl.vec
sl-sst 20 44.43 32.07 36.20 sl.vec
sme-giella 20 52.97 42.13 39.10 -
sr-set 23 75.79 62.84 66.68 -
sv-lines 22 72.04 57.75 64.68 -
sv-pud 22 64.55 37.53 48.00 -
sv-talbanken 21 76.93 67.83 68.50 -
th-pud 7 0.70 0.04 0.52 -
tr-imst 22 50.33 40.54 42.00 -
ug-udt 19 55.61 35.98 43.63 ug.vec
uk-iu 20 74.34 56.38 63.46 uk.vec
ur-udtb 21 77.04 50.47 63.40 ur.vec
vi-vtb 20 39.06 25.90 27.61 vi.vec
zh-gsd 22 56.43 46.55 51.20 zh.vec

Table 4: Our official results in the CoNLL-18 Shared Task.
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Treebank Embedding LAS MLAS BLEX
model Baseline Our model Baseline Our model Baseline Our model

af-afribooms MF 82.16 82.80 73.17 74.35 75.48 76.37
ar-padt MF 78.80 78.60 73.59 73.33 74.66 74.39
bg-btb MF 86.52 87.41 80.88 82.00 81.33 82.38
ca-ancora MF 87.21 87.03 80.56 80.23 81.07 80.79
cs-cac MF 87.37 87.85 84.12 84.94 84.78 85.49
cs-fictree MF 83.49 86.03 77.80 81.64 78.58 82.34
cs-pdt MF 86.66 88.47 83.39 85.89 83.91 86.38
cu-proiel MF 75.73 75.59 69.85 69.62 72.09 71.97
da-ddt LS 77.34 78.04 71.45 71.48 72.97 73.33
de-gsd MF 77.45 77.79 69.79 70.26 72.40 73.24
el-gdt MF 83.22 83.98 74.83 76.69 75.57 77.53
en-ewt MF 83.88 83.58 79.44 78.95 79.96 79.51
en-gum MF 80.34 81.46 73.30 74.34 73.87 75.03
en-lines MF 75.89 73.83 71.06 67.75 72.53 69.28
es-ancora MF 86.71 85.55 80.65 78.97 81.17 79.61
et-edt MF 80.25 81.49 76.59 78.28 77.40 78.98
eu-bdt MF 74.07 74.65 69.97 71.21 71.69 72.74
fi-ftb MF 82.76 83.88 77.86 79.02 78.54 79.89
fi-tdt MF 80.39 80.46 76.33 76.60 76.96 77.31
fr-gsd MF 84.69 83.77 78.56 77.59 79.13 78.39
fr-sequoia MF 83.16 82.49 76.75 75.96 77.38 76.40
fr-spoken MF 67.99 68.70 57.82 58.19 58.68 59.04
fro-srcmf MF 83.01 82.54 76.90 76.44 77.78 77.43
ga-idt MF 61.02 63.23 45.21 47.98 48.68 51.90
gl-ctg MF 81.56 80.70 70.76 69.41 75.38 74.25
got-proiel MF 71.88 74.95 64.13 67.99 66.78 70.78
grc-perseus MF 61.22 60.10 50.75 49.95 53.92 52.79
grc-proiel MF 79.26 79.28 64.54 64.12 67.09 67.16
he-htb MF 80.06 79.80 71.56 70.97 72.02 71.52
hi-hdtb MF 92.11 91.51 87.64 86.72 88.38 87.46
hr-set MF 80.12 81.36 74.75 76.45 76.22 77.90
hu-szeged LS 64.00 68.33 56.44 62.55 59.75 66.11
hy-armtdp MF 29.60 28.56 21.65 25.14 24.04 28.56
it-isdt MF 88.91 89.23 82.77 83.34 83.20 83.79
it-postwita MF 79.19 79.10 72.30 72.26 72.84 72.91
kk-ktb LS 35.92 35.34 25.89 25.19 30.09 30.18
la-ittb MF 83.86 85.37 79.06 80.93 80.02 82.10
la-perseus MF 47.48 51.82 41.00 46.56 44.56 51.79
la-proiel MF 68.81 70.95 62.15 64.66 64.95 67.11
lv-lvtb MF 73.48 75.43 66.19 68.67 67.37 69.66
nl-alpino MF 80.60 79.11 72.53 70.60 73.25 71.44
nl-lassysmall MF 81.15 79.19 74.84 72.37 75.52 73.26
no-bokmaal MF 88.53 88.22 84.48 83.87 84.96 84.46
no-nynorsk MF 86.64 85.42 82.00 80.39 82.94 81.21
no-nynorsklia MF 66.27 64.76 58.40 56.92 60.12 58.55
pl-lfg MF 92.02 92.68 88.93 89.80 89.16 90.01
pl-sz MF 85.86 89.56 81.34 86.50 82.02 87.17
pt-bosque MF 83.28 83.20 75.64 74.85 76.95 76.28
ro-rrt MF 81.22 80.84 74.26 74.03 75.55 75.36
ru-syntagrus MF 88.01 88.14 84.35 84.86 84.72 85.24
ru-taiga MF 48.95 56.57 40.82 50.74 42.74 52.33
sk-snk MF 78.49 82.66 73.94 79.61 74.58 80.46
sl-ssj MF 86.23 88.82 81.84 85.33 82.23 85.80
sl-sst MF 64.47 65.41 57.67 59.38 59.31 61.22
sme-giella MF 66.21 71.55 58.73 66.87 61.22 69.03
sr-set MF 80.71 80.36 75.36 74.84 76.74 76.38
sv-lines MF 76.86 77.43 72.98 73.75 74.13 74.72
sv-talbanken MF 83.03 82.39 78.36 77.68 79.27 78.58
tr-imst LS 55.45 56.74 49.29 50.42 50.45 51.97
ug-udt LS 58.02 56.97 47.47 45.52 50.18 47.86
uk-iu MF 76.10 78.87 70.57 74.66 70.77 74.95
ur-udtb MF 86.07 86.04 79.43 79.77 80.75 81.02

Table 5: Comparison of our embedding models with the baseline char-based word embedding model
explained in Section 2.1. MF stands for the morphological features embedding model and LS stands for
the lemma-suffix embedding model.
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Singular Plural Singular Plural
Nominative ember ember-ek adam adam-lar
Accusative ember-et ember-ek-et adam-ı adam-lar-ı
Dative ember-nek ember-ek-nek adam-a adam-lar-a
Locative ember-ben ember-ek-ben adam-da adam-lar-da

Table 6: Word-morpheme structure on the Hungarian word ember and the Turkish word adam (English
meaning: man).

Treebank Number Embedding LAS MLAS BLEX
of words dimension

tr-imst without pre-trained embeddings - - 56.74 50.42 51.97
tr-imst with CoNLL-17 ud-word-embeddings 3,633,786 100 59.11 53.02 54.51
tr-imst with Facebook word-embeddings 416,051 300 59.69 53.56 54.98

Table 7: The effect of using pre-trained word embeddings on parsing performance on Turkish-IMST test
data set.

an independent word. English, Hebrew, Hindi and
Urdu languages are also categorized as mostly an-
alytic languages which do not use inflections and
have a low morpheme-per-word ratio (Moravcsik,
2013). Dutch, Norwegian, and Swedish languages
have a very simplified inflectional grammar. So,
these languages are not represented well using
our morphology-based embedding models. Be-
sides, our model is not the best choice for the lan-
guages that have high ratio of morphophonologi-
cal modifications to the root word like Old Church
Slavonic.

The lemma-suffix embedding model is applied
to the Danish, Hungarian, Kazakh, Turkish, and
Uyghur languages. The best performance is
reached in the Hungarian language with more than
4% increase in LAS score. Our model outper-
forms the baseline in Turkish too. These lan-
guages are highly agglutinative languages where
words may consist of several morphemes and the
boundaries between morphemes are clearcut. In
this type of languages, there is a one-to-one form-
meaning correspondence and shape of a mor-
pheme is invariant (Moravcsik, 2013). An exam-
ple word-morpheme relationship in Hungarian and
Turkish languages is shown in Table 6. As it can
be seen from the table, this structure is very suit-
able to the lemma-suffix embedding model.

However, the lemma-suffix model fails to reach
better performance than the baseline system on the
Kazakh and Uyghur treebanks. A possible reason
might be that our embedding model increases the
complexity of the system unnecessarily for these
languages with very little training data. Although
Danish can be considered as an analytic language
with a simplified inflectional grammar, the lemma-
suffix model outperforms the baseline for this lan-

guage.
Table 7 shows the parsing scores of the parser

with lemma-suffix embedding model on the test
data of Turkish-IMST treebank version 2.2. We
compared the parsing performances when the
parser does not use pre-trained word embed-
dings, when it uses pre-trained embeddings from
CoNLL-17 UD word embeddings, and when it
uses pre-trained embeddings from word vectors
trained on Wikipedia by Facebook (Bojanowski
et al., 2017). From the results, we observe that
the usage of pre-trained word vectors increases
the parsing performance by great extent for Turk-
ish. We also observe that Facebook word vectors
outperform the CoNLL-17 UD word vectors, al-
though the number of words in the Facebook vec-
tors data set is much smaller than the number of
words in the CoNLL-17 UD word vectors data set.

5 Conclusion

We introduced two morphology-based adaptations
of the character-based word embedding model in
(Ballesteros et al., 2015) and experimented with
these models on the UD version 2.2 data set.
The experiment results suggest that our models
utilizing morphological information of words in-
creases the parsing performance in agglutinative
languages.
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Abstract

We describe the graph-based dependency
parser in our system (AntNLP) submitted
to the CoNLL 2018 UD Shared Task. We
use bidirectional lstm to get the word rep-
resentation, then a bi-affine pointer net-
works to compute scores of candidate de-
pendency edges and the MST algorithm to
get the final dependency tree.

From the official testing results, our sys-
tem gets 70.90 LAS F1 score (rank 9/26),
55.92 MLAS (10/26) and 60.91 BLEX
(8/26).

1 Introduction

The focus of the CoNLL 2018 UD Shared Task
is learning syntactic dependency parsers that can
work over many typologically different languages,
even low-resource languages for which there is lit-
tle or no training data. The Universal Dependen-
cies (Nivre et al., 2017a,b) treebank collection has
82 treebanks over 57 kinds of languages.

In this paper we describe our system (AntNLP)
submitted to the CoNLL 2018 UD Shared Task.
Our system is based on the deep biaffine neural
dependency parser (Dozat and Manning, 2016).
The system contains a BiLSTM feature extractor
for getting context-aware word representation and
two biaffine classifiers to predict the head token
of each word and the label between a head and its
dependent.

There are three main metrics for this task, LAS
(labeled attachment score), MLAS (morphology-
aware labeled attachment score) and BLEX (bi-
lexical dependency score). From the official
testing results, our system gets 70.90 LAS F1
score (rank 9/26), 55.92 MLAS (10/26) and 60.91
BLEX (8/26). In a word, Our system is ranked top
10 according to the three metrics described above.

Figure 1: The structure of the entire system.

Additionally, in the categories of small treebanks,
our system obtains the sixth place with a MLAS
score of 63.73. Besides that, our system ranked
tenth in the EPE 2018 campaign with a 55.71 F1
score.

The rest of this paper is organized as follows.
Section 2 gives a brief description of our over-
all system, including the system framework and
parser architecture. In Section 3, 4 we describe
our monolingual model and multilingual model.
In Section 5, we briefly list our experimental re-
sults.

2 System Overview

The CoNLL 2018 UD Shared Task aims to con-
struct dependency trees based on raw texts, which
means that the participants should not only build
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Figure 2: The architecture of our parser system.

the parsing model, but also preprocess systems
of the sentence segmentation, tokenization, POS-
tagging and morphological analysis. We use pre-
processors from the official UDPipe tool in our
submission. The structure of the entire system is
shown in Figure 1. Our main focus is on building
a graph-based parser.

We implement a graph-based bi-affine parser
following Dozat and Manning (2016). The parser
architecture is shown in Figure 2, which consists
of the following components:

• Token representation, which produces the
context independent representation of each
token in the sentence.

• Deep Bi-LSTM Encoder, which produces
the context-aware representation of each to-
ken in the sentence based on context.

• Bi-affine Pointer Networks, which assign
probabilities to all possible candidate edges.

We describe the three sub-modules in the follow-
ing sections in detail.

2.1 Token representation
Recent studies on dependency parsing show that
densely embedded word representation could help
to improve empirical parser performance. For ex-
ample: Chen and Manning (2014) map words and

POS tags to a d-dimensional vector space. Dozat
and Manning (2016) use the pre-trained GloVe
embeddings as an extra representation of the word.
Ma et al. (2018) use Convolutional Neural Net-
works (CNNs) to encode character-level informa-
tion of a word.

The token representation module of our parser
also uses dense embedding representations. De-
tails on token embeddings are given in the follow-
ing.

• Word ewi : The word embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (ewi ∈ R100).

• Lemma eli: The lemma embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (eli ∈ R100).

• Pre-trained Word epwi : The FastText pre-
trained word embedding (epwi ∈ R300). We
will not update epwi during the training pro-
cess.

• UPOS eui : The UPOS-tag embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (eui ∈ R100).

• XPOS exi : The XPOS-tag embedding is ran-
domly initialized from the normal distribu-
tion N (0, 1) (exi ∈ R100).

• Char eci : The character-level embedding is
obtained by the character-level CNNs (eci ∈
R64).

Our parser uses two kinds of token represen-
tations, one is a lexicalized representation of the
monolingual model, another one is the delexical-
ized representation of the multilingual model.

The lexicalized representation xli of token wi is
defined as:

xli = [ewi + eli;︸ ︷︷ ︸
word

eui + exi︸ ︷︷ ︸
POS

; epwi ; eci ] (1)

and the delexicalized representation xdi of token
wi is defined as:

xdi = [eui ; e
x
i ; e

c
i ] (2)

In the following sections, we uses xi to represent
xli or xdi when the context is clear.
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2.2 Deep Bi-LSTM Encoder
Generally, the token embeddings defined above
are context independent, which means that the
sentence-level information is ignored. In recent
years, some work shows that the deep BiLSTM
can effectively capture the contextual informa-
tion of words (Dyer et al., 2015; Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2016; Ma
et al., 2018).

In order to encode context features, we use a 3-
layer sentence level BiLSTM on top of x1:n:

~ht = LSTM(~ht−1, xi, ~θ)

~ht = LSTM( ~ht+1, xi, ~θ)

vi = ~hi ◦ ~hi

~θ are the model parameters of the forward hidden
sequence ~h. ~θ are the model parameters of the
backward hidden sequence ~h. The vector vi is our
final vector representation of ith token in s, which
takes into account both the entire history ~hi and
the entire future ~hi by concatenating ~hi and ~hi.

2.3 Biaffine Pointer Networks
How to determine the probability of each depen-
dency edge is an important part of the graph-
based parser. The work of Dozat and Manning
(2016) shows that the biaffine pointer (attention)
networks can calculate the probability of each de-
pendency edge well. Here we used a similar bi-
affine pointer network structure.

In order to better represent the direction of the
dependency edges, we use multi-layer perceptron
(MLP) networks to learn each word as the repre-
sentation of head and dependent words, rather than
simply exchanging feature vectors. And we also
separate the predictions of dependent edges and
their labels. First, for each vi, we use two MLPs
to define two pointers harci and sarci , which is the
representation of vi with respect to whether it is
seen as a head or a modifier of an candidate edge.

harci = MLP
(arc)
head (vi)

sarci = MLP
(arc)
dep (vi)

Similarly, we use hreli and srel to describe xi when
determine the relation label of a candidate edge.

hreli = MLP
(rel)
head(vi)

sreli = MLP
(rel)
dep (vi)

We first use the arc-biaffine pointer networks to
predict the probability of a dependency edge be-
tween any two words. For any two words wi and
wj in a sentence, the probability p(arc)i→j that they
form a dependency edge wi → wj is as follows:

a
(arc)
i→j = harci ·W(arc) · sarcj + u(arc) · sarcj

p
(arc)
i→j = softmax(a

(arc)
i→∗ )[j]

where θarc = {W(arc), u(arc)} are the model pa-
rameters, a(arc)i→j is the computed score of the de-

pendency edge. a
(arc)
i→∗ is a vector, and the kth

dimension is the score of the dependency edge
a
(arc)
i→k . p(arc)i→j is the jth dimension of normaliza-

tion of the vector a(arc)i→∗ , meaning the probability
of dependency edge wi → wj .

We obtain a dependency tree representation T
of a complete graph p

(arc)
∗→∗ using the maximum

spanning tree (MST) algorithm. The probability
p
(rel)

i
r−→j

of the relation r of each dependency edge

wi → wj ∈ T is then computed. The definition of
p
(rel)

i
r−→j

is as follows:

a
(rel)

i
∗−→j

= hreli ·W(rel) · srelj
+V(rel) · hreli +U(rel) · srelj

p
(rel)

i
r−→j

= softmax(a
(rel)

i
∗−→j

)[r]

where θrel = {W(rel),V(rel),U(rel)} are the
model parameters, W(rel) is a 3-dimensional ten-
sor. a(rel)

i
∗−→j

is a vector, and the kth dimension is the

score of the dependency edge wi
k−→ wj .

2.4 Training Details
We train our model by minimizing the negative log

likelihood of the gold standard (wi
r(wi)−−−→ wh(wi))

arcs in all training sentences:

J (arc) = − 1

|τ |
∑

S∈τ

NS∑

i=1

log p
(arc)
i→h(wi)

J (rel) = − 1

|τ |
∑

S∈τ

NS∑

i=1

log p
(rel)

i
r(wi)−−−→h(wi)

J = J (arc) + J (rel)

where τ is the training set, h(wi) and r(wi) is wi’s
gold standard head and relation within sentence S,
and Ns is the number of words in S.
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Figure 3: The architecture of our parser system.

3 Monolingual Model

There are 82 treebanks in the CoNLL 2018 UD
Shared Task, including 61 big treebanks, 5 PUD
treebanks (additional parallel test sets), 7 small
treebanks and 9 low-resource language treebanks.
There are several languages in which there are
many treebanks, such as en ewt, en gum and
en lines in English. We combine training sets
and development sets for multiple treebanks of the
same language. And then just train a model for
the language and make predictions on its different
treebanks.

For each language of UD version 2.2 sets (Nivre
et al., 2018; Zeman et al., 2018) with both a train-
ing set and a development set, we train a parser
using lexicalized token representation and only us-
ing its monolingual training set (no cross-lingual
features)1 . The architecture of the monolingual
model is shown in Figure 3.

4 Multilingual Model

For 7 languages without a development set, we di-
vide them into two classes based on the size of
their training set, which can be fine-tuned (ga,
sme) and can not be fine-tuned (bxr, hsb, hy, kk,
kmr).

For each language of UD version 2.2 sets (Nivre

1In total, we trained 46 monolingual models.

et al., 2018; Zeman et al., 2018) with both a train-
ing set and a development set, we train a parser us-
ing delexicalized token representation as a cross-
language model. The architecture of the multilin-
gual model is shown in Figure 3. The training
set of these 5 languages are then used as a de-
velopment set to validate the performance of each
cross-language model (see Table 1). We select
the best performance model as a cross-language
model for the corresponding language. For both
ga and sme, we manually divide the development
set from the training set and fine-tune the cross-
language model. Prediction and fine-tuning results
are shown in the Table 2.

5 Experimental Results

We trained our system based on a Nvidia GeForce
GTX Titan X. We used the official TIRA (Potthast
et al., 2014) to evaluate the system.

We used Dynet neural network library to build
our system (Neubig et al., 2017). The hyper-
parameters of the final system used for all the re-
ported experiments are detailed in Table 5.

5.1 Overall Results

The main official evaluation results are given in
Table 4. And the Table 6 shows the per-treebank
LAS F1 results. Our system achieved 70.90 F1
(LAS) on the overall 82 tree banks, ranked 9th out
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Language #Train Cross language LAS
Buryat (bxr) 19 Uyghur (ug) 27.45
Upper Sorbian (hsb) 23 Croatian (hr) 39.35
Armenian (hy) 50 Latvian (lv) 29.35
Kazakh (kk) 9 Turkish (tr) 23.44
Kurmanji (kmr) 19 Persian (fa) 26.03

Table 1: Corpus listed above are languages that don’t have development set and the training set size is too
small to be fine-tuned. “#Train” means the number of sentences. “Cross Language” means the language
with the highest LAS score for corresponding origin language in our delexicalized cross-language model.

Corpus #Total #Train #Dev Cross language LAS Fine-tune
Irish (ga) 566 476 90 Hebrew (he) 36.13 68.49
North Sami (sme) 2464 1948 516 Swedish (sv) 36.13 63.00

Table 2: Corpus listed above are languages that don’t have development set. Because the training set
size is much bigger, we decide to divide the training set into two parts, one for training set and the other
for development set.

Origin language language family Cross Language Language family
Buryat (bxr) Mongolic Uyghur (ug) Turkic Southeastern
Upper Sorbian (hsb) IE Slavic Croatian (hr) IE Slavic
Armenian (hy) IE Armenian Latvian (lv) IE Baltic
Kazakh (kk) Turkic Northwestern Turkish (tr) Turkic Southwestern
Kurmanji (kmr) IE Iranian Persian (fa) IE Iranian
Irish (ga) IE Celtic Hebrew (he) Afro-Asiatic Semitic
North Sami (sme) Uralic Sami Swedish (sv) IE Germanic

Table 3: language families and genera for origin language and cross language (IE = Indo-European).2

Corpus FLAS Baseline Rank MLAS Baseline Rank BLEX Baseline Rank
All treebanks(82) 70.90 65.80 9 55.92 52.42 10 60.91 55.80 8
Big treebanks(61) 79.61 74.14 12 65.43 61.27 11 70.34 64.67 9
PUD treebanks(5) 68.87 66.63 11 53.47 51.75 10 57.71 54.87 8
Small treebanks(7) 63.73 55.01 6 42.24 38.80 7 48.31 41.06 6
Low resource(9) 18.59 17.17 10 3.43 2.82 9 8.61 7.63 8

Table 4: Official experiment results with rank. (number): number of corpora. FLAS means F1 score of
LAS.
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word/lemma dropout 0.33
upos/xpos tag dropout 0.33

char-CNN dropout 0.33
BiLSTM layers 3

BiLSTM hidden layer dimensions 400
Hidden units in MLP (arc) 500
Hidden units in MLP (rel) 100

Learning rate 0.002
Optimization algorithm Adam

Table 5: Hyper-parameter values used in shared
task.

of 26 teams. Compared to the baseline obtained
with UDPipe1.2 (Straka et al., 2016), our system
gained 5.10 LAS improvement on average. Our
system shows better results on 7 small treebanks.
Performance improvement are more obvious when
considering only small treebanks(for example, our
system ranked fourth best on ru taiga and sl sst).
Besides that, our system ranked tenth in the EPE3

2018 campaign with a 55.71 F1 score.

5.2 Discussion on Multilingual Model

As described in section 4, we trained 46 cross-
language models and selected the corresponding
cross-language model for 7 languages that did not
have a development set. Generally, cross-language
models are trained in the language of the same
family. However, apart from grammatical similar-
ity, the language family division also considers the
linguistic history, geographical location and other
factors. We want to select a language’s cross-
language model to consider only grammatical sim-
ilarity. So we use a cross-language model to pre-
dict the results in this language as a basis for se-
lection.

In table 3, the experimental results show that the
Cross-language model with the best performance
in hsb, hy, kk, and kmr languages comes from the
same language family, while the Cross-language
model with the best performance in bxr, ga, and
sme is not from the same language family. There-
fore, constructing a cross-language model accord-
ing to the language of the same family is only ap-
plicable to some languages, not all of them. We’ve
only chosen the best performing cross-language
model at the moment. In the future, we will try
to select the top-k cross-language model.

2Information from http://universaldependencies.org.
3http://epe.nlpl.eu

6 Conclusions

In this paper, we present a graph-based depen-
dency parsing system for the CoNLL 2018 UD
Shared Task, which composed of a BiLSTMs fea-
ture extractor and a bi-affine pointer networks.
The results suggests that a deep BiLSTM extrac-
tor and a bi-affine pointer networks is a way to
achieve competitive parsing performances. We
will continue to improve our system in our future
work.
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Corpus AntNLP Rank Best Baseline
af afr* 82.63 11 85.47 77.88
ar pad* 70.75 12 77.06 66.41
bg btb 87.24 13 91.22 84.91
br keb 10.06 16 38.64 10.25
bxr bdt 19.53 1 1 12.61
ca anc* 89.28 13 91.61 85.61
cs cac 90.47 6 91.61 83.72
cs fic* 90.14 7 92.02 82.49
cs pdt 89.41 9 91.68 83.94
cs pud 84.76 6 86.13 80.08
cu pro* 68.23 13 75.73 65.46
da ddt 80.56 10 86.28 75.43
de gsd 76.88 10 80.36 70.85
el gdt 85.76 12 89.65 82.11
en ewt 80.74 12 84.57 77.56
en gum 79.70 11 85.05 74.20
en lin* 79.25 5 81.97 73.10
en pud 84.60 9 87.89 79.56
es anc* 88.84 11 90.93 84.43
et edt 81.37 11 85.35 75.02
eu bdt 79.01 11 84.22 70.13
fa ser* 83.98 11 88.11 79.10
fi ftb 83.72 11 88.53 75.64
fi pud 85.50 10 90.23 80.15
fi tdt 83.18 11 88.73 76.45
fo oft 20.13 21 49.43 25.19
fr gsd 84.84 10 86.89 81.05
fr seq* 85.32 10 89.89 81.12
fr spo* 70.96 8 75.78 65.56
fro src* 83.13 12 87.12 79.27
ga idt 64.38 11 70.88 62.93
gl ctg 81.12 8 82.76 76.10
gl tre* 72.03 8 74.25 66.16

got pro* 62.97 14 69.55 62.16
grc per* 70.76 9 79.39 57.75
grc pro* 73.82 9 79.25 67.57
he htb 61.43 12 76.09 57.86
hi hdt* 90.44 11 92.41 87.15
hr set 83.48 12 87.36 78.61

hsb ufa* 31.36 6 46.42 23.64
hu sze* 73.19 12 82.66 66.76

Corpus AntNLP Rank Best Baseline
hy arm* 25.09 10 37.01 21.79
id gsd 76.86 16 80.05 74.37
it isd* 89.14 12 92.00 86.26
it pos* 72.30 9 79.39 66.81
ja gsd 72.82 17 83.11 72.32

ja mod* 12.94 22 28.33 22.71
kk ktb 19.26 18 31.93 24.21

kmr mg 23.20 16 30.41 23.92
ko gsd 80.15 12 85.14 61.40
ko kai* 85.01 11 86.91 70.25
la itt* 83.14 12 87.08 75.95
la per* 60.99 5 72.63 47.61
la pro* 66.24 12 73.61 59.66
lv lvt* 75.56 12 83.97 69.43
nl alp* 84.69 11 89.56 77.60
nl las* 82.04 8 86.84 74.56

no bok* 89.19 7 91.23 83.47
no nyn* 88.26 9 90.99 82.13
no nyn* 66.26 4 70.34 48.95
pcm nsc 18.30 6 30.07 12.18

pl lfg 91.16 13 94.86 87.53
pl sz 85.03 14 92.23 81.90

pt bos* 86.71 8 87.81 82.07
ro rrt 84.92 8 86.87 80.27

ru syn* 90.20 10 92.48 84.59
ru tai* 68.99 4 74.24 55.51
sk snk 81.14 12 88.85 75.41
sl ssj 83.26 12 91.47 77.33
sl sst 56.30 4 61.39 46.95

sme gie* 57.15 13 69.87 56.98
sr set 85.77 10 88.66 82.07

sv lin* 80.01 10 84.08 74.06
sv pud 76.54 10 80.35 70.63
sv tal* 83.41 12 88.63 77.91
th pud 0.36 18 13.70 0.70
tr ims* 59.68 12 66.44 54.04
ug udt 61.42 10 67.05 56.26
uk iu 79.91 12 88.43 74.91

ur udt* 79.85 14 83.39 77.29
vi vtb 42.65 11 55.22 39.63
zh gsd 62.83 13 76.77 57.91

Table 6: Official experiment results on each treebank. The results in table are F1(LAS). *: some corpus’
name too long to display completely, using * to indicate omission.
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Abstract

This paper describes Fudan’s submission
to CoNLL 2018’s shared task Universal
Dependency Parsing. We jointly train
models when two languages are simi-
lar according to linguistic typology and
then do an ensemble of the models us-
ing a simple re-parse algorithm. Our
system outperforms the baseline method
by 4.4% and 2.1% on the develop-
ment and test set of CoNLL 2018 UD
Shared Task, separately.1. Our code is
available on https://github.com/
taineleau/FudanParser.

1 Introduction

Dependency Parsing has been a fundamental task
in Natural Language Processing (NLP). Recently,
universal dependency parsing (Zeman et al.,
2018a,b; Nivre et al., 2018) has unified the an-
notations of different languages and thus made
transfer learning among languages possible. Sev-
eral works using cross-lingual embedding (Duong
et al., 2015; Guo et al., 2015) have successfully in-
creased the accuracy of cross-lingual parsing. Be-
yond embedding-based methods, a natural ques-
tion is whether we can use a simple way to utilize
the universal information. Some previous research
either regarded the universal information as ex-
tra training signals (e.g., delexicalized embedding
(Dehouck and Denis, 2017)), or implicitly trained
a network with all features (e.g., adversarial train-
ing for parsing in Sato et al. (2017)). In our sys-
tem, we manually and explicitly share the univer-
sal annotations via a shared LSTM component.

* Authors contributed equally.
1Unfortunately, we did not finish the run before the dead-

line. As a result, the official accuracy gain for test set is only
0.54% and we ranks 17th out of 27 teams.

Similar to Vania et al. (2017), different lan-
guages are first grouped based on typology, as
shown in table 1. Then, we train a shared model
for each pair of languages within the same group,
and apply a simple ensemble method over all
trained models. Note that our method is orthogo-
nal to other cross-lingual approaches for universal
parsing such as cross-lingual embedding.

In the following parts, we first describe the
baseline method (Section 2) and our system (Sec-
tion 3). We show the result on both development
set and test set in Section 4 and provide some anal-
ysis of the model in Section 5.

2 Baseline

In this section, we briefly introduce the baseline
system, UDPipe 1.2 (Straka and Straková, 2017),
which is an improved version of original UDPipe
(Straka et al., 2016). The tokenizing, POS tagging
and lemma outputs of UDPipe are utilized by Fu-
danParser.

UDPipe employs a GRU network during the in-
ference of segmentation and tokenization. The
tagger uses characters features to predict the POS
and lemma tags. Finally, a transition-based neu-
ral dependency parser with one hidden layer pre-
dicts the transition actions. The parser also makes
use of the information from lemmas, POS taggings
and dependency relationships through a group of
embeddings precomputed by word2vec.

In the later discussion, we take the baseline per-
formance result from the web page of the shared
task 2 for comparison.

3 System Description

In this submission, we only consider parsing in an
end-to-end manner and handle each treebank sep-

2http://universaldependencies.org/
conll18/baseline.html
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Group Datasets
germanic Afrikaans-AfriBooms Danish-

DDT Dutch-Alpino Dutch-
LassySmall English-EWT
English-GUM English-
LinES German-GSD Gothic-
PROIEL Norwegian-Bokmaal
Norwegian-Nynorsk Swedish-
LinES Swedish-Talbanken

indo-iranian Hindi-HDTB Persian-Seraji
Urdu-UDTB

latin Latin-ITTB Latin-PROIEL
Latvian-LVTB

romance Catalan-AnCora French-GSD
French-Sequoia French-Spoken
Galician-CTG Italian-ISDT
Italian-PoSTWITA Old French-
SRCMF Portuguese-Bosque
Romanian-RRT Spanish-
AnCora

semitic Arabic-PADT Hebrew-HTB
slavic Bulgarian-BTB Croatian-

SET Czech-CAC Czech-
FicTree Czech-PDT
Old Church Slavonic-PROIEL
Polish-LFG Polish-SZ Russian-
SynTagRus Serbian-SET
Slovak-SNK Slovenian-SSJ

turkish Turkish-IMST Ukrainian-IU
Uyghur-UDT

uralic Estonian-EDT Finnish-FTB
Finnish-TDT

Table 1: Grouping languages according to typol-
ogy.

arately. We first train a monotonic model for all
“big” treebanks. Besides, for each language, there
are N−1 models fine-tuned from joint-trained (see
Figure 2), where N is the number of languages in
the same language group.

For small treebanks where training set is less
than 50 sentences, we use the delexicalized
method the same as Shi et al. (2017)’s approach
for the surprise languages. Shi et al. (2017) took
delexicalized features (morphology and POS tag)
as input and apply 50% dropout rate to the input.
In practice, we found that the baseline method per-
forms much better than ours on“fi pud”, “br keb”
“ja modern” and “th pud”, so we use the baseline
method instead for these languages.

Our whole system needs about 90 hours to do
the inference of all models on TIRA and requires
no more than 560M main memory.

3.1 Architecture

Features We use words, characters as the lex-
ical information, and use morphological features3

and POS tags as the delexicalized information. We
also tried subword embeddings, but it mostly did
not help. More precisely, the character-level fea-
tures are treated as bag-of-characters. Similarly,
we use bag-of-morphology for morphological fea-
tures (one can see number=single as a charac-
ter). We first assign the embedding vectors for
characters and morphological features, and then
for each word, we apply a Convolutional Network
(CNN) to encode variable length embeddings into
one fixed length feature.

Biaffine BiLSTM. Similar to Shi et al. (2017);
Sato et al. (2017); Vania et al. (2017), we use last
year’s first-place model (Dozat et al., 2017), the
graph-based biaffine bizLSTM model as our back-
bone. Given a sentence of N words, the input is
first fed to a bi-directional LSTM and obtain the
feature of each word wi. A head MLP and a de-
pendent MLP are used to translate the features,
which is then fed into a hidden layer to calculate
the biaffine attention. Finally, we are able to com-
pute the score of arcs and labels in following way:

3we take the features column of the UD data
as the morphological features, which includes case,
number, tense, mood and so on. See http:
//universaldependencies.org/u/feat/
index.html for detailed information.
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Figure 1: An illustration of the joint training framework for two languages.

hhi = MLPhead(wi)

hdi = MLPdep(wi)

si = HhU1h
d
i +Hhu2

where U1 ∈ Rd×d and u2 ∈ Rd are trainable pa-
rameters.

3.2 Joint Training
For a joint training model of N languages, we have
N+1 Biaffne Bi-LSTMs (called LSTMs), see Fig-
ure 1. For each language, we have a language-
specific LSTM to process the lexical information
such as word- or character- level embedding, and
the output is wl

i,j . For all languages we have a
shared LSTM which takes delexicalized informa-
tion such as morphology and POS tags as input
and the output is wd

i,j . Inspired by Sato et al.
(2017), we use a gating mechanism to combine
these two set of features. Formally,

x = [wl
i,j ;w

d
i,j ],

g = G(x), y = x� g,

where wl indicates lexical feature, wd indicates
delexicalized feature, and � is element-wise mul-
tiplication.

The difference between Sato et al. (2017) and
ours is that we remove the adversarial training
loss, which is because we have already use the uni-
versal information in the shared network.

3.3 Fine-tuning
We fine-tunning each joint-training model for 100
steps (see Figure 2).

3.4 Tree Ensemble

We follow the re-parsing method proposed in
Sagae and Lavie (2006) to perform model en-
semble. Suppose k parsing trees have been ob-
tained, denoted by T1, T2, ...Tk, a new graph is
constructed by setting the score of each edge to

S[u→ v] =

k∑

i=1

[u→ v] ∈ Tk

This graph is feed to a MST algorithm to get the
ensemble parsing tree Te. Then the relation label
of edge [u→ v] in Te is voted by all inputs Ti that
contains edge [u→ v].

3.5 Hyper-parameters

We followed the hyper-parameter settings in
(Dozat et al., 2017). We train 30, 000 steps for
each model and then fine-tune (onot necessary) for
100 steps for the given language. For all the in-
put features, the dimension is 100. For LSTM, we
use hidden size equals to 400 and the number of
layers is 3. 0.33% dropout rate is applied to the
input and LSTM hidden layer. We use Bayesian
dropout (Gal and Ghahramani, 2016) in the LSTM
layers. We also use word dropout (dropping the
whole word with a probability) in the input layer.

4 Results

The results of the test and development set are
shown in Table 5 and Table 6, respectively. The
first three columns are the baseline results and the
second three columns are the results of our sub-
mission. Also, we list the performance improve-
ment of Fudan Parser compared to the baseline
system in the last three columns.
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Figure 2: Take four languages as an example. We aim at testing sentence in language 1. We first jointly
train languages 1 and other three languages in three separate network. And then we only keep LSTM 1
and the shared LSTM part to fine tune the models for language 1. Finally we re-parse it as an ensemble
to obtain the final parsing tree for a given sentence in language 1.

As shown in both Table 6 and 6, we find that
our system achieves higher improvements on the
datasets with large size of training data. It is rea-
sonable since our model contains enormous pa-
rameters, which is easy to get overfitting if the
training set is too small. More analysis are in-
cluded in Section 5.

5 Analysis

5.1 Language similarity

The accuracy of the joint training model actually
reveals the syntactic similarity between two lan-
guages. The accuracy of three language groups,
Slavic (Table 2), Romance (Table 3) and Germanic
(Table 4). A number in row i, column j means the
accuracy of language i testing on the model jointly
training on language i and language j. The bold
font indicates it is the best model for language i.
We can see that for every language, jointly trained
models consistently beat single models (the num-
ber on the diagonal) which shows the efficacy of
the proposed approach.

5.2 Morphology
Morphology is extremely helpful when predict-
ing the dependency between words, especially for
those morphology rich languages. However, the
UD Parsing task is not done in an end-to-end fash-
ion (i.e. the input morphological features are not
the ground-true labels) and thus the morphology
information is noisy. The performance is hurt
greatly because of the noisy predicted morphology
features. A significant accuracy gain should be ob-
tained if a better morphology prediction model is
used.

6 Conclusion

Our system provided a simple yet effective method
–sharing the universal features to the same part of
neural network– to boost the accuracy of syntactic
parsing. We also demonstrated that morphological
feature plays an important role in syntactic pars-
ing, which is a promising direction to work on.

In the future, we can investigate a better way to
do the ensemble or apply a multi-model compres-
sion method (e.g. knowledge distillation) to re-
duce the computational cost. Also, we can explore
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Table 2: Slavic languages joint training result.
Acc.(%) bg hr cs pl ru sk sl max improvement

bg 92.6 92.5 92.8 92.7 92.7 92.3 92.4 0.2
hr 85.7 86 86.1 85.2 85.5 85.8 85.5 0.1
cs 91.2 91.2 91.2 91.1 91.3 91.3 91.2 0.1
pl 90.4 89.8 90.2 90.1 90.2 90.4 90.8 0.3
ru 84.4 84.7 85.2 84.4 83.8 84.1 84.6 1.4
sk 86.4 86.2 87.8 85.9 86.4 86.7 86.1 1.1
sl 91.4 91.8 91.7 91.4 91.4 91 91.2 0.6

Avg. 0.54
# samples 8908 7690 68496 6101 3851 8484 6479

Table 3: Romance languages joint training result.
Acc. (%) ca fr gl it pt ro es max improvement
ca 92.6 92.4 92.6 92.7 92.6 92.4 92.5 0.1
fr 93.1 92.9 93 93.4 93.2 93.1 93.2 0.5
gl 86.9 86.3 86.1 86.7 86.4 86.3 86.4 0.8
it 93 92.6 92.7 92.3 93 92.8 93.1 0.8
pt 93 92.8 92.7 92.8 92.6 92.9 92.8 0.4
ro 88.8 88.9 88.9 89 88.7 88.4 88.7 0.6
es 90.9 90.8 90.5 91.1 91 90.6 90.7 0.4
Avg. 0.56
# samples 13124 14554 2277 12839 8332 8044 14188

Table 4: Germanic languages joint training result.
Acc. (%) da nl en de sv max improvement
da 85 85.1 85 85.2 85.6 0.6
nl 89 88.8 88.7 89.3 88.6 0.5
en 89.4 89.1 88.9 88.9 89.1 0.5
de 88.5 88.9 88.7 88.6 88.5 0.3
sv 85.7 85 86.5 85.9 85 1.5
Avg. 0.68
# samples 4384 12331 12544 14119 4303

a more sophisticated model (e.g., Neural Architec-
ture Search (Zoph and Le, 2016)) for joint training
on multiple languages.
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Baseline Fudan Improvement
Language code LAS MLAS BLEX LAS MLAS BLEX LAS MLAS BLEX
af afribooms 77.88% 64.48% 66.60% 80.02% 67.34% 66.04% 2.14% 2.86% -0.56%
grc perseus 57.75% 31.05% 38.74% 63.31% 34.58% 38.22% 5.56% 3.53% -0.52%
grc proiel 67.57% 49.51% 55.85% 69.54% 51.35% 53.03% 1.97% 1.84% -2.82%
ar padt 66.41% 55.01% 57.60% 67.33% 55.88% 58.63% 0.92% 0.87% 1.03%
hy armtdp 21.79% 5.00% 11.94% 26.24% 10.00% 13.85% 4.45% 5.00% 1.91%
eu bdt 70.13% 57.65% 63.50% 72.74% 58.98% 57.41% 2.61% 1.33% -6.09%
br keb 10.25% 0.00% 0.00% 10.25% 0.00% 0.00% 0.00% 0.00% 0.00%
bg btb 84.91% 75.30% 73.78% 86.47% 77.04% 77.70% 1.56% 1.74% 3.92%
bxr bdt 12.61% 0.00% 5.00% 12.61% 0.00% 5.00% 0.00% 0.00% 0.00%
ca ancora 85.61% 76.74% 77.27% 88.37% 80.17% 66.01% 2.76% 3.43% -11.26%
hr set 78.61% 58.72% 70.26% 81.01% 60.92% 66.61% 2.40% 2.20% -3.65%
cs cac 83.72% 70.89% 77.65% 86.28% 73.90% 79.54% 2.56% 3.01% 1.89%
cs fictree 82.49% 69.26% 74.96% 85.22% 72.01% 77.18% 2.73% 2.75% 2.22%
cs pdt 83.94% 74.32% 79.39% 85.35% 75.89% 74.68% 1.41% 1.57% -4.71%
cs pud 80.08% 66.53% 73.79% 81.05% 67.97% 68.99% 0.97% 1.44% -4.80%
da ddt 75.43% 65.41% 66.04% 78.38% 68.20% 62.51% 2.95% 2.79% -3.53%
nl alpino 77.60% 61.55% 64.76% 79.02% 63.89% 60.53% 1.42% 2.34% -4.23%
nl lassysmall 74.56% 61.85% 63.14% 77.41% 64.64% 49.81% 2.85% 2.79% -13.33%
en ewt 77.56% 68.70% 71.02% 78.44% 68.99% 62.92% 0.88% 0.29% -8.10%
en gum 74.20% 62.66% 62.14% 75.29% 63.36% 57.45% 1.09% 0.70% -4.69%
en lines 73.10% 64.03% 65.42% 74.83% 65.78% 62.80% 1.73% 1.75% -2.62%
en pud 79.56% 67.59% 71.14% 78.80% 67.20% 64.26% -0.76% -0.39% -6.88%
et edt 75.02% 67.12% 63.85% 77.80% 69.82% 61.53% 2.78% 2.70% -2.32%
fo oft 25.19% 0.00% 5.00% 26.95% 0.00% 5.00% 1.76% 0.00% 0.00%
fi ftb 75.64% 65.22% 61.76% 78.27% 68.03% 66.99% 2.63% 2.81% 5.23%
fi pud 80.15% 73.16% 65.46% 80.15% 73.16% 65.46% 0.00% 0.00% 0.00%
fi tdt 76.45% 68.58% 62.19% 79.18% 70.74% 59.79% 2.73% 2.16% -2.40%
fr gsd 81.05% 72.16% 74.22% 83.19% 74.01% 68.58% 2.14% 1.85% -5.64%
fr sequoia 81.12% 71.34% 74.41% 83.39% 73.59% 69.28% 2.27% 2.25% -5.13%
fr spoken 65.56% 53.46% 54.67% 65.63% 52.96% 52.82% 0.07% -0.50% -1.85%
gl ctg 76.10% 62.11% 65.29% 80.38% 67.42% 71.64% 4.28% 5.31% 6.35%
gl treegal 66.16% 49.13% 51.60% 68.08% 50.06% 52.80% 1.92% 0.93% 1.20%
de gsd 70.85% 34.09% 60.56% 71.88% 35.12% 34.30% 1.03% 1.03% -26.26%
got proiel 62.16% 48.57% 55.02% 65.49% 51.72% 54.63% 3.33% 3.15% -0.39%
el gdt 82.11% 65.33% 68.67% 82.56% 65.58% 64.68% 0.45% 0.25% -3.99%
he htb 57.86% 44.09% 46.51% 58.87% 44.89% 47.37% 1.01% 0.80% 0.86%
hi hdtb 87.15% 69.09% 79.93% 88.43% 70.48% 81.52% 1.28% 1.39% 1.59%
hu szeged 66.76% 52.82% 56.92% 68.74% 54.66% 53.52% 1.98% 1.84% -3.40%
zh gsd 57.91% 48.49% 52.92% 60.13% 49.17% 54.29% 2.22% 0.68% 1.37%
id gsd 74.37% 63.42% 62.50% 75.51% 63.54% 71.50% 1.14% 0.12% 9.00%
ga idt 62.93% 37.66% 42.06% 64.87% 39.22% 42.44% 1.94% 1.56% 0.38%
it isdt 86.26% 77.06% 77.12% 88.28% 79.48% 72.47% 2.02% 2.42% -4.65%
it postwita 66.81% 53.64% 53.99% 67.58% 53.93% 44.53% 0.77% 0.29% -9.46%
ja gsd 72.32% 58.35% 60.17% 73.16% 59.39% 60.92% 0.84% 1.04% 0.75%
ja modern 22.71% 10.00% 10.00% 22.71% 10.00% 10.00% 0.00% 0.00% 0.00%
kk ktb 24.21% 10.00% 10.00% 24.21% 10.00% 10.00% 0.00% 0.00% 0.00%
ko gsd 61.40% 54.10% 50.50% 74.94% 68.34% 62.21% 13.54% 14.24% 11.71%
ko kaist 70.25% 61.49% 57.68% 82.74% 75.55% 69.47% 12.49% 14.06% 11.79%
kmr mg 23.92% 5.00% 11.86% 23.92% 5.00% 11.86% 0.00% 0.00% 0.00%
la ittb 75.95% 66.08% 71.87% 80.07% 71.95% 76.29% 4.12% 5.87% 4.42%
la perseus 47.61% 30.16% 32.19% 49.99% 31.35% 33.75% 2.38% 1.19% 1.56%
la proiel 59.66% 47.05% 53.65% 63.93% 51.19% 54.64% 4.27% 4.14% 0.99%
lv lvtb 69.43% 54.96% 58.25% 70.89% 56.14% 57.30% 1.46% 1.18% -0.95%
pcm nsc 12.18% 5.00% 10.87% 10.00% 5.00% 5.00% -2.18% 0.00% -5.87%
sme giella 56.98% 46.05% 42.35% 61.58% 49.88% 44.19% 4.60% 3.83% 1.84%
no bokmaal 83.47% 74.65% 76.32% 85.29% 76.97% 70.82% 1.82% 2.32% -5.50%
no nynorsk 82.13% 72.40% 74.22% 84.09% 74.71% 69.97% 1.96% 2.31% -4.25%
no nynorsklia 48.95% 37.60% 40.69% 52.84% 40.67% 43.70% 3.89% 3.07% 3.01%
fro srcmf 79.27% 70.70% 74.45% 82.70% 75.06% 78.96% 3.43% 4.36% 4.51%
cu proiel 65.46% 53.96% 58.39% 70.03% 58.51% 63.28% 4.57% 4.55% 4.89%
fa seraji 79.10% 72.20% 69.43% 79.57% 71.96% 69.42% 0.47% -0.24% -0.01%
pl lfg 87.53% 74.54% 78.58% 88.78% 75.92% 77.55% 1.25% 1.38% -1.03%
pl sz 81.90% 63.84% 71.98% 83.54% 65.25% 72.25% 1.64% 1.41% 0.27%
pt bosque 82.07% 67.40% 72.04% 84.59% 70.21% 62.91% 2.52% 2.81% -9.13%
ro rrt 80.27% 71.48% 71.87% 82.67% 74.11% 71.11% 2.40% 2.63% -0.76%
ru syntagrus 84.59% 76.87% 78.01% 87.70% 79.58% 82.35% 3.11% 2.71% 4.34%
ru taiga 55.51% 36.79% 39.79% 57.94% 38.59% 42.12% 2.43% 1.80% 2.33%
sr set 82.07% 70.04% 74.12% 83.54% 70.86% 66.69% 1.47% 0.82% -7.43%
sk snk 75.41% 54.38% 60.35% 78.45% 56.57% 67.75% 3.04% 2.19% 7.40%
sl ssj 77.33% 63.47% 68.93% 79.15% 65.05% 69.10% 1.82% 1.58% 0.17%
sl sst 46.95% 34.19% 38.73% 46.19% 33.61% 38.00% -0.76% -0.58% -0.73%
es ancora 84.43% 76.01% 76.43% 87.66% 80.08% 68.03% 3.23% 4.07% -8.40%
sv lines 74.06% 58.62% 66.39% 75.87% 59.96% 64.81% 1.81% 1.34% -1.58%
sv pud 70.63% 43.38% 54.47% 72.26% 44.27% 52.52% 1.63% 0.89% -1.95%
sv talbanken 77.91% 69.22% 70.01% 80.00% 70.66% 71.49% 2.09% 1.44% 1.48%
th pud 0.70% 0.03% 0.42% 0.70% 0.03% 0.42% 0.00% 0.00% 0.00%
tr imst 54.04% 44.50% 45.91% 57.57% 46.59% 46.27% 3.53% 2.09% 0.36%
uk iu 74.91% 56.78% 63.72% 76.27% 57.66% 63.11% 1.36% 0.88% -0.61%
hsb ufal 23.64% 5.00% 11.72% 29.92% 10.00% 15.16% 6.28% 5.00% 3.44%
ur udtb 77.29% 50.31% 63.74% 77.91% 50.78% 64.30% 0.62% 0.47% 0.56%
ug udt 56.26% 36.82% 43.53% 55.88% 35.84% 43.16% -0.38% -0.98% -0.37%
vi vtb 39.63% 33.49% 35.72% 39.53% 32.33% 32.07% -0.10% -1.16% -3.65%

Table 5: All results on test set. 261



Baseline Fudan Improvement
Language code LAS MLAS BLEX LAS MLAS BLEX LAS MLAS BLEX
el gdt 81.37% 63.92% 65.21% 82.31% 64.62% 61.66% 0.94% 0.70% -3.55%
tr imst 54.83% 44.25% 45.81% 58.65% 46.16% 45.81% 3.82% 1.91% 0.00%
id gsd 74.40% 63.51% 63.29% 74.82% 63.16% 71.21% 0.42% -0.35% 7.92%
da ddt 75.16% 65.29% 66.07% 78.20% 68.34% 63.80% 3.04% 3.05% -2.27%
et edt 76.50% 68.27% 64.17% 79.86% 71.38% 62.30% 3.36% 3.11% -1.87%
got proiel 62.03% 48.16% 54.39% 75.09% 61.20% 63.54% 13.06% 13.04% 9.15%
sl ssj 77.72% 63.96% 68.97% 83.77% 69.66% 72.37% 6.05% 5.70% 3.40%
en gum 76.63% 65.57% 67.20% 78.81% 67.61% 62.09% 2.18% 2.04% -5.11%
cu proiel 66.12% 54.48% 59.16% 79.39% 67.52% 70.80% 13.27% 13.04% 11.64%
ur udtb 77.44% 49.91% 63.55% 77.92% 50.79% 64.01% 0.48% 0.88% 0.46%
fro srcmf 79.15% 70.43% 74.27% 81.90% 74.01% 77.87% 2.75% 3.58% 3.60%
hi hdtb 87.26% 69.78% 80.59% 88.55% 71.17% 82.16% 1.29% 1.39% 1.57%
ko gsd 57.25% 49.06% 44.24% 72.41% 65.18% 57.04% 15.16% 16.12% 12.80%
cs fictree 83.16% 70.72% 75.80% 85.99% 73.49% 77.82% 2.83% 2.77% 2.02%
gl ctg 76.32% 62.58% 65.57% 81.75% 68.93% 73.42% 5.43% 6.35% 7.85%
lv lvtb 70.67% 57.79% 60.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
fr gsd 85.81% 77.80% 79.16% 88.83% 81.24% 70.55% 3.02% 3.44% -8.61%
ru syntagrus 83.87% 75.78% 77.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
hu szeged 68.41% 56.47% 60.17% 70.67% 58.33% 57.56% 2.26% 1.86% -2.61%
sv lines 76.23% 62.16% 67.63% 77.91% 63.39% 65.60% 1.68% 1.23% -2.03%
no bokmaal 84.56% 75.95% 78.04% 86.54% 78.64% 72.31% 1.98% 2.69% -5.73%
sv talbanken 75.39% 66.87% 68.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
es ancora 85.08% 76.81% 77.48% 88.21% 80.75% 68.74% 3.13% 3.94% -8.74%
he htb 61.95% 49.28% 51.45% 79.89% 65.68% 67.50% 17.94% 16.40% 16.05%
uk iu 77.94% 59.66% 68.07% 78.75% 60.11% 66.23% 0.81% 0.45% -1.84%
grc proiel 69.13% 52.42% 57.92% 77.67% 61.50% 59.95% 8.54% 9.08% 2.03%
eu bdt 70.06% 57.46% 63.39% 72.94% 59.11% 56.95% 2.88% 1.65% -6.44%
fi ftb 75.76% 65.72% 62.68% 79.90% 70.61% 69.82% 4.14% 4.89% 7.14%
cs pdt 84.85% 75.35% 80.55% 86.83% 77.45% 75.86% 1.98% 2.10% -4.69%
sk snk 75.73% 54.34% 59.71% 80.35% 57.64% 69.80% 4.62% 3.30% 10.09%
hr set 77.84% 59.60% 69.99% 80.63% 61.89% 66.75% 2.79% 2.29% -3.24%
no nynorsk 82.75% 73.88% 75.76% 85.07% 76.64% 72.06% 2.32% 2.76% -3.70%
grc perseus 57.89% 30.80% 40.49% 63.21% 34.03% 39.99% 5.32% 3.23% -0.50%
fr spoken 65.09% 54.00% 55.42% 73.46% 64.24% 63.19% 8.37% 10.24% 7.77%
pl sz 82.65% 63.92% 72.59% 84.02% 65.11% 73.04% 1.37% 1.19% 0.45%
fi tdt 76.39% 68.60% 62.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ca ancora 85.63% 77.04% 77.56% 88.30% 80.31% 67.64% 2.67% 3.27% -9.92%
ar padt 66.81% 55.67% 57.90% 76.11% 63.98% 65.94% 9.30% 8.31% 8.04%
sr set 82.12% 69.12% 73.06% 84.49% 70.73% 67.66% 2.37% 1.61% -5.40%
bg btb 84.67% 74.54% 73.78% 86.73% 76.96% 78.24% 2.06% 2.42% 4.46%
vi vtb 43.65% 37.39% 39.18% 57.34% 49.57% 47.08% 13.69% 12.18% 7.90%
de gsd 75.55% 38.52% 65.39% 77.00% 39.91% 40.77% 1.45% 1.39% -24.62%
fr seguoia 82.72% 74.13% 76.34% 85.71% 76.53% 71.16% 2.99% 2.40% -5.18%
cs cac 84.42% 72.17% 78.29% 86.46% 74.65% 77.70% 2.04% 2.48% -0.59%
pl lfg 88.79% 75.15% 79.18% 89.98% 76.88% 79.01% 1.19% 1.73% -0.17%
en lines 75.78% 66.29% 68.57% 78.17% 67.59% 67.22% 2.39% 1.30% -1.35%
zh gsd 57.39% 48.19% 52.84% 70.09% 58.37% 64.74% 12.70% 10.18% 11.90%
it postwita 65.85% 52.14% 52.90% 77.23% 66.00% 53.42% 11.38% 13.86% 0.52%
la proiel 61.33% 48.40% 55.10% 74.41% 61.54% 64.39% 13.08% 13.14% 9.29%
fa seraji 79.78% 73.03% 73.35% 80.41% 72.61% 73.63% 0.63% -0.42% 0.28%
af afribooms 80.19% 65.98% 70.40% 80.95% 67.26% 68.10% 0.76% 1.28% -2.30%
ko kaist 71.00% 63.32% 59.19% 83.17% 77.37% 71.51% 12.17% 14.05% 12.32%
la ittb 73.23% 59.94% 67.43% 78.06% 66.21% 72.02% 4.83% 6.27% 4.59%
en ewt 77.62% 68.58% 70.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ug udt 56.88% 37.43% 43.34% 57.78% 37.54% 44.08% 0.90% 0.11% 0.74%
pt bosque 84.93% 73.22% 76.02% 88.19% 76.65% 66.58% 3.26% 3.43% -9.44%
ro rrt 80.32% 71.21% 71.82% 83.42% 74.27% 71.73% 3.10% 3.06% -0.09%
nl lassysmall 73.61% 59.99% 61.71% 77.63% 64.44% 52.55% 4.02% 4.45% -9.16%
it isdt 85.95% 77.20% 77.37% 87.81% 79.30% 71.82% 1.86% 2.10% -5.55%
nl alpino 80.21% 67.14% 69.77% 81.66% 69.04% 58.68% 1.45% 1.90% -11.09%
ja gsd 75.48% 62.39% 64.58% 92.51% 83.13% 85.11% 17.03% 20.74% 20.53%

Table 6: All results on development set.
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