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Abstract

We present two categories of model-agnostic
adversarial strategies that reveal the weak-
nesses of several generative, task-oriented di-
alogue models: Should-Not-Change strate-
gies that evaluate over-sensitivity to small and
semantics-preserving edits, as well as Should-
Change strategies that test if a model is over-
stable against subtle yet semantics-changing
modifications. We next perform adversarial
training with each strategy, employing a max-
margin approach for negative generative ex-
amples. This not only makes the target di-
alogue model more robust to the adversarial
inputs, but also helps it perform significantly
better on the original inputs. Moreover, train-
ing on all strategies combined achieves fur-
ther improvements, achieving a new state-of-
the-art performance on the original task (also
verified via human evaluation). In addition to
adversarial training, we also address the ro-
bustness task at the model-level, by feeding it
subword units as both inputs and outputs, and
show that the resulting model is equally com-
petitive, requires only 1/4 of the original vo-
cabulary size, and is robust to one of the adver-
sarial strategies (to which the original model is
vulnerable) even without adversarial training.

1 Introduction

Adversarial evaluation aims at filling in the gap
between potential train/test distribution mismatch
and revealing how models will perform under real-
world inputs containing natural or malicious noise.
Recently, there has been substantial work on ad-
versarial attacks in computer vision and NLP. Un-
like vision, where one can simply add in impercep-
tible perturbations without changing an image’s
meaning, carrying out such subtle changes in text
is harder since text is discrete in nature (Jia and

We publicly release all our code and data at https:
//github.com/WolfNiu/AdversarialDialogue

Liang, 2017). Thus, some previous works have ei-
ther avoided modifying original source inputs and
only resorted to inserting distractive sentences (Jia
and Liang, 2017), or have restricted themselves
to introducing spelling errors (Belinkov and Bisk,
2018) and adding non-functioning tokens (Sha-
lyminov et al., 2017). Furthermore, there has
been limited adversarial work on generative NLP
tasks, e.g., dialogue generation (Henderson et al.,
2017), which is especially important because it is a
crucial component of real-world virtual assistants
such as Alexa, Siri, and Google Home. It is also a
challenging and worthwhile task to keep the out-
put quality of a dialogue system stable, because a
conversation usually involves multiple turns, and
a small mistake in an early turn could cascade into
bigger misunderstanding later on.

Motivated by this, we present a comprehensive
adversarial study on dialogue models – we not
only simulate imperfect inputs in the real world,
but also launch intentionally malicious attacks on
the model in order to assess them on both over-
sensitivity and over-stability. Unlike most previ-
ous works that exclusively focus on Should-Not-
Change adversarial strategies (i.e., non-semantics-
changing perturbations to the source sequence that
should not change the response), we demonstrate
that it is equally valuable to consider Should-
Change strategies (i.e., semantics-changing, inten-
tional perturbations to the source sequence that
should change the response).

We investigate three state-of-the-art models
on two task-oriented dialogue datasets. Con-
cretely, we propose and evaluate five naturally
motivated and increasingly complex Should-Not-
Change and five Should-Change adversarial strate-
gies on the VHRED (Variational Hierarchical
Encoder-Decoder) model (Serban et al., 2017b)
and the RL (Reinforcement Learning) model (Li
et al., 2016) with the Ubuntu Dialogue Cor-

https://github.com/WolfNiu/AdversarialDialogue
https://github.com/WolfNiu/AdversarialDialogue
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pus (Lowe et al., 2015), and Dynamic Knowledge
Graph Network with the Collaborative Communi-
cating Agents (CoCoA) dataset (He et al., 2017).

On the Should-Not-Change side for the Ubuntu
task, we introduce adversarial strategies of in-
creasing linguistic-unit complexity – from shal-
low word-level errors, to phrase-level paraphras-
tic changes, and finally to syntactic perturba-
tions. We first propose two rule-based pertur-
bations to the source dialogue context, namely
Random Swap (randomly transposing neighbor-
ing tokens) and Stopword Dropout (randomly
removing stopwords). Next, we propose two
data-level strategies that leverage existing paral-
lel datasets in order to simulate more realistic,
diverse noises: namely, Data-Level Paraphras-
ing (replacing words with their paraphrases) and
Grammar Errors (e.g., changing a verb to the
wrong tense). Finally, we employ Generative-
Level Paraphrasing, where we adopt a neural
model to automatically generate paraphrases of
the source inputs.1 On the Should-Change side
for the Ubuntu task, we propose the Add Negation
strategy, which negates the root verb of the source
input, and the Antonym strategy, which changes
verbs, adjectives, or adverbs to their antonyms.
As will be shown in Section 6, the above strate-
gies are effective on the Ubuntu task, but not on
the collaborative-style, database-dependent Co-
CoA task. Thus for the latter, we investigate ad-
ditional Should-Change strategies including Ran-
dom Inputs (changing each word in the utterance
to random ones), Random Inputs with Entities
(like Random Inputs but leaving mentioned enti-
ties untouched), and Normal Inputs with Confus-
ing Entities (replacing entities in an agent’s utter-
ance with distractive ones) to analyze where the
model’s robustness stems from.

To evaluate these strategies, we first show that
(1) both VHRED and the RL model are vulner-
able to most Should-Not-Change and all Should-
Change strategies, and (2) DynoNet’s robustness
to Should-Change inputs shows that it does not
pay any attention to natural language inputs other
than the entities contained in them. Next, ob-
serving how our adversarial strategies ‘success-
fully’ fool the target models, we try to expose

1A real example of Generative-Paraphrasing: context
“You can find xorg . conf in /etc/X11 . It ’s not needed unless
it is . ;-) You may need to create one yourself .” is paraphrased
as “You may find xorg . conf in /etc/X11 . It ’s not necessary
until it is . You may be required to create one .”

these models to such perturbation patterns early
on during training itself, where we feed adver-
sarial input context and ground-truth target pairs
as training data. Importantly, we realize this ad-
versarial training via a maximum-likelihood loss
for Should-Not-Change strategies, and via a max-
margin loss for Should-Change strategies. We
show that this adversarial training can not only
make both VHRED and RL more robust to the ad-
versarial data, but also improve their performances
when evaluated on the original test set (verified
via human evaluation). In addition, when we train
VHRED on all of the perturbed data from each ad-
versarial strategy together, the performance on the
original task improves even further, achieving the
state-of-the-art result by a significant margin (also
verified via human evaluation).

Finally, we attempt to resolve the robust-
ness issue directly at the model-level (instead of
adversarial-level) by feeding subword units de-
rived from the Byte Pair Encoding (BPE) al-
gorithm (Sennrich et al., 2016) to the VHRED
model. We show that the resulting model not only
reduces the vocabulary size by around 75% (thus
trains much faster) and obtains results compara-
ble to the original VHRED, but is also naturally
(i.e., without requiring adversarial training) robust
to the Grammar Errors adversarial strategy.

2 Tasks and Models

For a comprehensive study on dialogue model
robustness, we investigate both semi-task-based
troubleshooting dialogue (the Ubuntu task) and
the new important paradigm of collaborative two-
bot dialogue (the CoCoA task). The former fo-
cuses more on natural conversations, while the lat-
ter focuses more on the knowledge base. Con-
sequently, the model trained on the latter tends
to ignore the natural language context (as will be
shown in Section 6.2) and hence requires a differ-
ent set of adversarial strategies that can directly re-
veal this weakness (e.g., Random Inputs with En-
tities). Overall, adversarial strategies on Ubuntu
and CoCoA reveal very different types of weak-
nesses of a dialogue model. We implement two
models on the Ubuntu task and one on the Co-
CoA task, each achieving state-of-the-art result on
its respective task. Note that although we employ
these two strong models as our testbeds for the
proposed adversarial strategies, these adversarial
strategies are not specific to the two models.
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2.1 Ubuntu Dialogue

Dataset and Task: The Ubuntu Dialogue Cor-
pus (Lowe et al., 2015) contains 1 million
2-person, multi-turn dialogues extracted from
Ubuntu chat logs, used to provide and receive
technical support. We focus on the task of gener-
ating fluent, relevant, and goal-oriented responses.
Evaluation Method: The model is evaluated
on F1’s for both activities (technical verbs, e.g.,
“download”, “install”) and entities (technical
nouns, e.g., “root”, “web”). These metrics are
computed by mapping the ground-truth and model
responses to their corresponding activity-entity
representations using the automatic procedure de-
scribed in Serban et al. (2017a), who found that F1
is “particularly suited for the goal-oriented Ubuntu
Dialogue Corpus” based on manual inspection of
the extracted activities and entities. We also con-
ducted human studies on the dialogue quality of
generated responses (see Section 5 for setup and
Section 6.1 for results).
Models: We reproduce the state-of-the-art Latent
Variable Hierarchical Recurrent Encoder-Decoder
(VHRED) model (Serban et al., 2016), and a
Deep Reinforcement Learning based generative
model (Li et al., 2016). For the VHRED model,
we apply additive attention mechanism (Bahdanau
et al., 2015) to the source sequence while keep-
ing the remaining architecture unchanged. For
the RL-based model, we adopt the mixed objec-
tive function (Paulus et al., 2018) and employ a
novel reward: during training, for each source se-
quence S, we sample a response G on the de-
coder side, feed the encoder with a random source
sequence SR drawn from the train set, and use
− logP (G|SR) as the reward. Intuitively, if SR

stands a high chance of generating G (which cor-
responds to a large negative reward), it is very
likely that G is dull and generic.

2.2 Collaborative Communicating Agents

Dataset and Task: The collaborative CoCoA2 di-
alogue task involves two agents that are asym-
metrically primed with a private Knowledge Base
(KB), and engage in a natural language conversa-
tion to find out the unique entry shared by the two
KBs. For a bot-bot chat of the CoCoA task, a bot is
allowed one of the two actions each turn: perform-
ing an UTTERANCE action, where it generates
an utterance, or making a SELECT action, where

2
https://stanfordnlp.github.io/cocoa/

it chooses an entry from the KB. Note that each
bot’s SELECT action is visible to the other bot,
and each is allowed to make multiple SELECT ac-
tions if the previous guess is wrong.
Evaluation Method: One of the major metrics is
Completion Rate, the percentage of two bots suc-
cessfully finishing the task.
Models: We focus on DynoNet, the best-
performing model for the CoCoA task (He et al.,
2017). It consists of a dynamic knowledge graph,
a graph embedding over the entity nodes, and a
Seq2seq-based utterance generator.

3 Adversarial Strategies

3.1 Adversarial Strategies on Ubuntu

For Ubuntu, we introduce adversarial strategies of
increasing linguistic-unit complexity – from shal-
low word-level errors such as Random Swap and
Stopword Dropout, to phrase-level paraphrastic
changes, and finally to syntactic Grammar Errors.

Should-Not-Change Strategies
(1) Random Swap: Swapping adjacent words oc-
curs often in the real world, e.g., transposition
of words is one of the most frequent errors in
manuscripts (Headlam, 1902; Marqués-Aguado,
2014); it is also frequently seen in blog posts.3

Thus, being robust to swapping adjacent words
is useful for chatbots that take typed/written text
as inputs (e.g., virtual customer support on a air-
line/bank website). Even for speech-based con-
versations, non-native speakers can accidentally
swap words due to habits formed in their na-
tive language (e.g., SVO in English vs. SOV in
Hindi, Japanese, and Korean). Inspired by this,
we also generate globally contiguous but locally
“time-reversed” text, where positions of neighbor-
ing words are swapped (e.g., “I don’t want you to
go” to “I don’t want to you go”).
(2) Stopword Dropout: Stopwords are the
most frequent words in a language. The most
commonly-used 25 words in the Oxford English
corpus make up one-third of all printed material in
English, and these words consequently carry less
information than other words do in a sentence.4

3E.g., “he would give to it me” in https://talk.

drugabuse.com/threads/his-behavior-this-week.4347/
4One could also use closed-class words (prepositions, de-

terminers, coordinators, and pronouns), but we opt for stop-
words because a majority of stopwords are indeed closed-
class words, and secondly, closed-class words usually require
a very accurate POS-tagger, which is not available for low-
resource or noisy domains and languages (e.g., Ubuntu).

https://stanfordnlp.github.io/cocoa/
https://talk.drugabuse.com/threads/his-behavior-this-week.4347/
https://talk.drugabuse.com/threads/his-behavior-this-week.4347/
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Inspired by this observation, we propose randomly
dropping stopwords from the inputs (e.g., “Ben ate
the carrot” to “Ben ate carrot”).
(3) Data-level Paraphrasing: We repurpose
PPDB 2.0 (Pavlick et al., 2015) and replace words
and phrases in the original inputs with their para-
phrases (e.g., “She bought a bike” to “She pur-
chased a bicycle”).
(4) Generative-level Paraphrasing: Although
Data-level Paraphrasing provides us with
semantic-preserving inputs most of the time, it
still suffers from the fact that the validity of a
paraphrase depends on the context, especially
for words with multiple meanings. In addition,
simply replacing word-by-word does not lead to
new compositional sentence-level paraphrases,
e.g., “How old are you” to “What’s your age”.
We thus also experiment with generative-level
paraphrasing, where we employ the Pointer-
Generator Networks (See et al., 2017), and train
it on the recently published paraphrase dataset
ParaNMT-5M (Wieting and Gimpel, 2017) which
contains 5 millions paraphrase pairs.
(5) Grammar Errors: We repurpose the AESW
dataset (Daudaravicius, 2015), text extracted from
9, 919 published journal articles with data be-
fore/after language editing. This dataset was used
for training models that identify and correct gram-
mar errors. Based on the corrections in the edits,
we build a look-up table to replace each correct
word/phrase with a wrong one (e.g., “He doesn’t
like cakes” to “He don’t like cake”).

Should-Change Strategies
(1) Add Negation: Suppose we add negation to
the source sequence of some task-oriented model
— from “I want some coffee” to “I don’t want
some coffee”. A proper response to the first ut-
terance could be “Sure, I will bring you some cof-
fee”, but for the second one, the model should
do anything but bring some coffee. We thus as-
sume that if we add negation to the root verb
of each source sequence and the response is un-
changed, the model must be ignoring important
linguistic cues like negation. Hence this qualifies
as a Should-Change strategy, i.e., if the model is
robust, it should change the response.
(2) Antonym: We change words in utterances
to their antonyms to apply more subtle meaning
changes (e.g., “You need to install Ubuntu” to “You
need to uninstall Ubuntu”).5

5Note that Should-Change strategies may lead to contexts

3.2 Adversarial Strategies on CoCoA

We applied all the above successful strategies
used for the Ubuntu task to the UTTERANCE
actions in a bot-bot-chat setting for the CoCoA
task, but found that none of them was effective
on DynoNet. This is surprising considering that
the model’s language generation module is a tradi-
tional Seq2seq model. This observation motivated
us to perform the following analysis. The high per-
formance of bot-bot chat may have stemmed from
two sources: information revealed in an utterance,
or entries directly disclosed by a SELECT action.

To investigate which part the model relies
on more, we experiment with different Should-
Change strategies which introduce obvious pertur-
bations that have minimal word or semantic mean-
ing overlap with the original source inputs:
(1) Random Inputs: Turn both bots’ utterances
into random inputs. This aims at investigating how
much the model depends on the SELECT action.
(2) Random Inputs with Kept Entities: Replace
each bot’s utterance with random inputs, but keep
the contained entities untouched. This further in-
vestigates how much entities alone contribute to
the final performance.
(3) Confusing Entity: Replace entities mentioned
in bot A’s utterances with entities that are present
in bot B’s KB but not in their shared entry (and
vice versa). This aims at coaxing bot B into
believing that the mentioned entities come from
their shared entry. By intentionally making the
utterances misleading, we expect DynoNet’s per-
formance to be lower – hence this qualifies as a
Should-Change strategy.

4 Adversarial Training

To make a model robust to an adversarial strategy,
a natural approach is exposing it to the same pat-
tern of perturbation during training (i.e., adversar-
ial training). This is achieved by feeding adver-
sarial inputs as training data. For each strategy,
we report results under three train/test combina-
tions: (1) trained with normal inputs, tested on ad-
versarial inputs (N-train + A-test), which evalu-
ates whether the adversarial strategy is effective at

that do not correspond to any legitimate task completion ac-
tion, but the purpose of such a strategy is to make sure that
the model at least should not respond the same way as it re-
sponded to the original context, i.e., even for the no-action
state, the model should respond with something different like
“Sorry, I cannot help with that.” Our semantic similarity re-
sults in Table 4 capture this intuition directly.
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fooling the model and exposing its robustness is-
sues; (2) trained with adversarial inputs, tested on
adversarial inputs (A-train + A-test), which next
evaluates whether adversarial training made the
model more robust to that adversarial attack; and
(3) trained with adversarial inputs, tested on nor-
mal inputs (A-train + N-test), which finally eval-
uates whether the adversarial training also makes
the model perform equally or better on the original
normal inputs. Note that (3) is important, because
one should not make the model more robust to a
strategy at the cost of lower performance on the
original data; also when (3) improves the perfor-
mance on the original inputs, it means adversarial
training successfully teaches the model to recog-
nize and be robust to a certain type of noise, so
that the model performs better when encountering
similar patterns during inference. Also note that
we use perturbed train set for adversarial training,
and perturbed test set for adversarial testing. There
is thus no overlap between the two sets.

4.1 Adversarial Training for
Should-Not-Change Strategies

For each Should-Not-Change strategy, we take an
already trained model from a certain checkpoint,6

and train it on the adversarial inputs with maxi-
mum likelihood loss for K epochs (Shalyminov
et al., 2017; Belinkov and Bisk, 2018; Jia and
Liang, 2017; Iyyer et al., 2018). By feeding “ad-
versarial source sequence + ground-truth response
pairs” as regular positive data, we teach the model
that these pairs are also valid examples despite the
added perturbations.

4.2 Adversarial Training for Should-Change
Strategies

For Should-Change strategies, we want the F1’s to
be lower with adversarial inputs after adversarial
training, since this shows that the model becomes
sensitive to subtle yet semantic-changing pertur-
bations. This cannot be achieved by naively train-
ing on the perturbed inputs with maximum likeli-
hood loss, because the “perturbed source sequence
+ ground-truth response pairs” for Should-Change
strategies are negative examples which we need to
train the model to avoid from generating. Inspired
by Mao et al. (2016) and Yu et al. (2017), we in-
stead use a linear combination of maximum likeli-

6We do not train from scratch because each model (for
each strategy) takes several days to converge.

Model Activity F1 Entity F1
LSTM 1.18 0.87
HRED 4.34 2.22
VHRED 4.63 2.53
VHRED (w/ attn.) 5.94 3.52
Reranking-RL 5.67 3.73

Table 1: F1 results of previous works as compared to
our models. LSTM, HRED and VHRED are results re-
ported in Serban et al. (2017a). VHRED (w/ attn.) and
Reranking-RL are our results. Top results are bolded.

hood loss and max-margin loss:

L=LML+αLMM

LML =
∑
i

logP (ti|si)

LMM =
∑
i

max (0,M+logP (ti|ai)−logP (ti|si))

where LML is the maximum likelihood loss, LMM

is the max-margin loss, α is the weight of the max-
margin loss (set to 1.0 following Yu et al. (2017)),
M is the margin (tuned be to 0.1), and ti, si and ai
are the target sequence, normal input, and adver-
sarial input, respectively.7

5 Experimental Setup

In addition to datasets, tasks, models and evalua-
tion methods introduced in Section 2, we present
training details in this section (see Appendix for a
comprehensive version).
Models on Ubuntu: We implemented VHRED
and Reranking-RL in TensorFlow (Abadi et al.,
2016) and employed greedy search for inference.
As shown in Table 1, for both models we obtained
Activity and Entity F1’s higher than the VHRED
results reported in Serban et al. (2017a). Hence,
each of these two implementations serves as a
solid baseline for adversarial testing and training.
Should-Not-Change Strategies on Ubuntu: For
Random Swap, we allow up to 1 swap of neigh-
boring words per 4 words in each utterance. For
Stopword Dropout, we allow up to 8 words to be
dropped in each turn. For Data-level Paraphras-
ing, we use the small version of PPDB 2.0. For
Generative-level Paraphrasing, we use the publicly
available Pointer-Generator Networks code (See
Appendix for some random samples of the gen-
erated paraphrases).8 For Grammar Errors, in ad-
dition to those extracted from the AESW dataset,

7Please refer to supp. about greedy sampling based max-
margin setup and CoCoA discussion for adversarial training.

8
https://github.com/becxer/pointer-generator

https://github.com/becxer/pointer-generator
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Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.94, 3.52
Random Swap 6.10*, 3.42 6.47*, 3.64* 6.42*, 3.74* -
Stopword Dropout 5.49*, 3.44 6.23*, 3.82* 6.29*, 3.71* -
Data-Level Para. 5.38*, 3.18* 6.39*, 3.83* 6.32*, 3.87* -
Generative-Level Para. 4.25*, 2.48* 5.89 , 3.60 6.11*, 3.66* -
Grammar Errors 5.60*, 3.09* 5.93 , 3.67* 6.05 , 3.69* -
All Should-Not-Change - - 6.74*, 3.97* -
Add Negation 6.06 , 3.42 5.01*, 3.12* 6.07 , 3.46 -
Antonym 5.85 , 3.56 5.43*, 3.43 5.98 , 3.56 -

Table 2: Activity and Entity F1 results of adversarial strategies on the VHRED model. Numbers marked with * are
stat. significantly higher/lower than their counterparts obtained with Normal Input (upper-right corner of table).

we also add a heuristic where an inflected verb is
replaced with its respective infinitive form, and a
plural noun with its singular form. Note that for
all strategies we only keep an adversarial token if
it is within the original vocabulary set.
Should-Change Strategies on Ubuntu: For Add
Negation, we negate the first verb in each utter-
ance. For Antonym, we modify the first verb, ad-
jective or adverb that has an antonym.
Human Evaluation: We also conducted hu-
man studies on MTurk to evaluate adversarial
training (pairwise comparison for dialogue qual-
ity) and generative paraphrasing (five-point Lik-
ert scale). The utterances were randomly shuffled
to anonymize model identity, and we used MTurk
with US-located human evaluators with approval
rate > 98%, and at least 10, 000 approved HITs.
Results are presented in Section 6.1. Note that the
human studies and automatic evaluation are com-
plementary to each other: while MTurk annota-
tors are good at judging how natural and coherent
a response is, they are usually not experts in the
Ubuntu operating system’s technical details. On
the other hand, automatic evaluation focuses more
on the technical side (i.e., whether key activities or
entities are present in the response).
Model on CoCoA: We adopted the publicly avail-
able code from He et al. (2017),9 and used their
already trained DynoNet model.

6 Results
6.1 Adversarial Results on Ubuntu
Result Interpretation For Table 2 and 3 with
Should-Not-Change strategies, lower is better in
the first column (since a successful adversarial
testing strategy will be effective at fooling the
model), while higher is better in the second col-
umn (since successful adversarial training should
bring the performance back up). However, for

9
https://worksheets.codalab.org/worksheets/

0xc757f29f5c794e5eb7bfa8ca9c945573/

Should-Change strategies, the reverse holds.10

Lastly, in the third column, higher is better since
we want the adversarially trained model to per-
form better on the original source inputs.

Results on Should-Not-Change Strategies Ta-
ble 2 and 3 present the adversarial results on
F1 scores of all our strategies for VHRED and
Reranking-RL, respectively. Table 2 shows that
VHRED is robust to none of the Should-Not-
Change strategies other than Random Swap, while
Table 3 shows that Reranking-RL is robust to none
of the Should-Not-Change strategies other than
Stopword Dropout. For each effective strategy, at
least one of the F1’s decreases statistically signif-
icantly11 as compared to the same model fed with
normal inputs. Next, all adversarial trainings on
Should-Not-Change strategies not only make the
model more robust to adversarial inputs (each A-
train + A-test F1 is stat. significantly higher than
that of N-train + A-test) , but also make them per-
form better on normal inputs (each A-train + N-
test F1 is stat. significantly higher than that of N-
train + N-test, except for Grammar Errors’s Ac-
tivity F1). Motivated by the success in adversar-
ial training on each strategy alone, we also exper-
imented with training on all Should-Not-Change
strategies combined, and obtained F1’s stat. sig-
nificantly higher than any single strategy (the All
Should-Not-Change row in Table 2), except that
All-Should-Not-Change’s Entity F1 is stat. equal
to that of Data-Level Paraphrasing, showing that
these strategies are able to compensate for each
other to further improve performance. An inter-

10Higher is better in the first column, because this shows
that the model is not paying attention to important semantic
changes in the source inputs (and is maintaining its original
performance); while lower is better in the second column,
since we want the model to be more sensitive to such changes
after adversarial training.

11We obtained stat. significance via the bootstrap
test (Noreen, 1989; Efron and Tibshirani, 1994) with 100K
samples, and consider p < 0.05 as stat. significant.

https://worksheets.codalab.org/worksheets/0xc757f29f5c794e5eb7bfa8ca9c945573/
https://worksheets.codalab.org/worksheets/0xc757f29f5c794e5eb7bfa8ca9c945573/
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Strategy Name N-train + A-test A-train + A-test A-train + N-test N-train + N-test
Normal Input - - - 5.67, 3.73
Random Swap 5.49*, 3.56* 6.20*, 4.28* 6.36*, 4.39* -
Stopword Dropout 5.51*, 4.09* - - -
Data-Level Para. 5.28*, 3.07* 5.53*, 3.69 5.79*, 3.87* -
Generative-Level Para. 4.47*, 2.63* 5.30*, 3.35* 5.86*, 3.90* -
Grammar Errors 5.33*, 3.25* 5.55*, 3.92* 5.93*, 4.04* -
Add Negation 5.61 , 3.79 4.92*, 2.78* 6.10*, 3.93* -
Antonym 5.68 , 3.70 5.30*, 2.95* 5.80*, 3.71 -

Table 3: Activity and Entity F1 results of adversarial strategies on the Reranking-RL model. Numbers marked
with * are stat. significantly higher/lower than their counterparts obtained with Normal Input (upper-right corner).

Strategy Name VHRED Reranking-RL
Cont. Resp. Cont. Resp.

Random Swap 1.00 0.71 1.00 0.86
Stopword Dropout 0.61 0.50 0.76 0.68
Data-Level Para. 0.96 0.58 0.96 0.74
Gen.-Level Para. 0.70 0.40 0.76 0.55
Grammar Err. 0.96 0.58 0.97 0.74
Add Negation 0.96 0.69 0.97 0.81
Antonym 0.98 0.66 0.98 0.74

Table 4: Textual similarity of adversarial strategies on
the VHRED and Reranking-RL models. “Cont.” stands
for “Context”, and “Resp.” stands for “Response”.

esting strategy to note is Random Swap: although
it itself is not effective as an adversarial strategy
for VHRED, training on it does make the model
perform better on normal inputs.

Results on Should-Change Strategies Table 2
and 3 show that Add Negation and Antonym
are both successful Should-Change strategies, be-
cause no change in N-train + A-test F1 is stat.
significant compared to that of N-train + N-
test, which shows that both models are ignoring
the semantic-changing perturbations to the inputs.
From the last two rows of A-train + A-test column
in each table, we also see that adversarial training
successfully brings down both F1’s (stat. signif-
icantly) for each model, showing that the model
becomes more sensitive to the context change.

Semantic Similarity In addition to F1, we also
follow Serban et al. (2017a) and employ cosine
similarity between average embeddings of nor-
mal and adversarial inputs/responses (proposed
by Liu et al. (2016)) to evaluate how much the in-
puts/responses change in semantic meaning (Ta-
ble 4). This metric is useful in three ways. Firstly,
by comparing the two columns of context sim-
ilarity, we can get a general idea of how much
change is perceived by each model. For exam-
ple, we can see that Stopword Dropout leads to
more evident changes from VHRED’s perspective
than from Reranking-RL’s. This also agrees with
the F1 results in Table 2 and 3, which indicate

Compared to Baseline Win(%) Tie(%) Loss(%)
Random Swap 49 19 32

Stopword Dropout 45 19 36
Data-Level Para. 37 22 41

Generative-Level Para. 41 26 33
Grammar Errors 41 29 30

All Should-Not-Change 49 22 28
Add Negation 34 25 41

Antonym 40 29 31

Table 5: Human evaluation results on comparison be-
tween VHRED baseline trained on normal inputs vs.
VHRED trained on each Should-Not-Change strategy
(incl. one with all Should-Not-Change strategies com-
bined) and each Should-Change strategy for Ubuntu.

Pointer-Generator ParaNMT-5M
Avg. Score 3.26 3.54

Table 6: Human evaluation scores on paraphrases
generated by Pointer-Generator Networks and ground-
truth pairs from ParaNMT-5M.

that Reranking-RL is much more robust to this
strategy than VHRED is. The high context sim-
ilarity of Should-Change strategies shows that al-
though we have added “not” or replaced antonyms
in every utterance of the source inputs, from the
model’s point of view the context has not changed
much in meaning. Secondly, for each Should-Not-
Change strategy, the cosine similarity of context
is much higher than that of response, indicating
that responses change more significantly in mean-
ing than their corresponding contexts. Lastly, The
high semantic similarity for Generative Paraphras-
ing also partly shows that the Pointer-Generator
model in general produces faithful paraphrases.

Human Evaluation As introduced in Section 5,
we performed two human studies on adversarial
training and Generative Paraphrasing. For the first
study, Table 5 indicates that models trained on
each adversarial strategy (as well as on all Should-
Not-Change strategies combined) indeed on aver-
age produced better responses, and mostly agrees
with the adversarial training results in Table 2.12

12Note that human evaluation does not show improvements
with the Data-Level-Paraphrasing and Add-Negation strate-
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Context Response
N: ... you could save your ubuntu files and reinstall Windows , then install
ubuntu as a dual boot option eou eot aight buddy , so how do i get
that **unknown** space back eou
Random Swap: ... you could your save ubuntu and files Windows rein-
stall , then install ubuntu as dual a option boot eou eot aight buddy
, so do how i that get space **unknown** back eou

NN: you can use the Live CD , you can install
Ubuntu on the same partition as the Windows
partition eou
NA: I am using ubuntu . eou
AA: you can use Windows XP on the Win-
dows partition , and then install Ubuntu on
the same drive eou

Table 7: VHRED output example before and after adversarial training on the Random Swap strategy.

For the second study, Table 6 shows that on av-
erage the generated paraphrase has roughly the
same semantic meaning with the original utter-
ance, but may sometimes miss some information.
Its quality is also close to that of the ground-truth
in ParaNMT-5M dataset.

Output Examples of Generated Responses
We present a selected example of generated re-
sponses before and after adversarial training on the
Random Swap strategy with the VHRED model in
Table 7 (more examples in Appendix on all strate-
gies with both models). First of all, we can see that
it is hard to differentiate between the original and
the perturbed context (N-context and A-context) if
one does not look very closely. For this reason,
the model gets fooled by the adversarial strategy,
i.e., after adversarial perturbation, the N-train +
A-test response (NA-Response) is worse than that
of N-train + N-test (NN-Response). However, af-
ter our adversarial training phase, A-train + A-test
(AA-Response) becomes better again.

6.2 Adversarial Results on CoCoA

Table 8 shows the results of Should-Change strate-
gies on DynoNet with the CoCoA task. The Ran-
dom Inputs strategy shows that even without com-
munication, the two bots are able to locate their
shared entry 82% of the time by revealing their
own KB through SELECT action. When we keep
the mentioned entities untouched but randomize
all other tokens, DynoNet actually achieves state-
of-the-art Completion Rate, indicating that the two
agents are paying zero attention to each other’s ut-
terances other than the entities contained in them.
This is also why we did not apply Add Negation
and Antonym to DynoNet — if Random Inputs
does not work, these two strategies will also make
no difference to the performance (in other words
Random Inputs subsumes the other two Should-

gies, though the latter does agree with F1 trends. Over-
all, we provide both human and F1 evaluations because they
are complementary at judging naturalness/coherence vs. key
Ubuntu technical activities/entities.

Strategy Completion Rate Num. of Turns
Norm. Inputs 0.94 16.06
Rand. Inputs 0.82 22.87
Rand. w/ Entity 0.95 17.19
Confusing Entity 0.77 24.11

Table 8: Adversarial Results on DynoNet.

Change strategies). We can also see that even with
the Normal Inputs with Confusing Entities strat-
egy, DynoNet is still able to finish the task 77% of
the time, and with only slightly more turns. This
again shows that the model mainly relies on the
SELECT action to guess the shared entry.

7 Byte-Pair-Encoding VHRED

Although we have shown that adversarial training
on most strategies makes the dialogue model more
robust, generating such perturbed data is not al-
ways straightforward for diverse, complex strate-
gies. For example, our data-level and generative-
level strategies all leverage datasets that are not
always available to a language. We are thus
motivated to also address the robustness task on
the model-level, and explore an extension to the
VHRED model that makes it robust to Grammar
Errors even without adversarial training.
Model Description: We performed Byte Pair
Encoding (BPE) (Sennrich et al., 2016) on
the Ubuntu dataset.13 This algorithm encodes
rare/unknown words as sequences of subword
units, which helps segmenting words with the
same lemma but different inflections (e.g., “show-
ing” to “show + ing”, and “cakes” to “cake +
s”), making the model more likely to be robust
to grammar errors such as verb tense or plu-
ral/singular noun confusion. We experimented
BPE with 5K merging operations, and obtained a
vocabulary size of 5121.
Results: As shown in Table 9, BPE-VHRED
achieved F1’s (5.99, 3.66), which is stat. equal
to (5.94, 3.52) obtained without BPE. To our best
knowledge, we are the first to apply BPE to a gen-

13 We employed code released by the authors on https:
//github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt


494

VHRED BPE-VHRED
Normal Input 5.94, 3.52 5.99, 3.66

Grammar Errors 5.60, 3.09 5.86, 3.54

Table 9: Activity, Entity F1 results of VHRED model
vs. BPE-VHRED model tested on normal inputs.

erative dialogue task. Moreover, BPE-VHRED
achieved (5.86, 3.54) on Grammar Errors based
adversarial test set, which is stat. equal to the
F1’s when tested with normal data, indicating that
BPE-VHRED is more robust to this adversarial
strategy than VHRED is, since the latter had (5.60,
3.09) when tested with perturbed data, where both
F1’s are stat. signif. lower than when fed with nor-
mal inputs. Moreover, BPE-VHRED reduces the
vocabulary size by 15K, corresponding to 4.5M
fewer parameters. This makes BPE-VHRED train
much faster. Note that BPE only makes the model
robust to one type of noise (i.e. Grammar Errors),
and hence adversarial training on other strategies
is still necessary (but we hope that this encourages
future work to build other advanced models that
are naturally robust to diverse adversaries).

8 Related Works

Model-Dependent vs. Model-Agnostic Strate-
gies: Many adversarial strategies have been ap-
plied to both Computer Vision (Biggio et al., 2012;
Szegedy et al., 2013; Goodfellow et al., 2015;
Mei and Zhu, 2015; Papernot et al., 2016; Nar-
odytska and Kasiviswanathan, 2017; Liu et al.,
2017; Carlini and Wagner, 2017; Papernot et al.,
2017; Mironenco et al.; Wong, 2017; Gao et al.,
2018) and NLP (Jia and Liang, 2017; Zhao et al.,
2018; Belinkov and Bisk, 2018; Shalyminov et al.,
2017; Mironenco et al.; Iyyer et al., 2018). Pre-
vious works have distinguished between model-
aware strategies, where the adversarial algorithms
have access to the model parameters, and model-
agnostic strategies, where the adversary does not
have such information (Papernot et al., 2017; Liu
et al., 2017; Narodytska and Kasiviswanathan,
2017). We however, observed that within the
model-agnostic category, there are two subcate-
gories. One is half-model-agnostic, where al-
though the adversary has no access to the model
parameters, it is allowed to probe the target model
and observe its output as a way to craft adver-
sarial inputs (Biggio et al., 2012; Szegedy et al.,
2013; Goodfellow et al., 2015; Mei and Zhu, 2015;
Papernot et al., 2017; Mironenco et al.). On the
other hand, a pure-model-agnostic adversary, such

as works by Jia and Liang (2017) and Belinkov
and Bisk (2018), does not have any access to
the model outputs when creating adversarial in-
puts, and is thus more generalizable across mod-
els/tasks. We adopt the pure-model-agnostic ap-
proach, only drawing inspiration from real-world
noise, and testing them on the target model.
Adversarial in NLP: Text-based adversarial
works have targeted both classification mod-
els (Weston et al., 2016; Jia and Liang, 2017;
Wong, 2017; Liang et al., 2017; Samanta and
Mehta, 2017; Shalyminov et al., 2017; Gao et al.,
2018; Iyyer et al., 2018) and generative mod-
els (Hosseini et al., 2017; Henderson et al., 2017;
Mironenco et al.; Zhao et al., 2018; Belinkov and
Bisk, 2018). To our best knowledge, our work is
the first to target generative goal-oriented dialogue
systems with several new adversarial strategies in
both Should-Not-Change and Should-Change cat-
egories, and then to fix the broken models through
adversarial training (esp. using max-margin loss
for Should-Change), and also achieving model ro-
bustness without using any adversarial data.

9 Conclusion

We first revealed both the over-sensibility and
over-stability of state-of-the-art models on Ubuntu
and CoCoA dialogue tasks, via Should-Not-
Change and Should-Change adversarial strategies.
We then showed that training on adversarial inputs
not only made the models more robust to the per-
turbations, but also helped them achieve new state-
of-the-art performance on the original data (with
further improvements when we combined strate-
gies). Lastly, we also proposed a BPE-enhanced
VHRED model that not only trains faster with
comparable performance, but is also robust to
Grammar Errors even without adversarial training,
motivating that if no strong adversary-generation
tools (e.g., paraphraser) are available (esp. in low-
resource domains/languages), we should try alter-
native model-robustness architectural changes.
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